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Abstract

The Gaussian Process Convolution Model
(GPCM; Tobar et al., 2015a) is a model for
signals with complex spectral structure. A
significant limitation of the GPCM is that
it assumes a rapidly decaying spectrum: it
can only model smooth signals. Moreover,
inference in the GPCM currently requires
(1) a mean-field assumption, resulting in
poorly calibrated uncertainties, and (2) a te-
dious variational optimisation of large co-
variance matrices. We redesign the GPCM
model to induce a richer distribution over the
spectrum with relaxed assumptions about
smoothness: the Causal Gaussian Process
Convolution Model (CGPCM) introduces a
causality assumption into the GPCM, and
the Rough Gaussian Process Convolution
Model (RGPCM) can be interpreted as a
Bayesian nonparametric generalisation of the
fractional Ornstein–Uhlenbeck process. We
also propose a more effective variational in-
ference scheme, going beyond the mean-
field assumption: we design a Gibbs sam-
pler which directly samples from the optimal
variational solution, circumventing any vari-
ational optimisation entirely. The proposed
variations of the GPCM are validated in ex-
periments on synthetic and real-world data,
showing promising results.

1 INTRODUCTION

Gaussian processes (GPs) form a popular and powerful
probabilistic framework for modelling functions (Ras-
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mussen and Williams, 2006). They are successfully
applied in a wide variety of contexts and are state
of the art in numerous regression tasks (Bui et al.,
2016). Gaussian processes are nonparametric mod-
els that grow in complexity as more data is observed,
which makes them robust against overfitting. They
achieve this automatic calibration of complexity by
posing a prior distribution directly over the underly-
ing function f : T → R. In particular, the defining
property of a Gaussian process is that any finite collec-
tion of function values f(t1), . . . , f(tn) is multivariate
Gaussian distributed.

The key modelling decision when using Gaussian pro-
cesses is the choice of covariance function k(t, t′) =
cov(f(t), f(t′)), also called the kernel. The kernel en-
codes prior information about the underlying function
f . For example, the kernel specifies the smoothness of
f and the typical length scale on which f varies. A
kernel is stationary if it only depends on the difference
of its arguments: k(t, t′) = k(t − t′). In that case, if
the data is translated, the predictions are translated
accordingly, a symmetry called translation equivari-
ance which is often desirable. A stationary kernel is
characterised by its Fourier transform—a fact known
as Bochner’s theorem—where the Fourier transform
is called the power spectral density (PSD) or simply
spectrum. If f is decomposed into complex exponen-
tials with random amplitudes, then the spectrum tells
us how the variances of these random amplitudes vary
with frequency.

A popular choice for the kernel is the exponentiated
quadratic (EQ) kernel: k(t, t′) = exp

(
− 1

2`2 ‖t− t
′‖2
)
.

The EQ kernel assumes that f is infinitely differen-
tiable and varies on only a single length scale `. Whilst
appropriate for many tasks, these assumptions are too
rigid for harder regression problems, which require
more expressive kernels. From the perspective of the
spectrum, the EQ kernel assumes that the spectrum of
f is necessarily of the form PSD(ω) = c1e

−c2ω2

. This is
restrictive, because real-world signals often have much
richer spectral structure.
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Figure 1: Visualisation of the nonparametric prior over the
power spectral density by the GPCM (left) and the two
variants of the GPCM introduced in this paper (middle
and right). Observe that the GPCM has a quickly de-
caying spectrum, whereas the CGPCM and especially the
RGPCM have support at higher frequencies.

An important property of the spectrum is the be-
haviour at high frequencies. Specifically, the asymp-
totic decay of PSD(ω) is intimately connected to the
regularity of sample paths of f . For example, sample
paths of f are n-times differentiable if and only if the
2nth spectral moment is finite,

∫
ω2nPSD(ω) dω < ∞

(Theorem 4, Cambanis, 1973). Since the PSD of the
EQ kernel PSD(ω) = c1e

−c2ω2

decays quicker than any
polynomial, sample paths of a Gaussian process with
an EQ kernel are infinitely differentiable.

Developing flexible and expressive kernels as well as
choosing the right kernel for a particular task is an ac-
tive area of research. Many approaches let the kernel
be of a flexible parametric form (Wilson and Adams,
2013; Calandra et al., 2016; Sun et al., 2018) or search
over a large space of kernels (Grosse et al., 2012; Duve-
naud, 2014; Malkomes et al., 2016). These approaches
are often effective, but run the risk of overfitting due to
the large number of parameters they introduce. Mor-
ever, posing a flexible parametric form for the kernel or
spectrum typically presents an optimisation problem
which is riddled with local optima. Other approaches
treat the kernel as a latent function by assuming a
prior distribution over the kernel (Tobar et al., 2015a;
Oliva et al., 2016; Jang et al., 2017). This induces
a prior distribution over the PSD—see Figure 1 for
an illustration—which is appealing, because it brings
the benefits of Bayesian nonparametrics to the spec-
trum: as more data are observed, more spectral struc-
ture of the data is revealed, and the posterior over the
spectrum automatically increases in complexity. In-
ference in these models, however, is considerably more
involved and computationally demanding.

An example of a model that treats the kernel as a
random function is the Gaussian Process Convolution
Model (GPCM) (Tobar et al., 2015a), which is the fo-
cus of this paper. The GPCM parametrises the kernel
of the Gaussian process f with a sample of another
Gaussian process h, where in turn h has a modified
EQ kernel. Tobar et al. (2015b) construct the GPCM
by considering a linear system excited by white noise;
this construction will be central in this paper.

Although the GPCM works well on a range of tasks,
a consequence of the form of the kernel for h is that
f has a rapidly decaying spectrum (see Fig 1), which
means that f will be a smooth function. If data are not
(noisy) observations of a smooth function, the GPCM
can fail to capture important structure and lead to pre-
dictions which are too smooth and consequently over-
shoot the data. In addition, the existing inference pro-
cedure by Tobar et al. (2015a) relies on a mean-field as-
sumption and is computationally expensive because it
requires numerical optimisation over high-dimensional
covariance matrices.

The purpose of this paper is twofold: to redesign the
GPCM for non-smooth signals and to improve infer-
ence in terms of both approximation quality and com-
putational expense. Our contributions are as follows.
First, we propose two variations of the GPCM which
induce a richer distribution over the spectrum with
relaxed assumptions about smoothness: the Causal
Gaussian Process Convolution Model (CGPCM) in-
troduces a causality assumption into the GPCM, and
the Rough Gaussian Process Convolution Model (RG-
PCM) can be interpreted as a non-parametric general-
isation of the fractional Ornstein–Uhlenbeck process.
Second, we propose an improved variational inference
scheme which goes beyond the mean-field assumption.
In particular, we design a Gibbs sampler which directly
samples from the optimal variational solution, which
entirely circumvents any variational optimisation; the
Gibbs sampler is found to mix quickly and give uncer-
tainty estimates superior to approaches that apply ex-
plicit optimisation. Finally, we validate the proposed
variations of the GPCM and inference scheme in ex-
periments on synthetic and real-world data.

2 GAUSSIAN PROCESS
CONVOLUTION MODELS

The GPCM admits two equivalent formulations. The
first formulation of the GPCM is a linear system ex-
cited by white noise with a nonparametric prior over
the filter (Tobar et al., 2015a). This formulation is
useful because it shows how the GPCM is constructed
and hence how it can be modified to adjust properties.
It also forms the basis for an approximate inference
scheme. The second formulation of the GPCM is as a
GP with a nonparametric prior over the kernel, which
is the interpretation that we are ultimately after.

Let kh be a kernel with finite trace, meaning that∫∞
−∞ kh(τ, τ) dτ <∞.1 Then the linear system formu-

1The kernel kh is then said to be a trace class Hilbert–
Schmidt kernel (Lax, 2002).
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lation of the GPCM is given by the following model:

x ∼ GP(0, δ(t− t′)), h ∼ GP(0, kh(t, t′)), (1)

f(t) |h, x =
∫∞
−∞ h(t− τ)x(τ) dτ, (2)

where δ( · ) denotes the Dirac delta function. This
model is accompanied by the data likelihood y | f ∼
GP(f(t), σ2δ[t − t′]), where δ[ · ] is the Kronecker2

delta function. From the requirement that kh has
a finite trace it follows that f has finite power:
V[f(t)] =

∫∞
−∞kh(τ, τ) dτ < ∞. One family of

kernels with finite trace is given by the amplitude-
modulated, locally stationary (AMLS) kernels (Chen,
2018) kh(t, t′) = w(t)w(t′)kg(t− t′) where w is square
integrable and kg a stationary kernel. Indeed, then
V[f(t)] = kg(0)

∫
0
w2(τ) dτ < ∞. Choosing kh to be

an AMLS kernel corresponds to a generative model
where we first draw a filter g and then apply a win-
dow function w to obtain h: g ∼ GP(0, kg) and
h(t) | g = w(t)g(t). The window w also serves to
make inference well posed: since x is stationary, any
shifted version of h results in an identical model for
f |h, but versions of h contained within the window
are preferred. Following Tobar et al. (2015a), we

choose w(t) = e−αt
2

and kg(t− t′) = e−γ(t−t
′)2 . With

these choices, kh(t, t′) = e−αt
2−αt′2−γ(t−t′)2 , which To-

bar et al. name the decaying exponentiated quadratic
(DEQ) kernel. For the DEQ kernel, α determines the
temporal extent of the filter h and γ the time scale on
which the filter h varies.

When conditioned on h, f is a fixed linear transform (h
is fixed) of the Gaussian process x. Consequently, f |h
is also a Gaussian process, with zero mean, E[f(t)|h] =
0, and covariance kf |h(t, t′) = E[f(t)f(t′)|h]. This
reveals an equivalent formulation of the GPCM with
a nonparametric prior over the kernel:

Model 2.1 (GPCM). Let kh be a DEQ kernel. Then
the GPCM is given by the following generative model:

h ∼ GP(0, kh(t, t′)), (3)

f |h ∼ GP(0,
∫∞
−∞ h((t− t′) + τ)h(τ) dτ). (4)

Observe that, in Mod 2.1, the parametrisation of the
kernel kf |h of f is precisely the functional analogue
of the parametrisation of a covariance matrix with the
outer product: Σ = AA>. As alluded to in the in-
troduction, a consequence of the strong smoothness
assumptions on h, which derive from the DEQ kernel,
is that the GPCM also exhibits smoothness:

Proposition 2.1. Sample paths of the GPCM are al-
most surely everywhere differentiable. See App A.

2δ[0] = 1 and δ[ · ] = 0 elsewhere.

The Causal GPCM. The linear system formulation
of the GPCM in (2) is an acausal system, meaning that
past system responses can depend on future inputs.3

Acausality combined with the smoothness of h lies at
the heart of the smoothness of the GPCM. Therefore,
to build a model which is less smooth, we adjust the
convolution in (2) to be causal. In a causal system, a
system response can only depend on past inputs, not
future inputs, which is in line with physical systems.
Following the construction of the GPCM gives rise to
the Causal GPCM (see App C):

Model 2.2 (CGPCM). Let kh be a DEQ kernel. The
CGPCM is given by the following generative model:

h ∼ GP(0, kh(t, t′)), (5)

f |h ∼ GP(0,
∫∞
0
h(|t− t′|+ τ)h(τ) dτ). (6)

The only difference between Mod 2.2 and Mod 2.1 is
that the integral starts at zero and depends on |t− t′|
rather than on t − t′. As the next proposition shows,
this seemingly minor detail has major consequences for
the smoothness properties of the CGPCM.

