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Abstract

In this work, we consider the problem of re-
covery a planted k-densest sub-hypergraph
on a d-uniform hypergraph. This funda-
mental problem appears in different contexts,
e.g., community detection, average-case com-
plexity, and neuroscience applications as a
structural variant of tensor PCA problem.
We provide tight statistical upper and lower
bounds for the exact recovery threshold by
the maximum-likelihood estimator, as well
as algorithmic bounds based on approximate
message passing algorithms. The problem ex-
hibits a typical statistical-computational gap
observed in analogous sparse settings that
widens with increasing sparsity of the prob-
lem. The bounds show that the signal struc-
ture impacts the location of the statistical
and computational phase transition not cap-
tured by the known existing bounds for the
tensor PCA model. This effect is due to the
generic planted signal prior that this latter
model addresses.

1 INTRODUCTION

High dimensional inference problems play a key role
in recent machine learning and data analysis applica-
tions. Typical scenarios exhibit problem dimensions
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that are comparable to the sample size, hence pre-
cluding effective estimation with no further structure
imposed on the underlying signal, such as low rank or
sparsity. Examples of such problems include sparse
mean estimation, compressive sensing, sparse phase
retrieval, low-rank matrix estimation, community de-
tection, planted clique and densest subgraph recovery
problems.

In this work we study the problem of recovery a planted
k-densest sub-hypergraph on d-uniform hypergraphs
over p nodes studied in (Corinzia et al., 2019). This is
the planted version of the classical k-densest subgraph
(Chlamtac et al., 2016), informally defined as follows.
The planted solution consists of a set of k randomly
chosen nodes among the total of p nodes. The weights
of all

(
k
d

)
hyperedges 1 inside the planted solution have

some initial bias, while the others have zero bias. After
some Gaussian noise is added to these initial weights,
we would like to recover the planted solution given only
these noisy observations.

Under what conditions is it possible to re-
cover the planted solution?
What about computationally efficient algo-
rithms for this task?

In the simpler graph setting the problem is closely re-
lated to detecting a core structure in community detec-
tion, it resembles the well-known planted clique prob-
lem, and other community detection models such as
the stochastic block model (SBM). Recent work also
suggest that the k-densest subgraph problem is related

1Recall that in an d-uniform hypergraph we have one
hyperedge for each subset of d nodes, with d = 2 being the
standard undirected graph.
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to long term memory mechanism in the brain (Leg-
enstein et al., 2018). The more general hypergraph
version is closely related to the so-called tensor Prin-
cipal Component Analysis (tensor PCA). Higher or-
der interactions among nodes is also rather natural in
several applications, including modeling brain regions
(Gu et al., 2017; Wang et al., 2012; Zu et al., 2016) and
in computer vision applications (Jolion and Kropatsch,
2012).

Our goal is to understand the information-theoretic
and computational algorithmic limits for this class of
recovery problems parameterized by d and k, where
these parameters possibly depend on the number of
nodes p. This will establish the regimes for which algo-
rithms have the ability to recover a hidden structure or
signal from noisy measurements and partial informa-
tion. In particular, we are interested in the existence
of the so called statistical-computation gaps observed
in several problems (see Section 1.2 below). Note that
the maximum likelihood estimator (MLE) is the opti-
mal estimator for the 0-1 loss (Jagannath et al., 2020),
and thus it characterizes the statistical limits of the
problem (whether recovery is possible). For a start,
consider the two extremes, d = 1 and d = k, where
the MLE is computationally efficient though for dif-
ferent reasons:

• For d = k the solutions2 are statistically inde-
pendent (like in the Random Energy Model by
Derrida (1981)). The MLE can be implemented
by searching exhaustively through all

(
p
k

)
=
(
p
d

)
solutions, which is computationally efficient since(
p
d

)
is the input size.

• For d = 1 exhaustive search through all
(
p
k

)
so-

lutions is clearly inefficient, unless k is constant.
Nonetheless simply selecting greedily the k nodes
with highest weights implements efficiently the
MLE. Unlike the previous case, the solutions’
weights are statistically dependent.

Thus, in both these extreme cases there is no
statistical-computation gap, while their information-
theoretic nature is very different. The recoverability
conditions (whether the MLE succeeds) for d = 1 boils
down to analyzing N =

(
p
d

)
independent Gaussian

random variables. The presence of dependencies be-
tween solutions makes the analysis of the information-
theoretic boundary conditions significantly more com-
plex, even for d = k.

We are interested in the non-extreme cases (the spec-
trum 1 < d ≤ k ≤ p), where most of the practical

2Each subset of k nodes is a possible solution, and two
solutions are statistically independent if they do not share
any random variable, i.e., any hyperedge.

and theoretical applications arise. These are also the
most challenging cases since they present two chal-
lenges: information-theoretical due to dependencies
and algorithmic since the MLE is not computation-
ally efficient in general. In particular, we shall focus
on the sparse regime k ≪ p which, in several recovery
problems, seems to be the major source of statistical-
computation gaps. We mainly consider k ≈ pα with
arbitrary α ∈ (0, 1) constant (though some of our re-
sults extend to the full spectrum).

1.1 Our contribution

Despite tensor PCA recovery bounds have been stud-
ied in depth, these results either do not yield tight
information-theoretical bounds for our problem (be-
cause the tensor PCA assumes a more general prior),
or they do not apply (because the prior is different
from ours).3 Moreover, the best known information-
theoretic bounds for the problem we consider are far
from tight (Corinzia et al., 2019).

Our first contribution settles this issue as we pro-
vide (essentially) tight information-theoretic recovery
bounds. This allows for a direct comparison with ex-
isting bounds of more general or different recovery
problems studied in the literature (thus highlighting
similarities and differences). Intuitively speaking, our
bounds depend on the so-called signal-to-noise ratio
(SNR), that is, the ratio between the initial bias β of
the weights in the planted solution, and the “overall”
noise. We express our results via the following scale-
normalized SNR γ,

γ ≡ β

√(
k
d

)
k

· 1

2 log p
, (1)

and prove the following:

Theorem (informal) Consider the scale-normalized
SNR γ and the following two constants,

γLB =

{√
1− α for any d = ω(1)√
1− α/2 in general

γUB =
√
1 + 2α+

√
α ,

(2)

where α ∈ (0, 1) is a constant satisfying k ≈ pα. For
γ < γLB, exact recovery is impossible regardless of
which estimator (algorithm) we use, while for γ > γUB

exact recovery is possible via the (computationally in-
tractable) maximum likelihood estimator.

3Intuitively, the planted signal may or may not obey
a certain structure which corresponds to a specific prior
distribution, e.g., the uniform distribution over all subsets
of k nodes as in our problem (see Remark 1 below).
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The scale-normalized SNR in (1) has a rather natural
interpretation (see Remark 2 below). It is worth to ob-
serve that this normalization incorporates the problem
parameters p, k, d and that the information-theoretic
recoverability thresholds in (2) correspond to a finite
γ. That is, to some initial bias

β = β(p) = Θ

(√
2k log p(

k
d

) )
.

Note that both k and d may depend on p, that is, we
consider k = k(p) and h(p) for p → ∞.

Our second contribution is a new algorithmic threshold
based on Approximate Message Passing (AMP) algo-
rithms. This class of algorithms represent the best
known technique for several other high dimensional
statistical estimation problems (see e.g. (Deshpande
and Montanari, 2015; Richard and Montanari, 2014;
Lesieur et al., 2017a,b; Wein et al., 2019) and refer-
ences therein).

Specifically, we provide a heuristic derivation of AMP
together with a state evolution analysis for our prob-
lem. Our analysis extends the AMP algorithm for ten-
sor PCA with non-factorisable prior distribution, and
results in the following non-trivial computationally-
efficient threshold:

γAMP :=

√
1

2e

(p
k

)d−1 1

d(d− 1) log p
. (3)

Intuitively, for k ≈ pα and by ignoring low order terms,
the above bound corresponds to

γAMP
c ≈

√
p(1−α)(d−1)/(d(d− 1) log p) ,

which obviously grows with p, hence a gap with the
information-theoretic threshold γLB in (2). Our AMP
algorithm has time complexity Θ(pd), which is the cost
of the application of the tensor to a vector, and is the
scaling of the elements of the tensor.

The novel element in our AMP algorithm is the use
of a vectorial threshold function (see Section 3). Intu-
itively, the threshold function is one of the key com-
ponents of AMP algorithm, as AMP generalizes in a
non-trivial way spectral algorithms which correspond
to a particular threshold function. As we also show
experimentally (see Section 4), this yields an improve-
ment compared to the scalar threshold functions used
in prior works, especially with informative initializa-
tions of the algorithm.

We stress that our analysis is heuristic in the sense
that in the analysis it introduces certain approxima-
tions, which may not hold for all regimes. Indeed,
rigorous analysis of the AMP is only available for a

handful of problems like compressed sensing (Donoho
et al., 2009), planted clique (Deshpande and Monta-
nari, 2015), and matrix PCA in the dense (Deshpande
and Montanari, 2014) and sparse (Barbier et al., 2020)
regime. To the best of our knowledge, the only other
non-rigorous analysis of AMP in tensor case is given
in (Lesieur et al., 2017b) for dense tensor PCA with
factorized prior. For these reasons, we consider the
heuristic derivation of the AMP and its state evolu-
tion as one of the major contributions in this paper.

Our experiments show the that empirical behavior of
the AMP algorithm matches the analytical thresh-
old γAMP in (3). Interestingly, when initialized with
the correct planted solution, the AMP algorithm
(with our vectorial threshold function) approaches the
information-theoretic threshold γLB in (2).

