
Wide Mean-Field Bayesian Neural Networks Ignore the Data

Beau Coker∗1 Wessel P. Bruinsma∗23 David R. Burt∗2 Weiwei Pan1 Finale Doshi-Velez1
1Harvard University 2University of Cambridge 3Invenia Labs

Abstract

Bayesian neural networks (BNNs) combine
the expressive power of deep learning with
the advantages of Bayesian formalism. In re-
cent years, the analysis of wide, deep BNNs
has provided theoretical insight into their pri-
ors and posteriors. However, we have no
analogous insight into their posteriors un-
der approximate inference. In this work, we
show that mean-field variational inference en-
tirely fails to model the data when the net-
work width is large and the activation func-
tion is odd. Specifically, for fully-connected
BNNs with odd activation functions and a
homoscedastic Gaussian likelihood, we show
that the optimal mean-field variational pos-
terior predictive (i.e., function space) distri-
bution converges to the prior predictive dis-
tribution as the width tends to infinity. We
generalize aspects of this result to other like-
lihoods. Our theoretical results are sugges-
tive of underfitting behavior previously ob-
servered in BNNs. While our convergence
bounds are non-asymptotic and constants in
our analysis can be computed, they are cur-
rently too loose to be applicable in standard
training regimes. Finally, we show that the
optimal approximate posterior need not tend
to the prior if the activation function is not
odd, showing that our statements cannot be
generalized arbitrarily.

1 INTRODUCTION

Bayesian neural networks (BNNs) provide a systematic
method of capturing uncertainty in neural networks by
placing priors on the weights of the network. Although
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it has been speculated for decades that BNNs are capa-
ble of combining the benefits of Bayesian inference and
deep learning, we are only beginning to understand the
theoretical properties of this model class and its associ-
ated inference techniques. One tool for understanding
the behavior of modern BNNs with large architectures
is to study the limiting behavior of this model as the
number of hidden units in each layer, i.e., the width
of the model, goes to infinity. In this case, the prior
predictive distribution of a BNN converges in distri-
bution to the NNGP, a Gaussian process (GP) with
the neural network kernel that depends on the prior
on the weights and architecture of the network (Neal,
1996; Matthews et al., 2018). Analogously, in the case
of regression with a Gaussian likelihood, the associ-
ated BNN posterior converges to the NNGP posterior
(Hron et al., 2020).

However, since exact inference for BNNs is intractable,
approximate inference is commonly used in practi-
cal settings. While asymptotically exact sampling
MCMC methods have been successfully applied to
BNNs (Neal, 1996; Izmailov et al., 2021), these meth-
ods can require considerable amounts of computation
and it is generally not feasible to ensure mixing. Varia-
tional inference offers a computationally appealing al-
ternative by converting the problem of (approximate)
inference into a gradient-based optimization problem.

Unfortunately, the properties of commonly used ap-
proximations of BNN posteriors, like mean-field vari-
ational inference (MFVI), have not been extensively
studied. MFVI assumes complete posterior indepen-
dence between the weights, but generalizing asymp-
totic analysis to this approximation is non-trivial. Un-
like the true posterior predictive distribution, we do
not know if the variational posterior predictive distri-
bution approaches a GP as the width approaches infin-
ity. We also do not know if documented properties of
BNNs in the finite-width regime generalize to the wide
limit. Empirical evidence suggests that finite BNNs
trained with MFVI underestimate certain types of un-
certainty (Foong et al., 2020) and underfit the data
(Tomczak et al., 2021; Dusenberry et al., 2020). In the
case of single hidden layer networks with ReLU activa-
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tion, (Foong et al., 2020) showed that MFVI networks
underestimate uncertainty in-between clusters of data,
but their proof fundamentally cannot be extended to
the case of several hidden layers. We establish the
strong theoretical results for MFVI networks, under
the assumption that they are su�ciently wide.

