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Abstract

Policy gradient (PG) methods are popular and
efficient for large-scale reinforcement learning
due to their relative stability and incremental
nature. In recent years, the empirical success
of PG methods has led to the development of
a theoretical foundation for these methods. In
this work, we generalize this line of research by
establishing the first set of global convergence
results of stochastic PG methods with momen-
tum terms, which have been demonstrated to
be efficient recipes for improving PG methods.
We study both the soft-max and the Fisher-
non-degenerate policy parametrizations, and
show that adding a momentum term improves
the global optimality sample complexities of
vanilla PG methods by Õ(ε−1.5) and Õ(ε−1),
respectively, where ε > 0 is the target tol-
erance. Our results for the generic Fisher-
non-degenerate policy parametrizations also
provide the first single-loop and finite-batch
PG algorithm achieving an Õ(ε−3) global op-
timality sample complexity. Finally, as a by-
product, our analyses provide general tools
for deriving the global convergence rates of
stochastic PG methods, which can be readily
applied and extended to other PG estimators
under the two parametrizations.

1 Introduction

Policy gradient methods can be dated back to the
pioneering work Williams (1992), and have evolved
into a rich family of reinforcement learning (RL) al-
gorithms (Konda and Tsitsiklis, 2000; Kakade, 2001;
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Silver et al., 2014; Schulman et al., 2015; Lillicrap et al.,
2015; Schulman et al., 2017). In recent years, due to
their amenability to function approximation and the
development of deep neural networks, they have been
successfully applied to a wide range of problems with
significant empirical success, including robotic control,
game playing, natural language processing, neural ar-
chitecture search, and operations research (Zoph and
Le, 2016; Silver et al., 2016; Yi et al., 2018; Khan et al.,
2020; Wu et al., 2020a).

Momentum techniques have been demonstrated as a
powerful and generic recipe for accelerating stochas-
tic gradient methods, especially for nonconvex opti-
mization and deep learning (Qian, 1999; Kingma and
Ba, 2015; Reddi et al., 2019). Recent works have
also extended momentum techniques to improve pol-
icy gradient methods (Xiong et al., 2020; Yuan et al.,
2020; Pham et al., 2020; Huang et al., 2020). As
a state-of-the-art variance reduction technique, the
momentum-based PG methods have been shown to
outperform non-momentum methods such as SVRPG
(Papini et al., 2018), SRVR-PG (Xu et al., 2020b) and
HAPG (Shen et al., 2019) in practice. In particular,
Xiong et al. (2020) studies Adam-based policy gradient
methods, but only achieves O(ε−4) sample complexi-
ties, which is the same as the one for the vanilla REIN-
FORCE algorithm. Inspired by the STORM algorithm
for stochastic optimization in Cutkosky and Orabona
(2019), a new STORM-PG method is proposed in Yuan
et al. (2020), which incorporates momentum in the
updates and matches the sample complexity as the
SRVR-PG method proposed in Xu et al. (2020b) (and
also VRMPO) while requiring only single-loop updates
and large initialization batches, whereas SRVR-PG and
VRMPO require double-loop updates and large batch
sizes throughout all iterations. Concurrently, Pham
et al. (2020) proposes a hybrid estimator combining the
momentum idea with SARAH and considers a more
general setting with regularization, and achieves the
same O(ε−3) sample complexity and again with single-
loop updates and large initialization batches. Finally,
independently inspired by the STORM algorithm in
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Cutkosky and Orabona (2019), Huang et al. (2020)
proposes a class of momentum-based policy gradient
algorithms with adaptive time-steps, single-loop up-
dates and small batch sizes, which match the sample
complexity as in Xu et al. (2020b). However, all the
above sample complexity results for momentum-based
policy gradient methods only apply to convergence
to a first-order stationary point, which may have an
arbitrarily poor performance. The global optimality
sample complexity of momentum-based stochastic PG
methods remains an open question.

Inspired by recent advances in the global optimum
convergence theory of PG methods (Agarwal et al.,
2019; Zhang et al., 2021a,b; Liu et al., 2020), we address
the aforementioned problem in this paper. We focus on
the study of STORM-based PG method introduced in
Huang et al. (2020) due to its sample efficiency and the
simplicity of the algorithm, and provide the first global
optimum convergence results for the momentum-based
PG. We summarize our detailed contributions below.

• For the soft-max policy parameterization, we show
that adding momentum terms improves the exist-
ing global optimality sample complexity bounds
of PG in Zhang et al. (2021a) by Õ(ε−1.5).

• For the generic Fisher-non-degenerate policy
parametrization, we show that adding momentum
terms improves the existing sample complexity
bounds of PG in Liu et al. (2020) by Õ(ε−1) and
matches the sample complexity bounds of SRVR-
PG in Liu et al. (2020). Our result is the first
single-loop and finite-batch policy gradient algo-
rithm achieving Õ(ε−3) global optimality sample
complexity.

• As a by-product, our analyses also summarize gen-
eral tools (cf. Lemmas 4.2 and 4.7) for deriving
global optimality sample complexities of stochas-
tic policy gradient methods with soft-max and
Fisher-non-degenerate policies, which can be easily
applied and extended to different policy gradient
estimators under these parametrizations.

Comparisons with the existing global optimum conver-
gence results of policy gradient methods can be found
in Table 1. Due to space restrictions, we provide a more
detailed literature review and introduce the notations
in Sections 6 and 7 of the appendix.

2 Preliminaries

2.1 Reinforcement learning

Reinforcement learning is generally modeled as a dis-
counted Markov decision process (MDP) defined by a

tuple (S,A,P, r, γ), where S and A denote the finite
state and action spaces, P(s′∣s, a) is the probability
that the agent transits from the state s to the state s′

under the action a ∈ A. r(s, a) is the reward function,
i.e., the agent obtains the reward r(sh, ah) after it takes
the action ah at the state sh at time h. We also assume
that the reward is bounded, i.e., r(s, a) ∶ S ×A→ [0, 1].
γ ∈ (0,1) is the discount factor. The policy π(a∣s)
at the state s is usually represented by a conditional
probability distribution πθ(a∣s) associated with the
parameter θ ∈ Rd, where d is the dimension of the pa-
rameter space. Let τ = {s0, a0, s1, a1, . . .} denote the
data of a sampled trajectory under policy πθ with the
probability distribution over trajectory as

p(τ ∣θ, ρ) = ρ(s0)
∞
∏
h=1

P(sh+1∣sh, ah)πθ(ah∣sh),

where ρ ∼ ∆(S) is the probability distribution of the
initial state s0. Here, ∆(X ) denotes the probability
simplex over a finite set X . For every policy π, one can
define the state-action value function Qπ ∶ S ×A → R
as

Qπ(s, a) ∶= Eah∼π(⋅∣sh)
sh+1∼P(⋅∣sh,ah)

(
∞
∑
h=0

γhr(sh, ah)∣s0 = s, a0 = a) .

The state-value function V π ∶ S → R and the advantage
function Aπ ∶ S ×A → R, under the policy π, can be
defined as

V π(s) ∶= Ea∼π(⋅∣s)[Qπ(s, a)],
Aπ(s, a) ∶= Qπ(s, a) − V π(s).

Then, the goal is to find an optimal policy in the policy
class that maximizes the expected discounted return,
namely,

max
θ

Jρ(πθ) ∶= Es0∼ρ[V πθ(s0)]. (1)

For notional convenience, we denote Jρ(πθ) by the
shorthand notation Jρ(θ) and also let θ∗ denote a
global maximum of Jρ(θ). In practice, a truncated
version of the value function is used to approximate
the infinite sum of rewards in (1). Let

τH = {s0, a0, s1, . . . , sH−1, aH−1, sH}
denote the truncation of the full trajectory τ of length
H. The truncated version of the value function is
defined as

JHρ (θ) ∶= Es0∼ρ,ah∼πθ(⋅∣sh)
sh+1∼P(⋅∣sh,ah)

(
H−1
∑
h=0

γhr(sh, ah)∣s0) .

2.2 Discounted state visitation distributions

The discounted state visitation distribution dπs0 of a
policy π is defined as

dπs0(s) ∶= (1 − γ)
∞
∑
h=0

γhP(sh = s∣s0, π),



Yuhao Ding, Junzi Zhang, Javad Lavaei

Algorithm Parametrization Complexity Single Loop Finite Batch

PG (Wang et al., 2019) neural Õ(ε−4) 7

PG (Liu et al., 2020) Fisher-non-degenerate Õ(ε−4) 7

PG (Zhang et al., 2021a) soft-max Õ(ε−6)

SRVR-PG (Liu et al., 2020) Fisher-non-degenerate Õ(ε−3) 7 7

Ours Fisher-non-degenerate Õ(ε−3)

Ours soft-max Õ(ε−4.5)

Table 1: We summarize comparisons with the existing global optimum convergence results for policy gradient
methods. The (sample) complexity is defined as the number of trajectories needed to reach the global sub-
optimality gap ε > 0 plus some inherent function approximation error (if any), and we ignore logarithmic terms.
Note that “single loop” only refers to the policy update step, and does not refer to the policy evaluation part (for
actor-critic versions of PG).

where P(sh = s∣s0, π) is the state visitation probability
that sh is equal to s under the policy π starting from
the state s0. Then, the discounted state visitation
distribution under the initial distribution ρ is defined as
dπρ(s) ∶= Es0∼ρ[dπs0(s)]. Furthermore, the state-action
visitation distribution induced by π and the initial
state distribution ρ is defined as vπρ (s, a) ∶= dπρ(s)π(a∣s),
which can also be written as

vπρ (s, a) ∶= (1 − γ)Es0∼ρ
∞
∑
h=0

γhP(sh = s, ah = a∣s0, π),

where P(sh = s, ah = a∣s0, π) is the state-action visita-
tion probability that sh = s and ah = a under π starting
from the state s0.

2.3 Policy parameterization

In this work, we consider the following two different
policy classes:

Soft-max parameterization. For an unconstrained
parameter θ ∈ R∣S∣∣A∣, the policy πθ(a∣s) is chosen to be

exp (θs,a)
∑a′∈A exp (θs,a′)

.

The soft-max parameterization is generally used for
Markov Decision Processes (MDPs) with finite state
and action spaces. It is complete in the sense that
every stochastic policy can be represented by this class.

Fisher-non-degenerate parameterization. We
study the general policy class that satisfies Assumption
2.1 given below:

Assumption 2.1 For all θ ∈ Rd, there exists some
constant µF > 0 such that the Fisher information matrix
Fρ(θ) induced by the policy πθ and the initial state
distribution ρ satisfies

Fρ(θ) = E(s,a)∼vπθρ [∇ logπθ(a∣s)∇ logπθ(a∣s)⊺] ≽ µF ⋅ Id.

Assumption 2.1, which is also used in Liu et al. (2020),
essentially states that Fρ(θ) is well-behaved as a pre-
conditioner in the natural PG update (Kakade and
Langford, 2002). It is shown in Liu et al. (2020) that
the positive definiteness of Fρ(θ) in Assumption 2.1
can be satisfied by certain Gaussian policies, where
πθ(⋅∣s) = N (µθ(s),Σ) with the parametrized mean
function µθ(s) and the fixed covariance matrix Σ ≻ 0,
provided that the Jacobian of µθ(s) is full-row rank for
all θ ∈ Rd. In addition, Assumption 2.1 holds more gen-
erally for every full-rank exponential family paramer-
trization with their mean parameterized by µθ(s) if
µθ(s) is full-row rank for all θ ∈ Rd. We refer the reader
to Section 8 of appendix for more discussions.

