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Abstract

In the problem of classical group testing one
aims to identify a small subset (of size d) dis-
eased individuals/defective items in a large
population (of size n) via a minimal num-
ber of suitably-designed group tests on sub-
sets of items, where the test outcome is pos-
itive iff the given test contains at least one
defective item. Motivated by physical con-
siderations, we consider a generalized setting
that includes as special cases multiple other
group-testing-like models in the literature. In
our setting, which subsumes as special cases
a variety of noiseless and noisy group-testing
models in the literature, the test outcome is
positive with probability f(x), where x is the
number of defectives tested in a pool, and
f(·) is an arbitrary monotonically increasing
(stochastic) test function. Our main contri-
butions are as follows.

1. We present a non-adaptive scheme that
with probability 1 − ε identifies all defec-
tive items. Our scheme requires at most
O
(
H(f)d log

(
n
ε

))
tests, where H(f) is a

suitably defined “sensitivity parameter” of
f(·), and is never larger than O

(
d1+o(1)

)
, but

may be substantially smaller for many f(·).
2. We argue that any non-adaptive
group testing scheme needs at least
Ω
(
(1− ε)h(f)d log

(
n
d

))
tests to ensure

reliable recovery. Here h(f) ≥ 1 is a suitably
defined “concentration parameter” of f(·).
3. We prove that our sample-complexity
bounds for generalized group testing are
information-theoretically near-optimal for a
variety of sparse-recovery group-testing mod-
els in the literature. That is, for any “noisy”
test function f(·) (i.e., 0 < f(0) < f(d) < 1),
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and for a variety of “(one-sided) noiseless”
test functions f(·) (i.e., either f(0) = 0,
or f(d) = 1, or both) studied in the lit-

erature we show that H(f)
h(f) ∈ Θ(1). As

a by-product we tightly characterize the
heretofore open information-theoretic order-
wise sample-complexity for the well-studied
model of threshold group-testing. For gen-
eral (near)-noiseless test functions f(·) we

show that H(f)
h(f) ∈ O

(
d1+o(1)

)
. We also

demonstrate a “natural” test-function f(·)
whose sample complexity scales “extremally”
as Θ(d2 log n), rather than Θ(d log n) as in
the case of classical group-testing.

Some of our techniques may be of indepen-
dent interest – in particular our achievabil-
ity requires a delicate saddle-point approx-
imation, our impossibility proof relies on a
novel bound relating the mutual information
of pair of random variables with the mean
and variance of a specific function, and we
derive novel structural results about mono-
tone functions.

1 INTRODUCTION

Group testing [Dorfman, 1943] is the non-linear sparse
recovery process of identifying a small subset of defec-
tive items from a larger set of items based on a series of
judiciously designed tests. Each test is carried out on
a subset of items, and each binary outcome indicates
whether or not the test includes at least one defec-
tive item. In other words, the test outcome is spec-
ified by the “OR” function. In designing the testing
scheme, it is desirable to minimize the number of tests
while still enabling high probability of correct iden-
tification of the subset of defective items. The group
testing paradigm has found applications in a wide vari-
ety of contexts, including biology [Ngo and Du, 2000],
pattern finding [Macula and Popyack, 2004], wireless
communications [Berger et al., 1984, Wolf, 1985], and
testing for diseases recently COVID-19 testing [Gollier
and Gossner, 2020].
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Many variants of the classical group testing paradigm
have already been considered in the literature. For
example, Damaschke [Damaschke, 2006] considered
threshold test functions: the test outcome is negative if
the number of defectives in a test is no larger than the
lower threshold `; positive if no smaller than the upper
threshold u; and arbitrary (negative or positive) oth-
erwise. Let n and d be the number of all items and the
number of defective items, respectively. For u = `+ 1,
Damaschke proposed an adaptive algorithm with the
number of tests scaling as O

(
(d+ u2) log n

)
to exactly

identify the defectives. However, for u > ` + 1, he
proved that the defectives cannot be exactly identi-
fied, but O

(
(dnb + du) log n

)
adaptive tests suffice to

identify the defectives if up to (u−1)(1+ 1
b )−` misiden-

tifications are allowed (here b > 0 is an arbitrary con-
stant). Chen and Fu [Chen and Fu, 2009] proposed a
non-adaptive algorithm for which the number of tests
scales as O

(
σdu+1 log(nd )

)
if up to u− `− 1 misiden-

tifications and σ erroneous tests are allowed. Subse-
quently, Cheraghchi [Cheraghchi, 2010] showed that it
can be reduced to O

(
du−`+1 log d log(nd )

)
. More re-

cently, for the special case u = ` + 1, it was further

reduced to O
(
d

3
2 log(nd )

)
when u is asymptotically

close to d
2 [De Marco et al., 2020]. The works of [Bui

et al., 2019, Bui et al., 2020] sought to find schemes
that admit low decoding complexity. Chan et al. [Chan
et al., 2013] studied stochastic threshold group testing.
They introduced two stochastic variants of the thresh-
old test function: Bernoulli gap stochasticity and lin-
ear gap stochasticity. For Bernoulli gap stochasticity,
the test outcome is equally likely to be negative or
positive whenever the number of defectives in a test is
in the interval (`, u). For linear gap stochasticity, the
probability of having positive outcome increases lin-
early as the number of defectives ranges from ` to u.
By allowing a small error probability ε, they proposed
a two-stage adaptive algorithm with 11.09e2d log n +
O
(
d log( 1

ε )
)

number of tests and a non-adaptive al-

gorithm with O
(

log( 1
ε )d
√
` log n

)
number of tests for

Bernoulli gap stochasticity, and a non-adaptive algo-
rithm with O

(
(u− `− 1)2d log n

)
+O

(
d log( 1

ε )
)

num-
ber of tests for linear gap stochasticity. Recently,
for Bernoulli gap stochasticity, Reisizadeh et al. [Rei-
sizadeh et al., 2018] improved the number of tests re-
quired to O

(√
ud log3 n

)
.

In this paper, motivated by physical considerations
such as scenarios with imperfect test apparatus, we
formulate and analyze group testing with a general
monotonically increasing stochastic test function f(·)
(i.e., x ≥ y ⇒ f(x) ≥ f(y)) that takes as input the
number of defective items in a test and outputs the
probability of the given test having a positive outcome.
This formulation subsumes as special cases a variety of

noiseless and noisy group-testing models in the litera-
ture. In this work, as detailed in Section 4, we provide
(i) a non-adaptive scheme that with high probability
reliably recovers the set of defectives for any mono-
tone test function, (ii) an information-theoretic lower
bound on the sample complexity for reliable recovery
for any non-adaptive testing scheme, and (iii) argu-
ments comparing (i) to (ii) showing that for a wide
variety of monotone test functions the sample com-
plexity of our non-adaptive scheme is order-optimal
(and for any other test function it is no more than a
factor O(d1+o(1)) from optimal).

2 PROBLEM FORMULATION

A set N := {1, . . . , n} of n items contains a sub-
set D ( N of defective items – elements in N \ D
are called non-defective. We follow the “combinatorial
group testing model”, which assumes that the size of
defective set D is fixed as d, and each such subset has
the same probability. The identity of D is unknown a
priori – the goal of group testing is to correctly identify
D through a minimal series of group tests on subsets
of items. In “classical” group testing a test outcome
is negative if every item in the pool is non-defective,
and is positive if at least one item is defective. As such
this may be viewed as a disjunctive measurement, i.e.,
viewing each item as a 0 or a 1 depending on whether
it is non-defective or defective, each test performs an
OR of the items in its pool. A canonical setting in
which this measurement model is pertinent is when a
small number of individuals in a large population are
diseased but only a small number of testing kits are
available; in this case samples from different individu-
als may be “pooled” together in different combinations
and the set of test outcomes analyzed jointly to infer
D. In this work we assume that the number d = |D|
of defectives is known a priori.1

Instantiating disjunctive tests which are sensitive to
even a single defective in a testing pool may be tricky,
for instance due to the impact of dilution on the chem-

1 Some works (e.g. [Damaschke and Muhammad, 2010,
Falahatgar et al., 2016,Bshouty et al., 2018]) consider the
problem of reliably estimating the number d (rather than
the set D) with a minimal number of adaptive or non-
adaptive tests. In classical group-testing, most algorithms
are reasonably robust to small perturbations in the value
of d, and the task of roughly estimating the number d is
an “easier” task, requiring asymptotically fewer tests than
the task of estimating the set D. In this generalized group-
testing setting, our algorithms and bounds are sensitive
to small perturbations in the value of d, and require the
exact value of d. In Appendix Q, we present an algorithm
for exactly estimating the number d. It turns out to be
a “harder” task, requiring asymptotically more tests than
the task of estimating the set D.
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istry used in pooled tests [Zenios and Wein, 1998]. Our
primary contribution in this work is to consider a very
general class of (probabilistic) measurement functions
f(·) : Z≥0 → [0, 1]. The input, say x, to the measure-
ment function f(x) is the number of defective items x
in a given pool, and the value of f(x) is the probability
that the given test results in a positive test outcome.

A slight notational subtlety here – since we will be
interested in asymptotic results (when d and n are
“large”), in the interest of generality we allow the func-
tion f(·) to also depend on the value of d. Hence our
notation f(·) actually indexes a set {fd(·)}d of mea-
surement functions. Since we assume the number d to
be known in advance,1 so the function fd(·) in the set
f(·) is well-specified. Thus for notational convenience
we suppress the dependence of f(·) on d in the rest of

this paper. Hence a statement like f(0)
d→∞−−−→ 0 should

be interpreted as meaning that limd→∞ fd(0) = 0.

In this work we restrict ourselves to the natural class of
measurement, monotone measurement functions, i.e.,
x ≥ y ⇒ f(x) ≥ f(y). Monotone measurement func-
tions subsume many existing models of group-testing
as special cases. For instance, when

f(x) =

{
0 x = 0,
1 x ≥ 1,

(1)

this reduces to the problem of classical group testing.
Observe that when

f(x) =


0 x ≤ `,
x−`
u−` ` < x < u,

1 x ≥ u,
(2)

for some integers 0 < ` < u < d, this reduces to
the “linear gap” stochastic group testing examined
by [Chan et al., 2013]. To avoid triviality, we further
assume that f(0) < f(d). (If f(0) = f(d), no sequence
of tests can ever reliably recover the defective set D.)

We distinguish between two types of test functions:

• If 0 < f(0) < f(d) < 1, we say that f(·) is noisy.
For such f(·), even pools with no defective items have a
probability f(0) (some positive constant independent
of d) of resulting in a positive test outcome, and pools
with one or more defective items have a probability
of at least 1 − f(d) (again, a constant bounded away
from 0, independent of d) of resulting in a negative
test outcome. The corresponding notion of noisy test
outcomes in the classical group-testing literature (see
for instance [Scarlett and Cevher, 2018]) often focuses
on test functions of the form

f(x) =

{
a x = 0,
b x ≥ 1,

(3)

for some 0 < a < b < 1 (with the symmetric noise
setting, i.e. b = 1− a, receiving the most attention).

• In contrast, if either f(0)
d→∞−−−→ 0 or f(d)

d→∞−−−→ 1 we
say that f(·) is one-sided near-noiseless, and if both
limits hold we say that f(·) is near-noiseless. Analo-
gously, if either f(0) = 0 or f(d) = 1 we say that f(·)
is one-sided noiseless, and if both equalities hold we
say that f(·) is noiseless.

Note that (one-sided) near-noiselessness is a signifi-
cantly weaker requirement on f(·) than in much of the
noiseless group-testing literature, where it is often as-
sumed that f(0) = 0 and f(1) = 1 (the corresponding
one-sided noiseless version was studied in [Scarlett and
Johnson, 2020]).

Group testing schemes can be adaptive (where each
test may be designed based on the outcomes of all
preceding tests) or non-adaptive (where all tests must
be chosen prior to observing any test outcomes). Here,
we focus on non-adaptive group testing.2

Non-adaptive generalized group-testing test designs
are specified by a (possibly randomly chosen) binary
matrix M ∈ {0, 1}T×n, where Mji = 1 if test j in-
cludes item i and Mji = 0 otherwise. The rows of M
correspond to tests, and the columns correspond to
items. The probability of error of any non-adaptive
algorithm (with a specified test matrix M) is de-
fined as the probability that the estimated defective
set D̂ differs from the true D. This probability is
over D (distributed uniformly over all d-sized subsets
of {1, . . . , n}) and the randomness in test outcomes
(governed by f(·)). We require that the probability of
error, Pr(D̂ 6= D) ≤ ε – such test designs will be called
(1− ε)-reliable.

3 TEST DESIGN AND DECODING

We now present our non-adaptive test designs, and
the corresponding decoding rules. We emphasis here
that the algorithm below depends critically on a priori
knowledge of the size d of the defective set.

Test design: We consider Bernoulli designs – see, for
example, [Atia and Saligrama, 2012]. That is, the test
matrix M is a T×n binary matrix in which each entry
is independently chosen to equal 1 with probability q
and 0 otherwise, for design parameters T and q ∈ (0, 1)
specified below.

2The adaptive version of group-testing has also been ex-
tensively studied – see for instance the survey in [Du et al.,
2000]. However, since non-adaptive tests allow for test-
parallelization, and also make it easier to design hardware
to perform the tests (unlike adaptive test designs, where
the composition of (at least some) tests may depend on
prior test outcomes), we restrict our attention in this work
to designing non-adaptive schemes.
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Parameters for the decoding rule: First some def-
initions and notation:

1. Item-included test-positivity probability: For any
item i in a test, the quantity P (−, q) denotes the prob-
ability that the test has a positive outcome conditioned
on the event that item i is non-defective.3 Analogously
P (+, q) denotes3 the probability that the test has a
positive outcome conditioned on the event that item i
is defective. Mathematically,

P (−, q) :=

d∑
j=0

(
d

j

)
qj(1− q)d−jf(j), and

P (+, q) :=

d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−1−jf(j + 1).

(4)

2. Item-not-included test-positivity probability: For
any non-defective item i not in a given test, Q(−, q)
denotes3 the probability of a positive test outcome.
Analogously, for any defective item i not in a given
test, Q(+, q), denotes3 the probability of a positive
test outcome. Mathematically,

Q(−, q) :=

d∑
j=0

(
d

j

)
qj(1− q)d−jf(j), and

Q(+, q) :=

d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−1−jf(j).

(5)

3. Item test sensitivity: For any item i in (respectively
not in) a test, its test sensitivity ∆(q) (respectively
∇(q)) is defined as the difference between the proba-
bilities of positive test outcomes conditioned on item
i being defective or not.3 Mathematically,

∆(q) := P (+, q)− P (−, q), and

∇(q) := Q(−, q)−Q(+, q).
(6)

4. Minimal test sensitivity: A parameter that will be
useful in our code design and analysis is the minimal
test sensitivity Pmin(q), defined as

Pmin(q) := min {P (+, q), 1−Q(+, q)} . (7)

Lemma 1, (proof is given in Appendix C) provides
(in)equalities relating the quantities defined above.

Lemma 1. For all q ∈ (0, 1), we have

f(d)≥P (+, q)>P (−, q)=Q(−, q)>Q(+, q)≥f(0), (8)

3 Due to the symmetry of randomness in the defective
set D this value is independent of the index value i, hence
in our notation we do not index the notation for these
probabilities with i.

∇(q) =
q

1− q
∆(q), (9)

1 ≥ Pmin(q) ≥ max {∆(q),∇(q)} . (10)

5. Test participation parameters: It also helps to define
the test participation parameter m as in (11) below.
As shown in Lemma 3 in Appendix A.1, with high
probability each item in N participates in at least m
tests.

m :=
8.32Pmin(q)

(∆(q))
2 log

(
2n

ε

)
. (11)

Correspondingly, we define s as below so that, as
shown in Lemma 5 in Appendix A.1, with high prob-
ability each item in N participates in at most T − s
tests.

s :=
8.32Pmin(q)

(∇(q))
2 log

(
2n

ε

)
. (12)

6. Number of tests: We set the number of tests T as

T ≥ Γ(q) :=
13(1− q)

3q
m (13)

7. Choice of q: One wishes to choose q such that
the defective set D can be reliably recovered while
minimizing the required number of tests. As shown
in Appendix A.1, for all q ∈ (0, 1), Γ(q) tests of the
above design can reliably recover the defective set D.
Therefore we should choose q as the value in (0, 1) that
minimizes Γ(q). However, such a minimizing q is hard
to analyze and analytically characterize. Instead, we
consider the quantity Γ̂(q) defined as

Γ̂(q) :=
Γ(q)

Pmin(q)
=

36.06(1− q)
q(∆(q))2

log

(
2n

ε

)
. (14)

The equality in (14) follows by using (11) and (13).
Note that Γ̂(q) ≥ Γ(q) for all q ∈ (0, 1) since Pmin(q) ≤
1 by (10), and hence an upper bound on Γ̂(q) is also
an upper bound for Γ(q). We will choose q as

q∗ := argmin
q∈(0,1)

Γ̂(q). (15)

It turns out such a q∗ can be efficiently characterized
– see Theorem 1-c) for details.

Decoding rules: We are now ready to describe our
two decoding rules, each of which proceeds by sepa-
rately estimating whether or not each item i ∈ N is de-
fective or not (instead of jointly estimating the (non)-
defective status of all i simultaneously). Note that
both decoding rules work for all q ∈ (0, 1). However,
as we will elaborate in Section A.1 that, the first rule
requires fewer tests for (1 − ε)-reliable recovery when
q ∈ (0, 1/2], whereas the second rule requires fewer
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tests for (1 − ε)-reliable recovery when q ∈ (1/2, 1).
Hence we use decoding rule 1 if q ≤ 1

2 , and decoding
rule 2 otherwise.

Decoding Rule 1: This rule uses the tests that each
item participates in. Denote by mi the number of
tests that item i participates in, and denote by m+

i

(respectively m−i ) the number of tests with positive
(respectively negative) outcomes within these mi tests.
We then classify i as follows:

i =

{
non-defective if

m+
i

mi
≤ P (−,q)+P (+,q)

2 ,

defective if
m+
i

mi
> P (−,q)+P (+,q)

2 .
(16)

Decoding Rule 2: This rule uses the tests that exclude
the item. Let si denote the number of tests that item
i is excluded from, and let s+

i (respectively s−i ) denote
the number of tests with positive (respectively nega-
tive) outcomes within these si tests. We then classify
i as follows:

i =

{
non-defective if

s+i
si
> Q(−,q)+Q(+,q)

2 ,

defective if
s+i
si
≤ Q(−,q)+Q(+,q)

2 .
(17)

4 MAIN RESULTS

4.1 Achievability/Upper bound

Before stating our achievability, it is useful to define
the “sensitivity parameter” H(f) of a given monotone
test function f(·). This sensitivity parameter, in a
certain manner, measures the “fastest rate of change”
of f(·), maximized over all intervals [L,U ] ⊆ [0, d].

Definition 8. Sensitivity parameter: Given a mono-
tone test function f(·), its sensitivity parameter H(f)
is defined as

H(f) := min
0≤L<U≤d

(
1

β
× U − L
f(U)− f(L)

)2

, where

β := min
{
U − L,

√
L+ 1,

√
d− U + 1

}
.

(18)

Here the U−L
f(U)−f(L) term bounds the inverse slope of

the test function f(·) in the region [L,U ], and β is an
amortization factor that, at a high level, relates to the
standard deviation of f(·) w.r.t. a certain binomial
distribution in that interval.

Further, for any monotone test function f(·), Lemma 2
below (whose proof may be found in Appendix B)
bounds the sensitivity parameter H(f) of f(·), and
asserts H(f) ∈ O

(
d1+o(1)

)
.