Proposition 2.2. If h(0) = 0, then sample paths of
the CGPCM are almost surely everywhere differen-
tiable. If, on the other hand, h(0) 6= 0, then sample
paths of the CGPCM are almost surely nowhere dif-
ferentiable. See App B for a proof.

Although Prop 2.2 tells us that sample paths of the
CGPCM are almost surely nowhere differentiable in
the case |h(0)| > 0, the proposition does not give us a
sense of how volatile the sample paths then are. App C
argues f that can locally be approximated by a |h(0)|-
scaled Brownian motion, which means that the mag-
nitude of the irregular increments is controlled by the
value of |h(0)|. Intuitively, |h(0)| is the magnitude of
the filter when new white noise enters it: if |h(0)| > 0,
new noise is directly passed to the output, which re-
sults in a nondifferentiable signal; and the larger |h(0)|
is, the more noisy the output will be. Fig 2 demon-
strates this mechanism. Since h is modelled randomly,
by performing inference in the CGPCM, the model is
able to automatically infer a level of irregularity, i.e. a
value for |h(0)|, which is appropriate for the data.

The Rough GPCM. The CGPCM is able to model
nondifferentiable phenomena. This is visualised by
samples in the bottom row of Fig 2, which look fairly
jagged. Some applications, however, may require sam-
ples which behave even more erratically, like equilib-
rium systems under noise in the natural sciences, and
certain financial time series. To this end, we modify

3Although similarly named, the system-theoretic notion
of causality here is distinct from the probabilistic notion of
causality.
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Figure 2: Generative process of the CGPCM. Shows the filter h, the kernel kf |h, and a sample f |h ∼ GP(0, kf |h(t− t′))
while the filter is interpolated from one that satisfies h(0) = 0 to one that satisfies |h(0)| > 0. The sample appears smooth
for h(0) = 0 and becomes more irregular as |h(0)| increases. The black dots indicate inducing point positions.

both the filter h and input x of the (C)GPCM: we re-
lax the smoothness of the filter h for greater spectral
flexibility, and posit a Matérn– 1

2 kernel for the input
process x. As will be explored in the next section, in-
stead of using a smoothing transformation for inducing
points for x, which the (C)GPCM use, our construc-
tion will enable efficient inference of spectral content
through variational Fourier features. The RGPCM
can be interpreted as altering a Matérn– 1

2 GP—also
known as an Ornstein–Uhlenbeck (OU) process—by a
random nonparametric modulation of the spectrum.
A parametric special case of this model is the frac-
tional Ornstein–Uhlenbeck process (Cheridito et al.,
2003), which can be rough in the sense that it is more
irregular than the OU process.4 We therefore call this
version the Rough GPCM.

Model 2.3 (RGPCM). Let h be white noise win-
dowed by w(t) = e−α|t| and kx(t, t′) = e−λ|t−t

′|. Then
the RGPCM is given by the following model:

h ∼ GP(0, kh(t, t′)), f |h ∼ GP
(
0, kf |h(t− t′)

)
(7)

with kf |h(r)=
∫∞
0

∫∞
0
h(τ)h(τ ′)kx(r−(τ−τ ′)) dτ dτ ′.

See App D for a more detailed description of the RG-
PCM. As we will see next, the RGPCM allows for more
spectral content over higher frequencies and thus more
irregular sample paths.

Comparison of model priors. Fig 3 visualises
the nonparametric prior distribution over kernels and
PSDs induced by the GPCM, CGPCM, and RGPCM.
Observe that the GPCM has a very quickly decay-
ing spectrum, whereas the CGPCM and especially the
RGPCM have substantial support at higher frequen-
cies. This is in line with the construction of the mod-
els: the GPCM models smooth signals, the CGPCM
models signals with varying levels of irregularity, and

4Formally, the OU process is Hölder continuous of order
a < 1

2
while the fractional OU has a < H for H ∈ (0, 1).

If H < 1
2
, then it is called rough; see Gatheral et al.

(2018) and Bennedsen et al. (2016) for empirical evidence
of roughness in financial data.

the RGPCM models the most irregular signals. To
further support this, Fig 4 shows function, kernel, and
PSD samples. Crucially, observe that GPCM samples
are smooth, the CGPCM varies in level of smoothness
(e.g., the green sample is smooth and yellow one is
jagged), and the RGPCM is very irregular.

Choice of hyperparameters. To fairly compare
the GPCM, CGPCM, and RGPCM in experiments,
we need to able to configure the models comparably.
By requiring the models’ prior powers to be unity and
that, for an appropriate definition of the length scale,
the prior marginal covariance functions E[kf |h(t, t′)]
have equal length scales, App E derives the follow-
ing initialisation. For some data, let τf be the small-
est length scale contained in the signal and let τw be
the desired extent of the filter. Let the subscript · c
refer to the CGPCM, · ac to the GPCM, and · r to
the RGPCM. Then initialise αac,c = π

4 τ
−2
w , αr = τ−1w ,

γac,c = π
4 τ
−2
f − 1

2αac,c, and λr = τ−1f . By setting
τw = 2τf , τf,ac,c =

√
π/2` ≈ 1.2`, and τf,rv = `, we

define the standardised marginal covariance functions:

kac(r) = exp(− 1
2`2 r

2), (8)

kc(r) = (1− erf( 1
4` |r|)) exp(− 1

2`2 r
2), (9)

kr(r) = exp(− 1
` |r|). (10)

To the best of our knowledge, the kernel kc does not
have an established name. (That kc is a positive def-
inite function follows from the fact that it is a covari-
ance function of the CGPCM.) We call kc the causal
exponentiated quadratic (CEQ) kernel. The standard
kernels (8) to (10) are helpful, because they allow us
to build intuition for the GPCM models by comparing
to familiar kernels: the GPCM is like an EQ GP, the
CGPCM is also like an EQ GP but with an irregular
component, and the RGPCM is like a Matérn– 1

2 GP.

3 INFERENCE

For all GPCM models, the posterior conditioned on
data cannot be computed analytically, so an approx-
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Figure 3: Visualisation of the nonparametric priors induced over kernels and PSDs by the GPCM, CGPCM, and RGPCM
with τf = 0.5 s and τw = 2 s (see Sec 3). The black line shows the mean and the shaded areas show marginal quantiles
ranging from 1% to 99%. The number of inducing points is nu = 30; the black dots indicate inducing point positions.
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Figure 4: Prior function, kernel, and PSD samples from the GPCM, CGPCM, and RGPCM with τf = 0.5 s and τw = 2
s (see Sec 3). The numbers of inducing points are nu = 30 and nz = 40; black dots indicate inducing point positions.

imation is necessary. We follow Tobar et al. (2015a)
and consider a variational approximation (Wainwright
and Jordan, 2008). The setup and derivation of our in-
ference scheme is spelled out in detail in App F; in this
section, we give a high-level sketch.

To approximate the posterior over the Gaussian pro-
cesses x and h, we make use of inducing points (Titsias,
2009; d. G. Matthews et al., 2016). For the GPCM and
CGPCM, let u be nu inducing points for h, and let z
be nz inducing points for the inter-domain transform
s(τ) =

∫∞
−∞ e−ω(τ−t)

2

x(t) dt (Lázaro-Gredilla and Vi-
dal, 2009). Note that s has an EQ kernel. For the RG-
PCM, first, let u be nu inducing points for the causal
inter-domain transform s(τ) =

∫ τ
−∞ e−γ(τ−t)x(t) dt.

Compared to the GPCM, s now has a Matérn–1
2 ker-

nel. Second, for h, we exploit the fact that x also
has a Matérn– 1

2 kernel, which enables us to varia-
tional Fourier features (VFFs) (Hensman et al., 2018).
Whereas regular inducing points approximate the pos-
terior with temporally local basis functions placed at
the inducing points, VFFs approximate the posterior
with a truncated Fourier series, which can give supe-
rior spectral approximation qualities. Because x is sta-
tionary, such an approximation is not possible with the
Fourier transform as inter-domain transform; rather,
VFFs propose a clever construction which exploits the

fact that harmonics are contained within the repro-
ducing kernel Hilbert space of the Matérn– 1

2 kernel.
See Hensman et al. (2018) for more details. For the
RGPCM, we let z be nz VFFs for x.

Henceforth, let θ denote all hyperparameters of a
model. Given the inducing points u and z, we fol-
low Tobar et al. and consider the variational approx-
imation qθ(h, x,u, z) = pθ(h |u)pθ(x | z)q(u, z) where
q(z,u) is a joint variational approximation over the in-
ducing points. Given some data y, to optimise q(z,u)
and θ, we optimise the evidence lower bound (ELBO):

Fθ[q(u, z)] (11)

= Eq[log pθ(y | f)]−KL[q(u, z) ‖ pθ(u)pθ(z)].

As we explain in App F, key to the tractability of the
ELBO is the observation that E[log pθ(y | f) |u, z] is
tractable and conditionally quadratic in u and z.

Mean-field inference. The first scheme that we con-
sider is the mean-field (MF) approximation q(u, z) =
q(u)q(z), originally considered by Tobar et al. (2015a).
They parametrise q(u) and q(z) by Gaussians with
dense covariance matrices and optimise the ELBO us-
ing gradient-based optimisation. In App F, we show
that, given q(z) (resp. q(u)), the optimal q∗(u) (resp.
q∗(z)) can be computed analytically, which gives rise
to a coordinate ascent (CA) scheme. Alternatively, the
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optimal form q∗(z) (resp. q∗(u)) can be plugged back
into the ELBO to give rise a collapsed MF bound,
which depends on many fewer variational parameters
and hence greatly accelerates optimisation.

Structured inference. A major issue with the mean-
field approximations is that it is unable to model cor-
relations between u and z. It consequently biases to-
wards overly simple models and and tends to yield
poorly calibrated uncertainties (MacKay, 2002; Turner
and Sahani, 2011). To improve upon the mean-field
approximation, we consider a general structured ap-
proximation q(u, z). In App F, we derive the opti-
mal q∗(u, z) and demonstrate that the conditionals
q∗(u | z) and q∗(z |u) are Gaussians with parameters
dependent on respectively z and u. Therefore, to sam-
ple from the optimal q∗(u, z), we can iteratively sam-
ple from these conditionals in an alternating fashion.
This gives us a way to perform inference in the models
without any variational optimisation, and which even
enjoys computational benefits compared to the mean-
field schemes (see App F). To optimise θ, App F shows
that samples from q∗(u, z) can be used to approxi-
mate d

dθFθ[q
∗(u, z)]. Although gradients can be ap-

proximated, Fθ[q∗(u, z)] unfortunately cannot be es-
timated. As a proxy, we propose the lower bound
Fθ[q∗MF(u)q∗(z |u)] ≤ Fθ[q∗(u, z)], which can be es-
timated. Here q∗MF(u) is the optimal MF solution.