It is worth noting that Assumption 2.1 is not satisfied
by the soft-max parameterization when πθ approaches
a deterministic policy, which means that the two policy
parameterizations to be studied here do not overlap.

3 Trajectory-based policy gradient
estimator

The policy gradient method (Sutton and Barto, 2018)
is one of the standard ways to solve the optimization
problem (1). Since the distribution p(τ ∣θ) is unknown,
∇Jρ(θ) needs to be estimated from samples. Then,
a stochastic PG ascent update with the exploratory
initial distribution ρ at time step t is given as

θt+1 = θt +
ηt
B

B

∑
i=1
ut,i, (2)

where ηt > 0 is the learning rate, B is the batch size
of trajectories, and ut,i can be any PG estimator of
∇Jρ(θt). If the parameterized policy satisfies Assump-
tion 3.1 to be stated later and the reward function
is not dependent on the parameter θ, PG estima-
tors can be obtained from a single sampled trajec-
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tory. These trajectory-based estimators include REIN-
FORCE (Williams, 1992), PGT (Sutton et al., 1999)
and GPOMDP (Baxter and Bartlett, 2001). Compared
with PG estimators based on the state-action visitation
measure (Agarwal et al., 2019), the trajectory-based
PG estimators are often used in practice due to their
sample efficiency and amenability to using the impor-
tance sampling for variance reduction. In practice, the
truncated versions of these trajectory-based PG esti-
mators are used to approximate the infinite sum in
the PG estimator. For example, the commonly used
truncated REINFORCE with a constant baseline b is
given by

g(τ iH ∣θ, ρ) = (
H−1
∑
h=0

∇ logπθ(aih, sih))(
H−1
∑
h=0

γhrh(sih, aih) − b) ,

where the superscript i is the index of the trajectories.
The commonly used truncated PGT is given by:

g(τ iH ∣θ, ρ) =
H−1
∑
h=0

H−1
∑
j=h

∇ logπθ(aih, sih) (γjrj(sij , aij)) .

The PGT estimator is also equivalent to the popular
truncated GPOMDP estimator defined as follows

g(τ iH ∣θ, ρ) =
H−1
∑
h=0

h

∑
j=0

∇ logπθ(aij , sij) (γhrh(sih, aih) − bh) .

(3)

We first make the following essential assumption for
PG estimators.

Assumption 3.1 The gradient and hessian of the
function logπθ(a∣s) are bounded, i.e., there exist con-
stants Mg,Mh > 0 such that ∥∇ logπθ(a∣s)∥2 ≤Mg and
∥∇2 logπθ(a∣s)∥2 ≤Mh for all θ ∈ Rd.

For the soft-max parameterization, Assumption 3.1 is
satisfied with Mg = 2 and Mh = 1 (see Lemma 10.1 in
appendix). Assumption 3.1 has also been commonly
used in the analysis of the policy gradient (Papini
et al., 2018; Xu et al., 2020b,a; Shen et al., 2019; Liu
et al., 2020; Huang et al., 2020) for the more general
policy parameterization. Although Assumption 3.1 is
satisfied for soft-max policies and more generally, log-
linear policies with bounded feature vectors (cf. Section
6.1.1 in Agarwal et al. (2019)), it fails for very common
policies such as Gaussian policies. We believe this
assumption could be relaxed if the truncated policy
gradient is used to guarantee the boundedness of the
importance sampling weight Zhang et al. (2020b) and
we leave it as a future work. Based on Assumption 3.1,
we provide some useful properties of stochastic policy
gradient and the value function.

Proposition 3.2 For the truncated GPOMDP policy
gradient given in (3) satisfying Assumptions 3.1, the

following properties hold for all initial distribution ρ
and for all θ ∈ Rd:

1. g(τH ∣θ, ρ) is Lg-Lipschitz continuous, where Lg ∶=
Mh/(1 − γ)2.

2. ∥g(τH ∣θ, ρ)∥2 ≤ G, where G ∶=Mg/(1 − γ)2.

3. Var(g(τH ∣θ, ρ)) ≤ σ2, where σ ∶= G.

4. Jρ(θ, ρ) and JHρ (θ) are L-smooth, namely,
max{∥∇2Jρ(θ)∥2 , ∥∇

2JHρ (θ)∥
2
} ≤ L, where L ∶=

2M2
g

(1−γ)3 +
Mh

(1−γ)2 .

5. If the infinite-sum is well-defined, then

g(τH ∣θ, ρ) =
∞
∑
h=0

∞
∑
j=h

∇ logπθ(ah, sh) (γjrj(sj , aj) − bj) .

is an unbiased estimate of ∇Jρ(θ). Similarly, the
truncated GPOMDP estimate g(τH ∣θ, ρ) given by
(3) is an unbiased estimate of ∇JHρ (θ).

6. ∥∇JHρ (θ) −∇Jρ(θ)∥2 ≤Mg (H+1
1−γ + γ

(1−γ)2 )γ
H .

7. max{∥∇Jρ(θ)∥2 , ∥∇JHρ (θ)∥
2
} ≤ G.

The first two properties are shown in Proposition 4.2
in Xu et al. (2020b). The third and forth properties
follow from Lemma 4.2 and Lemma 4.3 in Yuan et al.
(2021), respectively. The last three properties follow
directly from Lemma B.1 in Liu et al. (2020).

3.1 Momentum-based policy gradient

Due to the high sample complexity of the vanilla PG,
many recent works have turned onto variance reduction
methods for PG, including the momentum-based policy
gradient (Huang et al., 2020; Yuan et al., 2020). The
momentum-based policy gradient with the batch size
of B and the sampled trajectory of length H is defined
as

uHt = βt
B

B

∑
i=1
g(τ iH ∣θt, ρ) + (1 − βt) [uHt−1+ (4)

1

B

B

∑
i=1

(g(τ iH ∣θt, ρ) −w(τ iH ∣θt−1, θt)g(τ iH ∣θt−1, ρ))]

for all t ∈ {2, . . . , T}, where g(τ iH ∣θt, ρ) is the vanilla PG
estimator such as (3), βt ∈ [0,1], and the importance
sampling weight is defined as

w(τH ∣θ′, θ) = p(τH ∣θ′, ρ)
p(τH ∣θ, ρ) =

H−1
∏
h=0

πθ′(ah∣st)
πθ(ah∣st)

. (5)
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This importance sampling weight guarantees that

EτH∼p(⋅∣θ,ρ)[g(τH ∣θ, ρ) −w(τH ∣θ′, θ)g(τH ∣θ′, ρ)]
= ∇JHρ (θ) −∇JHρ (θ′).

Then, by carefully choosing ηt and βt, the accumulated
policy gradient estimation error uHt − ∇JHρ (θt) can
be well controlled. To guarantee the convergence of
the momentum-based policy gradient, we require the
following assumption:

Assumption 3.3 For every θt and θt+1 satisfying (2),
the variance of w(τH ∣θt, θt+1) is bounded, i.e., there
exists a constant W > 0 such that Var(w(τH ∣θt, θt+1)) ≤
W for all τH ∼ p(⋅∣θt+1, ρ).

Assumption 3.3 has been commonly used in the analysis
of some variance reduced variants of PG (Papini et al.,
2018; Xu et al., 2020b,a; Shen et al., 2019; Liu et al.,
2020; Huang et al., 2020). It is worthwhile to note
that the bounded importance sampling weight in As-
sumption 3.3 may be violated in practice. A commonly
used remedy to make the algorithm more effective is
to clip the importance sampling weights (Huang et al.,
2020). In addition, when πθ is the soft-max parameter-
ization, the importance sampling weight w(τH ∣θt, θt+1)
in Assumption 3.3 has a bounded variance by using
the truncated policy gradient (see Lemma 5.6 in Zhang
et al. (2021b)).

The key reason that the momentum can improve the
convergence rates is that the momentum can help re-
duce the variance of the estimated stochastic gradient.
To build some intuition for this, let et = uHt −∇JHρ (θt).
It can be verified that E[et] = (1 − βt)E[et−1] and

E [∣∣et∣∣2] ≤(1 − βt)2E [∣∣et−1∣∣2] + 2β2
t E [∣∣T1∣∣2]

+ 2(1 − βt)2E [∣∣T2∣∣2] ,

where

E [∣∣T1∣∣2] = Var(g(τH ∣θt)) ≤ σ2,

O (∣∣T2∣∣2) = O(∣∣θt − θt−1∣∣2) = O(η2t ∣∣ut∣∣2).
Then, the variance of the stochastic gradient ut can be
reduced with the appropriate choices of ηt and βt.

4 Global convergence of
momentum-based policy gradient

As mentioned in the previous sections, the global con-
vergence of policy gradient depends on the parameteri-
zation of the policy. In this section, we will study the
global convergence and the sample complexity of the
momentum-based policy gradient for both soft-max
parameterization with a log barrier penalty and the
more general parameterization satisfying the fisher-non-
degenerate assumption.

4.1 Soft-max parameterization with log
barrier penalty

4.1.1 Preliminary tools

We first study the global convergence of momentum-
based policy gradient for the soft-max policy parameter-
ization (Algorithm 1), where πθ(a∣s) = exp (θs,a)

∑a′∈A exp (θs,a′)

for all θ ∈ R∣S∣∣A∣. Optimization over the soft-max pa-
rameterization is problematic since the optimal policy—
that is usually deterministic—is obtained by letting
some parameters grow towards infinity. To prevent
the parameters from becoming too large and to ensure
adequate exploration, a log-barrier regularization term
that penalizes the policy for becoming deterministic is
commonly used. The regularized objective is defined
as

Lλ,ρ(θ) =Jρ(θ) − λEs∼UnifS [KL(UnifA, πθ(⋅∣s))]

=Jρ(θ) +
λ

∣A∣∣S ∣∑s,a
logπθ(a∣s) + λ log ∣A∣,

where KL(p, q) ∶= Ex∼p[− log q(x)/p(x)] and UnifX de-
notes the uniform distribution over a set X .

Algorithm 1 Momentum-based PG with soft-max
parameterization (STORM-PG-S)
1: Inputs: Iteration T , horizon H, batch size B, ini-

tial input θ1, parameters {k,m, c}, initial distribu-
tion µ;

2: Outputs: θξ chosen uniformly random from
{θt}Tt=1;

3: for t = 1,2, . . . , T − 1 do
4: Sample B trajectories {τHi }Bi=1 from p(⋅∣θt, µ);
5: if t = 1 then
6: Compute uH1 = 1

B ∑
B
i=1 g(τ i∣θ1, µ);

7: else
8: Compute uHt based on (4);
9: end if
10: Compute ηt = k

(m+t)1/3 ;
11: Update

θt+1 = θt + ηt(uHt + λ
∣A∣∣S∣ ∑s,a∇ logπθ(a∣s));

12: Update βt+1 = cη2t ;
13: end for

In addition, while we are interested in the value Jρ(θ)
under the performance measure ρ, it may be helpful
to optimize under the initial distribution µ, i.e., the
policy gradient is taken with respect to the optimization
measure µ, where µ is usually chosen as an exploratory
initial distribution that adequately covers the state
distribution of some optimal policy. Then, the notion of
the distribution mismatch coefficient is defined below:

Definition 4.1 Given a policy π and measures ρ,µ ∈
∆(S), the distribution mismatch coefficient of π under
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ρ relative to µ is defined as ∥d
π
ρ

µ
∥
∞
, where dπρ

µ
denotes

componentwise division.

