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Abstract

Bayesian neural networks (BNNs) combine
the expressive power of deep learning with
the advantages of Bayesian formalism. In re-
cent years, the analysis of wide, deep BNNs
has provided theoretical insight into their pri-
ors and posteriors. However, we have no
analogous insight into their posteriors un-
der approximate inference. In this work, we
show that mean-field variational inference en-
tirely fails to model the data when the net-
work width is large and the activation func-
tion is odd. Specifically, for fully-connected
BNNs with odd activation functions and a
homoscedastic Gaussian likelihood, we show
that the optimal mean-field variational pos-
terior predictive (i.e., function space) distri-
bution converges to the prior predictive dis-
tribution as the width tends to infinity. We
generalize aspects of this result to other like-
lihoods. Our theoretical results are sugges-
tive of underfitting behavior previously ob-
servered in BNNs. While our convergence
bounds are non-asymptotic and constants in
our analysis can be computed, they are cur-
rently too loose to be applicable in standard
training regimes. Finally, we show that the
optimal approximate posterior need not tend
to the prior if the activation function is not
odd, showing that our statements cannot be
generalized arbitrarily.

1 INTRODUCTION

Bayesian neural networks (BNNs) provide a systematic
method of capturing uncertainty in neural networks by
placing priors on the weights of the network. Although
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it has been speculated for decades that BNNs are capa-
ble of combining the benefits of Bayesian inference and
deep learning, we are only beginning to understand the
theoretical properties of this model class and its associ-
ated inference techniques. One tool for understanding
the behavior of modern BNNs with large architectures
is to study the limiting behavior of this model as the
number of hidden units in each layer, i.e., the width
of the model, goes to infinity. In this case, the prior
predictive distribution of a BNN converges in distri-
bution to the NNGP, a Gaussian process (GP) with
the neural network kernel that depends on the prior
on the weights and architecture of the network (Neal,
1996; Matthews et al., 2018). Analogously, in the case
of regression with a Gaussian likelihood, the associ-
ated BNN posterior converges to the NNGP posterior
(Hron et al., 2020).

However, since exact inference for BNNs is intractable,
approximate inference is commonly used in practi-
cal settings. While asymptotically exact sampling
MCMC methods have been successfully applied to
BNNs (Neal, 1996; Izmailov et al., 2021), these meth-
ods can require considerable amounts of computation
and it is generally not feasible to ensure mixing. Varia-
tional inference offers a computationally appealing al-
ternative by converting the problem of (approximate)
inference into a gradient-based optimization problem.

Unfortunately, the properties of commonly used ap-
proximations of BNN posteriors, like mean-field vari-
ational inference (MFVI), have not been extensively
studied. MFVI assumes complete posterior indepen-
dence between the weights, but generalizing asymp-
totic analysis to this approximation is non-trivial. Un-
like the true posterior predictive distribution, we do
not know if the variational posterior predictive distri-
bution approaches a GP as the width approaches infin-
ity. We also do not know if documented properties of
BNNs in the finite-width regime generalize to the wide
limit. Empirical evidence suggests that finite BNNs
trained with MFVI underestimate certain types of un-
certainty (Foong et al., 2020) and underfit the data
(Tomczak et al., 2021; Dusenberry et al., 2020). In the
case of single hidden layer networks with ReLU activa-
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tion, (Foong et al., 2020) showed that MFVI networks
underestimate uncertainty in-between clusters of data,
but their proof fundamentally cannot be extended to
the case of several hidden layers. We establish the
strong theoretical results for MFVI networks, under
the assumption that they are sufficiently wide.

In this paper, we show that, unfortunately, a num-
ber of notable deficiencies of these approximate pos-
teriors become more severe as width increases. For
mean-field variational Bayesian neural networks of ar-
bitrary depth with odd, Lipschitz activation functions,
we prove a surprising result: the optimal variational
posterior predictive distribution converges to the prior
predictive distribution as the width tends to infin-
ity. That is, asymptotically, the mean-field varia-
tional posterior predictive distribution of a wide BNN
completely ignores the data, unlike the true posterior
predictive distribution. Furthermore, we derive non-
asymptotic, computable bounds that offer insight into
the relative rates with which the number of observa-
tions, depth, and width of the network affect this con-
vergence. The bounds we prove in their current form
are generally too loose to provide numerically useful
results for networks of the commonly trained widths,
but they offer theoretical support for previously ob-
served issues of underfitting in these networks. Finally,
we show by a counterexample that this result does not
hold for non-odd activation functions, including ReLU,
but we provide an example showing that ReLU BNNs
can nonetheless underfit data. Code to reproduce all
of the experiments is available on GitHub.1

2 RELATED WORK

Wide-limits of BNNs. There are many works that
analyze distributions over wide neural networks with
the goal of gaining theoretical insight into neural net-
work performance. As the width tends to infinity, Neal
(1996) showed that single-layer, fully-connected BNN
priors with bounded activation functions converge to
GPs. Lee et al. (2017) and Matthews et al. (2018)
extend this result to deeper networks with activations
that satisfy a “linear envelope” condition (which in-
cludes ReLU, and is implied by Lipschitz-ness). Hron
et al. (2020) extend the result by showing BNN pos-
teriors converge to GP posteriors. All of these works
can be seen as offering insights into modeling assump-
tions made when employing BNNs. Unfortunately, the
true BNN posterior is computationally intractable for
all but the smallest networks. In contrast, we analyze
properties of approximate inference, which allows us
to make statements about the BNN posterior typically
used in practice.

1https://github.com/dtak/wide-bnns-public

Neural Tangent Kernel. Other works analyze
wide neural networks after training the weights with
gradient descent, showing that the network output ap-
proaches kernel regression with the neural tangent ker-
nel (NTK) (Jacot et al., 2018; Lee et al., 2019). This
also provides a Bayesian interpretation to ensembles of
trained neural networks (He et al., 2020). The key in-
sight in these works is that as the width increases, the
weight parameters change less and less during train-
ing, permitting the network to be approximated by a
first-order Taylor expansion around the initial weights.
For this phenomenon to happen, these works assume
the weights are unregularized during training (Chen
et al., 2020). In contrast, in variational inference, one
trains the variational parameters of a distribution over
the weights, rather than the weights themselves. Be-
cause the variational parameters are regularized by the
Kullback-Leibler (KL) divergence to the prior over the
weights, the variational parameters do not stick near
their initial values and thus the same first-order ap-
proximation cannot be used. We show that this reg-
ularization is too strong for wide networks, since it
forces the resulting approximation of the posterior to
converge to the prior as the width tends to infinity.
Unlike NTK our result does not rely on the dynamics
of any particular optimization algorithm, and instead
characterizes the optimal posterior.

Issues with MFVI Inference in BNNs. Many
works have empirically observed challenges with mean-
field approximations to Bayesian neural networks.
MacKay (1992) noted deficiencies of factorized Laplace
approximations in single-hidden layer BNNs. How-
ever, little is known theoretically about mean-field
variational inference in BNNs. Foong et al. (2020)
showed that single-hidden layer networks with ReLU
activations and mean-field distributions over the
weights cannot have high variance between two re-
gions with low variance. However, the authors also
show that BNNs with two hidden layers can uniformly
approximate any function-space mean and variance
so long as the width is sufficiently large. Farquhar
et al. (2020) suggested the universality result could be
extended to other properties (e.g., higher moments)
of the approximate posterior, leading them to recom-
mend training deeper networks. This means that there
exist mean-field variational distributions that do not
exhibit the known pathologies of approximate infer-
ence in BNNs. However, despite this existence, we
show that even for wide, deep networks the optimal
mean-field variational distribution (i.e., the one that
maximizes the evidence lower bound (ELBO)) con-
verges to the prior, regardless of the data.

https://github.com/dtak/wide-bnns-public
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Trippe and Turner (2017) discuss over-pruning, which
is the phenomenon whereby the variational posterior
over many of the output-layer weights concentrates to
a point mass around zero, allowing the variational pos-
terior over any corresponding incoming weights to re-
vert to the prior. This is undesirable behavior because
the amount of over-pruning increases with the degree
of over-parameterization and because over-pruning de-
grades performance — simpler models that do not per-
mit pruning often perform better. As in our work,
the explanation for over-pruning centers around the
tension between the likelihood term and the KL di-
vergence term in the objective function, the ELBO.
To reduce the KL divergence, the optimization pro-
cedure may result in hidden units being pruned from
the model (i.e., since many weights before the last layer
can be set to the prior). Ultimately, we show that the
KL divergence of the optimal variational posterior can
only be so large, which prevents the variational poste-
rior of wide networks from modeling anything but the
prior.

Our work offers theoretical insight into earlier works
on underfitting. Empirically, it has been found that
re-scaling the regularization to the prior improves the
performance of BNNs trained with variational infer-
ence (Osawa et al., 2019). This is closely related to
observations regarding the performance of cold poste-
riors, which is the empirical phenomenon that down-
weighting the importance of the KL divergence in the
ELBO (and/or overcounting the data in the likelihood)
yields better model performance (Wenzel et al., 2020).
It is possible this practice serves to undo the over-
regularization of the KL divergence that we investi-
gate.

3 BACKGROUND

We consider the application of Bayesian neural net-
works in supervised learning: we have observed a
dataset with N points, {(xn,yn)}Nn=1 with inputs
xn ∈ RDi and outputs yn ∈ Y . Our goal is to in-
fer a (probabilistic) mapping from RDi to Y that is
consistent with the data and generalizes to new, un-
seen observations. We use a Bayesian neural network
as the model for this mapping.

Bayesian Neural Networks (BNNs). Consider
the feed-forward neural network of width M and depth
L given by

f(x) = 1√
M

WL+1φ(zL) + bL+1, (1)

z` = 1√
M

W`φ(z`−1) + b` for ` = 2, . . . , L, (2)

z1 = 1√
Di

W1x + b1 (3)

(WL+1,bL+1) ∈ RDo×M ×RDo , (W`,b`) ∈ RM×M ×
RM for ` = 2, . . . , L, and (W1,b1) ∈ RM×Di×RM are
the weight and bias parameters, respectively; φ : R→
R is the activation function, applied element-wise.

Let θ represent the concatenation of all parameters.
A Bayesian neural network places a prior distribution
P over θ and a likelihood distribution L(θ) over Y
conditional on θ. In this paper, we study the prior
composed of independent standard Gaussian distribu-
tions over the weights: θ ∼ N (0, I). Often, we will
be interested in the distribution induced over f = fθ
through the randomness in θ. For a distribution over
the weights, P ′, we will refer to the distribution in-
duced over fθ by P ′ as the P ′ predictive distribution.
We note that this is a minor abuse of terminology, as a
predictive distribution would typically be defined over
subsets of Y and depends on the likelihood function.
For example, in classification, the predictive refers to
the distribution over the output of the network (i.e.,
logits).

Convergence to Gaussian Processes (GPs). As
the width M tends to infinity, an application of the
central limit theorem reveals that for any finite collec-
tion of inputs {xs}Ss=1, the distribution over the neural
network {f(xs)}Ss=1 induced by the prior P converges
in distribution to a multivariate normal distribution
(Neal, 1996; Matthews et al., 2018). In other words,
as the width tends to infinity f converges to a multi-
output Gaussian process, called the neural network
Gaussian process (NNGP).

Variational Inference. Unfortunately, the poste-
rior distribution of a finite-width BNN is not available
in closed form. Markov chain Monte Carlo (MCMC)
methods can be employed to approximately sample
from the posteriors (e.g., Izmailov et al., 2021); how-
ever due to a high-dimensional and multi-modal poste-
rior, these methods will generally not mix in a practical
amount of time. Because of its advantageous computa-
tional properties on high-dimensional problems, vari-
ational inference is an appealing alternative (Blundell
et al., 2015). Variational inference proposes a tractable
family of distributions Q and finds an approximation
of the true posterior Q ∈ Q. This approximation is
found by minimizing the KL divergence betweenQ and
the true posterior, which is equivalent to maximizing
a lower bound on the marginal likelihood called the
evidence lower bound (ELBO):

ELBO(Q) = Eθ∼Q[logL(θ)]−KL(Q,P ), (4)

The first term in the ELBO is the expected log like-
lihood, which measures how well the model fits the
data, and the second term is a regularization term,
which measures how close Q is to the prior P .
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A common choice for the family of variational dis-
tributions Q is the set of factorized (independent)
Gaussian distributions. Under Q ∈ Q, we write
θ ∼ N (µQ,diag(σ2

Q)). Since both the prior and vari-
ational distribution are Gaussian, the KL divergence
can be calculated in closed-form:

KL(Q,P ) = 1
2 (‖µQ‖22 + ‖r(σ2

Q)‖1), (5)

where r : (0,∞) → [0,∞), r(a) = a − 1 − log(a) is
applied element-wise. Notice that Equation (5) acts
like `2-regularization of the mean parameters, which
will play an important role in the proof of Theorem 2.
For this variational family Q, under weak regularity
conditions, it can be shown that an optimal solution
Q∗ ∈ arg maxQ∈Q ELBO(Q) always exists (see Ap-
pendix B). Note, however, that an optimal solution
is certainly not unique, because permutations of neu-
rons have the same expected log-likelihood and KL
divergence to the prior.

While mean-field variational inference scales grace-
fully from a computational perspective, its success ul-
timately relies on the variational family being suffi-
ciently large so that the maximizer of the ELBO qual-
itatively resembles the posterior. In the next section,
we prove that this fails badly for certain BNN models.

4 THE VARIATIONAL POSTERIOR
PREDICTIVE REVERTS TO THE
PRIOR PREDICTIVE

In this section, we analyze the convergence of opti-
mal mean-field Gaussian variational posterior predic-
tive distributions for Gaussian and other likelihoods.
We give a sketch of the proof strategy. Additionally,
we discuss the quantitative effect of depth and the
number of observations on our results.

4.1 Gaussian Likelihood

We begin by stating a simplified version of our main
result for a homoscedastic Gaussian likelihood: under
fairly broad conditions, the variational BNN posterior
predictive converges to the prior predictive.

We assume in our statements that the prior is N (0, I);
we additionally assume the network has no bias after
the final hidden layer; an analogous result holds in the
case with a final bias.

Theorem 1 (Convergence in distribution to the prior,
simplified). Assume a Gaussian likelihood and an odd,
Lipschitz activation function. Then, for any fixed
dataset, as the width tends to infinity, any finite-
dimensional distribution of any optimal mean-field
variational posterior predictive distribution of a BNN
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Figure 1: Prior and posterior predictive distributions
for single-layer mean-field variational BNNs of differ-
ent widths compared to the NNGP, to which the true
posterior of the BNN converges. For a large width, the
mean-field variational BNN ignores the data, unlike
the NNGP. The shaded regions constitute ±1 standard
deviation around the means (solid lines). All estimates
are based on 1,000 function samples (a few of which
are drawn faintly).

of any depth converges to the corresponding finite-
dimensional distribution of the NNGP prior predictive
distribution.

Figure 1 illustrates our result on a small dataset. In
contrast to the true BNN posterior predictive, which
converges to the NNGP posterior in the limit as the
width approaches infinity, the variational BNN pos-
terior predictive converges to the NNGP prior, com-
pletely ignoring the data.

A more general version of the theorem, which incorpo-
rates the final layer bias and allows for odd functions
with a constant offset (e.g., a sigmoid activation), can
be found in Appendix G. The output bias serves only
to shift the network by a constant and can sometimes
be optimized in closed-form (e.g., in the Gaussian like-
lihood case it accounts for the overall mean of the ob-
servations, ȳ). Theorem 1 and its generalization apply
to several commonly used activation functions, notably
tanh, sigmoid and linear.

While a Gaussian likelihood is necessary for our proof
of convergence of the entire variational posterior pre-
dictive distribution to the prior predictive distribution,
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we also prove convergence of the first two moments of
the variational posterior predictive to the correspond-
ing prior predictive moments for a variety of other like-
lihoods (logistic, Student’s t). Additionally, we derive
computable bounds on the first two moments of the
variational posterior predictive distributions that show
that for large, finite widths they must resemble the
corresponding prior moments. In contrast, will see in
Section 5 that the oddness assumption in Theorem 1
is necessary for any of these results.

4.2 General Likelihoods

Theorem 1 follows from a more general result that
holds for a large class of likelihoods. In particular, for
a range of likelihoods including Gaussian, Student’s t,
and logistic, we show convergence of the first two mo-
ments of the posterior predictive to the corresponding
prior predictive moments. The convergence statement
has two parts. First, we provide a non-asymptotic
bound on the difference between the first two moments
of the prior and approximate posterior predictive dis-
tributions (Theorem 2) and goes to 0 like O( 1√

M
).

This aspect is independent of the likelihood and the
upper bounds depend on KL(Q,P ). Second, we pro-
vide an upper bound on KL(Q,P ) that depends on
the dataset and likelihood, but importantly, is inde-
pendent of the width of the network (Lemma 3).

Theorem 2 (Bounds on the mean and variance, sim-
plified). Under the same conditions as Theorem 1 (ex-
cept for the likelihood assumption), there exist univer-
sal constants c1, c2, c3, c4 > 0 such that

‖EQ[f(x)]− EP [f(x)]‖2

≤ c1cL−12

1 + 1√
Di
‖x‖2

√
M

KL(Q,P )(KL(Q,P )
L−1

2 ∨ 1),

‖EQ[f2(x)]− EP [f2(x)]‖∞

≤ c3cL−14

1 + 1
Di
‖x‖22√
M

KL(Q,P )
1
2 (KL(Q,P )L+

1
2 ∨ 1)

where a ∨ b = max(a, b).

In the special case when L = 1, our bound on the mean
has the simpler form

‖EQ[f(x)]−EP [f(x)]‖2≤
2

3

(
1+ 1

Di
‖x‖22

M

)1
2

KL(Q,P ). (6)

While a similar result to Equation (6) can be derived
as a special case of Theorem 2, we derive this result
specifically for the case L = 1 to improve the constant
factors; see Appendix I.

Given the bounds in Theorem 2, we can immediately
obtain convergence of the variational predictive mean
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Figure 2: Maximum observed distance of the optimal
posterior predictive mean to the prior predictive mean
over a grid of points in [−1, 1] compared to the theoret-
ical O(M−1/2) upper bound given by Theorem 2. For
each M we train 10 single-layer networks on the same
two observations shown in Figure 1. The shaded re-
gion shows the range of estimates over the 10 random
initializations. We also show the analogous distance
for the NNGP.

and variance to the prior as M → ∞ by bounding
KL(Q∗, P ) by a constant.

Lemma 3 (Bounds on the KL, simplified). For Gaus-
sian, Student’s t, and logistic likelihood functions, and
for an optimal mean-field variational posterior Q∗,
KL(Q∗, P ) is bounded by a constant that does not
depend on the network width M .

Figure 2 illustrates the upper bound given by Equa-
tion (6) and Lemma 3 for the optimal posterior, Q∗.
Empirically, the observed distance of the optimal pos-
terior predictive mean to the prior predictive mean is
well below the upper bound, which may be due to our
bound of KL(Q∗, P ). See Step 2 of Section 4.4 for
further discussion of this bound. For example, above
a width of 103, we observe the distance to the prior
predictive within approximately 10−2, which is well
below scale of the y observations (−1 and +1) and the
corresponding distance for the NNGP.

Figure 3 confirms that convergence to the prior leads to
a poor fit of the data. We see that across datasets, the
RMSE between the posterior mean and the test data
increases with the network width (right panel). For
comparison, we show the RMSE between the posterior
and the prior mean (left panel), which decreases as
expected. The datasets “concrete” and “slump” are
from the UCI Machine Learning Repository and the
rest are synthetic. The “2 points” dataset is the same
as in Figures 1 and Figure 2. See Appendix L for
details and an analogous plot of the posterior variance.
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Figure 3: Root mean squared error (RMSE) of the pos-
terior mean to the prior mean (i.e., EP [f(x)] = 0), and
the data, y, for a few real and synthetic datasets. We
use a tanh activation function. The shaded regions are
95% confidence intervals that reflect 5 train/test splits.
The datasets “concrete” and “slump” are from the
UCI Machine Learning Repository, while “2 points”
is the same dataset from the previous figures. The
posterior approaches the prior as the width (M) in-
creases, as expected by Theorem 1, resulting in a poor
fit of the data.

4.3 Influence of Depth and Number of
Observations

In practice, the upper bounds given by Theorem 2 can
be large, limiting their immediate use to practition-
ers. Furthermore, we see that greater depth increases
the bound, since the dependence on KL(Q,P ) grows
with L and c2, c4 > 1. It is therefore important to in-
vestigate whether a faster rate of convergence can be
achieved.

The case of linear networks (i.e., φ(z) = z) provides
for a relevant discussion. We show in Appendix J that

‖EQ[f(x)]−EQ[f(0)]‖2 = Θ(M−
L
2 KL(Q,P )

L+1
2 ). (7)

Thus, Theorem 2 correctly captures the dependence
on the KL divergence, but not the dependence on the
width M , which is much faster for the linear case:
M−

L
2 versusM−

1
2 . This raises the question of whether

the dependence on M can be improved in case of non-
linear activations. Unfortunately, the answer in gen-
eral is no. Appendix K shows an example where the
dependence is M−

1
2 . Although Theorem 2 cannot be

generally improved for a generic Q, Q∗ maximizes the
ELBO, which introduces additional structure. In par-
ticular, in the Gaussian case, we know that KL(Q∗, P )
tends to 0 with M (see Step 3 in Section 4.4), which

could potentially be used to derive faster rates.

It is also important to consider the dependence of The-
orem 2 on the number of observations, N , which in-
fluences the bound through KL(Q∗, P ). If E[‖y‖22] =
O(N), we show in Appendix F that KL(Q∗, P ) ≤ CN
for a constant C > 0. Therefore, the first two mo-
ments of the optimal variational posterior predictive
approach their respective values under the prior if

limN,M→∞
NL+1

M = 0. Hence, for our results to be
non-vacuous for deep networks, M needs to be larger
than for shallow networks.

4.4 Proof Sketch

The proof of Theorem 1 proceeds in three steps:

Step 1. Establish Theorem 2, which bounds the
posterior predictive mean and variance at any x
in terms of KL(Q,P ).

Step 2. Establish Lemma 3. Combined with
Theorem 2, it follows that, in the limit M → ∞,
the first and second moments of the approximate
posterior predictive and the prior predictive agree.

Step 3. For a Gaussian likelihood, observe that
the ELBO depends only on the first and sec-
ond moments of the variational posterior predic-
tive distribution at each datapoint and KL(Q,P ).
Since (i) ELBO(Q) ≥ ELBO(P ) and (ii) the first
and second variational predictive moment con-
verge to the prior predictive moments, it follows
that KL(Q,P )→ 0.

The complete proof of step 1 can be found in Ap-
pendix D for the first moment and Appendix E for the
second moment. A more complete version of step 2
that can be made quantitative is given in Appendix F.
A version of step 3 incorporating the final bias can be
found in Appendix G. Below we expand on each step
to give insight into how it is achieved.

Step 1: Bounding the Moments. Here we prove
the result for convergence of the mean for a network
with L = 1 and sub-optimal constants. The variance
argument follows a generally similar — though more
involved — argument, and the L > 1 case is achieved
by inductively applying a variant of the argument used
in the L = 1 case.

We have

‖E[f(x)]‖2
(i)
= 1√

M
‖E[W2]E[φ( 1√

Di
W1x + b1)]‖2 (8)

(ii)
≤ 1√

M
‖E[W2]‖F‖E[φ( 1√

Di
W1x+ b1)]‖2 (9)

where in (i) we use independence and in (ii) we use
that ‖ • ‖2 ≤ ‖ • ‖F.
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Define W′ = W1 − E[W1] and b′ = b1 − E[b1]. Note
that (W′,b′)

d
=(−W,−b) as these random variables

are mean-centered and jointly Gaussian, hence sym-
metric about 0. Then,

E[φ(W′x + b′)]
(i)
= E[φ(−W′x− b′)] (10)
(ii)
= −E[φ(W′x + b′)], (11)

where (i) follows from the equality in distribution
and (ii) by oddness of φ. From this, we conclude
E[φ(W′x + b′)] = 0. We then make the following
calculation:

‖E[φ( 1√
Di

W1x + b1)]‖2 (12)

=‖E[φ( 1√
Di

W1x + b1)−φ( 1√
Di

W′x + b′)]‖2 (13)
(i)
≤ E‖φ( 1√

Di
W1x + b1)]− φ( 1√

Di
W′x + b′)‖2 (14)

(ii)
≤ E‖ 1√

Di
(W1 −W′)x + (b1 − b′)‖2 (15)

(iii)
≤ ‖E[W1]‖F 1√

Di
‖x‖2 + ‖E[b1]‖2 (16)

where (i) uses convexity of norm and Jensen’s inequal-
ity, (ii) uses that φ is 1-Lipschitz, and (iii) combines
the triangle inequality and ‖ • ‖2 ≤ ‖ • ‖F.

