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Abstract

Generative models are typically trained on
grid-like data such as images. As a result,
the size of these models usually scales directly
with the underlying grid resolution. In this
paper, we abandon discretized grids and in-
stead parameterize individual data points by
continuous functions. We then build gener-
ative models by learning distributions over
such functions. By treating data points as
functions, we can abstract away from the spe-
cific type of data we train on and construct
models that are agnostic to discretization. To
train our model, we use an adversarial ap-
proach with a discriminator that acts on con-
tinuous signals. Through experiments on a
wide variety of data modalities including im-
ages, 3D shapes and climate data, we demon-
strate that our model can learn rich distribu-
tions of functions independently of data type
and resolution.

1 INTRODUCTION

In generative modeling, data is often represented by
discrete arrays. Images are represented by two dimen-
sional grids of RGB values, 3D scenes are represented
by three dimensional voxel grids and audio as vectors
of discretely sampled waveforms. However, the true
underlying signal is often continuous. We can therefore
also consider representing such signals by continuous
functions taking as input grid coordinates and return-
ing features. In the case of images for example, we can
define a function f : R2 → R3 mapping pixel locations
to RGB values using a neural network. Such represen-
tations, typically referred to as implicit neural repre-
sentations, coordinate-based neural representations or
neural function representations, have the remarkable
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Figure 1: By representing data as continuous func-
tions, we can use the same model to learn distributions
of images, 3D shapes and climate data, irrespective of
any underlying grid or discretization.

property that they are independent of signal resolu-
tion (Park et al., 2019; Mescheder et al., 2018; Chen
and Zhang, 2019; Sitzmann et al., 2020).

In this paper, we build generative models that inherit
the attractive properties of implicit representations.
By framing generative modeling as learning distribu-
tions of functions, we are able to build models that act
entirely on continuous spaces, independently of resolu-
tion. We achieve this by parameterizing a distribution
over neural networks with a hypernetwork (Ha et al.,
2017) and training this distribution with an adversarial
approach (Goodfellow et al., 2014), using a discrimina-
tor that acts directly on sets of coordinates (e.g. pixel
locations) and features (e.g. RGB values). Crucially,
this allows us to train the model irrespective of any
underlying discretization or grid and avoid the curse
of discretization (Mescheder, 2020).

Indeed, standard convolutional generative models act
on discretized grids, such as images or voxels, and as a
result scale quadratically or cubically with resolution,
which quickly becomes intractable at high resolutions,



Generative Models as Distributions of Functions

particularly in 3D (Park et al., 2019). In contrast, our
model learns distributions on continuous spaces and is
agnostic to discretization. This allows us to not only
build models that act independently of resolution, but
also to learn distributions of functions on manifolds
where discretization can be difficult.

To validate our approach, we train generative mod-
els on various image, 3D shape and climate datasets.
Remarkably, we show that, using our framework, we
can learn rich function distributions on these varied
datasets using the same model. Further, by taking ad-
vantage of recent advances in representing high fre-
quency functions with neural networks (Mildenhall
et al., 2020; Tancik et al., 2020; Sitzmann et al., 2020),
we also show that, unlike current approaches for gen-
erative modeling on continuous spaces (Garnelo et al.,
2018a; Mescheder et al., 2019; Kleineberg et al., 2020),
we are able to generate sharp and realistic samples.

2 REPRESENTING DATA AS
FUNCTIONS

In this section we review implicit neural representa-
tions, using images as a guiding example for clarity.

Representing a single image with a function.
Let I be an image such that I[x, y] corresponds to the
RGB value at pixel location (x, y). We are interested
in representing this image by a function f : R2 → R3

where f(x, y) = (r, g, b) returns the RGB values at
pixel location (x, y). To achieve this, we parameterize
a function fθ by an MLP with weights θ, often referred
to as an implicit neural representation. We can then
learn this representation by minimizing

min
θ

∑
x,y

‖fθ(x, y)− I[x, y]‖22,

where the sum is over all pixel locations. Remarkably,
the representation fθ is independent of the number of
pixels. The representation fθ therefore, unlike most
image representations, does not depend on the resolu-
tion of the image (Mescheder et al., 2019; Park et al.,
2019; Sitzmann et al., 2020).

Representing general data with functions. The
above example with images can readily be extended to
more general data. Let x ∈ X denote coordinates and
y ∈ Y features and assume we are given a data point as
a set of coordinate and feature pairs {(xi,yi)}ni=1. For
an image for example, x = (x, y) corresponds to pixel
locations, y = (r, g, b) corresponds to RGB values and
{(xi,yi)}ni=1 to the set of all pixel locations and RGB
values. Given a set of coordinates and their corre-
sponding features, we can learn a function fθ : X → Y

Figure 2: Modeling an image with a function with
(right) and without (left) Fourier features.

representing this data point by minimizing

min
θ

n∑
i=1

‖fθ(xi)− yi‖22. (1)

A core property of these representations is that they
scale with signal complexity and not with signal res-
olution (Sitzmann et al., 2020). Indeed, the memory
required to store data scales quadratically with res-
olution for images and cubically for voxel grids. In
contrast, for function representations, the memory re-
quirements scale directly with signal complexity: to
represent a more complex signal, we would need to in-
crease the capacity of the function fθ, for example by
increasing the number of layers of a neural network.

Representing high frequency functions. Re-
cently, it has been shown that learning function rep-
resentations by minimizing equation (1) is biased to-
wards learning low frequency functions (Mildenhall
et al., 2020; Sitzmann et al., 2020; Tancik et al., 2020).
While several approaches have been proposed to alle-
viate this problem, we use the random Fourier fea-
ture (RFF) encoding proposed by Tancik et al. (2020)
as it is not biased towards on axis variation (unlike
Mildenhall et al. (2020)) and does not require spe-
cialized initialization (unlike Sitzmann et al. (2020)).
Specifically, given a coordinate x ∈ Rd, the encoding
function γ : Rd → R2m is defined as

γ(x) =

(
cos(2πBx)
sin(2πBx)

)
,

where B ∈ Rm×d is a (potentially learnable) ran-
dom matrix whose entries are typically sampled from
N (0, σ2). The number of frequencies m and the vari-
ance σ2 of the entries of B are hyperparameters. To
learn high frequency functions, we simply encode x be-
fore passing it through the MLP, fθ(γ(x)), and mini-
mize equation (1). As can be seen in Figure 2, learn-
ing a function representation of an image with a ReLU
MLP fails to capture high frequency detail whereas us-
ing an RFF encoding followed by a ReLU MLP allows
us to faithfully reproduce the image.
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3 LEARNING DISTRIBUTIONS OF
FUNCTIONS

In generative modeling, we are typically given a set
of data, such as images, and are interested in approx-
imating the distribution of this data. As we repre-
sent data points by functions, we would therefore like
to learn a distribution over functions. In the case of
images, standard generative models typically sample
some noise and feed it through a neural network to
output n pixels (Goodfellow et al., 2014; Kingma and
Welling, 2014; Rezende et al., 2014). In contrast, we
sample the weights of a neural network to obtain a
function which we can probe at arbitrary coordinates.
Such a representation allows us to operate entirely on
coordinates and features irrespective of any underlying
grid representation that may be available. To train the
function distribution we use an adversarial approach
and refer to our model as a Generative Adversarial
Stochastic Process (GASP).