It is shown in Agarwal et al. (2019) that the difficulty
of the exploration problem faced by policy gradient
algorithms can be captured through this distribution
mismatch coefficient.

Although the optimization problem defined above is
non-convex in general, Theorem 5.3 in Agarwal et al.
(2019) has shown that the first-order stationary points
of the regularized objective are approximately glob-
ally optimal solutions of Jρ(θ) when the regularization
parameter λ is sufficiently small and the exact PG is
available.

Lemma 4.1 (Agarwal et al. (2019)) Suppose that
θ satisfies the inequality ∥∇Lλ,µ(θ)∥ ≤ εopt with εopt ≤
λ

2∣S∣∣A∣ . Then, for every initial distribution ρ, we have:

Jρ(θ∗) − Jρ(θ) ≤
2λ

1 − γ ∥d
πθ∗
ρ

µ
∥
∞
.

4.1.2 Theoretical results

Motivated by the above result and the proof idea in
Zhang et al. (2021a), we can relate the global conver-
gence to the convergence of the first-order stationary
points of the regularized objective.

Lemma 4.2 Consider a soft-max parameterization πθ.
Given a fixed constant ε > 0, let λ = ε(1−γ)

4∥ d
πθ∗
ρ
µ ∥

∞

. For every

initial distribution ρ, every step-size sequence {ηt}Tt=1,
and every sequence {θt}Tt=1, we have:

Jρ(θ∗) −
1

T

T

∑
t=1

E [Jρ(θt)]

≤ ∥d
πθ∗
ρ

µ
∥
2

∞

64∣S ∣2∣A∣2∑Tt=1 ηtE[∥∇Lλ,µ(θt)∥22]
ε2TηT (1 − γ)3

+ ε

2
.

It is worth noting that the bound in Lemma 4.2 is
agnostic to the algorithms. To prove Lemma 4.2, we
first define the following set of “bad” iterates:

I+ = {t ∈ {1, . . . , T}∣ ∥∇θLλ,ρ(θt)∥ ≥
λ

2∣S ∣∣A∣} .

which counts the number of iterates such that the
gradient norms of the KL-regularized objective are
large. We then carefully upper-bound the number of
iterates in the set I+ using the accumulated gradient
norm. One can show that for every ε > 0 and λ =

ε(1 − γ)/(4∥d
πθ∗
ρ

µ
∥
∞
), we have that

Jρ(θ∗) − Jρ(θ) ≤
ε

2
, ∀k ∈ {0, . . . ,K}/I+,

Jρ(θ∗) − Jρ(θ) ≤ 1/(1 − γ), ∀k ∈ I+,

where the second inequality is due to the assumption
that the rewards are between 0 and 1. Finally, by
combining with the first result, we obtain the desired
bound. For the details of the proof, we refer the reader
to the appendix in Section 10.1.

With Lemma 4.2, it remains to bound the accumulated
stationary convergence of the stochastic policy gradient.
Let

LHλ,µ(θt) ∶= JHµ (θ) + λ

∣A∣∣S ∣∑s,a
logπθ(a∣s) + λ log ∣A∣

be the regularized value function with the truncated
horizon H. By applying the momentum-based PG, we
arrive at the following result:

Lemma 4.3 Under the conditions in Proposition 3.2,
Lemma 4.2, and Assumption 3.3, suppose that the se-
quence {θt}Tt=1 is generated by Algorithm 1 with k > 0,
λ > 0, c = 1

3k3Lλ
+ 96b2, m = max{2, (2Lλk)3, ( ck

2Lλ
)3}

and η0 = k
m1/3 , where b2 = L2

g +G2C2
w, Lλ = L + λ, and

Cw =
√
H(2HM2

g +Mh)(W + 1). Then, it holds that

T

∑
t=1

E [ηt ∥∇LHλ,µ(θt)∥
2

2
] ≤ Γ2 +

Γ1 + Γ3

B
, (6)

where

Γ1 =
c2σ2k3 ln (T + 2)

44b2
+
m1/3σ2

88b2k
+

1

22
(LHλ,µ(θ

∗

) −LHλ,µ(θ1)) ,

Γ2 =
48

11
(LHλ,µ(θ

∗

) −LHλ,µ(θ1)) ,

Γ3 =
σ2m1/3

44b2k
+
c2σ2k3

22b2
ln (2 + T ).

Lemma 4.3 shows that ∑Tt=1 E [ηt ∥∇LHλ,µ(θt)∥
2

2
] is

upper-bounded by a constant up to some logarith-
mic terms. To prove this result, we first show that
E[ηt∥∇LHλ,µ(θt)∥22] can be bounded by two terms,
namely the successive iteration differences E[η−1t ∥θt −
θt−1∥22] and the policy gradient estimation errors
E[ηt∣∣uHt − ∇JHµ (θt)∣∣22]. The proof then reduces to
bounding each of these two terms. In light of the
momentum term and the carefully chosen hyper-
parameters βt and ηt, a recursive inequality on the
policy gradient estimation errors can be used to make
the accumulated policy gradient estimation errors small
even with a constant batch size. Finally, the succes-
sive iteration differences can be upper-bounded by the
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smoothness of the regularized value function and the
construction of a non-trivial Lyapunov function. We
refer the reader to the appendix in Section 10.2 for the
details.

Finally, by combining Lemmas 4.2 and 4.3, and using
a sufficiently large horizon H, we obtain the following
global convergence and sample complexity result for
Algorithm 1.

Theorem 4.4 Under the conditions of Lemmas 4.2

and 4.3, let T = Õ ( c
3
2∞

ε
9
2 (1−γ)

33
2
+ c∞W
ε3(1−γ)12 ) , B = O(1)

and H = O (logγ (
(1−γ)ε
∣S∣∣A∣ ∥

d
πθ∗
ρ

µ
∥
−1

∞
)), where c∞ =

∥d
πθ∗
ρ

µ
∥
2

∞
∣S ∣2∣A∣2(1 +W ). Then, it holds that

Jρ(θ∗) −
1

T
E [

T

∑
t=1

(Jρ(θt))] ≤ ε.

In total, it requires Õ(ε−4.5) samples to achieve an
ε-optimal policy.

The detailed proof of Theorem 4.4 can be found in
Section 10.3 in the appendix.

Remark 4.5 Theorem 4.4 improves the result of The-
orem 6 in Zhang et al. (2021a) from the sample com-
plexity of Õ(ε−6) to Õ(ε−4.5) for the soft-max parame-
terization with a log barrier penalty while only using a
constant number of batch size B.

4.2 Fisher-non-degenerate parameterization

4.2.1 Preliminary tools

We now study the global convergence of momentum-
based policy gradient for the general parameterization
satisfying the fisher-non-degenerate assumption in As-
sumption 2.1 (Algorithm 1). Since this parameteriza-
tion can be used for general MDPs, it may be restrictive
in the sense that it may not contain all stochastic poli-
cies and, therefore, may not contain the optimal policy.
Thus, there may be some approximation errors. Our
analysis will leverage the notion of compatible function
approximation in Sutton et al. (1999) defined as the
regression problem:

min
w∈Rd

E
(s,a)∼v

πθ
ρ

(Aπθ(s, a) − (1 − γ)w⊺

∇ logπθ(a∣s))
2. (7)

Algorithm 2 Momentum-based PG with Fisher-non-
degenerate parameterization (STORM-PG-F)
1: Inputs: Iteration T , Horizon H, batch size B,

initial input θ1, parameters {k,m, c} and initial
distribution ρ;

2: Outputs: θξ chosen uniformly random from
{θt}Tt=1;

3: for t = 1,2, . . . , T − 1 do
4: Sample B trajectories {τHi }Bi=1 from p(⋅∣θt, ρ);
5: if t = 1 then
6: Compute uH1 = 1

B ∑
B
i=1 g(τHi ∣θ1, ρ);

7: else
8: Compute uHt based on (4);
9: end if
10: Compute ηt = k

(m+t)1/3 ;
11: Update θt+1 = θt + ηtuHt ;
12: Update βt+1 = cη2t ;
13: end for

The notion of compatible function approximation
measures the ability of using the score function
∇ logπθ(a∣s) as the features to approximate the ad-
vantage function Aπθ(s, a). It can be seen that
Fρ(θ)−1∇Jρ(θ) is a minimizer of (7), due to the first-
order optimality conditions. Since even the best linear
fit using ∇ logπθ(a∣s) as the features may not perfectly
match Aπθ(s, a), the compatible function approxima-
tion error may not be 0 in practice. Following the
assumptions in Liu et al. (2020) and Agarwal et al.
(2019), we assume that the policy parameterization
πθ achieves an acceptable function approximation, as
measured by the compatible function approximation
error under a shifted distribution vπθ∗ρ .

Assumption 4.6 For every θ ∈ Rd, there exists a con-
stant εbias > 0 such that the transferred compatible func-
tion approximation error satisfies

E
(s,a)∼v

πθ∗
ρ

[(Aπθ(s, a) − (1 − γ)u∗⊺∇ logπθ(a∣s))
2
] ≤ εbias,

where v
πθ∗
ρ is the state-action distribution induced

by an optimal policy πθ∗ that maximizes Jρ(θ) and
u∗ ∶= Fρ(θ)−1∇Jρ(θ) is the solution of (7) .

Assumption 4.6, which is also used in Liu et al. (2020),
means that the parameterization of πθ makes the advan-
tage function Aπθ(s, a) be able to nearly approximated
by using the score function ∇ logπθ(a∣s) as the fea-
tures. When πθ is a soft-max parameterization, εbias
is 0. When πθ is a rich neural parameterization, εbias
is very small (Wang et al., 2019).

4.2.2 Theoretical results

Inspired by the global convergence analysis of PG and
natural PG in Liu et al. (2020) and Agarwal et al.
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(2019), we present a simpler and more general tool
for characterizing the global sub-optimality under the
Fisher-non-degenerate policy parametrization.

Lemma 4.7 Let us consider a general Fisher-non-
degenerate policy πθ satisfying Assumptions 2.1, 3.1
and 4.6. Then, we have

Jρ (θ∗) − Jρ (θ) ≤
√
εbias

(1 − γ) +
Mg

µF
∥∇Jρ(θ)∥ . (8)

Lemma 4.7 relates the global convergence rates of the
policy gradient to the transferred compatible function
approximation error and the first-order stationary con-
vergence. It can be regarded as the gradient domination
condition for Fisher-non-degenerate parametrizations.
Compared with Proposition 4.5 in Liu et al. (2020),
our result is more general. In particular, the bound in
(8) does not depend on the update rule for θ and does
not require a Lipschitz continuity assumption for the
score function ∇ logπθ(a∣s).
To prove Lemma 4.7, we first relate the global conver-
gence optimality gap with the stationary convergence
of the natural policy gradient Fρ(θ)−1∇Jρ(θ) and the
transferred compatible function approximation error.
This is achieved by the following two observations: (1)
the advantage function Aπθ(⋅, ⋅) appears in both the
performance difference lemma and the definition of the
transferred compatible function approximation error ;
(2) the natural policy gradient update is connected
with the transferred compatible function approxima-
tion error. In light of Assumption 2.1, one can relate
the first-order stationary convergence of natural policy
gradient with the first-order stationary convergence of
policy gradient. For the details, we refer the reader to
the appendix in Section 11.1.