4 EXPERIMENTS

We provide an implementation of the GPCM, CG-
PCM, and RGPCM at github.com/wesselb/gpcm

with a user-friendly sklearn-style interface. In this
section, we validate the proposed variants of the
GPCM and inference scheme on synthetic and real-
world data. We use mean log loss (MLL)5 as the met-
ric to evaluate uncertainty and the root-mean-square
error (RSME) as the metric to evaluate accuracy of
the mean prediction. Unlike Tobar et al. (2015a), in
all experiments we optimise the inducing point loca-
tions and all hyperparameters.

Learning performance of inference schemes. We
compare the inference schemes described in Sec 3 to
the original inference scheme by Tobar et al. (2015a).
Fig 5 shows the evolution of the ELBO over wall-clock
time for all inference schemes in a toy problem. Note
that the collapsed MF bound optimises quicker than
the uncollapsed MF bound, but that the coordinate as-
cent procedure (CA) converges nearly instantaneously
and reaches its convergence threshold long before the
gradient-based optimisation. Moreover, this example

5For predictions given by means and marginal variances,
the mean log loss is the average negative log-pdf of the
observations under those means and marginal variances.
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Figure 5: Learning 500 noisy data points sampled from a
GP with an EQ kernel. Shows the evolution of the ELBO
in time for the original mean-field approximation by Tobar
et al. (2015a) (MF), a collapsed version of the mean-field
approximation (collapsed MF), the coordinate-ascent ver-
sion of the mean-field approximation (CA), and the struc-
tured ELBO with q(u) given by the current CA solution;
see Sec 3. Also shows the likelihood of the GP from which
the data was sampled. scipy’s implementation of the L-
BFGS-B algorithm (Nocedal and Wright, 2006) was used to
optimise the uncollapsed and collapsed mean-field ELBO.
The numbers of inducing points are nu = 40 and nz = 40.

only uses 40 inducing points. The benefits of the CA
scheme will be further exaggerated for greater num-
bers of inducing points, because gradient-based opti-
misation will then struggle with the large covariance
matrices. Finally, observe that the structured scheme,
which derives from the CA solution (see Sec 3), fur-
ther improves the ELBO and comes closest to the GP
likelihood out of all inference schemes.

Approximation quality of inference schemes. In
this experiment, a reference to the mean-field approx-
imation scheme will refer to the CA scheme, followed
by optimisation of the hyperparameters with the col-
lapsed MF ELBO, followed by another application of
the CA scheme (see Sec 3). Fig 6 presents the results
when we use the GPCM to infer the kernel and PSD
of a GP with a one-component spectral mixture kernel
(Wilson and Adams, 2013) from a noisy sample. Ob-
serve that the mean-field scheme produces a poor solu-
tion for the predictive mean and that the uncertainties
are uncalibrated; in contrast, the structured scheme is
able to capture true kernel and PSD. We further com-
pare the mean-field and structured approximation in
a second experiment. Fig 7 presents the results of us-
ing the GPCM, CGPCM, and RGPCM to infer their
respective standard kernels from a noisy sample. Ob-
serve that, in all cases, the structured scheme presents
marked improvements in MLL; indeed, Fig 7 shows
that the true kernels hit the edges or even just fall
outside of the uncertainty intervals produced by the
mean-field scheme. In this case, however, the struc-
tured scheme did not yield improvements in RMSE.
Generally, the benefit of the structured scheme consti-

https://github.com/wesselb/gpcm
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Figure 6: Fitting the GPCM on 200 noisy observations
drawn from a GP with a one-component spectral mixture
kernel using the mean-field inference scheme (MF) and
structured inference scheme (S). The numbers of induc-
ing points are nu = 80 and nz = 80. Shows the prediction
for the kernel and for the PSD. Also shows the MLL and
RMSE of the kernel prediction for both inference schemes.
Best numbers are boldfaced.

tutes improved uncertainty estimates. Having demon-
strated the advantages of the structured scheme, we
commit to the structured scheme in the remaining ex-
periments with real data.

Predicting crude oil prices. We demonstrate the
benefits of the relaxed smoothness assumptions of the
CGPCM and RGPCM by, for the years 2012–2017,
predicting NASDAQ crude oil daily prices6 in every
odd week of the second half of the year from all other
data points in that year. Fig 8 presents the results. To
begin with, we focus on the predictions by the models
in the top two plots. Observe that the predictions by
the GPCM (blue) are much smoother than the predic-
tions by the CGPCM (purple) and RGPCM (green).
The smoothness of the GPCM’s predictions causes the
model to explain more intricate structure of the signal
as noise, which consequently leads to a significant in-
crease in MLL. That the predictions of the GPCM are
too smooth is corroborated by the predictions for the
PSD: the GPCM predicts a quickly decaying EQ-like
spectrum, whereas the CGPCM and RGPCM predict
support at higher frequencies and exhibit more fine-
grained spectral structure.

Forecasting the Cboe Volatility Index. The Cboe
Volatility Index7 (VIX) is an index which measures
the market’s expectations for short-term S&P500 price
changes. In this experiment, we train the models the
year 2015, retain the posterior over h, move forward
a year and, in a one-week rolling window fashion, for

6https://www.nasdaq.com/market-activity/
commodities/cl%3Anmx

7https://www.cboe.com/tradable_products/vix/
vix_historical_data/
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Figure 7: Fitting the GPCM, CGPCM, and RGPCM on
400 noisy observations drawn from a GP with respectively
a CEQ (see Sec 3), EQ, and Matérn– 1

2
kernel using the

mean-field inference scheme (MF) and structured inference
scheme (S). The numbers of inducing points are nu = 30
and nz = 80. Shows the prediction for the kernel and
the MLL and RMSE for both inference schemes. Numbers
within 1% of the best number are boldfaced.

GPCM CGPCM RGPCM

MLL 0.089 ±0.087 −0.397∗±0.070 −0.464∗±0.072

RMSE 0.210 ±0.010 0.143∗±0.007 0.134∗±0.007

Table 1: Average one-week-ahead prediction result for log-
VIX (see Sec 4). Shows the MLL and RSME for the
GPCM, CGPCM, and RGPCM. Best numbers boldfaced.
Errors are standard deviations. ∗Significantly better than
all worse scores with p < 10−6 using a paired test.

100 weeks, predict log-VIX one week ahead given the
past four weeks. Table 1 presents the results. Whereas
the CGPCM outperforms the GPCM in terms of MLL,
which means that the causality assumption is helpful,
the even weaker smoothness assumptions of the RG-
PCM yield the best uncertainty and mean estimates.

Analysing the Cboe Volatility Index. In the fi-
nal experiment, we use the RGPCM to investigate on
which length scale the log-VIX reasonably be approx-
imated by an OU process. We fit the RGPCM to all
log-VIX in the year 2000 using a number of induc-
ing points which allows the RGPCM to detect fluctu-
ations up to the Nyquist frequency. We then use the
property of the RGPCM that it is a spectrally modu-
lated version of an OU process (see Sec 3 and App D):
the prediction of the PSD |Fh(f)|2Fkx(f) by the RG-
PCM, where F denotes the Fourier transformation,
can be decomposed into the prediction of the spec-
trum Fkx(f) for the OU process x and a prediction
of the modulation by the filter |Fh(f)|2. Fig 9 shows
that the prediction for |Fh(f)|2 is flat after f = 0.2
day−1. We conclude that the log-VIX data can reason-
ably be modelled with an OU process on a length scale
of at most 0.2−1 = 5 days; on longer length scales, the

https://www.nasdaq.com/market-activity/commodities/cl%3Anmx
https://www.nasdaq.com/market-activity/commodities/cl%3Anmx
https://www.cboe.com/tradable_products/vix/vix_historical_data/
https://www.cboe.com/tradable_products/vix/vix_historical_data/
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part Fkx(f) of the predicted PSD, and the modulation by

the filter |Fh(f)|2. We set nu = 60 and nz equal to the number of time points, allowing the RGPCM to detect fluctuations
up to the Nyquist frequency. Observe that the prediction for |Fh(f)|2 is flat after f = 0.2 day−1.

RGPCM predicts more intricate spectral structure.

5 RELATED WORK

Tobar et al. (2015b) extend the GPCM by considering
an harmonic inter-domain transformation for x, mak-
ing the model more suitable for more complex spec-
tral estimation tasks. In the supplement, Tobar et al.
(2015a) point out that the PSD of f |u is a mixture of
Gaussians centred at frequencies determined by the
inducing point locations. From this point of view,
the GPCM is related to the models by Oliva et al.
(2016), who use a Dirichlet process to parametrise the
PSD; by Jang et al. (2017), who use a Levy process
for the kernel, resulting in PSDs consisting of Lapla-

cian mixtures; and by Benton et al. (2019), who model
the log-density of the PSD with a GP. However, to
perform inference, all these models employ general-
purpose MCMC procedures; in contrast, our infer-
ence scheme exploits the additional structure that the
conditionals of the optimal variational solution can
be sampled from directly to construct a Gibbs sam-
pler which mixes quickly in practice. Finally, a con-
struction like the GPCM can also be found in other
fields: Pillonetto and Nicolao (2010); Wågberg et al.
(2018); Chen (2018) use a frequentist approach similar
to GPCM for the purpose of system identification.
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6 DISCUSSION

The goal of this paper was to redesign the GPCM to
induce a richer distribution over the spectrum. We
introduced the Causal GPCM, able to model signals
of varying level of irregularity, and the Rough GPCM,
able to model even more irregular signals. The RG-
PCM is particularly appealing, because it avoids the
implementation difficulties of the CGPCM and en-
joys the benefits of variational Fourier features for im-
proved approximation qualities. Experiments demon-
strated that the relaxed smoothness assumptions of
the CGPCM and RGPCM can yield substantially im-
proved uncertainty and mean estimates on real-world
data. In addition, to address the deficiencies of the
original mean-field inference scheme by Tobar et al.
(2015a), we introduced a structured approximation
which is able to fully retain the correlation structure
between the latent variables. Experiments showed
that the structured scheme generally gives marked im-
provements in uncertainty estimates and can perform
well in cases where the mean-field scheme falls over.
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A Proof of Proposition 2.1

Proof of Proposition 2.1. To begin with, h is a sample of a GP with an EQ kernel multiplied by a smooth window
w, so h is infinitely differentiable almost surely. Since, in addition, the window w(t) = e−αt

2

and all its derivatives
decay to zero quickly, almost surely, (1) h and all derivatives of h go to zero at infinity and (2) any product of h
and its derivatives is dominated by an integrable function. This is argued more rigorously in App A.1. We will
use these fact implicitly in the remainder of the proof to freely interchange integral and derivative.

Note that
kf |h(r) = kf |h(0) + k′f |h(0)r + 1

2k
′′
f |h(0)r2 +O(|r|3), (12)

so sample paths of the GPCM are almost surely everywhere differentiable if k′f |h(0) = 0 and k′′f |h(0) 6= 0 (Thm
3 from Cambanis, 1973). First, use integration by parts to find

k′f |h(0) =

∫ ∞
−∞

h′(τ)h(τ) dτ =
((((

(((
(((lim

τ→∞
[h2(τ)− h2(−τ)]−

∫ ∞
−∞

h(τ)h′(τ) dτ = − k′f |h(0) (13)

almost surely. Thus, k′f |h(0) = 0 almost surely. Second, again use integration by parts to find

k′′f |h(0) =

∫ ∞
−∞

h′′(τ)h(τ) dτ =
((((

(((
((((

(((
lim
τ→∞

[h′(τ)h(τ)− h′(−τ)h(−τ)]−
∫ ∞
−∞

(h′(τ))2 dτ < 0 (14)

almost surely, so k′′f |h(0) 6= 0 almost surely.