3.1 Data Representation

While our goal is to learn a distribution over functions,
we typically do not have access to the ground truth
functions representing the data. Instead, each data
point is typically given by some set of coordinates and
features s = {(xi,yi)}ni=1. For an image for example,
we do not have access to a function mapping pixel lo-
cations to RGB values but to a collection of n pixels.
Such a set of coordinates and features corresponds to
input/output pairs of a function, allowing us to learn
function distributions without operating directly on
the functions. A single data point then corresponds
to a set of coordinates and features (e.g. an image is
a set of n pixels). We then assume a dataset is given
as samples s ∼ pdata(s) from a distribution over sets
of coordinate and feature pairs. Working with sets of
coordinates and features is very flexible - such a rep-
resentation is agnostic to whether the data originated
from a grid and at which resolution it was sampled.

Crucially, formulating our problem entirely on sets also
lets us split individual data points into subsets and
train on those. Specifically, given a single data point
s = {(xi,yi)}ni=1, such as a collection of n pixels, we
can randomly subsample K elements, e.g. we can se-
lect K pixels among the n pixels in the entire image.
Training on such subsets then removes any direct de-
pendence on the resolution of the data. For example,
when training on 3D shapes, instead of passing an en-
tire voxel grid to the model, we can train on subsets
of the voxel grid, leading to large memory savings (see
Section 5.2). This is not possible with standard con-
volutional models which are directly tied to the reso-
lution of the grid. Further, training on sets of coor-

Figure 3: Diagram of a neural function distribution ar-
chitecture. A latent vector z is mapped through a hy-
pernetwork gφ (in dashed lines) to obtain the weights
of a function fθ (in solid lines) mapping coordinates x
to features y.

dinates and features allows us to model more exotic
data, such as distributions of functions on manifolds
(see Section 5.3). Indeed, as long as we can define a
coordinate system on the manifold (such as polar co-
ordinates on a sphere), our method applies.

3.2 Function Generator

Learning distributions of functions with an adversarial
approach requires us to define a generator that gen-
erates fake functions and a discriminator that distin-
guishes between real and fake functions. We define the
function generator using the commonly applied hyper-
network approach (Ha et al., 2017; Sitzmann et al.,
2019, 2020; Anokhin et al., 2021; Skorokhodov et al.,
2021). More specifically, we assume the structure (e.g.
the number and width of layers) of the MLP fθ rep-
resenting a single data point is fixed. Learning a dis-
tribution over functions fθ is then equivalent to learn-
ing a distribution over weights p(θ). The distribution
p(θ) is defined by a latent distribution p(z) and a sec-
ond function gφ : Z → Θ, itself with parameters φ,
mapping latent variables to the weights θ of fθ (see
Figure 3). We can then sample from p(θ) by sampling
z ∼ p(z) and mapping z through gφ to obtain a set of
weights θ = gφ(z). After sampling a function fθ, we
then evaluate it at a set of coordinates {xi} to obtain
a set of generated features {yi} which can be used to
train the model. Specifically, given a latent vector z
and a coordinate xi, we compute a generated feature
as yi = fgφ(z)(γ(xi)) where γ is an RFF encoding al-
lowing us to learn high frequency functions.

3.3 Point Cloud Discriminator

In the GAN literature, discriminators are almost al-
ways parameterized with convolutional neural net-
works (CNN). However, the data we consider may not
necessarily lie on a grid, in which case it is not possible
to use convolutional discriminators. Further, convolu-
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Figure 4: Convolution neighborhood for regular con-
volutions (left) and PointConv (right).

tional discriminators scale directly with grid resolu-
tion (training a CNN on images at 2× the resolution
requires 4× the memory) which partially defeats the
purpose of using implicit representations.

As the core idea of our paper is to build genera-
tive models that are independent of discretization, we
therefore cannot follow the naive approach of using
convolutional discriminators. Instead, our discrimi-
nator should be able to distinguish between real and
fake sets of coordinate and feature pairs. Specifically,
we need to define a function D which takes in an un-
ordered set s and returns the probability that this set
represents input/output pairs of a real function. We
therefore need D to be permutation invariant with re-
spect to the elements of the set s. The canonical choice
for set functions is the PointNet (Qi et al., 2017) or
DeepSets (Zaheer et al., 2017) model family. However,
we experimented extensively with such functions and
found that they were not adequate for learning com-
plex function distributions (see Section 3.5). Indeed,
while the input to the discriminator is an unordered
set s = {(xi,yi)}, there is an underlying notion of
distance between points xi in the coordinate space.
We found that it is crucial to take this into account
when training models on complex datasets. Indeed, we
should not consider the coordinate and feature pairs
as sets but rather as point clouds (i.e. sets with an
underlying notion of distance).

While several works have tackled the problem of point
cloud classification (Qi et al., 2017; Li et al., 2018;
Thomas et al., 2019), we leverage the PointConv
framework introduced by Wu et al. (2019) for sev-
eral reasons. Firstly, PointConv layers are transla-
tion equivariant (like regular convolutions) and per-
mutation invariant by construction. Secondly, when
sampled on a regular grid, PointConv networks closely
match the performance of regular CNNs. Indeed, we
can loosely think of PointConv as a continuous equiv-
alent of CNNs and, as such, we can build PointConv
architectures that are analogous to typical discrimina-
tor architectures.

Specifically, we assume we are given a set of features

fi ∈ Rcin at locations xi (we use fi to distinguish these
hidden features of the network from input features yi).
In contrast to regular convolutions, where the convolu-
tion kernels are only defined at certain grid locations,
the convolution filters in PointConv are parameterized
by an MLP, W : Rd → Rcout×cin , mapping coordinates
to kernel values. We can therefore evaluate the con-
volution filters in the entire coordinate space. The
PointConv operation at a point x is then defined as

fout(x) =
∑

xi∈Nx

W (xi − x)fi,

where Nx is a set of neighbors of x over which to per-
form the convolution (see Figure 4). Interestingly, this
neighborhood is found by a nearest neighbor search
with respect to some metric on the coordinate space.
We therefore have more flexibility in defining the con-
volution operation as we can choose the most appropri-
ate notion of distance for the space we want to model
(our implementation supports fast computation on the
GPU for any `p norm).