By applying the momentum-based PG with a constant
batch size B under the general Fisher-non-degenerate
parameterization (see Algorithm 2), we arrive at the
following result:

Lemma 4.8 Under the conditions in Proposition 3.2,
Lemma 4.7, and Assumption 3.3, suppose that the
sequences {θt}Tt=1 and {uHt }Tt=1 are generated by Al-
gorithm 2. Let k > 0, c = 1

3k3L
+ 96b2, m =

max{2, (2Lk)3, ( ck
2L

)3} and η0 = k
m1/3 , where b2 = L2

g +
G2C2

w and Cw =
√
H(2HM2

g +Mh)(W + 1). Then, it
holds that

1

T

T

∑
t=1

E ∥∇JHρ (θt)∥2 ≤
√

Γ2

k
+ Γ1 + Γ3

kB
(m

1/6
√
T

+ 1

T 1/3 ) ,

(9)

where Γ1 = ( c
2σ2k3 ln (T+2)

48b2
+ m1/3

96b2k
σ2 + 1

22(1−γ)) , Γ2 =
48

11(1−γ) , and Γ3 = σ2m1/3
44b2k2

+ c2σ2k3

22kb2
ln (2 + T ).

The proof sketch for Lemma 4.8 is similar to that
of Lemma 4.3 and the detailed proof is provided in
Appendix 11.2. Finally, by combining Lemmas 4.7
and 4.8, we obtain the global convergence and sample
complexity of Algorithm 2.

Theorem 4.9 Under the conditions of Lemma 4.8,
let H = O(logγ ((1 − γ)µF ε)), B = O(1) and T =

Õ ( (1+W )
3
2

ε3µ3
F
(1−γ)12 +

1+W
ε2µ2

F
(1−γ)11 +

W (1+W )
ε2µ2

F
(1−γ)9 ). Then, it

holds that

Jρ(θ∗) −
1

T

T

∑
t=1

E[Jρ(θt)] ≤
√
εbias

1 − γ + ε.

In total, it requires Õ(ε−3) samples to achieve an
(
√
εbias
1−γ + ε)-optimal policy.

The detailed proof of Theorem 4.9 can be found in
Section 11.3 in the appendix.

Remark 4.10 Theorem 4.9 establishes the global con-
vergence of the momentum-based PG proposed in Huang
et al. (2020), for which only stationary convergence was
previously shown. The results in Theorem 4.9 do not
hold for the soft-max parameterization. The reason is
that the soft-max parameterization lacks the exploration
and thus Assumption 2.1 is not satisfied. In addition, it
improves the result of Theorem 4.6 in Liu et al. (2020)
from the sample complexity of O( 1

ε4
) to Õ( 1

ε3
). It also

improves Theorem 4.11 in Liu et al. (2020) from using
a batch size of O(ε−1) to a constant batch size and from
using a double-loop algorithm to a single-loop algorithm,
where the later improvement is due to the momentum
introduced in Huang et al. (2020); Yuan et al. (2020).

5 Conclusion

In this work, we studied the global convergence and
the sample complexity of momentum-based stochastic
policy gradient methods for both soft-max parameter-
ization and more general parameterization satisfying
the fisher-non-degenerate assumption. We showed that
adding a momentum improves the global optimally
sample complexity of vanilla policy gradient meth-
ods in both soft-max and Fisher-non-degenerate policy
parametereizations with a constant batch size. This
work provides the first global convergence results for
momentum-based policy gradient methods.

There are also several open problems that may be ad-
dressed by combining the techniques introduced in this
paper with the existing results in the literature. First,
it remains as an open question whether the momentum-
based policy gradient can be combined with the natural
policy gradient (Kakade, 2001) to achieve or exceed the
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state-of-the-art sample complexity. In addition, it is de-
sirable to generalize our soft-max setting to the general
class of log-linear policies and remove the “exploration”
assumption about the initial state distribution being
component-wise positive. This may be achieved by
combining our results with the PC-PG and COPOE
methods in Agarwal et al. (2019); Zanette et al. (2021).
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6 Related work.

Momentum-based policy gradient. Conventional approaches to reducing the high variance in PG methods
include adding the baselines (Sutton et al., 1999; Wu et al., 2018) and using the actor-critic algorithms (Konda
and Tsitsiklis, 2000; Bhatnagar et al., 2009; Peters and Schaal, 2008). The idea of variance reduction, inspired by
its successes in the stochastic nonconvex optimization (Johnson and Zhang, 2013; Allen-Zhu and Hazan, 2016;
Reddi et al., 2016; Fang et al., 2018; Nguyen et al., 2017), is also incorporated to improve the PG methods (Xu
et al., 2017; Papini et al., 2018; Xu et al., 2020b). In addition, momentum techniques, which are demonstrated as
a powerful and generic recipe for accelerating stochastic gradient methods for nonconvex optimization (Qian,
1999; Kingma and Ba, 2015; Reddi et al., 2019), have also been extended to improve PG methods both in theory
and in practice (Xiong et al., 2020; Yuan et al., 2020; Pham et al., 2020; Huang et al., 2020). Xiong et al. (2020)
studies Adam-based policy gradient methods but only achieved O(ε−4) sample complexities, which is the same
as the vanilla REINFORCE algorithm. A new STORM-PG method is proposed in Yuan et al. (2020), which
incorporates momentum in the updates and matches the sample complexity of the SRVR-PG method proposed in
Xu et al. (2020b) (and also VRMPO) while requiring only single-loop updates and large initialization batches,
whereas SRVR-PG and VRMPO require double-loop updates and large batch sizes throughout all iterations.
Concurrently, Pham et al. (2020) proposes a hybrid estimator combining the momentum idea with SARAH
and considers a more general setting with regularization, and achieves the same O(ε−3) sample complexity and
again with single-loop updates and large initialization batches. Finally, independently inspired by STORM
algorithm for stochastic optimization in Cutkosky and Orabona (2019), Huang et al. (2020) proposes a class of
momentum-based policy gradient algorithms, with adaptive time-steps, single-loop updates and small batch sizes,
which matches the sample complexity in Xu et al. (2020b).

Global convergence of (stochastic) policy gradient. The understanding of the PG methods is mostly
restricted to their convergence to stationary points of the value function (Sutton et al., 1999; Konda and Tsitsiklis,
2003; Papini et al., 2018). It was not until very recently that a series of works emerged to establish the global
convergence properties of these algorithms. Fazel et al. (2018) shows that the linear quadratic regulator problem
satisfies a gradient domination condition although it has a nonconvex landscape, implying that the PG methods
could converge to the globally optimal policy. Bhandari and Russo (2019) generalizes the results in Fazel et al.
(2018) from the linear quadratic regulator problem to several control tasks by relating the objective for policy
gradient to the objective associated with the Bellman operator. For the soft-max parameterization, Mei et al. (2020,
2021) show that the value function satisfies a non-uniform Łojasiewicz inequality and a fast global convergence
rate can be achieved if the exact PG is available. In addition, Agarwal et al. (2019) provides a fairly general
characterization of global convergence for the PG methods and a sample complexity result for sample-based
natural PG updates. By incorporating the variance reduction techniques in the PG methods, an improved sample
complexity for the global convergence is established in Liu et al. (2020) for both PG and natural PG methods.
When overparameterized neural networks are used for function approximation, the global convergence is proved
for the (natural) PG methods (Wang et al., 2019) and for the trust-region policy optimization (Liu et al., 2019).
Very recently, a series of non-asymptotic global convergence results (Hong et al., 2020; Xu et al., 2020c; Wu et al.,
2020b; Xu et al., 2020d; Fu et al., 2020) have also been established for actor-critic algorithms with (natural)
PG or proximal policy optimization used in the actor step. Apart from RL systems with a cumulative sum of
rewards, the global convergence results of PG methods for RL systems whose objectives are a general utility
function of the state-action occupancy measure are studied in Zhang et al. (2020a, 2021b). In addition, the global
convergence of policy-based methods has also been studied in the constrained MDPs Ding et al. (2020); Ying
et al. (2021); Efroni et al. (2020), where the optimal policy is usually stochastic and thus policy-based methods
are preferred Altman (1999).
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7 Notation

The set of real numbers is shown as R. u ∼ U means that u is a random vector sampled from the distribution
U . We use ∣X ∣ to denote the number of elements in a finite set X. The notions Eξ[⋅] and E[⋅] refer to the
expectation over the random variable ξ and over all of the randomness. The notion Var[⋅] refers to the variance.
For vectors x, y ∈ Rd, let ∥x∥1, ∥x∥2 and ∥x∥∞ denote the `1-norm, `2-norm and `∞-norm. We use ⟨x, y⟩ to denote
the inner product. For a matrix A, A ≽ 0 means that A is positive semi-definite. Given a variable x, the notation
a = O(b(x)) means that a ≤ C ⋅ b(x) for some constant C > 0 that is independent of x. Similarly, a = Õ(b(x))
indicates that the previous inequality may also depend on the function log(x), where C > 0 is again independent
of x. We use N (µ,σ2) to denote a Gaussian distribution with the mean µ and the variance σ2.

8 Discussions on the Fisher-non-degenerate parameterization

The Fisher-non-degenerate setting contains more than the Gaussian policy. In particular, any full-rank expo-
nential family distribution of the form πθ(a∣s) = h(a∣s) exp (η(θ∣s) ⋅ T (a∣s) −A(η(θ∣s)∣s)) under some reasonable
conditions is a Fisher-non-degenerate parameterization. More precisely, if Hessian ∇2

ηA(η∣s) is positive definite
and Jacobian ∇θη(θ∣s) has the full-column-rank at all θ, then the corresponding Fisher information matrix is
positive definite. Thus, the commonly used Gaussian policy N (fθ(s),Σ) and neural policy exp(fθ(s,a))

∑a′ exp(fθ(s,a′))
under

the above mentioned conditions are both covered in our Fisher-non-degenerate setting.

In addition, the Fisher-non-degenerate setting implicitly guarantees that the agent is able to explore the state-
action space under the considered policy class. Without the non-degenerate Fisher information matrix condition,
the global optimum convergence of more general parameterizations would be hard to analyze without introducing
the additional exploration procedures in the non-tabular setting. Similar conditions of the Fisher-non-degeneracy
are also required in other global optimum convergence framework (Assumption 6.5 in Agarwal et al. (2019))
relative condition number condition]. We kindly refer the reviewer to (Section B.2 in Liu et al. (2020)) for more
discussions on the Fisher-non-degenerate setting.