A.1 Well-Behavedness of the Filter

We show that the filter h is well behaved. In particular, we show that, almost surely, (1) h and all derivatives of
h go to zero at infinity and (2) any product of h and its derivatives is dominated by an integrable function.

Definition A.1. A function w : R→ R is said to decay (sufficiently) quickly if there exist pi ≥ 0 and αi, βi > 0
such that

|w(t)| ≤
n∑
i=1

|t|pi exp(−αi|t|βi) (15)

for all t ∈ R.

Lemma A.1. Let w decay sufficiently quickly, and let (tn)n≥1 ⊆ R, tn ↑ ∞ be such that tn ≥ n for all n. Then∑∞
n=1 n |w(tn)| <∞.

Proof. To begin with, note that

∞∑
n=1

n|tn|pe−αt
β
n ≤

∞∑
n=1

btnc(btnc+ 1)p exp(−αbtncβ). (16)

Consider the sequence
an = n(n+ 1)p exp(−αnβ) ≤ 2pnp+1 exp(−αnβ). (17)

We claim that
∑∞
n=1 an < ∞, where the convergence is absolute. Then

∑∞
k=1 ank < ∞ for any subsequence

(nk)k≥1 ⊆ N. In particular,
∑∞
k=1 abtkc < ∞, which shows the result. To show the claim, let m ∈ N be such

that mβ > p+ 3. Then the estimate exp(−x) ≤ m!x−m with x ≥ 0 gives

np+1 exp(−αnβ) ≤ np+1 ·m!
(
αnβ

)−m
=
m!

αm
np+1−mβ ≤ m!

αm
n−2. (18)

Since
∑∞
n=1 n

−2 <∞, indeed
∑∞
k=1 an <∞.

Proposition A.1. Let f be a stationary Gaussian process and let w be a function that decays sufficiently
quickly. Then

lim
t→∞

w(t)f(t) = 0 (19)

almost surely.
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Proof. For suppose not. Let A be measurable set with P(A) > 0 on which

lim sup
t→∞

|w(t)f(t)| = L > 0 (20)

with L =∞ allowed. Then there is a sequence (tn)n≥1 ⊆ R, tn ↑ ∞, such that

lim
n→∞

|w(tn)f(tn)| = L. (21)

Since tn ↑ ∞, we may assume that tn ≥ n for all n by passing to a subsequence. Set

Bn = {|w(tn)f(tn)| ≥ (C0 + n)−1}, (22)

where C0 > 0 is chosen such that C−10 < L. By construction, P(Bn i.o.) ≥ P(A) > 0. We claim, however, that∑∞
n=1 P(Bn) <∞. Then, by the Borel–Cantelli lemma, P(Bn i.o.) = 0, which indeed is a contradiction. To show

the claim, note that, by Markov’s inequality,

P(Bn) = P(|w(tn)f(tn)| ≥ (C0 + n)−1) (23)

≤ (C0 + n)|w(tn)|E(|f(tn)|) (24)

≤ C1(C0 + n)|w(tn)| (25)

where C1 = E(|f(0)|) <∞. Thus
∑∞
n=1 P(Bn) <∞, by Lem A.1.

Lemma A.2. Let f ≥ 0 and g > 0 be continuous. If

lim
t→∞

f(t)

g(t)
= 0 and lim

t→−∞

f(t)

g(t)
= 0, (26)

then there exists a C > 0 such that Cg dominates f .

Proof. Let R be such that |t| ≥ R implies that f(t)/g(t) < 1. Then g dominates f on (−∞,−R]∪ [R,∞). Since
[−R,R] is compact and f and g are continuous, on [−R,R], f attains its maximum M and g its mimumum m,
where m > 0 because g > 0. Setting C = max{1,M/m} then works.

The filter h is generated according to

g ∼ GP(0, kg), h(t) | g = w(t)g(t), (27)

where

w(t) = exp(−αt2), kg(t− t′) = exp(−γ(t− t′)2). (28)

Here g is stationary and, almost surely, has pathwise derivatives of all orders (e.g., Theorem 4, Cambanis, 1973).

Let β be such that 0 < β < α. Then, almost surely,

lim
t→∞

|w(t)g(t)|
exp(−βt2)

= 0 and lim
t→−∞

|w(t)g(t)|
exp(−βt2)

= 0 (29)

because t 7→ exp(βt2)w(t) = exp(−(α − β)t2) decays sufficiently quickly. Thus, almost surely, there exists a
C > 0 such that t 7→ C exp(−βt2) dominates wg, and t 7→ C exp(−βt2) is integrable and goes to zero at infinity.

Note that t 7→ exp(βt2)|w(n)(t)|, where w(n) is the nth derivative of w, decays sufficiently quickly for all n ∈ N.
For any derivative of wg, use the product rule to expand and argue similarly to obtain a dominating function
also of the form t 7→ C exp(−βt2).

In conclusion, almost surely, h and all derivatives of h are dominated by integrable functions that go to zero
at infinity, and any product of these dominating functions is integrable. Therefore, almost surely, (1) h and all
derivatives of h go to zero at infinity and, (2) any product of h and its derivatives is dominated by an integrable
function.
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B Proof of Proposition 2.2

Proof of Proposition 2.2. The proof proceeds like the proof for Prop 2.1. Let

z(r) =

∫ ∞
0

h(r + τ)h(τ) dτ. (30)

Then
kf |h(r) = z(|r|) = z(0) + z′(0)|r|+ 1

2z
′′(0)r2 +O(|r|3), (31)

so sample paths of the CGPCM are almost surely everywhere differentiable if z′(0) = 0 and z′′(0) 6= 0 and almost
surely nowhere differentiable if z′(0) 6= 0 (Thms 3 and 4 from Cambanis, 1973). First, use integration by parts
to find

z′(0) =

∫ ∞
0

h′(τ)h(τ) dτ =
��

���lim
τ→∞

h2(τ)− h2(0)−
∫ ∞
0

h(τ)h′(τ) dτ = −h2(0)− z′(0) (32)

almost surely. Thus z′(0) = − 1
2h

2(0) almost surely. Second, if h(0) = 0, again use integration by parts to find

z′′(0) =

∫ ∞
0

h′′(τ)h(τ) dτ =
���

���
�

lim
τ→∞

h′(τ)h(τ)− h′(0)h(0)−
∫ ∞
0

(h′(τ))2 dτ = −
∫ ∞
0

(h′(τ))2 dτ < 0. (33)

almost surely. Therefore, if h(0) = 0, then z′(0) = 0 and z′′(0) 6= 0 almost surely; and if h(0) 6= 0, then z′(0) 6= 0
almost surely. The result now follows.

C The Causal Gaussian Process Convolution Model

C.1 Equivalent Formulations

Linear system formulation: Let kh be the the following DEQ kernel:

kh(t, t′) = α̃2e−αt
2−αt′2−γ(t−t′)2 . (34)

Then the linear system formulation of the CGPCM is given by the following generative model:

f(t) |h, x =

∫ t

−∞
h(t− τ)x(τ) dτ where x ∼ GP(0, δ(t− t′)), h ∼ GP(0, kh(t, t′)), (35)

where δ( · ) denotes the Dirac delta function. Compared to the GPCM, the linear system formulation of the
CGPCM uses a causal convolution operation.

Nonparametric kernel formulation: To derive the equivalent nonparametric kernel formulation, note that

E[f(t) |h] =

∫ t

−∞
h(t− τ)E[x(τ)] dτ = 0. (36)

Moreover,

E[f(t)f(t′) |h] =

∫ t

−∞

∫ t′

−∞
h(t− τ)h(t′ − τ ′)E[x(τ)x(τ ′)] dτ ′ dτ =

∫ t∧t′

−∞
h(t− τ)h(t′ − τ) dτ. (37)

If t ≤ t′, then

E[f(t)f(t′) |h] =

∫ t

−∞
h(t− τ)h(t′ − τ) dτ =

∫ ∞
0

h(τ)h(t′ − t+ τ) dτ. (38)

Similarly, if t ≥ t′, then

E[f(t)f(t′) |h] =

∫ t′

−∞
h(t− τ)h(t′ − τ) dτ =

∫ ∞
0

h(t− t′ + τ)h(τ) dτ. (39)

Therefore, in any case,

E[f(t)f(t′) |h] =

∫ ∞
0

h(|t− t′|+ τ)h(τ) dτ. (40)

We conclude that the CGPCM is equivalent to the following generative model:

f |h ∼ GP
(

0,

∫ ∞
0

h(|t− t′|+ τ)h(τ) dτ

)
, h ∼ GP(0, kh(t, t′)). (41)
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C.2 Local Behaviour

We argue that the irregularity of the sample paths of the CGPCM is controlled by the value of |h(0)|. Because
h is smooth, for small ε > 0 and τ ∈ (0, ε), h(τ) ≈ h(0), which means that

f(t+ ε)− f(t) =

∫ t+ε

t

h(t− τ)x(τ) dτ ≈ h(0)

∫ t+ε

t

x(τ) dτ
d
= h(0)Bε (42)

where
d
= denotes equality in distribution and (Bt)t≥0 is a standard Brownian motion. Therefore, f can locally be

approximated by a |h(0)|-scaled Brownian motion, which means that the magnitude of the irregular increments
is controlled by the value of |h(0)|.

C.3 Inducing Points

For the filter h, define nu inducing point inputs tu initialised to uniformly spaced over [−2∆, 2τw] where ∆ is
the inter-point spacing and τw the extent of the filter (see Sec 2). Let the inducing points u then be

u = (h(tu,1), . . . , h(tu,nu)). (43)

For the excitation signal x, we first define the inter-domain transformation

s(τ) =

∫ ∞
−∞

ω̃e−ω(τ−t)
2

x(t) dt. (44)

Then define nz inducing point inputs tz initialised to uniformly spaced over a window containing the data and
let the inducing points z be

z = (s(tz,1), . . . , s(tz,nu)). (45)

With these choices, we have the covariances

ku(t) := E[h(t)h(tu)] = kh(t, tu), (46)

Ku := E[h(tu)h(tu)>] = kh(tu, t
>
u ), (47)

kz(t) := E[x(t)s(tz)] =

∫ ∞
−∞

ω̃e−ω(tz−t
′)2E[x(t)x(t′)] dt′ = ω̃e−ω(tz−t)

2

, (48)

Kz := E[s(tz)s(tz)
>] = ω̃2

√
π

2ω
e−

1
2ω(tz−t

>
z )2 (49)

where the expression for Kz follows from

E[s(tz)s(tz)
>] =

∫ ∞
−∞

∫ ∞
−∞

ω̃2e−ω(tz−t)
2−ω(t>z −t

′)2E[x(t)x(t′)] dt′ dt (50)

=

∫ ∞
−∞

ω̃2e−ω(tz−t)
2−ω(t>z −t)

2

dt (51)

= ω̃2

√
π

2ω
e−

1
2ω(tz−t

>
z )2 . (52)

D The Rough Gaussian Process Convolution Model

D.1 Equivalent Formulations

Linear system formulation: Let kh be the covariance function of white noise windowed by w(t) = α̃e−α|t|:

kh(t, t′) = α̃2e−α|t|−α|t
′|δ(t− t′) (53)

where δ( · ) denotes the Dirac delta function. Let kx be the covariance function of an Ornstein–Uhlenbeck process
with length scale λ:

kx(t, t′) = e−λ|t−t
′|. (54)
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Then the linear system formulation of the RGPCM is given by the following generative model:

f(t) |h, x =

∫ t

−∞
h(t− τ)x(τ) dτ where x ∼ GP(0, kx(t, t′)), h ∼ GP(0, kh(t, t′)). (55)

Compared to the (C)GPCM, the filter h has now a white noise prior and the input signal x is given by an OU
process.