3.4 Training

We use the traditional (non saturating) GAN loss
(Goodfellow et al., 2014) for training and illustrate
the entire procedure for a single training step in Fig-
ure 5. To stabilize training, we define an equivalent of
the R1 penalty from Mescheder et al. (2018) for point
clouds. For images, R1 regularization corresponds to
penalizing the gradient norm of the discriminator with
respect to the input image. For a set s = {(xi,yi)}ni=1,
we define the penalty as

R1(s) =
1

2
‖∇y1,...,ynD(s)‖2 =

1

2

∑
yi

‖∇yiD(s)‖2,

that is we penalize the gradient norm of the discrimi-
nator with respect to the features. Crucially, our entire
modeling procedure is then independent of discretiza-
tion. Indeed, the generator, discriminator and loss all
act directly on continuous point clouds.

3.5 How Not to Learn Distributions of
Functions

In developing our model, we found that several ap-
proaches which intuitively seem appropriate for learn-
ing distributions of functions do not work in the con-
text of generative modeling. We briefly describe these
here and provide details and proofs in the appendix.

Set discriminators. As described in Section 3.3,
the canonical choice for set functions is the Point-
Net/DeepSet model family (Qi et al., 2017; Zaheer
et al., 2017). Indeed, Kleineberg et al. (2020) use
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Figure 5: Training procedure for GASP: 1. Sample a function and evaluate it at a set of coordinate locations to
generate fake point cloud. 2. Convert real data sample to point cloud. 3. Discriminate between real and fake
point clouds.

a similar approach to ours to learn signed distance
functions for 3D shapes using such a set discrimina-
tor. However, we found both theoretically and exper-
imentally that PointNet/DeepSet functions were not
suitable as discriminators for complex function distri-
butions (such as natural images). Indeed, these mod-
els do not directly take advantage of the metric on the
space of coordinates, which we conjecture is crucial
for learning rich function distributions. In addition,
we show in the appendix that the Lipschitz constant
of set functions can be very large, leading to unstable
GAN training (Arjovsky et al., 2017; Roth et al., 2017;
Mescheder et al., 2018). We provide further theoreti-
cal and experimental insights on set discriminators in
the appendix.

Auto-decoders. A common method for embedding
functions into a latent space is the auto-decoder frame-
work used in DeepSDF (Park et al., 2019). This frame-
work and variants of it have been extensively used in
3D computer vision (Park et al., 2019; Sitzmann et al.,
2019). While auto-decoders excel at a variety of tasks,
we show in the appendix that the objective used to
train these models is not appropriate for generative
modeling. We provide further analysis and experimen-
tal results on auto-decoders in the appendix.

While none of the above models were able to learn
function distributions on complex datasets such as
CelebAHQ, all of them worked well on MNIST. We
therefore believe that MNIST is not a meaningful
benchmark for generative modeling of functions and
encourage future research in this area to include ex-
periments on more complex datasets.

4 RELATED WORK

Implicit representations. Implicit representations
were initially introduced in the context of evolutionary
algorithms as compositional pattern producing net-
works (Stanley, 2007). In pioneering work, Ha (2016)
built generative models of such networks for MNIST.
Implicit representations for 3D geometry were initially
(and concurrently) proposed by (Park et al., 2019;
Mescheder et al., 2019; Chen and Zhang, 2019). A

large body of work has since taken advantage of these
representations for inverse rendering (Sitzmann et al.,
2019; Mildenhall et al., 2020; Niemeyer et al., 2020;
Yu et al., 2021), modeling dynamic scenes (Niemeyer
et al., 2019; Pumarola et al., 2021), modeling 3D scenes
(Atzmon and Lipman, 2020; Jiang et al., 2020; Gropp
et al., 2020) and superresolution (Chen et al., 2021).

Continuous models of image distributions. In
addition to the work of Ha (2016), neural processes
(Garnelo et al., 2018a,b) are another family of mod-
els that can learn (conditional) distributions of im-
ages as functions. However, the focus of these is on
uncertainty quantification and meta-learning rather
than generative modeling. Further, these models do
not scale to large datasets, although adding attention
(Kim et al., 2019) and translation equivariance (Gor-
don et al., 2019) helps alleviate this. Gradient Origin
Networks (Bond-Taylor and Willcocks, 2021) model
distributions of implicit representations using an en-
coder free model, instead using gradients of the la-
tents as an encoder. In concurrent work, Skorokhodov
et al. (2021); Anokhin et al. (2021) use an adversarial
approach to learn distributions of high frequency im-
plicit representations for images. Crucially, these both
use standard image convolutional discriminators and
as such do not inherit several advantages of implicit
representations: they are restricted to data lying on a
grid and suffer from the curse of discretization. In con-
trast, GASP is entirely continuous and independent of
resolution and, as a result, we are able to train on a
variety of data modalities.

Continuous models of 3D shape distributions.
Mescheder et al. (2019) use a VAE to learn distribu-
tions of occupancy networks for 3D shapes, while Chen
and Zhang (2019) train a GAN on embeddings of a
CNN autoencoder with an implicit function decoder.
Park et al. (2019); Atzmon and Lipman (2021) param-
eterize families of 3D shapes using the auto-decoder
framework, which, as shown in Section 3.5, cannot be
used for sampling. Kleineberg et al. (2020) use a set
discriminator to learn distributions of signed distance
functions for 3D shape modeling. However, we show
both theoretically (see appendix) and empirically (see
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Section 5) that using such a set discriminator severely
limits the ability of the model to learn complex func-
tion distributions. Cai et al. (2020) represent functions
implicitly by gradient fields and use Langevin sam-
pling to generate point clouds. Spurek et al. (2020)
learn a function mapping a latent vector to a point
cloud coordinate, which is used for point cloud gener-
ation. In addition, several recent works have tackled
the problem of learning distributions of NeRF scenes
(Mildenhall et al., 2020), which are special cases of im-
plicit representations. This includes GRAF (Schwarz
et al., 2020) which concatenates a latent vector to an
implicit representation and trains the model adversar-
ially using a patch-based convolutional discriminator,
GIRAFFE (Niemeyer and Geiger, 2021) which adds
compositionality to the generator and pi-GAN (Chan
et al., 2021) which models the generator using modu-
lations to the hidden layer activations. Finally, while
some of these works show basic results on small scale
image datasets, GASP is, to the best of our knowledge,
the first work to show how function distributions can
be used to model a very general class of data, including
images, 3D shapes and data lying on manifolds.

5 EXPERIMENTS

We evaluate our model on CelebAHQ (Karras et al.,
2018) at 64×64 and 128×128 resolution, on 3D shapes
from the ShapeNet (Chang et al., 2015) chairs category
and on climate data from the ERA5 dataset (Hersbach
et al., 2019). For all datasets we use the exact same
model except for the input and output dimensions of
the function representation and the parameters of the
Fourier features. Specifically, we use an MLP with 3
hidden layers of size 128 for the function representa-
tion and an MLP with 2 hidden layers of size 256 and
512 for the hypernetwork. Remarkably, we find that
such a simple architecture is sufficient for learning rich
distributions of images, 3D shapes and climate data.