9 Supporting results

Proposition 9.1 (Lemma 1 in Cortes et al. (2010)) Let w(x) = P (x)/Q(x) be the importance weight for
two distributions P and Q. The following identities hold for the expectation, second moment, and variance of
w(x):

E[w(x)] = 1, E[w2(x)] = d2(P ∣∣Q), Var[w(x)] = d2(P ∣∣Q) − 1,

where d2(P ∣∣Q) = 2D(P ∣∣Q) and D(P ∣∣Q) is the Rényi divergence between the distributions P and Q.

Proposition 9.2 (Lemma 6.1 in Xu et al. (2020b)) Under Assumptions 3.1 and 3.3, let w(τ ∣θt−1, θt) =
p(τ ∣θt−1, µ)/p(τ ∣θt, µ). We have

Var[w(τ ∣θt−1, θt)] ≤ C2
w ∥θt − θt−1∥22 ,

for any state distribution µ, where Cw =
√
H(2HM2

g +Mh)(W + 1).

Lemma 9.3 Suppose that f(x) is L-smooth. Given 0 < ηt ≤ 1
2L

for all t ≥ 1, let {xt}Tt=1 be generated by a general
update of the form xt+1 = xt + ηtut and let et = ut −∇f(xt). We have

f(xt+1) ≥f(xt) +
ηt
4

∥ut∥22 −
ηt
2

∥et∥22 .
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Proof. Since f(f) is L-smooth, one can write

f(xt+1) − f(xt) − ⟨ut, xt+1 − xt⟩

=f(xt+1) − f(xt) − ⟨∇f(xt), xt+1 − xt⟩ + ⟨√ηt(∇f(xt) − ut),
1

√
ηt

(xt+1 − xt)⟩

≥ − L
2

∥xt+1 − xt∥2 −
bηt
2

∥∇f(xt) − ut∥22 −
1

2bηt
∥xt+1 − xt∥22

=(− 1

2bηt
− L

2
) ∥xt+1 − xt∥22 −

bηt
2

∥et∥22 ,

where the constant b > 0 is to be determined later. By the above inequality and the definition of xt+1, we have

f(xt+1) ≥f(xt) + ⟨ut, xt+1 − xt⟩ − ( 1

2bηt
+ L

2
) ∥xt+1 − xt∥22 −

bηt
2

∥et∥22

=f(xt) + ηt ∥ut∥2 − ( ηt
2b

+ Lη
2
t

2
) ∥ut∥22 −

bηt
2

∥et∥22

By choosing b = 1 and using the fact that 0 < ηt ≤ 1
2L

, it holds that

f(xt+1) ≥f(xt) + (ηt
2
− Lη

2
t

2
) ∥ut∥22 −

ηt
2

∥et∥22

≥f(xt) +
ηt
4

∥ut∥22 −
ηt
2

∥et∥22 .

This completes the proof. ◻

10 Proofs of results in Section 4.1

10.1 Proof of Lemma 4.2

Proof. We first define the following set of “bad” iterates:

I+ = {t ∈ {1, . . . , T}∣ ∥∇θLλ,µ(θt)∥2 ≥
λ

2∣S ∣∣A∣} , (10)

which counts the number of iterates such that the gradient norms of the KL-regularized objective are large.

Then, one can show that for every ε > 0 and λ = ε(1 − γ)/(4∥d
πθ∗
ρ

µ
∥
∞
), we have that Jρ(θ∗) − Jρ(θ) ≤ ε

2
for all

k ∈ {0, . . . ,K}/I+, while Jρ(θ∗) − Jρ(θ) ≤ 1/(1 − γ) holds trivially for all k ∈ I+ due to the assumption that the
rewards are between 0 and 1. Then, by controlling the number of “bad” iterates, we obtain the desired optimality
guarantee. For simplicity, assume for now that ∣I+∣ > 0. Since ηt is non-increasing in t, we have

T

∑
t=1
ηt ∥∇Lλ,µ(θt)∥22 ≥ ∑

t∈I+
ηt ∥∇Lλ,µ(θt)∥22

≥ λ2

4∣S ∣2∣A∣2 ∑t∈I+
ηt

≥ λ2

4∣S ∣2∣A∣2
T

∑
t=T−∣I+∣+1

ηt

≥ λ
2∣I+∣ηT

4∣S ∣2∣A∣2 .

Thus,

∣I+∣ ≤
4∣S ∣2∣A∣2∑Tt=1 ηt ∥∇Lλ,µ(θt)∥

2
2

λ2ηT
.
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Since Jρ(θ) ∈ [0, 1
1−γ ] for every θ, it holds that Jρ(θ

∗) − Jρ(θt) ≤ 1
1−γ for all t ∈ I+. In addition, by Lemma 4.1

and the choice of λ = ε(1−γ)

4∥ d
πθ∗
ρ
µ ∥

∞

, it holds that

Jρ(θ∗) − Jρ(θt) ≤
ε

2
, ∀t ∉ I+.

Therefore,

T

∑
t=1

(Jρ(θ∗) − Jρ(θt)) = ∑
t∈I+

(Jρ(θ∗) − Jρ(θt)) + ∑
t∉I+

(Jρ(θ∗) − Jρ(θt))

≤ ∣I+∣ 1

1 − γ + (T − ∣I+∣) ε
2

≤
4∣S ∣2∣A∣2∑Tt=1 ηt ∥∇Lλ,µ(θt)∥

2
2

λ2ηT (1 − γ)
+ Tε

2

≤
4∣S ∣2∣A∣2∑Tt=1 ηt ∥∇Lλ,µ(θt)∥

2
2

λ2ηT (1 − γ)
+ Tε

2
. (11)

Now if ∣I+∣ = 0,

T

∑
t=1

(Jρ(θ∗) − Jρ(θt)) ≤
Tε

2

and hence (11) always holds. This completes the proof. ◻

10.2 Proof of Lemma 4.3

We first notice that Assumption 3.1 is satisfied by the soft-max parameterization with Mg = 2 and Mh = 1.

Lemma 10.1 For the soft-max parameterization, Assumption 3.1 is satisfied with Mg = 2 and Mh = 1.

Proof. For the soft-max parameterization, we have

α logπθ(a∣s)
αθ(s, ⋅) = 1a − Ea′∼πθ(⋅∣s)1a′ ,

where 1a ∈ R∣A∣ is a vector with zero entries except one nonzero entry corresponding to the action a. In addition,
α logπθ(a∣s)
αθ(s′,⋅) = 0 for all s ≠ s′. Hence, ∥∇θ logπθ(a∣s)∥2 ≤ 2 for every (s, a) ∈ S ×A.

Similarly, we have

α2 logπθ(a∣s)
αθ(s, ⋅)2 = (dπθ(⋅∣s)

dθ(s, ⋅) )
⊺

= diag(π(⋅∣s)) − π(⋅∣s)π(⋅∣s)⊺.

From Lemma 22 of Mei et al. (2020), we know that the largest eigenvalue of the matrix diag(π(⋅∣s))−π(⋅∣s)π(⋅∣s)⊺
is less than 1. Thus, ∥∇2

θ logπθ(a∣s)∥2 ≤ 1. ◻

Lemma 10.2 Suppose that the stochastic policy gradient uHt is generated by Algorithm 1 with the soft-max
parameterization. Let eHt = uHt + λ

∣A∣∣S∣ ∑s,a∇ logπθt(a∣s) −∇LHλ,µ(θt). It holds that

E [η−1t−1∣∣eHt ∣∣22] ≤E [η−1t−1(1 − βt)2∣∣eHt−1∣∣22 +
2η−1t−1β

2
t σ

2

B
+ 4b2η−1t−1(1 − βt)2

B
∣∣θt − θt−1∣∣22] ,

where b2 = L2
g +G2C2

w, Lg =Mh/(1 − γ)2, G =Mg/(1 − γ)2 and Cw =
√
H(2HM2

g +Mh)(W + 1).



On the Global Convergence of Momentum-based Policy Gradient

Proof. First note that eHt = uHt −∇JHµ (θ). Then, by the definition of uHt , we have

uHt − uHt−1 = −βtuHt−1 +
βt
B

B

∑
i=1
g(τHi ∣θt, µ) +

(1 − βt)
B

B

∑
i=1

(g(τHi ∣θt, µ) −w(τHi ∣θt−1, θt)g(τHi ∣θt−1, µ)).

As a result,

E [η−1t−1∣∣eHt ∣∣22] =E [η−1t−1∣∣∇JHρ (θt−1) − ut−1 +∇JHρ (θt) −∇JHρ (θt−1) − (uHt − ut−1))∣∣22]
=E [η−1t−1∣∣∇JHρ (θt−1) − ut−1 +∇JHρ (θt) −∇JHρ (θt−1)

+βtut−1 −
βt
B

B

∑
i=1
g(τHi ∣θt, µ) −

(1 − βt)
B

B

∑
i=1

(g(τHi ∣θt, µ) −w(τHi ∣θt−1, θt)g(τHi ∣θt−1, µ)))∣∣22]

=E [η−1t−1∣∣(1 − βt)(∇JHρ (θt−1) − ut−1) + βt(∇JHρ (θt) −
1

B

B

∑
i=1
g(τHi ∣θt, µ))

−(1 − βt)
B

B

∑
i=1

(g(τHi ∣θt, µ) −w(τHi ∣θt−1, θt)g(τHi ∣θt−1, µ)) − (∇JHρ (θt) −∇JHρ (θt−1)))∣∣22]

=η−1t−1(1 − βt)2E [∣∣∇JHρ (θt−1) − ut−1∣∣22] + η−1t−1E [∣∣βt(∇JHρ (θt) −
1

B

B

∑
i=1
g(τHi ∣θt, µ))

−(1 − βt)
B

B

∑
i=1

(g(τHi ∣θt, µ) −w(τHi ∣θt−1, θt)g(τHi ∣θt−1, µ)) − (∇JHρ (θt) −∇JHρ (θt−1)))∣∣22]

≤η−1t−1(1 − βt)2E [∣∣∇JHρ (θt−1) − ut−1∣∣22] + 2η−1t−1β
2
t E [∣∣(∇JHρ (θt) −

1

B

B

∑
i=1
g(τHi ∣θt, µ))∣∣22]

+ 2η−1t−1(1 − βt)2E [∣∣ 1

B

B

∑
i=1

(g(τHi ∣θt, µ) −w(τHi ∣θt−1, θt)g(τHi ∣θt−1, µ)) − (∇JHρ (θt) −∇JHρ (θt−1)))∣∣22]

=η−1t−1(1 − βt)2E [∣∣eHt−1∣∣22] + 2η−1t−1β
2
t

1

B
E [∣∣g(τHi ∣θt, µ) −∇JHρ (θt)∣∣22]

+ 2η−1t−1(1 − βt)2
1

B
E [∣∣g(τHi ∣θt, µ) −w(τHi ∣θt−1, θt)g(τHi ∣θt−1, µ) − (∇JHρ (θt) −∇JHρ (θt−1))∣∣22]