1.2 Related Work

The study of the recovery of a planted signal in a prob-
abilistic generative model has received much attention
recently, as it constitutes a fertile ground for the anal-
ysis of the statistical-computational (SC) gaps. Many
variations of the planted problem have been addressed
in the literature. The stochastic block model for com-
munity detection in graphs (Abbe et al., 2016; Mos-
sel et al., 2015; Chen and Xu, 2014) or hypergraphs
(Barak et al., 2016; Ghoshdastidar and Dukkipati,
2014)) has been one of the first model to be studied
and does not present any SC gap (Abbe et al., 2016;
Kim et al., 2018). Despite these models have been
mainly used with discrete Bernoulli random variables,
recent extension to weighted edges have been proposed
(see (Aicher et al., 2014; Peixoto, 2018)). Analogously,
the dense matrix-PCA problem (Barbier et al., 2016;
Deshpande and Montanari, 2014) has been shown not
to have any SC gap, as the proposed AMP algorithms
match the statistical thresholds (Deshpande and Mon-
tanari, 2014).

SC gaps have been first observed in the context
of dense tensor-PCA (Richard and Montanari, 2014;
Hopkins et al., 2015; Montanari et al., 2016; Jagannath
et al., 2020; Arous et al., 2020; Perry et al., 2020) and
recently in the sparse matrix (Barbier et al., 2020)
and tensor extension (Niles-Weed and Zadik, 2020;
Corinzia et al., 2021). The last two works address
only the statistical phase transition and are the clos-
est to our work. In (Niles-Weed and Zadik, 2020), the
statistical threshold for the MMSE estimator is fully
characterized for the sparse tensor-PCA problem, and
it is shown that the estimator undergoes an all-or-
nothing transition. After proper rescaling, the SNR
threshold given in (Niles-Weed and Zadik, 2020) for
the MMSE estimator is located exactly at the lower
bound threshold proved here in Theorem 2. The char-
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acterization is, however, performed for the tensorial
(multi-dimensional) MMSE estimator. This estima-
tor is allowed to return any tensor in the unit ball,
with no guarantee whether this can be used to recover
the vectorial planted signal. Moreover, the precise re-
lation between the MMSE and the MLE addressed
here is generally still unknown, as mentioned by Niles-
Weed and Zadik (2020). Indeed, Corinzia et al. (2021)
showed that a stronger condition on the MMSE behav-
ior produces an equivalent transition on the tensorial
MLE, which imposes limitations on the sparsity regime
for which the results apply.

Other results on tensor-PCA bounds (Richard and
Montanari, 2014; Hopkins et al., 2015; Montanari
et al., 2016) with generic signal prior are not tight in
most of the cases if applied to our problem in a black-
box fashion (see, e.g. the comparison with prior upper
and lower bounds given in Supplementary Material).
This is due to the specific combinatorial structure of
the planted vector (that is, in turn, a restriction on the
signal prior) that is not specified for the generic spher-
ical prior tensor-PCA. Further variants and extensions
that fall into the class of tensor PCA have been consid-
ered in (Han et al., 2021; Luo and Zhang, 2021; Bren-
nan and Bresler, 2020). We note that the tensor order
d is not constant in our work, unlike in these works.
This is crucial when considering the “missing diagonal”
entries in our setting that are negligible for d = O(1),
but not in our setting (for d = k our problem is equiv-
alent to the independent Gaussian problem, unlike
the tensor counterpart). The technique in (Brennan
and Bresler, 2020) based on a “filling entries” argu-
ment is performed on (i) tensor PCA with a specific
prior (Rademacher, that is, dense and factorisable),
which seems to influence the statistical/computational
thresholds, and (ii) negatively correlated sparse PCA
in the regime k = o(p1/6). The other two referenced
papers study different priors, which makes these re-
sults/techniques not directly applicable. The algorith-
mic guarantees for a more general prior are suboptimal
for our problem, and the recovery threshold is lower.

Regarding the computational thresholds, the algo-
rithm here described is an extension of the tensor-
PCA AMP algorithm to sparse hypergraph settings.
These algorithms have been shown to be information-
theoretic optimal in numerous high dimensional statis-
tical estimation problems (dense matrix-PCA (Desh-
pande and Montanari, 2014), SBM (Abbe and Sandon,
2018) etc.) and to outperform other class of algorithms
in the case of SC gaps (see e.g., planted clique problem
(Deshpande and Montanari, 2015) and sparse matrix-
PCA (Barbier et al., 2020)). Nonetheless, AMP algo-
rithms have been shown to underperform in the tensor-
PCA problem (Lesieur et al., 2017b) to the sum-of-

squares class (Hopkins et al., 2015) and recently to
averaged gradient descent (Biroli et al., 2020). A re-
cent work suggests that a hierarchy of such AMP al-
gorithms may actually match the performance of the
best known efficient algorithms (Wein et al., 2019).
Finally, Choo and d’Orsi (2021) provides a sum-of-
squares type algorithm for the tensorial version of our
problem when k = O(

√
p) and whose running time is

polynomial for constant d provided the SNR γ is large
enough (their algorithm applies to the full spectrum
and its running time increases for smaller γ).

1.3 Model and formal definitions

We study the problem of recovery a planted sub-
hypergraph on a d-uniform hypergraph over p nodes.
Every subset of d nodes {i1, i2, . . . , id} is an hyperedge
whose weight Yi1,i2,...,id is a Gaussian random variable,
defined according to the following process. We denote
by x ∈ Cp,k ⊂ {0, 1}p the vector of selected nodes, with

Cp,k := {x ∈ {0, 1}p :
∑
i

xi = k}.

Furthermore, we assume that x is drawn uniformly
at random in Cp,k with probability Pp. The resulting
weights are given by the d-order tensor Y := Y(x) in
which all edges indicated by x have a bias β ≥ 0, and
the weights are perturbed by adding Gaussian noise
across all hyperedges (i1i2 · · · id) with i1 < i2 < · · · <
id.

For convenience let us now introduce the following
tensor notation. The outer product of two ten-
sors U ∈

⊗d1 Rp and V ∈
⊗d2 Rp is denoted

by U ⊗ V with entries (U ⊗ V )i1i2...id1 j1j2···jd2 =

Ui1i2···id1Vj1j2...jd2
. For x ∈ Rp, we define x⊗d =

x ⊗ · · · ⊗ x ∈
⊗d Rp as the d-th outer power of x.

The inner product of the two tensors U ∈
⊗d1 Rp and

V ∈
⊗d2 Rp with d2 ≤ d1 is defined as ⟨U,V⟩ =∑

j1,...,jd2
Ui1,...,id2−d1

,j1,...,jd2
Vj1,...,jd2

. Given a d-th

order tensor U ∈
⊗d Rp, we define the map U : Rp →

Rp as

U{x}i =
∑

i2,...,id

Ui,i2,...,id xi2 · . . . · xid . (4)

Using tensor notation, the observation model reads:

Y = (βx⊗d + Z)1{i1<···<id} (5)

where 1{P} = 1 if P is true, and 0 otherwise, and
Zi1i2···ih ∼ N (0, 1).
Remark 1. Note the main important difference with
the tensor PCA formulation of the problem, where all
the elements of the tensor are observed. Also note that
x consists of randomly chosen vector with exactly k
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entries equals 1, which gives a particular prior distri-
bution on the tensor in (5). Different priors have been
considered like, e.g., the Rademacher prior where x is
chosen uniformly in the set {−1,+1}p. The more gen-
eral (unrestricted) prior in tensor PCA corresponds to
the tensor

Y = βX+ Z

where X ∈ RN is a tensor chosen uniformly among all
tensors of unit length, and Z ∈ RN has i.i.d. standard
Guaussian entries similarly to (5).

For any signal x, we also consider the sum of all
(
k
d

)
weights of the hyperedges with nodes in x as:

S(x) :=
∑

i1<i2<...<id

Yi1,i2...,idxi1 · xi2 · · · · xid

=
∑
i

Y{x}i = ⟨Y,x⊗d⟩ (6)

Definition 1 (Partial and exact receovery). A k′-
partial recovery is achieved if there exists an estimator
x̂ that, with input the weight tensor Y(x) given by (5),
returns x̂ = x̂(Y) such that

P(⟨x̂,x⟩ ≥ k′) = 1− o(1).

Exact recovery is achieved if

P(⟨x̂,x⟩ = k) = P(x̂ = x) = 1− o(1).

Definition 2 (Maximum-likelihood estimator). The
vectorial maximum-likelihood estimator is defined as

xMLE(Y) = argmax
x̂ : Y→x̂(Y)∈Cp,k

P(Y| ˆx(Y))

We define as P
(k′)
r = P(⟨xMLE,x⟩ ≥ k′) and Pr ac-

cordingly.

It is easy to see that the vectorial MLE estimator
for the problem in Equation (5) corresponds to the
k-densest sub-hypergraph (from this the name of the
problem, see Theorem 4 in (Corinzia et al., 2019) for
a proof)

xMLE(Y) = argmax
x̂ : Y→x̂(Y)∈Cp,k

∑
i1<···<id

Yi1,...,id x̂i1 · · · · · x̂id

= argmax
x̂ : Y→x̂(Y)∈Cp,k

⟨Y, x̂⊗d⟩ = argmax
x̂ : Y→x̂(Y)∈Cp,k

S(x̂)

(7)

Our bounds depend on the scale-normalized SNR:

γ := β

√(
k
d

)
k

· 1

2 log p
. (8)

This scaling incorporates the parameters k and d of
the problem and it will result in information-theoretic
thresholds located at finite values.

Remark 2. The scale-normalized SNR γ in Equa-
tion (8) can be seen as the effective SNR of the prob-
lem, given by total signal / total noise. The total
signal is β, times the number of planted edges, hence

β
(
k
d

)
. The total noise is the standard deviation

√(
k
d

)
times the scale of the number of solutions

√
2 log

(
p
k

)
≈

√
2k log p. The latter rescale has the following intuitive

justification. If we assume that
(
p−k
k

)
≈
(
p
k

)
unbiased

solutions are independent, then their maximum is lo-

cated at
√(

k
d

)√
2 log p. The total signal has then to

exceed this quantity, in order for the recovery to be
possible. This argument ignores the dependencies be-
tween solutions, but it provides the right scaling of the
SNR.