The point cloud discriminator is loosely based on the
DCGAN architecture (Radford et al., 2015). Specifi-
cally, for coordinates of dimension d, we use 3d neigh-
bors for each PointConv layer and downsample points
by a factor of 2d at every pooling layer while doubling
the number of channels. We implemented our model
in PyTorch (Paszke et al., 2019) and performed all
training on a single 2080Ti GPU with 11GB of RAM.
The code can be found at https://github.com/

EmilienDupont/neural-function-distributions.

5.1 Images

We first evaluate our model on the task of image gener-
ation. To generate images, we sample a function from
the learned model and evaluate it on a grid. As can be

Figure 6: Samples from our model trained on Cele-
bAHQ 64 × 64 (top) and 128 × 128 (bottom). Each
image corresponds to a function which was sampled
from our model and then evaluated on the grid. To
produce this figure we sampled 5 batches and chose
the best batch by visual inspection.

seen in in Figure 6, GASP produces sharp and realis-
tic images both at 64 × 64 and 128 × 128 resolution.
While there are artifacts and occasionally poor sam-
ples (particularly at 128× 128 resolution), the images
are generally convincing and show that the model has
learned a meaningful distribution of functions repre-
senting the data. To the best of our knowledge, this is
the first time data of this complexity has been modeled
in an entirely continuous fashion.

As the representations we learn are independent of res-
olution, we can examine the continuity of GASP by
generating images at higher resolutions than the data
on which it was trained. We show examples of this in
Figure 7 by first sampling a function from our model,
evaluating it at the resolution on which it was trained
and then evaluating it at a 4× higher resolution. As
can be seen, our model generates convincing 256×256
images even though it has only seen 64 × 64 images
during training, confirming the continuous nature of
GASP (see appendix for more examples).

We compare GASP against three baselines: a model
trained using the auto-decoder (AD) framework (sim-
ilar to DeepSDF (Park et al., 2019)), a model trained
with a set discriminator (SD) (similar to Kleineberg
et al. (2020)) and a convolutional neural process (Con-
vNP) (Gordon et al., 2019). To the best of our knowl-
edge, these are the only other model families that can
learn generative models in a continuous manner, with-
out relying on a grid representation (which is required

https://github.com/EmilienDupont/neural-function-distributions
https://github.com/EmilienDupont/neural-function-distributions
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Figure 7: Superresolution. The first column corre-
sponds to the original resolution, the second column
to 4× the resolution and the third column to bicubic
upsampling.
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Figure 8: Baseline comparisons on CelebAHQ 32×32.
Note that the ConvNP model was trained on CelebA
(not CelebAHQ) and as such has a different crop.

for regular CNNs). Results comparing all three models
on CelebAHQ 32 × 32 are shown in Figure 8. As can
be seen, the baselines generate blurry and incoherent
samples, while our model is able to generate sharp, di-
verse and plausible samples. Quantitatively, our model
(Table 1) outperforms all baselines, although it lags
behind state of the art convolutional GANs special-
ized to images (Lin et al., 2019).

CelebAHQ64 CelebAHQ128
SD 236.82 -
AD 117.80 -
GASP 7.42 19.16
Conv 4.00 5.74

Table 1: FID scores (lower is better) for various models
on CelebAHQ datasets, including a standard convolu-
tional image GAN (Lin et al., 2019).

5.2 3D Scenes

To test the versatility and scalability of GASP, we also
train it on 3D shapes. To achieve this, we let the func-

Figure 9: GPU memory consumption as a function of
the number of points K in voxel grid.

163 323 643 1283

Figure 10: Evaluating the same function at different
resolutions. As samples from our model can be probed
at arbitrary coordinates, we can increase the resolution
to render smoother meshes.

tion representation fθ : R3 → R map x, y, z coordi-
nates to an occupancy value p (which is 0 if the loca-
tion is empty and 1 if it is part of an object). To gen-
erate data, we follow the setup from Mescheder et al.
(2019). Specifically, we use the voxel grids from Choy
et al. (2016) representing the chairs category from
ShapeNet (Chang et al., 2015). The dataset contains
6778 chairs each of dimension 323. As each 3D model
is large (a set of 323 = 32, 768 points), we uniformly
subsample K = 4096 points from each object during
training, which leads to large memory savings (Figure
9) and allows us to train with large batch sizes even on
limited hardware. Crucially, this is not possible with
convolutional discriminators and is a key property of
our model: we can train the model independently of
the resolution of the data.

In order to visualize results, we convert the functions
sampled from GASP to meshes we can render (see ap-
pendix for details). As can be seen in Figure 10, the
continuous nature of the data representation allows us
to sample our model at high resolutions to produce
clean and smooth meshes. In Figure 11, we compare
our model to two strong baselines for continuous 3D
shape modeling: occupancy networks trained as VAEs
(Mescheder et al., 2019) and DeepSDFs trained with
a set discriminator approach (Kleineberg et al., 2020).
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Figure 11: Samples from occupancy networks trained
as VAEs (ON), DeepSDF with set discriminators (SD)
and GASP trained on ShapeNet chairs. The top row
samples were taken from Mescheder et al. (2019) and
the middle row samples from Kleineberg et al. (2020).

As can be seen, GASP produces coherent and fairly di-
verse samples, which are comparable to both baselines
specialized to 3D shapes.

5.3 Climate Data

As we have formulated our framework entirely in terms
of continuous coordinates and features, we can easily
extend GASP to learning distributions of functions on
manifolds. We test this by training GASP on tem-
perature measurements over the last 40 years from the
ERA5 dataset (Hersbach et al., 2019), where each dat-
apoint is a 46 × 90 grid of temperatures T measured
at evenly spaced latitudes λ and longitudes ϕ on the
globe (see appendix for details). The dataset is com-
posed of 8510 such grids measured at different points
in time. We then model each datapoint by a function
f : S2 → R mapping points on the sphere to tempera-
tures. We treat the temperature grids as i.i.d. samples
and therefore do not model any temporal correlation,
although we could in principle do this by adding time
t as an input to our function.

To ensure the coordinates lie on a manifold, we simply
convert the latitude-longitude pairs to spherical coor-
dinates before passing them to the function represen-
tation, i.e. we set x = (cosλ cosϕ, cosλ sinϕ, sinλ).
We note that, in contrast to standard discretized ap-
proaches which require complicated models to define
convolutions on the sphere (Cohen et al., 2018; Esteves
et al., 2018), we only need a coordinate system on the
manifold to learn distributions.