≤η−1t−1(1 − βt)2E [∣∣eHt−1∣∣22] +
2η−1t−1β

2
t σ

2

B

+ 2η−1t−1(1 − βt)2
1

B
E [∣∣g(τHi ∣θt, µ) −w(τHi ∣θt−1, θt)g(τHi ∣θt−1, µ)∣∣22] ,

where the fourth equality is due to EτHi [g(τHi ∣θt, µ)] = ∇JHρ (θt) and EτHi [g(τHi ∣θt, µ) −
w(τHi ∣θt−1, θt)g(τHi ∣θt−1, µ)] = ∇JHρ (θt) − ∇JHρ (θt−1), the first inequality follows from Young’s inequality,
the second inequality holds by E∣∣ 1

B ∑
B
i=1 ξi − E[ξi]∣∣22 = 1

B
E∣∣ξi − E[ξi]∣∣22 for the i.i.d. samples of {ξi}Bi=1, and the

last inequality is due to the bounded variance of stochastic policy gradient under the soft-max parameterization
and E∣∣ξ − E[ξ]∣∣22 ≤ E∣∣ξ∣∣22.
In addition,

E [∣∣g(τHi ∣θt, µ) −w(τHi ∣θt−1, θt)g(τHi ∣θt−1, µ)∣∣22]
= E [∣∣g(τHi ∣θt, µ) − g(τHi ∣θt−1, µ) + g(τHi ∣θt−1, µ) −w(τHi ∣θt−1, θt)g(τHi ∣θt−1, µ)∣∣22]
≤ 2E [∣∣g(τHi ∣θt, µ) − g(τHi ∣θt−1, µ)∣∣22 + 2E[∣∣g(τHi ∣θt−1, µ) −w(τHi ∣θt−1, θt)g(τHi ∣θt−1, µ)∣∣22]
≤ 2L2

gE [∣∣θt − θt−1)∣∣22] + 2G2E [∣∣1 −w(τHi ∣θt−1, θt)∣∣22]
≤ 2L2

gE [∣∣θt − θt−1)∣∣22] + 2G2Var(w(τHi ∣θt−1, θt))
≤ 2(L2

g +G2C2
w)E [∣∣θt − θt−1)∣∣22] ,

where the second inequality follows from Lemma 3.2, and the third inequality is due to Proposition 9.1, and the
last inequality holds by Proposition 9.2. By selecting b2 = L2

g +G2C2
w, we have

E [η−1t−1∣∣eHt ∣∣22] ≤E [η−1t−1(1 − βt)2∣∣eHt−1∣∣22 +
2η−1t−1β

2
t σ

2

B
+ 4b2η−1t−1(1 − βt)2

B
∣∣θt − θt−1∣∣22] ,
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which completes the proof. ◻

10.2.1 Proof of Lemma 4.3

Proof. From Proposition 3.2, we know that Jµ(θ) is L-smooth. Since ∥∇2 logπθ(a∣s)∥2 ≤ 1 for the soft-max
parameterization, it holds that Lλ,µ(θ) is Lλ-smooth, where Lλ ∶= L + λ.
Due to m ≥ (2Lλk)3, we have ηt ≤ η0 = k

m1/3 ≤ 1
2Lλ

. Since ηt ≤ 1
2Lλ

, we obtain that βt+1 = cη2t ≤ cηt
2Lλ

≤ ck
2Lλm1/3 ≤ 1.

Now, it results from Lemma 10.2 that

E [η−1t ∣∣eHt+1∣∣22 − η−1t−1∣∣eHt ∣∣22]

≤ E [(η−1t (1 − βt+1)2 − η−1t−1)∣∣eHt ∣∣22 +
2η−1t β

2
t+1σ

2

B
+ 4b2η−1t (1 − βt+1)2

B
∣∣θt+1 − θt∣∣22]

≤ E [(η−1t (1 − βt+1) − η−1t−1)∣∣eHt ∣∣22 +
2η−1t β

2
t+1σ

2

B
+ 4b2η−1t

B
∣∣θt+1 − θt∣∣22] ,

where the last inequality holds by 0 < βt+1 ≤ 1. Since the function x1/3 is concave, we have (x+y)1/3 ≤ x1/3+yx−2/3/3.
Then, we have

η−1t − η−1t−1 =
1

k
((m + t)1/3 − (m + t − 1)1/3) ≤ 1

3k(m + t − 1)2/3

≤ 1

3k(m/2 + t)2/3 ≤ 22/3

3k3
η2t ≤

22/3

6k3L
ηt ≤

1

3k3L
ηt,

where the second inequality holds by m ≥ 2, and the forth inequality uses the property 0 < ηt ≤ 1
2Lλ

. Then, it
holds that

(η−1t (1 − βt+1) − η−1t−1)∣∣eHt ∣∣22 =( 1

3k3L
− c)ηt ∥eHt ∥2

2
= −96b2ηt ∥eHt ∥2

2
,

where the last equality is based on the relation c = 1
3k3Lλ

+ 96b2. Combining the above results yields that

E[η−1t ∣∣eHt+1∣∣22 − η−1t−1∣∣eHt ∣∣22] ≤ E [−96b2ηt∣∣eHt ∣∣22 +
2η−1t β

2
t+1σ

2

B
+ 4b2η−1t

B
∣∣θt+1 − θt∣∣22] . (12)

To streamline the presentation, we denote uHt,λ ∶= 1
ηt

(θt+1 − θt). By summing up the above inequality and dividing
the both sides by 96b2, we obtain

1

96b2

⎛
⎜
⎝

E
⎡⎢⎢⎢⎢⎣

∥eHT+1∥
2

2

ηT
−

∥eH1 ∥2
2

η0

⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠
≤
T

∑
t=1

E [c
2η3t σ

2

48b2B
− ηt ∥eHt ∥2

2
+ ηt

24B
∥uHt,λ∥

2

2
] (13)

For ηt ∥uHt,λ∥
2

2
, it follows from Lemma 9.3 that

ηt
4

∥uHt,λ∥
2

2
≤ LHλ,µ(θt+1) −LHλ,µ(θt) +

ηt
2

∥eHt ∥2 .

Then, it holds that
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1

96b2

⎛
⎜
⎝

E
⎡⎢⎢⎢⎢⎣

∥eHT+1∥
2

2

ηT
−

∥eH1 ∥2
2

η0

⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠
≤
T

∑
τ=1

E [c
2η3t σ

2

48b2B
− (12B − 1)ηt

12B
∥eHt ∥2

2
+ 1

6B
(LHλ,µ(θt+1) −LHλ,µ(θt))]

≤
T

∑
t=1

(c
2η3t σ

2

48b2B
− E [11ηt

12
∥eHt ∥2

2
]) + 1

6B
(LHλ,µ(θ∗) −LHλ,µ(θ1))

≤c
2σ2k3

48b2B

T

∑
t=1

1

m + t −
T

∑
t=1

E [11ηt
12

∥eHt ∥2
2
] + 1

6B
(LHλ,µ(θ∗) −LHλ,µ(θ1))

≤c
2σ2k3

48b2B

T

∑
t=1

1

2 + t −
T

∑
t=1

E [11ηt
12

∥eHt ∥2
2
] + 1

6B
(LHλ,µ(θ∗) −LHλ,µ(θ1))

≤c
2σ2k3 ln (T + 2)

48b2B
−

T

∑
t=1

E [11ηt
12

∥eHt ∥2
2
] + 1

6B
(LHλ,µ(θ∗) −LHλ,µ(θ1)) . (14)

By rearranging the above inequality, we have

T

∑
t=1

E [11ηt
12

∥eHt ∥2
2
] ≤c

2σ2k3 ln (T + 2)
48b2B

+ 1

96b2η0
E [∥eH1 ∥2

2
] + 1

6B
(LHλ,µ(θ∗) −LHλ,µ(θ1))

≤ 1

B
(c

2σ2k3 ln (T + 2)
48b2

+ m
1/3σ2

96b2k
+ 1

6
(LHλ,µ(θ∗) −LHλ,µ(θ1))) .

Multiplying both sides by 12
11

yields that

T

∑
t=1

E [ηt ∥eHt ∥2
2
] ≤ 1

B
(c

2σ2k3 ln (T + 2)
44b2

+ m
1/3σ2

88b2k
+ 1

22
(LHλ,µ(θ∗) −LHλ,µ(θ1))) .

To bound ∑Tt=1 E [ηt ∥uHt,λ∥
2

2
], we define a Lyapunov function Φt(θt) = LHλ,µ(θt)− 1

192b2ηt−1
∥eHt ∥2

2
for all t ≥ 1. Then,

E[Φt+1 −Φt] =E [LHλ,µ(θt+1) −LHλ,µ(θt) −
1

192b2ηt
∥eHt+1∥

2

2
+ 1

192b2ηt−1
∥eHt ∥2

2
]

≥E [−ηt
2

∥eHt ∥2
2
+ ηt

4
∥uHt,λ∥

2

2
− 1

192b2ηt
∥eHt+1∥

2

2
+ 1

192b2ηt−1
∥eHt ∥2

2
]

≥E [ηt
4

∥uHt,λ∥
2

2
− β2

t σ
2

96b2Bηt
− ηt

48B
∣∣uHt,λ∣∣2]

≥E [11ηt
48

∥uHt,λ∥
2

2
− c

2η3t σ
2

96b2B
] ,

where the first inequality holds by Lemma 9.3 and the second inequality holds due to (12). Summing the above
inequality over t from 1 to T , we obtain

T

∑
t=1

E [ηt ∥uHt,λ∥
2

2
] ≤E [48

11
(ΦT+1 −Φ1) +

T

∑
t=1

c2η3t σ
2

22b2B
]

≤E [48

11
(LHλ,µ(θ∗) −LHλ,µ(θ1)) +

1

44b2η0
E∣∣eH1 ∣∣22 +

c2σ2k3

22b2B

T

∑
t=1

1

m + t]

≤E [48

11
(LHλ,µ(θ∗) −LHλ,µ(θ1)) +

1

44b2η0
E∣∣eH1 ∣∣22 +

c2σ2k3

22b2B

T

∑
t=1

1

2 + t]

≤E [48

11
(LHλ,µ(θ∗) −LHλ,µ(θ1)) +

σ2m1/3

44b2kB
+ c

2σ2k3

22b2B
ln (2 + T )]

≤Γ2 +
Γ3

B
,
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where Γ2 = 48
11

(LHλ,µ(θ∗) −LHλ,µ(θ1)) and Γ3 = (σ2m1/3
44b2k

+ c2σ2k3

22b2
ln (2 + T )). Finally, by the triangle inequality, we

have
T

∑
t=1

E [ηt ∥∇LHλ,µ(θt)∥
2

2
] ≤

T

∑
t=1

E [ηt ∥uHt,λ∥
2

2
] +

T

∑
t=1

E [ηt ∥eHt ∥2
2
]

≤Γ2 +
Γ1 + Γ3

B
.

This completes the proof. ◻

10.3 Proof of Theorem 4.4

Proof. From Proposition 3.2, we have
T

∑
t=1
ηtE [∥∇Lλ,µ(θt)∥22] =

T

∑
t=1
ηtE [∥∇LHλ,µ(θt)∥

2

2
+ ∥∇LHλ,µ(θt) −∇Lλ,µ(θt)∥

2

2
]

≤
T

∑
t=1
ηtE [∥∇LHλ,µ(θt)∥

2

2
+ ∥∇JHµ (θt) −∇Jµ(θt)∥

2

2
]

≤
T

∑
t=1
ηtE [∥∇LHλ,µ(θt)∥

2

2
] + (Mg (

H + 1

1 − γ + γ

(1 − γ)2 )γ
H)

2 T

∑
t=1
ηt.