Lemma 2. For any monotone test function f(·) and

d ≥ 2, we have4

1

(f(d)−f(0))
2 ≤ H(f) ≤ 16d

(f(d)−f(0))
2 (log log d+2)

2
.

(19)

While the bounds in Lemma 2 hold universally for any
monotone f(·), the upper bound in (19) may be unduly
pessimistic. For instance, for any w ∈ [0, 1], consider
the natural class of test functions for which the slope
is 1

dw . Namely:

Example 1. Let the test function f(·) be defined as

f(x) =

{
x
dw x ∈ [0, dw] ∩ Z+,
1 otherwise,

(20)

For such f(·), one can see that H(f) ∈ O (dw), for
instance by choosing L =

⌊
dw

3

⌋
and U =

⌈
2dw

3

⌉
.

With the definition of H(f) and the corresponding
bounds at hand, we can now state our main achiev-
ability result, including the computation of the test
design parameter q∗ in (15).

Theorem 1. The non-adaptive test design and de-
coding outlined in Section 3 has the following perfor-
mance:

a) The probability of error is at most ε;

b) The number of tests T satisfies

T ≤ 376017Pmin(q∗)H(f)d log

(
2n

ε

)
+ 1 (21)

≤ 376017H(f)d log

(
2n

ε

)
+ 1; (22)

c) The test design parameter q∗ in (15) can be effi-
ciently characterized in O(d7 log2(d)) time;

d) The computation complexity of decoding is
O
(
nH(f)d log

(
n
ε

))
.

Proofs of each part of Theorem 1 may be found in con-
secutive sub-sections in Appendix A. The q∗ is found
to some extend in a brute-force manner, and the com-
putation can potentially be improved.

Remark 1. Due to Lemma 2, Theorem 1 guarantees
that our scheme requires at most O

(
d2+o(1) log

(
n
ε

))
tests for (1 − ε)-reliable recovery. However, as noted
in Example 1, the universal bound on H(f) presented
in Lemma 2 may be loose – for the class of test func-
tions in Example 1, the number of tests required by our
scheme actually scales as O

(
d1+w log

(
n
ε

))
.

4For d = 1, we directly have H(f) = 1
(f(d)−f(0))2

by

definition.
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4.2 Converse/Lower bound

To complement our achievability result in Theorem 1,
we also present an information-theoretic lower bound
on the number of tests required by any non-adaptive
group testing algorithm that has a probability of er-
ror of at most ε. To this end, it is useful to define
the “concentration parameter” h(f) of a given mono-
tone function f(·). This definition parallels (but is
distinct from) the definition of H(f) in the previous
Section 4.1) – it may be thought of as a measure of
concentration of f(·) under hypergeometric sampling.
Note that for a pool size of χ, the quantities µ(χ) and
σ2(χ), defined respectively as

µ(χ) :=

d∑
a=0

(
d
a

)(
n−d
χ−a
)(

n
χ

) f(a),

σ2(χ) :=

d∑
a=0

(
d
a

)(
n−d
χ−a
)(

n
χ

) (f(a)− µ(χ))2,

(23)

correspond respectively to (the hypergeometrically
weighted) mean and variance of the test function f(·),
given that the pool-size is χ. That is, conditioned on
choosing a random pool of size χ, these are the mean
and variance of the test positivity probability.

Remark 2. We have f(0) ≤ µ(χ) ≤ f(d) by the
monotonicity of f(·).

Definition 9. For test function f(·) and χ ∈
{1, . . . , n − 1}, we define the concentration parameter
h(f) of f(·) as

h(f) := min
χ∈{1,...,n−1}

µ(χ) (1− µ(χ))

σ2(χ)
. (24)

We are now in a position to state our main con-
verse/impossibility result (whose proof can be found
in Appendix J) as follows:

Theorem 2. For any non-adaptive group testing al-
gorithm that ensures a reconstruction error of at most
ε, the number of tests T must satisfy

T ≥ 1

log e
h(f)

(
(1− ε) log

(
n

d

)
− 1

)
. (25)

Remark 3. Note also that for any test function
h(f) ≥ 1. This is because f2(a) ≤ f(a) ≤ 1 for all a,
so using the identity (f(a)−µ(χ))2 = f2(a) +µ2(χ)−
2f(a)µ(χ), we have that for all χ,

σ2(χ)≤
d∑
a=0

(
d
a

)(
n−d
χ−a
)(

n
χ

) f(a)−µ2(χ) = µ(χ) (1−µ(χ)) .

Hence the lower bound in (25) scales as Ω
(
log
(
n
d

))
,

which in turns scales as Ω
(
d log

(
n
d

))
. However, as

noted in Section 4.3 (see Corollary 1.c) below), the
bound h(f) ≥ 1 is in general loose – there exist test
functions for which h(f) can be as large as Ω(d).
Hence, due to the h(f) term in (25), this impos-
sibility result may scale as Ω

(
d2 log

(
n
d

))
, which is

a strict tightening of the information-theoretic lower
bounds Ω

(
d log

(
n
d

))
existing in the literature (see for

instance [Chan et al., 2014]).

4.3 Comparison between upper and lower
bounds

The ratio between the upper bound in (21) and the

lower bound in (25) scales order-wise as H(f)
h(f) . Corol-

lary 1 below (whose proof may be found in Ap-
pendix N) shows that for a variety of test functions

in the literature H(f)
h(f) ∈ Θ (1). Thus our bounds are

order-wise tight for those test functions.

Corollary 1. In the sparse regime d = nθ, 0 ≤ θ < 1:

a) For the classical group testing measurement func-
tion f(·) given in (1), both the H(f) and h(f)
functionals equal 1, enabling us to recover the
well-known fact (see for instance [Chan et al.,
2014]) that the sample-complexity of classical
group-testing is Θ(d log n)

b) For the threshold test function, i.e., for some ` ∈
{0, . . . , d− 1},

f(x) =

{
0 if x ≤ `,
1 if x > `,

(26)

both the upper bound on the number of tests re-
quired for (1 − ε)-reliable recovery in Theorem 1
and the corresponding lower bound in Theorem 2
scale as Θ (d log n). To the best of our knowledge
this is the first order-wise tight characterization of
the optimal sample-complexity of threshold group
testing.

c) For the “linear” test function, i.e.,

f(x) =
x

d
, x ∈ {0, . . . , d}, (27)

the upper bound on the number of tests required
for (1−ε)-reliable recovery in Theorem 1 matches
(order-wise) the lower bound in Theorem 2, both
scaling as Θ

(
d2 log n

)
. Hence, by Lemma 2, this

test function is essentially extremal in its sample
complexity.

For general (near-noiseless) monotone test functions
f(·), while we are not able to show that the sample-
complexities in Theorems 1 and 2 match up to con-
stant factors, we nonetheless show in Theorem 3 below
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(for which a proof may be found in Appendix L) that

they match up to a O
(

Pmin(q∗)
µ(χ∗)(1−µ(χ∗))

)
factor. Here χ∗

denotes an optimal solution to (24), i.e.,

χ∗ := argmin
χ∈{1,...,n−1}

µ(χ)(1− µ(χ))

σ2(χ)
. (28)

Theorem 3. In the sparse regime d = nθ, 0 ≤ θ <
1, the number of tests required in Theorem 1 is no

more than a O
(

Pmin(q∗)
µ(χ∗)(1−µ(χ∗))

)
factor larger than the

lower bound presented in Theorem 2. In particular, the
number of tests required in Theorem 1 is never more
than an O

(
d1+o(1)

)
factor larger than the information-

theoretic lower bound in Theorem 2.

Using Theorem 3, we show in Corollary 2 below (whose
proof is in Appendix O) that for any noisy test function
our non-adaptive scheme is indeed order-wise optimal.

Corollary 2. In the sparse regime d = nθ, 0 ≤ θ < 1,
the upper and lower bounds are order-wise tight for all
noisy test functions.

Indeed, we present the following conjecture, whose
positive resolution would resolve the order-wise
sample-complexity for any monotone test function.

Conjecture 1. We conjecture that for any monotone

test function f(·),
minq∈(0,1) Γ(q)

h(f)d logn ∈ Θ(1).

5 INTUITION AND PROOF
SKETCHES

We give here some high-level intuition behind our main
results and provide corresponding proof sketches. The
detailed proofs and simulations may be found in the
Appendices in the Supplementary Materials. For read-
ers’ convenience, we also provide a road-map of the in-
termediate results leading to our main results in Figs. 1
and 3 in the Supplementary Materials.

A. Achievability/Theorem 1: As noted in Sec-
tion 3 we use a Bernoulli test design, where each item
participates in a test in an i.i.d. manner with prob-
ability q. Both of our two decoding rules, specified
in (16) and (17), proceed by classifying each item
i ∈ {1, . . . , n} as defective or non-defective indepen-
dently of any other item.

In particular, Decoding Rule 1, specified in (16), pro-
ceeds as follows. For any test including item i, we
denote by P (−, q) the probability of having a positive
outcome is if item i is non-defective and by P (+, q) if
item i is defective. Due to the monotonicity of our test
function f(·), P (+, q) > P (−, q). By the law of large
numbers, when item i participates in a large enough
number of tests, the fraction of positive-outcome tests

converges to either P (−, q) or P (+, q) depending on
whether the item is non-defective or defective respec-
tively. So decoding rule (16) proceeds by classifying
i as defective or not by checking that the fraction of
positive test outcomes is closer to P (+, q) or P (−, q).
Analogously, Decoding Rule 2 specified in (17) is simi-
lar, but now makes use of the tests not including item i,
with Q(−, q) denoting the probability of having a pos-
itive outcome if item i is non-defective, and Q(+, q)
denoting the corresponding probability if item i is de-
fective. As above, due to the monotoncity of f(·),
Q(−, q) > Q(+, q). The fraction of positive-outcome
tests converges to Q(−, q) and Q(+, q), respectively,
and i is classified according to which fraction is closer.

We have two different decoding rules since, as shown
in Fig. 2 when q ∈ (0, 1/2], the first rule requires fewer
tests than the second does for (1−ε)-reliable recovery,
with the situation reversed in q ∈ (1/2, 1).

• Lemma 2 – H(f): Lemma 2, whose proof can be
found in Appendix B, provides a universal bound on
the sensitivity parameter for any monotone f(·).

In order to simplify the
min

{
U − L,

√
L+ 1,

√
d− U + 1

}
term, we first

split our analysis into two cases, corresponding
to the scenarios f (dd/2e) ≥ (f(0) + f(d))/2 and
f (dd/2e) < (f(0) + f(d))/2 – we choose L and U
from [0, d/2] or (d/2, d] accordingly. This enables us
to argue that only one of

√
L+ 1 and

√
d− U + 1 is

active in the min
{
U − L,

√
L+ 1,

√
d− U + 1

}
term,

simplifying our argumentation. We focus on the first
case – the proof of the second case is analogous.
Considering any υ ∈ (0, 1] and k = dlog(1/υ) + 1e, we
construct a sequence {Si} with k + 1 elements such

that
S2
i+1

Si+1 ≤ 2d1+υ for all i. We then argue that there
exists two adjacent elements S` and S`+1 such that
f(S`+1)−f(S`) ≥ (f(d)−f(0))/2k. Finally, using the
definition of H(f) in (18) with L = S` and U = S`+1

and letting υ = 1/ log d, one can prove Lemma 2.

• Theorem 1.a) – Probability of error: We first collect
various inequalities relating quantities such as P (+, q),
P (−, q), Q(+, q), Q(−, q), etc., in Lemma 1, whose
proof may be found in Appendix C. With these re-
lations at hand, the probability of error of these two
decoding rules can be analyzed via standard concen-
tration inequalities, collected in Appendix D.

In particular Propositions 1 and 2 respectively posit
that Decoding Rules 1 and 2 allow for (1− ε)-reliable
recovery of D via 13

6qm and 13
6(1−q)s tests respectively.

Each of Propositions 1 and 2 proceeds in two steps.
First, Lemmas 3 and 5 use the Chernoff bound to show
that the probability that an arbitrary item participates
in less than m tests or in more than T − s tests is
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each no larger than ε
2n . Second, conditioning on the

event that each item participates in [m,T − s] tests,
Lemmas 4 and 6 again use the Chernoff bound to show
that the probability of misidentification (either false
alarm or missed detection) is no larger than ε

2n . These
error events are then combined via a union bound.

• Theorem 1.b) – Bound on T : The number of tests
chosen in (13) as dΓ(q)e suffices to ensure (1 − ε)-
reliable recovery, but it is not immediately apparent
how this quantity relates to the bound claimed in (21).
As a simplifying first step, as noted in the text sur-
rounding (14), instead of bounding Γ(q) directly, we

bound instead Γ̂(q) = Γ(q)
Pmin(q) – since Pmin(q) ≤ 1 (see

Lemma 1) this suffices to give an upper bound on T
allowing (1− ε)-reliable recovery.

Perhaps the most technically involved part of our work
focuses on providing a reasonably tight upper bound –
as accomplished in Proposition 3 – on Γ̂(q∗) in terms of
the sensitivity parameter H(f) defined in Definition 8.

Before discussing Proposition 3 in the context of gen-
eral monotone functions, consider first the example of
the threshold group-testing function described in (26)
(corresponding to negative test outcomes if there are
at most ` defectives in a pool). Intuitively speaking,
for accurately classifying each item, we should choose
some q such that the gap ∆(q) = P (+, q) − P (−, q)
is “large” (bounded away from 0). This can also be
seen from (14), wherein to minimize Γ̂(q), we would
like ∆(q) to be as large as possible. For the threshold
group testing scenario, if we choose q = `/d, then on
the one hand if an item i is non-defective the expected
number defectives in a pool is `; and on the other hand
if item i is defective the expected number of defectives
is `

d (d− 1) + 1 ≈ `+ 1, and hence the gap ∆(q) in test
positivity is about as large as can be hoped for – one
can see that choices of q signficantly larger or smaller
than this would result in a smaller gap ∆(q).

For a general test function f(·), the gap ∆(q) can be re-
garded as the “binomially-weighted mean of the incre-
ment” of f(·) (see (53) for the precise expression). To
make ∆(q) larger, we should attempt to assign a larger
weight to a carefully chosen region “large-increment-
interval” [L,U ] where f(·) exhibits a large increment.

More precisely, for general test functions f(·) our
pathway to proving Proposition 3 relies on bound-
ing the integral of ∆(q) from L/d to U/d, which,
by the mean value theorem, gives a bound on ∆(q0)
for some q0 ∈ [L/d, U/d]. To this end in Lem-
mas 14 and 15 we provide a delicate saddle-point-

approximation style bound for
∫ U/d
L/d

qj(1 − q)d−j dq.

This together with Stirling’s approximation summa-
rized in Lemma 13 results in Lemma 9, which al-

most gets us to Proposition 3, except for two issues.

Firstly, there is a (d−L′)U ′
(d−U ′)L′ multiplicative term that ap-

pears in Lemma 9 but not in Proposition 3. Towards
this end, we divide [L′, U ′) into suitably small inter-
vals [λi, λi+1), i ∈ {0, . . . , τ − 1}. The criteria are
that i) Lemma 10 – each λi+1 − λi should larger than
min{U ′−L′,

√
L′,
√
U ′ − L′} appeared in the denomi-

nator of Lemma 9; ii) Lemma 11 – each λi+1−λi should

also small enough so that (d−λi)λi+1

(d−λi+1)λi
can be bounded

from above by a constant. By substituting L′ = λ` and
U ′ = λ`+1 for some specific ` identified by the mean
value theorem in Lemma 12, allow us to get Proposi-
tion 4. Secondly, the “boundary points”, i.e., L = 0
or U = d, are handled separately in Proposition 5.
Proposition 3 is then proved by unifying Propositions
4 and 5.

• Theorem 1.c) – Complexity of approximating q∗: A
critical part of our test-design and decoding algorithms
is an appropriate choice of q ∈ (0, 1). We proceed as
follows: we uniformly quantize the interval (0, 1) into
Θ(d4) intervals and calculate the corresponding Γ(q)
for each q, and then set q to equal the value q̂ that
minimizes Γ(q). We then prove that choosing q = q̂
results in our scheme having similar performance to
using the value q = q∗, i.e., Γ(q̂) = Θ(Γ(q∗)).

To this end, in Lemma 7 we first show that q∗ can
never be either “too small” or “too large” – i.e.,
q∗ ∈

(
1

376017d3 , 1−
1

376017d3

)
. Next, we prove in

Lemma 8 that for all q̂∗ that is close enough to q∗,
i.e., |q̂∗ − q∗| ≤ 1

376017d4 , we have Γ(q̂∗) ≤ 64e2Γ(q∗).

• Theorem 1.d) – Complexity of decoding: Since our
decoder only needs to count the number of tests and
tests with positive outcomes that one item is included
in (respectively not included in) and check the ratio via
Decoding Rule 1 in (16) (respectively Decoding Rule
2 in (17)), the computational complexity of decoding
is O(nT ) = O

(
nH(f)d log

(
n
ε

))
.

B. Converse/Theorem 2: The proof of our con-
verse argument, which may be found in Appendix J,
proceeds as follows. Let X be the input vector and
Y be the outcome vector. We decompose the entropy
H(X) into the conditional entropy term H(X|Y ) and
the mutual information I(X;Y ). By the assumption
that D is uniformly distributed over all

(
n
d

)
size-d sub-

sets of {1, . . . , n}, we have H(X) = log
(
n
d

)
. Using

Fano’s inequality, H(X|Y ) can be bounded in terms
of the error probability ε. Following techniques similar
to the channel coding literature (see for instance [Ye-
ung, 2008, Sec. 7.3]), one can upper bound I(X;Y ) ≤∑T
i=1[H(Yi) − H(Yi|Zi)], where Zi denotes the num-

ber of defectives in the i-th pool. One salient feature
of generalized group testing is that the test outcome is
no longer deterministic when given the number of de-



Xiwei Cheng, Sidharth Jaggi, Qiaoqiao Zhou

fectives in the test pool. That is, H(Yi|Zi) > 0 and is
not negligible. Next (by resorting to an inequality on
the ln(·) function presented in Lemma 17) in Lemma

16 we bound each H(Yi) −H(Yi|Zi) ≤ σ2(χi)
µ(χi)(1−µ(χi))

,

where χi is the size of the i-th pool, µ(χi) and σ2(χi)
are, respectively, the mean and variance of being pos-
itive. Finally, optimizing the pool-size parameter χ,
give the lower bound.

C. Tightness/Theorem 3: To prove the tightness
of our achievability and converse in Theorem 3 (whose
proof is given in Appendix L), we show there exists
a pair of (L̂, Û) such that 1

min
{
Û−L̂,

√
L̂+1,
√
d−Û+1

} ×
Û−L̂

f(Û)−f(L̂)
= O

(
1

σ(χ∗)

)
. From the definition of χ∗ in

(28), we know that σ2(χ∗) is “relatively large”. This
implies that f(·) increases rapidly in the region adja-
cent to χ∗ dn (which quantity equals the expected num-
ber of defectives in the test pool). Thus it is reasonable
to choose χ∗ dn as one of the pair (L̂, Û). The existence
of the other one is shown in a proof by contradiction
in Lemma 18, making use of the mean and variance
formulae for hypergeometric distributions. Based on
Lemma 18, in Proposition 6 we deal with integrality is-
sues and specify (L̂, Û). Finally, invoking Proposition
3 with this pair of (L̂, Û), one can prove Theorem 3.
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A Proof of Theorem 1

A.1 Proof of Theorem 1-a)

First, we separately discuss the performance of the decoding rules proposed in (16) and (17).