While models exist for learning conditional distribu-
tions of functions on manifolds using Gaussian pro-
cesses (Borovitskiy et al., 2021; Jensen et al., 2020), we
are not aware of any work learning unconditional dis-
tributions of such functions for sampling. As a baseline
we therefore compare against a model trained directly
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Figure 12: Results on climate data. The top row shows
samples from our model. The middle row shows com-
parisons between GASP (on the right) and a baseline
(on the left) trained on a grid. As can be seen, the
baseline generates discontinuous samples at the grid
boundary unlike GASP which produces smooth sam-
ples. The bottom row shows a latent interpolation cor-
responding roughly to interpolating between summer
and winter in the northern hemisphere.

on the grid of latitudes and longitudes (thereby ignor-
ing that the data comes from a manifold). Samples
from our model as well as comparisons with the base-
line and an example of interpolation in function space
are shown in Figure 12. As can be seen, GASP gen-
erates plausible samples, smooth interpolations and,
unlike the baseline, is continuous across the sphere.

6 SCOPE, LIMITATIONS AND
FUTURE WORK

Limitations. While learning distributions of func-
tions gives rise to very flexible generative models ap-
plicable to a wide variety of data modalities, GASP
does not outperform state of the art specialized im-
age and 3D shape models. We strived for simplicity
when designing our model but hypothesize that stan-
dard GAN tricks (Karras et al., 2018, 2019; Arjovsky
et al., 2017; Brock et al., 2019) could help narrow
this gap in performance. In addition, we found that
training could be unstable, particularly when subsam-
pling points. On CelebAHQ for example, decreasing
the number of points per example also decreases the
quality of the generated images (see appendix for sam-
ples and failure examples), while the 3D model typi-
cally collapses to generating simple shapes (e.g. four
legged chairs) even if the data contains complex shapes
(e.g. office chairs). We conjecture that this is due
to the nearest neighbor search in the discriminator:
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when subsampling points, a nearest neighbor may lie
very far from a query point, potentially leading to un-
stable training. More refined sampling methods and
neighborhood searches should help improve stability.
Finally, determining the neighborhood for the point
cloud convolution can be expensive when a large num-
ber of points is used, although this could be mitigated
with faster neighbor search (Johnson et al., 2019).

Future work. As our model formulation is very
flexible, it would be interesting to apply GASP to
geospatial (Jean et al., 2016), geological (Dupont et al.,
2018), meteorological (Sønderby et al., 2020) or molec-
ular (Wu et al., 2018) data which typically do not lie
on a regular grid. In computer vision, we hope our
approach will help scale generative models to larger
datasets. While our model in its current form could
not scale to truly large datasets (such as room scale 3D
scenes), framing generative models entirely in terms of
coordinates and features could be a first step towards
this. Indeed, while grid-based generative models cur-
rently outperform continuous models, we believe that,
at least for certain data modalities, continuous models
will eventually surpass their discretized counterparts.

7 CONCLUSION

In this paper, we introduced GASP, a method for
learning generative models that act entirely on con-
tinuous spaces and as such are independent of signal
discretization. We achieved this by learning distribu-
tions over functions representing the data instead of
learning distributions over the data directly. Through
experiments on images, 3D shapes and climate data,
we showed that our model learns rich function distribu-
tions in an entirely continuous manner. We hope such
a continuous approach will eventually enable genera-
tive modeling on data that is not currently tractable,
either because discretization is expensive (such as in
3D) or difficult (such as on non-euclidean data).
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Supplementary Material:
Generative Models as Distributions of Functions

A EXPERIMENTAL DETAILS

In this section we provide experimental details necessary to reproduce all results in the paper. All the
models were implemented in PyTorch Paszke et al. (2019) and trained on a single 2080Ti GPU with 11GB
of RAM. The code to reproduce all experiments can be found at https://github.com/EmilienDupont/

neural-function-distributions.

A.1 Single Image Experiment

To produce Figure 2, we trained a ReLU MLP with 2 hidden layers each with 256 units, using tanh as the final
non-linearity. We trained for 1000 iterations with Adam using a learning rate of 1e-3. For the RFF encoding we
set m = 256 and σ = 10.

A.2 GASP Experiments

For all experiments (images, 3D shapes and climate data), we parameterized fθ by an MLP with 3 hidden layers,
each with 128 units. We used a latent dimension of 64 and an MLP with 2 hidden layers of dimension 256 and
512 for the hypernetwork gφ. We normalized all coordinates to lie in [−1, 1]d and all features to lie in [−1, 1]k.
We used LeakyReLU non-linearities both in the generator and discriminator. The final output of the function
representation was followed by a tanh non-linearity.

For the point cloud discriminator, we used 3d neighbors in each convolution layer and followed every convolution
by an average pooling layer reducing the number of points by 2d. We applied a sigmoid as the final non-linearity.
We used an MLP with 4 hidden layers each of size 16 to parameterize all weight MLPs. Unless stated otherwise,
we use Adam with a learning rate of 1e-4 for the hypernetwork weights and 4e-4 for the discriminator weights
with β1 = 0.5 and β2 = 0.999 as is standard for GAN training. For each dataset, we trained for a large number
of epochs and chose the best model by visual inspection.

MNIST

• Dimensions: d = 2, k = 1

• Fourier features: m = 128, σ = 1

• Discriminator channels: 64, 128, 256

• Batch size: 128

• Epochs: 150

CelebAHQ 64x64

• Dimensions: d = 2, k = 3

• Fourier features: m = 128, σ = 2

• Discriminator channels: 64, 128, 256, 512

• Batch size: 64

• Epochs: 300

https://github.com/EmilienDupont/neural-function-distributions
https://github.com/EmilienDupont/neural-function-distributions
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CelebAHQ 128x128

• Dimensions: d = 2, k = 3

• Fourier features: m = 128, σ = 3

• Discriminator channels: 64, 128, 256, 512, 1024

• Batch size: 22

• Epochs: 70

ShapeNet voxels

• Dimensions: d = 3, k = 1

• Fourier features: None

• Discriminator channels: 32, 64, 128, 256

• Batch size: 24

• Learning rates: Generator 2e-5, Discriminator 8e-5

• Epochs: 200

ERA5 climate data

• Dimensions: d = 2, k = 1

• Fourier features: m = 128, σ = 2

• Discriminator channels: 64, 128, 256, 512

• Batch size: 64

• Epochs: 300

A.3 Things We Tried That Didn’t Work

• We initially let the function representation fθ have 2 hidden layers of size 256, instead of 3 layers of size 128.
However, we found that this did not work well, particularly for more complex datasets. We hypothesize
that this is because the number of weights in a single 256→ 256 linear layer is 4× the number of weights in
a single 128 → 128 layer. As such, the number of weights in four 128 → 128 layers is the same as a single
256 → 256, even though such a 4-layer network would be much more expressive. Since the hypernetwork
needs to output all the weights of the function representation, the final layer of the hypernetwork will be
extremely large if the number of function weights is large. It is therefore important to make the network as
expressive as possible with as few weights as possible, i.e. by making the network thinner and deeper.

• As the paper introducing the R1 penalty (Mescheder et al., 2018) does not use batchnorm (Ioffe and Szegedy,
2015) in the discriminator, we initially ran experiments without using batchnorm. However, we found that
using batchnorm both in the weight MLPs and between PointConv layers was crucial for stable training.
We hypothesize that this is because using standard initializations for the weights of PointConv layers would
result in PointConv outputs (which correspond to the weights in regular convolutions) that are large. Adding
batchnorm fixed this initialization issue and resulted in stable training.