In light of Lemma 4.2, we have

E [
T

∑
t=1

(Jρ(θ∗) − Jρ(θt))] ≤ ∥d
πθ∗
ρ

µ
∥
2

∞

64∣S ∣2∣A∣2∑Tt=1 ηtE[∥∇Lλ,µ(θt)∥22]
ε2ηT (1 − γ)3

+ Tε
2

≤ ∥d
πθ∗
ρ

µ
∥
2

∞

64∣S ∣2∣A∣2∑Tt=1 ηtE[∥∇LHλ,µ(θt)∥
2

2
]

ε2ηT (1 − γ)3
+ Tε

2

+ ∥d
πθ∗
ρ

µ
∥
2

∞

64∣S ∣2∣A∣2∑Tt=1 ηt
ε2ηT (1 − γ)3

(Mg (
H + 1

1 − γ + γ

(1 − γ)2 )γ
H)

2

.

By choosing ηt = k
(m+t)1/3 , it results from Lemma 4.3 that

1

T
E [

T

∑
t=1

(Jρ(θ∗) − Jρ(θt))] ≤ ∥d
πθ∗
ρ

µ
∥
2

∞

64∣S ∣2∣A∣2(m + T )1/3
ε2k(1 − γ)3T (Γ2 +

Γ1 + Γ3

B
) + ε

2

+ ∥d
πθ∗
ρ

µ
∥
2

∞

96∣S ∣2∣A∣2(m + T )
ε2(1 − γ)3T (Mg (

H + 1

1 − γ + γ

(1 − γ)2 )γ
H)

2

.

Notice that, in order to guarantee

∥d
πθ∗
ρ

µ
∥
2

∞

96∣S ∣2∣A∣2(m + T )
ε2(1 − γ)3T (Mg (

H + 1

1 − γ + γ

(1 − γ)2 )γ
H)

2

≤ ε

4
,

it suffices to have

H = O
⎛
⎜⎜⎜
⎝

logγ

⎛
⎜⎜⎜
⎝

(1 − γ)ε

∣S ∣∣A∣ ∥d
πθ∗
ρ

µ
∥
∞

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠
.

Recall that Γ1 = c2σ2k3 ln (T+2)
44b2

+m1/3σ2

88b2k
+ 1

22
(LHλ,µ(θ∗) −LHλ,µ(θ1)), Γ2 = 48

11
(LHλ,µ(θ∗) −LHλ,µ(θ1)) and Γ3 = (σ2m1/3

44b2k
+

c2σ2k3

22b2
ln (2 + T )). By only considering the dependencies on the parameters c, σ, b, λ and m, we have

Γ2 +
Γ1 + Γ3

B
=Õ (c

2σ2

b2
+ m

1/3σ2

b2
+ σ

2m1/3

b2
+ c

2σ2

b2
+LHλ,µ(θ∗) −LHλ,µ(θ1))

=Õ (σ
2

b2
(c2 +m1/3) +LHλ,µ(θ∗) −LHλ,µ(θ1)) . (15)
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In addition, by the definitions b2 = L2
g+G2C2

w, Lg =Mh/(1−γ)2, G =Mg/(1−γ)2, Cw =
√
H(2HM2

g +Mh)(W + 1),
c = 1

3k3Lλ
+ 96b2, m = max{2, (2Lλk)3, ( ck

2Lλ
)3}, and λ = ε(1−γ)

4∥ d
πθ∗
ρ
µ ∥

∞

, we know that

b2 = O ( 1 +W
(1 − γ)4 ) , σ

2 = O ( 1

(1 − γ)4 ) , c = O ( 1 +W
(1 − γ)4 ) , m

1/3 = O
⎛
⎜⎜⎜
⎝

ε(1 − γ)

∥d
πθ∗
ρ

µ
∥
∞

+ 1

(1 − γ)3 +
W

1 − γ

⎞
⎟⎟⎟
⎠
.

In addition,

LHλ,µ(θ∗) −LHλ,µ(θ1) ≤ O
⎛
⎜⎜⎜
⎝

1

1 − γ +
ε(1 − γ)

∥d
πθ∗
ρ

µ
∥
∞

⎞
⎟⎟⎟
⎠
.

Substituting the above results into (15) gives rise to

Γ2 +
Γ1 + Γ3

B
=Õ

⎛
⎜⎜⎜
⎝

1 +W
(1 − γ)8 +

ε(1 +W )(1 − γ)

∥d
πθ∗
ρ

µ
∥
∞

⎞
⎟⎟⎟
⎠
.

Thus, we obtain

1

T
E [

T

∑
t=1

(Jρ(θ∗) − Jρ(θt))]

≤ Õ
⎛
⎝
∥d

πθ∗
ρ

µ
∥
2

∞

∣S ∣2∣A∣2(m + T )1/3(1 +W )
ε2(1 − γ)11T

⎞
⎠
+ 3ε

4

≤ ∥d
πθ∗
ρ

µ
∥
2

∞
∣S ∣2∣A∣2(1 +W ) ⋅ Õ ( m1/3

ε2(1 − γ)11T + 1

ε2(1 − γ)11T 2/3 ) +
3ε

4
.

Since m1/3 = O
⎛
⎜⎜
⎝

ε(1−γ)

∥ d
πθ∗
ρ
µ ∥

∞

+ 1
(1−γ)3 +

W
1−γ

⎞
⎟⎟
⎠
, one can write

1

T
E [

T

∑
t=1

(Jρ(θ∗) − Jρ(θt))]

≤ ∥d
πθ∗
ρ

µ
∥
2

∞
∣S ∣2∣A∣2(1 +W ) ⋅ Õ ( 1

ε2(1 − γ)14T + W

ε2(1 − γ)12T + 1

ε2(1 − γ)11T 2/3 ) +
3ε

4
.

Finally, to guarantee 1
T

E [∑Tt=1 (Jρ(θ∗) − Jρ(θt))] ≤ ε, it suffices to have

T = Õ
⎛
⎜⎜⎜
⎝

∥d
πθ∗
ρ

µ
∥
3

∞
∣S ∣3∣A∣3(1 +W ) 3

2

ε
9
2 (1 − γ) 33

2

+
∥d

πθ∗
ρ

µ
∥
2

∞
∣S ∣2∣A∣2(1 +W )

ε3
⋅ W

(1 − γ)12

⎞
⎟⎟⎟
⎠
.

This completes the proof. ◻

11 Proofs of results in Section 4.2

11.1 Proof of Lemma 4.7

Proof. By the performance difference lemma Kakade and Langford (2002), we know that

E(s,a)∼vπθ∗ρ
[Aπθt (s, a)] = (1 − γ) (Jρ(θ⋆) − Jρ (θt)) . (16)
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In addition, by Assumption 4.6, we know that the advantage function is also related to the defined transferred
compatible function approximation error that measures the richness of the policy parameterization:

εbias ≥E(s,a)∼vπθ∗ρ
[(Aπθt (s, a) − (1 − γ)u∗⊺t ∇ logπθt(a∣s))2]

≥ (E(s,a)∼vπθ∗ρ
[Aπθt (s, a) − (1 − γ)u∗⊺t ∇ logπθt(a∣s)])

2
(17)

where the second inequality uses the Jensen’s inequality. Then, by combining (16) and (17), we have
√
εbias ≥E(s,a)∼vπθ∗ρ

[Aπθt (s, a) − (1 − γ)u∗⊺t ∇ logπθt(a∣s)]

=(1 − γ) (Jρ(θ⋆) − Jρ (θt)) − E(s,a)∼vπθ∗ρ
[(1 − γ)u∗⊺t ∇ logπθt(a∣s)].

The rearrangement of the above inequality gives

(Jρ(θ⋆) − Jρ (θt)) ≤
1

(1 − γ)
√
εbias + E(s,a)∼vπθ∗ρ

[u∗⊺t ∇ logπθt(a∣s)]

≤ 1

(1 − γ)
√
εbias + E(s,a)∼vπθ∗ρ

[∥u∗t ∥ ∥∇ logπθt(a∣s)∥]

≤ 1

(1 − γ)
√
εbias +Mg ∥u∗t ∥ .

In addition, by the definition of u∗t , we have

Jρ(θ⋆) − Jρ (θt) ≤
1

(1 − γ)
√
εbias +Mg ∥F −1(θt)∇Jρ(θt)∥

≤ 1

(1 − γ)
√
εbias +

Mg

µF
∥∇Jρ(θt)∥ ,

where the second inequality follows from Assumption 2.1. This completes the proof.

◻

11.2 Proof of Lemma 4.8

Lemma 11.1 Under Assumption 3.1, suppose that the stochastic policy gradient uHt is generated by Algorithm 2
with the restricted parameterization. Let eHt = ∇JHρ (θt) − uHt . Then

E [η−1t−1∣∣eHt ∣∣22] ≤E [η−1t−1(1 − βt)2∣∣eHt−1∣∣22 +
2η−1t−1β

2
t σ

2

B
+ 4b2η−1t−1(1 − βt)2

B
∣∣θt − θt−1∣∣22] ,

where b2 = L2
g +G2C2

w, Lg =Mh/(1 − γ)2, G =Mg/(1 − γ)2 and Cw =
√
H(2HM2

g +Mh)(W + 1).

Proof. This proof is similar to the proof of Lemma 10.2 with Mg and Mh defined in Assumption 3.1. The details
are omitted for brevity. ◻

11.2.1 Proof of Lemma 4.8

Proof. Let eHt = ∇JHρ (θt) − uHt . The function JHρ (θ) is L-smooth due to Lemma 3.2. Moreover, because of
m ≥ (2Lk)3, it holds that ηt ≤ η0 = k

m1/3 ≤ 1
2L

. Since ηt ≤ 1
2L

, we have βt+1 = cη2t ≤ cηt
2L

≤ ck
2Lm1/3 ≤ 1. It follows from

Lemma 11.1 that

E [η−1t ∣∣eHt+1∣∣22 − η−1t−1∣∣eHt ∣∣22]

≤ E [(η−1t (1 − βt+1)2 − η−1t−1)∣∣eHt ∣∣22 +
2η−1t β

2
t+1σ

2

B
+ 4b2η−1t (1 − βt+1)2

B
∣∣θt+1 − θt∣∣22]

≤ E [(η−1t (1 − βt+1) − η−1t−1)∣∣eHt ∣∣22 +
2η−1t β

2
t+1σ

2

B
+ 4b2η−1t

B
∣∣θt+1 − θt∣∣22] ,
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where the last inequality holds by 0 < βt+1 ≤ 1. Since the function x1/3 is concave, we have (x+y)1/3 ≤ x1/3+yx−2/3/3.
As a result

η−1t − η−1t−1 =
1

k
((m + t)1/3 − (m + t − 1)1/3) ≤ 1

3k(m + t − 1)2/3

≤ 1

3k(m/2 + t)2/3 ≤ 22/3

3k3
η2t ≤

22/3

6k3L
ηt ≤

1

3k3L
ηt,

where the second inequality is due to m ≥ 2, and the fifth inequality holds by 0 < η ≤ 1
2L

. Then, it holds that

(η−1t (1 − βt+1) − η−1t−1) ∣∣eHt ∣∣22 =( 1

3k3L
− c)ηt ∥eHt ∥2

2
= −96b2ηt ∥eHt ∥2

2
,

where the last equality holds by c = 1
3k3L

+ 96b2. Combining the above results leads to

E [η−1t ∣∣eHt+1∣∣22 − η−1t−1∣∣eHt ∣∣22] ≤ E [−96b2ηt∣∣eHt ∣∣22 +
2η−1t β

2
t+1σ

2

B
+ 4b2η−1t

B
∣∣θt+1 − θt∣∣22] . (18)

By summing up the above inequality and dividing both sides by 96b2, we obtain

1

96b2

⎛
⎜
⎝

E
⎡⎢⎢⎢⎢⎣

∥eHT+1∥
2

2

ηT
−

∥eH1 ∥2
2

η0

⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠
≤
T

∑
t=1

E [c
2η3t σ

2

48b2B
− ηt ∥eHt ∥2

2
+ 1

24ηtB
∥θt+1 − θt∥22]

≤
T

∑
t=1

E [c
2η3t σ

2

48b2B
− ηt ∥eHt ∥2

2
+ ηt

24B
∥uHt ∥2

2
] .