Note that all these parameters may depend on p, that
is, we consider k = kp and d = dp. Throughout the
paper, we hide the dependency on p for readability.
In most of the analysis, the following rescaling of the
involved quantities will appear naturally

αq := lim
p→+∞

log q

log p
(9)

which intuitively means that q ≈ pαq . We call αq the
rate of a generic q = qp.

2 INFORMATION THEORETIC
BOUNDS

By the MLE estimator’s characterisation given in
Equation (7), the recovery regime is regulated by the
weight S(x) of the planted solution and how it com-
pares to the best among all other solutions’ weights.
For the analysis, it is useful to partition the latter ac-
cording to their overlap with the planted solution.
Lemma 1. For any m ∈ {0, . . . , k}, let

Sm = {x̂ ∈ Cp,k : ⟨x, x̂⟩ = m}

denote the set of all solutions that share exactly m
nodes with the planted solution x. Then the follow-
ing bound holds for all k′ ∈ {0, . . . , k}:

1− P (k′)
r ≤

k′−1∑
m=0

P

(
S(x) < max

x̂∈Sm

S(x̂)

)
. (10)

For all m < k it further holds:

1− Pr ≥ P

(
S(x) < max

x̂∈Sm

S(x̂)

)
. (11)

The proof of this lemma is given by a union bound and
is given in the Supplementary Material. Given Defi-
nition 2 and the latter inequalities, we can reduce the



Statistical and computational thresholds for the planted k-densest sub-hypergraph problem

analysis of the recovery regime to the determination
of the values of γ for which P (S(x) < maxx̂∈Sm

S(x̂))
vanishes or has limit 1, for p → +∞. In the first
scenario (recovery regime), these probabilities need to
vanish sufficiently fast to apply the union bound in
Equation (10) over all different m.

2.1 Upper bound (partial or exact recovery)

We here provide upper bounds on the failure probabil-
ity of partial and exact recover. The proof is given in
appendix.

Theorem 1. For any k and any k′ ∈ {1, . . . , k}, and
for any γ > γ

(k′)
UB , the MLE estimator achieves k′-

partial recovery according to Definition 1. The critical
gamma is defined as

γ
(k′)
UB :=

√
1 + αk − 2αk−k′ + αk′+

√
αk − αk−k′ + αk′

where αk, αk′ and αk−k′ are defined according to Equa-
tion (9).

It follows easily from the latter theorem, the following
on exact recovery.

Lemma 2. Exact recovery is achieved for γ > γUB,
with

γUB =
√
1 + 2αk +

√
2αk.

Recovery of a constant fraction of k nodes is achieved
with k′ = λk, with λ constant, for γ > γ

(λk)
UB with

γ
(λk)
UB = 1 +

√
αk.

2.2 Lower bounds (impossibility of recovery)

We here provide a characterisation of the regime where
recovery is impossible, given by the following two the-
orems, valid in different regimes.

Theorem 2. For αk ∈ (0, 1), and for d ∈ ω(1) the
following holds:

lim
p→+∞

Pr = 0

for any γ < γLB,G, with γLB,G given by:

γLB,G :=

{√
1− αk for d ∈ o(

√
k)

√
1− αk/

√
e otherwise

. (12)

Theorem 3. For αk ∈ (0, 1) and any d, the following
holds:

lim sup
p→+∞

Pr < 1

for any γ < γLB,F, with γLB,F given by:

γLB,F :=

√
1− αk

2
. (13)

The first theorem gives tighter bounds, but its valid-
ity is confined to the case where the order of the hy-
pergraph (or tensor) d grows to infinity with p. The
second theorem is valid in any regime. However, it
provides only an impossibility result as lim supPr < 1,
and achieves a lower threshold. The proofs in the two
regimes use two main arguments that are, respectively:

1. A recent tail bound on the maximum of de-
pendent Gaussians with bounded correlation by
Lopes (2018) (see Supplementary Material).

2. The generalised Fano’s inequality (Han and
Verdú, 1994).

Both proofs consider a coverage set of weakly overlap-
ping solutions defined below. Intuitively, recovery in
the original problem is at least as difficult as the recov-
ery restricted to this set of weakly dependent solutions
if the coverage is sufficiently large.

We now sketch the proof of the theorem starting with
the following definition.

Definition 3. For any r ∈ {0, . . . , k} define the cov-
erage with overlap r a subset C(r) ⊂ Cp,k of solutions
satisfying the following conditions: (i) Any two solu-
tions in C(r) share less than r nodes. (ii) For any
solution x′ ∈ Cp,k,x′ ̸∈ C(r) there exists a solution
x′′ ∈ C(r) such that x′ and x′′ have at least r nodes in
common. We denote by C(r) := |C(r)| the cardinality
of the coverage.

In the proof of Theorem 2, we use the above men-
tioned result (Lopes, 2018) to show that the max-
imum among solutions in C(r) concentrates tightly

around σk

√
αC(r) · 2 log p where σk =

√(
k
d

)
, while the

planted solution concentrates around its expectation
βk = β

(
k
d

)
. Then, the condition for recovery trans-

lates into βk > σk

√
αC(r) · 2 log p which corresponds

to γ <
√

αC(r)

k . A crucial point is that, in order to
prove the concentration of the maximum over C(r),
the overlap r has to be small enough such that the
maximum correlation between solutions weights S(x̂)
vanishes, which gives the conditions on d in Theorem 2
and the corresponding bound on αC(r).

The proof of Theorem 3 is based on Fano’s inequality.
By restricting to the solutions in C(r), we use the gen-
eralized Fano’s inequality (Han and Verdú, 1994) to
show that Pr satisfies the bound Pr ≲ 1 − I(x;Y) ·
log−1 C(r) where I(x;Y) is the mutual information
between the planted solution x and the observations
Y(x). By using (Han and Verdú, 1994) and the com-
binatorial structure of Cp,k, we can upper bound the
mutual information as

(
k
d

)
β2. The rescaling of γ and
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a lower bound on the cardinality of the coverage set
C(r) gives the claim. The proof of both theorems is
given in Supplementary Material.

3 COMPUTATIONAL
THRESHOLDS VIA
APPROXIMATE MESSAGE
PASSING

Approximate message passing algorithms are a class
of algorithms for high dimensional statistical estima-
tion that approximate belief propagation in the large
system limit (Donoho et al., 2009). Intuitively, it iter-
atively estimates the mean x(t) and the variance a(t)

of the classic belief propagation messages in the factor
graph of the estimation problem, discarding low order
terms that depend on the target factor node of the
messages. The algorithm results in a slight modifica-
tion of a general spectral algorithm for tensor-PCA.
In the following, we use the operator ‘◦’ to denote an
operation that is performed elementwise on a vector
or tensor. Let introduce the following probability dis-
tribution

g(y|a,x) = Pp(y) exp(x · y − (y ◦ y) · a)/2
Z(a,x)

where Z(a,x) is the normalizing constant. Then, we
define the following threshold function which will be
used in the definition of AMP algorithm below:

f(a,x) = Eg(·|a,x)[y]. (14)

3.1 The AMP procedure

The iterative AMP procedure reads (derivation given
in Supplementary Material):

b(t) = β2(d− 1)⟨Y ◦2,σ(t) ⊗ (x̂(t) ◦ x̂(t−1))⊗d−2⟩
x(t) = βY{x̂(t)} − ⟨b(t), x̂(t−1)⟩
a(t) = β2Y ◦2{(x̂(t))◦2} (15)

σ(t+1) = diag(Jxf(a
(t), x̂(t)))

x̂(t+1) = f(a(t),x(t))

where Jxf is the Jacobian w.r.t variable x of the func-
tion f and diag(·) extracts its diagonal entries. The
threshold function f becomes tractable when the prior
distribution Pp factorizes as Pp(x) =

∏
i p(xi). In this

case, the threshold function f factorizes as well into in-
dependent components, and the AMP equations pro-
posed here are equivalent to those in Lesieur et al.
(2017b) (details in Supplementary Material). In our
problem, however, the prior distribution does not fac-
torize since Pp is the uniform distribution over Cp,k. A

similar issue arises in the planted clique problem stud-
ied in (Deshpande and Montanari, 2015), where the
authors propose to approximate the prior distribution
with a factorized Bernoulli distribution with parame-
ter δ = k/p. With this approximation, the threshold
function reads f(a,x) = (fi(ai, xi))

p
i=1, where

fi(ai, xi) =
1

1 + exp(−xi + ai/2 + log(1/δ − 1))
.

While this Bernulli approximation is effective for large
k – like the regime k = Θ(

√
p) studied in (Deshpande

and Montanari, 2015) – it may be inaccurate for small
k. We indeed observe experimentally (see Section 4)
that for small values of k, the above approximation is
no longer effective. Hence, we propose a finer approxi-
mation of the threshold function that is still tractable.
Our parametrization is inspired by the independent
Bernoulli approximation:

f(a,x) =

(
1

1 + exp(−xi + ai/2 + λ(x))

)p

i=1

(16)

with λ(x) being a scalar used to enforce f to select k
components equals to 1, hence given by

∑
i fi(a,x) =

k. The experiments described in Section 4 below show
that our finer approximation outperforms the Bernulli
i.i.d. approximation.