In this paper, we show that, unfortunately, a num-
ber of notable de�ciencies of these approximate pos-
teriors become more severe as width increases. For
mean-�eld variational Bayesian neural networks of ar-
bitrary depth with odd, Lipschitz activation functions,
we prove a surprising result: the optimal variational
posterior predictive distribution converges to the prior
predictive distribution as the width tends to in�n-
ity. That is, asymptotically, the mean-�eld varia-
tional posterior predictive distribution of a wide BNN
completely ignores the data, unlike the true posterior
predictive distribution. Furthermore, we derive non-
asymptotic, computable bounds that o�er insight into
the relative rates with which the number of observa-
tions, depth, and width of the network a�ect this con-
vergence. The bounds we prove in their current form
are generally too loose to provide numerically useful
results for networks of the commonly trained widths,
but they o�er theoretical support for previously ob-
served issues of under�tting in these networks. Finally,
we show by a counterexample that this result does not
hold for non-odd activation functions, including ReLU,
but we provide an example showing that ReLU BNNs
can nonetheless under�t data. Code to reproduce all
of the experiments is available on GitHub.1

2 RELATED WORK

Wide-limits of BNNs. There are many works that
analyze distributions over wide neural networks with
the goal of gaining theoretical insight into neural net-
work performance. As the width tends to in�nity, Neal
(1996) showed that single-layer, fully-connected BNN
priors with bounded activation functions converge to
GPs. Lee et al. (2017) and Matthews et al. (2018)
extend this result to deeper networks with activations
that satisfy a \linear envelope" condition (which in-
cludes ReLU, and is implied by Lipschitz-ness). Hron
et al. (2020) extend the result by showing BNN pos-
teriors converge to GP posteriors. All of these works
can be seen as o�ering insights into modeling assump-
tions made when employing BNNs. Unfortunately, the
true BNN posterior is computationally intractable for
all but the smallest networks. In contrast, we analyze
properties of approximate inference, which allows us
to make statements about the BNN posterior typically
used in practice.

1https://github.com/dtak/wide-bnns-public

Neural Tangent Kernel. Other works analyze
wide neural networks after training the weights with
gradient descent, showing that the network output ap-
proaches kernel regression with the neural tangent ker-
nel (NTK) (Jacot et al., 2018; Lee et al., 2019). This
also provides a Bayesian interpretation to ensembles of
trained neural networks (He et al., 2020). The key in-
sight in these works is that as the width increases, the
weight parameters change less and less during train-
ing, permitting the network to be approximated by a
�rst-order Taylor expansion around the initial weights.
For this phenomenon to happen, these works assume
the weights are unregularized during training (Chen
et al., 2020). In contrast, in variational inference, one
trains the variational parameters of a distribution over
the weights, rather than the weights themselves. Be-
cause the variational parameters are regularized by the
Kullback-Leibler (KL) divergence to the prior over the
weights, the variational parameters do not stick near
their initial values and thus the same �rst-order ap-
proximation cannot be used. We show that this reg-
ularization is too strong for wide networks, since it
forces the resulting approximation of the posterior to
converge to the prior as the width tends to in�nity.
Unlike NTK our result does not rely on the dynamics
of any particular optimization algorithm, and instead
characterizes the optimal posterior.

Issues with MFVI Inference in BNNs. Many
works have empirically observed challenges with mean-
�eld approximations to Bayesian neural networks.
MacKay (1992) noted de�ciencies of factorized Laplace
approximations in single-hidden layer BNNs. How-
ever, little is known theoretically about mean-�eld
variational inference in BNNs. Foong et al. (2020)
showed that single-hidden layer networks with ReLU
activations and mean-�eld distributions over the
weights cannot have high variance between two re-
gions with low variance. However, the authors also
show that BNNs with two hidden layers can uniformly
approximate any function-space mean and variance
so long as the width is su�ciently large. Farquhar
et al. (2020) suggested the universality result could be
extended to other properties (e.g., higher moments)
of the approximate posterior, leading them to recom-
mend training deeper networks. This means that there
exist mean-�eld variational distributions that do not
exhibit the known pathologies of approximate infer-
ence in BNNs. However, despite this existence, we
show that even for wide, deep networks theoptimal
mean-�eld variational distribution (i.e., the one that
maximizes the evidence lower bound (ELBO)) con-
verges to the prior, regardless of the data.
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Trippe and Turner (2017) discussover-pruning, which
is the phenomenon whereby the variational posterior
over many of the output-layer weights concentrates to
a point mass around zero, allowing the variational pos-
terior over any corresponding incoming weights to re-
vert to the prior. This is undesirable behavior because
the amount of over-pruning increases with the degree
of over-parameterization and because over-pruning de-
grades performance | simpler models that do not per-
mit pruning often perform better. As in our work,
the explanation for over-pruning centers around the
tension between the likelihood term and the KL di-
vergence term in the objective function, the ELBO.
To reduce the KL divergence, the optimization pro-
cedure may result in hidden units being pruned from
the model (i.e., since many weights before the last layer
can be set to the prior). Ultimately, we show that the
KL divergence of the optimal variational posterior can
only be so large, which prevents the variational poste-
rior of wide networks from modeling anything but the
prior.