A.1.1 Performance of Decoding Rule 1 in (16)

Proposition 1. Suppose that the decoding rule used is (16). Then we show that the probability of error is at
most ε if

T ≥ Γ1(q) :=
13

6q
m. (29)

This is proved in two steps. First, we compute the probability that an arbitrary item participates in less than
m tests, which can be made sufficiently small. Second, assuming that each item participates in at least m tests,
we compute the probability of misidentification, which again can be made sufficiently small. Formally, we have
the following two lemmas, whose proofs are relegated to Appendices D.1 and D.2, respectively.

Lemma 3. With probability at least 1− ε
2 over the test design, each item i ∈ N participates in at least m tests.

Lemma 4. Conditioning on the event that each item participates in at least m tests, with probability at least
1− ε

2 over the test design, all items are correctly identified using (16).

Upon combining Lemmas 3 and 4, via the union bound, the probability that all items are correctly identified is
bounded from below by 1− ε, which proves Proposition 1.

A.1.2 Performance of Decoding Rule 2 in (17)

Proposition 2. Suppose that the decoding rule used is (17). Then we show that the probability of error is at
most ε if

T ≥ Γ2(q) :=
13

6(1− q)
s. (30)

Similarly to Proposition 1, this is established by proving the following two lemmas whose proofs can be found
in Appendices D.3 and D.4.

Lemma 5. With probability at least 1 − ε
2 over the test design, each item i ∈ N participates in at most T − s

tests.

Lemma 6. Conditioning on the event that each item participates in at most T − s tests, with probability at least
1− ε

2 over the test design, all items are correctly identified using (17).

Next, since both decoding rules are applicable to all q ∈ (0, 1), we shall compare the bound given in (29) and
(30) and choose the more efficient one, i.e., the one that has a smaller lower bound on T . Using (9) along with
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Parameters in the Problem Formulation
N The set of all items.
n The total number of items, and n = |N |.
D The unknown subset of defective items, distributed uniformly at random over all

(
n
d

)
sets of size d.

d The number of defective items, with d = |D|.
f(·) The test function, a monotone function indicating the probability f(x) that a test pool with x defectives has a positive test outcome.
ε The pre-specified upper bound on the probability of incorrect reconstruction of D.
T The number of tests.

Test Design and Decoding Parameters
M The T × n binary test matrix: Mji = 1 if item i is in test j; Mji = 0 otherwise.
q Probability with which each element in M is chosen as 1 in an i.i.d. manner.

P (−, q) The probability that a test containing i has a positive outcome when i is non-defective, as defined in (4).
P (+, q) The probability that a test containing i has a positive outcome when i is defective, as defined in (4).
Q(−, q) The probability that a test excluding i has a positive outcome when i is non-defective, as defined in (5).
Q(+, q) The probability that a test excluding i has a positive outcome when i is defective, as defined in (5).

∆(q),∇(q) The difference of test-positivity probability conditioned on item i being defective or not, as defined in (6).
Pmin(q) Minimal test sensitivity, as defined in (7).
m, s Test participation parameter such that one item is included in [m,T − s] tests with high probability, as defined in (11) and (12).
Γ(q) The number of tests required in our algorithm, as defined in (13).

Γ̂(q) As defined in (14), an upper bound on Γ(q) that is easier to analyze and optimize than Γ(q).

q∗ The parameter that minimizes Γ̂(q), as defined in (15) – it can be efficiently approximated by Theorem 1-c).

Parameters in the Achievability/Theorem 1
H(f) The sensitivity parameter (as defined in (18)) which helps bound T from above in Theorem 1-b) and is bounded in Lemma 2.
Γ1(q) The number of tests required by Decoding Rule 1 in (16), as defined in (29).
Γ2(q) The number of tests required by Decoding Rule 2 in (17), as defined in (30).
q̂∗ Any q that is “close enough” to q∗ – the corresponding Γ(q) can be bounded by Θ(Γ(q∗)) in Lemma 8.
q̂ An approximation to q∗.

α A useful parameter w.r.t. L′ and U ′ in the saddle-point approximation in Lemma 15, defined as 1
2 min

{
U ′ − L′,

√
L′,
√
d− U ′

}
.

β The minimum term in H(f) w.r.t. L and U , as defined in (89).

Parameters in the Converse/Theorem 2
χ The pool size.

µ(χ),σ2(χ) The mean and variance of the test positivity probability, given that the pool size is χ.
h(f) The concentration parameter (as defined in (24)) which helps bound T from below in Theorem 2.
χ∗ The pool size that minimizes (µ(1− µ))/σ2, as defined in (28).
X The length-n binary vector that is a weight d vector representing the locations of the defective set D.
Y The length-T binary vector representing the outcome of each test.
Z The length-T vector representing the number of defectives in each test.

X̂ The length-n binary vector representing the estimated locations of the defective set D.

Tightness Parameters/Theorem 3
ϑ The expected number of defectives in a test of pool size χ∗, as defined in (167).

(L̂, Û) A pair of parameters for H(f) such that H(f) is upper bounded by Θ(1/σ2(χ∗)).

η The closest integer to ϑ, as defined in (168), which is one of the pair (L̂, Û).

κ The other one of the pair (L̂, Û), whose existence is proved in Lemma 18.

γ(·) A parameter similar to β defined as γ(κ) := min
{
|κ− ϑ|,

√
κ+ 1,

√
d− κ+ 1,

√
ϑ+ 1,

√
d− ϑ+ 1

}
.

Table 1: Table of frequently used notation.
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Figure 1: Organization of Propositions, Lemmas, and Theorems for our proof of achievability.
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Figure 2: Comparisons of the number of tests defined in (13), (29) and (30). The black line corresponds to
the performance of decoding rule (16), the blue line corresponds to that of decoding rule (17), and the red line
corresponds to that of our algorithm, which is a combination of the two decoding rules.

(11) and (12), we have
13

6(1− q)
s =

13

6(1− q)
× 8.32Pmin(q)

(∇(q))2
log

(
2n

ε

)
=

1− q
q
× 13

6q
× 8.32Pmin(q)

(∆(q))2
log

(
2n

ε

)
=

1− q
q
× 13

6q
m,

which suggests that the decoding rule (16) is more efficient when q ≤ 1/2, whereas the decoding rule (17) is more
efficient when q > 1/2. By leveraging this observation, we argue that the value given in (13) is always an upper
bound on the minimum of (29) and (30) for all q ∈ (0, 1), i.e.,

min {Γ1(q),Γ2(q)} ≤ Γ(q),∀q ∈ (0, 1).

To see this, when q ≤ 1/2, we have

Γ1(q) =
13

6q
m ≤ 13(1− q)

3q
m = Γ(q);

on the other hand, when q > 1/2, we have

Γ2(q) =
13

6(1− q)
s =

13(1− q)
6q2

m <
13(1− q)

3q
m = Γ(q).

This is also illustrated in Fig. 2, where we plot the values of (13), (29) and (30) as a function of q.

Thus, for q ≤ 1/2 (respectively q > 1/2), the number of tests T given in (13) can output the defective set D with
probability of error at most ε using the decoding rule (16) (respectively (17)). This proves Theorem 1-a).

A.2 Proof of Theorem 1-b)

We provide an explicit bound on the value of Γ̂(q) defined in (14) for some q, namely Proposition 3 below, whose
proof is presented in Appendix E.

Proposition 3. There exists some q0 ∈ (0, 1) such that

Γ̂(q0) ≤ 376017H(f)d log

(
2n

ε

)
, (31)

where H(f) is the “sensitivity parameter” defined in (18).
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Combined with (10), (14) and (15), this result yields

T = dΓ(q∗)e =
⌈
Pmin(q∗)Γ̂(q∗)

⌉
≤
⌈
Pmin(q∗)Γ̂(q0)

⌉
≤ 376017Pmin(q∗)H(f)d log

(
2n

ε

)
+ 1

≤ 376017H(f)d log

(
2n

ε

)
+ 1,

which proves Theorem 1-b).

A.3 Proof of Theorem 1-c)

We first show in Lemma 7 below, whose proof is presented in Appendix H, that q∗ can never be too small nor
too large.

Lemma 7. We have

q∗ ∈
(

1

376017d3
, 1− 1

376017d3

)
. (32)

Next, we show in Lemma 8 below, whose proof is presented in Appendix I, that for any q that is within 1
376017d4

distance of q∗, Γ(q) is bounded from above by 64e2Γ(q∗). This means that our algorithm still performs well for
an estimator of q∗ with small error.

Lemma 8. For any q̂∗ ∈
[
q∗ − 1

376017d4 , q
∗ + 1

376017d4

]
,

Γ(q̂∗) ≤ 64e2Γ(q∗). (33)

Armed with Lemma 8, we are now ready to describe our algorithm to selecting q: First, calculate Γ(q) for all
q = j

376017d4 , j = 1, 2, · · · , 376017d4 − 1. Then choose the one having the smallest Γ(q) value, denoted by q̂.
It follows that Γ(q̂) ≤ Γ(q̂∗) ≤ 64e2Γ(q∗). The computational complexity of computing binomial coefficients
is O(d2 log2 d), and the computational complexity of multiplying the binomial coefficient (which comprises of
O(d log d) bits) with qj(1−q)d−j (which comprisesO(d) bits), isO(d2 log d). According to (53), the computational
complexity of computing ∆(q) is O(d3 log2 d). Hence the overall computational complexity of this algorithm is
O(d7 log2 d).

A.4 Proof of Theorem 1-d)

Given the tests and their outcomes, the computational complexity of counting all mi (respectively si) and m+
i

(respectively s+
i ) is O(nT ). Thus, the complexity of decoding is O(nT ). According to Theorem 1-b), the

complexity is at most O
(
nH(f)d log

(
n
ε

))
.

B Proof of Lemma 2

Since min
{
U − L,

√
L+ 1,

√
d− U + 1

}
≤ U − L, it follows from the definition of H(f) in (18) that

H(f) ≥ min
0≤L<U≤d

(
1

U − L
× U − L
f(U)− f(L)

)2

≥ 1

(f(d)− f(0))
2

where the second line follows from the assumption that f(·) is monotonically increasing.

The upper bound is proved by taking into account the “shape” of the monotone test function f(·). For any
υ ∈ (0, 1], define

k :=

⌈
log

1

υ
+ 1

⌉
. (34)
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For notational convenience, let
δ := f(d)− f(0) > 0.

There are two possible cases for f(·):

i) f
(⌈
d
2

⌉)
≥ f(0) + δ

2 ;

ii) f
(⌈
d
2

⌉)
< f(0) + δ

2 .

Case i): For f
(⌈
d
2

⌉)
≥ f(0) + δ

2 , define a sequence {Si} such that

Si :=

{ ⌊
1
2d

1−2−i+1
⌋

i = 1, 2, · · · , k,⌈
1
2d
⌉

i = k + 1.
(35)

From (35) we have that for i ∈ {1, · · · , k − 1},

S2
i+1

Si + 1
≤

(
d1−2−i

2

)2
2

d1−2−i+1 =
d

2
; (36)

for i = k,

S2
i+1

Si + 1
≤
(
d+ 1

2

)2
2

d1−2−k+1 ≤ d2 2

d1−2−k+1 ≤ 2d1+υ, (37)

where the last inequality follows from the definition of k in (34). Combining (36) and (37), we see that

S2
i+1

Si + 1
≤ 2d1+υ, ∀i ∈ {1, . . . , k}. (38)

Note that the sequence {Si} is increasing in terms of i. It follows that Si+Si+1 ≤
⌊

1
2d
⌋

+
⌈

1
2d
⌉

= d. This implies

Si + 1 ≤ d− Si+1 + 1, ∀i ∈ {1, . . . , k}. (39)

Then we argue that ∃` ∈ {1, · · · , k} such that

f(S`+1)− f(S`) ≥
δ

2k
, (40)

because, if to the contrary that such a ` does not exist, then

f

(⌈
d

2

⌉)
− f(0) = f(Sk+1)− f(S1) =

k∑
i=1

(f(Si+1)− f(Si)) < k
δ

2k
=
δ

2

contradicts our assumption that f
(⌈
d
2

⌉)
≥ f(0) + δ

2 .

Next, letting L = S` and U = S`+1, we obtain from (39) that

min
{
U − L,

√
L+ 1,

√
d− U + 1

}
= min

{
S`+1 − S`,

√
S` + 1

}
It then follows from (18) that

H(f) ≤

(
1

min
{

(S`+1 − S`),
√
S` + 1

} × S`+1 − S`
f(S`+1)− f(S`)

)2

≤ 4k2

δ2
×max

{
1,

(S`+1 − S`)2

S` + 1

}
≤ 4k2

δ2
×max

{
1,

S2
`+1

S` + 1

}
≤ 8k2

δ2
× d1+υ

≤ 8

δ2

(
log

1

υ
+ 2

)2

d1+υ (41)
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where the second line follows from (40); the fourth line follows from (38); the last line follows from the definition
of k in (34).

Case ii): For f
(⌈
d
2

⌉)
< f(0) + δ

2 , we define

f̃(x) := 1− f(d− x), x ∈ {0, . . . , d}. (42)

It follows that

f̃

(⌈
d

2

⌉)
− f̃(0) ≥ f̃

(⌊
d

2

⌋)
− f̃(0) = 1− f

(
d−

⌊
d

2

⌋)
− (1− f(d)) = f(d)− f

(⌈
d

2

⌉)
>
δ

2
. (43)

Consider the sequence {Si} defined in (35). Following the same argument as above, we have that ∃` ∈ {1, · · · , k}
such that

f̃(S`+1)− f̃(S`) ≥
δ

2k
. (44)

Using (44) along with the definition of f̃ in (42) implies

f(d− S`)− f(d− S`+1) = 1− f̃(S`)− (1− f̃(S`+1)) = f̃(S`+1)− f̃(S`) ≥
δ

2k
. (45)

Setting L = d− S`+1 and U = d− S`, we have from (39) that

min
{
U − L,

√
L+ 1,

√
d− U + 1

}
= min

{
S`+1 − S`,

√
S` + 1

}
Similar to the derivation of (41), we have from (18) that

H(f) ≤

(
1

min
{

(S`+1 − S`),
√
S` + 1

} × d− S` − (d− S`+1)

f(d− S`)− f(d− S`+1)

)2

≤ 8

δ2

(
log

1

υ
+ 2

)2

d1+υ (46)

Summarizing the two cases, we see that for any monotone test function f(·),

H(f) ≤ 8

(f(d)− f(0))
2

(
log

1

υ
+ 2

)2

d1+υ. (47)

For d ≥ 2, upon setting υ = 1
log d , we obtain from (47) that

H(f) ≤ 16

(f(d)− f(0))
2 (log log d+ 2)

2
d, (48)

which completes the proof.

C Proof of Lemma 1

We expand P (−, q), P (+, q), Q(−, q) and P (+, q) using elementary combinatorial and algebraic identities. Re-
garding P (−, q), we have that

P (−, q) =

d∑
j=0

(
d

j

)
qj(1− q)d−jf(j)

= (1− q)df(0) +

d−1∑
j=1

(
d

j

)
qj(1− q)d−jf(j) + qdf(d)

= (1− q)df(0) +

d−1∑
j=1

((
d− 1

j

)
+

(
d− 1

j − 1

))
qj(1− q)d−jf(j) + qdf(d)

=

d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−jf(j) +

d∑
j=1

(
d− 1

j − 1

)
qj(1− q)d−jf(j). (49)



Generalized Group Testing

Regarding P (+, q), by relabelling, we have that

P (+, q) =

d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−1−jf(j + 1) (50)

=

d∑
j=1

(
d− 1

j − 1

)
qj−1(1− q)d−jf(j). (51)

From (50) and (51), we can rewrite P (+, q) as

P (+, q) = (1− q)
d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−1−jf(j + 1) + q

d∑
j=1

(
d− 1

j − 1

)
qj−1(1− q)d−jf(j)

=

d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−jf(j + 1) +

d∑
j=1

(
d− 1

j − 1

)
qj(1− q)d−jf(j). (52)

Combining (49) and (52), we can write ∆(q) as

∆(q) = P (+, q)− P (−, q)

=

d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−j(f(j + 1)− f(j)).

(53)

Under the assumption that f(·) is monotonically increasing and f(0) < f(d), we conclude that

∆(q) > 0 or equivalently P (+, q) > P (−, q). (54)

Similarly, regarding Q(−, q), we have

Q(−, q) =

d∑
j=0

(
d

j

)
qj(1− q)d−jf(j)

=

d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−jf(j) +

d∑
j=1

(
d− 1

j − 1

)
qj(1− q)d−jf(j).

And regarding Q(+, q), we have

Q(+, q) =

d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−1−jf(j)

=

d∑
j=1

(
d− 1

j − 1

)
qj−1(1− q)d−jf(j − 1)

= (1− q)
d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−1−jf(j) + q

d∑
j=1

(
d− 1

j − 1

)
qj−1(1− q)d−jf(j − 1)

=

d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−jf(j) +

d∑
j=1

(
d− 1

j − 1

)
qj(1− q)d−jf(j − 1).
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It then follows that

∇(q) = Q(−, q)−Q(+, q) (55)

=

d∑
j=1

(
d− 1

j − 1

)
qj(1− q)d−j(f(j)− f(j − 1))

=

d−1∑
j=0

(
d− 1

j

)
qj+1(1− q)d−j−1(f(j + 1)− f(j))

=
q

1− q
∆(q), (56)

where the last equality follows from (53). This together with (54) implies that

∇(q) > 0 or equivalently Q(−, q) > Q(+, q). (57)

Using the monotonicity of f(·), we see that

P (+, q) ≤
d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−1−jf(d) = f(d) (58)

Q(+, q) ≥
d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−1−jf(0) = f(0) (59)

Combining (54), (57), (58) and (59), along with the definitions of P (−, q) in (4) and Q(−, q) in (5), we obtain

f(d) ≥ P (+, q) > P (−, q) = Q(−, q) > Q(+, q) ≥ f(0). (60)

Recalling the definition

Pmin(q) = min {P (+, q), 1−Q(+, q)} , (61)

we have from (60) that

1 ≥ Pmin(q) ≥ min{P (+, q), 1− P (−, q)}
≥ min{P (+, q)− P (−, q), P (+, q)− P (−, q)}
= ∆(q), (62)

and

Pmin(q) ≥ min{Q(−, q), 1−Q(+, q)}
≥ min{Q(−, q)−Q(+, q), Q(−, q)−Q(+, q)}
= ∇(q), (63)

Combining (62) and (63), we have that

1 ≥ Pmin(q) ≥ max {∆(q),∇(q)} .

This concludes the proof.

D Proofs of tail-bound lemmas

The proofs of the tail-bound lemmas that bound the probability of error of our decoding rules in Theorem 1 are
collected in this Appendix.
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D.1 Proof of Lemma 3

We shall use the following well-known Chernoff bound [Chernoff et al., 1952].

Fact 1 (Chernoff bound [Chernoff et al., 1952]). Suppose that X ∼ Binomial(n, p). Then, for any δ′ ∈ (0, 1),
we have

Pr (X ≤ (1− δ′)np) ≤ exp

(
−δ
′2

2
np

)
≤ exp

(
−δ
′2

3
np

)
,

Pr (X ≥ (1 + δ′)np) ≤ exp

(
− δ′2

2 + δ′
np

)
≤ exp

(
−δ
′2

3
np

)
.

(64)

We now proceed with the proof of Lemma 3. Recall that in (29), T was selected to satisfy T ≥ 13
6qm. Consider

an arbitrary item i ∈ N . Since each item participates in a test i.i.d. with probability q, the expected number of
tests item i involving is

E(mi) = qT

≥ 13

6
m

= 2m+
1

6
× 12Pmin(q)

(∆(q))2
ln

(
2n

ε

)
≥ 2m+ 2 ln

(
2n

ε

)
, (65)

where the third line follows from the definition of m in (11); the last line follows from (10).