3.2 State Evolution

The evolution of the approximated message passing
algorithm in the special case of Bayesian-optimal in-
ference, can be tracked by a one dimensional iterative
equation of the overlap order parameter. In our set-
ting, with a generic (non-factorizable) prior distribu-
tion Pp and threshold function f we can define the
multidimensional overlap order parameter as

m(t) =
1(

p−1
d−1

)Ex[1{x ◦ x(t)}]

where 1 is the tensor with components 1i,i2,...,id = 1
if i2 < i3 < · · · < id and 0 otherwise. The multidi-
mensional state evolution (SE) (generalizing (Lesieur
et al., 2017b)) reads then (see Supplementary Material
for a heuristic derivation):

m(t+1) =

Ex,z

[
1{x ◦ f

(
m̂(t), m̂(t) ◦ x+ (m̂(t))◦1/2 ◦ z

)
}
](

p−1
d−1

) ,

where m̂(t) = β2
(
p−1
d−1

)
m(t) and z is a p-dimensional

vector with i.i.d. standard Gaussian entries. Note
again that assuming a factorized i.i.d. prior distribu-
tion Pp(x) =

∏
i p(xi) the SE is equivalent to the single
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Figure 1: Empirical performance of the AMP algorithm for fixed p = 500, d = 3 and different values of k
(respectively, from left to right, k = 20, 10, 5). The experiment is repeated 20 times, and we report the median
overlap achieved m. The AMP and AMP VECT refer respectively to using a scalar and a vectorial thresholding
function as in Equation (16).

letter evolution of the scalar overlap mt =
1
p ⟨x, x̂

(t)⟩
described in (Lesieur et al., 2017b),

mt+1 = Ex,z

[
x · f(m̂t, m̂tx+

√
m̂tz)

]
, (17)

where x ∼ p, z ∼ N (0, 1), and m̂t = β2
(
p−1
d−1

)
mt.

In the following we derive an analytical threshold for
the AMP algorithm to succeed, approximating the
true prior distribution with a factorized Bernoulli prior
with parameter δ = k

p and using the simplified SE in
Equation (17). A simple heuristic argument based on
the study of the fixed points of the SE is given in the
Supplementary Material.
Claim 1. The recovery threshold for the AMP algo-
rithm reads:

γAMP :=

√
1

2e

(p
k

)d−1 1

d(d− 1) log p
. (18)

4 EXPERIMENTS AND
DISCUSSION

In Figure 1, we report both the empirical perfor-
mance of the AMP algorithm and the factorized SE
fixed point (according to Equation (17)) for uninfor-
mative initialization (with a random overlap with the
planted solution) and informative initialization (re-
spectively UI and II) for different values of k. For
a high value of k, the Bernoulli i.i.d. approximation of
the prior function and factorized thresholding function
well matches the SE fixed point, with the UI empir-
ical performance slightly worse than the SE predic-
tion due to finite-size effects (as already observed for
the planted clique problem in graphs (Deshpande and
Montanari, 2015)). At smaller values of k, the statis-
tical dependency between signal components increases

and the AMP empirical performance badly mismatch
the SE prediction. In this setting, the proposed mul-
tivariate threshold function significantly outperforms
the naive factorized AMP, matching the SE in the
II setting correctly. Interestingly, the dynamic phase
transition of the AMP indicated by the critical signal
at which the SE with II fails approaches the conjec-
tured4 information-theoretic threshold γLB. This find-
ing suggests a possibility of analysis of the IT thresh-
olds with statistical physics-inspired techniques (e.g.,
interpolation methods by Barbier et al. (2020)) that
so far have never been applied rigorously to the case
of structured priors in the sparse setting.

In Figure 2 we also report the factorized SE fixed point
for d = 3 and d = 4 for both UI and II. We can ob-
serve the good agreement between the analytical com-
putational threshold given by Claim 1 and the SE’s
empirical fixed point. The dynamical phase transition
indicated by the m∗ transition for II (bottom row)
is close to the information-theoretic lower bound (as
shown already for the tensor-PCA problem in Lesieur
et al. (2017b)).
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Luca Corinzia, Paolo Penna, Wojciech Szpankowski, Joachim M. Buhmann

 p = 1000   d = 3  p = 1000   d = 4

 k  k

 102

 101

 100 100

 100

 101

 102

 102
 101

 103

 101

 103
 102
 102

AMPUBLB
 1.0
 0.8
 0.6
 0.4
 0.2

Figure 2: State evolution fixed point overlap m∗ reached by the factorized equation in Equation (17). The first
row reports the overlap obtain with uninformative initialization (UI, m0 ≈ 0), while the bottom row reports
the overlap with informative initialization (II, m0 = 1). The empirical fixed point with UI well matches the
analytical AMP threshold given by Claim 1 (brown line, expressed in terms of the β parameter), while the II
fixed point approaches the conjectured IT threshold located at the lower bound.
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Supplementary Material:
Statistical and computational thresholds for the planted k-densest sub-hypergraph problem

A Postponed proofs

Proof of Lemma 1. By definition of P (k′)
r , 1 − P

(k′)
r = P (⟨xMLE,x⟩ < k′). By the characterization of the MLE

in Equation (7) and the definition of Sm, the latter event is equal to

{S(x) > S(x̂), ∀ x̂ ∈ S0 ∪ · · · ∪ Sk′−1}.

The claim in Equation (10) follows then from the union-bound on the probability

P

k′−1⋃
m=0

{
S(x) ≤ max

x̂∈Sm

(S(x̂))

} .

To prove the lower bound in Equation (11), we can observe that if S(x) < maxx̂∈Sm
(S(x̂)) for some m < k, then

the xMLE ̸= x, and thus it fails to exactly recover the planted solution.

A.1 Proofs for the Lower Bound

We shall use the following basic fact. For any random variables A and B and for any t ∈ R the following
inequality holds:

P(A ≥ B) ≤ P(A > t) + P(t ≥ B) (19)

Proof of Theorem 1. For the analysis, we define the following quantities depending on k′ ∈ {0, . . . , k − 1} (we
consider p, k, d to be the parameters of the problem, hence their dependency is not highlighted):

Q(k′) :=

(
p− k

k − k′

)
M(k′) :=

(
k

k′

)(
p− k

k − k′

)
=

(
k

k − k′

)(
p− k

k − k′

)
D(k′) :=

(
k

d

)
−
(
k′

d

)
.

For each fixed subset of k′ nodes of the planted solution, there are Q(k′) solutions that share exactly these k′

nodes with the planted solution. Moreover, there are exactly M(k′) solutions that share any k′ nodes with the
planted solution. Each solution sharing k′ nodes with the planted solution differs in D(k′) edges with the latter.
We use the union bound given in Equation (10), and control the quantities

P

(
max
x̂∈Sm

S(x̂) > S(x)

)
using the tail bounds of the Gaussian from Lemma 9 and spitting the inequality into the sum of two independent
terms as in Equation (19). We hence get the following lemma (full proof given below in this section):

Lemma 3. For every ϵ > 0 and for every k′ < k and k > 1, let γ(k′)
UBϵ

:=

√
(kd)

kD(k′) · UBϵ(k
′), where

UBϵ(k
′) :=

√
logM(k′)

log p
+ ϵ+

√
log
(
k
k′

)
log p

+ ϵ . (20)

Then, for any γ > γ
(k′)
UBϵ

it holds that

P

(
max
x̂∈Sk′

S(x̂) > S(x)

)
≤ 1√

πpϵ
.
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Plugging the result of the latter Lemma into Equation (10) we get:

1− P (k′)
r ∈ O

(
k′

pϵ

)
.

Using now Lemma 15 to characterize further the bound γ
(k′)
UBϵ

, and reparametrazing ϵ = αk′ + ϵ̃, with ϵ̃ > 0 an
arbitrarily constant, we have

k′

pϵ
=

k′

pαk′
· 1

pϵ̃
= exp

(
log p

[
−ϵ̃+

log k′

log p
− αk′

])
∈ o(1).

The asymptotics is due to the fact that log k′

log p − αk′ → 0, by definition of αk′ in Equation (9), and hence the

expression −ϵ̃+ log k′

log p − αk′ is negative for sufficiently large p. Hence, the probability 1− P
(k′)
r tends to 0.

Proof of Lemma 3. For an arbitrary subset F of k′ nodes of the planted solution x, denoted by xF , with k′ ∈
{0, . . . , k − 1}, let SF

k′ be the set of all solutions that share exactly the set F with the planted solution. Let
S−F (x̂) denote the sum of the weights in x̂ but not in xF , as

S−F (x̂) = S(x̂)− S(x̂ ◦ xF ).

By the union bound over the
(
k
k′

)
possible fixed subsets F of k′ nodes, we get

P

(
max
x̂∈Sk′

S(x̂) > S(x)

)
≤

≤
(
k

k′

)
P

(
max
x̂∈SF

k′

S(x̂) > S(x)

)

=

(
k

k′

)
P

(
max
x̂∈SF

k′

S−F (x̂) > S−F (x)

)
(21)

where the equality follows from subtracting from both sides the quantity S(xF ). Using Equation (19), we have

P

(
max
x̂∈SF

k′

S−F (x̂) > S−F (x)

)
≤

≤ P

(
max
x̂∈SF

k′

S−F (x̂) > t

)
+ P

(
t ≥ S−F (x)

)
≤ P

(
max
x̂∈SF

k′

S−F (x̂) > t∆′

)
+

+ P
(
D(k′)β − t∆′′ > S−F (x)

)
≤ Q(k′)p(k′,∆′) + p(k′,∆′′) (22)

where the second inequality follows from Lemma 14 (together with the definition of t∆′ and t∆′′) and the
latter inequality follows from Equation (34) and Equation (33) in Lemma 13. Combining Equation (21) and
Equation (22), we get

P

(
max
x̂∈Sk′

S(x̂) > S(x)

)
≤
(
k

k′

)
(Q(k′)p(k′,∆′) + p(k′,∆′′))

=

(
k

k′

)
1√

4π log p

(1

p

) ∆′
D(k′) Q(k′)√

∆′
+

(
1

p

) ∆′′
D(k′) 1√

∆′′


=

1√
4π log p

((
1

p

) ∆′
D(k′)−

log M(k′)
log p 1√

∆′
+

+

(
1

p

) ∆′′
D(k′)−

log ( k
k′)

log p 1√
∆′′

)
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where in the first equality we used Equation (32) and in the last equality the identity z = p
log z
log p and the fact that(

k

k′

)
Q(k′) =

(
k

k′

)(
p− k

k − k′

)
= M(k′).