Combining Equation (9) and Equation (16) gives

‖E[f(x)]‖2

≤ 1√
M
‖E[W2]‖F

(
‖E[W1]‖F ‖x‖2√

Di
+ ‖E[b]‖2

)
. (17)

We now note that the Frobenius norm ‖E[W2]‖F
is the `2-norm of the mean parameters of weights
in the second layer, and similar conditions apply to
‖E[W1]‖F, ‖E[b]‖2. Recalling Equation (5),

‖E[W1]‖F, ‖E[W2]‖F, ‖E[b]‖2 ≤
√

2 KL(Q,P ),

so

‖E[f(x)]‖2 ≤ 1√
M

2(1 + 1√
Di
‖x‖2) KL(Q,P ). (18)

This is of the same form as the bound in Theorem 2.

Step 2: Bounding KL(Q∗, P ). In order for Theo-
rem 2 to be useful, we need to understand how large
KL(Q∗, P ) could be. We make the following three as-
sumptions when doing this:

(i) The likelihood factorizes over data points,

i.e. logL(θ) =
∑N
n=1 log p(yn|fθ(xn)), for some

function p;

(ii) there exists a C such that log p(yn|fθ(xn)) ≤ C;

(iii) for any fixed yn, log p(yn|fθ(xn)) can be lower
bounded by a quadratic function in fθ(xn).

By the optimality of Q∗, we have

0 ≤ ELBO(Q∗)− ELBO(P ) (19)

= Eθ∼Q∗ [logL(θ)]−KL(Q∗, P )

− Eθ∼P [logL(θ)]. (20)

Rearranging and using the assumptions on logL(θ),

KL(Q∗, P ) ≤ Eθ∼Q∗ [logL(θ)]− Eθ∼P [logL(θ)] (21)

≤CN−Eθ∼P [
∑N
n=1log p(yn|fθ(xn))] (22)

≤CN−Eθ∼P [
∑N
n=1 hn(fθ(xn))] (23)

where hn is quadratic. Since hn is quadratic,
EP [hn(fθ(xn))] is a linear combination of the first
and second moments of fθ(xn). As we know the mo-
ments of fθ(xn) converge to those of the corresponding
NNGP (Matthews et al., 2018), and since any conver-
gent sequence is bounded, this gives an upper bound
on KL(Q∗, P ) that is independent of width.

Step 3: Convergence in Distribution. For Gaus-
sian likelihoods, we can go one step further and prove
Theorem 1 using the optimality of Q∗ yet again. In
particular, by the same argument as in the previous
paragraph, we have

KL(Q∗, P ) ≤Eθ∼Q∗ [logL(θ)]− Eθ∼P [logL(θ)].
(24)

For simplicity, assume yn = yn ∈ R and a homoscedas-
tic likelihood with variance parameter σ2 is used.
Then, using

logL(θ) = −N
2

log 2πσ2− 1

2σ2

N∑
n=1

(yn−f(xn))2 (25)

in combination with |(a− b)2− (a− c)2| ≤ 2|a||b− c|+
|a2 − b2|, we find that

KL(Q∗, P ) ≤
N∑
n=1

[
2|yn||EQ∗ [f(xn)]− EP [f(xn)]|

+ |EQ∗ [f(xn)2]− EP [f(xn)2]|
]
. (26)

By Theorem 2, we conclude limM→∞KL(Q∗, P ) = 0.
Since the KL divergence between any finite dimen-
sional distribution of the predictive of Q∗ and P is up-
per bounded by this KL divergence, we conclude that
a similar statement holds for finite-dimensional dis-
tributions. Finally, convergence in this sense implies
weak convergence, so convergence of finite dimensional
distributions of the posterior predictive of Q∗ to the
NNGP follows.
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5 NON-ODD ACTIVATIONS

In Section 4, our theorems assume odd activation func-
tions. The following theorem shows that this assump-
tion is necessary.

Theorem 4 (non-odd counterexample, simplified).
Given any non-odd, 1-Lipschitz activation function φ
(e.g., ReLU), we can construct a homoscedastic Gaus-
sian likelihood and a dataset where the optimal mean-
field variational mean is bounded away from the prior
mean as the width tends to infinity2.

Figure 4 illustrates this counterexample dataset along
with the resulting mean-field posterior predictive dis-
tributions of networks with ReLU and erf activations
(left panel). We also train on the same two observa-
tions as in Figures 1 and 2 (right panel). In the erf ac-
tivation case, the posterior predictive converges to the
prior predictive on both datasets, as expected by The-
orem 1, and in the ReLU activation case the posterior
predictive does not converge to the prior predictive on
the counterexample dataset, as expected by Theorem 4
(recall that we mean without the output bias, which
can generally differ from the prior). Interestingly, in
the ReLU case, on the dataset that is not constructed
as a counterexample, the approximate posterior closely
resembles the prior. However, an examination of addi-
tional datasets in Figure 5 reveals the story is generally
less clear. For some datasets, the wider networks are
closer to the prior than the narrower networks, while
for other datasets the opposite is true. See Section 6
for further discussion.

Our proof strategy starts by finding a sequence of
variational distributions (indexed by M) with a mean
function that does not tend to a constant. We then
show that there exists a dataset for which the sequence
of ELBOs defined by this sequence of variational dis-
tribution converges a number that exceeds the ELBOs
of any sequence of variational distributions that have
a mean function that does tend to a constant.

The key observation to the counterexample is that in
the odd activation case, the expected value of the final
layer post-activations, EP [φ(zL)], is zero, whereas in
the non-odd activation case this expectation will gen-
erally depend on x.

To construct the counterexample, we define QM as
the mean-field variational distribution that is equiv-
alent to the prior except in the last layer, where
wL+1 ∼ N ( 1√

M
1, I). Notice that under QM the pre-

dictive mean is equal to EP [φ(zL)]. QM will serve as a
candidate set of distributions with non-constant means
and “good” ELBOs. We select the Y values in our

2The theorem has additional technical conditions, but
applies to all non-odd activation functions used in practice.

dataset to fall very near the mean predictor for QM ,
or more precisely, to coincide with the mean predic-
tor as M →∞. This will ensure QM has small error.
On the other hand, we can ensure that the error of
any predictor that gives a constant prediction is large.
The left panel of Figure 4 confirms that the posterior
predictive under the odd activation (erf) converges to
the prior, whereas the posterior predictive under the
non-odd activation (ReLU) is able to model the data.
These networks are very wide (M ≈ 4× 106).

−0.5 0.0 0.5 1.0 1.5
x

8

10

12

14

Counterexample Dataset

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x

−1

0

1

2
Non-counterexample Dataset

ReLU erf

Figure 4: Mean-field posterior predictive distributions
for very wide networks with odd and non-odd activa-
tions (erf and ReLU, respectively) trained on one of
two datasets — the counterexample we construct (left
panel) and the same dataset as in Figures 1 and 2,
which does not meet the conditions of the counterex-
ample (right panel). We observe convergence of the
posterior predictive to the prior predictive in all cases
except for the ReLU network trained on the counterex-
ample dataset.

6 DISCUSSION

What Do Our Results Mean for Bayesian Meth-
ods in Over-Parameterized Models? The suc-
cesses of modern deep learning have given strong evi-
dence to the claim that over-parameterized models can
lead to better empirical performance. As the flexibility
of the model relative to the amount of data increases, it
has been suggested that Bayesian methods have more
to offer in terms of promoting generalization (Wilson
and Izmailov, 2020). However, in cases when inac-
curate inference is combined with very large models,
our results prove a crippling and previously unknown
limitation to this approach. This highlights the need
for accurate inference methods in Bayesian neural net-
works, as well as robust techniques for monitoring and
diagnosing inference quality.

Does Using ReLU Solve All of the Problems
with MFVI? Another question raised by our results
concerns the use of odd activation functions, which are
necessary for our results to hold. Can the issues we
raised be avoided by simply using a non-odd activation
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Figure 5: Analogous to Figure 3 but using a ReLU
activation. Wider networks tend not to fit the data as
well but it is unclear if this is due to convergence to
the prior.

such as ReLU? While our counterexample shows there
exists a dataset for which the approximate posterior
mean under a non-odd activation does not converge to
the prior, it is still possible the approximate posterior
will converge to the prior on other datasets. More-
over, even without exact convergence to the prior, the
approximate posterior could still be a poor model of
the data. For the dataset in Figure 4 that does not
meet the conditions of the counterexample, this is ex-
actly what we see: a poor model of the data and a
close resemblance of the approximate posterior to the
prior. Figures 3 and 5 investigate these two attributes
— distance to the data and distance to the prior —
across a variety of datasets. In the tanh case, we see
convergence to the prior as expected. However, in the
ReLU case the behavior is unclear. For some datasets
it is possible the approximate posterior is converging
to the prior, whereas for other datasets there is little
indication of this. Yet, we emphasize that in all cases
(datasets and activations), we see an increasingly poor
fit of the data as the network width increases. Our
work frames the characterization of the optimal mean-
field posterior under ReLU activations as an important
area of future work.

Should MFVI be Abandoned Entirely in
BNNs? Our results raise an important question
for practitioners — should mean-field posteriors be
thrown out, since asymptotically the optimal one con-
verges to something degenerate, or should practition-
ers merely be careful about the relative scaling of the
width, depth, and dataset size? By providing non-
asymptotic upper bounds on how much the predictive
mean and variance can differ from the prior, our re-
sults provide a regime where mean-field variational in-
ference is guaranteed to fail. For example, for a given

depth we can provide a width above which the opti-
mal posterior predictive mean and variance are within
a given threshold of their values under the prior. Yet,
we emphasize our results are upper bounds, with con-
stants that could likely be further optimized. There
is possibly a smaller width that would give the same
behavior, and this is what we observed in our experi-
ments. These results suggest serious shortcomings of
mean-field variational inference, and we would recom-
mend practitioners take great care in applying MFVI,
even with networks with narrower widths where our
bounds do not provably show the approximate poste-
rior will revert to the prior.

7 OPEN PROBLEMS

We believe our analysis leads to several interesting gen-
eralizations, which we leave as open problems. The
first question we pose is whether Theorem 1 can be
generalized to all likelihoods where Theorem 2 applies:

Conjecture 5. For any likelihood satisfying the as-
sumptions needed for Lemma 3, the optimal varia-
tional posterior predictive (excluding the final bias)
converges in distribution to the corresponding NNGP.

A potential avenue for proving Conjecture 5 would
be to establish a central limit theorem for any one-
dimensional predictive distribution under Q, using
that KL(Q,P ) is bounded. While the post-activations
in the final hidden layer are not exchangeable, they
are in some sense close to an exchangeable sequence.
Given a central limit theorem Conjecture 5 can be
established following the same argument sketched in
Section 4.4, step 3. Establishing Conjecture 5 would
make the consequences of the behavior we analyze to
classification much clearer.

Another fascinating open question is the precise non-
asymptotic dependence of Theorem 2 on the depth of
the network. Our current bounds suggest that deeper
networks may need to be wider before the optimal
MFVI posterior converges to the prior. However, it
is difficult to determine how much of this effect is due
to the analysis becoming more complicated, leading to
sub-optimal constants. We therefore pose the follow-
ing, somewhat imprecise open problem,

Open Problem 6. Can the dependence of Theorem 2
on L be improved? In particular, should we expect the
optimal MFVI posterior in deeper networks to con-
verge more or less quickly to the prior as width in-
creases?

We believe both of these questions are interesting the-
oretical questions with concrete ramifications for prac-
titioners that may be challenging, but seem to be ap-
proachable problems for future research.
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Symbols

W,V,U Matrices are bold, capital letter

w,v,u Vectors are bold, lower case letter

M Number of neurons per hidden layer (width)

L Number of hidden layers (depth)

N Number of observations

K Shorthand for
√

KL(Q,P )

θ All parameters in neural network

x An arbitrary input

y An arbitrary output

z`,m Preactivation for neuron m in hidden layer `

zh Vector of preactivations at layer h

Di Dimensionality of input, i.e. x ∈ RDi

Do Dimensionality of output, i.e. y ∈ RDo

φ Activation function in neural network (non-linearity)

φe Even part of activation function, i.e. φe(a) = φ(a)+φ(−a)
2

φo Odd part of activation function, i.e. φo(a) = φ(a)−φ(−a)
2

P Prior distribution, usually N (0, I)

Q A variational posterior distribution, N (µQ,diag(σ2
Q))

E Expectation, optionally with subscript to clarify the measure to be integrated over

V Variance, optionally with subscript to clarify the measure to be integrated over

Vd Diagonal of V

KL Kullback-Leibler divergence

fθ fθ : RDi → RDo represents the output of the network with parameters θ

f̃θ f̃θ : RDi → RDo represents the output of the network with parameters θ, excluding the contribution from the
final bias

∨ a ∨ b = max(a, b)

‖ · ‖F Frobenius Norm of a matrix, equal to the `2 norm of the singular values, also equal to the sum of squared
entries

‖ · ‖2 Spectral Norm of a matrix, equal to the `∞ norm of the singular values, also the matrix norm induced by
the `2 norm on vectors

. f(x) . g(x) ⇐⇒ there exists an irrelevant proportionality constant C such that f(x) ≤ Cg(x).
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A Map of the Appendix and Sketches of the Results

Our main results show that for fully-connected networks with odd, Lipschitz continuous activation functions,

• For Gaussian likelihoods, the variational posterior converges in distribution to the prior as the width of the
network tends to infinity.

• For a wide class of other likelihoods, including the Student’s t likelihood, the first two moments of one-
dimensional marginals of the variational posterior converge to the prior.

The key idea in both cases is to upper bound the difference between the first two moments of one-dimensional
marginals of any mean-field posterior and the corresponding moments of the prior in terms of its KL divergence
to the prior. Crucially, we show that we can derive a bound of this form, that goes to 0 as M goes to ∞. While
we often make asymptotic statements about the width as these have the simplest form, all of the bounds are
non-asymptotic and can be explicitly computed for finite widths.

In the following sketch, we ignore the final bias as it must be handled separately and leads to notational clutter
and slightly more unwieldy statements. Hence, the following statements will all be true for a network without a
final output bias, and some minor modifications of them is true for a normal fully-connected neural network.

Bounding the mean in terms of KL(Q,P ) We use f̃θ to denote the network output excluding the final

output bias and even part of the activation, i.e., f̃θ = fθ − bL+1 − αWL+11. Then if we consider the mean, and
use the independence structure of Q,

‖EQ [̃fθ(x)]‖2 = 1√
M
‖EQ[WL+1]E[φo(zL(x))]‖2 ≤ 1√

M
‖EQ[WL+1]‖2‖EQ[φo(zL(x))]‖2. (27)

The first term, ‖EQ[WL+1]‖2, can directly be upper bounded in terms of KL(Q,P ). The second term is more
difficult. The simplest thing to do would be to push the norm inside the expectation using Jensen’s inequality
and use that φ is assumed to be Lipschitz continuous. However, this prevents us from taking advantage of any
cancellation due to the oddness of φ, which we will see is essential to the proof (cf. Theorem 41), and the resulting
bound need not tend to 0 with M .

We instead setup a recursion to show that for each `, ‖E[φ(z`(x))]‖2 is upper bounded in terms of an expression
that is independent of M . This will be the main work done in Appendix D.1, and crucially relies on the oddness
and Lipschitz continuity of φ.

Bounding the variance in terms of KL(Q,P ) We work with the un-centered second moment, as in com-
bination with a bound on the mean this implies a bound on the marginal variance. The proof will proceed by
splitting the variance into two terms. The first term, which we term the diagonal, arises from the product of the
variance of the weights with the second moment of each activation. We show that under the optimal variational
posterior, this term is close to the same term under the prior. The second term, which we term the off-diagonal
arises from the product of the mean of the weights with the second moment of each activation. Under the prior,
this term vanishes.

Convergence for Gaussian likelihoods Having established that the mean and variance of the variational
posterior both converge to the prior, the proof diverges based on the likelihood. In the case of a homoscedastic,
Gaussian likelihood, the analysis becomes particularly nice. By noting that the evidence lower bound essentially
has three terms, one depending on the mean at each data point, one depending on the variance at each data point
and one depending on the KL divergence between the variational posterior and the prior, we can upper bound
the KL divergence between any variational posterior with an ELBO at least as good as the prior and the prior,
by something that will tend to 0 with width. Combining this with standard inequalities between divergences
on probability measures and the results of Matthews et al. (2018) suffices to show weak convergence of finite
marginals of the the optimal posterior to the NNGP prior.

Convergence for more general likelihoods In the case of more general likelihoods, the evidence lower
bound may depend on quantities besides the first and second moment of outputs of the variational posterior, so
the above argument breaks down. However, so long as we can derive upper bounds on the KL divergence between
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any optimal posterior and the prior that are independent of the width of the network, we can use our earlier
results to conclude that the predictive mean and variance of any variational posterior with a better ELBO than
the prior converges to the corresponding values under the prior. In order to upper bound the KL divergence, we
assume that the log likelihood is bounded above and has a quadratic lower bound.

Counterexample for non-odd activations Appendix H examines whether it was essential for the results that
the activation function is odd, or whether these results may be extended to other common activation functions
such as ReLU. We answer this question in the negative, by exhibiting a dataset and Gaussian likelihood such
that the mean of the optimal posterior does not converge to the prior mean. The key distinction in this case is
that, where in the odd case we had, ‖EP [φL(z(x))]‖2 = 0, in the non-odd case we have,

‖EP [φ(zL(x))]‖2 = Θ(
√
M). (28)

This means that our earlier proof technique cannot possibly work. We use this observation to construct a
counterexample.

B Existence of an Optimal Mean-Field Solution

Proposition 7. Let Q be the family of factorized Gaussian distributions. Assume the following:

(i) The activation φ : R→ R is Lipschitz continuous.

(ii) The likelihood factorizes over data points: logL(θ) =
∑N
n=1 log p(yn | f(xn)) for some function p.

(iii) The likelihood is continuous: for all y, the function f 7→ p(y | f) is continuous.

(iv) The likelihood is upper bounded: there exists a C ∈ R such that, for all y and f , log p(y | f) ≤ C.

(v) The likelihood admits a quadratic lower bound: for all y, the function f 7→ log p(y | f) can be lower bounded
by a quadratic function in f .

Then arg maxQ∈Q ELBO(Q) is non-empty: an optimal mean-field solution Q ∈ arg maxQ∈Q ELBO(Q) exists.

Proof. Let I denote the total number of parameters in the network. Then the variational optimization problem
can be phrased as

sup
Q∈Q

ELBO(Q) where ELBO: Q → R, Q = {N (µ,diag(σ2)) : µ ∈ RI , σ2 ∈ (0,∞)I}. (29)

Call a sequence (N (µk,diag(σ2
k)))k≥1 ⊆ Q parameter convergent [to N (µ,diag(σ2)) ∈ Q] if (µk,σ

2
i )k≥1 ⊆

RI × (0,∞)I is convergent [to (µ,σ) ∈ RI × (0,∞)I ]. Using the definition of the supremum, extract a sequence
(Qk)k≥1 ⊆ Q such that ELBO(Qk) → supQ∈Q ELBO(Q). The argument now consists of two parts. First, we
show that there exists a subsequence (Qnk)k≥1 ⊆ (Qk)k≥1 which is parameter convergent to some limit Q∗ ∈ Q
(compactness). Second, we show that ELBO is upper semi-continuous with respect to parameter convergence
(continuity). Assuming the two parts,

sup
Q∈Q

ELBO(Q) = lim
k→∞

ELBO(Qk) = lim sup
k→∞

ELBO(Qnk)
(i)

≤ ELBO(Q∗), (30)

where we use in (i) that ELBO is upper semi-continuous with respect to parameter convergence. Therefore,
Q∗ ∈ arg maxQ∈Q ELBO(Q), which concludes the proof.

Compactness. We show that there exists a subsequence (Qnk)k≥1 ⊆ (Qk)k≥1 which is parameter convergent
to some limit Q∗ ∈ Q. Let P = N (0, I) ∈ Q be the prior. Assume that ELBO(P ) < supQ∈Q ELBO(Q); for if
equality holds, an optimal mean-field solution certainly exists. Since ELBO(Qk)→ supQ∈Q ELBO(Q), it follows
that, for large enough k, ELBO(P ) < ELBO(Qk). Therefore, by step 2 from Section 4.4, it follows that there
exists a C > 0 such that, for large enough k, KL(Qk, P ) < C. Consequently, denoting Qk = N (µk,σ

2
k), by

Appendix C and the observation that r(a) < c for c ≥ 0 implies that a ∈ [R−1, R] for some R ∈ [1,∞), it follows
that there exists an R ∈ [1,∞) such that, for large enough k and all i ∈ [I], |µk,i| ≤ R and R−1 ≤ |σ2

k,i| ≤ R.
Hence, by Bolzano–Weierstrass, there exists a subsequence (Qnk)k≥1 ⊆ (Qk)k≥1 which is parameter convergent
to some limit Q∗ ∈ Q.
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Continuity. Let (Qk)k≥1 ⊆ Q be parameter convergent to some Q ∈ Q. To conclude the proof, we show that
lim supk→∞ ELBO(Qk) ≤ ELBO(Q). Decompose the ELBO as follows:

ELBO(Qk) =
∑N
n=1 EQk [log p(yn | f(xn))]−KL(Qk, P ). (31)

From Appendix C, Q 7→ −KL(Q,P ) is clearly continuous with respect to parameter convergence, so it is also
upper semi-continuous with respect to parameter convergence. Hence, it remains to show that

lim sup
k→∞

EQk [log p(yn | f(xn))] ≤ EQ[log p(yn | f(xn))]. (32)

To show this, we use the reparametrization trick: rewrite EQk [log p(yn | f(xn))] = E[log p(yn | fQk(xn))] where

fQk(x) = 1√
Do

(SQkL+1 ◦ EL+1 + MQk
L+1)φ(zQkL ) + (sQkL+1 ◦ εL+1 + mQk

L+1), (33)

zQk` = 1√
M

(SQk` ◦ E` + MQk
` )φ(zQk`−1) + (sQk` ◦ ε` + mQk

` ), ` = L, . . . , 2, (34)

zQk1 = 1√
Di

(SQk1 ◦ E1 + MQk
1 )x + (sQk1 ◦ ε1 + mQk

1 ). (35)

where (E`)L+1
`=1 are matrices of i.i.d. standard Gaussian random variables, (ε`)

L+1
`=1 are vectors of i.i.d. standard

Gaussian random variables, (MQk
` )L+1

`=1 are matrices consisting of the means of each weight in each layer under

Qk, (mQk
` )L+1

`=1 are vectors consisting of the means of each bias in each layer under Qk, (SQk` )L+1
`=1 are matrices

consisting of the standard deviations of each weight in each layer under Qk, and (sQk` )L+1
`=1 are vectors consisting

of the standard deviations of each bias in each layer under Qk. Since φ is Lipschitz, it is continuous, so clearly
fQk(x)→ fQ(x). Let C be the upper bound on the likelihood. Then

lim sup
k→∞

EQk [log p(yn | f(xn))] = C + lim sup
k→∞

E[−C + log p(yn | f(xn))]

= C − lim inf
k→∞

E[C − log p(yn | fQk(xn))]

(i)
≤ C − E[lim inf

k→∞
(C − log p(yn | fQk(xn)))]

(ii)
= C − E[C − log p(yn | fQ(xn))]

= E[log p(yn | fQ(xn))]

= EQ[log p(yn | f(xn))],

where in (i) we use Fatou’s lemma in combination with that C − log p(yn | fQk(xn)) ≥ 0 by definition of C and
in (ii) we use (ii.a) continuity of f 7→ p(yn | f) and (ii.b) fQk(xn)→ fQ(xn).

C Bounds on Parameters in Terms of the Kullback–Leibler Divergence

Fundamentally, if KL(Q,P ) is small, we know that Q and P are ‘close’ in some sense. We want to translate
this notion of ‘close’ to a notion directly related to the moments of the predictive distributions implied by the
networks. In order to do this, we desire statements about how close the parameters of Q and P are, according
to some norm. In this section, we show how to upper bound various norms of the parameters of Q in terms of
KL(Q,P ). These bounds will be a key ingredient in proofs of Theorems 11 and 23.

Lemma 8 (Kullback-Leibler Divergence between diagonal multivariate Gaussian distributions). If P = N (0, I)
and Q = N (µQ,diag(σ2

Q)) It holds that

KL(Q,P ) = 1
2 (‖µQ‖22 + ‖r(σ2

Q)‖1) (36)

where r : (0,∞)→ [0,∞), r(a) = a− 1− log(a) is applied element-wise.

We note that r is a convex function, with a minimum at r(1) = 0. We now turn to proving bounds on the
parameters of Q, which amounts to various methods of rearranging Lemma 8.