Our work o�ers theoretical insight into earlier works
on under�tting. Empirically, it has been found that
re-scaling the regularization to the prior improves the
performance of BNNs trained with variational infer-
ence (Osawa et al., 2019). This is closely related to
observations regarding the performance ofcold poste-
riors , which is the empirical phenomenon that down-
weighting the importance of the KL divergence in the
ELBO (and/or overcounting the data in the likelihood)
yields better model performance (Wenzel et al., 2020).
It is possible this practice serves to undo the over-
regularization of the KL divergence that we investi-
gate.

3 BACKGROUND

We consider the application of Bayesian neural net-
works in supervised learning: we have observed a
dataset with N points, f (xn ; yn )gN

n =1 with inputs
xn 2 RD i and outputs yn 2 Y . Our goal is to in-
fer a (probabilistic) mapping from RD i to Y that is
consistent with the data and generalizes to new, un-
seen observations. We use a Bayesian neural network
as the model for this mapping.

Bayesian Neural Networks (BNNs). Consider
the feed-forward neural network of width M and depth
L given by

f (x) = 1p
M

W L +1 � (zL ) + bL +1 ; (1)

z` = 1p
M

W ` � (z` � 1) + b ` for ` = 2 ; : : : ; L; (2)

z1 = 1p
D i

W 1x + b1 (3)

(W L +1 ; bL +1 ) 2 RD o � M � RD o , (W ` ; b ` ) 2 RM � M �
RM for ` = 2 ; : : : ; L , and (W 1; b1) 2 RM � D i � RM are
the weight and bias parameters, respectively;� : R !
R is the activation function, applied element-wise.

Let � represent the concatenation of all parameters.
A Bayesian neural network places a prior distribution
P over � and a likelihood distribution L (� ) over Y
conditional on � . In this paper, we study the prior
composed of independent standard Gaussian distribu-
tions over the weights: � � N (0; I ). Often, we will
be interested in the distribution induced over f = f �

through the randomness in� . For a distribution over
the weights, P0, we will refer to the distribution in-
duced over f � by P0 as the P0 predictive distribution.
We note that this is a minor abuse of terminology, as a
predictive distribution would typically be de�ned over
subsets ofY and depends on the likelihood function.
For example, in classi�cation, the predictive refers to
the distribution over the output of the network (i.e.,
logits).

Convergence to Gaussian Processes (GPs). As
the width M tends to in�nity, an application of the
central limit theorem reveals that for any �nite collec-
tion of inputs f x sgS

s=1 , the distribution over the neural
network f f (x s)gS

s=1 induced by the prior P converges
in distribution to a multivariate normal distribution
(Neal, 1996; Matthews et al., 2018). In other words,
as the width tends to in�nity f converges to a multi-
output Gaussian process, called theneural network
Gaussian process(NNGP).