Then, by Lemma 14, we get

P

(
max
x̂∈Sk′

S(x̂) > S(x)

)
≤ 1

pϵ
1√

4π log p

(
1√
∆′

+
1√
∆′′

)
≤ 1

pϵ
1√

4π log p

1

D(k′)

(√
log p

logM(k′)
+

+

√
log p

log
(
k
k′

))

≤ 1√
πpϵ

where in the last inequality we used D(k′) ≥ 1, M(k′) ≥
(
k
k′

)
≥ k, and log k > 1, that valid for k > k′ and

k > 1.

A.2 Proofs of the Lower Bound

Proof of Theorem 2. The proof of this lower bound is based on the result on tail bounds on the maximum of
Gaussians with bounded correlation (Lopes, 2018) given for convenience in Lemma 10. We here outline a road
map of the proof: (i) Given an overlap r ≤ k between two solutions x′,x′′, we define the correlation ρ(r) as
the correlation between the random variables S(x′) and S(x′′). We first analyze the conditions for vanishing
correlation ρ(r) → 0. (ii) Using the tail bound on correlated Gaussians in Lemma 10, we show that vanishing
correlation implies the concentration of the maximum of a given coverage of solutions C(r). (iii) Using a lower
bound on the rate of the cardinality of the coverage, we provide a respective lower bound of the recovery threshold.
We hence first give a Lemma that characterizes the condition to have vanishing correlations.

Lemma 4. For any two solutions x′,x′′ ∈ Cp,k, that share r nodes as ⟨x′,x′′⟩ = r, the correlation of the weights
ρ := ρS(x′),S(x′′) reads

ρ =

(
r
d

)(
k
d

)
and it vanishes in each of the following two regimes:

1. For d ∈ ω(1) and r ≤ λk for any constant λ satisfying{
λ < 1 for d ∈ o(

√
k)

λ < 1/e otherwise
(23)

2. For d ∈ O(1) and for any r ∈ o(k).

We can hence show in the following that, given a coverage with vanishing correlation ρ(r), the maximum of such
coverage in bounded from below in high probability.

Lemma 5. Given a number of shared nodes r and a coverage C(r) that satisfies Definition 3, if the correlation
between the weights of two solutions x′,x′′ ∈ C(r), ρ(r) = ρS(x′),S(x′′) → 0 vanishes, then for any constant
ϵ ∈ (0, 1) the following upper bound on the maximum weight in the coverage holds:

lim
p→+∞

P

(
max
x̂∈C(r)

S(x̂) ≤ (1− ϵ) · σk

√
αC(r) · 2 log p

)
= 0 (24)

where σk =
√(

k
d

)
.
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We further provide a bound on the opposite direction for the weight of the planted solution, such that the two
quantities can be well separated in high probability.

Lemma 6. For any sequence ∆ = Ω

(
(kd)
log p

)
, it holds that

lim
p→+∞

Pz

(
S(x) > βk +

√
∆ · 2 log p

)
= 0

where βk =
(
k
d

)
β and x is the planted solution.

We can prove the main Lemma that connects the recovery threshold to the rate of any coverage αC(r).

Lemma 7. Given the assumptions of Lemma 5 and given that αC(r) ∈ Ω(1), for any ϵ > 0 constant, if γ ≤
(1− ϵ)

√
αC(r)

k , then the probability of recovery vanishes:

lim
p→+∞

Pr = 0 .

Proof. From the hypothesis that αC(r) ∈ Ω(1), log p → +∞, and given any constant δ0 > 0 the condition on γ
above implies that for p large enough:

γ ≤ (1− ϵ)

√
αC(r)

k
−

√
δ0

k log p
.

Using the definition of γ and defining ∆ = δ0 ·
(kd)
log p we get with simple manipulation:

(1− ϵ)

√(
k

d

)√
αC(r) · 2 log p >

(
k

d

)
β +

√
∆ · 2 log p (25)

Using Equation (19) and Equation (11), we can write an upper-bound on the recovery probability as:

Pr ≤ P

(
max
x̂∈C(r)

S(x̂) ≤ S(x)

)
≤ P

(
max
x̂∈C(r)

S(x̂) ≤ t

)
+ P (t < S(x)) .

We can now use the condition in Equation (25), to get a t such that the conditions for both Lemma 5 and
Lemma 6 are satisfied. We hence obtain

P

(
max
x̂∈C(r)

S(x̂) > t

)
→ 1 and P (S(x) ≤ t) → 1 (26)

and so the claim follows.

Consider any r = λk with λ being any constant satisfying Equation (23), according to the regime of d and k.
By Lemma 4 and the assumption of the theorem d ∈ ω(1), the correlation ρ(r) vanishes. We can hence bound
the recovery threshold with a respective bound on the rate αC(r), that is given in the following Lemma.

Lemma 8. There exist a coverage C(r) according to Definition 3 with cardinality C(r), C(r) := |C(r)| at least

C(r) ≳

(
p
k

)
B(r)

for B(r) =

k∑
l=r

(
k

l

)(
p− k

k − l

)
. (27)

For any αk ∈ (0, 1) and r ≤ λk, with constant λ ∈ (0, 1), and for r ∈ ω( k
logn ) it holds that αC(r) ≳ r(1− αk).
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We can thus apply Lemma 7 and Lemma 8 with r = λk and obtain the desired result as follows:

(1− ϵ)

√
αC(r)

k
≥ (1− ϵ)

√
λ(1− αk) > γ

where the last inequality follows from the condition on γ in Equation (12) and the hypothesis that λ satisfies
Equation (23). The above inequality and Lemma 7 implies the claim.

Proof of Lemma 4. Both S(x′) and S(x′′) are Gaussian random variables N (µ, β2
(
k
d

)
), where µ is the mean, and

depends on the amount of nodes that the solution shares with the planted one x. The correlation is hence

ρ =
E[(S(x′)− ES(x′))(S(x′′)− ES(x′′))]

β2
(
k
d

) .

Observe that S(x′)− ES(x′) and S(x′′)− ES(x′′) are the sum of
(
k
d

)
−
(
r
d

)
independent terms, and

(
r
d

)
identical

terms that are Gaussian distributed N (0, β2). Hence, we get ρ =
(
r
d

)
/
(
k
d

)
. We can now upper bound the

correlation as

k(k − 1) · · · (k − d+ 1) ≥ (k − d)d =

(
1− d

k

)d

kd

≥
(
1− d2

k

)
kd

and therefore (
r
d

)(
k
d

) =
r!

d!(r − d)!

d!(k − d)!

r!
=

r(r − 1) · · · (r − d+ 1)

k(k − 1) · · · (k − d+ 1)

≤
( r
k

)d 1(
1− d2

k

)
≤ λd(

1− d2

k

) .

For d ∈ o(
√
k) and d ∈ ω(1) the latter quantity converges to 0 for any constant λ < 1. As for the other case in

Equation (23), we have (
r
d

)(
k
d

) ≤ edrd

dd
· d

d

kd
=
(e · r

k

)d
≤ (eλ)

d → 0

where the asymptotics follows from e < c0 and d → ∞. As for the second case, since d ∈ Θ(1) we have(
r
d

)
∈ Θ(rd) and

(
k
d

)
∈ Θ(kd), and thus r ∈ o(k) implies

(
r
d

)
∈ o(

(
k
d

)
).

Proof of Lemma 5. We apply the tail bound to the maximum of correlated Gaussians given in (Lopes, 2018)
(given also in Lemma 10 for convenience) with N = C(r). In particular, since by assumption the correlation
vanishes, we can choose any ρ0 < 1 and, for sufficiently large p, satisfy δ0

√
1− ρ0 ≥ 1 − ϵ and ρ(r) ≤ ρ0. We

can hence obtain:

lim
p→+∞

P

(
max
x̂∈C(r)

S(x̂) ≤ (1− ϵ) · σk

√
2 logC(r)

)
= 0 . (28)

Then, Equation (28) follows from Equation (30) as both η and ξ in Equation (31) are constants and
C(r) = |C(r)| → ∞. Finally, recall that αC(r) = limp logC(r)/ log p, and hence, for p large enough,
logC(r) ≤ αC(r) log p(1 + ϵ). The claim follows from the arbitrariness of ϵ.
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Proof of Lemma 6. Simply observe that, fixing x as the planted solution, S(x) ∼ N (
(
k
d

)
β,
(
k
d

)
). Hence, by

applying Lemma 9 with µ =
(
k
d

)
β = βk, σ2 =

(
k
d

)
, and c = t∆ =

√
∆2 log n we have

Pz (S(x) > βk + t∆) ≤
1

t∆
· e

−t2∆/2(kd)
√
2π

=
e−(∆ log p)/(kd)

t∆
√
2π

=
p−∆/(kd)

√
2π∆ ·

√
2 log p

,

and the latter quantity goes to 0 for ∆ = Ω

(
(kd)
log p

)
.