Lemma 9 (Bounds on parameters in term of KL divergence). The following inequalities are true:
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(i) ‖µQ‖22 ≤ 2 KL(Q,P ),

(ii) ‖σQ − 1‖22 ≤ 2 KL(Q,P ),

(iii) σmax ≤ 1 +
√

2 KL(Q,P ) ≤ 2
√

2 KL(Q,P ) ∨ 1, and

(iv) ‖σ2
Q − 1‖22 ≤ (σmax + 1)2‖σQ − 1‖22 ≤ (2 +

√
2 KL(Q,P ))2(2 KL(Q,P )).

Proof. We prove each bound in turn.

(i): This follows directly from Lemma 8 and non-negativity of norms.

(ii): To prove (ii), we recall the identity log(a′) ≤ a′−1 for all a′ > 0. Define a′ =
√
a. Then log(a) = 2(

√
a−1).

Rearranging, log(a) ≤ 2
√
a− 2 for all a > 0. Then compute

r(a) = a− 1− log(a) ≥ a− 1− (2
√
a− 2) = a− 2

√
a+ 1 = (

√
a− 1)2. (37)

(iii): For (iii), estimate

σmax − 1 ≤ |σmax − 1| ≤ ‖σQ − 1‖2 ≤
√

2 KL(Q,P ), (38)

where the last inequality uses (ii).

(iv): For (iv), factoring the difference of two squares,

‖σ2
Q − 1‖22 =

∑I
i=1(σ2

i − 1)2 (39)

=
∑I
i=1(σi + 1)2(σi − 1)2 (40)

≤
∑I
i=1(σmax + 1)2(σi − 1)2 (41)

= (σmax + 1)2
∑I
i=1(σi − 1)2 (42)

= (σmax + 1)2‖σQ − 1‖22 (43)

≤ (2 +
√

2 KL(Q,P ))2(2 KL(Q,P )) (44)

where in the final inequality we have used (ii) and (iii).

Proposition 10. Let W be an arbitrary weight matrix and let b be an arbitrary bias vector. Then

‖Vd[vec(W)]‖∞ + ‖Vd[b]‖∞ + ‖E[b2]‖∞ ≤ (
√

2 +
√

2 KL(Q,P ))2. (45)

Proof. Denote K =
√

2 KL(Q,P ). By Lemma 8, we have the constraint

‖r(Vd[vec(W)])‖1 + ‖E[b]‖22 + ‖r(Vd[b])‖1 ≤ K2. (46)

We argue that this constraint implies that ‖Vd[vec(W)]‖∞ + ‖E[b2]‖∞ ≤ (
√

2 + K)2. To argue this, consider
optimising ‖σ2

1‖∞ + ‖µ2
2‖∞ + ‖σ2

2‖∞ over (σ2
1,µ2,σ

2
2) such that ‖r(σ2

1)‖1 + ‖µ2‖22 + ‖r(σ2
2)‖1 ≤ K2. Without

loss of generality, assume that σ2
1 � 1 and σ2

2 � 1. Then, without loss of generality, by the observation that
the objective comprises ∞-norms, for all i ≥ 2, assume that σ2

1,i = σ2
2,i = 1 and µi = 0. Since, on [1,∞),

r′(a) = 1 − 1
a < 1 and r′ is strictly increasing, it is clear that, at the maximum, σ2

1,1 = σ2
2,1 = σ2 and µ1 = 0.

From Lemma 9 and the constraint, we have that 2(σ − 1)2 ≤ 2r(σ2) ≤ K2, so σ ≤ 1 + 1√
2
K. Therefore, at the

maximum, ‖σ2
1‖∞ + ‖µ2

2‖∞ + ‖σ2
2‖∞ = 2σ2 ≤ 2(1 + 1√

2
K)2 = (

√
2 +K)2.

D Proof of Convergence of the Mean of the Variational Posterior for Odd
Activation Functions

The main result in this section we prove will be the following,
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Theorem 11 (Convergence of mean prediction). Let Q be a mean-field variational posterior and P = N (0, I)
denote the prior over a neural network with L hidden layers and M neurons per hidden layer. Suppose φe = α
for some α ∈ R and φ : R→ R is 1-Lipschitz. Let x ∈ RDi and let f̃θ(x) = fθ(x)− α√

M
WL+11−bL+1 denote the

network output excluding final bias and even part of the final activation. Then there exist universal constants
c1 ≤ 4 and c2 ≤ 6 such that

‖EQ [̃fθ(x)]‖2 ≤ c1cL−12 L
|α|+ 1 + ‖x‖2/

√
Di√

M
KL(Q,P )((2 KL(Q,P ))

L−1
2 ∨ 1). (47)

For the proof we assume the Lipschitz constant of the activation function is 1, but we note that any Lipschitz
function can be scaled to have a Lipschitz constant of 1.

Corollary 12. With the same notation and assumptions as in Theorem 11, for x,x′ ∈ RDi we have

‖EQ[fθ(x)]− EQ[fθ(x
′)]‖2 ≤ c1cL−12 L

2|α|+ 2 + (‖x‖2 + ‖x′‖2)/
√
Di√

M
KL(Q,P )((2 KL(Q,P ))

L−1
2 ∨ 1) (48)

Corollary 12 follows from Theorem 11 by noting that EQ[fθ(x)] − EQ[fθ(x
′)] = EQ [̃fθ(x)] − EQ [̃fθ(x

′)], then
applying triangle inequality.

The crucial technical result for the proof of Theorem 11 will be the following lemma, which upper bounds the
norm of the expected value of the final layer of hidden units. We defer the proof of this lemma, which essentially
inducts on the number of hidden layers, to Appendix D.1.

Lemma 13. Suppose Q is mean-field Gaussian, P = N (0, I), φe = α, with α ∈ R and φ is 1-Lipschitz. Then,

‖E[φo(zL(x))]‖2 ≤ 2L(2 + |α|+ 1√
Di
‖x‖2)(2 + 2c)L−1

√
2 KL(Q,P )(

√
2 KL(Q,P ) ∨ 1)L−1, (49)

where c > 0 is a universal constant.

We now turn to the proof of Theorem 11, which is relatively direct once Lemma 13 has been established.

Proof of Theorem 11. Let every expectation be under Q. Define K =
√

2 KL(Q,P ). By a slight abuse of
notation, let zL = zL(x).

To begin with, note that

‖E[̃fθ(x)]‖2 = 1√
M
‖E[WL+1]E[(φo(zL)]‖2. (50)

Using Lemma 9, ‖E[WL+1]‖F ≤ K. We then apply Lemma 13,

‖E[̃fθ(x)]‖2 ≤
K√
M

2L

(
2 + |α|+ 1√

Di

‖x‖2
)

(2 + 2c)L−1K(K ∨ 1)L−1 (51)

=
2L√
M

(
2 + |α|+ 1√

Di

‖x‖2
)

(2 + 2c)L−1 KL(Q,P )((2 KL(Q,P ))
L−1

2 ∨ 1). (52)

D.1 Main Recursion: Proof of Lemma 13

The main purpose of this section will be the proof of Lemma 13. We begin by proving several results that build
up to bounds on the norm of the expected value and the expected value of the norm of one layer in terms of the
previous layer (Lemmas 18 and 19). Once we have established these bounds, the proof of Lemma 13 follows by
recursive application of these bounds. See Figure 6 for a diagram of the dependencies between the results.

For a matrix W, recall that ‖W‖2 ≤ ‖W‖F. Call a random variable a symmetric around its mean if a−E[a]
d
=

−(a− E[a])
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Theorem 23

Lemma 13

Proposition 20Lemma 21Lemma 22 Lemma 19 Lemma 18

Lemma 15 Remark 16Lemma 14 Lemma 17

Figure 6: Dependency structure of the results in Appendix D.

Lemma 14. Let φ1, φ2 : R→ R be 1-Lipschitz and odd. Then

‖φ1(Wφ2(z) + b)− φ1(W′φ2(z′) + b′)‖2
≤ ‖z‖2‖W −W′‖F + ‖W′‖2‖z− z′‖2 + ‖b− b′‖2. (53)

Proof. When applied element-wise, φ1 and φ2 are also 1-Lipschitz as functions (Rn, ‖ • ‖2) → (Rn, ‖ • ‖2). The
result then follows from an application of 1-Lipschitzness and the triangle inequality:

‖φ1(Wφ2(z) + b)− φ1(W′φ2(z′) + b′)‖2
≤ ‖Wφ2(z) + b− (W′φ2(z′) + b′)‖2 (54)

= ‖(W −W′)φ2(z) + W′(φ2(z)− φ2(z′)) + (b− b′)‖2 (55)

≤ ‖W −W′‖2‖φ2(z)‖2 + ‖W′‖2‖φ2(z)− φ2(z′)‖2 + ‖b− b′‖2 (56)

≤ ‖W −W′‖F‖z‖2 + ‖W′‖2‖z− z′‖2 + ‖b− b′‖2 (57)

where in the last inequality we use that since φ2 is odd φ2(0) = 0 so ‖φ2(z)‖2 = ‖φ2(z)− φ2(0)‖2 ≤ ‖z‖2.

Lemma 15. Let φ1, φ2 : R→ R be 1-Lipschitz and odd. Let the triple (W, z,b) be (possibly dependent) random
variables such that

(W − E[W], z,b− E[b])
d
= (−(W − E[W]), z,−(b− E[b])) (58)

Then

‖E[φ1(Wφ2(z) + b)]‖2 ≤ ‖E[W]‖FE[‖z‖2] + E[‖W − E[W]‖2]‖E[z]‖2 + ‖E[b]‖2 (59)

Proof. Consider W′ = W−E[W], z′ = z−E[z], and b′ = b−E[b]. By assumption, (W′, z′,b′)
d
= (−W′, z′,−b′).

Therefore, using that φ1 is odd

E[φ1(W′φ2(z′) + b′)] = E[φ1(−W′φ2(z′)− b′)] = −E[φ1(W′φ2(z′) + b′)], (60)
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which means that E[φ(W′φ(z′) + b′)] = 0. We now apply Lemma 14:

‖E[φ1(Wφ2(z) + b)]‖2
= ‖E[φ1(Wφ2(z) + b)− φ1(W′φ2(z′) + b′)]‖2 (61)

≤ E[‖φ1(Wφ2(z) + b)− φ1(W′φ2(z′) + b′)‖2] (62)

≤ E[‖W −W′‖F‖z‖2] + E[‖W′‖2‖z− z′‖2] + E[‖b− b′‖2] (63)

≤ ‖E[W]‖FE[‖z‖2] + E[‖W − E[W]‖2]‖E[z]‖2 + ‖E[b]‖2, (64)

which proves the result.

Remark 16. The symmetry condition for (W, z,b) is satisfied if W, z, and b are independent and W and b,
not z, are symmetric around their means. For such (W, z,b), the symmetry condition is also satisfied for the
triple (W, z, αW1 + b) where 1 is the vector of all ones and α ∈ R. In that case, a similar conclusion holds:

‖E[φ1(W(φ2 + α)(z) + b)]‖2 (65)

= ‖E[φ1(Wφ2(z) + αW1 + b)]‖2 (66)

≤ ‖E[W]‖FE[‖z‖2] + E[‖W − E[W]‖2]‖E[z]‖2 + ‖E[αW1 + b]‖2 (67)

≤ ‖E[W]‖FE[‖z‖2] + E[‖W − E[W]‖2]‖E[z]‖2 + |α|‖E[W]‖2‖1‖2 + ‖E[b]‖2 (68)

= (E[‖z‖2 + |α|
√
M)‖E[W]‖F + E[‖W − E[W]‖2]‖E[z]‖2 + ‖E[b]‖2. (69)

Lemma 17. Let A ∈ RI×J be a zero-mean random matrix with independent Gaussian entries with variances
bounded by σ2. Then

E[‖A‖2] ≤ 2σ
√
I ∨ J. (70)

Moreover, if the variances of the entries of A are all equal to one, then

P(‖A‖2 ≥ 2
√
I ∨ J + δ) ≤ 2 exp(− 1

2δ
2). (71)

Proof. We slightly generalise Exercise 5.14 from Wainwright (2019). To begin with, rewrite the operator norm
as

‖A‖2 = sup
(u,v)∈SI−1×SJ−1

〈u,Av〉. (72)

Define the zero-mean Gaussian process Zu,v = 〈u,Av〉 indexed on SI−1×SJ−1 and define S by Si,j = V[Ai,j ] ≤
σ2. Note that, by independence of the entries of A,

E[(Zu,v − Zw,x)2] = E[Z2
u,v − 2Zu,vZw,x + Z2

w,x] (73)

=
∑I,J
i=1,j=1 Siju

2
i v

2
j − 2

∑I,J
i=1,j=1 Sijuivjwixj +

∑I,J
i=1,j=1 Sijw

2
i x

2
j (74)

=
∑I,J
i=1,j=1 Sij(uivj − wixj)2 (75)

≤ σ2
∑I,J
i=1,j=1(uivj − wixj)2 (76)

= σ2‖uvT −wxT‖2F. (77)

Also consider the zero-mean Gaussian process Yu,v = σ〈u, ε1〉 + σ〈v, ε2〉 again indexed on SI−1 × SJ−1, where
ε1 ∈ RI and ε2 ∈ RJ are standard Gaussian vectors. Then

E[(Yu,v − Yw,x)2] = σ2E[(〈u−w, ε1〉+ 〈v − x, ε2〉)2] (78)

= σ2E[〈u−w, ε1〉2 + 〈v − x, ε2〉2] (79)

= σ2(‖u−w‖22 + ‖v − x‖22). (80)

Using that ‖u‖2 = ‖v‖2 = ‖x‖2 = ‖w‖2 = 1, careful algebra (see, e.g., page 164 from Wainwright, 2019) shows
that ‖uvT −wxT‖2F ≤ ‖u−w‖22 + ‖v − x‖22:

(uivj − wixj)2 = (uivj − wivj + wivj − wixj)2 (81)

= (ui − wi)2v2j + w2
i (vj − xj)2 + 2(uivj − wivj)(wivj − wixj) (82)

= (ui − wi)2v2j + w2
i (vj − xj)2 + 2(uiwi − w2

i )(v
2
j − vjxj). (83)
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Therefore, summing over i ∈ [I] and j ∈ [J ] and using that ‖v‖2 = ‖w‖2 = 1,

‖uvT −wxT‖2F = ‖u−w‖22 + ‖v − x‖22 + 2(〈u,w〉 − 1)(1− 〈v,x〉) ≤ ‖u−w‖22 + ‖v − x‖22 (84)

where the inequality follows from additionally using that ‖u‖2 = ‖x‖2 = 1. Using this result, we find

E[(Zu,v − Zw,x)2] ≤ E[(Yu,v − Yw,x)2]. (85)

Hence, denoting Z∗ = sup(u,v)∈SI−1×SJ−1 Zu,v and Y ∗ = sup(u,v)∈SI−1×SJ−1 Yu,v, by the Sudakov–Fernique
comparison theorem (Theorem 5.27, Wainwright, 2019), we conclude that

E[‖A‖2] = E[Z∗] ≤ E[Y ∗]
(i)
= σ E[‖ε1‖2 + ‖ε2‖2]

(ii)
≤ σ(

√
I +
√
J) (86)

where (i) follows from that the suprema are achieved by ε1/‖ε1‖2 and ε2/‖ε2‖2 for u and v, respectively, and
(ii) follows from Jensen’s inequality applied to the square root.

For the second statement, assume that all entries of A have variance one, so σ2 = 1. We apply concentration of
Gaussian suprema (e.g., Exercise 5.10 by Wainwright, 2019) to Zu,v:

P(|Z∗ − E[Z∗]| ≥ δ) ≤ 2 exp(− 1
2v δ

2) (87)

where

v = sup
(u,v)∈SI−1×SJ−1

V[Zu,v] = sup
(u,v)∈SI−1×SJ−1

‖u‖22‖v‖22 = 1. (88)

Therefore, using the bound on E[Z∗] from the first statement,

P(‖A‖2 ≥ 2
√
I ∨ J + δ) ≤ 2 exp(− 1

2δ
2), (89)

which concludes the proof.

Having established the preliminaries, we can now bound the norm of the expectation of one layer in terms of the
previous layer.

Lemma 18. Let φ1, φ2 : R → R be 1-Lipschitz and odd, and let α ∈ R. Let (W, z,b) be independent random
variables with W and b, not z, symmetric around their means. Moreover, assume that W has independent
sub-Gaussian entries with sub-Gaussian parameters bounded by σ. Then there exists a universal constant c > 0
such that

‖E[φ1( 1√
M

W(φ2 + α)(z) + b)]‖2
≤ ( 1√

M
E[‖z‖2] + |α|)‖E[W]‖F + cσ‖E[z]‖2 + ‖E[b]‖2. (90)

with c the same constant as in Lemma 17.

Proof. By Lemma 17, there exists a universal constant c > 0 such that

E[‖W − E[W]‖2] ≤ cσ
√
M =⇒ E[‖ 1√

M
W − E[ 1√

M
W]‖2] ≤ cσ. (91)

The result then follows from Remark 16 with 1√
M

W instead of W.

We will also need upper bounds on the expected value of the norm of a hidden layer in terms of the previous
layer.

Lemma 19. Assume the conditions of Lemma 18. Then

E[‖ 1√
M

W(φ2 + α)(z) + b‖2]

≤ ( 1√
M
E[‖z‖2] + |α|)(‖E[W]‖2 + cσ

√
M) + ‖E[b]‖2 + cσ

√
M. (92)
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Proof. Use the triangle inequality and recall that ‖φ2(z)‖2 ≤ ‖z‖2 (proof of Lemma 14):

E[‖ 1√
M

Wφ2(z) + α√
M

W1 + b‖2]

≤ ( 1√
M
E[‖z‖2] + |α|)E[‖W‖2] + E[‖b‖2] (93)

≤ ( 1√
M
E[‖z‖2] + |α|)(‖E[W]‖2 + cσ

√
M) + ‖E[b]‖2 + cσ

√
M (94)

where in the second inequality we use the triangle inequality in combination with Lemma 17.

We now turn to the proof of Lemma 13, which relies of an argument with the following form.

Proposition 20. Let a, b ∈ R and {c`}L`=1, with c` ∈ R. Suppose, c` ≤ ac`−1 + b with a, b ≥ 0 for h > 1. Then
for 2 ≤ ` ≤ L

c` ≤ a`−1c1 + (1 + a)`−2b. (95)

Proof. The proof is a standard induction. In the base case h = 2, we have to prove,

c2 ≤ ac1 + b, (96)

which holds because this is simply our assumption on the c` with ` = 2. For the inductive step, we now assume
that c` ≤ a`−1c1 + (1 + a)`−2b. Under this assumption, we have,

c`+1 ≤ ac` + b ≤ a`c1 + a(1 + a)`−2b+ b = a`c1 + (1 + a)`−1b. (97)

Lemma 21. Define K =
√

2 KL(Q,P ). Then for 1 ≤ ` ≤ L

1√
M
EQ[‖z`‖2] ≤ (2 + |α|+ 1√

Di
‖x‖2)(2 + 2c)`(K ∨ 1)`, (98)

where c is the same absolute constant from Lemma 15.

Proof. By Lemma 9, all mean parameters are bounded by K and σmax ≤ 2(K ∨ 1). Applying, Lemma 19 using
these estimates, ,

1√
M
EQ[‖z`‖2] ≤ (2c(K ∨ 1)+ 1√

M
K) 1√

M
E[‖z`−1‖2] + (1 + |α|)(2c(K ∨ 1)+ 1√

M
K), (99)

1√
M
EQ[‖z1‖2] ≤ (1 + 1√

Di
‖x‖2)(2c(K ∨ 1) + 1√

M
K). (100)

Bound 2c(K ∨ 1) + 1√
M
K ≤ (1 + 2c)(K ∨ 1) and apply Proposition 20:

1√
M
E[‖z`‖2] ≤ (1 + 1√

Di
‖x‖2)(1 + 2c)`(K ∨ 1)` + (1 + |α|)(2 + 2c)`−1(K ∨ 1)`−1, (101)

≤ (2 + |α|+ 1√
Di
‖x‖2)(2 + 2c)`(K ∨ 1)`.

Lemma 22. Define K =
√

2 KL(Q,P ). Then for 1 ≤ ` ≤ L

‖EQ[z`]‖2 ≤ 2`(2 + |α|+ 1√
Di
‖x‖2)(2 + 2c)`−1K(K ∨ 1)`−1, (102)

where c is the same absolute constant from Lemma 15

Proof. The proof proceeds by induction on `.

Base Case For the first layer, ` = 1, by linearity of expectation, triangle inequality and the definition of the
spectral norm,

‖E[z1]‖2 ≤ 1√
Di
‖E[W1]‖2‖x‖2 + ‖E[b1]‖2 ≤ 1√

Di
‖E[W1]‖F‖x‖2 + ‖E[b1]‖2. (103)

We then apply Lemma 9 (i.), to conclude ‖E[W1]‖, ‖E[b1]‖2 ≤ K,

‖E[z1]‖2 ≤ (1 + 1√
Di
‖x‖2)K ≤ 2(2 + |α|+ 1√

Di
‖x‖2)K. (104)
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Inductive step We take the inductive hypothesis,

‖EQ[z`]‖2 ≤ 2`(2 + |α|+ 1√
Di
‖x‖2)(2 + 2c)`−1K(K ∨ 1)`−1. (105)

By an application of Lemma 18,

‖E[z`+1]‖2 ≤ ( 1√
M
E[‖z`‖2] + |α|)‖E[W`+1]‖F + cσmax‖E[z`]‖2 + ‖E[b`+1]‖2 (106)

Applying Lemma 9 (i., iii.),

‖E[z`+1]‖2 ≤ ( 1√
M
E[‖z`‖2] + |α|+ 1)K + 2c(K ∨ 1)‖E[z`]‖2 (107)

Using the inductive hypothesis,

2c(K ∨ 1)‖EQ[z`]‖2] ≤ 4c`(2 + |α|+ 1√
Di
‖x‖2)(2 + 2c)`−1K(K ∨ 1)` (108)

≤ 2`(2 + |α|+ 1√
Di
‖x‖2)(2 + 2c)`K(K ∨ 1)`. (109)

We then make use of Lemma 21,

K(1 + |α|+ 1√
M
EQ[‖z`‖2]) ≤ K

(
1 + |α|+ (2 + |α|+ 1√

Di
‖x‖2)(2 + 2c)`(K ∨ 1)`

)
(110)

≤ 2(2 + |α|+ 1√
Di
‖x‖2)(2 + 2c)`K(K ∨ 1)` (111)

Hence,
‖E[z`+1]‖2 ≤ (2`+ 2)(2 + |α|+ 1√

Di
‖x‖2)(2 + 2c)`K(K ∨ 1)`.

We are now ready to prove Lemma 13.

Proof of Lemma 13. The proof is essentially identical to the inductive step in Lemma 22.

To begin with, we apply Lemma 18 to the deep architecture. For the last hidden layer,

‖E[φo(zL)]‖2 ≤ ( 1√
M
E[‖zL−1‖2] + |α|)‖E[WL]‖F + cσmax‖E[zL−1]‖2 + ‖E[bL]‖2. (112)

We apply Lemma 9 (i., iii.), yielding,

‖E[φo(zL)]‖2 ≤ ( 1√
M
E[‖zL−1‖2] + |α|)K + 2c(K ∨ 1)‖E[zL−1]‖2 +K. (113)

We then make use of Lemma 21,

K(1 + |α|+ 1√
M
EQ[‖zL−1‖2]) ≤ K

(
1 + |α|+ (2 + |α|+ 1√

Di
‖x‖2)(2 + 2c)L−1(K ∨ 1)L−1

)
(114)

≤ 2(2 + |α|+ 1√
Di
‖x‖2)(2 + 2c)L−1K(K ∨ 1)L−1. (115)

From Lemma 22,

2c(K ∨ 1)‖EQ[zL−1]‖2] ≤ 4c(L− 1)(2 + |α|+ 1√
Di
‖x‖2)(2 + 2c)L−2K(K ∨ 1)L−1 (116)

≤ 2(L− 1)(2 + |α|+ 1√
Di
‖x‖2)(2 + 2c)L−1K(K ∨ 1)L−1. (117)

Combining Equations (113), (115) and (117) gives the result.

E Proof of Convergence of the Marginal Variance for Deep Networks

We now turn to the problem of bounding the marginal variance of the predictive distribution for Q. We work with
the uncentered second moment, as in combination with the previous section this implies the marginal variance
of P and Q agree. The main result of this section is as follows:
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Theorem 23 (Convergence of second moment prediction). Let Q be a mean-field variational posterior and P =
N (0, I) denote the prior over a neural network with L hidden layers and M neurons per hidden layer. Suppose

φe = α for some α ∈ R and φ : R → R is 1-Lipschitz. Let x ∈ RDi and let f̃θ(x) = fθ(x) − α√
M

WL+11 − bL+1

denote the network output excluding final bias and even part of the final activation. Then

‖EQ[f̃2θ(x)]− EP [f̃2θ(x)]‖∞ ≤ c1L1/2ρLα,M
α2 + 1 + 1

Di
‖x‖22√

M

√
KL(Q,P )(2 KL(Q,P ) ∨ 1)L+

1
2 , (118)

where c1 = 16 + 25
√

2 ∈ (51, 52) and where ρα,M ∈ (17, 97) is defined in Lemma 35.