Let Ei be the event that item i participates in less than m tests. By Fact 1, we have

Pr(Ei) = Pr

(
mi < m =

(
1− E(mi)−m

E(mi)

)
E(mi)

)
≤ exp

(
−
(
E(mi)−m

E(mi)

)2 E(mi)

2

)

= exp

(
−E(mi)

2
+m− m2

2E(mi)

)
≤ exp

(
−E(mi)

2
+m

)
≤ exp

(
− ln

(
2n

ε

))
=

ε

2n
,

where the last inequality follows from (65). By the union bound, the probability that all items participate in at
least m tests can be bounded from below by

1− Pr

(⋃
i∈N
Ei

)
≥ 1−

∑
i∈N

Pr(Ei) > 1− ε

2n
× n = 1− ε

2
.

D.2 Proof of Lemma 4

To begin with, assume that each item participates in at least m tests, i.e., mi ≥ m for all items i. As discussed
in Decoding Rule 1, we identify item i via (16). Two types of error can happen:

1. Item i is non-defective, but is identified as defective, i.e., false alarm;

2. Item i is defective, but is identified as non-defective, i.e., missed detection.

We will bound the probabilities of 1) and 2) occuring separately as follows. For notational simplicity, let
ρ = P (−, q), ν = P (+, q), ∆ = ∆(q), Pmin = Pmin(q). Recall that by Definition 3, ∆ = ν − ρ.
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D.2.1 False alarm for item i

In this scenario, each test outcome is positive with probability ρ, and

m+
i

mi
>
ρ+ ν

2
. (66)

Let PFA denote the probability of this false alarm. Since the test outcomes are independent due to the tests
being constructed in an i.i.d. manner, m+

i ∼ Binomial(mi, ρ). From Fact 1, PFA can be bounded as

PFA = Pr

(
m+
i

mi
>
ρ+ ν

2

)
= Pr

(
m+
i >

(
1 +

∆

2ρ

)
ρmi

)
≤ exp

(
−1

3
× ∆2

4ρ2
× ρmi

)
= exp

(
−∆2

12ρ
mi

)
≤ exp

(
−∆2

12ρ
m

)
. (67)

On the other hand, we also have m−i ∼ Binomial(mi, 1− ρ). From Fact 1, PFA can also be bounded as

PFA = Pr

(
m+
i

mi
>
ρ+ ν

2

)
= Pr

(
m−i
mi

< 1− ρ+ ν

2

)
= Pr

(
m−i <

(
1− ∆

2(1− ρ)

)
(1− ρ)mi

)
≤ exp

(
−1

3
× ∆2

4(1− ρ)2
(1− ρ)mi

)
= exp

(
− ∆2

12(1− ρ)
mi

)
≤ exp

(
− ∆2

12(1− ρ)
m

)
. (68)

Combining (67) and (68), we obtain

PFA ≤ exp

(
− ∆2

12 min{ρ, 1− ρ}
m

)
≤ exp

(
− ∆2

12Pmin
m

)
≤ ε

2n
, (69)

where the second inequality follows from (7) and (8); the last inequality follows by substituting the definition of
m in (11).

D.2.2 Missed detection for item i

The calculations are similar to those above analyzing the probability of a false alarm for item i. In this case,
each test outcome is positive with probability ν, and

m+
i

mi
≤ ρ+ ν

2
. (70)
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Let PMD denote the probability of this false non-defective. Again since the test outcomes are independent, we
have m+

i ∼ Binomial(mi, ν). From Fact 1, we can bound PMD as

PMD = Pr

(
m+
i

mi
≤ ρ+ ν

2

)
= Pr

(
m+
i ≤

(
1− ∆

2ν

)
νmi

)
≤ exp

(
−1

3
× ∆2

4ν2
× νmi

)
= exp

(
− ∆2

12ν
mi

)
≤ exp

(
− ∆2

12ν
m

)
. (71)

From another perspective, m−i ∼ Binomial(mi, 1− ν). From Fact 1, we can also bound PMD as

PMD = Pr

(
m+
i

mi
≤ ρ+ ν

2

)
= Pr

(
m−i
mi
≥ 1− ρ+ ν

2

)
= Pr

(
m−i ≥

(
1 +

∆

2(1− ν)

)
(1− ν)mi

)
≤ exp

(
−1

3
× ∆2

4(1− ν)2
(1− ν)mi

)
= exp

(
− ∆2

12(1− ν)
mi

)
≤ exp

(
− ∆2

12(1− ν)
m

)
. (72)

Combining (71) and (72), we see that

PMD ≤ exp

(
− ∆2

12 min{ν, 1− ν}
m

)
≤ exp

(
− ∆2

12Pmin
m

)
≤ ε

2n
, (73)

where the second inequality follows from (7) and (8); the last inequality follows from the definition of m in (11).

From (69) and (73) we conclude that for any item i ∈ N , the probability of misidentification (either false alarm
or missed detection) is smaller than ε

2n . Therefore, when all items participate in at least m tests, by the union
bound the probability that all items are correctly identified is bounded from below by

1− ε

2n
× n = 1− ε

2
, (74)

which concludes the proof of Lemma 4.
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D.3 Proof of Lemma 5

Recall that in (30), T was chosen to satisfy T ≥ 13
6(1−q)s. Consider an arbitrary item i ∈ N . Since each item

does not participate in a test i.i.d. with probability 1− q, the expected number of tests without item i is

E(si) = (1− q)T

≥ 13

6
s

= 2s+
1

6
× 12Pmin(q)

(∇(q))2
ln

(
2n

ε

)
≥ 2s+ 2 ln

(
2n

ε

)
, (75)

where the third line follows from the definition of s in (12); the last line follows from (10).

Let Ê i be the event that item i participates in more than T − s. In other words, the number of tests without
item i is less than s. By Fact 1, we have

Pr(Ê i) = Pr

(
si < s =

(
1− E(si)− s

E(si)

)
E(si)

)
≤ exp

(
−
(
E(si)− s
E(si)

)2 E(si)

2

)

= exp

(
−E(si)

2
+ s− s2

2E(si)

)
≤ exp

(
−E(si)

2
+ s

)
≤ exp

(
− ln

(
2n

ε

))
=

ε

2n
,

where the last inequality follows from (75). By the union bound, the probability that each item participates in
at most T − s tests can be bounded from below by

1− Pr

(⋃
i

Ê i

)
≥ 1−

∑
i

Pr(Ê i) > 1− ε

2n
× n = 1− ε

2
. (76)

D.4 Proof of Lemma 6

To begin with, assume that each item participates in at most T − s tests, i.e., si ≥ s for all items i. As discussed
in Decoding Rule 2, we identify item i via (17). Two types of error can happen:

1. Item i is non-defective, but is identified as defective, i.e., false alarm;

2. Item i is defective, but is identified as non-defective, i.e., missed detection.

We will bound the probabilities of 1) and 2) occuring separately as follows. For notational simplicity, let
ρ̂ = Q(−, q), ν̂ = Q(+, q), ∇ = ∇(q), Pmin = Pmin(q). Recall that by Definition 3, ∇ = ρ̂− ν̂.

D.4.1 False alarm for item i

In this scenario, each test outcome is positive with probability ρ̂, and

s+
i

si
≤ ρ̂+ ν̂

2
. (77)
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Let P̂FA denote the probability of this false alarm. Since the test outcomes are independent due to the tests
being constructed in an i.i.d. manner, s+

i ∼ Binomial(si, ρ̂). From Fact 1, P̂FA can be bounded as

P̂FA = Pr

(
s+
i

si
≤ ρ̂+ ν̂

2

)
= Pr

(
s+
i ≤

(
1− ∇

2ρ̂

)
ρ̂si

)
≤ exp

(
−1

3
× ∇

2

4ρ̂2 × ρ̂si
)

= exp

(
−∇

2

12ρ̂
si

)
≤ exp

(
−∇

2

12ρ̂
s

)
. (78)

On the other hand, we also have s−i ∼ Binomial(si, 1− ρ̂). From Fact 1, P̂FA can also be bounded as

P̂FA = Pr

(
s+
i

si
≤ ρ̂+ ν̂

2

)
= Pr

(
s−i
si
≥ 1− ρ̂+ ν̂

2

)
= Pr

(
s−i ≥

(
1 +

∇
2(1− ρ̂)

)
(1− ρ̂)si

)
≤ exp

(
−1

3
× ∇2

4(1− ρ̂)2
(1− ρ̂)si

)
= exp

(
− ∇2

12(1− ρ̂)
si

)
≤ exp

(
− ∇2

12(1− ρ̂)
s

)
. (79)

Combining (78) and (79), we obtain

P̂FA ≤ exp

(
− ∇2

12 min{ρ̂, 1− ρ̂}
s

)
≤ exp

(
− ∇2

12Pmin
s

)
≤ ε

2n
, (80)

where the second inequality follows from (7) and (8); the last inequality follows by substituting the definition of
s in (12).

D.4.2 Missed detection for item i

The calculations are similar to those above analyzing the probability of a false alarm for item i. In this case,
each test outcome is positive with probability ν̂, and

s+
i

si
>
ρ̂+ ν̂

2
. (81)



Xiwei Cheng, Sidharth Jaggi, Qiaoqiao Zhou

Let P̂MD denote the probability of this false non-defective. Again since the outcomes are independent, we have
s+
i ∼ Binomial(si, ν̂). From Fact 1, we can bound P̂MD as

P̂MD = Pr

(
s+
i

si
>
ρ̂+ ν̂

2

)
= Pr

(
s+
i >

(
1 +
∇
2ν̂

)
ν̂si

)
≤ exp

(
−1

3
× ∇

2

4ν̂2 × ν̂si
)

= exp

(
− ∇

2

12ν̂
si

)
≤ exp

(
− ∇

2

12ν̂
s

)
. (82)

From another perspective, s−i ∼ Binomial(si, 1− ν̂). From Fact 1, we can also bound P̂MD as

P̂MD = Pr

(
s+
i

si
>
ρ̂+ ν̂

2

)
= Pr

(
s−i
si

< 1− ρ̂+ ν̂

2

)
= Pr

(
s−i <

(
1− ∇

2(1− ν̂)

)
(1− ν̂)si

)
≤ exp

(
−1

3
× ∇2

4(1− ν̂)2
(1− ν̂)si

)
= exp

(
− ∇2

12(1− ν̂)
si

)
≤ exp

(
− ∇2

12(1− ν̂)
s

)
. (83)

Combining (82) and (83), we see that

P̂MD ≤ exp

(
− ∇2

12 min{ν̂, 1− ν̂}
s

)
≤ exp

(
− ∇2

12Pmin
s

)
≤ ε

2n
, (84)

where the second inequality follows from (7) and (8); the last inequality follows from the definition of s in (12).

From (80) and (84) we conclude that for any item i ∈ N , the probability of misidentification (either false alarm
or missed detection) is smaller than ε

2n . Therefore, when each item participates in at most T − s tests, by the
union bound the probability that all items are correctly identified is bounded from below by

1− ε

2n
× n = 1− ε

2
, (85)

which concludes the proof of Lemma 6.

E Proof of Proposition 3

From (14), we know that the value of Γ̂(q) depends on the choice of q. For q ∈
(

1
d ,

d−1
d

)
with d ≥ 3, the following

result asserts that by choosing q properly, we can give an explicit bound on the value of Γ̂(q).

Proposition 4. Let d ≥ 3. For any L′, U ′ ∈ {1, . . . , d − 1} with L′ < U ′ and f(L′) < f(U ′), there exists

q0 ∈
(
L′

d ,
U ′

d

)
such that Γ̂(q0) in (14) satisfies

Γ̂(q0) ≤ 31334.75× 1

α2

(
U ′ − L′

f(U ′)− f(L′)

)2

d log

(
2n

ε

)
(86)

where α := 1
2 min

{
U ′ − L′,

√
L′,
√
d− U ′

}
.
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Proof. The proof of Proposition 4 is rather involved and is deferred to Appendix F.

Below, the boundary points are handled separately.

Proposition 5. 1. By choosing q0 = 1
d+1 , which implicitly requires f(1)− f(0) > 0,5 Γ̂(q0) in (14) satisfies

Γ̂(q0) ≤ 266.45

(f(1)− f(0))2
d log

(
2n

ε

)
. (87)

2. By choosing q0 = d
d+1 , which implicitly requires f(d)− f(d− 1) > 0,5 Γ̂(q0) in (14) satisfies

Γ̂(q0) ≤ 266.45

(f(d)− f(d− 1))2
d log

(
2n

ε

)
. (88)

Proof. We prove the first part of the lemma directly. Upon choosing q0 = 1
d+1 , we have from (53) that

∆(q0) =

d−1∑
j=0

(
d− 1

j

)
qj0(1− q0)d−j(f(j + 1)− f(j))

≥ q0
0(1− q0)d(f(1)− f(0))

≥ f(1)− f(0)

e
,

where the last inequality follows from the fact that
(

1− 1
d+1

)d
is decreasing in d and limd→∞

(
1− 1

d+1

)d
= 1

e .

Then, plugging this into (14), we obtain

Γ̂(q0) =
36.06(1− q0)

q0(∆(q0))2
log

(
2n

ε

)
≤ 266.45

(f(1)− f(0))2
d log

(
2n

ε

)
,

which yields (87) as desired.

We now turn to prove the second part of the lemma. Under the choice q0 = d
d+1 , we have from (53) that

∆(q0) =

d−1∑
j=0

(
d− 1

j

)
qj0(1− q0)d−j(f(j + 1)− f(j))

≥ qd−1
0 (1− q0)1(f(d)− f(d− 1))

=

(
1− 1

d+ 1

)d
f(d)− f(d− 1)

d

≥ f(d)− f(d− 1)

ed
.

Then, plugging this into (14), we obtain

Γ̂(q0) =
36.06(1− q0)

q0(∆(q0))2
log

(
2n

ε

)
≤ 266.45

(f(d)− f(d− 1))2
d log

(
2n

ε

)
.

This completes the proof of Proposition 5.

Proposition 3 is proved by unifying Propositions 4 and 5. To begin with, consider any L,U ∈ {0, . . . , d} such
that L < U and f(L) < f(U).6 Define

β := min
{
U − L,

√
L+ 1,

√
d− U + 1

}
. (89)

Consider the following four cases:

5If f(1)− f(0) = 0 or f(d)− f(d− 1) = 0, we can choose q0 as in Proposition 4.
6If there is no such pair of (L,U), we have f(x)=constant for all x. In this case, the defective set D can never be

recovered.
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i) 1 ≤ L < U ≤ d− 1;

ii) 0 = L < U ≤ d− 1;

iii) 1 ≤ L < U = d;

iv) 0 = L < U = d.

Case i): For 1 ≤ L < U ≤ d− 1, we have

β = min
{
U − L,

√
L+ 1,

√
d− U + 1

}
≤ min

{√
2(U − L),

√
2L,

√
2(d− U)

}
. (90)

Then, applying Proposition 4 with L′ = L and U ′ = U , we have that β ≤ 2
√

2α and

Γ̂(q0) ≤ 250678× 1

β2

(
U − L

f(U)− f(L)

)2

d log

(
2n

ε

)
≤ 376017× 1

β2

(
U − L

f(U)− f(L)

)2

d log

(
2n

ε

)
(91)

for some q0 ∈
(
L
d ,

U
d

)
.

Case ii): For 0 = L < U ≤ d− 1, we have β = 1 by definition (89). We proceed with two further sub-cases.

• U = 1: From Proposition 5 we see that

Γ̂(q0) ≤ 266.45

(f(1)− f(0))2
d log

(
2n

ε

)
≤ 376017× 1

β2

(
U − L

f(U)− f(L)

)2

d log

(
2n

ε

)
(92)

for q0 = 1
d+1 ∈

(
L
d ,

U
d

)
.

• U ≥ 2: Both Propositions 4 and 5 are applicable, we prefer to choose the one with smaller upper bound.
Applying Proposition 4 with L′ = 1 and U ′ = U , we have that α = 1

2 and

Γ̂(q′0) ≤ 125339×
(

U − 1

f(U)− f(1)

)2

d log

(
2n

ε

)
(93)

for some q′0 ∈
(

1
d ,

U
d

)
. On the other hand, Proposition 5 gives

Γ̂(q′′0 ) ≤ 266.45

(f(1)− f(0))2
d log

(
2n

ε

)
(94)

for q′′0 = 1
d+1 ∈

(
L
d ,

1
d

)
. Since

min

{
1

(f(1)− f(0))2
,

(U − 1)2

(f(U)− f(1))2

}
≤ 1 + (U − 1)2

(f(1)− f(0))2 + (f(U)− f(1))2

≤ 2U2

(f(U)− f(0))2
, (95)
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it follows that

Γ̂(q0) ≤ min

{
125339×

(
U − 1

f(U)− f(1)

)2

d log

(
2n

ε

)
,

576.96

(f(1)− f(0))2
d log

(
2n

ε

)}

≤ 125339×min

{
1

(f(1)− f(0))2
,

(U − 1)2

(f(U)− f(1))2

}
× d log

(
2n

ε

)
≤ 250678× U2

(f(U)− f(0))2
d log

(
2n

ε

)
= 250678× 1

β2

(
U − L

f(U)− f(L)

)2

d log

(
2n

ε

)
≤ 376017× 1

β2

(
U − L

f(U)− f(L)

)2

d log

(
2n

ε

)
(96)

for some q0 ∈
(
L
d ,

U
d

)
.

Case iii): For 1 ≤ L < U = d, we have β = 1 by definition (89). The proof is similar to Case ii). Consider the
following two sub-cases.

• L = d− 1: From Proposition 5 we see that

Γ̂(q0) ≤ 266.45

(f(d)− f(d− 1))2
d log

(
2n

ε

)
≤ 376017× 1

β2

(
U − L

f(U)− f(L)

)2

d log

(
2n

ε

)
(97)

for q0 = d
d+1 ∈

(
L
d ,

U
d

)
.

• L ≤ d− 2: Applying Proposition 4 with L′ = L and U ′ = d− 1, we have that α = 1
2 and

Γ̂(q′0) ≤ 125339×
(

d− 1− L
f(d− 1)− f(L)

)2

d log

(
2n

ε

)
(98)

for some q′0 ∈
(
L
d ,

d−1
d

)
. On the other hand, Proposition 5 gives

Γ̂(q′′0 ) ≤ 266.45

(f(d)− f(d− 1))2
d log

(
2n

ε

)
(99)

for q′′0 = 1
d+1 ∈

(
d−1
d , Ud

)
. Since

min

{
1

(f(d)− f(d− 1))2
,

(d− 1− L)2

(f(d− 1)− f(L))2

}
≤ 1 + (d− 1− L)2

(f(d)− f(d− 1))2 + (f(d− 1)− f(L))2

≤ 2(d− L)2

(f(d)− f(L))2
, (100)

it follows that

Γ̂(q0) ≤ min

{
125339×

(
d− 1− L

f(d− 1)− f(L)

)2

d log

(
2n

ε

)
,

266.45

(f(d)− f(d− 1))2
d log

(
2n

ε

)}

≤ 125339×min

{
1

(f(d)− f(d− 1))2
,

(d− 1− L)2

(f(d− 1)− f(L))2

}
× d log

(
2n

ε

)
≤ 250678× (d− L)2

(f(d)− f(L))2
d log

(
2n

ε

)
= 250678× 1

β2

(
U − L

f(U)− f(L)

)2

d log

(
2n

ε

)
≤ 376017× 1

β2

(
U − L

f(U)− f(L)

)2

d log

(
2n

ε

)
(101)
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for some q0 ∈
(
L
d ,

U
d

)
.