Variational Inference. Unfortunately, the poste-
rior distribution of a �nite-width BNN is not available
in closed form. Markov chain Monte Carlo (MCMC)
methods can be employed to approximately sample
from the posteriors (e.g., Izmailov et al., 2021); how-
ever due to a high-dimensional and multi-modal poste-
rior, these methods will generally not mix in a practical
amount of time. Because of its advantageous computa-
tional properties on high-dimensional problems, vari-
ational inference is an appealing alternative (Blundell
et al., 2015). Variational inference proposes a tractable
family of distributions Q and �nds an approximation
of the true posterior Q 2 Q . This approximation is
found by minimizing the KL divergence betweenQ and
the true posterior, which is equivalent to maximizing
a lower bound on the marginal likelihood called the
evidence lower bound (ELBO):

ELBO( Q) = E� � Q [logL (� )] � KL( Q; P); (4)

The �rst term in the ELBO is the expected log like-
lihood, which measures how well the model �ts the
data, and the second term is a regularization term,
which measures how closeQ is to the prior P.
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A common choice for the family of variational dis-
tributions Q is the set of factorized (independent)
Gaussian distributions. Under Q 2 Q , we write
� � N (� Q ; diag(� 2

Q )). Since both the prior and vari-
ational distribution are Gaussian, the KL divergence
can be calculated in closed-form:

KL( Q; P) = 1
2 (k� Q k2

2 + kr (� 2
Q )k1); (5)

where r : (0; 1 ) ! [0; 1 ), r (a) = a � 1 � log(a) is
applied element-wise. Notice that Equation (5) acts
like `2-regularization of the mean parameters, which
will play an important role in the proof of Theorem 2.
For this variational family Q, under weak regularity
conditions, it can be shown that an optimal solution
Q� 2 arg maxQ2Q ELBO( Q) always exists (see Ap-
pendix B). Note, however, that an optimal solution
is certainly not unique, because permutations of neu-
rons have the same expected log-likelihood and KL
divergence to the prior.

While mean-�eld variational inference scales grace-
fully from a computational perspective, its success ul-
timately relies on the variational family being su�-
ciently large so that the maximizer of the ELBO qual-
itatively resembles the posterior. In the next section,
we prove that this fails badly for certain BNN models.

4 THE VARIATIONAL POSTERIOR
PREDICTIVE REVERTS TO THE
PRIOR PREDICTIVE

In this section, we analyze the convergence of opti-
mal mean-�eld Gaussian variational posterior predic-
tive distributions for Gaussian and other likelihoods.
We give a sketch of the proof strategy. Additionally,
we discuss the quantitative e�ect of depth and the
number of observations on our results.

4.1 Gaussian Likelihood

We begin by stating a simpli�ed version of our main
result for a homoscedastic Gaussian likelihood: under
fairly broad conditions, the variational BNN posterior
predictive converges to the prior predictive.

We assume in our statements that the prior isN (0; I );
we additionally assume the network has no bias after
the �nal hidden layer; an analogous result holds in the
case with a �nal bias.

Theorem 1 (Convergence in distribution to the prior,
simpli�ed ). Assume a Gaussian likelihood and an odd,
Lipschitz activation function. Then, for any �xed
dataset, as the width tends to in�nity, any �nite-
dimensional distribution of any optimal mean-�eld
variational posterior predictive distribution of a BNN

Figure 1: Prior and posterior predictive distributions
for single-layer mean-�eld variational BNNs of di�er-
ent widths compared to the NNGP, to which the true
posterior of the BNN converges. For a large width, the
mean-�eld variational BNN ignores the data, unlike
the NNGP. The shaded regions constitute� 1 standard
deviation around the means (solid lines). All estimates
are based on 1,000 function samples (a few of which
are drawn faintly).

of any depth converges to the corresponding �nite-
dimensional distribution of the NNGP prior predictive
distribution.

Figure 1 illustrates our result on a small dataset. In
contrast to the true BNN posterior predictive, which
converges to the NNGP posterior in the limit as the
width approaches in�nity, the variational BNN pos-
terior predictive converges to the NNGP prior, com-
pletely ignoring the data.

A more general version of the theorem, which incorpo-
rates the �nal layer bias and allows for odd functions
with a constant o�set (e.g., a sigmoid activation), can
be found in Appendix G. The output bias serves only
to shift the network by a constant and can sometimes
be optimized in closed-form (e.g., in the Gaussian like-
lihood case it accounts for the overall mean of the ob-
servations, �y). Theorem 1 and its generalization apply
to several commonly used activation functions, notably
tanh, sigmoid and linear.