The proof of Theorem 23 will proceed by splitting the variance into two terms. The first term, which we name the
diagonal, arises from the product of the variance of the weights with the second moment of each activation. We
show that under the optimal variational posterior, this term is close to the same term under the prior. Precisely,
we have the following lemma:

Lemma 24 (Diagonal Variance terms). Define ΣQ = EQ[wL+1w
T
L+1]−EQ[wL+1]EQ[wL+1]T, which is a diagonal

matrix with the variances of wL+1 as entries. Let

Di
P (x) = 1

M tr(EP [wL+1w
T
L+1]EP [φo(zL)φo(zL)T]) (119)

Di
Q(x) = 1

M tr(ΣQEQ[φo(zL)φo(zL)T]) (120)

Then,

|Di
Q(x)−Di

P (x)| ≤
(

16 +
√

2
)
L1/2ρLα,M

α2 + 1 ∨ 1
Di
‖x‖22√

M

√
KL(Q,P )(2 KL(Q,P ) ∨ 1)L+

1
2 (121)

where ρα,M ∈ (17, 97) is defined in Lemma 35.

The proof of Lemma 24 will be the main topic of Appendix E.2.

The second term, which we term the off-diagonal arises from the product of the mean of the weights with the
second moment of each activation. Under the prior, this term vanishes. Hence, we show that this term is small
for the optimal approximate posterior. This leads to the following lemma,

Lemma 25 (Off-Diagonal Variance terms). Define OiQ(x) = 1
MEQ[wL+1]TEQ[φo(zL)φo(zL)T]EQ[wL+1]. Then,

|OiQ(x)| ≤ 48γLα
α2 + 1 ∨ 1

Di
‖x‖22√

M
KL(Q,P )(2 KL(Q,P ) ∨ 1)L, (122)

where γα = 9 +
√

83 ∈ (18, 19) if α = 0 and γα = 55 if α 6= 0.

The proof of Lemma 25 will be the main topic of Appendix E.3.

These two lemmas taken together allow us to prove Theorem 23. The entire structure of the proof is depicted in
Figure 7.

Proof of Theorem 23. We will repeatedly use cyclic property and linearity of trace. Hence, we briefly recall that
for conformable matrix A,B, we have tr(AB) = tr(BA) and E[tr(AB)] = tr(E[AB]). We also observe that the
trace of a 1× 1 matrix is simply the corresponding scalar.

It suffices to consider an arbitrary output component. Let f̃(x) = f̃(x)i denote an arbitrary output component

i and let wL+1 denote row i of WL+1, so that f̃(x) = 1
MwT

L+1φo(zL).

Mf̃(x)2 = wT
L+1φo(zL)φo(zL)TwL+1 (123)

= tr
(
wT
L+1φo(zL)φo(zL)TwL+1

)
(124)

= tr
(
wL+1w

T
L+1φo(zL)φo(zL)T

)
. (125)
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Theorem 23

E.2 Diagonal Terms

Lemma 35 Lemma 24

E.3 Off-Diagonal Terms

Lemma 25 Lemma 36

E.1 Preliminary Lemmas

Lemma 26

Lemma 27

Remark 28

Lemma 29

Remark 30

Lemma 31

Figure 7: Dependency structure of the results leading to Theorem 23. Lemmas 32, 33, and 34 are proved in this
section but only used in Appendix G.

Recall ΣQ = EQ[wL+1w
T
L+1] − EQ[wL+1]EQ[wL+1]T, which is a diagonal matrix (by indpendence) with the

variances of wL+1 as entries. Then, adding and subtracting EQ[wL+1]EQ[wL+1]T, and using that wL+1 is
independent of zL by the independence assumption

EQ[f̃(x)2] = 1
M tr((EQ[wL+1]EQ[wL+1]T + ΣQ)EQ[φo(zL)φo(zL)T]) (126)

= 1
M tr(EQ[wL+1]EQ[wL+1]TEQ[φo(zL)φo(zL)T]) + 1

M tr(ΣQEQ[φo(zL)φo(zL)T]) (127)

= 1
MEQ[wL+1]TEQ[φo(zL)φo(zL)T]EQ[wL+1] +Di

Q (128)

= OiQ(x) +Di
Q(x). (129)

Also, EP [f̃(x)2] = Di
P (x) since EP [wL+1] = 0. So,

|EQ[f̃(x)2]− EP [f̃(x)2]| = |OiQ(x) +Di
Q(x)−Di

P (x)| (130)

≤ |OiQ(x)|+ |Di
Q(x)−Di

P (x)|. (131)

The final result is obtained by plugging in the expressions from Lemmas 24 and 25, noting that γα ≤ γα,M .

E.1 Preliminary Lemmas

In order to prove both Lemma 24 and Lemma 25 we first establish several preliminary results. The first lemma
will be useful in bounding the diagonal terms in Lemma 35. We construct the bound ηI∨J to be convenient when
collecting terms in Lemma 35.

Lemma 26. Let A ∈ RI×J have independent standard Gaussian entries. Then

E[‖A‖22] ≤ ηI∨J(I ∨ J), (132)

where ηI∨J takes the value 1
9 (37 + 6

√
2π) ∈ (5, 6) if I ∨ J ≥ 36 and 4(2 +

√
2π) ∈ (18, 19) otherwise.
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Proof. We integrate the tail bound from Lemma 17:

P(‖A‖2 ≥ 2
√
I ∨ J + δ) ≤ 2 exp(− 1

2δ
2). (133)

To integrate the tail bound, use the layer cake trick:

E[‖A‖22] =

∫ ∞
0

P (‖A‖22 > u) du (134)

≤ 4(I ∨ J) +

∫ ∞
0

P (‖A‖22 > 4(I ∨ J) + u) du. (135)

Consider the change of variables defined by

4(I ∨ J) + u = (2
√
I ∨ J + v)2. (136)

Then du = 2(2
√
I ∨ J + v) dv, so

E[‖A‖22] ≤ 4(I ∨ J) + 2

∫ ∞
0

P (‖A‖2 > 2
√
I ∨ J + v)(2

√
I ∨ J + v) dv (137)

≤ 4(I ∨ J) + 4

∫ ∞
0

e−
1
2v

2

(2
√
I ∨ J + v) dv (138)

= 4(I ∨ J) + 4
√

2π
√
I ∨ J + 4. (139)

The claimed bound then follows by checking cases.

Lemma 27. Let φ1, φ2 : R → R be 1-Lipschitz and odd. Let the triple (W, z2,b) ∈ RM1×M2 × RM2 × RM1 be
(possibly dependent) random variables such that, for all Rademacher vectors ε ∈ {−1, 1}M1 ,

(W − E[W], z2,b− E[b])
d
= (diag(ε)(W − E[W]), z2, ε ◦ (b− E[b])). (140)

Consider z1 = 1√
M2

Wφ2(z2) + b. Then

‖E[φ1(z1)φ1(z1)T]‖2 ≤ 4
√
M1(‖E[z21]‖∞ + ‖E[W]‖22 ‖E[z22]‖∞ + ‖E[b]‖22) (141)

≤ 4
√
M1(‖E[z21]‖∞ +K2 (‖E[z22]‖∞ ∨ 1)) (142)

provided that M1 ≥ 3. If M1 < 3, then the inequality holds with the slightly worse constant 6.

Proof. Set

z′1 = z1 − 1√
M2

E[W]φ2(z2)− E[b] = 1√
M2

(W − E[W])φ2(z2) + (b− E[b]). (143)

Consider

‖E[φ1(z1)φ1(z1)T]‖2 ≤ ‖E[(φ1(z1)− φ1(z′1))φ1(z1)T]‖2 + ‖E[φ1(z′1)φ1(z1)T]‖2 (144)
(i)
≤ E[‖(φ1(z1)− φ1(z′1))φ1(z1)T‖2] + ‖E[φ1(z′1)φ1(z1)T]‖2 (145)
(ii)
= E[‖φ1(z1)− φ1(z′1)‖2‖φ1(z1)‖2] + ‖E[φ1(z′1)φ1(z1)T]‖2 (146)
(iii)
≤ E[‖z1 − z′1‖2‖z1‖2] + ‖E[φ1(z′1)φ1(z1)T]‖2 (147)
(iv)
≤ (E[‖z1 − z′1‖22]E[‖z1‖22])1/2 + ‖E[φ1(z′1)φ1(z1)T]‖2 (148)

where in (i) we use Jensen’s Inequality, in (ii) we compute the 2-norm, in (iii) we use 1-Lipschitzness and oddness
of φ1, and in (iv) we use Cauchy–Schwarz. In a similar way, we can simplify the last term from above:

‖E[φ1(z′1)φ1(z1)T]‖2 ≤ (E[‖z′1‖22]E[‖z1 − z′1‖22])1/2 + ‖E[φ1(z′1)φ1(z′1)T]‖2. (149)

Therefore,

‖E[φ1(z1)φ1(z1)T]‖2 ≤ E[‖z1 − z′1‖22]1/2(E[‖z1‖22]1/2 + E[‖z′1‖22]1/2) + ‖E[φ1(z′1)φ1(z′1)T]‖2. (150)
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Unfortunately, the square roots cannot be pushed inside: Jensen’s inequality is the other way around. Instead,
we bound each of the three terms involving z′ in Equation (150) separately, starting with the first term. Applying
the inequality (a+ b)2 ≤ 2a2 + 2b2 to Equation (143), we have

E[‖z1 − z′1‖22] ≤ 2‖E[W]‖22 1
M2

E[‖φ2(z2)‖22] + 2‖E[b]‖22 (151)

≤ 2‖E[W]‖22 1
M2

E[‖z2‖22] + 2‖E[b]‖22 (152)

≤ 2‖E[W]‖22‖E[z22]‖∞ + 2‖E[b]‖22. (153)

Above, the second inequality follows from the oddness and 1-Lipschitzness of φ2 and that ‖1‖22 = M2 while the
third inequality follows from converting the 2-norm to an ∞-norm:

E[‖z2‖22] ≤ E

[
M2∑
i=1

z22,i

]
=

M2∑
i=1

E[z22,i] ≤M2‖E[z22]‖∞. (154)

Similarly,
E[‖z′1‖22] ≤ 3E[‖z1‖22] + 3‖E[W]‖22 ‖E[z22]‖∞ + 3‖E[b]‖22. (155)

For convenience, define the expression

c = (‖E[W]‖22‖E[z22]‖∞ + ‖E[b]‖22)1/2. (156)

Using the subadditivity of the square root, we can write the previous two expressions as

E[‖z1 − z′1‖22]1/2 ≤
√

2c (157)

and
E[‖z′1‖22]1/2 ≤

√
3E[‖z1‖22]1/2 +

√
3c, (158)

respectively. To bound the last term in Equation (150), let wm denote the mth row of W. Also let w′m =
wm − E[wm] and b′ = b− E[b]. Let m,m′ ∈ [M1], m 6= m′. By the assumed symmetry condition,

((wm,wm′), z2, (bm, bm′))
d
= ((−wm,wm′), z2, (−bm, bm′)). (159)

Therefore, using oddness,

−φ1(z′1,m)φ1(z′1,m′) = −φ1(〈 1
M2

w′m, φ2(z2)〉+ b′m)φ1(〈 1
M2

w′m′ , φ2(z2)〉+ b′m′) (160)

= φ1(〈− 1
M2

w′m, φ2(z2)〉 − b′m)φ1(〈 1
M2

w′m′ , φ2(z2)〉+ b′m′) (161)

d
= φ1(〈 1

M2
w′m, φ2(z2)〉+ b′m)φ1(〈 1

M2
w′m′ , φ2(z2)〉+ b′m′) (162)

= φ1(z′1,m)φ1(z′1,m′), (163)

which means that E[φ1(z′1,m)φ1(z′1,m′)] = 0. Consequently, the matrix E[φ1(z′1)φ1(z′1)T] is diagonal, so

‖E[φ1(z′1)φ1(z′1)T]‖2 = max
m∈[M1]

E[φ21(z′1,m)] = ‖E[φ21(z′1)]‖∞. (164)

To bound ‖E[φ21(z′1)]‖∞, consider that

φ21(z′1) � (z′1)2 (165)

� 3z21 + 3 1
M2

(E[W]φ2(z2))2 + 3E[b]2 (166)

� 3z21 + 3‖E[W]‖22 1
M2
‖φ2(z2)‖221 + 3E[b]2 (167)

� 3z21 + 3‖E[W]‖22 1
M2
‖z2‖221 + 3E[b]2 (168)

where the squares and inequalities are element-wise. We use the oddness and 1-Lipschitzness of φ1 and φ2 in the
first and last inequalities, respectively, and we use the manipulation Av � ‖Av‖∞1 � ‖Av‖21 � ‖A‖2‖v‖21
in the third inequality. Therefore, using that ‖E[b]‖∞ ≤ ‖E[b]‖2, we have

‖E[φ21(z′1)]‖∞ ≤ 3‖E[z21]‖∞ + 3‖E[W]‖22 1
M2

E[‖z2‖22] + 3‖E[b]‖2∞ (169)

= 3‖E[z21]‖∞ + 3c2 (170)
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We can now plug the bounds on the z′1 terms, given by Equations (157), (143), and (170), into Equation (150):

‖E[φ1(z1)φ1(z1)T]‖2 ≤
√

2c
(

(1 +
√

3)E[‖z1‖22]1/2 +
√

3c
)

+ 3‖E[z21]‖∞ + 3c2 (171)

≤
√

2(1 +
√

3)E[‖z1‖22]1/2c+ (3 +
√

6)(‖E[z21]‖∞ + c2) (172)

≤
√

2(1 +
√

3)
√
M1‖E[z21]‖1/2∞ c+ (3 +

√
6)(‖E[z21]‖∞ + c2), (173)

where we add an extra 2
√

3‖E[z21]‖∞ term to more simply group the terms in second inequality and we covert the
2-norm of z2 to an ∞-norm in the third inequality, as in Equation (154). Next, since 2ab+ a2 + b2 = (a+ b)2 ≤
2a2 + 2b2 =⇒ ab ≤ 1

2 (a2 + b2), we can simplify the following expression in the first term above as

‖E[z21]‖1/2∞ c ≤ 1
2 (‖E[z21]‖∞ + c2). (174)

Therefore,

‖E[φ1(z1)φ1(z1)T]‖2 ≤ 1
2

√
2(1 +

√
3)
√
M1(‖E[z21]‖∞ + c2) + (3 +

√
6)(‖E[z21]‖∞ + c2) (175)

≤
(

1
2

√
2(1 +

√
3)
√
M1 + (3 +

√
6)
)

( 1
2‖E[z21]‖∞ + c2) (176)

If M1 ≥ 3, then (3 +
√

6) ≤ 1
2

√
2(1 +

√
3)
√
M1, so we have

‖E[φ1(z1)φ1(z1)T]‖2 ≤
√

2(1 +
√

3)
√
M1(‖E[z21]‖∞ + c2 (177)

≤ 4
√
M1(‖E[z21]‖1/2∞ + ‖E[W]‖22‖E[z22]‖∞ + ‖E[b]‖22). (178)

Otherwise, if M1 < 3, then the inequality holds with the slightly worse constant
√

2(1+
√

3)+(3+
√

6) ≈ 7.4 ≤ 8:

‖E[φ1(z1)φ1(z1)T]‖2 ≤ 8
√
M1(‖E[z21]‖1/2∞ + ‖E[W]‖22‖E[z22]‖∞ + ‖E[b]‖22). (179)

Remark 28. The symmetry condition for (W, z2,b) is satisfied if W and b, not z2, are element-wise independent
and symmetric around their means. For such (W, z2,b), the symmetry condition is also satisfied for the triple
(W, z2,

α√
M2

W1 + b) where 1 is the vector of all ones and α ∈ R. In that case, a similar conclusion holds: if

instead
z1 = 1√

M2
W(φ2 + α)(z2) + b = 1√

M2
Wφ2(z2) + ( α√

M2
W1 + b), (180)

then, if M1 ≥ 3, by Lemma 27

‖E[φ1(z1)φ1(z1)T]‖2 ≤ 4
√
M1(‖E[z21]‖∞ + ‖E[W]‖22 ‖E[z22]‖∞ + ‖E[ α√

M2
W1 + b]‖22) (181)

≤ 4
√
M1(‖E[z21]‖∞ + ‖E[W]‖22 ‖E[z22]‖∞ + 2α2

M2
‖E[W]‖22‖1‖22 + 2‖E[b]‖22) (182)

(i)
≤ 4

√
M1(‖E[z21]‖∞ + ‖E[W]‖22(2α2 + ‖E[z22]‖∞) + 2‖E[b]‖22) (183)

≤ 8
√
M1(‖E[z21]‖∞ + ‖E[W]‖22(α2 + ‖E[z22]‖∞) + ‖E[b]‖22) (184)

(ii)
≤ 8

√
M1(‖E[z21]‖∞ +K2 ((α2 + ‖E[z22]‖∞) ∨ 1)) (185)

≤ 8
√
M1(‖E[z21]‖∞ +K2 (α2 + 1 ∨ ‖E[z22]‖∞)) (186)

where in (i) we use that ‖1‖22 = M2 and in (ii) we use that ‖E[W]‖22 + ‖E[b]‖2∞ ≤ K2. If M1 < 3, then the
inequality holds with the slightly worse constant of 12.

Towards developing a recursion, we now express ‖E[z21]‖∞ in terms of ‖E[z22]‖∞.

Lemma 29. Assume the conditions of the Lemma 27. Then

‖E[z21]‖∞ ≤ 2
M2
‖Vd[vec(W)]‖∞‖E[z22]‖1 + 2

M2
‖E[W]‖2F‖E[φ2(z2)φ2(z2)T]‖2 + 2‖E[b2]‖∞ (187)

≤ 2(
√

2 +K)2(1 ∨ 1
M2
‖E[z22]‖1) + 2

M2
K2‖E[φ2(z2)φ2(z2)T]‖2 (188)

and

‖E[z21]‖∞ ≤ 2‖Vd[vec(W)]‖∞‖E[z22]‖∞ + 2
M2
‖E[W]‖2F‖E[φ2(z2)φ2(z2)T]‖2 + 2‖E[b2]‖∞ (189)

≤ 2(
√

2 +K)2(1 ∨ ‖E[z22]‖∞) + 2
M2
K2‖E[φ2(z2)φ2(z2)T]‖2. (190)
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Proof. Let m ∈ [M2], and let wm denote the mth row of W, so that z1,m = 1√
M2

wT
mφ2(z2) + bm. Using

(a+ b)2 ≤ 2a2 + 2b2,

E[z21,m] ≤ 2
M2

E[(wT
mφ2(z2))2] + 2E[b2m] (191)

≤ 2
M2
〈E[w2

m],E[φ22(z2)]〉+ C + 2E[b2m] (192)

= 2
M2
〈Vd[wm],E[φ22(z2)]〉+ C + 2

M2
〈E2[wm],E[φ22(z2)]〉+ 2E[b2m], (193)

where C is the sum of the off-diagonal terms of 2
M2

E[(wT
mφ2(z2))2]. Hence, by the triangle inequality,

‖E[z21]‖∞ ≤ 2
M2

max
m
{|〈Vd[wm],E[φ22(z2)]〉|}+ max

m
{|C + 2

M2
〈E2[wm],E[φ22(z2)]〉|}+ 2 ‖E[b2]‖∞. (194)

Consider the middle term in Equation (194). We have

C + 2
M2
〈E2[wm],E[φ22(z2)]〉 = 2

M2
〈E[wm],E[φ2(z2)φ2(z2)T]E[wm]〉 (195)

≤ 2
M2
‖E[wm]‖22‖E[φ2(z2)φ2(z2)T]‖2, (196)

where the second inequality follows from the Cauchy-Schwarz inequality and the definition of the operator norm.
Therefore,

max
m
{|C + 2

M2
〈E2[wm],E[φ22(z2)]〉|} ≤ 2

M2
max
m
{‖E[wm]‖22}‖E[φ2(z2)φ2(z2)T]‖2 (197)

≤ 2
M2
‖E[W]‖2F‖E[φ2(z2)φ2(z2)T]‖2. (198)

To bound the first term in Equation (194), use the Hölder inequality with the conjugate pair (∞, 1):

2
M2

max
m
{|〈Vd[wm],E[φ22(z2)]〉|} ≤ 2

M2
max
m
{‖Vd[wm]‖∞‖E[φ22(z2)]‖1} (199)

= 2
M2

max
m
{‖Vd[wm]‖∞}‖E[φ22(z2)]‖1 (200)

= 2
M2
‖Vd[vec(W)]‖∞‖E[φ22(z2)]‖1. (201)

Notice that since φ2 is 1-Lipschitz and odd, we can write

‖E[φ22(z2)]‖1 = ‖E[|φ2(z2)− φ2(0)|2]‖1 ≤ ‖E[|z2 − 0|2]‖1 = ‖E[z22]‖1. (202)

Plugging into Equation (194), we have

‖E[z21]‖∞ ≤ 2
M2
‖Vd[vec(W)]‖∞‖E[z22]‖1 + 2

M2
‖E[W]‖2F‖E[φ2(z2)φ2(z2)T]‖2 + 2‖E[b2]‖∞ (203)

≤ 2(‖Vd[vec(W)]‖∞ + ‖E[b2]‖∞)(1 ∨ 1
M2
‖E[z22]‖1) + 2

M2
‖E[W]‖2F‖E[φ2(z2)φ2(z2)T]‖2. (204)

The result follows by applying Lemma 9 and Proposition 10. Similarly, using ‖E[z22]‖1 ≤ M2‖E[z22]‖∞, we can
again plug into Equation (194) to obtain

‖E[z21]‖∞ ≤ 2‖Vd[vec(W)]‖∞‖E[z22]‖∞ + 2
M2
‖E[W]‖2F‖E[φ2(z2)φ2(z2)T]‖2 + 2‖E[b2]‖∞ (205)

≤ 2(‖Vd[vec(W)]‖∞ + ‖E[b2]‖∞)(1 ∨ ‖E[z22]‖∞) + 2
M2
‖E[W]‖2F‖E[φ2(z2)φ2(z2)T]‖2. (206)

Remark 30. Like in Remark 28, apply Lemma 29 to the triple (W, z2,
α√
M2

W1 + b) where W and b, not z2,

are element-wise independent and symmetric around their means. To write down the result, we need to estimate
‖E[( α√

M2
W1 + b)2]‖∞. To begin with, note that

( α√
M2

W1 + b)2 = ( α√
M2

(W − E[W])1 + α√
M2

E[W]1 + b)2 (207)

� 3 α2

M2
((W − E[W])1)2 + 3 α2

M2
(E[W]1)2 + 3b2 (208)

� 3 α2

M2
((W − E[W])1)2 + 3 α2

M2
‖E[W]‖2∞‖1‖2∞1 + 3b2 (209)

(i)
� 3 α2

M2
((W − E[W])1)2 + 3α2‖E[W]‖2F1 + 3b2 (210)
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where the squares and inequalities are element-wise and in (i) we use that ‖E[W]‖∞ ≤
√
M2‖E[W]‖F. For the

first term, consider the mth element and use independence of the elements of W:

E[ 1
M2

((W − E[W])1)2]m = 1
M2

E
[(∑M2

m′=1(Wm,m′ − E[Wm,m′ ])
)2]

(211)

= 1
M2

∑M2

m′=1 E[(Wm,m′ − E[Wm,m′ ])
2] (212)

≤ ‖Vd[vec(W)]‖∞. (213)

Therefore,
‖E[( α√

M2
W1 + b)2]‖∞ ≤ 3α2‖Vd[vec(W)]‖∞ + 3α2‖E[W]‖2F + 3‖E[b2]‖∞, (214)

so, by Lemma 27 (specifically Equation (187)),

‖E[z21]‖∞
≤ 2‖Vd[vec(W)]‖∞‖E[z22]‖∞ + 2

M2
‖E[W]‖2F‖E[φ2(z2)φ2(z2)T]‖2 + 2‖E[( α√

M2
W1 + b)2]‖∞, (215)

≤ 2‖Vd[vec(W)]‖∞(3α2 + ‖E[z22]‖∞) + 2‖E[W]‖2F(3α2 + 1
M2
‖E[φ2(z2)φ2(z2)T]‖2) + 6‖E[b2]‖∞ (216)

≤ 6(
√

2 +K)2(α2 + 1 ∨ ‖E[z22]‖∞) + 6K2(α2 + 1
M2
‖E[φ2(z2)φ2(z2)T]‖2). (217)

Similarly, by Equation (189), we can write this inequality in terms of 1
M2
‖E[z22]‖1 instead of ‖E[z22]‖∞:

‖E[z21]‖∞ ≤ 6(
√

2 +K)2(α2 + 1 ∨ 1
M2
‖E[z22]‖1) + 6K2(α2 + 1

M2
‖E[φ2(z2)φ2(z2)T]‖2). (218)

Lemma 31. For α = 0 and 1 ≤ ` ≤ L, we have

‖E[z2` ]‖∞ ≤ (γα,M (1 ∨K2))`(1 ∨ 1
Di
‖x‖22), (219)

with γα,M taking the value 2
3 (13 + 2

√
43 ∈ (17, 18) if M ≥ 36 and 2(6 +

√
38) ∈ (24, 25) if 1 ≤M < 36. On the

other hand, for α 6= 0 and 1 ≤ ` ≤ L, we have

α2 + ‖E[z2` ]‖∞ ≤ (γα,M (1 ∨K2))`(α2 + 1 ∨ 1
Di
‖x‖22), (220)

with γα,M taking the value 28 +
√

793 ∈ (56, 57) if M ≥ 36 and 48 +
√

2353 ∈ (96, 97) if 1 ≤M < 36.