Case iv): For 0 = L < U = d, we have β = 1 by definition (89). The proof is similar to Case ii). Consider three
sub-cases:

• d = 1: In this sub-case, the two bounds in Proposition 5 are identical and give

Γ̂(q0) ≤ 266.45

(f(1)− f(0))2
d log

(
2n

ε

)
≤ 376017× 1

β2

(
U − L

f(U)− f(L)

)2

d log

(
2n

ε

)
(102)

for q0 = 1
d+1 ∈

(
L
d ,

U
d

)
.

• d = 2: From Proposition 5 we see that

Γ̂(q′0) ≤ 266.45

(f(1)− f(0))2
d log

(
2n

ε

)
(103)

for q′0 = 1
d+1 ∈

(
L
d ,

1
d

)
, and

Γ̂(q′′0 ) ≤ 266.45

(f(2)− f(1))2
d log

(
2n

ε

)
(104)

for q′′0 = d
d+1 ∈

(
1
d ,

U
d

)
. Since

min

{
1

(f(1)− f(0))2
,

1

(f(2)− f(1))2

}
≤ 2

(f(1)− f(0))2 + (f(2)− f(1))2

≤ 4

(f(2)− f(0))2
, (105)

it follows that

Γ̂(q0) ≤ min

{
266.45

(f(1)− f(0))2
d log

(
2n

ε

)
,

266.45

(f(2)− f(1))2
d log

(
2n

ε

)}
≤ 266.45×min

{
1

(f(1)− f(0))2
,

1

(f(2)− f(1))2

}
× d log

(
2n

ε

)
≤ 266.45× 4

(f(2)− f(0))2
d log

(
2n

ε

)
= 266.45× 1

β2

(
U − L

f(U)− f(L)

)2

d log

(
2n

ε

)
≤ 376017× 1

β2

(
U − L

f(U)− f(L)

)2

d log

(
2n

ε

)
(106)

for some q0 ∈
(
L
d ,

U
d

)
.

• d ≥ 3: Applying Proposition 4 with L′ = 1 and U ′ = d− 1, we have that α = 1
2

Γ̂(q′0) ≤ 125339×
(

d− 2

f(d− 1)− f(1)

)2

d log

(
2n

ε

)
(107)

for some q′0 ∈
(

1
d ,

d−1
d

)
. On the other hand, Proposition 5 gives

Γ̂(q′′0 ) ≤ 266.45

(f(1)− f(0))2
d log

(
2n

ε

)
(108)
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for q′′0 = 1
d+1 ∈

(
L
d ,

1
d

)
, and

Γ̂(q′′′0 ) ≤ 266.45

(f(d)− f(d− 1))2
d log

(
2n

ε

)
(109)

for q′′′0 = d
d+1 ∈

(
d−1
d , Ud

)
. Since

min

{
1

(f(1)− f(0))2
,

1

(f(d)− f(d− 1))2
,

(d− 2)2

(f(d− 1)− f(1))2

}
≤ 1 + 1 + (d− 2)2

(f(1)− f(0))2 + (f(d)− f(d− 1))2 + (f(d− 1)− f(1))2

≤ 3d2

(f(d)− f(0))2
, (110)

it follows that

Γ̂(q0) ≤ min

{
125339×

(
d− 2

f(d− 1)− f(1)

)2

d log

(
2n

ε

)
,

266.45

(f(1)− f(0))2
d log

(
2n

ε

)
,

266.45

(f(d)− f(d− 1))2
d log

(
2n

ε

)}

≤ 125339×min

{
(d− 2)2

(f(d− 1)− f(1))2
,

1

(f(1)− f(0))2
,

1

(f(d)− f(d− 1))2

}
× d log

(
2n

ε

)
≤ 376017× d2

(f(d)− f(0))2
d log

(
2n

ε

)
= 376017× 1

β2

(
U − L

f(U)− f(L)

)2

d log

(
2n

ε

)
(111)

for some q0 ∈
(
L
d ,

U
d

)
.

Summarizing the above, we see that for any 0 ≤ L < U ≤ d, there exists q0 ∈
(
L
d ,

U
d

)
such that

Γ̂(q0) ≤ 376017× 1

β2

(
U − L

f(U)− f(L)

)2

d log

(
2n

ε

)
.

This along with the definitions of H(f) and β in (18) and (89), respectively, yields

Γ̂(q0) ≤ 376017H(f)d log

(
2n

ε

)
(112)

for some q0 ∈ (0, 1). Proposition 3 is proved.

F Proof of Proposition 4

The following technical result will serve as a stepping stone to establishing Proposition 4.

Lemma 9. Let d ≥ 3. For any L′, U ′ ∈ {1, . . . , d−1} with L′ < U ′ and f(L′) < f(U ′), there exists q0 ∈
(
L′

d ,
U ′

d

)
such that Γ̂(q0) defined in (14) satisfies

Γ̂(q0) ≤ 1253.39× (d− L′)U ′

α2(d− U ′)L′

(
U ′ − L′

f(U ′)− f(L′)

)2

d log

(
2n

ε

)
, (113)

where α := 1
2 min

{
U ′ − L′,

√
L′,
√
d− U ′

}
.

Proof. See Appendix G.
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Comparing Proposition 4 and Lemma 9, we see that the main difference is the (d−L′)U ′
(d−U ′)L′ term. In the remainder

of the proof, we manage to eliminate the (d−L′)U ′
(d−U ′)L′ term from (113). Since α = 1

2 min
{
U ′ − L′,

√
L′,
√
d− U ′

}
,

we consider the following two cases.

Case i): α = U ′−L′
2 , i.e.,

U ′ − L′ ≤ min
{√

L′,
√
d− U ′

}
. (114)

Then we immediately obtain

(d− L′)U ′

(d− U ′)L′
≤ (d− U ′ +

√
d− U ′)(L′ +

√
L′)

(d− U ′)L′
=

√
d− U ′ + 1√
d− U ′

·
√
L′ + 1√
L′

≤ 2× 2 < 25, (115)

where the second inequality follows from the assumption that 1 ≤ L′ < U ′ ≤ d− 1. Substituting into (113), we
have the desired result (86).

Case ii): α 6= U ′−L′
2 , i.e.,

α =
1

2
min

{√
L′,
√
d− U ′

}
<
U ′ − L′

2
. (116)

Define

τ :=

⌊
U ′ − L′

d2αe

⌋
, (117)

λi := L′ + i · d2αe for i = 0, · · · , τ − 1, (118)

λτ := U ′. (119)

For the ease of notation, let

αi :=
1

2
min

{
λi+1 − λi,

√
λi,
√
d− λi+1

}
for i = 0, · · · , τ − 1. (120)

The following lemma shows that for all i = 0, . . . , τ − 1, αi is bounded from below by α.

Lemma 10. αi ≥ α for all i ∈ {0, · · · , τ − 1}.

Proof. For i = 0, · · · , τ − 1, we have from (118) that

L′ ≤ λi < λi+1 ≤ U ′. (121)

It follows that
1

2
min

{√
λi,
√
d− λi+1

}
≥ 1

2
min

{√
L′,
√
d− U ′

}
= α. (122)

Next, for i = 0, · · · , τ − 2,
λi+1 − λi

2
=
d2αe

2
≥ α; (123)

for i = τ − 1,

λτ − λτ−1

2
=
U ′ − L′ − (τ − 1)d2αe

2
≥
U ′ − L′ −

(
U ′−L′
d2αe − 1

)
d2αe

2
=
d2αe

2
= α. (124)

Combining the above three inequalities, along with the definition of αi in (120), yields the desired result.

To complete the proof of Case ii), the following two lemmas will also be used.

Lemma 11. (d−λi)λi+1

(d−λi+1)λi
≤ 25 for any i = 0, · · · , τ − 1.
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Proof. Observe that for any i = 0, · · · , τ − 2,

λi+1 − λi = d2αe ≤ 4α+ 2; (125)

and for i = τ − 1,

λτ − λτ−1 = U ′ − (L′ + (τ − 1)d2αe)

= U ′ − L′ −
(⌊

U ′ − L′

d2αe

⌋
− 1

)
d2αe

< U ′ − L′ −
(
U ′ − L′

d2αe
− 2

)
d2αe

= 2d2αe
≤ 4α+ 2. (126)

It then follows that for all i = 0, · · · , τ − 1,

λi+1 − λi ≤ 4α+ 2

= 2 min{
√
L′,
√
d− U ′}+ 2

≤ 4 min{
√
L′,
√
d− U ′}

≤ 4 min{
√
λi,
√
d− λi+1}, (127)

where the equality follows from (116); the second inequality follows from the assumption that 1 ≤ L′ < U ′ ≤ d−1;
the last inequality follows from (121). Using this observation along with 1 ≤ λi ≤ λi+1 ≤ d− 1, we obtain

(d− λi)λi+1

(d− λi+1)λi
≤

(d− λi+1 + 4
√
d− λi+1)(λi + 4

√
λi)

(d− λi+1)λi
=

(
√
d− λi+1 + 4)√
d− λi+1

· (
√
λi + 4)√
λi

≤ 5× 5 = 25, (128)

which finishes the proof.

Lemma 12. ∃` ∈ {0, · · · , τ − 1} such that f(λ`+1)−f(λ`)
λ`+1−λ` ≥ f(U ′)−f(L′)

U ′−L′ .

Proof. Suppose to the contrary that f(λi+1)−f(λi)
(λi+1−λi) < f(U ′)−f(L′)

U ′−L′ for all i = 0, · · · , τ − 1. In other words,

f(λi+1)− f(λi) <
f(U ′)− f(L′)

U ′ − L′
(λi+1 − λi),∀i = 0, · · · , τ − 1. (129)

Summing (129) over all i ∈ {0, · · · , τ − 1}, we obtain that

f(U ′)− f(L′) =
τ−1∑
i=0

(f(λi+1)− f(λi)) <
τ−1∑
i=0

f(U ′)− f(L′)

U ′ − L′
(λi+1 − λi) = f(U ′)− f(L′) (130)

yielding a contradiction. Lemma 12 is proved.

We are now ready to finish the proof of Case ii) using the above results. Upon applying Lemma 9 with L′ = λ`

and U ′ = λ`+1 as defined in Lemma 12, we have that ∃q0 ∈
(
λ`
d ,

λ`+1

d

)
such that

Γ̂(q0) ≤ 1253.39× (d− λ`)λ`+1

α`2(d− λ`+1)λ`

(
λ`+1 − λ`

f(λ`+1)− f(λ`)

)2

d log

(
2n

ε

)
≤ 31334.75× 1

α`2

(
λ`+1 − λ`

f(λ`+1)− f(λ`)

)2

d log

(
2n

ε

)
≤ 31334.75× 1

α`2

(
U ′ − L′

f(U ′)− f(L′)

)2

d log

(
2n

ε

)
≤ 31334.75× 1

α2

(
U ′ − L′

f(U ′)− f(L′)

)2

d log

(
2n

ε

)
(131)

where the second inequality follows from Lemma 11; the third inequality follows from Lemma 12; the last
inequality follows from Lemma 10. This completes the proof of Proposition 4.
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G Proof of Lemma 9

We now prove Lemma 9, first giving some preliminary lemmas.

Lemma 13. For any j = 1, . . . , d− 1, we have

√
2π

e2

√
d

j(d− j)
≤
(
d

j

)(
j

d

)j (
d− j
d

)d−j
≤ e

π

√
d

j(d− j)
.

Proof. We shall use the following well-known Stirling’s approximation [Bruijn, 1981] for the factorial function.

Fact 2 (Stirling’s approximation [Bruijn, 1981]).

√
2π nn+ 1

2 e−n ≤ n! ≤ e nn+ 1
2 e−n. (132)

Using the upper and lower bounds on n! in (132), we have(
d

j

)(
j

d

)j (
d− j
d

)d−j
=

d!

j!(d− j)!

(
j

d

)j (
d− j
d

)d−j
≥

√
2πdd+1/2e−d

ejj+1/2e−je(d− j)d−j+1/2e−d+j

(
j

d

)j (
d− j
d

)d−j
=

√
2π

e2

√
d

j(d− j)
.

Similarly, we also have(
d

j

)(
j

d

)j (
d− j
d

)d−j
=

d!

j!(d− j)!

(
j

d

)j (
d− j
d

)d−j
≤ edd+1/2e−d√

2πjj+1/2e−j
√

2π(d− j)d−j+1/2e−d+j

(
j

d

)j (
d− j
d

)d−j
=

e

2π

√
d

j(d− j)
.

Combining the two bounds gives the desired result.

Lemma 14. For any j > i > 0 and d > j + i, we have∫ j+i
d

j
d

qj(1− q)d−j dq ≥
(
j

d

)j (
d− j
d

)d−j
j(d− j − i)

id2

(
1− exp

(
−i2d

j(d− j − i)

))
, (133)

∫ j
d

j−i
d

qj(1− q)d−j dq ≥
(
j

d

)j (
d− j
d

)d−j
(j − i)(d− j)

id2

(
1− exp

(
−i2d

(j − i)(d− j)

))
. (134)

Proof. We first prove (133). Define

ϕ(x) := j ln(j + xd) + (d− j) ln(d− j − xd), x ∈
[
− i
d
,
i

d

]
. (135)

Taking the derivative of ϕ(x), we obtain that

ϕ′(x) =
−xd3

(j + xd)(d− j − xd)
≥ −xd3

j(d− j − i)
≥ −id2

j(d− j − i)
, ∀x ∈

[
0,
i

d

]
.

This implies that

ϕ(t)− ϕ(0) =

∫ t

0

ϕ′(x) dx ≥
∫ t

0

−id2

j(d− j − i)
dx =

−id2

j(d− j − i)
t, ∀t ∈

[
0,
i

d

]
. (136)
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By the definition of ϕ in (135), we have

ϕ(t)− ϕ(0) = ln

((
j + td

j

)j (
d− j − td
d− j

)d−j)
, ∀t ∈

[
− i
d
,
i

d

]
. (137)

It follows that∫ j+i
d

j
d

qj(1− q)d−j dq =

∫ i
d

0

(
j + td

d

)j (
d− j − td

d

)d−j
dt

=

∫ i
d

0

(
j

d

)j (
d− j
d

)d−j (
j + td

j

)j (
d− j − td
d− j

)d−j
dt

=

(
j

d

)j (
d− j
d

)d−j ∫ i
d

0

exp(ϕ(t)− ϕ(0)) dt

≥
(
j

d

)j (
d− j
d

)d−j ∫ i
d

0

exp

(
−id2

j(d− j − i)
t

)
dt

=

(
j

d

)j (
d− j
d

)d−j
j(d− j − i)

id2

(
1− exp

(
−i2d

j(d− j − i)

))
,

where the first line follows by setting q to equal t + j
d for some t; the third line follows from (137); the fourth

line follows from (136). This proves the desired inequality (133).

Next, we prove (134) by a similar argument. We see that

ϕ′(x) =
−xd3

(j + xd)(d− j − xd)
≤ id2

(j − i)(d− j)
, ∀x ∈

[
− i
d
, 0

]
.

This implies that

ϕ(0)− ϕ(t) =

∫ 0

t

ϕ′(x) dx ≤
∫ 0

t

id2

(j − i)(d− j)
dx = − id2

(j − i)(d− j)
t, ∀t ∈

[
− i
d
, 0

]
.

Then we can deduce that∫ j
d

j−i
d

qj(1− q)d−j dq =

∫ 0

− i
d

(
j + td

d

)j (
d− j − td

d

)d−j
dt

=

∫ 0

− i
d

(
j

d

)j (
d− j
d

)d−j (
j + td

j

)j (
d− j − td
d− j

)d−j
dt

=

(
j

d

)j (
d− j
d

)d−j ∫ 0

− i
d

exp(ϕ(t)− ϕ(0)) dt

≥
(
j

d

)j (
d− j
d

)d−j ∫ 0

− i
d

exp

(
id2

(j − i)(d− j)
t

)
dt

=

(
j

d

)j (
d− j
d

)d−j
(j − i)(d− j)

id2

(
1− exp

(
−i2d

(j − i)(d− j)

))
,

which establishes the inequality (134).

Lemma 15. Let L′, U ′ ∈ {1, . . . , d− 1} with d ≥ 3 and L′ < U ′, we have that for all j ∈ [L′, U ′],∫ U′
d

L′
d

qj(1− q)d−j dq ≥
(
j

d

)j (
d− j
d

)d−j
α

2d
,

where α := 1
2 min

{
U ′ − L′,

√
L′,
√
d− U ′

}
.
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Proof. We split the proof into the following two cases, depending on whether j is in the range j ∈
[
L′, L

′+U ′

2

]
,

or in the range j ∈
(
L′+U ′

2 , U ′
]
.

Case i): L′ ≤ j ≤ U ′+L′

2 . It follows that j + α ≤ U ′ < d since α ≤ U ′−L′
2 by definition. We also have j > α > 0

since L′ > α by definition. Thus j, d, i = α satisfy the premise of Lemma 14. Using the inequality (133) with
i = α, we obtain∫ U′

d

L′
d

qj(1− q)d−j dq ≥
∫ j+α

d

j
d

qj(1− q)d−j dq

≥
(
j

d

)j (
d− j
d

)d−j
j(d− j − α)

αd2

(
1− exp

(
−α2d

j(d− j − α)

))
. (138)

Using the fact that

1− e−x ≥ 1

2
x(2− x), ∀x ≥ 0, (139)

we have

j(d− j − α)

αd2

(
1− exp

(
−α2d

j(d− j − α)

))
≥ j(d− j − α)

αd2
× 1

2

α2d

j(d− j − α)

(
2− α2d

j(d− j − α)

)
=

α

2d

(
2− α2d

j(d− j − α)

)
. (140)

Next, we argue that α2d
j(d−j−α) ≤ 1. This is done by dividing into the following two sub-cases:

• j < d
2 :

α2d

j(d− j − α)
≤

(√
L′

2

)2

d

j
(
d− j −

√
d−2
2

) ≤
(√

L′

2

)2

d

L′
(
d
2 −

√
d−2
2

) =
d

2
(
d−
√
d− 2

) ≤ 1,

where the first inequality follows from the definition that α ≤
√
L′

2 ≤
√
d−2
2 ; the second inequality follows

from the fact that L′ ≤ j < d
2 ; the last inequality follows from the assumption that d ≥ 3.

• j ≥ d
2 :

α2d

j(d− j − α)
≤ α2d

d
2 (d− U ′)

≤

(√
d−U ′
2

)2

d

d
2 (d− U ′)

=
1

2
≤ 1,

where the first inequality is because j ≥ d
2 and j+α ≤ U ′ as argued above; the second inequality is because

α ≤
√
d−U ′
2 by definition.

Using this observation along with (138) and (140), we conclude that∫ U′
d

L′
d

qj(1− q)d−j dq ≥
(
j

d

)j (
d− j
d

)d−j
α

2d
.

Case ii): U ′+L′

2 < j ≤ U ′. This case can be proved in a similar manner as the above one. Note that j−α ≥ L′ > 0

since α ≤ U ′−L′
2 by definition. We also have j + α < d since α < d− U ′. Hence j, d, i = α satisfy the premise of

Lemma 14. Using the inequality (134) with i = α, we have∫ U′
d

L′
d

qj(1− q)d−j dq ≥
∫ j

d

j−α
d

qj(1− q)d−j dq

≥
(
j

d

)j (
d− j
d

)d−j
(j − α)(d− j)

αd2

(
1− exp

(
−α2d

(j − α)(d− j)

))
.
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Applying the standard identity (139) again, we see that

(j − α)(d− j)
αd2

(
1− exp

(
−α2d

(j − α)(d− j)

))
≥ (j − α)(d− j)

αd2
× 1

2

α2d

(j − α)(d− j)

(
2− α2d

(j − α)(d− j)

)
=

α

2d

(
2− α2d

(j − α)(d− j)

)
.