While a Gaussian likelihood is necessary for our proof
of convergence of the entire variational posterior pre-
dictive distribution to the prior predictive distribution,
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we also prove convergence of the �rst two moments of
the variational posterior predictive to the correspond-
ing prior predictive moments for a variety of other like-
lihoods (logistic, Student's t). Additionally, we derive
computable bounds on the �rst two moments of the
variational posterior predictive distributions that show
that for large, �nite widths they must resemble the
corresponding prior moments. In contrast, will see in
Section 5 that the oddness assumption in Theorem 1
is necessary for any of these results.

4.2 General Likelihoods

Theorem 1 follows from a more general result that
holds for a large class of likelihoods. In particular, for
a range of likelihoods including Gaussian, Student'st,
and logistic, we show convergence of the �rst two mo-
ments of the posterior predictive to the corresponding
prior predictive moments. The convergence statement
has two parts. First, we provide a non-asymptotic
bound on the di�erence between the �rst two moments
of the prior and approximate posterior predictive dis-
tributions (Theorem 2) and goes to 0 like O( 1p

M
).

This aspect is independent of the likelihood and the
upper bounds depend on KL(Q; P). Second, we pro-
vide an upper bound on KL(Q; P) that depends on
the dataset and likelihood, but importantly, is inde-
pendent of the width of the network (Lemma 3).

Theorem 2 (Bounds on the mean and variance, sim-
pli�ed ). Under the same conditions as Theorem 1 (ex-
cept for the likelihood assumption), there exist univer-
sal constantsc1; c2; c3; c4 > 0 such that

kEQ [f (x)] � EP [f (x)]k2

� c1cL � 1
2

1 + 1p
D i

kxk2
p

M
KL( Q; P)(KL( Q; P)

L � 1
2 _ 1);

kEQ [f 2(x)] � EP [f 2(x)]k1

� c3cL � 1
4

1 + 1
D i

kxk2
2p

M
KL( Q; P)

1
2 (KL( Q; P)L + 1

2 _ 1)

where a _ b = max( a; b).

In the special case whenL = 1, our bound on the mean
has the simpler form

kEQ [f (x)]� EP [f (x)]k2 �
2
3

 
1+ 1

D i
kxk2

2

M

! 1
2

KL( Q;P): (6)

While a similar result to Equation (6) can be derived
as a special case of Theorem 2, we derive this result
speci�cally for the caseL = 1 to improve the constant
factors; see Appendix I.

Given the bounds in Theorem 2, we can immediately
obtain convergence of the variational predictive mean

Figure 2: Maximum observed distance of the optimal
posterior predictive mean to the prior predictive mean
over a grid of points in [� 1; 1] compared to the theoret-
ical O(M � 1=2) upper bound given by Theorem 2. For
eachM we train 10 single-layer networks on the same
two observations shown in Figure 1. The shaded re-
gion shows the range of estimates over the 10 random
initializations. We also show the analogous distance
for the NNGP.

and variance to the prior as M ! 1 by bounding
KL( Q� ; P) by a constant.

Lemma 3 (Bounds on the KL, simpli�ed ). For Gaus-
sian, Student's t, and logistic likelihood functions, and
for an optimal mean-�eld variational posterior Q� ,
KL( Q� ; P) is bounded by a constant that does not
depend on the network width M .

Figure 2 illustrates the upper bound given by Equa-
tion (6) and Lemma 3 for the optimal posterior, Q� .
Empirically, the observed distance of the optimal pos-
terior predictive mean to the prior predictive mean is
well below the upper bound, which may be due to our
bound of KL( Q� ; P). See Step 2 of Section 4.4 for
further discussion of this bound. For example, above
a width of 103, we observe the distance to the prior
predictive within approximately 10 � 2, which is well
below scale of they observations (� 1 and +1) and the
corresponding distance for the NNGP.

Figure 3 con�rms that convergence to the prior leads to
a poor �t of the data. We see that across datasets, the
RMSE between the posterior mean and the test data
increases with the network width (right panel). For
comparison, we show the RMSE between the posterior
and the prior mean (left panel), which decreases as
expected. The datasets \concrete" and \slump" are
from the UCI Machine Learning Repository and the
rest are synthetic. The \2 points" dataset is the same
as in Figures 1 and Figure 2. See Appendix L for
details and an analogous plot of the posterior variance.
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