Proof of Lemma 8. We construct C(r) by a iterative greedy procedure. Starting from an arbitrary x̂ ∈ Cp,k,
include x̂ into C(r) and remove all solutions in Cp,k with overlap with the planted solution ⟨x, x̂⟩ ≥ r. Iterate
this step with the remaining solutions in Cp,k not considered before, until there are none with this property. At
every step we include one new solution in C(r) we remove at most B(r) solutions from Cp,k. Hence, in total
we can collect in C(r) at least ⌈|Cp,k|/B(r)⌉ = ⌈

(
p
k

)
/B(r)⌉ many solutions. Note that this construction satisfies

Definition 3 as (i) holds by construction, and (ii) follows from the fact that if x̂ ̸∈ C(r), then we can perform
another greedy step of the procedure and included it. Hence this proves Equation (27). To prove the second
part of the lemma, note that

(
k
d

)
≤ 2k and

(
p−k
k−l

)
≤
(

p
k−r

)
, hence we can get the following upper bound on B(r).

B(r) ≤ 2k
(

p

k − r

)
(k − r) .

Plugging the latter in Equation (27) we get:

C(r) ≥ log

(
p
k

)
B(r)

≥ log

(
p

k

)
+

−
[
k + log

(
p

k − r

)
+ log(k − r)

]
.

Using the standard concentration inequalities on the binomial coefficients in Lemma 11, we get

log

(
p

k

)
≥ k(log p− log k) = k(1− αk) log p

and

log

(
p

k − r

)
≤(k − r)(1 + log p− log(k − r))

≲(k − r)(1− αk) log p ,

where the last inequality follows from r ≤ λk and, in particular, log(k − r) ≥ log(k − λk) = log k + log(1− λ) ≈
log k ≈ αk log p. Hence we finally get the bound for the rate of the cardinality C(r):

αC(r) :=
logC(r)

log p

≳ k(1− r)− (k − r)(1− αk)−
k + log(k − r)

log p

= r(1− αk)− o(r) ≈ r(1− αk) ,

where the last equality is due to the fact that r ∈ ω( k
log p ).
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Proof of Theorem 3. Let Y(u) denote the
(
p
d

)
-dimensional vector obtained by the unfolding of the d-tensor Y

into a vector containing its non-zero components (all Yi1i2···id for distinct d-tuples i1 < i2 < · · · < id). Since
each component of vector Y(u) is a Gaussian r.v. according to Equation (5), the vector Y(u) is also distributed
as a Gaussian,

Y(u)(x̂) ∼ N
(
β(x̂⊗d)(u), I(pd)

)
:= Px̂ (29)

where I(pd)
is the identity matrix in R(

p
d). For any l ∈ {0, . . . , k} and for r = k − l, let C(r) be a maximum-

cardinality coverage defined according to Lemma 8. For any x′ ∈ Cp,k (possibly x′ ̸∈ C(r)) we consider its closest
solution in C(r) according to the scalar product:

PC(r)(x
′) := argmax

x′′∈C(r)
⟨x′,x′′⟩ .

Let x̃ := PC(r)(xMLE(Y)), where xMLE(Y) is the MLE characterized in Equation (7). By Fano’s inequality
(Cover, 1999) we have that, for x′ be chosen uniformly at random in C(r),

1− Pr ≥ P (x̃ ̸= x′)

≥ 1− I(x;Y) + log 2

logC(r)

where I(·; ·) denotes the mutual information. Using the generalized Fano’s inequality (Han and Verdú, 1994) we
further have:

I(x;Y) ≤ 1

C(r)2

∑
x′′ ̸=x′∈C(r)

D(Px′∥Px′′) ≤
(
k

d

)
β2 ,

where D(·||·) denotes the Kullback–Leibler divergence and the second inequality follows from Lemma 16. Hence,
from the definition of γ, we get

1− Pr ≥ 1−
(
k
d

)
β2 + log 2

logC(r)
≈ 1− 2γ2k · log p

logC(r)

= 1− 2γ2k

αC(r)

where in the last equality we used the definition of αC(r) in Equation (9) and the previous approximation comes
from the fact that C(r) → ∞. The bound αC(r) ≳ r(1− αk) in Lemma 8, with r = λk and λ ∈ (0, 1) constant,
yields

Pr ≲ 2γ2 1

λ(1− αk)

from which the claim follows easily from the arbitrariness of λ.

B Useful lemmas

Lemma 9. For any X ∼ N (µ, σ2) and any c > 0, the following concentration inequalities hold:(
1

c
− 1

c2

)
· e

−c2/2σ2

√
2π

≤ P(X ≥ µ+ c) ≤ 1

c
· e

−c2/2σ2

√
2π

.

Proof. See (Feller, 2008, Section 7.1).

Lemma 10 (Theorem 2.2 in (Lopes, 2018)). For any constant δ0 ∈ (0, 1), the maximum of N possibly dependent
Gaussian random variables X1, . . . , XN ∼ N (0, σ2

X) satisfies

P
(
max(X1, . . . , XN ) ≤ σX · δ0

√
2(1− ρ0) logN

)
≤ C · log

η N

Nξ
(30)
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where C = C(δ0, ρ0) is a constant depending only on δ0 and ρ0 and

η =
1− ρ0
ρ0

(1− δ0) , and ξ =
1− ρ0
ρ0

(1− δ0)
2 . (31)

Lemma 11. For any integers a and b the following concentration inequalities hold for the log binomial:

a(log b− log a) ≤ log

(
b

a

)
≤ a(1 + log b− log a).

Lemma 12. For any integers k, d and k′ with k′ ≤ k the following holds:

k − k′(
k
d

)
−
(
k′

d

) ≤ k(
k
d

) .
Proof. With simple manipulation, observe that this inequality is equivalent to(

k′

d

)(
k
d

) ≤ k′

k
.

For k′ < d this inequality is trivially satisfied since
(
k′

d

)
= 0. Otherwise we can write the previous inequality as(

k′

d

)(
k
d

) =
k′!

d!(k′ − d)!

d!(k − d)!

k!
=

k′(k′ − 1) · · · (k′ − d+ 1)

k(k − 1) · · · (k − d+ 1)

≤ k′

k

which is satisfied for any k′ ≤ k since all these terms satisfy k′−i
k−i ≤ 1, for 1 ≤ i ≤ d− 1.

Lemma 13. For any ∆ > 0, define t∆ :=
√
2∆ log p. Then the following bound holds for any x̂ ∈ SF

k′ :

P
(
S−F (x̂) ≥ t∆

)
≤ p(k′,∆) :=

(
1

p

) ∆
D(k′) 1√

4π∆ log p
. (32)

Moreover, the following inequalities hold:

P

(
max

x̂∈S−F

k′

S−F (x̂) ≥ t∆

)
≤ Q(k′) · p(k′,∆) (33)

P
(
S−F (x) < D(k′)β − t∆

)
≤ p(k′,∆). (34)

Proof. Observe that each x̂ ∈ S(−F ), S−F (x̂) consists of D(k′) non-biased edges, and therefore S−F (x̂) ∼
N (0, D(k′)). Hence, by using the tail bound in Lemma 9 with t = t∆ we have:

P
(
S−F (x̂) ≥ t∆

)
≤ 1

t∆
· e

−t2∆/2D(k′)

√
2π

=
e−∆ log p/D(k′)

t∆
√
2π

=
p−∆/D(k′)

√
2π∆ ·

√
2 log p

which proves Equation (32). By the union bound and Equation (32) we obtain:

P

(
max

x̂∈S−F

k′

S−F (x̂) ≥ t∆

)
=P

 ⋃
x̂∈S−F

k′

S−F (x̂) ≥ t∆


≤ Q(k′)p(k′,∆)
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from which Equation (33) follows noting that |S−F
k′ | = Q(k′). Finally, since all D(k′) edges of S−F (x) are biased,

we have S−F (x) ∼ N (D(k′)β,D(k′)). Therefore, by using Lemma 9 with t = D(k′)β + t∆, we get

P
(
S−F (x) ≤ D(k′)β − t∆

)
= P

(
S−F (x) ≥ D(k′)β + t∆

)
≤ 1

t∆
· e

−t2∆/2D(k′)

√
2π

.

The remainder of the proof is as above.

Lemma 14. For γ > γ
(k′)
UBϵ

, there exists t such that

t∆′ < t < D(k′)β − t∆′′

with
∆′

D(k′)
=

logM(k′)

log p
+ ϵ and

∆′′

D(k′)
=

log
(
k
k′

)
log p

+ ϵ . (35)

Proof. We can rewrite the inequality t∆′ < D(k′)β − t∆′′ as follows:

D(k′)β > t∆′ + t∆′′ =
√
2 log p(

√
∆′ +

√
∆′′)

hence, by the rescaling in Equation (1), we get the condition for the SNR:

β√
2 log p

>
1

D(k′)
(
√
∆′ +

√
∆′′)

=

√
1

D(k′)

√ logM(k′)

log p
+ ϵ+

√
log
(
k
k′

)
log p

+ ϵ


=

√
1

D(k′)
· UBϵ(k

′)

from which the claim follows.

Lemma 15. For every k and k′ ∈ {0, . . . , k − 1}, it holds that

γ
(k′)
UBϵ

≤
(√

1 + αk − 2α′
k + ϵ+

√
αk − α′

k + ϵ

)
×

×

√√√√ (k − k′)
(
k
d

)
(
(
k
d

)
−
(
k′

d

)
)k

(36)

≤
(√

1 + αk − 2α′
k + ϵ+

√
αk − α′

k + ϵ

)
. (37)

Proof. Using the standard inequalities on binomial coefficients in Lemma 11 and the definition of rate in Equa-
tion (9) we have

log
(
k
k′

)
log p

≤ (k − k′)
1 + log k − log(k − k′)

log p

≈ (k − k′)(αk − αk−k′),

and analogously

log
(
p−k
k−k′

)
log p

≤(k − k′)
1 + log(p− k)− log(k − k′)

log p

≈ (k − k′)(1− αk−k′),
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thus implying

logM(k′)

log n
=

log
((

k
k′

)(
p−k
k−k′

))
log p

≲ (k − k′)(1 + αk − 2αk−k′) .