• In the PointConv paper, it was shown that the number of hidden layers in the weight MLPs does not
significantly affect classification performance (Wu et al., 2019). We therefore initially experimented with
single hidden layer MLPs for the weights. However, we found that it is crucial to use deep networks for the
weight MLPs in order to build discriminators that are expressive enough for the datasets we consider.

• We experimented with learning the frequencies of the Fourier features (i.e. learning B) but found that this
did not significantly boost performance and generally resulted in slower training.
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A.4 ERA5 Climate Data

We extracted the data used for the climate experiments from the ERA5 database (Hersbach et al., 2019).
Specifically, we used the monthly averaged surface temperature at 2m, with reanalysis by hour of day. Each data
point then corresponds to a set of temperature measurements on a 721 x 1440 grid (i.e. 721 latitudes and 1440
longitudes) across the entire globe (corresponding to measurements every 0.25 degrees). For our experiments, we
subsample this grid by a factor of 16 to obtain grids of size 46 x 90. For each month, there are a total of 24 grids,
corresponding to each hour of the day. The dataset is then composed of temperature measurements for all months
between January 1979 and December 2020, for a total of 12096 datapoints. We randomly split this dataset into
a train set containing 8510 grids, a validation set containing 1166 grids and a test set containing 2420 grids.
Finally, we normalize the data to lie in [0, 1] with the lowest temperature recorded since 1979 corresponding to
0 and the highest temperature to 1.

A.5 Quantitative Experiments

We computed FID scores using the pytorch-fid library (Seitzer, 2020). We generated 30k samples for both
CelebAHQ 64 × 64 and 128 × 128 and used default settings for all hyperparameters. We note that the FID
scores for the convolutional baselines in the main paper were computed on CelebA (not the HQ version) and
are therefore not directly comparable with our model. However, convolutional GANs would also outperform our
model on CelebAHQ.

A.6 Rendering 3D Shapes

In order to visualize results for the 3D experiments, we convert the functions sampled from GASP to meshes we
can render. To achieve this, we first sample a function from our model and evaluate it on a high resolution grid
(usually 1283). We then threshold the values of this grid at 0.5 (we found the model was robust to choices of
threshold) so voxels with values above the threshold are occupied while the rest are empty. Finally, we use the
marching cubes algorithm (Lorensen and Cline, 1987) to convert the grid to a 3D mesh which we render with
PyTorch3D (Ravi et al., 2020).

A.7 Baseline Experiments

The baseline models in Section 5.1 were trained on CelebAHQ 32×32, using the same generator as the one used for
the CelebAHQ 64×64 experiments. Detailed model descriptions can be found in Section B and hyperparameters
are provided below.

Auto-decoders. We used a batch size of 64 and a learning rate of 1e-4 for both the latents and the generator
parameters. We sampled the latent initializations from N (0, 0.012). We trained the model for 200 epochs and
chose the best samples based on visual inspection.

Set Discriminators. We used a batch size of 64, a learning rate of 1e-4 for the generator and a learning rate
of 4e-4 for the discriminator. We used an MLP with dimensions [512, 512, 512] for the set encoder layers and
an MLP with dimensions [256, 128, 64, 32, 1] for the final discriminator layers. We used Fourier features with
m = 128, σ = 2 for both the coordinates and the features before passing them to the set discriminator. We
trained the model for 200 epochs and chose the best samples based on visual inspection.

B MODELS THAT ARE NOT SUITABLE FOR LEARNING FUNCTION
DISTRIBUTIONS

B.1 Auto-decoders

We briefly introduce auto-decoder models following the setup in (Park et al., 2019) and describe why they are not
suitable as generative models. As in the GASP case, we assume we are given a dataset of N samples {s(i)}Ni=1

(where each sample s(i) is a set). We then associate a latent vector z(i) with each sample s(i). We further
parameterize a probabilistic model pθ(s

(i)|z(i)) (similar to the decoder in variational autoencoders) by a neural
network with learnable parameters θ (typically returning the mean of a Gaussian with fixed variance). The
optimal parameters are then estimated as
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Figure 13: Left: Samples from an auto-decoder model trained on MNIST. Right: Samples from an auto-decoder
model trained on CelebAHQ 32× 32.

arg max
θ,{z(i)}

N∑
i=1

log pθ(s
(i)|z(i)) + log p(z(i)),

where p(z) is a (typically Gaussian) prior over the z(i)’s. Crucially the latents vectors z(i) are themselves learnable
and optimized. However, maximizing log p(z(i)) ∝ −‖z(i)‖2 does not encourage the z(i)’s to be distributed
according to the prior, but only encourages them to have a small norm. Note that this is because we are
optimizing the samples and not the parameters of the Gaussian prior. As such, after training, the z(i)’s are
unlikely to be distributed according to the prior. Sampling from the prior to generate new samples from the
model will therefore not work.

We hypothesize that this is why the prior is required to have very low variance for the auto-decoder model to work
well (Park et al., 2019). Indeed, if the norm of the z(i)’s is so small that they are barely changed during training,
they will remain close to their initial Gaussian distribution. While this trick is sufficient to learn distributions
of simple datasets such as MNIST, we were unable to obtain good results on more complex and high frequency
datasets such as CelebAHQ. Results of our best models are shown in Figure 13.

We also note that auto-decoders were not necessarily built to act as generative models. Auto-decoders have for
example excelled at embedding 3D shape data into a latent space (Park et al., 2019) and learning distributions
over 3D scenes for inverse rendering (Sitzmann et al., 2019). Our analysis therefore does not detract from the
usefulness of auto-decoders, but instead shows that auto-decoders may not be suitable for the task of generative
modeling.

B.2 Set Discriminators

In this section, we analyse the use of set discriminators for learning function distributions. Given a datapoint
s = {(xi,yi)}ni=1 represented as a set, we build a permutation invariant set discriminator as a PointNet/DeepSet
(Qi et al., 2017; Zaheer et al., 2017) function

D(s) = ρ

(
1√
n

n∑
i=1

ϕ(γx(xi), γy(yi))

)
,

where ρ and ϕ are both MLPs and γx and γy are RFF encodings for the coordinates and features respectively.
Recall that the RFF encoding function γ is defined as

γ(x) =

(
cos(2πBx)
sin(2πBx)

)
,

where B is a (potentially learnable) random matrix of frequencies. While the RFF encodings are not strictly
necessary, we were unable to learn high frequency functions without them. Note also that we normalize the
sum over set elements by

√
n instead of n as is typical - as shown in Section B.3.1 this is to make the Lipschitz

constant of the set discriminator independent of n.



Emilien Dupont, Yee Whye Teh, Arnaud Doucet

Figure 14: Left: Samples from a set discriminator model trained on MNIST. Right: Samples from a set discrim-
inator model trained on CelebAHQ 32× 32.