Nonparametric kernel formulation: To derive the equivalent nonparametric kernel formulation, note that

E[f(t) |h] =

∫ t

−∞
h(t− τ)E[x(τ)] dτ = 0 (56)

and

E[f(t)f(t′) |h] =

∫ t

−∞

∫ t′

−∞
h(t− τ)h(t′ − τ ′)E[x(τ)x(τ ′)] dτ ′ dτ (57)

=

∫ t

−∞

∫ t′

−∞
h(t− τ)h(t′ − τ ′)kx(τ − τ ′) dτ ′ dτ (58)

=

∫ ∞
0

∫ ∞
0

h(τ)h(τ ′)kx((t− t′)− (τ − τ ′)) dτ ′ dτ. (59)

We conclude that the RGPCM is equivalent to the following generative model:

f |h ∼ GP
(

0,

∫ ∞
0

∫ ∞
0

h(τ)h(τ ′)kx((t− t′)− (τ − τ ′)) dτ ′ dτ

)
, h ∼ GP(0, kh(t, t′)). (60)

Nonparametric spectral formulation: Associated with the the linear system (60) is the frequency response
of the filter h

g(ω) =

∫ ∞
0

e−iωth(t) dt. (61)

Note that g is a Gaussian process, since the Fourier transform in (61) is a linear operator. From the spectral
representation of f , it then follows that the spectral density of f is given by

φf (ω) = |g(ω)|2φx(ω), (62)

see Lindgren (2012). Effectively, the spectrum is a (random) modulation of the input signal’s spectrum φx(ω) =
1
π

λ
λ2+ω2 . This can also be seen through the Fourier duality with the nonparameteric kernel

E[f(t)f(t′) | g] =

∫
eiω(t−t

′)|g(ω)|2φx(ω) dω. (63)

Finally, we note that the spectral density of the fractional Ornstein–Uhlenbeck process with Hurst exponent H
is given by

φfOU(ω) = c|ω|1−2H λ

λ2 + ω2
(64)

where c is a normalising constant, see Cheridito et al. (2003). Hence, this is a parametric special case of the
nonparameteric spectrum (62), namely |g(ω)|2 = cπ|ω|1−2H .

D.2 Inducing Points

For the filter h, since it now enjoys a white noise prior, we first define an inter-domain transformation, which we
choose the be causal :

s(τ) =

∫ τ

−∞
γ̃e−γ|τ−t|h(t) dt. (65)

As we will see below, by choosing the inter-domain transform to be causal, the kernel of the inter-domain process
s will take a simple form. Then define nu inducing point inputs tu initialised to uniformly spaced over [0, τw]
where τw is the extent of the filter (see Sec 2) and let the inducing points u be

u = (s(tu,1), . . . , s(tu,nu)). (66)
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For the excitation signal x, we consider a collection of projections tailored for learning features in the spectral
domain (Hensman et al., 2018). These features are defined on a window [a, b] of interest. Typically, this window
should contain the locations of all observed data points and also points where you want to make predictions. To
define the features, let M ∈ N and consider the following basis functions:

βm(t) =


1 if m = 0,

cos(ωm(t− a)) if 1 ≤ m ≤M,

sin(ωm−M (t− a)) if M < m ≤ 2M,

(67)

where the frequencies are harmonics on the interval [a, b]:

ωm =
2πm

b− a
, m = 1, . . . ,M. (68)

Denote the concatenation of all these features by β(t). We then let the inducing points z be

z = (〈x, β0〉H, . . . , 〈x, βnz 〉H) (69)

where nz = 2M + 1 and 〈 · , · 〉H is the inner product corresponding to the reproducing kernel Hilbert space H
associated with kx. With these choices, we have the covariances

ku(t) := E[h(t)s(tu)] =

∫ tu

−∞
γ̃e−γ|tu−t

′|E[h(t)h(t′)] dt′ = γ̃e−γ(t−tu)1(t ≤ tu), (70)

Ku := E[s(tu)s(tu)>] =
γ̃2

2γ
e−γ|tu−t

>
u |, (71)

kz(t) := E[x(t)〈x,β〉H] = 〈E[x(t)x],β〉H = 〈kx(t, · ),β〉H = β(t), (72)

Kz := E[〈x,β〉H〈x,β>〉H] = 〈〈E[x( · )x( · )],β〉H,β>〉H = 〈〈kx( · , · ),β〉H,β>〉H = 〈β,β>〉H, (73)

where we use the reproducing property of kx on H. The expression for Ku follows from

E[s(tu)s(t>u )] =

∫ tu

−∞

∫ t>u

−∞
γ̃2e−γ|tu−t|−γ|t

>
u−t

′|E[h(t)h(t′)] dt′ dt (74)

=

∫ tu∧t>u

−∞
γ̃2e−γ(tu−t)−γ(t

>
u−t) dt (75)

=
γ̃2

2γ
e−γ(tu+t>u )−2γ(tu∧t>u ) (76)

=
γ̃2

2γ
e−γ|tu−t

>
u |. (77)

Note that Kz requires explicit computation of 〈βm, βn〉H for all m,n = 0, . . . ,M , which can be done using an
explicit expression for 〈 · , · 〉H; see Hensman et al. (2018) for details.

E Initialisation of the GPCM, CGPCM, and RGPCM

Let the subscript · ac refer to the GPCM, · c to the CGPCM, and · r to the RGPCM. In this section, we derive
a comparable and fair initialisation for the three models. This initialisation follows from the following two
requirements: (1) the prior marginal variance is unity and (2) the length scales of the prior mean covariance are
equal.

The prior marginal variance of the models are as follows:

Pc =
1

2
α̃2

√
π

2α
, Pac = α̃2

√
π

2α
, Pr =

α̃2

2α
(78)
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where we note that Pc = 1
2Pac: the causality constraint cuts the reach of the filter in half. Define α̃ by requiring

that the power is one. This gives

α̃2
c = 2

√
2α

π
, α̃2

ac =

√
2α

π
, α̃2

rc = 2α. (79)

With these choices for α̃, we obtain the following prior mean covariance functions:

kac(r) = exp(−( 1
2α+ γ)r2), (80)

kc(r) = (1− erf(
√

1
2α|r|)) exp(−( 1

2α+ γ)r2), (81)

kr(r) = exp(−λ|r|) (82)

where we note that kc is a windowed version of kac. This window r 7→ 1 − erf(( 1
2α)

1
2 |r|) is nondifferentiable at

r = 0 and responsible for the nowhere differentiable sample paths of the CGPCM.

Define the length scale τ of a non-negative function k : [0,∞)→ R by

τ =
1

k(0)

∫ ∞
0

k(r) dr. (83)

Then the length scales of the windows wac, wc, wr are given by

τw,ac =

√
π

4α
, τw,c =

√
π

4α
, τw,v =

1

α
(84)

and the length scales of the prior mean covariances are given by

τf,ac =

√
π

2(α+ 2γ)
, (85)

τf,c =

√
2

π(α+ 2γ)
tanh

(√
α+ 2γ

α

)
γ�α
≈
√

π

2(α+ 2γ)
, (86)

τf,r =
1

λ
(87)

where the approximation follows from that tanh(x) ≈ 1
2π for x � 1. If we fix τw and τf to given values for all

models, we obtain

αac =
π

4

1

τ2w
, αc =

π

4

1

τ2w
, αr =

1

τw
. (88)

and

γac,c =
π

4

1

τ2f
− 1

2
αac,c, λr =

1

τf
. (89)

Intuitively, τf should be set to smallest length scale in the signal, and τw should be set to desired length of the
filter, a bit larger than the largest length scale in the signal.

F Inference in the GPCM Family

F.1 Implementation

We provide a JAX (Bradbury et al., 2018) based Python implementation of the GPCM, CGPCM, and RGPCM at
github.com/wesselb/gpcm. The package provides an sklearn-style model.fit(t, y)–model.predict(t new)

interface. The following is an example of fitting the RGPCM to data. Here, window refers to τw and scale refers
to τf .

import numpy as np

from gpcm import GPCM, CGPCM, RGPCM

https://github.com/wesselb/gpcm
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model = RGPCM(window=2, scale=1, noise=0.1, t=(0, 10))

# Sample from the prior.
t = np.linspace(0, 10, 100)
k, y = model.sample(t)

# Fit model to the sample.
model.fit(t, y)

# Compute the ELBO.
elbo = model.elbo(t, y)

# Make predictions.
posterior = model.condition(t, y)
mean, var = posterior.predict(t)

A key difficulty in the implementation is that the CGPCM requires evaluation and gradients of bivariate normal
CDF; see App F.6.

F.2 Variational Approximation

In what follows, u are inducing points (or features) for the filter h and z are inducing points (or features) for
the excitation signal x; see Tobar et al. (2015a) for the specification of u and z for the GPCM and Apps C.3
and D.2 for the specifications of u and z for respectively the CGPCM and RGPCM. We consider the variational
approximation

qθ(h, x,u, z) = pθ(h |u)pθ(x | z)q(u, z) (90)

where q(z,u) is a joint variational approximation over the inducing points. Given some data y, to optimise
q(z,u) and θ, we optimise the evidence lower bound (ELBO):

Fθ[q(u, z)] = Eq[log pθ(y | f)]−KL[q(u, z) ‖ pθ(u)pθ(z)]. (91)

As the name suggests, the ELBO indeed forms a lower bound on the marginal likelihood, Fθ[q(u, z)] ≤ log pθ(y),
and optimising Fθ[q(u, z)] corresponds to minimising the Kullback–Leibler divergence between our approximation
of the posterior qθ(h, x,u, z) and the true posterior pθ(h, x,u, z |y) (see, e.g., Wainwright and Jordan, 2008).
Key to the tractability of the ELBO is the observation that

Eq[log pθ(y | f)] = Eq(u,z)[E[log pθ(y | f) |u, z]] (92)

where E[log pθ(y | f) |u, z] happens to be conditionally quadratic in u and z; see App F.5.1. Throughout, we
drop the dependency on θ and denote û = K−1u u and ẑ = K−1z z. In the remainder of this section, we consider
two types of inference schemes: various mean-field schemes and a structured scheme.

F.3 Mean-Field Inference

In the mean-field inference scheme, the variational distribution is assumed to factorise

q(u, z) = q(u)q(z) (93)

such that no dependency can occur between the variables. This leads to a simplifying factorisation of the ELBO:

Fθ[q(u)q(z)] = Eq[log pθ(y | f)]−KL[q(u) ‖ pθ(u)]−KL[q(z) ‖ pθ(z)]. (94)

Tobar et al. (2015a) assume Gaussians

q(u) = N (u;µu,Σu), q(z) = N (z;µz,Σz) (95)

and optimise (94) with respect the means (µu,µz) and dense covariance matrices (Σu,Σz) using gradient-based
optimisation. As Tobar et al. remark and App F.5.2 shows, the optimal mean-field approximations q∗(u) and
q∗(z) are indeed of a Gaussian form.