Similar to the above case, we prove α2d
(j−α)(d−j) ≤ 1 by considering the following two sub-cases:

• j < d
2 :

α2d

(j − α)(d− j)
≤ α2d

L′ d2
≤

(√
L′

2

)2

d

L′ d2
=

1

2
≤ 1,

where the first inequality follows by noting that j < d
2 and j−α ≥ L′ as argued above; the second inequality

follows from the fact that α ≤
√
L′

2 .

• j ≥ d
2 :

α2d

(j − α)(d− j)
≤ α2d(

d
2 − α

)
(d− U ′)

≤

(√
d−U ′
2

)2

d(
d
2 −

√
d−2
2

)
(d− U ′)

=
d

2
(
d−
√
d− 2

) ≤ 1,

where the first inequality is because d
2 ≤ j ≤ U

′; the second inequality follows since α ≤
√
d−U ′
2 ≤

√
d−2
2 by

its definition; and the last inequality follows from d ≥ 3.

It follows that

∫ U′
d

L′
d

qj(1− q)d−j dq ≥
(
j

d

)j (
d− j
d

)d−j
α

2d
.

Summarizing the two cases, Lemma 15 is proved.

Using the above results, we are now in a position to prove Lemma 9. Recalling from (53) that

∆(q) =

d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−j(f(j + 1)− f(j)).

Note that ∆(q) is continuous w.r.t. q. Assuming L′, U ′ ∈ {1, . . . , d− 1} with L′ < U ′ and f(L′) < f(U ′), we can
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calculate the integral of ∆(q) for q ∈
[
L′

d ,
U ′

d

]
as follows:

∫ U′
d

L′
d

∆(q) dq =

∫ U′
d

L′
d

d−1∑
j=0

(
d− 1

j

)
qj(1− q)d−j(f(j + 1)− f(j)) dq

≥
∫ U′

d

L′
d

U ′−1∑
j=L′

(
d− 1

j

)
qj(1− q)d−j(f(j + 1)− f(j)) dq

=

U ′−1∑
j=L′

d− j
d

(
d

j

)
(f(j + 1)− f(j))

∫ U′
d

L′
d

qj(1− q)d−j dq

≥
U ′−1∑
j=L′

d− j
d

(
d

j

)
(f(j + 1)− f(j))

(
j

d

)j (
d− j
d

)d−j
α

2d
(141)

≥
U ′−1∑
j=L′

√
2π

e2

√
d

j(d− j)
d− j
d

(f(j + 1)− f(j))
α

2d
(142)

=

U ′−1∑
j=L′

√
πα2(d− j)

2e4jd3
(f(j + 1)− f(j))

≥
U ′−1∑
j=L′

√
πα2(d− U ′)

2e4U ′d3
(f(j + 1)− f(j))

=

√
πα2(d− U ′)

2e4U ′d3
(f(U ′)− f(L′)), (143)

where (141) follows from Lemma 15 and α = 1
2 min

{
U ′ − L′,

√
L′,
√
d− U ′

}
; (142) follows from Lemma 13. By

the mean value theorem, from (143), we know there exists some q0 ∈
(
L′

d ,
U ′

d

)
such that

∆(q0) ≥

√
πα2(d−U ′)

2e4U ′d3 (f(U ′)− f(L′))

U ′

d −
L′

d

=

√
πα2(d− U ′)

2e4U ′d

f(U ′)− f(L′)

U ′ − L′
.

Using this observation, we can bound Γ̂(q0) in (14) as

Γ̂(q0) =
36.06(1− q0)

q0(∆(q0))2
log

(
2n

ε

)
≤ 36.06(1− q0)

q0
× 2e4U ′d

πα2(d− U ′)

(
U ′ − L′

f(U ′)− f(L′)

)2

log

(
2n

ε

)
≤ 1253.39× (d− L′)U ′

α2(d− U ′)L′

(
U ′ − L′

f(U ′)− f(L′)

)2

d log

(
2n

ε

)
,

which proves Lemma 9.
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H Proof of Lemma 7

Suppose to the contrary that q∗ ∈
(
0, 1

376017d3

]
∪
[
1− 1

376017d3 , 1
)
. From (53) we can bound

q∗

1− q∗
(∆(q∗))

2
=

d−1∑
j=0

(
d− 1

j

)
q∗j(1− q∗)d−j−1(f(j + 1)− f(j))

2

· q∗(1− q∗)

≤

d−1∑
j=0

(
d− 1

j

)
q∗j(1− q∗)d−j−1 (f(d)− f(0))

2

· q∗(1− q∗)

= (f(d)− f(0))2 · q∗(1− q∗)

≤ (f(d)− f(0))2 × 1

376017d3

(
1− 1

376017d3

)
≤ (f(d)− f(0))2 × 1

376017d3
.

This along with the definition of Γ̂(q) in (14) yields that

Γ̂(q∗) ≥ 36.06× 376017d3

(f(d)− f(0))2
log

(
2n

ε

)
. (144)

On the other hand, applying Proposition 3 with L = 0 and U = d, we have that ∃q0 ∈ (0, 1) such that

Γ̂(q0) ≤ 376017d3

(f(d)− f(0))2
log

(
2n

ε

)
. (145)

From (144) and (145) we have that

Γ̂(q∗) > Γ̂(q0),

which is a contradiction to the definition that q∗ = argminq∗∈(0,1) Γ̂(q) in (15). Hence we prove Lemma 7.

I Proof of Lemma 8

For notational simplicity, let ς = 1
376017d4 . It follows from Lemma 7 that

0 <
ς

q∗
<

1

d
and 0 <

ς

1− q∗
<

1

d
. (146)
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For any q̂∗ ∈ [q∗ − ς, q∗ + ς], we have from (53) that

q̂∗

1− q̂∗
(∆(q̂∗))2

=

d−1∑
j=0

(
d− 1

j

)
q̂∗j(1− q̂∗)d−j−1(f(j + 1)− f(j))

2

· q̂∗(1− q̂∗)

≥

d−1∑
j=0

(
d− 1

j

)
(q∗ − ς)j(1− q∗ − ς)d−j−1(f(j + 1)− f(j))

2

· (q∗ − ς)(1− q∗ − ς)

=

d−1∑
j=0

(
d− 1

j

)
q∗j
(
q∗ − ς
q∗

)j
(1− q∗)d−j−1

(
1− q∗ − ς

1− q∗

)d−j−1

(f(j + 1)− f(j))

2

· (q∗ − ς)(1− q̂∗ − ς)

≥

d−1∑
j=0

(
d− 1

j

)
q∗j
(
q∗ − ς
q∗

)d−1

(1− q∗)d−j−1

(
1− q∗ − ς

1− q∗

)d−1

(f(j + 1)− f(j))

2

· (q∗ − ς)(1− q̂∗ − ς)

=

d−1∑
j=0

(
d− 1

j

)
q∗j(1− q∗)d−j−1(f(j + 1)− f(j))

2

· q∗(1− q∗) ·
(
q∗ − ς
q∗

)2d−1(
1− q∗ − ς

1− q∗

)2d−1

≥

d−1∑
j=0

(
d− 1

j

)
q∗j(1− q∗)d−j−1(f(j + 1)− f(j))

2

· q∗(1− q∗) ·
(

1− 1

d

)2d−1(
1− 1

d

)2d−1

≥

d−1∑
j=0

(
d− 1

j

)
q∗j(1− q∗)d−j−1(f(j + 1)− f(j))

2

× q∗(1− q∗)× 1

8
× 1

8

=
1

64
× q∗(∆(q∗))2

1− q∗
. (147)

Using (147) along with the definition of Γ̂(q) in (14), we have

Γ̂(q̂∗) ≤ 64Γ̂(q∗). (148)

For any q̂∗ ∈ [q∗ − ς, q∗ + ς], we also have

P (+, q̂∗) =

d−1∑
j=0

(
d− 1

j

)
q̂∗j(1− q̂∗)d−1−jf(j + 1)

≤
d−1∑
j=0

(
d− 1

j

)
(q∗ + ς)j(1− q∗ + ς)d−1−jf(j + 1)

≤
d−1∑
j=0

(
d− 1

j

)
q∗j(1− q∗)d−1−jf(j + 1) ·

(
q∗ + ς

q∗

)d−1(
1− q∗ + ς

1− q∗

)d−1

≤
d−1∑
j=0

(
d− 1

j

)
q∗j(1− q∗)d−1−jf(j + 1) ·

(
1 +

1

d

)d−1(
1 +

1

d

)d−1

≤
d−1∑
j=0

(
d− 1

j

)
q∗j(1− q∗)d−1−jf(j + 1) · e2

= e2P (+, q∗). (149)
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Theorem 1-b)
Upper bound on T

(Appendix A.2)

Theorem 2
Lower bound on T

(Appendix J)

Theorem 3
Near-optimality
(Appendix L)

Proposition 6
Existence of proper (L̂, Û)

(Appendix L)

Lemma 16
Bound on the mutual

information of each test
(Appendix K)

Lemma 18
Existence of a “large-increment-interval”

(Appendix M)

Lemma 17
Perturbation inequality

on x ln(x)
(Appendix K)

Figure 3: Organization of Propositions, Lemmas, and Theorems for our proof of converse and its tightness.

And similarly,

1−Q(+, q̂∗) =

d−1∑
j=0

(
d− 1

j

)
q̂∗j(1− q̂∗)d−1−j(1− f(j))

≤
d−1∑
j=0

(
d− 1

j

)
q∗j(1− q∗)d−1−j(1− f(j)) ·

(
q∗ + ς

q∗

)d−1(
1− q∗ + ς

1− q∗

)d−1

≤
d−1∑
j=0

(
d− 1

j

)
q∗j(1− q∗)d−1−j(1− f(j)) ·

(
1 +

1

d

)d−1(
1 +

1

d

)d−1

≤
d−1∑
j=0

(
d− 1

j

)
q∗j(1− q∗)d−1−j(1− f(j)) · e2

= e2(1−Q(+, q∗)). (150)

Combining (149) and (150), along with the definition of Pmin(q) in (7), we have that

Pmin(q̂∗) ≤ e2Pmin(q∗). (151)

Finally, using (148) and (151) along with (14) implies that

Γ(q̂∗) = Γ̂(q̂∗)Pmin(q̂∗) ≤ 64Γ̂(q∗)e2Pmin(q∗) = 64e2Γ(q∗),

which completes the proof.

J Proof of Theorem 2

In this section, for any given monotone test function f(·), we provide an information-theoretic lower bound on
the number of tests required by any non-adaptive group testing algorithm that can be adaptive and is allowed
to make an error with probability at most ε.

Let us first introduce some notation which will be used in the proof. We use a binary vector X ∈ {0, 1}n to
represent the set N , where 1s indicate which items are defective. To estimate X, we perform T suitable-designed
tests, in which each test must be designed prior to observing any outcomes. Let Z = (Z1, . . . , ZT ) be a length
T vector, where Zi denotes the number of defectives in the i-th test. The test outcomes are represented by a
binary vector Y = (Y1, . . . , YT ) ∈ {0, 1}T , where Yi = 1 indicates the outcome of the i-th test is positive. We
emphasize that Zi is independent of (Y1, . . . , Yi−1, Yi+1, . . . , YT ). Given the tests and their outcomes, let X̂ be
an estimate of X.
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By standard information-theoretic definitions, we have

H(X) = H(X|Y ) + I(X;Y )

= H(X|Y , X̂) + I(X;Y )

≤ H(X|X̂) + I(X;Y ) (152)

where the second line follows since X̂ is a function of Y ; the thrid line follows from the fact that conditioning
reduces entropy. Since the defective set D is uniformly distributed over all length n vector of Hamming weight
d, we have

H(X) = log

(
n

d

)
. (153)

By Fano’s inequality,

H(X|X̂) ≤ 1 + ε log

(
n

d

)
. (154)

Let Y i−1 := (Y1, . . . , Yi−1) and Zi−1 := (Z1, . . . , Zi−1).7 Similar to channel coding (see for example [Yeung,
2008, Sec. 7.3]), it can be easily verified that

(X, Zi−1, Y i−1)− Zi − Yi

which implies

(X, Y i−1)− Zi − Yi. (155)

Following a standard set of inequalities we have

I(X;Y ) =

T∑
i=1

[
H(Yi|Y i−1)−H(Yi|X, Y i−1)

]
≤

T∑
i=1

[
H(Yi)−H(Yi|X, Y i−1)

]
≤

T∑
i=1

[
H(Yi)−H(Yi|X, Y i−1, Zi)

]
=

T∑
i=1

[H(Yi)−H(Yi|Zi)] (156)

where the first line follows from chain rule; the second and third lines follow from the fact that conditioning
reduces entropy; the last line follows from (155).

Let χi denote the pool-size of the i-th test and Pr(Zi = a) denote the probability that Zi = a. We have

Pr(Zi = a) =

(
d
a

)(
n−d
χi−a

)(
n
χi

) . (157)

For simplicity, we define

µ(χi) :=

d∑
a=0

Pr(Zi = a)f(a),

σ2(χi) :=

d∑
a=0

Pr(Zi = a)(f(a)− µ(χi))
2,

(158)

where µ(χi) and σ2(χi) denote the mean and variance of Pr(Yi = 1|Zi). It turns out we are able to bound the
bracketed term [·] in (156) as follows:

7For i = 1, we follow the convention that Y i−1 = Zi−1 = ∅.



Generalized Group Testing

Lemma 16.

H(Yi)−H(Yi|Zi) ≤
σ2(χi) log e

µ(χi)(1− µ(χi))
(159)

Proof. See Appendix K.

Now substituting (159) into (156), we see that

I(X;Y ) ≤
T∑
i=1

σ2(χi) log e

µ(χi)(1− µ(χi))

≤ T × σ2(χ∗) log e

µ(χ∗)(1− µ(χ∗))
, (160)

where the second line follows by defining

χ∗ := argmax
χ∈{1,...,n−1}

σ2(χ)

µ(χ)(1− µ(χ))
. (161)

The reason for restricting χ ∈ {1, . . . , n− 1} is that σ2(0) = σ2(n) = 0.

Finally, combining (152), (153), (154) and (160) gives us the desired result

T ≥ µ(χ∗) (1− µ(χ∗))

σ2(χ∗) log e

(
(1− ε) log

(
n

d

)
− 1

)
. (162)

This along with the definition of h(f) in (24) completes the proof of Theorem 2.

K Proof of Lemma 16

The proof of Lemma 16 will resort to the following technical lemma:

Lemma 17. For any b ∈ (0, 1) and c ∈ (−b, 1− b), it follows that

−b ln b+ (b+ c) ln(b+ c) ≤ c(1 + ln b) +
c2

b
.

Proof. Since b+ c > 0, c
b > −1, we have

0 ≤ (b+ c)
(c
b
− ln

(
1 +

c

b

))
= c+

c2

b
− (b+ c) ln(b+ c) + (b+ c) ln b,

which, via simple rearrangement, gives the promised inequality.

We now set out to prove Lemma 16. First, we have

H(Yi)−H(Yi|Zi) = H(Yi)−
d∑
a=0

Pr(Zi = a)H(Yi|Zi = a)

=

d∑
a=0

Pr(Zi = a) [H(Yi)−H(Yi|Zi = a)] (163)

For the sake of notational brevity, let µ = µ(χi) and σ2 = σ2(χi). Since

Pr(Yi = 1|Zi = a) = f(a),
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Pr(Yi = 1) =

d∑
a=0

Pr(Zi = a) Pr(Yi = 1|Zi = a) =

d∑
a=0

Pr(Zi = a)f(a) = µ,

we have

H(Yi) = −µ logµ− (1− µ) log(1− µ)

= [−µ lnµ− (1− µ) ln(1− µ)] log e,

H(Yi|Zi = a) = −f(a) log f(a)− (1− f(a)) log(1− f(a))

= [−f(a) ln f(a)− (1− f(a)) ln(1− f(a))] log e.

(164)

Next, we argue that

−µ lnµ− (1− µ) ln(1− µ) + f(a) ln f(a) + (1− f(a)) ln(1− f(a)) ≤ (f(a)− µ)(lnµ− ln(1− µ)) +
(f(a)− µ)2

µ(1− µ)
.

(165)

This is done for each of the following possible cases.

• When f(a) = 0,

L.H.S.− R.H.S. = 1− 1

1− µ
− ln(1− µ) ≤ 0, ∀ 0 < µ < 1.

• When f(a) = 1,

L.H.S.− R.H.S. = 1− 1

µ
− lnµ ≤ 0, ∀ 0 < µ < 1.

• When f(a) ∈ (0, 1), applying Lemma 17 with b = µ and c = f(a)− µ we obtain

−µ lnµ+ f(a) ln f(a) ≤ (f(a)− µ)(1 + lnµ) +
(f(a)− µ)2

µ
.

Applying Lemma 17 again with b = 1− µ and c = µ− f(a), we obtain

−(1− µ) ln(1− µ) + (1− f(a)) ln(1− f(a)) ≤ (µ− f(a))(1 + ln(1− µ)) +
(f(a)− µ)2

1− µ
.

Upon combining the above two inequalities, we have L.H.S. ≤ R.H.S. as desired.

Substituting (164) and (165) into (163), we arrive at

H(Yi)−H(Yi|Zi) ≤
d∑
a=0

Pr(Zi = a)

[
(f(a)− µ) (lnµ− ln(1− µ)) +

(f(a)− µ)2

µ(1− µ)

]
log e

=
σ2 log e

µ(1− µ)

where the equality follows from (158). This proves Lemma 16.

L Proof of Theorem 3

In this section, we argue that the upper bound in (21) given by the proposed testing algorithm is at most a

O
(

Pmin(q∗)
µ(χ∗)(1−µ(χ∗))

)
factor larger than the lower bound in (25).
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Before presenting the proof, let us give some technical results that constitute the basic ingredients of the proof.
To proceed, recall the definitions of µ(χ), σ2(χ) in (23) and χ∗ in (28), which we repeat here for convenience:

χ∗ := argmin
χ∈{1,...,n−1}

µ(χ)(1− µ(χ))

σ2(χ)
,

µ(χ) :=

d∑
i=0

(
d
i

)(
n−d
χ−i
)(

n
χ

) f(i),

σ2(χ) :=

d∑
i=0

(
d
i

)(
n−d
χ−i
)(

n
χ

) (f(i)− µ(χ))
2
.

(166)

Define

ϑ := χ∗
d

n
, (167)

η :=

{
bϑc if ϑ− bϑc < 0.5,
dϑe if ϑ− bϑc ≥ 0.5.

(168)

Since 0 < χ∗ < n, we have ϑ ∈ (0, d).

Lemma 18. ∃κ ∈ {0, 1, · · · , d− 1, d}\{η} such that(
γ(κ)

f(κ)− f(η)

κ− ϑ

)2

>
σ2(χ∗)

11
, (169)

where γ(κ) := min
{
|κ− ϑ|,

√
κ+ 1,

√
d− κ+ 1,

√
ϑ+ 1,

√
d− ϑ+ 1

}
.

Proof. See Appendix M.

The following proposition plays a key role in the proof of Theorem 3.

Proposition 6. ∃ L̂, Û ∈ {0, . . . , d} with L̂ < Û such that(
β
f(Û)− f(L̂)

Û − L̂

)2

≥ σ2(χ∗)

176
, (170)

where β := min
{
Û − L̂,

√
L̂+ 1,

√
d− Û + 1

}
and σ2(χ∗) is defined in (166).