We experimented extensively with such models, varying architectures and encoding hyperparameters (including
not using an encoding) but were unable to get satisfactory results on CelebAHQ, even at a resolution of 32× 32.
Our best results are shown in Figure 14. As can be seen, the model is able to generate plausible samples for
MNIST but fails on CelebAHQ.

While PointNet/DeepSet functions are universal approximators of set functions (Zaheer et al., 2017), they do not
explicitly model set element interactions. As such, we also experimented with Set Transformers (Lee et al., 2019)
which model interactions using self-attention. However, we found that using such architectures did not improve
performance. As mentioned in the main paper, we therefore conjecture that explicitly taking into account the
metric on the coordinate space (as is done in PointConv) is crucial for learning complex neural distributions. We
note that Set Transformers have also been used as a discriminator to model sets (Stelzner et al., 2020), although
this was only done for small scale datasets.

In addition to our experimental results, we also provide some theoretical evidence that set discriminators may
be ill-suited for generative modeling of functions. Specifically, we show that the Lipschitz constant of set dis-
criminators and RFF encodings are typically very large.

B.3 The Lipschitz Constant of Set Discriminators

Several works have shown that limiting the Lipschitz constant (or equivalently the largest gradient norm) of the
discriminator is important for stable GAN training (Arjovsky et al., 2017; Gulrajani et al., 2017; Roth et al.,
2017; Miyato et al., 2018; Mescheder et al., 2018). This is typically achieved either by penalizing the gradient
norm or by explicitly constraining the Lipschitz constant of each layer in the discriminator. Intuitively, this
ensures that the gradients of the discriminator with respect to its input do not grow too large and hence that
gradients with respect to the weights of the generator do not grow too large either (which can lead to unstable
training). In the following subsections, we show that the Lipschitz constant of set discriminators and specifically
the Lipschitz constant of RFF encodings are large in most realistic settings.

B.3.1 Architecture

Proposition 1. The Lipschitz constant of the set discriminator D is bounded by

Lip(D) ≤ Lip(ρ)Lip(ϕ)
√

Lip(γx)2 + Lip(γy)2

See Section C for a proof. In the case where the RFF encoding is fixed, imposing gradient penalties on D would
therefore reduce the Lipschitz constant of ρ and ϕ but not of γx and γy. If the RFF encoding is learned, its
Lipschitz constant could also be penalized. However, as shown in Tancik et al. (2020), learning high frequency
functions typically requires large frequencies in the matrix B. We show in the following section that the Lipschitz
constant of γ is directly proportional to the spectral norm of B.
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B.3.2 Lipschitz Constant of Random Fourier Features

Proposition 2. The Lipschitz constant of γ(x) is bounded by

Lip(γ) ≤
√

8π‖B‖

See Section C for a proof. There is therefore a fundamental tradeoff between how much high frequency detail the
discriminator can learn (requiring a large Lipschitz constant) and its training stability (requiring a low Lipschitz
constant). In practice, for the settings we used in this paper, the spectral norm of B is on the order of 100s,
which is too large for stable GAN training.

C PROOFS

C.1 Prerequisites

We denote by ‖ · ‖2 the `2 norm for vectors and by ‖ · ‖ the spectral norm for matrices (i.e. the matrix norm
induced by the `2 norm). The spectral norm is defined as

‖A‖ = sup
‖x‖2=1

‖Ax‖2 = σmax(A) =
√
λmax(ATA)

where σmax denotes the largest singular value and λmax the largest eigenvalue.

For a function f : Rn → Rm, the Lipschitz constant Lip(f) (if it exists) is defined as the largest value L such
that

‖f(x1)− f(x2)‖2 ≤ L‖x1 − x2‖2
for all x1,x2. The Lipschitz constant is equivalently defined for differentiable functions as

Lip(f) = sup
x
‖∇f(x)‖.

Note that when composing two functions f and g we have

Lip(f ◦ g) ≤ Lip(f)Lip(g).

We will also make use of the following lemmas.

C.1.1 Spectral Norm of Concatenation

Lemma 1. Let A ∈ Rn×d and B ∈ Rm×d be two matrices and denote by

(
A
B

)
their rowwise concatenation.

Then we have the following inequality in the spectral norm

∥∥∥∥(AB
)∥∥∥∥ ≤√‖A‖2 + ‖B‖2.

Proof.1 ∥∥∥∥(AB
)∥∥∥∥2 = λmax

((
A
B

)T (
A
B

))
= λmax(ATA+BTB)

≤ λmax(ATA) + λmax(BTB)

= ‖A‖2 + ‖B‖2,

where we used the definition of the spectral norm in the first line and Weyl’s inequality for symmetric matrices
in the third line.

1This proof was inspired by https://math.stackexchange.com/questions/2006773/
spectral-norm-of-concatenation-of-two-matrices

https://math.stackexchange.com/questions/2006773/spectral-norm-of-concatenation-of-two-matrices
https://math.stackexchange.com/questions/2006773/spectral-norm-of-concatenation-of-two-matrices
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C.1.2 Inequality for `1 and `2 Norm

Lemma 2. Let xi ∈ Rd for i = 1, . . . , n. Then

n∑
i=1

‖xi‖2 ≤
√
n‖(x1, . . . ,xn)‖2.

Proof.

n∑
i=1

‖xi‖2 =

n∑
i=1

‖xi‖2 · 1

≤

(
n∑
i=1

‖xi‖22

) 1
2
(

n∑
i=1

12

) 1
2

=
√
n‖(x1, . . . ,xn)‖2,

where we used Cauchy-Schwarz in the second line. Note that this is an extension of the well-known inequality
‖x‖1 ≤

√
n‖x‖2 to the case where each component of the vector x is the `2 norm of another vector.

C.1.3 Lipschitz Constant of Sum of Identical Functions

Lemma 3. Let xi ∈ Rd for i = 1, . . . , n and let f be a function with Lipschitz constant Lip(f). Define
g(x1, . . . ,xn) =

∑n
i=1 f(xi). Then

Lip(g) ≤
√
nLip(f).

Proof.

‖g(x1, . . . ,xn)− g(y1, ...,yn)‖2 =

∥∥∥∥∥
n∑
i=1

(f(xi)− f(yi))

∥∥∥∥∥
2

≤
n∑
i=1

‖f(xi)− f(yi)‖2

≤ Lip(f)

n∑
i=1

‖xi − yi‖2

≤
√
nLip(f)

∥∥∥∥∥∥∥
x1

...
xn

−
y1

...
yn


∥∥∥∥∥∥∥
2

.

Where we used the triangle inequality for norms in the second line, the definition of Lipschitz constants in the
second line and Lemma 2 in the third line.