By plugging this into the definition of UBϵ(k
′) in Equation (20), we get

UBϵ(k
′) =

√
logM(k′)

log p
+ ϵ+

√
log
(
k
k′

)
log p

+ ϵ

≲
√
1 + αk − 2αk−k′ + ϵ+

√
αk − αk−k′ + ϵ .

Hence, using the definition of γ(k′)
UBϵ

given in Lemma 3, we obtain Equation (36). To conclude the proof and have
Equation (37) we finally use the simple manipulations of the Lemma 12.

Lemma 16. For any two vectors x′,x′′ ∈ Cp,k we have

D(Px′∥Px′′) ≤
(
k

d

)
β2 ,

where D(·∥·) denotes the Kullback-Leiber divergence.

Proof. Since Px′ and Px′′ are a Gaussian probability distributions (29), we have

D(Px′∥Px′′) =
1

2
β2∥(x′⊗d)(u) − (x′′⊗d)(u)∥2

= β2(∥(x′⊗d)(u)∥2 − ⟨(x′⊗d)(u), (x′′⊗d)(u)⟩)

≤ β2∥(x′⊗d)(u)∥2 = β2

(
k

d

)
.

C Derivations for Section 3 (AMP algorithm)

C.1 Derivation of the AMP iterative equations

In the following we adopt conveniently the notation used in (Lesieur et al., 2017b), denoting as

S = β

√(
p− 1

d− 1

)
Y .

Throughout this section, we shall make the following assumption on the above rescaled tensor, i.e., on how β
scales with respect to the entries of Y .

Assumption 1. For every d-tuple i1i2 · · · id of distinct indices, it holds that Si1i2···id ≤ 1, that is, β ≤
1/
√(

p−1
d−1

)
Yi1i2···id .

A stronger assumption is the following one:

Assumption 2. For every d-tuple i1i2 · · · id of distinct indices, it holds that Si1i2···id ∈ o(1).

We next present a message passing algorithm which is a simple generalization of the algorithm for matrix
(Lesieur et al., 2017a) and tensor-PCA (Lesieur et al., 2017b). The algorithm is described by the following
iterative equations:
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x
(t)
i→ii2...id

=
1√(
p−1
d−1

) ∑
k2<···<kd

(k2,...,kd )̸=(i2,...,id)

(
Sik2...kd

· x̂(t)
k2→ik2...kd

· . . . · x̂(t)
kd→ik2...kd

)

A
(t)
i→ii2...id

=
1(

p−1
d−1

) ∑
k2<···<kd

(k2,...,kd )̸=(i2,...,id)

(
S2
ik2...kd

· (x̂(t)
k2→ik2...kd

)2 · . . . · (x̂(t)
kd→ik2...kd

)2
)

(
x̂
(t+1)
i→ii2...id

)
i
= f

(
(A

(t)
i→ii2...id

)i, (x
(t)
i→ii2...id

)i

)
where f(·, ·) is the multidimensional threshold function defined in Equation (14), and

(
x̂
(t+1)
i→ii2...id

)
i

denotes the
p-dimensional vector indexed by i. Note that the function f is applied element-wise on all indices other than
i, that is, on i2, . . . , id. Since the messages depend weakly on the target factor, we can compute the messages
including the factor (i2, . . . , id) in the sums above, and dropping the factor node dependency as:

x
(t)
i =

1√(
p−1
d−1

) ∑
i2<···<id

(
Sii2...id · x̂(t)

i2→ii2...id
· . . . · x̂(t)

ih→ii2...id

)
(38)

A
(t)
i =

1(
p−1
d−1

) ∑
i2<···<id

(
S2
ii2...id

· (x̂(t)
i2→ii2...id

)2 · . . . · (x̂(t)
id→ii2...id

)2
)

(39)

x̂(t+1) = f
(
A(t),x(t)

)
.

We can now analyze the error obtained by this simplification as:

x
(t)
i − x

(t)
i→ii2...ih

=
1√(
p−1
d−1

)(Sii2...id · x̂(t)
i2→ii2...id

· . . . · x̂(t)
id→ii2...id

)
(40)

A
(t)
i −A

(t)
i→ii2...id

=
1(

p−1
d−1

)(S2
ii2...id

· (x̂(t)
i2→ii2...id

)2 · . . . · (x̂t
id→ii2...id

)2
)
. (41)

Observe that by Assumption 1, the error in A is of lower order then the one in x. Hence, we can estimate the
error in x̂(t+1) by focusing on the quantity in Equation (40):

x̂
(t)
i→ii2...id

− x̂
(t)
i = f

(
(A

(t−1)
i→ii2...id

)i, (x
(t−1)
i→ii2...id

)i

)
i
− f(A(t−1),x(t−1))i

= −∂xi
f(A(t−1),x(t−1))i

1√(
p−1
d−1

)(Sii2...id · x(t−1)
i2→ii2...id

· . . . · x(t−1)
id→ii2...id

)
+ o

 Sii2...id√(
p−1
d−1

)


= −∂xif(A
(t−1),x(t−1))i

1√(
p−1
d−1

)(Sii2...id · x(t−1)
i2

· . . . · x(t−1)
id

)
+ o

 Sii2...id√(
p−1
d−1

)
 . (42)

Plugging this last expansion into Equation (38), and by recalling the definition of σ(t) in Equation (15), we get
to leading order:

x
(t)
i =

1√(
p−1
d−1

) ∑
i2<···<id

Sii2...id x̂
(t)
i2
·. . .·x̂(t)

id

d− 1(
p−1
d−1

) ∑
i2

σ
(t)
i2

∑
i3<···<id

S2
ii2...id

x̂
(t)
i3
x̂
(t−1)
i3

·. . .·x̂(t)
id
x̂
(t−1)
id

+o

(
S2
ii2...id(
p−1
d−1

) )

where the factor d−1 comes from the symmetry of choosing the index (i2 in our case) for the lower order term in
the product. Note that all the other terms are of lower order and are hence discarded. Plugging Equation (42)
into Equation (39) we obtain:

A
(t)
i =

1(
p−1
d−1

) ∑
i2<···<id

S2
ii2...id

· (x̂(t)
i2
)2 · . . . · (x̂(t)

id
)2 + o

(
S2
ii2...id(
p−1
d−1

) ) .
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C.2 Derivation of the state evolution

We assume here a typical condition for belief propagation algorithm, that is the statistical independence between
the rescaled observation S and the estimates x̂ (see for reference Montanari (2013); Lesieur et al. (2017a)).
Given the independence, the central limit theorem applies for the right hand side of both Equation (38) and
Equation (39), so that the messages behave in the large p limit as Gaussian random variables. We can thus
describe the evolution of the AMP algorithm by tracking only the average and variance of such messages (recall
that x is the planted solution):

EZ[x
(t)
i ] =

1√(
p−1
d−1

) ∑
i2<···<id

(
EZ[Sii2...id ] · x̂

(t)
i2→ii2...id

· . . . · x̂(t)
id→ii2...id

)
= β2

∑
i2<···<id

(
xi · xi2 · . . . · xid · x̂(t)

i2→ii2...id
· . . . · x̂(t)

id→ii2...id

)
= β2

∑
i2<···<id

xi · xi2 · . . . · xid · x̂(t)
i2

· . . . · x̂(t)
id

+ o(β2)

= β2xi · 1{x ◦ x̂(t)}i + o(β2) . (43)

Analogously

VZ [x
(t)
i ] =

1(
p−1
d−1

) ∑
i2<···<id

(
VZ [Sii2...id ] · (x̂

(t)
i2→ii2...id

)2 · . . . · (x̂(t)
id→ii2...id

)2
)

= β2
∑

i2<···<id

(x̂
(t)
i2→ii2...id

)2 · . . . · (x̂(t)
id→ii2...id

)2

= β2
∑

i2<···<id

(x
(t)
i2
)2 · . . . · (x(t)

id
)2 + o(β2)

= β21{x̂t ◦ x̂t}i + o(β2) (44)

and

EZ [A
(t)
i ] =

1(
n−1
d−1

) ∑
i2<···<id

(
EZ [S

2
ii2...id

] · (x̂(t)
i2→ii2...id

)2 · . . . · (x̂(t)
id→ii2...id

)2
)

= β2
∑

i2<···<id

(β2(xi)
2 · (xi2)

2 · . . . · (xid)
2 + 1) · (x̂(t)

i2
)2 · . . . · (x̂(t)

id
)2 + o(β2)

= β4xi · 1{x ◦ x ◦ x̂(t) ◦ x̂t}i + β21{x̂(t) ◦ x̂(t)}i + o(β2)

= β21{x̂(t) ◦ x̂(t)}i + o(β2) (45)

where in the second equality we used the fact that

EZ [S
2
ii2...ih

] =β2(xi)
2 · (xi2)

2 · . . . · (xih)
2 + EZ [Z

2
ii2...ih

] + βxi · xi2 · . . . · xihEZ [Zii2...ih ]

=β2(xi)
2 · (xi2)

2 · . . . · (xih)
2 + 1.

We now assume that the signal estimates x̂t are drawn from the true intractable posterior distribution P(·|x,Z).
Given this assumption and using the Nishimori condition (see Iba (1999); Lesieur et al. (2017b)) we obtain easily
from Equation (44) and Equation (45):

Vx,Z [x̂
(t)] = Ex,Z [A

(t)] = β2Ex1{x̂(t) ◦ x̂(t)}+ o(β2)

= β2Ex1{x ◦ x̂(t)}+ o(β2)

= m̂(t) + o(β2).