Coordinate ascent: App F.5.2 not only shows that the optimal q∗(u) and q∗(z) are Gaussian, it also shows
that, given q(z) (resp. q(u)), the optimal q∗(u) (resp. q∗(z)) can be computed explicitly. This gives rise to a
coordinate ascent (CA) scheme which avoids gradient-based optimisation:
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(1) Set q0(u) = p(u).

(2) For i = 1, . . . ,m,

(2.a) set qi(z) to the optimal q∗(z) given qi−1(u), and

(2.b) set qi(u) to the optimal q∗(u) given qi(z).

The expression for the optimal q∗(z) given q(u) is computed in (140) and (141) and the expression for the optimal
q∗(u) given q(z) is exactly analogous.

Collapsed mean-field: In practice, the coordinate ascent scheme converges much quicker than gradient-based
optimisation of the mean-field ELBO. A downside of the coordinate ascent scheme, however, is that it only
optimises the variational approximation: it cannot optimise the hyperparameters θ and inducing point inputs.
For this, we propose to plug the optimal q∗(z) given q(u) back into the mean-field ELBO: Fθ[q(u)q∗(u)]. This
collapsed mean-field ELBO does not depend on the variational distribution q(z) anymore: it depends on many
fewer variational parameters, which greatly accelerates gradient-based optimisation. The expression for the
collapsed mean-field ELBO is computed in (143).

Computational complexity: The dominating computation of the three mean-field schemes is the computation
of expressions of the form Iuz(ti)XI>uz(ti) for all i = 1, . . . , n where X is some nz × nz matrix (e.g., see (135)),
which takes time O(n(nun

2
z + n2unz)). Note that the analogous expression I>uz(ti)YIuz(ti) for some nu × nu

matrix Y is equally expensive.

F.4 Structured Inference

In the structured inference scheme, there is no independence assumption nor a Gaussianity assumption on
the variational distribution: we consider a general potentially non-Gaussian q(u, z) which can model arbitrary
dependencies between u and z. Let

g(u, z) = expE[log p(y | f) |u, z], (96)

Z∗ =

∫
p(u)p(z)g(u, z) du dz. (97)

Then the ELBO can be written as

Fθ[q(u, z)] = logZ∗ −KL(q(u, z) ‖ 1
Z∗ p(u)p(z)g(u, z)), (98)

which means that the optimal q∗(u, z) is given by q∗(u, z) = 1
Z∗ p(u)p(z)g(u, z). As App F.5.1 explains, (u, z) 7→

E[log p(y | f) |u, z] can be computed, but unfortunately is a quartic function. Therefore, although can we evaluate
g(u, z), we cannot compute Z∗ analytically, which means that we can only evaluate q∗(u, z) up to a normalising
constant. Moreover, plugging q∗(u, z) back into the ELBO gives

Fθ[q∗(u, z)] = logZ∗, (99)

which is intractable because Z∗ cannot be computed. In the next paragraphs, we describe how these intractabil-
ities can be navigated to enable inference and learning with the structured approximation.

Inference through Gibbs sampling q∗(u, z): The optimal q∗(u, z) can be factorised as follows:

q∗(u, z) = q∗(u)q∗(z |u) (100)

where

q∗(u) ∝ p(u)Z(u), (101)

q∗(z |u) =
1

Z(u)
p(z)g(z,u), (102)

Z(u) =

∫
p(z)g(u, z) dz. (103)
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For q∗(u), App F.5.4 shows that it can only be evaluated up to a normalising constant, unfortunately. However,
crucially, App F.5.3 shows that q∗(z |u) takes the form of a Gaussian with mean and variance depending on u,
which means that, for a given u, q∗(z |u) can be directly sampled from. Therefore, although we cannot evaluate
q∗(u, z) nor directly sample from it, we can eventually generate samples from q∗(u, z) with the following Gibbs
sampling scheme:

(1) Draw initial sample u(0) ∼ p(u).

(2) For i = 1, . . . ,m,

(2.a) sample z(i) ∼ q∗(z |u(i−1)), and

(2.b) sample u(i) ∼ q∗(u | z(i)).

With this sampling scheme, we are able to perform inference in the model whilst completely avoiding numerical
variational optimisation. The expression for q∗(z |u) is computed in (149) and (150) and the expression for
q∗(u | z) is exactly analogous.

Learning through approximation of d
dθFθ[q

∗(u, z)]: If we substitute the factorisation (100) back into the
ELBO, we get

Fθ[q∗(u, z)] = Fθ[q∗(z |u)q∗(u)] = Eq∗(u)[logZ(u)]−KL(q∗(u) ‖ p(u)). (104)

As before, Fθ[q∗(z |u)q∗(u)] is intractable. However, it turns out that gradients of Fθ[q∗(z |u)q∗(u)] with respect
to θ and inducing points inputs can be computed:

d

dθ
Fθ[q∗(u, z)] =

∂

∂θ
Fθ[q

∗(u, z)] +
((((

((((
((((

(((〈
δFθ

δq(u, z)
[q∗(u, z)],

∂

∂θ
q∗(u, z)

〉
(105)

where d
dθ denotes the total derivative with respect to θ, ∂

∂θ the partial derivative with respect to θ, and δ
δq(u,z)

the functional derivative with respect to q(u, z). Here the second term cancels because δFθ
δq(u,z) [q

∗(u, z)] = 0 by
optimality of q∗(u, z). Therefore, using the above Gibbs sampling scheme to generate samples from q∗(u), the
following approximation is tractable:

d

dθ
Fθ[q∗(u, z)] ≈ ∂

∂θ

1

m

m∑
i=1

logZθ(u
(i))pθ(u

(i)) where u(i) i.i.d.∼ q∗(u) (106)

where we make the dependence of Zθ(u) and pθ(u) on θ explicit. By iterating the Gibbs sampling scheme and
(106), we are able to perform stochastic gradient-based optimisation of θ and the inducing point inputs. The
expression for logZ(u)p(u) is computed in (156).

Evidence approximation through a lower bound on Fθ[q∗(u, z)]: Although we have described how gra-
dients of Fθ[q∗(u, z)] can be approximated, some applications may require an approximation of the value of
Fθ[q∗(u, z)]. To tractably approximate Fθ[q∗(u, z)], we propose the following lower bound:

Fθ[q∗(u, z)] ≥ Fθ[q∗MF(u)q∗(z |u)] = Eq∗MF(u)
[logZ(u)]−KL(q∗MF(u) ‖ p(u)) (107)

where q∗MF(u) is the optimal mean-field approximation of q(u) obtained with the coordinate ascent procedure.
The expectation can be approximated with a Monte Carlo approximation by sampling from q∗MF(u). The
expression for Fθ[q(u)q∗(z |u)] for an arbitrary q(u) is computed in (155).

Computational complexity: Like the mean-field schemes, the structured inference scheme also takes
O(n(nun

2
z + n2unz)) time. However, for the Gibbs sampling scheme, by paying an upfront cost of O(n(nun

2
z +

n2unz)) once, every Gibbs sample iteration can be performed in O(nnunz) time, which is a dramatic speed-up
over O(n(nun

2
z + n2unz)). This speed-up makes it possible to always run the Gibbs sampler until convergence

without excessive computational expense.

F.5 Computations

In this section, we give detailed derivations of all remaining computations.



Modelling Non-Smooth Signals with Complex Spectral Structure

F.5.1 Conditional Expectation of the Likelihood E[log p(y | f) |u, z]

To begin with, compute

E[f(t) |u, z] =

∫ t

−∞
E[h(t− τ) |u]E[x(τ) | z] dτ = û>

∫ t

−∞
ku(t− τ)k>z (τ) dτ ẑ = û>Iuz(t)ẑ (108)

where we define

Iuz(t) :=

∫ t

−∞
ku(t− τ)k>z (τ) dτ. (109)

Write

E[h(t)h(t′) |u] = kh(t, t′)− k>u (t)K−1u ku(t′) + (k>u (t)û)2 = kh(t, t′) + k>u (t)Muku(t′) (110)

where Mu = ûû> −K−1u . Then

E[f2(t) |u, z] =

∫ t

−∞

∫ t′

−∞
E[h(t− τ)h(t− τ ′) |u]E[x(τ)x(τ ′) | z] dτ ′ dτ (111)

=

∫ t

−∞

∫ t′

−∞
(kh(t− τ, t− τ ′) + k>u (t− τ)Muku(t− τ ′))(kx(τ, τ ′) + k>z (τ)Mzkz(τ ′)) dτ ′ dτ (112)

= T1(t) + T2(t) + T3(t) + T4(t) (113)

where

T1(t) :=

∫ t

−∞

∫ t

−∞
kh(t− τ, t− τ ′)kx(τ, τ ′) dτ ′ dτ (114)

T2(t) :=

∫ t

−∞

∫ t

−∞
kh(t− τ, t− τ ′)k>z (τ)Mzkz(τ ′) dτ ′ dτ (115)

= tr Mz

∫ t

−∞

∫ t

−∞
kh(t− τ, t− τ ′)kz(τ ′)k>z (τ) dτ ′ dτ (116)

T3(t) :=

∫ t

−∞

∫ t

−∞
k>u (t− τ)Muku(t− τ ′)kx(τ, τ ′) dτ ′ dτ (117)

= tr Mu

∫ t

−∞

∫ t

−∞
ku(t− τ ′)k>u (t− τ)kx(τ, τ ′) dτ ′ dτ (118)

T4(t) :=

∫ t

−∞

∫ t

−∞
k>u (t− τ)Muku(t− τ ′)k>z (τ)Mzkz(τ ′) dτ ′ dτ (119)

= tr Mz

∫ t

−∞
kz(τ)k>u (t− τ) dτ Mu

∫ t

−∞
ku(t− τ ′)k>z (τ ′) dτ ′ (120)

= tr MzI
>
uz(t)MuIuz(t). (121)

Further define

Ihx(t) :=

∫ t

−∞

∫ t

−∞
kh(t− τ, t− τ ′)kx(τ, τ ′) dτ ′ dτ, (122)

Ihz(t) :=

∫ t

−∞

∫ t

−∞
kh(t− τ, t− τ ′)kz(τ ′)k>z (τ) dτ ′ dτ, (123)

Iux(t) :=

∫ t

−∞

∫ t

−∞
ku(t− τ ′)k>u (t− τ)kx(τ, τ ′) dτ ′ dτ. (124)
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Then

T1(t) = Ihx(t), (125)

T2(t) = 〈Mz, Ihz(t)〉 (126)

= ẑ>Ihz(t)ẑ− 〈K−1z , Ihz(t)〉, (127)

T3(t) = 〈Mu, Iux(t)〉 (128)

= û>Iux(t)û− 〈K−1u , Iux(t)〉, (129)

T4(t) = 〈Mu, Iuz(t)MzI
>
uz(t)〉, (130)

= 〈ûû> −K−1u , Iuz(t)(ẑẑ> −K−1z )I>uz(t)〉, (131)