Proof of case α = 0. For notational convenience, define a` = 1∨‖E[z2` ]‖∞ and b` = ‖E[φ(z`)φ(z`)
T]‖2. Also take

a0 = 1 ∨ ‖x‖22. Apply Lemma 29 with φ2 given by the identity function and z2 = x. Then

a1 ≤ 2
(

(
√

2 +K)2(1 ∨ 1
Di
‖x2‖1) + 1

Di
K2‖xxT‖2

)
(221)

≤ 2
(

8(1 ∨K)2(1 ∨ 1
Di
‖x‖22) + 1

Di
K2‖x‖22

)
(222)

≤ 18(1 ∨K2)(1 ∨ 1
Di
‖x‖22) (223)

where the second inequality follows from
√

2 +K ≤
√

2(1 +K) ≤ 2
√

2(1 ∨K) and ‖xxT‖2 = ‖x‖22.

By Lemma 29 we have

a` ≤ 2
(

(
√

2 +K)2a`−1 + 1
MK2b`−1

)
. (224)

Further, by Lemma 27, we have

b`−1 ≤ 4
√
M(a`−1 +K2 a`−2). (225)

Combining these estimates yields

a` ≤ 2
(

(
√

2 +K)2a`−1 + 4√
M
K2
(
a`−1 +K2a`−2

)
(226)

≤ 2
(

8(1 ∨K2)a`−1 + 4√
M
K2
(
a`−1 +K2a`−2

))
(227)

≤ (16 + 8√
M

)(1 ∨K2)a`−1 + 8√
M

(1 ∨K4)a`−2. (228)
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Assuming M ≥ 36, we further simplify

a` ≤ (16 + 4
3 )(1 ∨K2)a`−1 + 4

3 (1 ∨K4)a`−2. (229)

We choose M ≥ 36 for convenience when subsequently applying this lemma. We will return to the general case of
M ≥ 1 later. First, notice Equation (229) is a homogeneous second-order linear recurrence relation. By finding
the roots of the characteristic polynomial associated to this recurrence relation,

a` ≤ c0
(
γ(1 ∨K2)

)`
(230)

for some c0 and γ = 2
3 (13 + 2

√
43 ∈ (17, 18), which can be proved by induction. Checking initial conditions, we

see that we can take c0 = 1 ∨ ‖x‖2, yielding the bound

a` ≤
(
γ(1 ∨K2)

)`
(1 ∨ 1

Di
‖x‖22). (231)

On the other hand, if 1 ≤ M < 36, by the same reasoning the bound holds with constant γ = 2(6 +
√

38) ∈
(24, 25).

Proof of case α 6= 0. The proof for the case α 6= 0 proceeds like the case α = 0, but uses Remarks 28 and 30
instead of Lemmas 27 and 29. Analogously define a` = α2 + 1 ∨ ‖E[z2` ]‖∞, a0 = α2 + 1 ∨ ‖x‖22, and b` =
‖E[φ(z`)φ(z`)

T]‖2. To begin with, apply Remark 30 with φ2 given by the identity function and z2 = x:

a1 ≤ α2 + 6(
√

2 +K)2(α2 + 1 ∨ 1
Di
‖x2‖1) + 6K2(α2 + 1

Di
‖xxT‖2) (232)

≤ 48(1 ∨K2)(α2 + 1 ∨ 1
Di
‖x‖22) + 7K2(α2 + ‖x‖22) (233)

≤ 55(1 ∨K2)(α2 + 1 ∨ 1
Di
‖x‖22). (234)

For 1 < ` ≤ L,

a` ≤ α2 + 48(1 ∨K2)a`−1 + 6K2(α2 + 1
M b`−1). (235)

By Remark 28,

b`−1 ≤ 8
√
M(‖E[z2`−1]‖∞ +K2a`−2). (236)

Plugging the expression for b`−1 into the expression for a`,

a` ≤ α2 + 48(1 ∨K2)a`−1 + 6K2(α2 + 8√
M

(‖E[z2`−1]‖∞ +K2a`−2)) (237)

≤ α2 + 48(1 ∨K2)a`−1 + 6(1 ∨ 8M−1/2)K2(α2 + ‖E[z2`−1]‖∞ +K2a`−2) (238)

≤ α2 + 48(1 ∨K2)a`−1 + 6(1 ∨ 8M−1/2)K2(a`−1 +K2a`−2) (239)

≤ α2 + (48 + 6(1 ∨ 8M−1/2))(1 ∨K2)a`−1 + 6(1 ∨ 8M−1/2)(1 ∨K4)a`−2 (240)

≤ (48 + 6(1 ∨ 8M−1/2))(1 ∨K2)a`−1 + (1 + 6(1 ∨ 8M−1/2))(1 ∨K4)a`−2. (241)

As in the α = 0 case, we first consider the case M ≥ 36, giving

a` ≤ 56(1 ∨K2)a`−1 + 9(1 ∨K4)a`−2. (242)

This is again a homogeneous second-order linear recurrence relation. Solving for the roots of the characteristic
polynomial, we find that

a` ≤ c0
(
γ′(1 ∨K2)

)`
, (243)

for some c0 and γ′ = 28 +
√

793 ∈ (56, 57). Comparing with the bound on a1, we see that c0 = α2 + 1∨ 1
Di
‖x‖22.

On the other hand, if 1 ≤M < 36, by the same reasoning the bound holds with γ′ = 48 +
√

2353 ∈ (96, 97).
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Finally, we end with a lemma which can be used to bound the covariance between two post-activations. The
following lemmas in this section are only applied in Appendix G but we include them here because of their
similarity.

Lemma 32. Let φ1, φ2 : R → R be 1-Lipschitz and odd and α ∈ R. Let the triple (W, z2,b) ∈ RM1×M2 ×
RM2 × RM1 be (possibly dependent) random variables such that, for all Rademacher vectors ε ∈ {−1, 1}M1 ,

(W − E[W], z2,b− E[b])
d
= (diag(ε)(W − E[W]), z2, ε ◦ (b− E[b])). (244)

Consider z1 = 1√
M2

W(φ2 + α)(z2) + b. Let m,m′ ∈ [M1], m 6= m′. Then

|E[φ1(z1,m)φ1(z1,m′)]| ≤ 5(‖E[z21]‖1/2∞ +)(α2 + 1 ∨ ‖E[z22]‖∞)2(K ∨K2). (245)

Proof. The proof of this lemma uses exactly the same approach as Lemma 27. Set

z′1 = z1 − 1√
M2

E[W](φ2 + α)(z2)− E[b]. (246)

Consider

|E[φ1(z1,m)φ1(z1,m′)]| ≤
√

E[(φ1(z1,m)− φ1(z′1,m))2]E[φ21(z1,m′)] + |E[φ1(z′1,m)φ1(z1,m′)]| (247)

≤
√
ab+ |E[φ1(z′1,m)φ1(z1,m′)]| (248)

where we denote
a = ‖E[z21]‖∞, b = ‖E[(z1 − z′1)2]‖∞. (249)

Similarly,

|E[φ1(z′1,m)φ1(z1,m′)]| ≤
√

E[φ21(z′1,m)]E[(φ1(z1,m′)− φ1(z′1,m′))
2] + |E[φ1(z′1,m)φ1(z′1,m′)]|. (250)

Now bound
φ21(z′1) � (z′1)2 � 2z21 + 2(z1 − z′1)2, (251)

so √
E[φ21(z′1,m)]E[(φ1(z1,m′)− φ1(z′1,m′))

2] ≤
√

(2a+ 2b)b. (252)

Therefore,

|E[φ1(z1,m)φ1(z1,m′)]| ≤
√
ab+

√
(2a+ 2b)b+

((((((((((
|E[φ1(z′1,m)φ1(z′1,m′)]| (253)

where the expectation on the RHS is zero by the assumed symmetry condition and oddness of φ. Breaking up
the square root, we find that

|E[φ1(z1,m)φ1(z1,m′)]| ≤ (
√

2 + 1)
√
ab+

√
2b. (254)

We finally estimate b:

E[(z1 − z′1)2] � ‖E[W]‖22 1
M2

E[‖(φ2 + α)2(z2)‖2]1 + ‖E[b]‖221. (255)

Therefore

b ≤ ‖E[W]‖2F‖E[(φ2 + α)2(z2)]‖∞ + ‖E[b]‖22 (256)

≤ 2‖E[W]‖2F(α2 + ‖E[z22]‖∞) + ‖E[b]‖22 (257)

≤ 2K2(α2 + 1 ∨ ‖E[z22]‖∞), (258)

which implies that

|E[φ1(z1,m)φ1(z1,m′)]| ≤ ((
√

2 + 1)‖E[z21]‖1/2∞ +
√

2)(
√
b ∨ b), b = 2K2(α2 + 1 ∨ ‖E[z22]‖∞). (259)

Simplify the estimate to get the result:

|E[φ1(z1,m)φ1(z1,m′)]| ≤ 5(‖E[z21]‖1/2∞ +)(α2 + 1 ∨ ‖E[z22]‖∞)2(K ∨K2). (260)
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Lemma 33. Let φ be 1-Lipschitz odd and α ∈ R. Then,

1
M tr

(
EQ[wL+1w

T
L+1](EQ[φ(zL)φ(zL)T]− EP [φ(zL)φ(zL)T])

)
≤ 56+32

√
2√

M
ρLα,ML

1/2K(K2 ∨ 1)L+
1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

)
, (261)

Proof. For convenience, define
A = EQ[φ(zL)φ(zL)T]− EP [φ(zL)φ(zL)T] (262)

Recall ΣQ = EQ[wL+1w
T
L+1]− EQ[wL+1]EQ[wL+1]T. By subtracting and adding EQ[wL+1]EQ[wL+1]T + I, we

have

|tr
(
EQ[wL+1w

T
L+1]A

)
| = |tr

(
(ΣQ − I + EQ[wL+1]EQ[wL+1]T + I)A

)
| (263)

= |tr
(
(ΣQ − I)A + EQ[wL+1]EQ[wL+1]TA + A

)
| (264)

≤ |tr ((ΣQ − I)A)|+ |tr
(
EQ[wL+1]EQ[wL+1]TA

)
|+ |tr (A)|. (265)

We deal with each of the three terms in Equation (265) separately.

Consider the first term in Equation (265), since ΣQ− I = diag(σ2
Q−1) is a diagonal matrix, by Cauchy-Schwarz

|tr ((ΣQ − I)A)| = |〈σ2
Q − 1,EQ[φ2(zL)]− EP [φ2(zL)]〉| (266)

≤ ‖σ2
Q − 1‖2‖EQ[φ2(zL)]− EP [φ2(zL)]‖2 (267)

(i)
≤ ((2 +K)K)

(
8
√

2ρ
L− 1

2
α,M L1/2K(K2 ∨ 1)L−

1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

))
(268)

(ii)
≤ 32

√
2ρ
L− 1

2
α,M L1/2K(K2 ∨ 1)L+

1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

)
, (269)

where in (i) we use Lemma 9 and Lemma 35 (proved later) while in (ii) we use 2 +K ≤ 2(1 +K) ≤ 4(K ∨ 1) =
4(K2 ∨ 1)1/2 and K ≤ K ∨ 1 = (K2 ∨ 1)1/2.

Next, consider the second term in Equation (265), since tr(uvT ) = vTu for u,v ∈ RM ,

|tr
(
EQ[wL+1]EQ[wL+1]TA

)
| = |EQ[wL+1]TAEQ[wL+1]| (270)

≤ ‖EQ[wL+1]‖22‖A‖2 (271)

≤ K2‖A‖2, (272)

where the first inequality follows from Cauchy-Schwarz and the definition of the operator norm while the second
inequality follows from Lemma 9. To bound ‖A‖2, notice by Lemma 36 (proved later), we have

‖EQ[φ(zL)φ(zL)T]‖ ≤ 24
√
M
(
γα,M (K2 ∨ 1)

)L (
α2 + 1 ∨ 1

Di
‖x‖22

)
(273)

and

‖EP [φ(zL)φ(zL)T]‖ ≤ 24
√
M (γα,M )

L
(
α2 + 1 ∨ 1

Di
‖x‖22

)
(274)

≤ 24
√
M
(
γα,M (K2 ∨ 1)

)L (
α2 + 1 ∨ 1

Di
‖x‖22

)
(275)

Therefore, using the triangle inequality,

‖A‖2 ≤ ‖EQ[φ(zL)φ(zL)T]‖2 + ‖EP [φ(zL)φ(zL)T]‖2 (276)

≤ 48
√
M
(
γα,M (K2 ∨ 1)

)L (
α2 + 1 ∨ 1

Di
‖x‖22

)
. (277)

Putting in the bound on ‖A‖2, a bound on the second term in Equation (265) is

|tr
(
EQ[wL+1]EQ[wL+1]TA

)
| ≤ 48

√
MK2

(
γα,M (K2 ∨ 1)

)L (
α2 + 1 ∨ 1

Di
‖x‖22

)
(278)

≤ 48
√
MγLα,MK(K2 ∨ 1)L+

1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

)
, (279)
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where we use K ≤ K ∨ 1 = (K2 ∨ 1)1/2

Finally, consider the third term in Equation (265). We have

tr(A) =
∣∣tr(EQ[φo(zL)φo(zL)T]− EP [φo(zL)φo(zL)T]

)∣∣ (280)

=
∣∣〈1,EQ[φ2o(zL)]− EP [φ2o(zL)]〉

∣∣ (281)

≤ ‖EQ[φ2o(zL)]− EP [φ2o(zL)]‖1 (282)

≤
√
M‖EQ[φ2o(zL)]− EP [φ2o(zL)]‖2 (283)

≤ 8
√

2
√
Mρ

L− 1
2

α,M L1/2K(K2 ∨ 1)L−
1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

)
(284)

where the last inequality follows from Lemma 35.

Here are the three bounds for reference:

32
√

2ρ
L− 1

2
α,M L1/2K(K2 ∨ 1)L+

1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

)
, (285)

48
√
MγLα,MK(K2 ∨ 1)L+

1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

)
, and (286)

8
√

2
√
Mρ

L− 1
2

α,M L1/2K(K2 ∨ 1)L−
1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

)
. (287)

Finally, plugging into Equation (265)

1
M |tr

(
EQ[wL+1w

T
L+1]A

)
| ≤ 56+32

√
2√

M
ρLα,ML

1/2K(K2 ∨ 1)L+
1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

)
, (288)

where we use 1 ≤ γα,M ≤ ρα,M , L ≥ 1, and M ≥ 1.

Lemma 34. Let φ be 1-Lipschitz odd and α ∈ R. Then,

1
M |E[〈w, α1〉〈w, φ(zL)〉]| ≤ 10 |α|√

M
L(2 + |α|+ 1√

Di
‖x‖2)(2 + 2c)L−1K(K ∨ 1)L+1. (289)

Proof. For convenience let w = wL+1. Note that

1
M |E[〈w, α1〉〈w, φ(zL)〉]| = |α|

M |1E[wwT]E[φ(zL)]| (290)

≤ |α|√
M
‖V[w] + E[w]E[w]T‖2‖E[φ(zL)]‖2 (291)

≤ |α|√
M

(‖V[w]‖2 + ‖E[w]E[w]T‖2)‖E[φ(zL)]‖2 (292)

= |α|√
M

(‖Vd[w]‖∞ + ‖E[w]‖22)‖E[φ(zL)]‖2. (293)

Using Lemma 9,
‖Vd[w]‖∞ + ‖E[w]‖22 ≤ σ2

max +K2 ≤ (1 +K)2 +K2 ≤ 5(K ∨ 1)2. (294)

Therefore, using Lemma 13,

1
M |E[〈w, α1〉〈w, φ(zL)〉]| ≤ 10 |α|√

M
L(2 + |α|+ 1√

Di
‖x‖2)(2 + 2c)L−1K(K ∨ 1)L+1 (295)

E.2 Diagonal Terms

The main technical result needed for bounding the difference in the diagonal terms is the following bound on
the Frobenius norm between the difference between these matrices.

Lemma 35. We have,

‖EQ[φo(zL)2]− EP [φo(zL)2]‖2 ≤ 8
√

2ρ
L− 1

2
α,M L1/2K(K2 ∨ 1)L−

1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

)
, (296)
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where K =
√

2 KL(Q,P ) and

ρα,M =


12(2 +

√
2π) ∈ (54, 55) α = 0,M < 36

2
3 (13 + 2

√
43) ∈ (17, 18) α = 0,M ≥ 36

28 +
√

793 ∈ (56, 57) α 6= 0,M < 36

48 +
√

2353 ∈ (96, 97) α 6= 0,M ≥ 36.

(297)

Proof. We would like to combine the two expectations into a single expectation. To do this, we couple φ(z`)
2

under P and Q by using the reparameterization trick and having them share the same noise. In particular, for
2 ≤ ` ≤ L, define

zP` = 1√
M
Eφo(zP`−1) + α√

M
E1 + ε, (298)

zQL = 1√
M

(SQ` ◦ E + MQ
` )φo(zQ`−1) + α√

M
(SQ` ◦ E + MQ

` )1 + (sQ` ◦ ε+ mQ
` ). (299)

where E is a matrix of i.i.d. standard Gaussian random variables, ε is a vector of i.i.d. standard Gaussian random
variables, MQ

L is a matrix consisting of the mean of each weight in layer L under Q, mQ
L is vector consisting of

the mean of each bias in layer L under Q, SQL and sQL are a matrix and vector containing the standard deviations
of each weight or bias respectively in layer L under Q. We then can rewrite,

‖EQ[φo(zL)2]− EP [φo(zL)2]‖2 = ‖E[φo(zQL )2 − φo(zPL )2]‖2 (300)

=

√√√√ M∑
m=1

(
E[(φo(zQm,L) + φo(zPm,L))(φo(zQm,L)− φo(zPm,L)))]

)2
(301)

≤

√√√√ M∑
m=1

E[(φo(zQm,L) + φo(zPm,L))2]E[(φo(zQm,L)− φo(zPm,L))2] (302)

≤
√∥∥∥E[(φo(zQL ) + φo(zPL ))2]

∥∥∥
∞

√√√√ M∑
m=1

E[(φo(zQm,L)− φo(zPm,L))2] (303)

=

√
‖E[(φo(zQL ) + φo(zPL ))2]‖∞

√
E[‖φo(zQL )− φo(zPL )‖22] (304)

≤
√
‖E[(φo(zQL ) + φo(zPL ))2]‖∞

√
E[‖zQL − zPL‖22] (305)

The first inequality is an element-wise application of Cauchy-Schwarz viewing the expectation as an inner product,
the second inequality is a bound of the form

∑
|aibi| ≤ sup |ai|

∑
|bi|, and the third inequality uses the Lipschitz

property of φo. We next bound the square of each of the two terms in Equation (305).

Bounding ‖E[(φo(zQL ) +φo(zPL ))2]‖∞. Using the inequality (a1 +a2)2 ≤ 2(a21 +a22) and the triangle inequality
we have

‖E[(φo(zQL ) + φo(zPL ))2]‖∞ ≤ ‖E[2φ2o(zQL ) + 2φ2o(zPL )]‖∞ (306)

≤ 2‖E[φ2o(zQL )]‖∞ + 2‖E[φ2o(zPL )]‖∞ (307)

≤ 2‖E[(zQL )2]‖∞ + 2‖E[(zPL )2]‖∞, (308)

where the last inequality follows from the oddness and Lipschitz property of φo:

‖E[φ2o(zQL )]‖∞ = ‖E[(φo(zQL )− φo(0))2]‖∞ ≤ ‖E[(zQL )2]‖∞. (309)

Likewise, ‖E[φ2(zPL )]‖∞ ≤ ‖E[(zPL )2]‖∞. We can upper by applying Lemma 31 to each of the two terms:

‖EQ[(zL)2]‖∞ ≤
(
γα,M (K2 ∨ 1)

)L (
α2 + 1 ∨ 1

Di
‖x‖22

)
− α2 (310)
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and

‖EP [(zL)2]‖∞ ≤ γLα,M
(
α2 + 1 ∨ 1

Di
‖x‖22

)
− α2. (311)

Therefore, the first term in Equation (305) is upper bounded by

‖E[(φo(zQL ) + φo(zPL ))2]‖∞ ≤ 2γLα,M ((K2 ∨ 1)L + 1)(α2 + 1 ∨ 1
Di
‖x‖22)− 4α2 (312)

≤ 4γLα,M (K2 ∨ 1)L(α2 + 1 ∨ 1
Di
‖x‖22), (313)

where we use that (K2 ∨ 1)L + 1 ≤ 2(K2 ∨ 1) and drop the −4α2 term for simplicity later on.

Bounding E[‖zQL − zPL‖22] It remains to upper bound the second term in Equation (305). To do so, we will
setup a linear, non-homogenous recursion relation. To start, notice for 2 ≤ ` ≤ L, by adding and subtracting
Eφo(zQ`−1) and then applying the triangle inequality, we have

‖zQ` − zP` ‖2 ≤ 1√
M
‖SQ` ◦ E + MQ

` − E‖2‖φo(zQ`−1)‖2 + α‖SQ` ◦ E + MQ
` − E‖2

+ 1√
M
‖E‖2‖φo(zQ`−1)− φo(zP`−1)‖2 + ‖sQ` ◦ ε+ mQ

` − ε‖2,
(314)

where we note that ‖1‖2 =
√
M cancels the 1√

M
term in the second term. To obtain a tighter bound, we

consider the cases of α = 0 and α 6= 0 separately by defining cα = 3 if α = 0 and cα = 4 if α 6= 0. Then, for
any a1, a2, a3, a4 ∈ R, we have (a1 + a2 + a3 + αa4)2 ≤ cα(a21 + a22 + a23 + α2a24). Applying this expression to
Equation (314), squaring both sides, and then taking the expectation we have

E[‖zQ` − zP` ‖22] ≤ cαM E[‖SQ` ◦ E + MQ
` − E‖22]E[‖φo(zQ`−1)‖22] + cαα

2E[‖SQ` ◦ E + MQ
` − E‖22]

+ cα
M E[‖E‖22]E[‖φo(zQ`−1)− φo(zP`−1)‖22] + cαE[‖sQ` ◦ ε+ mQ

` − ε‖
2
2].

(315)

We now turn to bounding each of the terms in Equation (315). First, by Lemma 26,

1
ME[‖E‖22] ≤ ηM . (316)

Next, we have

‖SQ` ◦ E + MQ
` − E‖2 ≤ ‖SQ` ◦ E + MQ

` − E‖F (317)

≤ ‖SQ` ◦ E − E‖F + ‖MQ
` ‖F (318)

=⇒ E[‖SQ` ◦ E + MQ
` − E‖22] ≤ 2E[‖SQ` ◦ E − E‖2F + 2E[‖MQ

` ‖
2
F]. (319)

We can then bound each term by KL(Q,P ). To do this, first notice we can write

E[‖SQ` ◦ E − E‖2F] = E

[∑
m

∑
m′

(σQ` − 1)2ε2m,m′

]
=
∑
m

∑
m′

(σQ` − 1)2E
[
ε2m,m′

]
=
∑
m

∑
m′

(σQ` − 1)2. (320)

By an application of Lemma 9, we then have,

E[‖SQ` ◦ E − E‖2F] ≤ K2 and E[‖MQ
` ‖

2
F] ≤ K2, (321)

where, as before, K =
√

2 KL(Q,P ). Therefore, we obtain

E[‖SQ` ◦ E + MQ
` − E‖22] ≤ 4K2.