It can be easily seen that the variance of the messages A is of lower order, hence A(t) can be approximated
by only its mean. With the assumed gaussianity of messages, we can hence write using Equation (43) and
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Equation (44) x(t) = m̂(t) ◦ x +
√
m̂(t) ◦ z, with z being a p-dimensional standard Gaussian vector. The state

evolution finally reads:

m(t+1) =
1(

p−1
d−1

)Ex,z[1{x ◦ x̂(t+1)}]

=
1(

p−1
d−1

)Ex,z[1{x ◦ f(m̂(t), m̂t ◦ x+
√
m̂(t) ◦ z)}] .

C.3 Analytical threshold for AMP recovery

To get an analytical threshold, we start from the SE for factorizable prior as in Equation (17) and we study
the fixed point of the recursive equation for the parameter of the Bernulli distribution δ = k/p → 0 in the
large system limit. In particular the threshold function reads in the limit f(a, x) = δex−a/2 + O(δ2), hence the
factorized SE becomes mt+1 = δ2Ez[e

m̂t/2+
√
m̂tz] = δ2em̂t with m̂t = β2

(
p−1
d−1

)
mt. It is easy to see that the

critical bias β to have a perfect overlap with the planted signal is

βAMP :=

√
1

e(d− 1)

p2(h−1)(
p−1
d−1

) 1

k2(d−1)
.

Using the definition of normalized SNR γ in Equation (1), we obtain the threshold γAMP in Claim 1.
Remark 3 (Validity of the AMP approximations). We can observe from the derivations above that the AMP
equations and state evolution are carried out assuming the quantity

Si1,...ih√(
p−1
d−1

) = β

√(
p− 1

d− 1

)
Yi1,...id

being small (which corresponds to Assumption 2 above). This is the case for the classic tensor-PCA for both
dense and sparse signal with linear sparsity as in Lesieur et al. (2017b). However in the scenario here considered
the effective sparsity of the problem defined by the parameter δ = k/p can be sub-linear, and hence non-trivial
estimation requires a β (hence a SNR) such that the quantity above is not in o(1). For this reason the derivations
have to be considered non-rigorous in the regime used in this analysis. The rigorous presentation of AMP-like
algorithms in effectively sub-linear sparse estimation problem, also in line of the approach proposed recently in
Barbier et al. (2020), is left for future developments.

D Comparison with Bounds in the literature

D.1 Tensor-PCA formulation

We follow the terminology of (Hopkins et al., 2015) to explain the similarities/differences between tensor-PCA
and our problem.
Definition 4 (Symmetric Tensor-PCA). Given an input tensor Y = τ · v⊗d + Z, where v ∈ Rp is an arbitrary
unit vector, τ ≥ 0 is the signal-to-noise ratio, and Z is a random noise tensor with iid standard Gaussian entries,
recover the signal v approximately. Moreover, the noise tensor is symmetric and thus so is the input tensor as
well, that is, Zπ(i1)π(i2)···π(ih) = Zi1i2···id and Yπ(i1)π(i2)···π(ih) = Yi1i2···id for any permutation π.
Definition 5 (Planted k-Densest Sub-Hypergraph). This problem is a variant of symmetric tensor-PCA in
which we impose the following additional structure:

1. We consider only the
(
p
d

)
entries with distinct indices, that is, Yi1i2···id = 0 whenever ia = ib for some a

and b.

2. The vector v encodes a planted k-Subgraph and thus has exactly k entries equal to 1/
√
k, and all other

entries are equal to 0.

Remark 4 (Impact of diagonal entries – Item 1). Dropping Condition 1 leads to the variant in which we make
the substitution

(
p
d

)
7→ pd in Item 1 above.
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Remark 5 (Rescalings). Different papers consider different rescaling of the signal-to-noise ratio, that are here
reported for convenience in Table 1. In general, consider a tensor

Y = µ · v⊗d + Z Z ∼ N (0, σ2) (46)

where v is a vector of unit length, and µ and σ2 (signal and noise, respectively) determine the snr. By simply
rescaling so that we have normally distributed Gaussian noise, this is the same as

Y = µ/σ · v⊗d + Z Z ∼ N (0, 1)

and since in our formulation (snr in Equation (1)) we consider the planted solution as a 0-1 vector x consisting
of k ones and p− k zeros, we are effectively considering a planted signal β · x⊗d = β

√
kd · v⊗d where v = x/

√
k

is a unitary vector. Therefore, the tensor-PCA formulation in Equation (46) corresponds to

β
√
kd = (µ/σ) ⇔ γ = (µ/σ)

√ (
k
d

)
kd+1

· 1

2 log p

We use this relation to convert the existing bounds for tensor-PCA in the literature to our snr γ as shown in
Table 1. In [⋆] we ignore the diagonal entries (see Remark 4). As we are implicitly considering the easier problem
with the additional entries, the bounds that one obtains are in a sense “optimistic” for our original problem.

Table 1: Signal to noise ratio scaling in the literature

Tensor Noise SNR (⋆=ours)

Y = β · v⊗d + Z Zi1i2···id ∼ N (0, 1/(p(d− 1)!)) β (Richard and Montanari, 2014)
Y = β′ · v⊗d + Z Zi1i2···id ∼ N (0, 2/(p · d!)) β′ (Montanari et al., 2016)
Y = β′′ · v⊗d + Z Zi1i2···id ∼ N (0, 2/(p · d!)) β′′ (Perry et al., 2020)
Y = τ · v⊗d + Z Zi1i2···id ∼ N (0, 1) τ (Hopkins et al., 2015)
Y = λ

√
p · v⊗d + Z Zi1i2···id ∼ N (0, 1) λ (Jagannath et al., 2020; Arous et al., 2020)

Y =
√

λp · v⊗d + Z Zi1i2···id ∼ N (0, 1) λp (Niles-Weed and Zadik, 2020)
Y = β

√
kd · v⊗d + Z Zi1i2···id ∼ N (0, 1) γ eq. (1) ⋆

The information-theoretic bounds translated in our scale read as follows:

lower bound (Richard and Montanari, 2014): γ ≤

√
p · d!

(
k
d

)
kd+1

1

20 log p

upper bound (Richard and Montanari, 2014): γ ≥

√
p · d!

(
k
d

)
kd+1

log d

2 log p

Sharper bounds have been obtained for detection and (weak) recoverability:

generic spherical prior (Perry et al., 2020): γ =

√
p · d!

(
k
d

)
kd+1

log d

2 log p

Radamacher prior (Perry et al., 2020): γ =

√
p · d!

(
k
d

)
kd+1

log d

4 log p

where the Radamacher prior bounds apply to one of the following restrictions: (i) the dense regimes with any
sparsity constant ρ ∈ (0, 1] and d → ∞ or (2) the vanishing sparsity regime ρ → 0 and constant d. Note that
in both cases (Richard and Montanari, 2014) and (Perry et al., 2020), the bound are located at a scale

√
p

k log p

that diverges for any rate αk < 1 considered in this paper. From this result, we can observe that the recovery
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above the γUB given in this paper is possible only thanks to the exploitation of the prior constraint, and it is not
possible in general.

Sharp bounds on the MMSE estimator have been also obtained (Niles-Weed and Zadik, 2020) with the same
Bernoulli prior considered here, and translate into the threshold

γMMSE =
√
1− αk

which can be obtained by a proper rescale of the planted vector v so that the resulting tensor (without diagonal
entries) has unit length. Note that these bounds on the MMSE regard the problem of finding a vector with a
positive non-vanishing correlation with the planted vector (weak recovery), and correspond to the lower bound
γLB for the MLE provided here in the case of d → ∞, d ∈ o(k). Whether the MLE undergoes the same transition
as the MMSE is in general open (Niles-Weed and Zadik, 2020) and, for our problem, it has been shown a relation
only for the “ultra sparse” regime k = o(log

1
4d−1 p) (Corinzia et al., 2021).

Algorithmic upper bounds provided by sum-of-squares (SOS) algorithms (Hopkins et al., 2015) are:

γSOS :=

√
pd/2

(
k
d

)
kd−1

1

2 log1/2 p
(47)

for any d ≥ 3. Note that also for the computational threshold, this bound is higher than the AMP threshold
γAMP ≈

√
p(1−αk)(d−1) for

αk > 1/2− 1/d.

A recent work by Choo and d’Orsi (2021) derives further SOS algorithmic bounds for the tensorial version of our
problem when αk ≤ 1/2. Their algorithm runs in time Õ(pd+t) for any parameter 1 ≤ t ≤ k such that their SNR
λ ≥ Õ(

√
t · (k/t)d/2) where the Õ(·) notation hides multiplicative factors logarithmic in p. It is open whether

their analysis extends to our problem (without diagonal entries available) as the authors discuss in (Choo and
d’Orsi, 2021, Appendix A).

Further papers provide general bounds whose thresholds do not have a closed form and apply to the easier
problem of detection or hypothesis testing:

(Montanari et al., 2016) β2
d := inf

q∈(0,1)

√
− 1

qd
log(1− q2)

(Jagannath et al., 2020) λc := sup
λ≥0

{
sup

t∈[0,1)

fλ(t) ≤ 0

}

with fλ(t) = λ2td + log(1− t) + t.

D.2 Prior bounds for the k densest subhypergraph

We report the prior upper and lower bounds on the very same problem in (Corinzia et al., 2019, Theorem 5).
For the sake of comparison, we rewrite the upper and lower bound there according to our scaled-normalized snr
γ, and denote these bounds as γlb and γub, respectively. As we can see below, these bounds are very loose in
most of the cases, γlb ≪ γLB ≤ γUB ≪ γub:

γlb =

√
1

d

and

γub =


√
2

(kd)
k

1
log p → 0

2
√
1 + c(1 + log 2)

(kd)
k

1
log p → c ∈ (0,+∞)

2

√
(kd)

k log p · 1+log 2
1−αk

αk ∈ (0, 1)

For instance, when 1 ≪ d ≪ k we have γlb → 0 and γub → +∞.