= (û>Iuz(t)ẑ)2 − û>Iuz(t)K−1z I>uz(t)û

− ẑ>I>uz(t)K−1u Iuz(t)ẑ + 〈K−1u , Iuz(t)K−1z I>uz(t)〉. (132)

Aggregate

A(t) := Iux(t)− Iuz(t)K−1z I>uz(t), (133)

B(t) := Ihz(t)− I>uz(t)K−1u Iuz(t), (134)

c(t) := Ihx(t)− 〈K−1u , Iux(t)〉 − 〈K−1z , Ihz(t)〉+ 〈K−1u , Iuz(t)K−1z I>uz(t)〉. (135)

Then
E[f2(t) |u, z] = û>A(t)û + ẑ>B(t)ẑ + (û>Iuz(t)ẑ)2 + c(t). (136)

With E[f(t) |u, z] and E[f2(t) |u, z] computed, we can compute E[log p(y | f) |u, z]:

E[log p(y | f) |u, z] =

n∑
i=1

[
−1

2
log(2πσ2)− 1

2σ2

(
E[f2(ti) |u, z]− 2yiE[f(ti) |u, z] + y2i

)]
(137)

= −n
2

log(2πσ2)− 1

2σ2
‖y‖22

− 1

2σ2

n∑
i=1

[
û>A(ti)û + ẑ>B(ti)ẑ + (û>Iuz(ti)ẑ)2 + c(ti)− 2yiû

>Iuz(ti)ẑ
]
. (138)

= −n
2

log(2πσ2)− 1

2σ2

[
‖y‖22 + û>

n∑
i=1

A(ti)û +

n∑
i=1

c(ti)

]

− 1

2σ2

n∑
i=1

[
ẑ>
(
B(ti) + I>uz(ti)ûû>Iuz(ti)

)
ẑ− 2yiû

>Iuz(ti)ẑ
]
. (139)

Crucially, observe that both u 7→ E[log p(y | f) |u, z] and z 7→ E[log p(y | f) |u, z] are quadratic functions.
We therefore say that E[log p(y | f) |u, z] is conditionally quadratic in u and z. The function (u, z) 7→
E[log p(y | f) |u, z], however, is quartic rather than quadratic. It remains to compute the integrals Ihx(t), Ihz(t),
Iux(t), and Iuz(t). We will do this for the GPCM and CGPCM in App F.6 and for the RGPCM in App F.7.

F.5.2 Optimal Mean-Field q∗(z) Given q(u) and the Collapsed Mean-Field ELBO

We borrow the result from the next section, which computes the optimal q∗(ẑ | û) and the partial structured
ELBO. To instead compute the optimal q∗(z) given q(u) in the mean-field scheme and the collapsed mean-
field ELBO, simply take an additional expectation over q(u). In particular, let q(û) = N (µû,Σû). Then
q∗(ẑ) = N (µẑ,Σẑ) where

Σ−1ẑ = Kz +
1

σ2

[
n∑
i=1

B(ti) +

n∑
i=1

I>uz(ti)(Σû + µûµ
>
û )Iuz(ti)

]
, (140)

Σ−1ẑ µẑ =
1

σ2

n∑
i=1

yiI
>
uz(ti)µû. (141)
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Similarly,

log

∫
p(z) expEq(u)[E[log p(y | f) |u, z]] dz

= −n
2

log(2πσ2)− 1

2σ2

[
‖y‖22 + û>

n∑
i=1

A(ti)û +

n∑
i=1

c(ti)

]
+

1

2
log |Σẑ|+

1

2
log |Kz|+

1

2
µ>ẑ Σ−1ẑ µẑ, (142)

so

Fθ[q∗(z)q(u)]

= −n
2

log(2πσ2)− 1

2σ2

[
‖y‖22 + tr

[
(Σû + µûµ

>
û )

n∑
i=1

A(ti)

]
+

n∑
i=1

c(ti)

]

+
1

2
log |Σẑ|+

1

2
log |Kz|+

1

2
µ>ẑ Σ−1ẑ µẑ −KL(q(u) ‖ p(u)). (143)

F.5.3 Optimal Structured q∗(z |u) and the Partially Structured ELBO

To begin with, expand

log p(z) + E[log p(y | f) |u, z] (144)

= −n
2

log(2πσ2)− 1

2
log|2πKz| −

1

2
ẑ>Kzẑ−

1

2σ2

[
‖y‖22 + û>

n∑
i=1

A(ti)û +

n∑
i=1

c(ti)

]

− 1

2σ2

n∑
i=1

[
ẑ>
(
B(ti) + I>uz(ti)ûû>Iuz(ti)

)
ẑ− 2yiû

>Iuz(ti)ẑ
]
. (145)

Note that

logN (x;µ,Σ) = −1

2
log|2πΣ| − 1

2
(x− µ)>Σ−1(x− µ) (146)

= −1

2
log|2πΣ| − 1

2
(x>Σ−1x− 2µ>Σ−1x)− 1

2
µ>Σ−1µ, (147)

so

−1

2
(x>Σ−1x− 2µ>Σ−1x) = logN (x;µ,Σ) +

1

2
log|2πΣ|+ 1

2
µ>Σ−1µ. (148)

Hence, observe that q∗(ẑ | û) = N (µẑ,Σ
−1
ẑ ) where

Σ−1ẑ = Kz +
1

σ2

[
n∑
i=1

B(ti) +

n∑
i=1

I>uz(ti)ûû>Iuz(ti)

]
, (149)

Σ−1ẑ µẑ =
1

σ2

n∑
i=1

yiI
>
uz(ti)û. (150)

Thus

log p(z) + E[log p(y | f) |u, z]

= −n
2

log(2πσ2)− 1

2
log|2πKz| −

1

2σ2

[
‖y‖22 + û>

n∑
i=1

A(ti)û +

n∑
i=1

c(ti)

]

+ logN (ẑ;µẑ,Σẑ) +
1

2
log |2πΣẑ|+

1

2
µ>ẑ Σ−1ẑ µẑ (151)

= −n
2

log(2πσ2)− 1

2σ2

[
‖y‖22 + û>

n∑
i=1

A(ti)û +

n∑
i=1

c(ti)

]

+ logN (ẑ;µẑ,Σẑ) +
1

2
log |Σẑ| −

1

2
log |Kz|+

1

2
µ>ẑ Σ−1ẑ µẑ. (152)
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We now apply exp, integrate over dz = |Kz|dẑ, and apply log to find

log

∫
p(z) expE[log p(y | f) |u, z] dz

= logZ(u) (153)

= −n
2

log(2πσ2)− 1

2σ2

[
‖y‖22 + û>

n∑
i=1

A(ti)û +

n∑
i=1

c(ti)

]
+

1

2
log |Σẑ|+

1

2
log |Kz|+

1

2
µ>ẑ Σ−1ẑ µẑ, (154)

so

Fθ[q(u)q∗(u | z)]

= −n
2

log(2πσ2)− 1

2σ2

[
‖y‖22 +

n∑
i=1

c(ti)

]
− 1

2
log |Kz|

+ Eq(u)

[
− 1

2σ2
û>

n∑
i=1

A(ti)û +
1

2
log |Σẑ(û)|+ 1

2
µ>ẑ (û)Σ−1ẑ (û)µẑ(û)

]
−KL(q(u), p(u)). (155)

Here the expectation can be approximated using Monte Carlo.

F.5.4 Optimal Structured q∗(u) and Gradients for the Structured ELBO

Expand

log q∗(u) ' log p(u)Z(u)

= −n
2

log(2πσ2)− 1

2σ2

[
‖y‖22 + û>

n∑
i=1

A(ti)û +

n∑
i=1

c(ti)

]

− 1

2
log |2πKu| −

1

2
û>Kuû +

1

2
log |Σẑ(û)| − 1

2
log |Kz|+

1

2
µ>ẑ (û)Σ−1ẑ (û)µẑ(û) (156)

where make the dependence of µẑ(û) and Σẑ(û) on û explicit. We see that q∗(û) can be evaluated up to a
normalising constant.

F.6 Integrals for the GPCM and CGPCM

Rather than explicitly computing the integrals Ihx(t), Ihz(t), Iux(t), and Iuz(t), we note that, for the GPCM
and CGPCM, all these constitute integrals of exponentiated quadratic forms. We therefore implement a small
computer algebra system (CAS) which is able to symbolically solve the integrals and implement the solutions
in JAX. (For the GPCM, the integrals Ihx(t), Ihz(t), Iux(t), and Iuz(t) are defined with different limits, but the
CAS is able to handle that.) For the CGPCM, this requires availability of the bivariate normal CDF. For this,
we use the FORTRAN implementation TVPACK by Alan Genz8, parallelise the implementation in C++ using
OpenMP, and hook the result into JAX’s JIT compiler with manually defined gradients.

Below is an example of using the CAS to compute the integral Ihz(t):

import numpy as np

from gpcm.exppoly import ExpPoly, const, var

t = np.linspace(0, 10, 100)
t_z = np.linspace(0, 10, 10)

alpha = 1
alpha_t = 1
gamma = 2
omega = 1
omega_t = 1

8http://www.math.wsu.edu/faculty/genz/software/software.html

http://www.math.wsu.edu/faculty/genz/software/software.html
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def k_h(t1, t2):
return alpha_t ** 2 * ExpPoly(

-(const(alpha) * (t1 ** 2 + t2 ** 2) + const(gamma) * (t1 - t2) ** 2),
)

def k_xs(t1, t2):
return omega_t * ExpPoly(-const(omega) * (t1 - t2) ** 2)

expq = (
k_h(var("t") - var("tau1"), var("t") - var("tau2"))
* k_xs(var("tau1"), var("t_z_1"))
* k_xs(var("t_z_2"), var("tau2"))

)

I_hz = expq.integrate_box(
("tau1", -np.inf, var("t")),
("tau2", -np.inf, var("t")),
t=t[:, None, None],
t_z_1=t_z[None, :, None],
t_z_2=t_z[None, None, :],

)

F.7 Integrals for the RGPCM

In what follows, recall that

kh(t, t′) = w(t)w(t′)kg(t, t
′) with w(t) = α̃e−α|t|, kg(t, t

′) = δ(t− t′) (157)

and
kx(t, t′) = e−λ|t−t

′|. (158)

F.7.1 Integral Ihx(t)

Compute

Ihx(t, t′) =

∫ t

−∞

∫ t′

−∞
kh(t− τ, t′ − τ ′)kx(τ, τ ′) dτ ′ dτ (159)

=

∫ t

−∞

∫ t′

−∞
w(t− τ)w(t′ − τ ′)kg(t− τ, t′ − τ ′)kx(τ, τ ′) dτ ′ dτ (160)

=

∫ ∞
0

w2(τ)kx(t− τ, t′ − τ) dτ (161)

=
α̃2

2α
e−λ|t−t

′|, (162)

so

Ihx = Ihx(t, t) =
α̃2

2α
. (163)

F.7.2 Integral Ihz(t)

Denote the (m,n)th element of Ihz(t) by

[Ihz(t)]m,n =

∫ t

−∞

∫ t

−∞
w(t− τ)w(t− τ ′)kg(t− τ, t− τ ′)kzm(τ)kzn(τ ′) dτ ′ dτ (164)

=

∫ t

−∞
w2(t− τ)kzm(τ)kzn(τ ′) dτ (165)

=: Im,n(t). (166)
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For m = n = 0, we have