Proof. Using κ in Lemma 18, we construct a pair of (L̂, Û) that satisfies (170). Set

L̂ := min{κ, η}, Û := max{κ, η}. (171)

It follows that

|Û − L̂| = |κ− η| , (172)√
L̂+ 1 = min

{√
κ+ 1,

√
η + 1

}
, (173)√

d− Û + 1 = min
{√

d− κ+ 1,
√
d− η + 1

}
, (174)(

f(Û)− f(L̂)
)2

= (f(κ)− f (η))
2
. (175)

From the definition of η in (168), we have |η− ϑ| ≤ 0.5. From the assumption that κ ∈ {0, 1, · · · , d− 1, d} \ {η},
we have |κ− η| ≥ 1. Using the triangle inequality, we have

|κ− ϑ| = |κ− η + η − ϑ| ≥ |κ− η| − |η − ϑ| ≥ 0.5 ≥ |η − ϑ|.
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Using this observation together with (172), it follows that

4(κ− ϑ)2 ≥ 2(κ− ϑ)2 + 2(ϑ− η)2 ≥ (κ− ϑ+ ϑ− η)2 = (Û − L̂)2. (176)

Recalling the definition of γ(κ) in Lemma 18, we have

γ(κ) = min
{
|κ− ϑ|,

√
κ+ 1,

√
d− κ+ 1,

√
ϑ+ 1,

√
d− ϑ+ 1

}
≤ min

{
|κ− η|+ |η − ϑ|,

√
κ+ 1,

√
d− κ+ 1,

√
ϑ+ 1,

√
d− ϑ+ 1

}
≤ min

{
|κ− η|+ 1,

√
κ+ 1,

√
d− κ+ 1,

√
η + 2,

√
d− η + 2

}
≤ min

{
2|κ− η|, 2

√
κ+ 1, 2

√
d− κ+ 1, 2

√
η + 1, 2

√
d− η + 1

}
= min

{
2|Û − L̂|, 2

√
L̂+ 1, 2

√
d− Û + 1

}
= 2β, (177)

where the second line follows from the triangle inequality |κ − ϑ| ≤ |κ − η| + |η − ϑ|; the third line is because
|η−ϑ| ≤ 1; the fourth line follows from |κ− η| ≥ 1; the fifth line follows from (172), (173) and (174). Combining
(175), (176) (177), along with (169) in Lemma 18, we obtain(

β
f(Û)− f(L̂)

Û − L̂

)2

≥ γ(κ)2

4
× (f(κ)− f(η))2

4(κ− ϑ)2
>
σ2(χ∗)

176
. (178)

This completes the proof of Proposition 6.

Now we set out to prove Theorem 3. Recalling the upper bound on T in (21), we have

T ≤ 376017Pmin(q∗)H(f)d log

(
2n

ε

)
+ 1

≤ 376017Pmin(q∗)

 1

min
{
Û − L̂,

√
L̂+ 1,

√
d− Û + 1

} × Û − L̂
f(Û)− f(L̂)

2

d log

(
2n

ε

)
+ 1

≤ 376017Pmin(q∗)
176

σ2(χ∗)
d log

(
2n

ε

)
+ 1

where the second inequality follows from the definition of H(f) in (18) by letting (L,U) therein to be the pair
(L̂, Û) in Proposition 6; the last inequality follows from Proposition 6. This implies that the upper bound in

(21) scales as O
(
Pmin(q∗)
σ2(χ∗) d log

(
2n
ε

))
. On the other hand, by the definition of h(f) in (24), the lower bound in

(25) scales as Ω
(
µ(χ∗)(1−µ(χ∗))

σ2(χ∗) log
(
n
d

))
. By standard arguments via Stirling’s approximation, log

(
n
d

)
is at least

d log n
d . Thus, under the assumptions that d = nθ, 0 ≤ θ < 1, the number of tests T required for (1− ε)-reliable

recovery in Theorem 1 is up to a O
(

Pmin(q∗)
µ(χ∗)(1−µ(χ∗))

)
factor larger than the lower bound presented in Theorem 2.

From Remarks 1 and 3, we know that our upper and lower bounds scale as O
(
d2 log n

)
and Ω (d log n), respec-

tively. Therefore, the number of tests required in Theorem 1 is never more than an O(d) factor larger than the
information-theoretic lower bound in Theorem 2.

M Proof of Lemma 18

We prove the claim by contradiction. To begin with, assume the contrary is true, i.e.,

(γ(i)(f(i)− f(η)))
2 ≤ σ2(χ∗)

11
(i− ϑ)2, ∀i ∈ {0, 1, . . . , d− 1, d} \ {η}. (179)
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Noting that (179) always holds for i = η. It then follows that

(γ(i)(f(i)− f(η)))
2 ≤ σ2(χ∗)

11
(i− ϑ)2, ∀i ∈ {0, 1, . . . , d− 1, d}. (180)

In the sequel, we adopt the convention that i−ϑ
γ(i) = 0

0 = 1 for i = ϑ. Then equation (180) can be equivalently
written as

(f(i)− f(η))
2 ≤ σ2(χ∗)

11
·
(
i− ϑ
γ(i)

)2

, ∀i ∈ {0, 1, . . . , d− 1, d} . (181)

For notational convenience, let

p(i) :=

(
d
i

)(
n−d
χ∗−i

)(
n
χ∗

) , ∀i ∈ {0, 1, . . . , d− 1, d} . (182)

By definition, (p(0), . . . , p(d)) is the hypergeometric distribution with parameters n, d and χ∗. The mean and
variance formulae for hypergeometric distributions (n, d, χ∗) are, respectively,

χ∗
d

n
and χ∗

d

n
· n− d

n
· n− χ

∗

n− 1
. (183)

Taking expectations on both sides of (181) w.r.t. the distribution (182), we get

E
(

(f(i)− f(η))
2
)
≤ σ2(χ∗)

11
E

((
i− ϑ
γ(i)

)2
)
. (184)

On the other hand,

E
(

(f(i)− f(η))
2
)

= E
(

(f(i)− µ(χ∗))
2
)

+ E
(

(µ(χ∗)− f(η))
2
)

+ E (2 (f(i)− µ(χ∗)) (µ(χ∗)− f(η)))

= σ2(χ∗) + (µ(χ∗)− f(η))2 + 0

≥ σ2(χ∗), (185)

where the second line follows from (166) and (182). Combining (184) and (185), we deduce that

E

((
i− ϑ
γ(i)

)2
)
≥ 11. (186)

However, we will argue that E
((

i−ϑ
γ(i)

)2
)
< 11, which is a contradiction to (186). This is proved for each of the

two possible cases:

i) ϑ ∈ (0, 1) ∪ (d− 1, d);

ii) ϑ ∈ [1, d− 1].

Case i): For ϑ ∈ (0, 1) ∪ (d− 1, d), we have for any i ∈ {0, . . . , d} that

min {i+ 1, d− i+ 1} ≥ 1 > min{ϑ, d− ϑ}. (187)
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It then follows that (
i− ϑ
γ(i)

)2

=
(i− ϑ)2

min{(i− ϑ)2, i+ 1, d− i+ 1, ϑ+ 1, d− ϑ+ 1}

≤ (i− ϑ)2

min{(i− ϑ)2, i+ 1, d− i+ 1, ϑ, d− ϑ}

=
(i− ϑ)2

min{(i− ϑ)2, ϑ, d− ϑ}

≤ (i− ϑ)2

(i− ϑ)2
+

(i− ϑ)2

min{ϑ, d− ϑ}

= 1 +
(i− ϑ)2 max{ϑ, d− ϑ}

ϑ(d− ϑ)

≤ 1 +
(i− ϑ)2d

ϑ(d− ϑ)
. (188)

Taking expectations on both sides of (188) w.r.t. the hypergeometric distribution (182), we get

E

((
i− ϑ
γ(i)

)2
)
≤ 1 +

d

ϑ(d− ϑ)
E
(
(i− ϑ)2

)
. (189)

From the mean formula in (183), we have that E(i) = χ∗ dn = ϑ. Then using the variance formula in (183), we
have

E
(
(i− ϑ)2

)
= χ∗

d

n
· n− d

n
· n− χ

∗

n− 1
,

which implies

d

ϑ(d− ϑ)
E
(
(i− ϑ)2

)
=
n− d
n− 1

≤ 1. (190)

Note that (190) holds for all ϑ ∈ (0, d). Substituting (190) into (189), we have E
((

i−ϑ
γ(i)

)2
)
≤ 2.

Case ii): For ϑ ∈ [1, d− 1], we must have d ≥ 2. It follows that for any i ∈ {0, . . . , d},(
i− ϑ
γ(i)

)2

=
(i− ϑ)2

min{(i− ϑ)2, i+ 1, d− i+ 1, ϑ+ 1, d− ϑ+ 1}

≤ (i− ϑ)2

min{(i− ϑ)2, i+ 1, d− i+ 1, ϑ, d− ϑ}

≤ (i− ϑ)2

(i− ϑ)2
+

(i− ϑ)2

min{i+ 1, d− i+ 1}
+

(i− ϑ)2

min{ϑ, d− ϑ}

= 1 +
(i− ϑ)2 max{i+ 1, d− i+ 1}

(i+ 1)(d− i+ 1)
+

(i− ϑ)2 max{ϑ, d− ϑ}
ϑ(d− ϑ)

≤ 1 +
(i− ϑ)2 (d+ 1)

(i+ 1)(d− i+ 1)
+

(i− ϑ)2d

ϑ(d− ϑ)
. (191)

Taking the expectation of (191) w.r.t. the hypergeometric distribution (182), we have

E

((
i− ϑ
γ(i)

)2
)
≤ 1 + (d+ 1)E

(
(i− ϑ)2

(i+ 1)(d− i+ 1)

)
+

d

ϑ(d− ϑ)
E
(
(i− ϑ)2

)
≤ 2 + (d+ 1)E

(
(i− ϑ)2

(i+ 1)(d− i+ 1)

)
, (192)

where the second line follows from (190) since it continues to hold for this case.
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Next, we proceed to bound the term on the right hand side of (192). We can expand

E
(

(i− ϑ)2

(i+ 1)(d− i+ 1)

)
=

d∑
i=0

((
d
i

)(
n−d
χ∗−i

)(
n
χ∗

) · (i− ϑ)2

(i+ 1)(d− i+ 1)

)

=

d∑
i=0

((
d+2
i+1

)(
n−d
χ∗−i

)(
n+2
χ∗+1

) · (n+ 1)(n+ 2)

(χ∗ + 1)(n− χ∗ + 1)(d+ 1)(d+ 2)
· (i− ϑ)2

)

=
(n+ 1)(n+ 2)

(χ∗ + 1)(n− χ∗ + 1)(d+ 1)(d+ 2)
·
d∑
i=0

((
d+2
i+1

)(
n−d
χ∗−i

)(
n+2
χ∗+1

) · (i− ϑ)2

)

≤ (n+ 1)(n+ 2)

(χ∗ + 1)(n− χ∗ + 1)(d+ 1)(d+ 2)
·
d+1∑
i=−1

((
d+2
i+1

)(
n−d
χ∗−i

)(
n+2
χ∗+1

) · (i− ϑ)2

)

=
(n+ 1)(n+ 2)

(χ∗ + 1)(n− χ∗ + 1)(d+ 1)(d+ 2)
·
d+2∑
i=0

((
d+2
i

)(
n−d

χ∗+1−i
)(

n+2
χ∗+1

) · (i− ϑ− 1)2

)
. (193)

Using the formula for the mean of hypergeometric distributions (n+ 2, d+ 2, χ∗ + 1), we have

d+2∑
i=0

((
d+2
i

)(
n−d

χ∗+1−i
)(

n+2
χ∗+1

) · i

)
= (χ∗ + 1)

d+ 2

n+ 2
.

Then, using the formula for the variance of hypergeometric distributions (n+ 2, d+ 2, χ∗ + 1), we have

d+2∑
i=0

((
d+2
i

)(
n−d

χ∗+1−i
)(

n+2
χ∗+1

) · (i− ϑ− 1)2

)

=

d+1∑
i=0

((
d+2
i

)(
n−d

χ∗+1−i
)(

n+2
χ∗+1

) ·
(
i− (χ∗ + 1)

d+ 2

n+ 2
+ (χ∗ + 1)

d+ 2

n+ 2
− ϑ− 1

)2
)

=

d+1∑
i=0

((
d+2
i

)(
n−d

χ∗+1−i
)(

n+2
χ∗+1

) ·
(
i− (χ∗ + 1)

d+ 2

n+ 2

)2
)

+

(
(χ∗ + 1)

d+ 2

n+ 2
− ϑ− 1

)2

= (χ∗ + 1)
d+ 2

n+ 2
· n− d
n+ 2

· n− χ
∗ + 1

n+ 1
+

(
(χ∗ + 1)

d+ 2

n+ 2
− ϑ− 1

)2

≤ (χ∗ + 1)
d+ 2

n+ 2
· n− d
n+ 2

· n− χ
∗ + 1

n+ 1
+ 4, (194)

where the last line follows from

0 = χ∗
d

n
− ϑ ≤ (χ∗ + 1)

d+ 2

n+ 2
− ϑ ≤ (χ∗ + 1)

d+ 2

n
− ϑ =

d+ 2(χ∗ + 1)

n
≤ 3.

Substituting (194) into (193), we conclude that

E
(

(i− ϑ)2

(i+ 1)(d− i+ 1)

)
=

1

d+ 1
· n− d
n+ 2

+
4(n+ 1)(n+ 2)

(χ∗ + 1)(n− χ∗ + 1)(d+ 1)(d+ 2)

≤ 1

d+ 1
+

4(n+ 1)(n+ 2)

(χ∗ + 1)(n− χ∗ + 1)(d+ 1)(d+ 2)

≤ 1

d+ 1
+

4

d+ 1
· n+ 2

n+ d
· n+ 1

n− n
d + 1

· d

d+ 2

≤ 1

d+ 1
+

4

d+ 1
· n+ 1

n− n
2 + 1

· nd+ 2d

nd+ 2d+ 2n+ d2

<
1

d+ 1
+

4

d+ 1
× 2× 1

=
9

d+ 1
, (195)
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where the third line follows from

(χ∗ + 1)(n− χ∗ + 1) = −
(
χ∗ − n

2

)2

+
n2

4
+ n+ 1

≥ −
(n
d
− n

2

)2

+
n2

4
+ n+ 1

=
(n
d

+ 1
)(

n− n

d
+ 1
)

since we have from (167) that n
d ≤ χ

∗ ≤ n− n
d for 1 ≤ ϑ ≤ d− 1. Upon combining (192) and (195), we arrive at

E
(

(i− ϑ)2

γ(i)2

)
< 2 + (d+ 1) · 9

d+ 1
= 11.

Summarizing the above two cases, we see that E
((

i−ϑ
γ(i)

)2
)
< 11, which contradicts (186). Therefore, the

assumption in (179) is false and Lemma 18 is proved.

N Proof of Corollary 1

N.1 Proof of Corollary 1-a)

Proof. For test function (1), letting L = 0 and U = 1, we have from definition (18) that H(f) ≤ 1.8 It then
follows that the upper bound in (21) scales as O (d log n).

On the other hand, recall from Remark 3 that the lower bound in (25) scales as Ω
(
log
(
n
d

))
. Indeed, we can show

that the lower bound is precisely log
(
n
d

)
, i.e., h(f) = 1 for this test function. To see this, noting that f(0) = 0

and f(a) = 1,∀a ≥ 1, we can compute that

µ(χ) =

d∑
a=0

(
d
a

)(
n−d
χ−a
)(

n
χ

) f(a) = 1−
(
n−d
χ

)(
n
χ

) , (196)

d∑
a=0

(
d
a

)(
n−d
χ−a
)(

n
χ

) f2(a) = 1−
(
n−d
χ

)(
n
χ

) . (197)

Since (f(a)− µ(χ))2 = f2(a) + µ2(χ)− 2f(a)µ(χ), we have from (196) and (197) that

σ2(χ) =

d∑
a=0

(
d
a

)(
n−d
χ−a
)(

n
χ

) (f(a)− µ(χ))2

=

d∑
a=0

(
d
a

)(
n−d
χ−a
)(

n
χ

) f2(a)− µ2(χ)

= 1−
(
n−d
χ

)(
n
χ

) −(1−
(
n−d
χ

)(
n
χ

) )2

=

(
n−d
χ

)(
n
χ

) (
1−

(
n−d
χ

)(
n
χ

) ) .
It follows that

µ(χ)(1− µ(χ))

σ2(χ)
= 1, ∀χ ∈ {1, . . . , n− 1}.

8Indeed, we have H(f) = 1 for this test function. The reverse inequality follows from (19).
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Thus we have h(f) = 1 for this test function. Now the expression (25) reduces to the classical Fano’s inequality
based information theoretic lower bound [Chan et al., 2014] on the number of tests required for (1− ε)-reliable
recovery

T ≥ (1− ε) log

(
n

d

)
− 1.

By standard arguments via Stirling’s approximation, this quantity scales as Ω
(
d log n

d

)
.

Finally, the assumption that d = nθ, θ ∈ (0, 1) implies that our upper and lower bounds are order-wise tight,
both scaling as Θ (d log n).

N.2 Proof of Corollary 1-b)

Proof. The proof is very similar to the proof of Corollary 1-b) and appears for completeness. For test function
(26), letting L = ` and U = ` + 1, we have from (18) that H(f) ≤ 1.8 Substituting into (21), the upper bound
scales as O (d log n).

On the other hand, recall from Remark 3 that the lower bound in (25) scales as Ω
(
log
(
n
d

))
.9 By standard

arguments via Stirling’s approximation, log
(
n
d

)
is at least d log n

d . Using the assumption that d = nθ, θ ∈ (0, 1),
we see that our upper and lower bounds are order-wise tight, both scaling as Θ (d log n).

N.3 Proof of Corollary 1-c)

Proof. For linear test function (27), letting L =
⌊
d
3

⌋
and U =

⌈
2d
3

⌉
, we have that

min
{
U − L,

√
L+ 1,

√
d− U + 1

}
= min

{⌈
2d

3

⌉
−
⌊
d

3

⌋
,

√⌊
d

3

⌋
+ 1,

√
d−

⌈
2d

3

⌉
+ 1

}

≥ min

{
2d

3
− d

3
,

√
d

3
− 1 + 1,

√
d−

(
2d

3
+ 1

)
+ 1

}

=

√
d

3
.

It follows from (18) that

H(f) ≤

 1√
d
3

×
⌈

2d
3

⌉
−
⌊
d
3

⌋
f
(⌈

2d
3

⌉)
− f

(⌊
d
3

⌋)
2

= 3d

Plugging this into (21), the upper bound scales as O
(
d2 log n

)
.

The mean and variance formulae for hypergeometric distributions with parameters n, d and χ are, respectively,
χ dn and χ dn

n−d
n

n−χ
n−1 . For this test function we can therefore compute that

µ(χ) =

d∑
a=0

(
d
a

)(
n−d
χ−a
)(

n
χ

) f(a) =
1

d

d∑
a=0

(
d
a

)(
n−d
χ−a
)(

n
χ

) a =
χ

n
,

9By a similar argument to the one above, one can show the lower bound is precisely log
(
n
d

)
, i.e., we also have h(f) = 1

for this test function.
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and

σ2(χ) =

d∑
a=0

(
d
a

)(
n−d
χ−a
)(

n
χ

) (f(a)− µ(χ))2

=
1

d2

d∑
a=0

(
d
a

)(
n−d
χ−a
)(

n
χ

) (a− dµ(χ))
2

=
1

d2

d∑
a=0

(
d
a

)(
n−d
χ−a
)(

n
χ

) (
a− χd

n

)2

=
1

d2
· χd
n

n− d
n

n− χ
n− 1

=
χ(n− χ)

n2
· n− d
d(n− 1)

.

It follows that

µ(χ)(1− µ(χ))

σ2(χ)
=
d(n− 1)

n− d
≥ d, ∀χ ∈ {1, . . . , n− 1}.