We can apply an identical argument to ‖sQ` ◦ ε+ mQ
` − ε‖2 to conclude that

E[‖sQ` ◦ ε+ mQ
` − ε‖

2
2] ≤ 4K2. (322)

Finally, we have that

E[‖φo(zQ`−1)‖22] = E

[
M∑
m=1

φ2o(zQ`−1,m)

]
=

M∑
m=1

E[φ2o(zQ`−1,m)] ≤M‖E[φ2o(zQ`−1)]‖∞ ≤M‖E[(zQ`−1)2]‖∞, (323)



Beau Coker∗1, Wessel P. Bruinsma∗23, David R. Burt∗2, Weiwei Pan1, Finale Doshi-Velez1

where the last inequality follows from the oddness and Lipschitzness of φo. Dividing byM and applying Lemma 31
to the last expression, we can conclude that

1
ME[‖φo(zQ`−1)‖22] ≤

(
γα,M (K2 ∨ 1)

)`−1 (
α2 + 1 ∨ 1

Di
‖x‖22

)
− α2. (324)

We now plug these expressions into Equation (314), noting the cancellation of α2 terms, to obtain

E[‖zQ` − zP` ‖22] ≤ 4cαK
2
((
γα,M (K2 ∨ 1)

)`−1 (
α2 + 1 ∨ 1

Di
‖x‖22

)
+ 1
)

+ cαηM E[‖zQ`−1 − zP`−1‖22]. (325)

We now set up the recursion, with base case

E[‖zQ1 − zP1 ‖22] ≤ 4cαK
2
((
α2 + 1 ∨ 1

Di
‖x‖22

)
+ 1
)
. (326)

Taken together, Equation (325) and Equation (326) define a linear, non-homogeneous recursion in E[‖zQ` −zP` ‖22]
with variable coefficients. By unrolling the recursion, we find that3

E[‖zQL − zPL‖22] ≤
L∑
`=1

(cαηM )L−`
(

4cαK
2
((
γα,M (K2 ∨ 1)

)`−1 (
α2 + 1 ∨ 1

Di
‖x‖22

)
+ 1
))

(327)

≤ (cαηM ∨ γα,M )L−14cαK
2

L∑
`=1

(K2 ∨ 1)`−1
(
α2 + 1 ∨ 1

Di
‖x‖22 + 1

)
, (328)

where in the second inequality we factor out (γα,M (K2 ∨ 1))`−1 (which is possible since it is greater than 1) and
then combine (4c)L−`γ`−1α,M ≤ (4c ∨ γα,M )L−1. We can bound the sum by L times the largest term in the sum,

which is the ` = L term since K2 ∨ 1 ≥ 1:

E[‖zQL − zPL‖22] ≤ L
[
(cαηM ∨ γα,M )L−14cαK

2(K2 ∨ 1)L−1
(
α2 + 1 ∨ 1

Di
‖x‖22 + 1

)]
(329)

≤ 32(cαηM ∨ γα,M )L−1LK2(K2 ∨ 1)L−1
(
α2 + 1 ∨ 1

Di
‖x‖22

)
(330)

where the second inequality uses that 1∨ 1
Di
‖x‖22 + 1 ≤ 2(1∨ 1

Di
‖x‖22) and cα ≤ 4. Define ρα,M = cαηM ∨ γα,M .

Recall from Lemma 26 that ηM ∈ (5, 19) depends on if M ≥ 36. Recall also from Lemma 31 that γα,M ∈ (17, 97)
depends if M ≥ 36 and if α = 0. Comparing cases, we see

ρα,M =


12(2 +

√
2π) ∈ (54, 55) α = 0,M < 36

2
3 (13 + 2

√
43) ∈ (17, 18) α = 0,M ≥ 36

28 +
√

793 ∈ (56, 57) α 6= 0,M < 36

48 +
√

2353 ∈ (96, 97) α 6= 0,M ≥ 36.

(331)

Notice ρα,M is equal to γα,M except in the case of α = 0 and M < 36.

E[‖zQL − zPL‖22] ≤ 32ρL−1α,MLK
2(K2 ∨ 1)L−1

(
α2 + 1 ∨ 1

Di
‖x‖22

)
. (332)

Combining terms. Plugging Equations (313) and (332) into Equation (305) and simplifying we have

‖EQ[φo(zL)2]− EP [φo(zL)2]‖2 ≤ 8
√

2ρ
L− 1

2
α,M L1/2K(K2 ∨ 1)L−

1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

)
. (333)

3Suppose that xn ≤ bn + axn−1 for n ≥ 2 and x1 ≤ b1. We then show that xn ≤
∑n

n′=1 a
n−n′bn for all n ≥ 1. For

the base case, note that the case n = 1 is true because x1 ≤ b1 For the induction step, suppose that the case n ∈ N is

true. Then xn+1 ≤ bn+1 + a
∑n

n′=1 a
n−n′bn ≤ an+1−(n+1)bn+1 +

∑n
n′=1 a

n+1−n′bn =
∑n+1

n′=1 a
n+1−n′bn, so the case n + 1

is also true. We conclude that xn ≤
∑n

n′=1 a
n−n′bn for all n ≥ 1.
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Given this lemma, we can succinctly prove Lemma 24.

Proof of Lemma 24. We have

|Di
Q −Di

P | =
1

M

∣∣tr((ΣQ − I)EQ[φo(zL)φo(zL)T] + (EQ[φo(zL)φo(zL)T]− EP [φo(zL)φo(zL)T])
)∣∣ (334)

≤ 1
M

∣∣tr((ΣQ − I)EQ[φo(zL)φo(zL)T]
)∣∣+ 1

M

∣∣tr(EQ[φ(zL)φo(zL)T]− EP [φo(zL)φo(zL)T]
)∣∣ (335)

Next we bound each of the two terms in Equation (335) separately, starting with the first term. First, note that
ΣQ − I is a diagonal matrix and let σ2 = diag(ΣQ). Since the trace of a matrix product is the element-wise
inner product of the matrices, the first term in Equation (335) becomes∣∣tr((ΣQ − I)EQ[φo(zL)φo(zL)T]

)∣∣ =
∣∣〈σ2

Q − 1,EQ[φ2o(zL)]]〉
∣∣ (336)

≤ ‖σ2
Q − 1‖1‖EQ[φ2o(zL)]‖∞ (337)

≤
√
M‖σ2

Q − 1‖2‖EQ[φ2o(zL)]‖∞ (338)

where the first inequality is an application of Hölder’s inequality. Now ‖σ2
Q − 1‖2 ≤ (2 +K)K by Lemma 9

(iv.), where K =
√

2 KL(Q,P ). To upper bound ‖EQ[φ2(zL)]‖∞, notice we can use the oddness and Lipschitz
property of φo to write

‖E[φ2o(zQL )]‖∞ = ‖E[(φo(zQL )− φo(0))2]‖∞ ≤ ‖E[(zQL )2]‖∞. (339)

We can upper bound this using Lemma 31:

‖EQ[(zL)2]‖∞ ≤
(
γα(K2 ∨ 1)

)L (
α2 + 1 ∨ 1

Di
‖x‖22

)
. (340)

Therefore, the first term in Equation (335) is upper bounded by∣∣tr((ΣQ − I)EQ[φo(zL)φo(zL)T]
)∣∣ ≤ √M (2 +K)K

(
γα(K2 ∨ 1)

)L (
α2 + 1 ∨ 1

Di
‖x‖22

)
(341)

≤
√
MγLαK

(
K2 ∨ 1

)L+1
2
(
α2 + 1 ∨ 1

Di
‖x‖22

)
, (342)

where we use that K + 2 ≤ 3(K2 ∨ 1)1/2 in the second inequality.

The second term in Equation (335) can be upper bounded by∣∣tr(EQ[φo(zL)φo(zL)T]− EP [φo(zL)φo(zL)T]
)∣∣ =

∣∣〈1,EQ[φ2o(zL)]− EP [φ2o(zL)]〉
∣∣ (343)

≤ ‖EQ[φ2o(zL)]− EP [φ2o(zL)]‖1 (344)

≤
√
M‖EQ[φ2o(zL)]− EP [φ2o(zL)]‖2 (345)

≤
√
M8
√

2ρ
L− 1

2
α,M L1/2K(K2 ∨ 1)L−

1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

)
(346)

where the last inequality follows from Lemma 35.

Plugging the bounds on both terms into Equation (335) and simplifying we have

|Di
Q(x)−Di

P (x)| ≤ 1+8
√
2√

M
ρLα,ML

1/2K(K2 ∨ 1)L+
1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

)
(347)

≤ 16+
√
2√

M
ρLα,ML

1/2 KL(Q,P )1/2(2 KL(Q,P ) ∨ 1)L+
1
2

(
α2 + 1 ∨ 1

Di
‖x‖22

)
(348)

where we use 1 ≤ L1/2, ρ
L− 1

2
α,M ≤ ρLα,M , γα,M ≤ ρα,M , and (K2 ∨ 1)L−

1
2 ≤ (K2 ∨ 1)L+

1
2 to more simply group the

terms.
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E.3 Off-Diagonal Terms

The key result in bounding the off-diagonal is an upper bound on the operator norm of the last layer outer
product.

Lemma 36.
‖EQ[φo(zL(x))φo(zL(x))T]‖2 ≤ 24

√
M
(
γα,M (K2 ∨ 1)

)L (
α2 + 1 ∨ 1

Di
‖x‖22

)
, (349)

where K =
√

KL(Q,P ) and γα,M ∈ (17, 97) is defined in Lemma 31.

Proof. By Remark 28,

‖EQ[φo(zL(x))φo(zL(x))T]‖2 ≤ 12
√
M
(
‖E[z2L]‖∞ +K2

(
(α2 + ‖E[z2L−1]‖∞) ∨ 1

))
. (350)

Note that in the α = 0 case we could save a factor of 2 by instead applying Lemma 27, but for simplicity we
consider any α ∈ R here. We could also reduce the constant by separately considering the case of M ≥ 3 but we
do not for simplicity. We now upper bound each of the two terms above. By Lemma 31,

α2 + ‖E[(zL)2]‖∞ ≤
(
γα,M (K2 ∨ 1)

)L (
α2 + 1 ∨ 1

Di
‖x‖22

)
. (351)

Similarly,

K2
(
(α2 + ‖E[z2L−1]‖∞) ∨ 1

)
≤ K2

((
γα,M (K2 ∨ 1)

)L−1 (
α2 + 1 ∨ 1

Di
‖x‖22

)
∨ 1
)

(352)

≤ (K2 ∨ 1)
(
γα,M (K2 ∨ 1)

)L−1 (
α2 + 1 ∨ 1

Di
‖x‖22

)
(353)

≤
(
γα,M (K2 ∨ 1)

)L (
α2 + 1 ∨ 1

Di
‖x‖22

)
, (354)

where we use that γα,M ≥ 1 in the last two inequalities. Adding the two terms together in Equation (350),
noting that we drop the α2 term in the Equation (351) to more simply group the terms, we have

|EQ[φo(zL(x))φo(zL(x))T]‖2 ≤ 24
√
M
(
γα,M (K2 ∨ 1)

)L (
α2 + 1 ∨ 1

Di
‖x‖22

)
. (355)

Given Lemma 36, we can prove Lemma 25 using the definition of operator norm.

Proof of Lemma 25. We have

|OiQ(x)| = 1

M
|EQ[wL+1]TEQ[φo(zL)φo(zL)T]EQ[wL+1]| ≤ 1

M
‖EQ[wL+1]‖22‖EQ[φo(zL)φo(zL)T]‖2, (356)

by the definition of the operator norm. Lemma 9 tells us that ‖EQ[wL+1]‖22 ≤ K2 = 2 KL(Q,P ). Combining
this estimate with Lemma 36 gives

|OiQ(x)| ≤ 1
M

(
K2
) (

24
√
M
(
γα,M (K2 ∨ 1)

)L (
α2 + 1 ∨ 1

Di
‖x‖22

))
(357)

≤ 48√
M

KL(Q,P ) (γα,M (2 KL(Q,P ) ∨ 1))
L
(
α2 + 1 ∨ 1

Di
‖x‖22

)
. (358)

F Quantitative Bounds on the KL divergence for General Likelihoods

The sketch of the proof given to upper bound KL(Q∗, P ) in the main text relied on that any convergent sequence
is bounded. Unfortunately, this is not quantitative, in that it does not allow an upper bound on a computable
upper bound on KL(Q∗, P ). In this section, we show how a modification of the approach described in Section 4.4
can yield a computable upper bound on KL(Q∗, P ).

We take the same assumptions as in Section 4.4:
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(i) The likelihood factorizes over data points, i.e. logL(θ) =
∑N
n=1 log p(yn|fθ(xn)), for some function p;

(ii) there exists a C such that log p(yn|fθ(xn)) ≤ C;

(iii) for any fixed yn, log p(yn|fθ(xn)) can be lower bounded by a quadratic function in fθ(xn).

Also, the proof follows the same initial approach: by the optimality of Q∗, we have

0 ≤ ELBO(Q∗)− ELBO(P ) (359)

= Eθ∼Q∗ [logL(θ)]−KL(Q∗, P )− Eθ∼P [logL(θ)]. (360)

Rearranging and using the assumptions on logL(θ),

KL(Q∗, P ) ≤ Eθ∼Q∗ [logL(θ)]− Eθ∼P [logL(θ)] (361)

≤CN−Eθ∼P [
∑N
n=1log p(yn|fθ(xn))] (362)

≤CN−Eθ∼P [
∑N
n=1 hn(fθ(xn))] (363)

where hn is quadratic. Since hn is quadratic, EP [hn(fθ(xn))] is a linear combination of the first and second
moments of fθ(xn). As the top layer weight matrix has mean 0, EP [fθ(xn)] = 0 independent of width. We
therefore need only to upper bound EP [fθ(xn)2] independent of width.

It suffices to prove this in the case Do = 1. In the general case, the resulting bound can simply be summed over
output dimension. For the variance, note that

V[f(x)] = 1
MV[〈wL+1, φ(zL)〉] + V[bL+1] (364)

= 1
ME[tr[wL+1w

T
L+1φ(zL)φT(zL)]] + 1 (365)

= 1
ME[‖φ(zL)‖22] + 1 (366)

≤ 1
ME[‖zL‖22] + 1. (367)

Similarly,

1
ME[‖z`‖22] = 1

M2E[tr[W`W
T
` φ(z`−1)φT(z`−1)]] + 1

ME[‖b`‖22] (368)

= 1
ME[‖φ(z`−1)‖22] + 1 (369)

≤ 1
ME[‖z`−1‖22] + 1. (370)

Therefore,
V[f(x)] ≤ L+ 1 + 1

Di
‖x‖22. (371)

Example 37 (Gaussian Likelihood). Consider a Gaussian likelihood so that,

log p(yn|f(xn)) = − log 2πσ2 − 1
2σ2 (y − f(xn))2. (372)

We then have log p(yn|f(xn)) ≤ − log 2πσ2 =: C. Also,

EP [log p(yn|f(xn))] = CN −
∑N
n=1 y

2
n + V[f(xn)]

2σ2
(373)

Hence by Equation (371),

KL(Q∗, P ) ≤
(L+ 1)N +

∑N
n=1 y

2
n + ‖xn‖22

2σ2
. (374)

Example 38 (Student t likelihood). For a Student t likelihood (used in robust regression) with ν > 0 degrees
of freedom, we have

log p(yn|f(xn)) = c(ν)− ν + 1

2
log

(
1 +

(f(xn)− yn)2

ν

)
. (375)

As the second term is non-negative, this is upper bounded by c(ν). Applying log(1 + a) ≤ a, we have

log p(yn|f(xn)) ≥ c(ν)− ν + 1

2

(f(xn)− yn)2

ν
(376)

which provides the desired quadratic lower bound.
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Example 39 (Logistic likelihood). For a logistic likelihood, we have

log p(yn|f(xn)) = yn log

(
1

1 + e−f(xn)

)
+ (1− yn) log

(
e−f(xn)

1 + e−f(xn)

)
(377)

As both terms are non-positive, we have log p(yn|f(xn)) ≤ 0. As g(a) = log(1+e−a) is three times differentiable,
we have that for any a ∈ R, there exists a ξa ∈ R such that,

log(1 + e−a) = log 2− a

2
+
a2

8
+
g(3)(ξa)

3!
a3. (378)

As sign(g(3)(ξa)) = sign(ξa) = sign(a) = sign(a3), the final term is non-negative, so

log(1 + e−a) ≤ log 2− a

2
+
a2

8
. (379)

Hence

log p(yn = 1|f(xn)) ≥ − log 2 +
f(xn)

2
− f(xn)2

8
and (380)

log p(yn = 0|f(xn)) = log p(yn = 1|f(xn))− f(xn) ≥ − log 2− f(xn)

2
− f(xn)2

8
. (381)

G Proof of Convergence in Distribution of Finite Marginals of the Variational
Posterior for Odd Activation Functions

In this section we derive a generalization of Theorem 1 that incorporates a bias.

Theorem 40. Consider N one-dimensional data points (xn, yn)Nn=1 (Di ∈ N and Do = 1) and let y be the
average of the observed values. Let Q∗ be the optimal mean-field variational posterior for a neural network with
L hidden layers and M neurons per hidden layer. Suppose φe = α for some α ∈ R and φ : R→ R is 1-Lipschitz.
Also suppose that the likelihood is Gaussian with variance parameter σ2. Then, along any finite-dimensional
distribution, as M →∞, f ∼ Q∗ converges weakly to the sum of the NNGP and an independent Gaussian with
distribution

N

((
β × 1 + (1− β)× 1

1 + α2 + σ2

N

)
y,

σ2

σ2 +N

)
where β =

α2

α2 + σ2

N

. (382)

Observe that the mean of the independent Gaussian is a convex combination of the maximum likelihood solution
y of fitting a univariate Gaussian to the data and the posterior mean (1 + α2 + σ2/N)−1y of observing the data
as noisy observations for the final bias with noise variance σ2 +Nα2. The coefficient of the convex combination,
β ∈ [0, 1), measures the strength of α relative to the observation noise and number of observations. As α→∞,
the mean converges to the maximum likelihood solution; and as α → 0, the mean converges to the posterior
mean.

Proof. The proof conceptually proceeds in two steps. In the first conceptual step, we show that the parameters
of all layers but the last layer converge to the prior. Intuitively, this means that the overall solution converges
to mean-field inference in the Bayesian linear regression model with features x 7→ E[φ(zL,m)(x)]. In the second
conceptual step, we show that this mean-field solution of the Bayesian linear regression model converges to the
prior, thereby completing the proof. Whereas conceptually the proof proceeds in two steps, below we split up
these two steps into six steps, as follows:

Step 1: We prove that the parameters of the hidden layers converge to the prior.

Step 2: By assuming two claims, Claim 1 and Claim 2, we almost conclude the proof. It only remains to
compute the limiting distribution of the final bias.

Step 3: We prove Claim 1.

Step 4: Using Claim 1, we compute the limiting distribution of the final bias.
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Step 5: Using Claim 1 and the limiting distribution of the final bias, we prove Claim 2.

Step 6: We reconcile Step 2 with the limiting distribution of the bias to finally conclude the proof.

Throughout the proof and unlike in the theorem statement, we do not incorporate α in φ, but write φα = φ+α
for the version of φ that does include α. Moreover, we write θL+1 for the parameters of the final layer and
let θ1:L be all remaining parameters, so θ = (θL+1,θ1:L). We decompose the parameters of the final layer as
θL+1 = (wL+1, bL+1), so also θ = (wL+1, bL+1,θ1:L).

We will consider the limits M →∞ and KL→ 0. Using results from earlier sections in the appendix, we establish
the following bounds which ignore proportionality constants irrelevant for the limits M →∞ and KL→ 0:

‖EQ[φ(zL+1)]‖2
(Lemma 13)

.
√

KL(Qθ1:L
, Pθ1:L

), (383)

|EQ[ 1√
M
〈wL+1, φ(zL+1)〉]|

(Theorem 11)

. 1√
M

KL(QwL+1,θ1:L
, PwL+1,θ1:L

), (384)

|EQ[bL+1]|
(Lemma 9)

.
√

KL(QbL+1
, PbL+1

), (385)

1
M ‖EQ[φ(zL)φ(zL)T]‖2

(Lemma 36)

. 1√
M
, (386)

‖EQ[φα(zL)2]‖∞
(Lemma 31)

. 1, (387)

|EQ[φ(zL,m)φ(zL,m′)]|
(Lemmas 31 and 32, m 6= m′)

.
√

KL(Qθ1:L
, Pθ1:L

), (388)

1
M |tr

(
EQ[wL+1w

T
L+1](EQ[φ(zL)φ(zL)T]−EP [φ(zL)φ(zL)T])

)
|
(Lemma 33)

. 1√
M

√
KL(QwL+1,θ1:L

,PwL+1,θ1:L
), (389)

1
M |E[〈wL+1, α1〉〈wL+1, φ(zL)〉]|

(Lemma 34)

. 1√
M

√
KL(QwL+1,θ1:L

, PwL+1,θ1:L
). (390)

Recall that any KL divergence between parameters of an optimal variational posterior and the prior is bounded
uniformly over M (Appendix F). This means, e.g., that the mean of any weight of any variational posterior can
be considered as an unknown but bounded constant (Appendix C).

Step 1 (convergence of hidden layers). Let P be the prior and let Q∗ be the optimal mean-field posterior.
Decompose the KL divergence as follows:

KL(Q∗, P ) = KL(Q∗θL+1
, PθL+1

) + KL(Q∗θ1:L
, Pθ1:L

) = EQ∗ [log p(y |θ)]− ELBO(Q∗). (391)

Let Q′ be the modification of Q∗ where the distribution of θ1:L is set to the prior. Then

KL(Q∗θ1:L
, Pθ1:L

) = EQ∗ [log p(y |θ)]− ELBO(Q∗)−KL(Q∗θL+1
, PθL+1

) (392)

= EQ∗ [log p(y |θ)]− ELBO(Q∗) + ELBO(Q′)− EQ′ [log p(y |θ)]. (393)

Therefore, by optimality of Q∗,

KL(Q∗θ1:L
, Pθ1:L

)

≤ EQ∗ [log p(y |θ)]− EQ′ [log p(y |θ)] (394)

= − 1

2σ2

N∑
n=1

(EQ∗ [(yn − f(xn))2]− EQ′ [(yn − f(xn))2]) (395)

= − 1

2σ2

N∑
n=1

(EQ∗ [f2(xn)− 2ynf(xn)]− EQ∗ [EP [f2(xn)− 2ynf(xn) |θL+1]]) (396)

≤ 1

2σ2

N∑
n=1

(
|EQ∗ [f2(xn)− EP [f2(xn) |θL+1]]|+ 2|yn||EQ∗ [f(xn)− EP [f(xn) |θL+1]]|

)
. (397)
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Define b̃ = 1√
M
〈wL+1, α1〉 + bL+1 and let f̃(xn) = f(xn) − b̃. Note that b̃ is σ(θL+1)-measurable (i.e. b̃ is

deterministic after conditioning on the top layer parameters). Rearrange as

EQ∗ [f2(xn)− EP [f2(xn) |θL+1]]

= EQ∗ [f̃2(xn) + 2b̃f̃(xn) + b̃2 − EP [f̃2(xn) + 2b̃f̃(xn) + b̃2 |θL+1]] (398)

= EQ∗ [f̃2(xn)− EP [f̃2(xn) |θL+1]] + 2EQ∗ [b̃(f̃(xn)− EP [f̃(xn) |θL+1])]. (399)

This gives

KL(Q∗θ1:L
, Pθ1:L

)

≤ 1

2σ2

N∑
n=1

(
|EQ∗ [f̃2(xn)− EP [f̃2(xn) |θL+1]]|+ 2|yn||EQ∗ [f̃(xn)− EP [f̃(xn) |θL+1]]|

+ 2 |EQ∗ [b̃(f̃(xn)− EP [f̃(xn) |θL+1])]|
)
. (400)

By oddness of φ, it can be seen that EP [f̃(xn) |θL+1] = 0. Therefore,

KL(Q∗θ1:L
, Pθ1:L

)

≤ 1

2σ2

N∑
n=1

(
|EQ∗ [f̃2(xn)− EP [f̃2(xn) |θL+1]]|+ 2|yn||EQ∗ [f̃(xn)]|+ 2|EQ∗ [b̃f̃(xn)]|

)
. (401)

Here

EQ∗ [f̃2(xn)− EP [f̃2(xn) |θL+1]] = 1
M trEQ∗ [wL+1w

T
L+1](EQ∗ [φ(zL)φ(zL)T]− EP [φ(zL)φ(zL)T]), (402)

which is O(1/
√
M) by Equation (389), and

|EQ∗ [b̃f̃(xn)]| ≤ |EQ∗ [bL+1]||EQ∗ [f̃(xn)]|+ 1
M |EQ∗ [〈wL+1, α1〉〈wL+1, φ(zL)〉]|, (403)

which is O(1/
√
M) by Equations (384) and (385) applied to the first term and Equation (390) applied to the

second term. Therefore, KL(Q∗θ1:L
, Pθ1:L

) = O(1/
√
M).