C.1.4 Lipschitz Constant of Concatenation

Lemma 4. Let g : Rn → Rm and h : Rp → Rq be functions with Lipschitz constant Lip(g) and Lip(h) respectively.
Define f : Rn+p → Rm+q as the concatenation of g and h, that is f(x,y) = (g(x), h(y)). Then

Lip(f) ≤
√

Lip(g)2 + Lip(h)2.
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Proof.

‖f(x1,y1)− f(x2,y2)‖22 =

∥∥∥∥(g(x1)− g(x2)
h(y1)− h(y2)

)∥∥∥∥2
2

= ‖g(x1)− g(x2)‖22 + ‖h(y1)− h(y2)‖22
≤ Lip(g)2‖x1 − x2‖22 + Lip(h)2‖y1 − y2‖22
≤ Lip(g)2(‖x1 − x2‖22 + ‖y1 − y2‖22) + Lip(h)2(‖x1 − x2‖22 + ‖y1 − y2‖22)

= (Lip(g)2 + Lip(h)2)

∥∥∥∥(x1 − x2

y1 − y2

)∥∥∥∥2
2

where we used the definition of the `2 norm in the second and last line.

C.2 Lipschitz Constant of Fourier Feature Encoding

We define the random Fourier feature encoding γ : Rd → R2m as

γ(x) =

(
cos(2πBx)
sin(2πBx)

)
where B ∈ Rm×d.
Proposition 3. The Lipschitz constant of γ(x) is bounded by

Lip(γ) ≤
√

8π‖B‖.

Proof. Define u(x) = cos(2πBx) and v(x) = sin(2πBx). By definition of the Lipschitz constant and applying
Lemma 1 we have

Lip(γ) = sup
x
‖∇γ(x)‖

= sup
x

∥∥∥∥(∇ cos(2πBx)
∇ sin(2πBx)

)∥∥∥∥
= sup

x

∥∥∥∥(∇u(x)
∇v(x)

)∥∥∥∥
≤ sup

x

√
‖∇u(x)‖2 + ‖∇v(x)‖2

≤
√

sup
x
‖∇u(x)‖2 + sup

x
‖∇v(x)‖2.

The derivative of u is given by

(∇u(x))ij =
∂ui(x)

∂xj

=
∂

∂xj
cos(2πbTi x)

= −2πbij sin(2πbTi x)

= −2πbijvi(x),

where bi corresponds to the ith row of B. We can write this more compactly as ∇u(x) = −2πdiag(v(x))B. A
similar calculation for v(x) shows that ∇v(x) = 2πdiag(u(x))B.

All that remains is then to calculate the norms ‖∇u(x)‖ and ‖∇v(x)‖. Using submultiplicativity of the spectral
norm we have
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sup
x
‖∇u(x)‖ = sup

x
2π‖diag(v(x))B‖

≤ sup
x

2π‖diag(v(x))‖‖B‖

= 2π‖B‖,

where we used the fact that the spectral norm of diagonal matrix is equal to its largest entry and that |vi(x)| ≤ 1
for all i. Similar reasoning gives supx ‖∇u(x)‖ = 2π‖B‖. Finally we obtain

Lip(γ) ≤
√

sup
x
‖∇u(x)‖2 + sup

x
‖∇v(x)‖2

≤
√

(2π‖B‖)2 + (2π‖B‖)2

=
√

8π‖B‖.

C.3 Lipschitz Constant of Set Discriminator

The set discriminator D : Rn×(d+k) → [0, 1] is defined by

D(s) = ρ

(
1√
n

n∑
i=1

ϕ(γx(xi), γy(yi))

)
,

where s = {(xi,yi)}ni=1 ∈ Rn×(d+k) is treated as a fixed vector and each xi ∈ Rd and yi ∈ Rk. The Fourier feature
encodings for xi and yi are given by functions γx : Rd → R2mx and γy : Rk → R2my respectively. The function
ϕ : R2(mx+my) → Rp maps coordinates and features to an encoding of dimension p. Finally ρ : Rp → [0, 1] maps
the encoding to the probability of the sample being real.

Proposition 4. The Lipschitz constant of the set discriminator D is bounded by

Lip(D) ≤ Lip(ρ)Lip(ϕ)
√

Lip(γx)2 + Lip(γy)2.

Proof. Write

D(s) = ρ

(
1√
n

n∑
i=1

ϕ(γx(xi), γy(yi))

)
= ρ(η(s))

where η(s) = 1√
n

∑n
i=1 ϕ(γx(xi), γy(yi)). Then we have

Lip(D) ≤ Lip(ρ)Lip(η).

We can further write

η(s) =
1√
n

n∑
i=1

ϕ(γx(xi), γy(yi))

=
1√
n

n∑
i=1

θ(si),

where si = (xi,yi) and θ(si) = ϕ(γx(xi), γy(yi)). By Lemma 3 we have

Lip(η) ≤ 1√
n

√
nLip(θ) = Lip(θ).
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We can then write

θ(si) = ϕ(γx(xi), γy(yi))

= ϕ(ψ(si))

where ψ(si) = (γx(xi), γy(yi)). We then have, using Lemma 4

Lip(θ) ≤ Lip(ϕ)Lip(ψ) ≤ Lip(ϕ)
√

Lip(γx)2 + Lip(γy)2.

Putting everything together we finally obtain

Lip(D) ≤ Lip(ρ)Lip(ϕ)
√

Lip(γx) + Lip(γy).
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D FAILURE EXAMPLES

Figure 15: Left: Samples from model trained on CelebAHQ 64×64 using K = 2048 pixels (50%). Right: Samples
from model trained using K = 3072 pixels (75%).

Figure 16: Selected samples highlighting failure modes of our model, including generation of unrealistic and
incoherent samples.

E ADDITIONAL RESULTS

E.1 Additional Evaluation on ERA5 Climate Data

As metrics like FID are not applicable to the ERA5 data, we provide additional experimental results to strengthen
the evaluation of GASP on this data modality. Figure 22 shows comparisons between samples from GASP and
the training data. As can be seen, the samples produced from our model are largely indistinguishable from
real samples. To ensure the model has not memorized samples from the training set, but rather has learned a
smooth manifold of the data, we show examples of latent interpolations in Figure 23. Finally, Figure 24 shows
a histogram comparing the distribution of temperatures in the test set and the distribution of temperatures
obtained from GASP samples.

Figure 17: Additional MNIST samples.
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Figure 18: Additional CelebAHQ 64× 64 samples.

Figure 19: Additional CelebAHQ 128× 128 samples.
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Figure 20: Additional superresolution samples. Left column shows superresolution from 64 × 64 → 256 × 256
and right column shows superresolution from 64× 64→ 512× 512

Figure 21: Additional Shapenet chairs samples.
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Figure 22: Random samples from GASP (left) and the training data (right).

Figure 23: Latent (function space) interpolation between two random samples from GASP. As can be seen the
the model has learned a smooth latent space for the data.
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Figure 24: Distribution of temperatures in test set and from GASP samples. As can be seen, the distribution of
temperatures from GASP roughly matches the distribution in the test set.
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