This together with the definition of h(f) in (24) implies h(f) ≥ d. Plugging into (25), we have

T ≥ d
(

(1− ε) log

(
n

d

)
− 1

)
which, by standard arguments via Stirling’s approximation, scales as Ω

(
d2 log n

d

)
.

Finally, under the assumption that d = nθ, θ ∈ (0, 1), we see that both the upper and lower bounds scale as
Θ
(
d2 log n

)
.

O Proof of Corollary 2

Proof. Applying the inequalities in (8) to the definition of Pmin(q) in (7), we have

min{f(0), 1− f(d)} ≤ Pmin(q) ≤ min{f(d), 1− f(0)}, ∀q ∈ (0, 1). (198)

From Remark 2 we have

f(0)(1− f(d)) ≤ µ(χ)(1− µ(χ)) ≤ f(d)(1− f(0)), ∀χ ∈ {1, . . . , n− 1}. (199)

Combining (198) and (199), we see that

min{f(0), 1− f(d)}
f(d)(1− f(0))

≤ Pmin(q∗)

µ(χ∗) (1− µ(χ∗))
≤ min{f(d), 1− f(0)}

f(0)(1− f(d))
. (200)

Recalling the definition of noisy test functions, we have f(0), 1− f(d) ∈ Θ(1). It then follows from (200) that

Pmin(q∗)

µ(χ∗) (1− µ(χ∗))
∈ Θ(1).

This along with Theorem 3 yields that our bounds are order-wise tight.

P Simulation

In this section we report the results of our computer simulations to evaluate the performance of our proposed
schemes.10 Our algorithm takes as input

10The computing resource we use is an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz CPU.
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• number of items n;

• number of defectives d;

• test function f ;

• number of tests T .

We then run the proposed test design and decoding rule multiple times to evaluate the probability of successful
reconstruction.

Testing: For given (n, d, f, T ), we randomly generate an array X of length n with (n− d) 0s and d 1s, where 0
represents non-defective and 1 represents defective. Then we choose the parameter q accordingly, and randomly
generate a T ×n matrix M where each entry is i.i.d. Bernoulli(q). Each row of M corresponds to a distinct test,
and each column corresponds to a distinct item. Finally, we compute Z = (Z1, . . . , ZT ) = MX and generate
the test outcomes according to f(Zi), i = 1, . . . , T .

Decoding: Depending on the value of q, we then use the decoding rules (16) or (17). Let X̂ be the estimation
of the decoder. The test succeeds if X̂ = X, and fails otherwise.

P.1 Simulation result for threshold test function in Corollary 1-b)

Consider the function f(·) defined in (26) for ` = 5 i.e.,

f(x) =

{
0 if x ≤ 5,
1 if x > 5,

(201)

which is also illustrated in Figure 4a. In Corollary 1-b), we have shown that our algorithm is order-wise optimal
and the number of tests T scales as Θ(d log n). For ease of implementation, we assign q = 5

d . In the waterfall
plot in Figure 4b, n = 2000, d = 20, the x-axis plots the number of tests T ranging from Tmin = 0 to Tmax =
b40d log nc with step size ∆T =

⌊
Tmax−Tmin

100

⌋
, and the y-axis plots the probability of successful reconstruction

calculated by 1000 trials for each test T = Tmin + j × ∆T , j ∈ {0, 1, . . . , 100}. When T ' 19.2d log n, the
probability of successful reconstruction generally exceeds 0.99.11 In the heat-map in Figure 4c, n = 2000, the x-
axis denotes the number of defectives d ranging from 20 to 120, and the y-axis denotes the number of tests T as a
multiple of d log n. In the heat-map in Figure 4d, d = 20, the x-axis corresponds to the number of items n ranging
from 2000 to 6000, and the y-axis corresponds to the number of tests T as a multiple of d log n. In both Figures
4c and 4d, each pixel is coloured according to the probability of successful reconstruction calculated by 1000
trials for each test T– the lighter the colour, the higher the probability of reconstruction success. For each value
of d (respectively n) in Figure 4c (respectively Figure 4d), the corresponding red dot in that column represents
the number of tests for which this probability first equals 0.99. The horizontal blue dashed line indicates that
when T ' 17.2d log n (respectively 20.4d log n), the probability of successful reconstruction generally exceeds
0.99.

P.2 Simulation result for linear test function in Corollary 1-c)

We now consider the function f(·) defined in (27) and illustrated in Figure 5a. In Corollary 1-c), we have
shown that our algorithm is order-wise optimal and the number of tests T scales as Θ(d2 log n). For ease of
implementation, we assign q = 1

2 . In the waterfall plot in Figure 5b, n = 2000, d = 20, the x-axis plots

the number of tests T ranging from T ′min = 0 to T ′max =
⌊
40d2 log n

⌋
with step size ∆′T =

⌊
Tmax−Tmin

100

⌋
,

and the y-axis plots the probability of successful reconstruction calculated by 100 trials for each test T =
T ′min + j ×∆′T , j ∈ {0, 1, . . . , 100}. When T ' 21.6d2 log n, the probability of successful reconstruction exceeds
0.99. In the heat-map figure 5c, n = 2000, the x-axis denotes the number of defectives d ranging from 20 to
70, and the y-axis denotes the number of tests T as a multiple of d2 log n. In the heat-map figure 5d, d = 20,
the x-axis corresponds to the number of items n ranging from 2000 to 4000, and the y-axis corresponds to the
number of tests T as a multiple of d2 log n. In both figures 5c and 5d, each pixel is coloured according to the
probability of successful reconstruction calculated by 100 trials for each test T– the lighter the colour, the higher

11Here and below, “generally exceeds” means that the average of itself and two tests prior to it is larger than 0.99.
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f(x)

x

0.5

1

5 6 d

(a) Example test function defined in (201): The test outcome is
positive if and only if at least 6 items in a pool are defective.

(b) The x-axis plots the number of tests T as a multiple of d logn,
and the y-axis plots the probability of successful reconstruction,
for fixed n = 2000, d = 20. When T ' 19.2d logn, the probability
of successful reconstruction exceeds 0.99.

(c) The x-axis corresponds to the number of defectives d rang-
ing from 20 to 120, and the y-axis corresponds to the number of
tests T as a multiple of d logn–the number of items n is fixed
to be 2000. Each pixel is coloured according to the probability of
successful reconstruction– the lighter the colour, the higher the
probability of reconstruction success. For each value of d, the
corresponding red dot in that column represents the number of
tests for which this probability first equals 0.99. The horizontal
blue dashed line indicates that when T ' 17.2d logn, the proba-
bility of successful reconstruction generally exceeds 0.99.

(d) The x-axis denotes the number of items n ranging from 2000
to 6000, and the y-axis denotes the number of tests T as a multi-
ple of d logn–the number of defectives d equals 20. Each pixel is
coloured according to the probability of successful reconstruction
– the lighter the colour, the higher the probability of reconstruc-
tion success. For each value of n, the corresponding red dot in
that column represents the number of tests for which this proba-
bility first equals 0.99. The horizontal blue dashed line indicates
that when T ' 20.4d logn, the probability of successful recon-
struction generally exceeds 0.99.

Figure 4: Simulation result for threshold test function in Corollary 1-b).



Generalized Group Testing

f(x)

x0
0

0.5

1

d
2

d

(a) Example test function f defined in (27): The probability that
test outcome is positive increases linearly.

(b) The x-axis plots the number of tests T as a multiple of

d2 logn, and the y-axis plots the probability of successful recon-
struction, for fixed n = 2000 and d = 20. When T ' 21.6d2 logn,
the probability of successful reconstruction exceeds 0.99.

(c) The x-axis corresponds to the number of defectives d ranging
from 20 to 70, and the y-axis corresponds to the number of tests
T as a multiple of d2 logn, for fixed number of items n = 2000.
Each pixel is coloured according to the probability of successful
reconstruction– the lighter the colour, the higher the probability
of reconstruction success. For each value of d, the corresponding
red dot in that column represents the number of tests for which
this probability first equals 0.99. The horizontal blue dashed line
indicates that when T ' 20.0d2 logn, the probability of successful
reconstruction generally exceeds 0.99.

(d) The x-axis denotes the number of items n ranging from 2000
to 4000, and the y-axis denotes the number of tests T as a mul-
tiple of d2 logn, for fixed number of defectives d = 20. Each
pixel is coloured according to the probability of successful recon-
struction – the lighter the colour, the higher the probability of
reconstruction success. For each value of n, the corresponding
red dot in that column represents the number of tests for which
this probability first equals 0.99. The horizontal blue dashed line
indicates that when T ' 19.6d2 logn, the probability of successful
reconstruction generally exceeds 0.99.

Figure 5: Simulation result for linear test function in Corollary 1-c).
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f(x)

x0
0

0.5

1

d
2
3 d

(a) Example test function f defined in (202). (b) Performance of our algorithm for the “partial linear” func-
tion.

f(x)

x0
0

0.5

1

d
2

d

(c) Example test function f defined in (203). (d) Performance of our algorithm for the sigmoid function.

Figure 6: Simulation result for Conjecture 1.

the probability of reconstruction success. For each value of d (respectively n) in figure 5c (respectively figure
5d), the corresponding red dot in that column represents the number of tests for which this probability first
equals 0.99. The horizontal blue dashed line indicates that when T ' 20.0d2 log n (respectively 19.6d2 log n), the
probability of successful reconstruction generally exceeds 0.99.

P.3 Simulation result for Conjecture 1

We first provide some functions and the corresponding performance of our algorithm. Consider one specific
“partial linear” function defined in (20) in Example 1:

f(x) =

{
x

d2/3
x ∈

[
0, d2/3

]
∩ Z+,

1 otherwise,
(202)

Letting n = 1250 and d = 125, its performance is presented in Fig. 6b. Then consider the well-known sigmoid
function:

f(x) =
e
x
2−

d
4

e
x
2−

d
4 + 1

. (203)

Letting n = 2000 and d = 100, its performance is presented in Fig. 6d. One can see from the figures that
minq∈(0,1) Γ(q)

h(f)d logn ≤ 2 in the two cases, which supports our conjecture.
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Q Estimating the exact number of defectives

Our algorithms and bounds depend critically on the assumption that the number of defectives d is known a priori.
Moreover, different from the classical group-testing in which most algorithms are robust to small perturbations
in the value of d, our algorithms require the exact value of d. If the value of d is not available, it will be useful to
have an algorithm for exactly estimating this. In this section, we develop such an algorithm. Let us first analyze
a useful subroutine, and then present the full algorithm.

Q.1 A useful subroutine

Let d̂ ≥ 2 be a putative number of defective items, and consider the goal of deciding whether d ≤ d̂− 1 or d ≥ d̂.
Towards this end, we use a Bernoulli test design in which each item is independently placed into each test with
probability ζ. Let P (d̂, ζ) denote the probability of having a positive test outcome conditioned on d = d̂. It
follows that

P (d̂, ζ) =

d̂∑
j=0

(
d̂

j

)
ζj(1− ζ)d̂−jf(j). (204)

Similar to (53), define

∆(d̂, ζ) :=

d̂−1∑
j=0

(
d̂− 1

j

)
ζj(1− ζ)d̂−j (f(j + 1)− f(j)) . (205)

The subroutine LoM(d̂, ζ, ε) for deciding whether d ≤ d̂− 1 or d ≥ d̂ is described in Algorithm 1.

Algorithm 1 LoM(d̂, ζ, ε)

1: Take t(d̂, ζ, ε) tests of the Bernoulli test design with parameter ζ, where

t(d̂, ζ, ε) :=

8.32

(
1− ζ

ζ∆(d̂, ζ)

)2

log
1

ε

 . (206)

2: Let t+(d̂, ζ, ε) denote the number of tests with positive outcome within these t(d̂, ζ, ε) tests. If

t+(d̂, ζ, ε)

t(d̂, ζ, ε)
≤ P (d̂, ζ)− ζ

2(1− ζ)
∆(d̂, ζ), (207)

return d ≤ d̂− 1; otherwise, return d ≥ d̂.

Lemma 19. The error probability of LoM(d̂, ζ, ε) is at most ε.

Proof. Let P (d̂− 1, ζ) denote the probability of having a positive test outcome conditioned on d = d̂ − 1. It
follows that

P (d̂− 1, ζ) =

d̂−1∑
j=0

(
d̂− 1

j

)
ζj(1− ζ)d̂−1−jf(j).
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Then we have

P (d̂, ζ)− P (d̂− 1, ζ) =

d̂∑
j=0

(
d̂

j

)
ζj(1− ζ)d̂−jf(j)−

d̂−1∑
j=0

(
d̂− 1

j

)
ζj(1− ζ)d̂−1−jf(j)

= (1− ζ)

d̂∑
j=0

((
d̂− 1

j

)
+

(
d̂− 1

j − 1

))
ζj(1− ζ)d̂−1−jf(j)−

d̂−1∑
j=0

(
d̂− 1

j

)
ζj(1− ζ)d̂−1−jf(j)

= (1− ζ)

d̂∑
j=1

(
d̂− 1

j − 1

)
ζj(1− ζ)d̂−1−jf(j)− ζ

d̂−1∑
j=0

(
d̂− 1

j

)
ζj(1− ζ)d̂−1−jf(j)

= ζ

d̂∑
j=1

(
d̂− 1

j − 1

)
ζj−1(1− ζ)d̂−jf(j)− ζ

d̂−1∑
j=0

(
d̂− 1

j

)
ζj(1− ζ)d̂−1−jf(j)

= ζ

d̂−1∑
j=0

(
d̂− 1

j

)
ζj(1− ζ)d̂−1−j(f(j + 1)− f(j))

=
ζ

1− ζ
∆(d̂, ζ). (208)

Using this observation, the threshold equation (207) is equivalent to

t+(d̂, ζ, ε)

t(d̂, ζ, ε)
≤ P (d̂, ζ) + P (d̂− 1, ζ)

2
. (209)

For LoM(d̂, ζ, ε) two types of error can happen:

i) We have d ≤ d̂− 1, but is claimed to be d ≥ d̂;

ii) We have d ≥ d̂, but is claimed to be d ≤ d̂− 1.

Case i): It is worth noting that t+(d̂, ζ, ε) ∼ Binomial
(
t(d̂, ζ, ε), P (d, ζ)

)
. From (209) we know the probability

of error is

Pr

(
t+(d̂, ζ, ε)

t(d̂, ζ, ε)
>
P (d̂, ζ) + P (d̂− 1, ζ)

2

)
= Pr

(
t+(d̂, ζ, ε) >

P (d̂, ζ) + P (d̂− 1, ζ)

2
· t(d̂, ζ, ε)

)

≤ Pr

(
Binomial

(
t(d̂, ζ, ε), P (d̂− 1, ζ)

)
>
P (d̂, ζ) + P (d̂− 1, ζ)

2
· t(d̂, ζ, ε)

)

≤ exp

−1

3

(
P (d̂, ζ)− P (d̂− 1, ζ)

2P (d̂− 1, ζ)

)2

· t(d̂, ζ, ε)P (d̂− 1, ζ)


≤ exp

−
(
P (d̂, ζ)− P (d̂− 1, ζ)

)2

12
t(d̂, ζ, ε)


≤ ε.

where the first inequality follows from the fact that P (d, ζ) is monotonically increasing with respect to d and

d ≤ d̂− 1; the second inequality follows from Chernoff bound in Fact 1; the third inequality follows from the fact
that P (d̂− 1, ζ) ≤ 1; the last inequality follows by substituting (206) and (208).

Case ii): The calculations are similar to Case i). Again t+(d̂, ζ, ε) ∼ Binomial
(
t(d̂, ζ, ε), P (d, ζ)

)
. We know from
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(209) that the probability of error is

Pr

(
t+(d̂, ζ, ε)

t(d̂, ζ, ε)
≤ P (d̂, ζ) + P (d̂− 1, ζ)

2

)
= Pr

(
t+(d̂, ζ, ε) ≤ P (d̂, ζ) + P (d̂− 1, ζ)

2
· t(d̂, ζ, ε)

)

≤ Pr

(
Binomial

(
t(d̂, ζ, ε), P (d̂, ζ)

)
≤ P (d̂, ζ) + P (d̂− 1, ζ)

2
· t(d̂, ζ, ε)

)

≤ exp

−1

3

(
P (d̂, ζ)− P (d̂− 1, ζ)

2P (d̂, ζ)

)2

· t(d̂, ζ, ε)P (d̂, ζ)


≤ exp

−
(
P (d̂, ζ)− P (d̂− 1, ζ)

)2

12
t(d̂, ζ, ε)


≤ ε.

where the first inequality follows from the fact that P (d, ζ) is monotonically increasing with respect to d and

d ≥ d̂; the second inequality follows from Chernoff bound in Fact 1; the third inequality follow from the fact that
P (d̂, ζ) ≤ 1; the last inequality follows by substituting (206) and (208).

Combining the two cases we conclude that the error probability of LoM(d̂, ζ, ε) is at most ε.

Q.2 Algorithm for exactly estimating d

Armed with the above subroutine LoM(d̂, ζ, ε), the algorithm for exactly estimating d is now described in Algo-
rithm 2.

Algorithm 2 Exact estimation of d

1: Initialize ε← ε
2 logn+2 , du ← 2

2: while true do
3: set ζ∗ = argminζ∈(0,1)

1−ζ
ζ(∆(du,ζ))2

4: run LoM(du, ζ
∗, ε)

5: if d ≤ du − 1 then halt
6: else set du ← 2du
7: end while
8: set dl ← du

2
9: while du − dl ≥ 2 do

10: set dm =
⌊
dl+du

2

⌋
, ζ∗ = argminζ∈(0,1)

1−ζ
ζ(∆(dm,ζ))2

11: run LoM(dm, ζ
∗, ε)

12: if d ≤ dm − 1 then set du ← dm
13: else set dl ← dm
14: end while
15: output dl

Lemma 20. Algorithm 2 outputs dl satisfying dl = d with probability at least 1 − ε, using
O
(
d4(log log d)4 log d log((log n)/ε)

)
tests. Moreover, it uses at most 2 log(2d) stages of adaptivity.

Proof. We start by noting that both while loops in Algorithm 2 invoke at most log(2d) calls to the subroutine

LoM(d̂, ζ, ε). By Lemma 19 and the union bound, we know that the error probability of Algorithm 2 is bounded
from above by

2 log(2d) · ε = 2 log(2d)
ε

2 log n+ 2
≤ ε.
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From (206) we have

t(d̂, ζ∗, ε) =

8.32

(
1− ζ∗

ζ∗∆(d̂, ζ∗)

)2

log
1

ε


≤

8.32

(
1− ζ∗

ζ∗(∆(d̂, ζ∗))2

)2

log
1

ε


≤ 8.32

(
376017H(f, d̂) d̂

)2

log
1

ε
+ 1

= 8.32
(

376017H(f, d̂) d̂
)2

log

(
2 log n+ 2

ε

)
+ 1.

The first inequality follows by noting that ∆(d̂, ζ∗) ≤ 1 since ∆(d̂, ζ) in (205) is the same as ∆(q) in (53) (with

(d̂, ζ∗) in place of (d, q)), and ∆(q) ≤ 1 for all q by Lemma 1. The second inequality can be justified as follows:
The expression in (·)2 is similar to Γ̂(q) in (14). By the same argument as in Proposition 3 and the discussions

that follow, we can bound the expression in (·)2 by 376017H(f, d̂) d̂, where H(f, d̂) is the same as H(f) in (18)

but with d̂ in place of d.

Lastly, since LoM(d̂, ζ, ε) is called O(log d) times and d̂ ∈ O(d), by Lemma 2, the above inequality implies that

the total number of tests in Algorithm 2 scales as O
(
d4(log log d)4 log d log

(
logn
ε

))
.
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