Step 2 (beginning of conclusion of proof). Let

dM =

N∑
n=1

(yn − EQ∗ [bL+1]). (404)

Although dM depends on Q∗bL+1
which in turn depends on M , note that EQ∗ [bL+1] and therefore dM can be

treated like unknown but bounded constants. Set cM = αdM
α2N+σ2 . We make two claims:

KL(Q∗
wL+1−

cM√
M

1
, PwL+1

)→ 0, (Claim 1)

cM → c∞ (Claim 2)

where Q∗
wL+1−

cM√
M

1
is the distribution of wL+1 − cM√

M
1 under Q∗ and c∞ ∈ R is some constant. The claims will

be proven in the next parts. Assuming the claims, denote w′L+1 = wL+1− cM√
M

1 and φα = φ+α and decompose

1√
M
〈wL+1, φα(zL)〉 = 1√

M
〈w′L+1, φα(zL)〉+ cM

M 〈1, φα(zL)〉. (405)

By Chebyshev’s inequality, we have cM
M 〈1, φ(zL)〉 → 0 in probability under Q∗:

EQ∗ [ 1
M 〈1, φ(zL)〉] ≤ 1√

M
‖EQ∗ [φ(zL)]‖2 (406)

VQ∗ [ 1
M 〈1, φ(zL)〉] = 1

M2 〈1,EQ∗ [φ(zL)φ(zL)T]1〉 − 1
M2 〈1,EQ∗ [φ(zL)]〉2 (407)

≤ 1
M ‖EQ∗ [φ(zL)φ(zL)T]‖2 + 1

M ‖EQ∗ [φ(zL)]‖22, (408)
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which are both O(1/
√
M) using Equations (383) and (386). Since cM

M 〈1, φ(zL)〉 → 0 in probability,
cM
M 〈1, φα(zL)〉 = cM

M 〈1, φ(zL)〉+ αcM → αc∞ in probability by Claim 2.

Suppressing the dependence on x, define gθ = 1√
M
〈w′L+1, φα(zL)〉 and note that it is a deterministic function

of (w′L+1,θ1:L). Also write fθ = 1√
M
〈wL+1, φα(zL)〉 and note that it the same deterministic function of

(wL+1,θ1:L). (That it is the same deterministic function will allow us to use the data processing inequality

below.) Let I ∈ N and X = (x1, . . . ,xI) ∈ (RDi)I . Let Q
(M)
g be the finite-dimensional distribution of g at

X under the optimal mean-field solution Q∗ at width M and let P
(M)
f be the finite-dimensional distribution

of f at X under the prior P at width M . Using Pinsker’s inequality and the data processing inequality for
KL-divergences we have

TV(Q(M)
g , P

(M)
f ) ≤

√
1
2 KL(Q

(M)
g , P

(M)
f ) ≤

√
1
2 KL(Q

(M)
w′L+1,θ1:L

, P
(M)
wL+1,θ1:L

), (409)

which goes to zero as M →∞ by the previous part and Claim 1. Let d be the Lévy–Prokhorov metric on RI with
the Borel σ-algebra. Since RI is separable, the Lévy–Prokhorov metric metrizes weak convergence. Moreover,
since RI is separable, the Lévy–Prokhorov metric is upper bounded by the total variation distance. By triangle

inequality we then bound the distance between Q
(M)
g and the NNGP, which we denote by PNN:

d(Q(M)
g , PNN) ≤ d(Q(M)

g , P
(M)
f ) + d(P

(M)
f , PNN) ≤ TV(Q(M)

g , P
(M)
f ) + d(P

(M)
f , PNN). (410)

As M →∞, the first term converges to zero by Equation (409) and the second term converges to zero because

P
(M)
f converges to the NNGP (Matthews et al., 2018). Hence, Q

(M)
g converges weakly to the NNGP, PNN.

Since f = g + cM
M 〈1, φα(zL)〉 and we previously showed that cM

M 〈1, φα(zL)〉 → αc∞ in probability under Q∗, we
conclude that, along any finite-dimensional distribution, f converges to the NNGP plus the constant αc∞. It
remains to add the limiting distribution of the bias, which we do in the last step of the proof.

Step 3 (proof of Claim 1). We previously claimed that

KL(Q∗
wL+1−

cM√
M

1
, PwL+1

)→ 0. (411)

We now prove this claim. Let q∗(θ) = q∗(wL+1)q∗(bL+1)q∗(θ1:L) be the density of Q∗ w.r.t. the Lebesgue
measure. Let L(q(wL+1), q(bL+1), q(θ1:L)) be the ELBO:

L(q(wL+1), q(bL+1), q(θ1:L))

= Eq[log p(y |θ)]−KL(q(wL+1), p(wL+1))−KL(q(bL+1), p(bL+1))−KL(q(θ1:L), p(θ1:L)). (412)

Because Q∗ is optimal, q∗(wL+1) maximizes the function q(wL+1) 7→ L(q(wL+1), q∗(bL+1), q∗(θ1:L)). We there-
fore parametrize q(wL+1) = N (µ,diag(ν)) and set the gradients of (µ,ν) 7→ L(q(wL+1), q∗(bL+1), q∗(θ1:L)) to
zero to find equations which characterize the mean and variance of q∗(wL+1) = N (µ∗,diag(ν∗)). Consider the
joint density q(θ) = q(wL+1)q∗(bL+1)q∗(θ1:L). Denote φα = φ+ α. Compute

Eq[log p(y |θ)]−KL(q(wL+1), p(wL+1))

= − 1

2σ2

N∑
n=1

(
1
M 〈µµ

T + diag(ν),EQ∗ [φα(zL)φα(zL)T]〉 − 2 1√
M
〈µ,EQ∗ [(yn − bL+1)φα(zL)]〉+ EQ∗ [yn − bL+1]2

)
− 1

2
‖µ‖22 −

1

2

M∑
m=1

(νm − 1− log(νm)). (413)

Denote

A =
1

M

N∑
n=1

EQ∗ [φα(zL(xn))φα(zL(xn))T], b =
1√
M

N∑
n=1

(yn − Eq[bL+1])EQ∗ [φα(zL(xn))]. (414)

Then the part of the ELBO depending on µ and ν can be written as

− 1

2σ2

[
〈µµT + diag(ν),A〉 − 2〈µ,b〉+ (yn − EQ∗ [bL+1])2

]
− 1

2
‖µ‖22 −

1

2

M∑
m=1

(νm − 1− log(νm)). (415)
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Setting the gradient with respect to µ to zero gives

− 1

σ2
Aµ∗ +

1

σ2
b− µ∗ = 0 =⇒ µ∗ = (A + σ2I)−1b. (416)

Similarly, setting the gradient with respect νm to zero gives

− 1

2σ2
Amm −

1

2
+

1

2

1

ν∗m
= 0 =⇒ ν∗m =

1

1 + 1
σ2Amm

. (417)

Therefore,

KL(Q∗
wL+1−

cM√
M

1
, PwL+1

) =
1

2
‖µ∗ − cM√

M
1‖22 +

1

2

M∑
m=1

(ν∗m − 1− log(ν∗m)) (418)

=
1

2σ2
‖µ∗ − cM√

M
1‖22 +

1

2

M∑
m=1

(
log(1 + 1

σ2Amm)−
1
σ2Amm

1 + 1
σ2Amm

)
(419)

(i)

≤ 1

2σ2
‖µ∗ − cM√

M
1‖22 +

1

2
M

(
log(1 + 1

M
M
σ2Am∗)−

1
M

M
σ2Am∗

1 + 1
M

M
σ2Am∗

)
(420)

(ii)

≤ 1

2σ2
‖µ∗ − cM√

M
1‖22 +

1

2σ2

M

σ2
A2
m∗ (421)

where in (i) Am∗ = maxm∈[M ]Amm and we use that a− 1− log(a) is increasing in a for a < 1 and that ν∗m < 1.
In (ii) we used the inequality4

x

(
log(1 + c

x )−
c
x

1 + c
x

)
≤ c2

x
for all c ≥ 0 and x > 0 (422)

with c = M
σ2Am∗ ≥ 0 and x = M > 0. By Equation (387), MA2

m∗ = O(1/M), so the claim is shown if

‖(A + σ2I)−1b− cM√
M

1‖2 → 0. (423)

Using that

‖(A + σ2I)−1b− cM√
M

1‖2 ≤ ‖(A + σ2I)−1‖2‖b− cM√
M

(A + σ2I)1‖2 ≤ σ−2‖b− cM√
M

(A + σ2I)1‖2, (424)

it suffices to show that
√
M‖b− cM√

M
(A + σ2I)1‖∞ → 0:

max
m∈[M ]

∣∣∣∣∣
N∑
n=1

(yn − Eq[bL+1])EQ∗ [φα(zL,m(xn))] (425)

− αdM
α2N + σ2

(
σ2 +

1

M

M∑
m′=1

N∑
n=1

EQ∗ [φα(zL,m(xn))φα(zL,m′(xn))]

)∣∣∣∣∣→ 0.

Expand

1

M

M∑
m′=1

N∑
n=1

EQ∗ [φα(zL,m(xn))φα(zL,m′(xn))]

=
1

M

M∑
m′=1

N∑
n=1

(EQ∗ [φ(zL,m(xn))φ(zL,m′(xn))] + α(EQ∗ [φ(zL,m(xn))] + EQ∗ [φ(zL,m′(xn))]) + α2) (426)

=
1

M

N∑
n=1

EQ∗ [φ(zL,m(xn))2] +
1

M

M∑
m′=1

N∑
n=1

α2 (427)

+
1

M

M∑
m′ 6=m

N∑
n=1

EQ∗ [φ(zL,m(xn))φ(zL,m′(xn))] +
1

M

M∑
m′=1

N∑
n=1

α(EQ∗ [φ(zL,m(xn))] + EQ∗ [φ(zL,m′(xn))]).

4Note that the inequality is equivalent to log(1 + x) − x
1+x
≤ x2 for all x > 0, which follows from log(1 + x) < x for

all x > 0.
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Collecting the first two terms of the expansion, note that, by definition of dM and Equation (387),

max
m∈[M ]

∣∣∣∣∣
N∑
n=1

(yn − EQ∗ [bL+1])α− αdM
α2N + σ2

(
σ2 +

1

M

N∑
n=1

EQ∗ [φ(zL,m(xn))2] +
1

M

N∑
n=1

M∑
m′=1

α2

)∣∣∣∣∣→ 0. (428)

It therefore remains to show that the remainder also goes, which follows from the following three limits:

max
m∈[M ]

∣∣∣∣∣
N∑
n=1

(yn − EQ∗ [bL+1])EQ∗ [φ(zL,m(xn))]

∣∣∣∣∣ Equations (383) and (385) with KL(Q∗θ1:L
,Pθ1:L

)→0
→ 0, (429)

max
m∈[M ]

∣∣∣∣∣ 1

M

N∑
n=1

M∑
m′ 6=m

EQ∗ [φ(zL,m(xn))φ(zL,m′(xn))]

∣∣∣∣∣ Equation (388) with KL(Q∗θ1:L
,Pθ1:L

)→0
→ 0, (430)

max
m∈[M ]

∣∣∣∣∣ αM
N∑
n=1

M∑
m′=1

EQ∗ [φ(zL,m(xn)) + φ(zL,m′(xn))]

∣∣∣∣∣ Equation (383) with KL(Q∗θ1:L
,Pθ1:L

)→0
→ 0. (431)

Step 4 (convergence of the bias). The starting point is to note that

1√
M
EQ∗ [〈wL+1, φα(zL)〉]

= 1√
M
〈EQ∗ [wL+1 − cM√

M
1],EQ∗ [φα(zL)]〉+ cM

M 〈1,EQ∗ [φ(zL)]〉+ αcM (432)

where

αcM =
α2dM

α2N + σ2
=

α2

α2N + σ2

N∑
n=1

(yn − EQ∗ [bL+1]) =: β(y − EQ∗ [bL+1]) (433)

with

y =
1

N

N∑
n=1

yn, β =
α2

α2 + σ2/N
. (434)

Moreover,

| 1√
M
〈EQ∗ [wL+1 − cM√

M
1],EQ∗ [φα(zL)]〉| ≤ 1√

M
(2 KL(Q∗

wL+1−
cM√
M

1
, PwL+1

))1/2‖EQ∗ [φα(zL)]‖2

≤ 1√
M

(2 KL(Q∗
wL+1−

cM√
M

1
, PwL+1

))1/2(
√
M |α|+ ‖EQ∗ [φ(zL)]‖2),

which is o(1) by the Claim 1 and Equation (383); and

| cMM 〈1,EQ∗ [φ(zL)]〉| ≤ cM√
M
‖EQ∗ [φ(zL)]‖2,

which is also o(1) by Equation (383). We conclude that

1√
M
EQ∗ [〈wL+1, φα(zL)〉] = β(y − EQ∗ [bL+1]) + o(1). (435)

We proceed like in the second part: Because Q∗ is optimal, q∗(bL+1) maximizes the function q(bL+1) 7→
L(q∗(wL+1), q(bL+1), q∗(θ1:L)). We therefore parametrize q(bL+1) = N (µM , νM ) and set the gradients of
(µM , νM ) 7→ L(q(w∗L+1), q(bL+1), q∗(θ1:L)) to zero to find equations which characterize the mean and variance
of q∗(bL+1) = N (µ∗M , ν

∗
M ). Consider the joint density q(θ) = q∗(wL+1)q(bL+1)q∗(θ1:L). Denote φα = φ + α.

Compute

Eq[log p(y |θ)]−KL(q(bL+1), p(bL+1))

= − 1

2σ2

N∑
n=1

(
νM + µ2

M − 2µM (yn − 1√
M
EQ∗ [〈wL+1, φα(zL)〉]) + EQ∗ [(yn − 1√

M
〈wL+1, φα(zL)〉)2]

)
− 1

2
µ2
M −

1

2
(νM − 1− log(νM )) (436)

= − 1

2σ2

N∑
n=1

[
νM + µ2

M − 2µM (yn − β(y − µ∗M ) + o(1)) + EQ∗ [(yn − 1√
M
〈wL+1, φα(zL)〉)2]

]
− 1

2
µ2
M −

1

2
(νM − 1− log(νM )). (437)
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Setting the derivative w.r.t. νM to zero and solving gives ν∗M = σ2/(σ2 + N). Setting the derivative w.r.t. µM
to zero, we find

0 = − 1

2σ2

N∑
n=1

[2µ∗M − 2(yn − β(y − µ∗M ) + o(1))]− µ∗M (438)

= − N

2σ2
[2µ∗M − 2(yn − β(y − µ∗M ))]− µ∗M + o(1) (439)

= −N
σ2

[µ∗M − (y − β(y − µ∗M ))]− µ∗M + o(1) (440)

= −N
σ2

[(1− β)µ∗M − (1− β)y]− µ∗M + o(1) (441)

= −(1− β)
N

σ2
[µ∗M − y]− µ∗M + o(1) (442)

= − 1

α2 + σ2

N

[µ∗M − y]− µ∗M + o(1) (443)

=⇒ µ∗M =
1

(α2 + σ2

M )−1 + 1

(
1

α2 + σ2

M

y + o(1)

)
. (444)

Therefore, taking M →∞, under Q∗,

bL+1
d→ N

(
1

1 + α2 + σ2

N

y,
σ2

σ2 +N

)
. (445)

Step 5 (proof of Claim 2). By the previous step, we have that

αcM = β(y − µ∗M ) (446)

→ β

(
1− 1

1 + α2 + σ2

N

)
y (447)

= c∞, (448)

which proves Claim 2.

Step 6 (end of conclusion of proof). In Step 2, we showed that, under Q∗, along any finite-dimensional
distribution, 1

M 〈wL+1, φα(zL)〉 converges to the NNGP plus the constant αc∞. We now add the limiting distri-
bution of the final bias to this, which concludes the proof. For this, we note that αc∞ simply adds to the mean
of the bias:

αcM + µ∗M →

(
β × 1 + (1− β)× 1

1 + α2 + σ2

N

)
y, (449)

which agrees with the theorem statement.

H Example Showing that the Mean of the Variational Posterior Need not
Converge if Activation Functions are not Odd

We begin by recalling that any function φ : R → R can be decomposed into the sum of an even and an odd
function in a (unique) way. In particular, we have,

φ(a) =
φ(a) + φ(−a)

2
+
φ(a)− φ(−a)

2
. (450)

We define φe(a) = φ(a)+φ(−a)
2 and φo(a) = φ(a)−φ(−a)

2 to be the even and odd parts of φ respectively.

The main goal of this section is to prove the following theorem, which shows that for certain activations including
ReLU, the variational posterior need not converge to the prior as the width tends to infinity.
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Theorem 41. We consider a Bayesian neural network prior with a standard Gaussian distribution over the
weights defines in Equations (1) to (3). Let Q denote the set of all mean field variational distributions over
feed-forward neural networks with activation function φ, L hidden layers, and M neurons per layer. Assume the
following conditions:

i. φ is continuous.
ii. φ(a) = O(|a|+ 1). This condition is equivalent to the linear envelop condition Matthews et al. (2018).

iii. There exist a, a′ ∈ R such that φe(a) 6= φe(a
′). In words, it is not true that φ is equal to the sum of an odd

function and a constant.
iv. There exists an a ∈ R such that φ(a)2 + φ(−a)2 6= 2φ(0)2. This is equivalent to φ2 is not equal to an odd

function plus a constant.

For a dataset D = (xn, yn)Nn=1, with yn ∈ RDi and a given homoscedastic Gaussian likelihood let Q∗ ∈ Q be the
optimal variational posterior for this dataset and likelihood. Then, there exists a dataset D and a homoscedastic
Gaussian likelihood such that Q∗ satisfies

|EQ∗ [fθ(x)]− EQ∗ [fθ(x′)]| ≥ c (451)

where c is a constant independent of M .

Our proof strategy will be to find a sequence of variational distributions (indexed by M) with a mean function
that does not tend to a constant, and show that there exists a dataset such that sequence of ELBOs defined by
this sequence converges to a number that is higher than the ELBOs of any sequence of variational distributions
that have a mean that tends to a constant function.

To this end, we introduce the following sequence of distributions, that will serve as our candidate set of distri-
butions with non-constant means and ‘good’ ELBOs:

Definition 42. For C ∈ R, define QC to be the mean field Gaussian distribution over weights of a neural network

with L hidden layers and M neurons such that WL-1, . . . ,W0,bL, . . . ,b0 ∼ N (0, I) and WL ∼ N (
√
C√
M

1, I).

H.1 Sketch of Construction

We now sketch the ideas behind the counterexample. The KL divergence KL(QC , P ) = C
2 (Proposition 44).

Hence it suffices to show that QC has a expected log likelihood term at least C
2 better than any constant

predictor. We note that under QC , the expected value of each post-activation in the last hidden layer will be
the same by exchangeability. In the case of odd activations, by symmetry this was 0, but for other activations
this expectation will generally depend on x. By choosing the final weight layer to be parallel to 1, we will make
the variation in the mean as large as possible (as the mean of the last layer is parallel to the expected value of
the post-activations). If the y values happen to fall on this line, QC will obtain a much better mean-square error
than any constant predictor. We can upper bound the variance of QC at the data, as this is the same as the
prior variance. The proof is then completed by choosing values for parameters to show that QC is better than
any hypothetical variational approximation with near constant mean.

H.2 Preliminary Definitions and Results

In this section, we define several quantities and state the necessary preliminaries to construct the counter-example.
We include the proofs when they are brief, but defer the proof of Proposition 46, which is more involved until
after constructing the counterexample.

We first define a function to represent the expected value of the post-activations in the final hidden layer,

Definition 43. Define λM : RDi → R by

λM (x) = EP [φ(zML−1)]. (452)

Further, define

λ(x) = E[zL−1(x)], zL−1 ∼ N (0, kL−1(x,x)) (453)
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where kL−1 is defined by the recursion,

k0(x,x) = 1 + ‖x‖22, k`(x,x) = 1 + h(k`−1(x,x)), (454)

with h : (0,∞)→ R defined by h(a) = Ez∼N (0,1)[φ(az)2].

In words, λM (x) is the expected value of the output of the each neuron in the final hidden layer of the network
under the prior at input x (after applying the activation) for a network of width M and intuitively λ(x) is the
limit of λM as M →∞ (this will be carefully proven in Proposition 45). k`(·, ·) is the kernel function associated
to the BNN with this activation under the prior as M →∞.

In order to construct the counterexample, we need three preliminary results. The first is the following calculation,

Proposition 44. Let P denote the prior for a network with L hidden layers and M neurons per hidden layer,
i.e. P = N (0, I). Then, KL(QC , P ) = C

2 .

Proof. By independence and the form of the variational posterior, we have,

KL(QC , P ) = KL
(
N (
√
C/M1, IM),N (0, IM)

)
=

1

2

∥∥∥√C/M1
∥∥∥2
2

=
C

2M
‖1‖22 =

C

2
.

Proposition 45. Suppose φ satisfies conditions i. and ii. in Theorem 41. Then, for all x ∈ RDi , λM (x)→ λ(x)
and 1 + E[φ(zML−1(x)])2]→ k(x,x).

Proposition 45 is essentially a corollary of results in Matthews et al. (2018).

Proof. Fix x ∈ RDi . Let z ∼ N (0, kL−1(x,x)) and let
d→ denote convergence in distribution. By Matthews et al.

(2018, Theorem 4) under P , and hence also under Q, zML−1,m(x)
d→ z for each m. Since φ is continuous, by the

continuous mapping theorem (Billingsley, 2008, Theorem 25.7), φ(zML−1,m(x))
d→ φ(z). To strengthen convergence

in distribution to convergence of the means, we note that (φ(zML−1,m(x)))∞M=1 is uniformly integrable (Lemma 21

by Matthews et al., 2018) and apply Billingsley (2008, Theorem 25.12): λM (x) = E[φ(zML−1,m(x))]→ E[φ(z)] =

λ(x). Noting that kL(x,x) = 1 + E[φ(z)2], the proof to show the second limit is exactly the same.

The final two propositions we need will show states that for activations satisfying conditions i-iv. in Theorem 41,
λ(x) takes at least two values:

Proposition 46. Suppose φ is continuous and φ(a)2 + φ(−a2) 6= c. Define κ` : RDi → R by κ`(x) = k`(x,x)
with k`(x,x) defined by Equation (454). Then for all ` ∈ N ∪ {0}, κ`(RDi) contains an open interval.

Proposition 47. Suppose φ satisfies condition i-iii. of Theorem 41. Then for any open interval I ⊂ (0,∞)
there exists an a, a′ ∈ I such that

γ(a) 6= γ(a′). (455)

with γ : (0,∞)→ R defined by γ(a) = Ez∼N (0,1)[φ(az)]. Further γ(I) contains an open interval.

Remark 48. Note that taken together, these imply that if φ satisfies i−iv. then the image of λ contains an open
interval. This can be seen by applying Proposition 46 with ` = L− 1, to conclude the diagonal of kL−1 contains
and open interval, then noting that λ(x) = Ez∼N (0,1)[φ(

√
kL−1(x,x))z], so we may apply Proposition 47.

H.3 Construction

Construction of counterexample in Theorem 41. Suppose we have a data-set consisting of two points,
((x, y), (x′, y′)), with x,x′ such that λ(x) 6= λ(x′). The existence of such an x,x′ is guaranteed by Proposi-
tions 46 and 47, see Remark 48.
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Choose y =
√
Cλ(x), y′ =

√
Cλ(x′) with C ∈ (0,∞) to be chosen later. We supress the dependce on C for

convenience and write Q := QC . Let Q∗ be any posterior with ELBO better than Q, then

1

2σ2

(
EQ∗ [(y − fθ(x))2] + EQ∗ [(y′ − fθ(x′))2]

)
(456)

≤ KL(Q,P )−KL(Q∗, P ) +
1

2σ2

(
EQ[(y − fθ(x))2] + EQ[(y′ − fθ(x′))2]

)
(457)

≤ KL(Q,P ) +
1

2σ2

(
EQ[(y − fθ(x))2] + EQ[(y′ − fθ(x′))2]

)
(458)

=
C

2
+

1

2σ2

(
EQ[(y − fθ(x))2] + EQ[(y′ − fθ(x′))2]

)
. (459)

where the first inequality comes from rearranging both ELBOs, the second uses non-negativity of the KL diver-
gence and makes use of Proposition 44.