For ηt ∥uHt ∥2
2
, it follows from Lemma 9.3 that

ηt
4

∥uHt,λ∥
2

2
≤ JHρ (θt+1) − JHρ (θt) +

ηt
2

∥eHt ∥2 .

Then, it holds that

Then, Lemma 9.3 can be used to obtain

1

96b2

⎛
⎜
⎝

E
⎡⎢⎢⎢⎢⎣

∥eHT+1∥
2

2

ηT
−

∥eH1 ∥2
2

η0

⎤⎥⎥⎥⎥⎦

⎞
⎟
⎠

≤
T

∑
τ=1

E [ 1

48b2B
c2η3t σ

2 − (12B − 1)ηt
12B

∥eHt ∥2
2
+ 1

6B
(JHρ (θt+1) − JHρ (θt))]

≤
T

∑
t=1

( 1

48b2B
c2η3t σ

2 − E [11ηt
12

∥eHt ∥2
2
]) + 1

6B
(JHρ (θT+1) − JHρ (θ1))

≤ c
2σ2k3

48b2B

T

∑
t=1

1

m + t −
T

∑
t=1

E [11ηt
12

∥eHt ∥2
2
] + 1

6B
(JHρ (θ∗) − JHρ (θ1))

≤ c
2σ2k3

48b2B

T

∑
t=1

1

2 + t −
T

∑
t=1

E [11ηt
12

∥eHt ∥2
2
] + 1

6B
(JHρ (θ∗) − JHρ (θ1))

≤ c
2σ2k3 ln (T + 2)

48b2B
−

T

∑
t=1

E [11ηt
12

∥eHt ∥2
2
] + 1

6B
(JHρ (θ∗) − JHρ (θ1)) . (19)

Rearranging the above inequality gives rise to

T

∑
t=1

E [11ηt
12

∥eHt ∥2
2
] ≤c

2σ2k3 ln (T + 2)
48b2B

+ 1

96b2η0
E [∥eH1 ∥2

2
] + 1

6B
(JHρ (θ∗) − JHρ (θ1))

≤ 1

B
(c

2σ2k3 ln (T + 2)
48b2

+ m
1/3σ2

96b2k
+ 1

6
(JHρ (θ∗) − JHρ (θ1))) .
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Multiplying both sides by 12
11

yields that

T

∑
t=1

E [ηt ∥eHt ∥2
2
] ≤ 1

B
(c

2σ2k3 ln (T + 2)
44b2

+ m
1/3σ2

88b2k
+ 1

22
(JHρ (θ∗) − JHρ (θ1))) (20)

≤ 1

B
(c

2σ2k3 ln (T + 2)
44b2

+ m
1/3σ2

88b2k
+ 1

22(1 − γ)) , (21)

where the last inequality holds due to JHρ (θ∗) − JHρ (θ1) ≤ 1
1−γ .

Next, we define a Lyapunov function Φt(θt) = JHρ (θt) − 1
192b2ηt−1

∥eHt ∥2 for all t ≥ 1. One can write

E[Φt+1 −Φt] =E [JHρ (θt+1) − JHρ (θt) −
1

192b2ηt
∥eHt+1∥

2

2
+ 1

192b2ηt−1
∥eHt ∥2

2
]

≥E [−ηt
2

∥eHt ∥2
2
+ ηt

4
∥uHt ∥

2
− 1

192b2ηt
∥eHt+1∥

2

2
+ 1

192b2ηt−1
∥eHt ∥2

2
]

≥E [ηt
4

∥uHt ∥
2
− β2

t σ
2

96b2Bηt
− ηt

48B
∣∣uHt ∣∣22]

≥E [11ηt
48

∥uHt ∥
2
− c

2η3t σ
2

96b2B
]

where the first inequality holds by Lemma 9.3 and the second inequality follows from (18). Summing the above
inequality over t from 1 to T yields that

T

∑
t=1

E [ηt ∥uHt ∥2
2
] ≤E [48

11
(ΦT+1 −Φ1) +

T

∑
t=1

c2η3t σ
2

22b2B
]

≤E [48

11
(JHρ (θT+1) − JHρ (θ1)) +

1

44b2η0
E [∣∣eH1 ∣∣22] +

c2σ2k3

22b2B

T

∑
t=1

1

m + t]

≤E [48

11
(JHρ (θT+1) − JHρ (θ1)) +

1

44b2η0
E [∣∣eH1 ∣∣22] +

c2σ2k3

22b2B

T

∑
t=1

1

2 + t]

≤48

11
(JHρ (θ∗) − JHρ (θ1)) +

σ2m1/3

44b2kB
+ c

2σ2k3

22b2B
ln (2 + T )

≤ 1

1 − γ
48

11
+ σ2m1/3

44b2kB
+ c

2σ2k3

22b2B
ln (2 + T )

=Γ2 +
Γ3

B
.

where the last inequality is due to JHρ (θ∗) − JHρ (θ1) ≤ 1
1−γ . This completes the proof.

It results from (20) that

T

∑
t=1

E [ηt ∥∇JHρ (θt)∥
2

2
] ≤

T

∑
t=1

E [ηt ∥uHt ∥2
2
] +

T

∑
t=1

E [ηt ∥eHt ∥2
2
] ≤ Γ2 +

Γ1 + Γ3

B
.

Since ηt = k
(m+t)1/3 is decreasing, we have

T

∑
t=1

E [∥∇JHρ (θt)∥
2

2
] ≤1/ηT

T

∑
t=1

E [ηt ∥∇JHρ (θt)∥
2

2
]

=(Γ2

k
+ Γ1 + Γ3

kB
) (m + T )1/3.
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Finally, one can use Jensen’s inequality to conclude that

1

T

T

∑
t=1

E [∥∇JHρ (θt)∥2] ≤( 1

T

T

∑
t=1

E ∥∇JHρ (θt)∥
2

2
)
1/2

≤
√

Γ2

k
+ Γ1 + Γ3

kB
(m

1/6
√
T

+ 1

T 1/3 ) ,

where the last inequality follows from the inequality (a + b)1/2 ≤ a1/2 + b1/2 for all a, b > 0.

◻

11.3 Proof of Theorem 4.9

Proof. By Lemma 4.7 and the triangle inequality, we have

Jρ (θ∗) −
1

T

T

∑
t=1
Jρ (θt) ≤

√
εbias

1 − γ + Mg

µF

1

T

T

∑
t=1

∥∇JHρ (θt)∥ +
Mg

µF
max
t=1,...,T

{∥∇JHρ (θt) −∇Jρ(θt)∥}

≤
√
εbias

1 − γ + Mg

µF

1

T

T

∑
t=1

∥∇JHρ (θt)∥ +
M2
g

µF
(H + 1

1 − γ + γ

(1 − γ)2 )γ
H , (22)

where the last inequality follows from Proposition 3.2. Then, due to Lemma 4.8, we know that

Jρ (θ∗) −
1

T

T

∑
t=1
Jρ (θt) ≤

√
εbias

1 − γ + Mg

µF

√
Γ2

k
+ Γ1 + Γ3

kB
(m

1/6
√
T

+ 1

T 1/3 ) +
M2
g

µF
(H + 1

1 − γ + γ

(1 − γ)2 )γ
H ,

Notice that, in order to guarantee

M2
g

µF
(H + 1

1 − γ + γ

(1 − γ)2 )γ
H ≤ ε

2
,

it suffices to have

H = O (logγ (µF (1 − γ)ε)) .

Recall that Γ1 = ( c
2σ2k3 ln (T+2)

48b2
+ m1/3

96b2k
σ2 + 1

22(1−γ)) , Γ2 = 48
11(1−γ) , and Γ3 = σ2m1/3

44b2k2
+ c2σ2k3

22kb2
ln (2 + T ). By only

considering the dependencies on the parameters c, σ, b, γ and m, we have

Γ2

k
+ Γ1 + Γ3

kB
=Õ (c

2σ2

b2
+ m

1/3σ2

b2
+ σ

2m1/3

b2
+ c

2σ2

b2
+ 1

1 − γ )

=Õ (σ
2

b2
(c2 +m1/3) + 1

1 − γ ) . (23)

In addition, by the definitions b2 = L2
g+G2C2

w, Lg =Mh/(1−γ)2, G =Mg/(1−γ)2, Cw =
√
H(2HM2

g +Mh)(W + 1),
c = 1

3k3L
+ 96b2, and m = max{2, (2Lk)3, ( ck

2L
)3}, we know that

b2 = O ( 1 +W
(1 − γ)4 ) , σ

2 = O ( 1

(1 − γ)4 ) , c = O ( 1 +W
(1 − γ)4 ) , m

1/3 = O ( 1

(1 − γ)3 +
W

1 − γ ) .

Substituting the above results into (23) gives rise to

Γ2

k
+ Γ1 + Γ3

kB
=Õ ( 1 +W

(1 − γ)8 ) .

Thus, we obtain

Jρ (θ∗) −
1

T

T

∑
t=1
Jρ (θt) ≤

√
εbias

1 − γ + Mg

µF
(m

1/6
√
T

+ 1

T 1/3 ) ⋅ Õ (
√

1 +W
(1 − γ)4 ) +

ε

2

≤
√
εbias

1 − γ + Õ
⎛
⎝
⎛
⎝

1√
(1 − γ)3T

+
√
W√

(1 − γ)T
+ 1

T 1/3
⎞
⎠

√
1 +W

(1 − γ)4µF
⎞
⎠
+ ε

2
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In order to guarantee

Õ
⎛
⎝
⎛
⎝

1√
(1 − γ)3T

+
√
W√

(1 − γ)T
+ 1

T 1/3
⎞
⎠

√
1 +W

(1 − γ)4µF
⎞
⎠
≤ ε

2
,

it suffices to take

T = Õ ( (1 +W ) 3
2

ε3µ3
F (1 − γ)12 +

1 +W
ε2µ2

F (1 − γ)11 +
W (1 +W )
ε2µ2

F (1 − γ)9 ) .

This completes the proof. ◻