I0,0(t) =

∫ t

a

w2(t− τ) dτ +

∫ a

−∞
w2(t− τ)e−2λ(a−τ) dτ (167)

=
α̃2

2α
(1− e−2α(t−a)) +

α̃2

2(α+ λ)
e−2α(t−a) (168)

=
α̃2

2α
− λα̃2

2α(α+ λ)
e−2α(t−a). (169)

For m = 0 and 1 ≤ n ≤M , we have cosine features:

I0,n:cos(t) =

∫ t

a

w2(t− τ) cos(ωn(τ − a)) dτ +

∫ a

−∞
w2(t− τ)e−2λ(a−τ) dτ (170)

=
α̃2

4α2 + ω2
n

[
2α
(

cos(ωn(t− a))− e−2α(t−a)
)

+ ωn sin(ωn(t− a))
]

+
α̃2

2(α+ λ)
e−2α(t−a) (171)

= I0,0(t) if ωn = 0. (172)

Similarly, for m,n ≤M ,

Im:cos,n:cos(t) =

∫ t

a

w2(t− τ) cos(ωm(τ − a)) cos(ωn(τ − a)) dτ +

∫ a

−∞
w2(t− τ)e−2λ(a−τ) dτ (173)

=
1

2

∫ t

a

w2(t− τ) cos(ωm−n(τ − a)) dτ +
1

2

∫ t

a

w2(t− τ) cos(ωm+n(τ − a)) dτ

+

∫ a

−∞
w2(t− τ)e−2λ(a−τ) dτ (174)

=
1

2

(
I0,(n−m):cos(t) + I0,(n+m):cos(t)

)
(175)

where we use that ωm ± ωn = 2π
b−a (m ± n) = ωm±n. In the following, for m > M , recall that we adjust the

frequency according to the construction of the variational Fourier features (see (67)):

kzm(τ) = βm(t) = sin(ωm−M (τ − a)). (176)

For m = 0 and n > M , we have sines:

I0,n:sin(t) =

∫ t

a

w2(t− τ) sin(ωn−M (τ − a)) dτ (177)

=

∫ ωn−M (t−a)

0

w2(t− a− τ/ωn−M ) sin(τ)
1

ωn−M
dτ (178)

=
α̃2

ωn−M

∫ ωn−M (t−a)

0

e
−2 α

ωn−M
(ωn−M (t−a)−τ)

sin(τ) dτ (179)

=
α̃2

4α2 + ω2
n−M

[
ωn−M (e−2α(t−a) − cos(ωn−M (t− a))) + 2α sin(ωn−M (t− a))

]
. (180)

Next, for m,n > M ,

Im:sin,n:sin(t) =

∫ t

a

w2(t− τ) sin(ωm−M (τ − a)) sin(ωn−M (τ − a)) dτ (181)

=
1

2

∫ t

a

w2(t− τ) cos(ωm−n(τ − a)) dτ − 1

2

∫ t

a

w2(t− τ) cos(ωm+n−2M (τ − a)) dτ (182)

=
1

2

(
I0,(n−m):cos − I0,(n+m−2M):cos

)
. (183)
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Finally, for 0 < m ≤M and n > M , we have both cosines and sines:

Im:cos,n:sin(t) =

∫ t

a

w2(t− τ) cos(ωm(τ − a)) sin(ωn−M (τ − a)) dτ (184)

=
1

2

∫ t

a

w2(t− τ) sin(ωm+(n−M)(τ − a)) dτ +
1

2

∫ t

a

w2(t− τ) sin(ω(n−M)−m(τ − a)) dτ (185)

=
1

2

(
I0,(n+m):sin + I0,(n−m):sin

)
. (186)

F.7.3 Integral Iux(t)

Denote the (m,n)th element of Iux(t, t′) by

[Iux(t, t′)]m,n =

∫ t

−∞

∫ t′

−∞
w(t− τ)w(t′ − τ ′)kum(t− τ)kun(t′ − τ ′)kx(τ, τ ′) dτ ′ dτ (187)

=

∫ ∞
0

∫ ∞
0

w(τ)w(τ ′)kum(τ)kun(τ ′)kx(t− τ, t′ − τ ′) dτ ′ dτ (188)

=: Im,n(t, t′). (189)

Simplify

Im,n(t, t′) =

∫ tu,n

0

∫ tu,m

0

α̃2γ̃2e−α(τ+τ
′)−γ(tu,m−τ)−γ(tu,n−τ ′)−λ|(τ−τ ′)−(t−t′)| dτ dτ ′ (190)

= α̃2γ̃2e−γ(tu,m+tu,n)

∫ tu,n

0

∫ tu,m

0

e(γ−α)(τ+τ
′)−λ|(τ−τ ′)−(t−t′)| dτ dτ ′. (191)

Note that Im,n(t, t) is invariant of t. The integral Im,n(t, t) can be computed with the following propositions.

Proposition F.1. Suppose that a ≥ 0 and b ≥ 0. Then

∫ a

0

∫ b

0

ec(τ+τ
′)−d|τ−τ ′| dτ dτ ′ =

1

c2 − d2

(
1 +

d

c

(
1− e2c(a∧b)

)
− eca−d|a| − ecb−d|b| + ec(a+b)−d|a−b|

)
. (192)
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Proof. Suppose that b ≥ a. Then a− b = −|a− b| and a = a ∧ b. We simply calculate:∫ a

0

∫ b

0

ec(τ+τ
′)−d|τ−τ ′| dτ dτ ′ =

∫ a

0

∫ τ ′

0

ec(τ+τ
′)−d(τ ′−τ) dτ dτ ′ +

∫ a

0

∫ b

τ ′
ec(τ+τ

′)−d(τ−τ ′) dτ dτ ′ (193)

=

∫ a

0

e(c−d)τ
′
∫ τ ′

0

e(c+d)τ dτ dτ ′ +

∫ a

0

e(c+d)τ
′
∫ b

τ ′
e(c−d)τ dτ dτ ′ (194)

=
1

c+ d

∫ a

0

e(c−d)τ
′
(
e(c+d)τ

′
− 1
)

dτ ′

+
1

c− d

∫ a

0

e(c+d)τ
′
(
e(c−d)b − e(c−d)τ

′
)

dτ ′ (195)

=
1

c+ d

∫ a

0

(
e2cτ

′
− e(c−d)τ

′
)

dτ ′

+
1

c− d

∫ a

0

(
e(c−d)be(c+d)τ

′
− e2cτ

′
)

dτ ′ (196)

=

[
1

2c(c+ d)

(
e2ca − 1

)
− 1

c2 − d2
(
e(c−d)a − 1

)]
+

[
e(c−d)b

c2 − d2
(
e(c+d)a − 1

)
− 1

2c(c− d)

(
e2ca − 1

)]
(197)

=
1

2c

(
1

c+ d
− 1

c− d

)(
e2ca − 1

)
+

1

c2 − d2
(

1− e(c−d)a − e(c−d)b + e(c+d)a+(c−d)b
)

(198)

=
d

c

1

c2 − d2
(
1− e2ca

)
+

1

c2 − d2
(

1− eca−da − ecb−db + ec(a+b)+d(a−b)
)
. (199)

Proposition F.2. Suppose that ab ≤ 0. Then∫ a

0

∫ b

0

ec(τ+τ
′)−d|τ−τ ′| dτ dτ ′ =

1

c2 − d2
(

1− eca−|d|a − ecb−|d|b + ec(a+b)−d|a−b|
)
. (200)

We can finally use the symmetry in c to get the result for all a, b ∈ R:

Proposition F.3. For all a, b ∈ R,∫ a

0

∫ b

0

ec(τ+τ
′)−d|τ−τ ′| dτ dτ ′

=
1

c2 − d2

(
1(ab ≥ 0)

d sign(a)

c

(
1− e2c sign(a)(|a|∧|b|)

)
+ 1− eca−d|a| − ecb−d|b| + ec(a+b)−d|a−b|

)
. (201)

Putting everything together, we have the result

Im,n(t, t) =
α̃2γ̃2e−γ(tu,m+tu,n)

(γ − α)2 − λ2

(
λ

γ − α

(
1− e2(γ−α)(tu,m∧tu,n)

)
+ 1− e(γ−α−λ)tu,m − e(γ−α−λ)tu,n + e(γ−α)(tu,m+tu,n)−λ|tu,m−tu,n|

)
.

F.7.4 Integral Iuz(t)

Denote the (m, k)th element of Iuz(t) by

[Iuz(t)]m,k =

∫ ∞
0

w(τ)kum(τ)kzk(t− τ) dτ =: Im,k(t). (202)
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Simplify

Im,k(t) = α̃γ̃

∫ tu,m

0

e−ατ−γ(tu,m−τ)kzk(t− τ) dτ (203)

= α̃γ̃e−γtu,m
∫ tu,m

0

e(γ−α)τkzk(t− τ) dτ (204)

= α̃γ̃e−γtu,m+(γ−α)t
∫ t

t−tu,m
e(−γ+α)τkzk(τ) dτ. (205)

We analyse the result case by case. Denote

I(l, u, k) =

∫ u

l

e(−γ+α)τkzk(τ) dτ. (206)

The case k = 0, a ≤ l ≤ b, and a ≤ u ≤ b:

I(l, u, 0) =

∫ u

l

e(−γ+α)τ dτ =
1

−γ + α

(
e(−γ+α)u − e(−γ+α)l

)
. (207)

The case 0 ≤ k ≤ K and l, u ≤ a:9

I(l, u, k) =

∫ u

l

e(−γ+α)τ−λ(a−τ) dτ =
e−λa

−γ + α+ λ

(
e(−γ+α+λ)u − e(−γ+α+λ)l

)
. (208)

The case 0 ≤ k ≤ K and l, u ≥ b:9

I(l, u, k) =

∫ u

l

e(−γ+α)τ−λ(τ−b) dτ =
eλb

−γ + α− λ

(
e(−γ+α−λ)u − e(−γ+α−λ)l

)
. (209)

The case M < k ≤ 2K and either l, u ≤ a or l, u ≥ b:9

I(l, u, k) = 0. (210)

The case 1 ≤ k ≤M , a ≤ l ≤ b, and a ≤ u ≤ b:

I(l, u, k) + iI(l, u, k +M) =

∫ u

l

e(−γ+α)τ+iωk(τ−a) dτ (211)

=
e−iωka

−γ + α+ iωk

(
e(−γ+α+iωk)u − e(−γ+α+iωk)l

)
(212)

=
−γ + α− iωk

(−γ + α)2 + ω2
k

(
e(−γ+α)u+iωk(u−a) − e(−γ+α)l+iωk(l−a)

)
, (213)

which shows that

((−γ + α)2 + ω2
k)I(l, u, k) = e(−γ+α)u[(−γ + α) cos(ωk(u− a)) + ωk sin(ωk(u− a))]

− e(−γ+α)l[(−γ + α) cos(ωk(l − a)) + ωk sin(ωk(l − a))] (214)

and

((−γ + α)2 + ω2
k)I(l, u, k +M) = e(−γ+α)u[(γ − α) sin(ωk(u− a)) + ωk cos(ωk(u− a))]

− e(−γ+α)l[(γ − α) sin(ωk(l − a)) + ωk cos(ωk(l − a))]. (215)

9 We could define tu and [a, b] such that this case never happens.
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