Using convexity of the squared function to apply Jensen’s inequality to the left hand side, and multiplying both
sides by 2σ2 we have,

(y − EQ∗ [fθ(x)])2 + (y′ − EQ∗ [fθ(x′)])2 ≤ EQ∗ [(y − fθ(x))2] + EQ∗ [(y′ − fθ(x′))2] (460)

≤ σ2C + EQ[(y − fθ(x))2] + EQ[(y′ − fθ(x′))2]. (461)

Since λ(x) 6= λ(x′) there exists a β > 0 such that |λ(x)− λ(x′)| ≥ β/
√

2. Using our choice of y, y′

EQ∗ [(y − fθ(x))2] = EQ∗ [
√
Cλ(x)− fθ(x)]2 (462)

= (
√
Cλ(x)−

√
CλM (x))2 + κM (x), (463)

where κM is the variance function for the width M neural net prior. By Proposition 45, for M sufficiently large,
we have

(
√
Cλ(x)−

√
CλM (x))2 + κM (x) ≤ κ(x) + β2/2, (464)

where κ is variance function of the limiting NNGP kernel. The same argument can be applied to x′. This gives
us the upper bound, for M sufficiently large,

EQ[(y − fθ(x))2] ≤ κ(x) + κ(x′) + β2. (465)

Combining with our earlier equation, we have

(
√
Cλ(x)− EQ∗ [fθ(x)])2 + (

√
Cλ(x′)− EQ∗ [fθ(x′)])2 ≤ σ2C + κ(x) + κ(x′) + β2. (466)

Therefore,

|EQ∗ []fθ(x)]− EQ∗ [fθ(x′)]|

= |(EQ∗ [fθ(x)]−
√
Cλ(x))− (EQ∗ [fθ(x′)]−

√
Cλ(x′)) + (

√
Cλ(x)−

√
Cλ(x′)| (467)

≥ |
√
Cλ(x)−

√
Cλ(x′)| − |(EQ∗ [fθ(x)]−

√
Cλ(x))− (EQ∗ [fθ(x′)]−

√
Cλ(x′))| (468)

(i)
≥ |
√
Cλ(x)−

√
Cλ(x′)| −

√
2

√
(EQ∗ [fθ(x)]−

√
Cλ(x))2 + (EQ∗ [fθ(x′)]−

√
Cλ(x′))2 (469)

≥
√
Cβ/
√

2−
√

2
√
σ2C + κ(x) + κ(x′) + β2 (470)

using in (i) |(x−a)− (y− b)| ≤ |x−a|+ |y− b| ≤
√

2
√

(x− a)2 + (y − b)2. To finish the proof, choose σ2 = 1/C
and take C large enough that the first term in Equation (470) is larger than the second.

H.4 Proof of Propositions 46 and 47

Having completed the construction of the counterexample, it remains to prove Propositions 46 and 47 in order
to verify that we can indeed select two points x,x′ such that λ(x) 6= λ(x′). Note that for any typical activation,
this could simply be verified numerically by working through the recursion for kernel functions, so the main
purpose of the following proofs is generality.
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Proposition 49. Define α : (0,∞) → R by α(a) = Ez∼N (0,1)[φ(az)]. Suppose φ satisfies conditions i, ii of
Theorem 41. Then α is continuous.

Proof. Let (ai)i≥1 ⊆ R be convergent to some a ∈ R. We show that E[φ(aiz)]→ E[φ(az)]. If we can interchange
limit and expectation, then the result follows from continuity of φ. To show that we can interchange limit and
expectation, we demonstrate an integrable dominating function. Since (ai)i≥1 is convergent, it is bounded, hence
contained in some interval [−K,K] ⊆ R. Using that φ(a) = O(|a|+ 1), let |φ(a)| ≤ C|a| for all |a| ≥ R for some
C > 0. Let M be the maximum of |φ| on [−R,R], which is finite because |φ| is continuous. Then estimate

|φ(aiz)| ≤ sup
a∈[−K,K]

|φ(az)| ≤M + C sup
a∈[−K,K]

|az| ≤M + CK|z|, (471)

which is integrable because z ∼ N (0, 1).

Proof of Proposition 47. Our proof follows themaker (https://math.stackexchange.com/users/ 114509/the-
maker). Without loss of generality, we may assume I = (s, t) is bounded with s > 0.

Towards contradiction, suppose there exists a c ∈ R such that α(a) = c for all a ∈ I. This supposition can be
written as, ∫

φ(az)e−z
2/2dz = c′ ∀a ∈ I, (472)

where c′ = c
√

2π. Define u = az, b = 1/(2a2) and I ′ =
(

1
2t2 ,

1
2s2

)
. Then we can rewrite Equation (472) as∫

φ(u)e−bu
2

du = c′ ∀b ∈ I ′. (473)

We have |u2nφ(u)e−bu
2 | ≤ u2n|φ(u)|e−bu2 ≤ u2n|φ(u)|e−

u2

2t2 , which is integrable since φ(u) = O(|x|+ 1). Hence
we may take n derivatives and apply Leibniz’s rule,

∂n

∂nb

∫
φ(u)e−bu

2

du =

∫
u2nφ(u)e−bu

2

du = 0 ∀b ∈ I ′,∀n ∈ N. (474)

For a (arbitrary) b ∈ I ′, define w(u) = e−bu
2

and L2(R, w) to be the Hilbert space with inner product 〈f, g〉 =∫
f(u)g(u)w(u)du. Following Mykie (https://math.stackexchange.com/users/832/ mykie) (2012), we note that

the set of compactly supported functions is dense in L2(R, w), and by the Weirstrauss theorem the set of
polynomial is dense in the set of compact functions. As a dense subset of a dense set is again dense, we conclude
the set of polynomial is dense in L2(R, w).

Writing φ(u) = φe(u) + φo(u), we have,∫ ∞
−∞

u2i−1φe(u)w(u)du = 0 ∀i ∈ N (475)

as the integrand is odd and we integrate over a symmetric domain. Also,∫
u2n

φ(u) + φ(−u)

2
w(u)du =

1

2

∫
u2iφ(u)w(u)du+

1

2

∫
u2nφ(−u)w(u)du (476)

=
1

2

∫
u2iφ(u)w(u)du+

1

2

∫
u2nφ(u)w(u)du (477)

= 0 + 0, ∀i ∈ N, (478)

by Equation (474). Since the polynomial are a basis, we have φe(u) =
∑∞
i=0 αiu

i for some (αi)
∞
i=1. Taking the

inner product of both sides with respect to ui, shows that αi = 0 for all i > 0, hence φe(u) = c′′ for some c′′ ∈ R,
with equality in L2(R, w). But as φe is continuous, this implies it is equal to a c′′ everywhere.

As I contains an open set, it contains a ball. As α is continuous (Proposition 49) the image of this ball under α
is connected i.e. an interval. As the interval contains at least two points, it contains an open interval.

Proof of Proposition 46. The proof proceeds by induction.



Wide Mean-Field Bayesian Neural Networks Ignore the Data

Base case: We have κ0(x) = 1 + ‖x‖22. As RDi contains an open set, it contains an open ball. The image
of this open ball under the map κ, which is continuous, must be connected, hence an interval. Therefore, if it
contains at least two points, it contains an open interval. But in any ball, there are two points with different
norms, so this must be the case.

Inductive step: Defining h(a) = E[φ(az)] and following the recursion for kernels for deep networks Matthews
et al. (2018, Lemma 2), we have κ`(RDi) = 1 + h(κ`−1(RDi)). By the inductive hypothesis, κ`−1(RDi) contains
an open interval, I, the image of which must be connected as h is continuous (φ2 is continuous and is O(|a|2 + 1)
so we may apply Proposition 49). Hence, it suffices to show that φ2 satisfies the conditions of Proposition 47.
This follows from the assumption that φ(a)2 + φ(−a2) 6= c.

I Proof of Constants for Mean Result in Single Hidden-Layer Network

We have,

‖E[f(x)]‖2 = 1√
M
‖E[W2]E[φ( 1√

Di
W1x + b1)]‖ ≤ ‖E[W2]‖F‖E[φ( 1√

Di
W1x + b)]‖2 (479)

Defining W′ = W1 − E[W1] and b′ = b1 − E[b1], we have

‖E[φ( 1√
Di

W1x + b)]‖2 = ‖E[φ( 1√
Di

W1x + b1)]− E[φ(W′x + b′)]‖2 (480)

≤ E‖φ( 1√
Di

W1x + b1)]− φ( 1√
Di

W′x + b′)‖ (481)

≤ E‖( 1√
Di

W1 −W)x + (b− b′)‖ (482)

≤ ‖E[W1]‖F 1√
Di
‖x‖2 + ‖E[b1]‖2 (483)

Combining Equation (479) and Equation (483),

‖E[f(x)]‖2 ≤ ‖E[W2]‖F‖E[W1]‖F 1√
Di
‖x‖2 + ‖E[W2]‖F‖E[b1]‖2. (484)

We also know from Lemma 9 that

‖E[W1]‖2F + ‖E[W2]‖2F + ‖E[b1]‖2 ≤ KL(Q,P ). (485)

Combining Equation (484) and Equation (485) we obtain the following upper bound phrased as an optimization
problem which is convex,

‖E[f(x)]‖2 ≤ max
α

α1α2
1√
Di
‖x‖2 + α1α3 (486)

s.t.
1

2

∑
α2
i = KL(Q,P ), αi ≥ 0. (487)

We can solve this optimization via Lagrange multipliers. We form the Lagrangian,

α1α2
1√
Di
‖x‖2 + α1α3 − λ

(
1

2

∑
α2
i −KL(Q,P )

)
. (488)

For convenience, name c = 1√
Di
‖x‖2. Differentiating with respect to each variable and setting to 0 gives,

cα2 + α3 − λα1 = 0 (489)

α2 =
c

λ
α1 (490)

α3 =
1

λ
α1. (491)

Plugging these back in to the constraint,

1

2
α2
1

(
1 +

1

λ2
+
c2

λ2

)
= KL(Q,P ) (492)



Beau Coker∗1, Wessel P. Bruinsma∗23, David R. Burt∗2, Weiwei Pan1, Finale Doshi-Velez1

Solving for λ yields,

λ = α1

√
1 + c2

KL(Q,P )− 1
2α

2
1

(493)

Hence

α2 = c

√
KL(Q,P )− 1

2α
2
1

1 + c2
, α3 =

√
KL(Q,P )− 1

2α
2
1

1 + c2
. (494)

We can now plug these back into the remaining constraint to give,

√
1 + c2

√
KL(Q,P )− 1

2
α2
1 − α2

1

√
1 + c2

KL(Q,P )− 1
2α

2
1

= 0 (495)

Simplifying slightly, (
KL(Q,P )− 1

2
α2
1

)2

= α4
1 (496)

We recognize this as a quadratic form in α2
1, which can be solved yielding α1 =

√
2
3 KL(Q,P ). So α2 =

c

√
2
3 KL(Q,P )

1+c2 and α3 =

√
2
3 KL(Q,P )

1+c2 . The result then follows from a short calculation.

J Convergence of Mean of Linear Networks

We consider the case of networks with only affine layers. In particular, we suppose φ(a) = a for all a ∈ R. In
this case, we can prove upper and lower bounds on the discrepancy between the mean function at two points in
the input space.

J.1 Upper Bounds

Then for two points x,x′ ∈ RDi ,

E[f(x)]− E[f(x′)] = E[f(x)− f(x′)] (497)

= D
−1/2
i M−L/2E

[ L+1∏
`=1

W`

]
(x− x′) (498)

≤ D−1/2i M−L/2

∥∥∥∥∥
L+1∏
`=1

E[W`]

∥∥∥∥∥
2

‖x− x′‖. (499)

Using sub-multiplicativity of operator norm and that ‖ · ‖2 ≤ ‖ · ‖F ,

‖E[f(x)]− E[f(x′)]‖2 ≤ D−1/2i M−L/2
L+1∏
`=1

‖E[W`]‖F‖x− x′‖2. (500)

We can now apply the arithmetic-geometric mean inequality, to conclude

L+1∏
`=1

‖E[W`]‖F ≤

(∑L+1
`=1 ‖E[W`]‖F

L+ 1

)L+1

(501)

Using the `2-`1-inequality, we have, and Lemma 9,

L+1∑
`=1

‖E[W`]‖F ≤
√
L+ 1

√√√√L+1∑
`=1

‖E[W`]‖2F ≤
√
L+ 1

√
2 KL(Q,P ). (502)
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Combining Equation (502), Equation (501) and Equation (500) we obtain,

‖E[f(x)]− E[f(x′)]‖2 ≤ D−1/2i M−L/2
(

2 KL(Q,P )

L+ 1

)L+1
2

‖x− x′‖2 (503)

J.2 Lower Bounds

We consider the case when x′ = 0 and x = e1. We consider the Q with variance of each parameter equal to 1
and mean of all bias parameters equal to 0. We select E[W`] to be the matrix with entry 1, 1, c and entries 0

elsewhere. Then, 1
2 (L+ 1)c2 = KL(Q,P ), so c =

√
2KL(Q,P )

L+1 . Also,

‖E[f(x)]− E[f(0)]‖2 = D
−1/2
i M−L/2cL+1 = D

−1/2
i M−L/2(2 KL(Q,P ))

L+1
2 (L+ 1)−(L+1). (504)

This bound differs from the upper bound by a factor of (L+ 1)−
L+1
2 .

K Lower Bound on Convergence for Non-Linear Networks

Theorem 50. Assume the following:

(i) Do = 1.

(ii) φ is a sum of an odd function and a constant: φe is constant.

(iii) φ is twice continuously differentiable with ‖φ′‖∞ ≤ 1 and ‖φ′′‖∞ <∞.

(iv) φ2 is not a sum of an odd function and a constant: φ2(a) + φ2(−a) 6= 2φ2(0) for some a ∈ R.

Then, if φo is non-linear, there exist two inputs x,x′ ∈ RDi and a constant c > 0 such that, for every K > 0,
there exists a sequence of mean-field distributions (QM )M≥1 with KL(QM , P ) = K, one for every network width
M ≥ 1, that achieves

lim
M→∞

√
M |EQM [f(x)]− EQM [f(x′)]| = cK. (505)

Proof. Consider the distribution of zL−1 under the prior. Let k be the covariance function of the NNGP
associated to 1√

M
〈ε, φ(zL−1)〉 + Z as M → ∞, where ε is a vector with i.i.d. N (0, 1) entries and Z ∼ N (0, 1).

Henceforth, denote k(x) = k(x,x).

Note that φ′ = φ′e + φ′o = φ′o is an even function. Suppose that x 7→ EP [φ′(
√
k(x)Z)] is a constant function. By

Propositions 45 and 46 in combination with the assumed conditions on φ, it follows that k(RDi) contains an open
interval. Therefore, since φ′ is a continuous even function and x 7→ EP [φ′(

√
k(x)Z)] is a constant function, by

an argument similar to the proof of Proposition 47, φ′ must be equal to a constant function. However, since φo
is non-linear, φ′ = φ′o cannot be equal to a constant function. We conclude that x 7→ EP [φ′(

√
k(x)Z)] cannot be

equal to a constant function: there exist two inputs x,x′ ∈ RDi such that EP [φ′(
√
k(x)Z)] 6= EP [φ′(

√
k(x′)Z)].

Let c > 0 be the constant c = |EP [φ′(
√
k(x)Z)]− EP [φ′(

√
k(x′)Z)]|.

Let K > 0. Consider the sequence of mean-field distributions (QM )M≥1 constructed by setting everything equal

to the prior except for EQM [bL] = µ1 and EQM [WL+1] = µ1T with µ =
√
K/M . Then indeed KL(QM , P ) = K.

Moreover,

1√
M

WL+1φ( 1√
M

WLφ(zL−1) + bL) + bL+1
d
= 1√

M
〈µ1 + ε, φ( 1√

M
Eφ(zL−1) + µ1 + ε′)〉+ ε′′ (506)

where ε, ε′, ε′′, and E are respectively three vectors and a matrix with i.i.d. N (0, 1) entries and where zL is
distributed under the prior. Using the observation that the elements of zL are identically distributed, compute

EQM [f(x)] = µ√
M
EP [〈1, φ( 1√

M
Eφ(zL−1) + µ1 + ε′)〉] =

√
MµEP [φ( 1√

M
〈ε′′′, φ(zL−1)〉+ Z + µ)] (507)

where ε′′′ is a vector with i.i.d. N (0, 1) entries and Z ∼ N (0, 1). Note that
√
Mµ =

√
K and call YM =

1√
M
〈ε′′′, φ(zL−1)〉+Z. From Theorem 4 by Matthews et al. (2018) in combination with the assumed conditions

on φ, it follows that YM
d→
√
k(x)Z where k is the earlier defined covariance function of the corresponding NNGP.
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Figure 8: Root mean squared error (RMSE) of the posterior variance to the prior variance.

We finally establish the asymptotic behaviour of EQM [f(x)]−EQM [f(x′)] in two steps. First, by a second-order
Taylor expansion of µ 7→ EP [φ(YM + µ)] around µ = 0, using (a) ‖φ′‖ < ∞ and ‖φ′′‖∞ < ∞ to interchange
derivative and expectation and (b) ‖φ′′‖∞ <∞ and µ2 = o( 1√

M
) to determine the order of the error term,

EQM [f(x)] =
√
K
[
EP [φ(YM )] + µEP [φ′(YM )] + o( 1√

M
)
]
. (508)

Note that YM
d
= −YM , so EP [φ(YM )] = φe+EP [φo(YM )] = φe. Second, since YM

d→
√
k(x)Z and φ′ is continuous

and bounded, EP [φ′(YM )]→ EP [φ′(
√
k(x)Z)]. Therefore,

EQM [f(x)] =
√
K
[
φe + µ

(
EP [φ′(

√
k(x)Z)] + o(1)

)
+ o( 1√

M
)
]
, (509)

so, again using that
√
Mµ =

√
K,

√
M(EQM [f(x)]− EQM [f(x′)]) = K

(
EP [φ′(

√
k(x)Z)]− EP [φ′(

√
k(x′)Z)] + o(1)

)
+ o(1) = cK + o(1), (510)

which concludes the proof.

L Experimental Setup

In this section we describe the details of our experiments.

Additional experiments Figure Figure 8 shows the RMSE between the MFVI posterior posterior predictive
variance and the prior predictive variance.

Architecture. We only train single-layer (L = 1), feed-forward networks of varying width M , as defined
in Equations 1-3. Notice we use the NTK parameterization, which scales the post-activations by the network
width (Jacot et al., 2018). Depending on the experiment, we use ReLU, tanh, or erf activation functions, where

erf z = 2/
√
π
∫ z
0
e−t

2

dt is the error function.

Prior and Likelihood. We use a θ ∼ N (0, I) prior for the neural network weights and a heteroscedastic
Gaussian likelihood with a known variance. Except for the counterexample dataset, we set this variance to
0.025.

Variational Family. We use a mean-field Gaussian family for variational inference. In other words, we model
each weight and bias parameter of the neural network by an independent Gaussian distribution.
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Initialization of Variational Parameters. We initialize the variational mean and variance parameters from
a normal-inverse-gamma family. Specifically, for any weight (or bias) of the neural network θ, let N (µQ, σ

2
Q)

denote its variational distribution. We randomly initialize µQ ∼ N (0, 1) and σ2
Q ∼ IG(ν + 1, ν). It follows from

the laws of total expectation and variance that E[θ] = 0 and V[θ] = 2. This allows the for a width-independent
initialization of the weights, as is standard for the NTK parameterization, while allowing the hyperparameter ν
to control the concentration of σ2

Q around its initial mean of one (i.e., E[σ2
Q] = 1 and V[σQ] = 1/(ν − 1)). We

set ν = 100 in our experiments.

Datasets.

• 2 points (N = 2, Di = 1): This dataset consists of two points: (−1,−1) and (1, 1). This dataset is used in
all figures in this paper and is shown in Figure 1.

• sine (N = 100, Di = 1): This is a synthetic dataset generated by y = sin(x) + ε, where ε ∼ N (0, .025) and
x ∼ Unif(−5, 5).

• toy (N = 100, Di = 2): This is a synthetic dataset generated by y = x0 sin(x1) + ε, where ε ∼ N (0, .025),
x0 ∼ Unif(−5, 5), and x1 ∼ Unif(−5, 5).

• counterexample (N = 2, Di = 1): This synthetic dataset consists of two observations, (0, 8.24) and (1, 11.66).
It is constructed to meet the conditions of the example discussed in Appendix H. The mean-field posterior
predictive of a network with ReLU activation need not converge the prior when trained on this dataset.
As part of the construction, we set the observational noise variance of the likelihood to 2.34 × 10−3. This
dataset is shown in Figure 4.

• slump (N = 103, Di = 7): This is the Concrete Slump Test Data Set, available in the UCI Machine Learning
Repository (Yeh, 2007).

• concrete (N = 1030, Di = 8): This is the Concrete Compressive Strength Data Set, available in the UCI
Machine Learning Repository (Yeh, 1998).

All variables (inputs x and observations y) are z-scored standardized (i.e., by subtracting their mean and dividing
by their standard deviation). For the synthetic datasets of only two training observations we do not construct
test observations. For the larger synthetic datasets, we sample 100 test observations. For the real datasets, we
use 10% of the observations as test observations.

Training Procedure. We use 20,000 steps of stochastic gradient descent with a batch size of 100, a learning
rate of 0.001, and a momentum of 0.9 for optimization. Note that since the post-activations are already scaled by
1/
√
M in the network definition, we do not scale the learning rate with the network width (see, e.g., Appendix

F of (Lee et al., 2019) for a discussion of the learning rates under the NTK parameterization). We use gradient
clipping and cosine annealing of the learning rate, with warm restarts every 500 steps (Loshchilov and Hutter,
2017). To evaluate the ELBO, we use the analytical form of the KL divergence and the reparameterization trick
(Kingma and Welling, 2014) with 16 samples to approximate the expected log likelihood term.

Optimal bias. In the case of a Gaussian likelihood, we can solve for the optimal variational distribution over
bias when all variational parameters are set to the prior. This enables a smaller bound on KL(Q∗, P ) in practice.

Let P̃ be the standard prior distribution except with the distribution over the output bias replaced by a normal
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distribution N (µb, σ
2
b ). We will choose µb and σ2

b to maximize the ELBO.

ELBO(P̃ ) = −N
2

log 2πσ2 − 1

2σ2

N∑
n=1

E
[
(yn − f(xn))

2
]
− 1

2

(
µ2
b + σ2

b − 1− log(σ2
b )
)

(511)

= C − 1

2σ2

N∑
n=1

(
E
[
f(xn)2

]
− 2ynE [f(xn)]

)
− 1

2

(
µ2
b + σ2

b − log(σ2
b )
)

(512)

= C ′ − 1

2σ2

N∑
n=1

(
V[f(xn)] + E [f(xn)]

2 − 2ynE [f(xn)]
)
− 1

2

(
µ2
b + σ2

b − log(σ2
b )
)

(513)

= C ′ − 1

2σ2

N∑
n=1

(
σ2
b + µ2

b − 2ynµb
)
− 1

2

(
µ2
b + σ2

b − log(σ2
b )
)

(514)

= C ′ − N

2σ2
σ2
b −

N

2σ2
µ2
b −

µb
σ2

N∑
n=1

yn −
1

2

(
µ2
b + σ2

b − log(σ2
b )
)
, (515)

where C and C ′ are constants. Differentiating with respect to µb and setting to 0 we have,

µb =

∑N
n=1 yn

N + σ2
(516)

and Similarly, we can differentiate with respect to σ2
b and set to 0, to obtain,

σ2
b =

σ2

N + σ2
. (517)

Computing a bound on KL(Q∗, P ). By the optimality of Q∗ we have ELBO(Q∗) ≥ ELBO(P̃ ). As in step
3 of Section 4.4, it follows that

KL(Q∗, P ) ≤ EQ∗ [L(θ)]− EP̃ [L(θ)] + KL(P̃ , P ) (518)

≤ −EP̃ [L(θ)] + KL(N (µb, σ
2
b ),N (0, 1)) (519)

≤ 1

2σ2

N∑
n=1

EP̃ [(yn − f(xn))2] +
1

2

(
µ2
b + σ2

b − log(σ2
b )
)
. (520)

For our experiments we compute the expectation by Monte Carlo sampling. Using P̃ instead of P lowers the
upper bound on KL(Q∗, P ) for any dataset for which the increase in the log likelihood from using the optimal
bias more than offsets the increase in the KL divergence to the prior (e.g., datasets that are shifted by a constant
from the prior mean of zero, as in the counterexample dataset). In the case of a one-hidden layer network, we
can evaluate the expectation in Equation (520) either using properties of the activation in closed form or up to
special function, or via one-dimensional Gaussian quadrature more generally. Additionally, the expectation is
independent of M .

Figures. Here we explain a few details specific to each figure

• Figure 1: The shaded region represent ±1 standard deviation.

• Figure 2: We train on the “2 points” dataset. We use 1,000 samples to estimate the posterior predictive
mean on a grid of 25 inputs spaced uniformly over [−1, 1]. To reduce Monte-Carlo error, we also estimate
the predictive mean under the prior with the same random seed. For each M , we use the same random
seed, so the shaded regions reflect the randomness in the variational parameter initialization only (we use
10 random initializations). We then plot the largest absolute difference from the prior mean of zero. To
compute the theoretical bound we use Equation (6), with the KL divergence estimated as in Equation (520)
and ‖x‖22 ≤ 1.
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• Figures 3 and 5 : We use 5 different train/test splits (or 5 different random datasets in the case of the
synthetic datasets). For each dataset and each M , we select the the model with the highest ELBO among
two random restarts of the variational parameters. The shaded regions represent 95% confidence intervals
estimated by boostrapping. To compute the RMSE to the prior, we use 1,000 samples of the posterior
predictive evaluated at 100 input points drawn randomly from a uniform distribution over [−1, 1] in each
input dimension.

• Figure 4: We train single-layer networks of width 4,096,000.
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