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Abstract

The robustness of the much used Graph
Convolutional Networks (GCNs) to pertur-
bations of their input is becoming a topic
of increasing importance. In this paper
the random GCN is introduced for which a
random matrix theory analysis is possible.
This analysis suggests that if the graph is
sufficiently perturbed, or in the extreme case
random, then the GCN fails to benefit from
the node features. It is furthermore observed
that enhancing the message passing step in
GCNs by adding the node feature kernel to
the adjacency matrix of the graph structure
solves this problem. An empirical study of
a GCN utilised for node classification on six
real datasets further confirms the theoretical
findings and demonstrates that perturbations
of the graph structure can result in GCNs
performing significantly worse than Multi-
Layer Perceptrons run on the node features
alone. In practice, adding a node feature
kernel to the message passing of perturbed
graphs results in a significant improve-
ment of the GCN’s performance, thereby
rendering it more robust to graph pertur-
bations. Our code is publicly available at:
https://github.com/ChangminWu/RobustGCN.
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1 INTRODUCTION

In recent years Graph Neural Networks (GNNs) have
been a highly impactful model type for the analysis
of graph data. This is mainly due to their dominat-
ing empirical performance and ability to process at-
tributed graphs composed of node information and
an underlying graph structure. Many GNN archi-
tectures have been proposed, successively improving
on weaknesses of previous architectures (e.g. Corso
et al. (2020); Hamilton et al. (2017); Xu et al. (2019)).
A popular GNN architecture which has remained a
benchmark throughout the past years, partly due to
the simplicity of its model equation and partly due to
its good performance is the Graph Convolutional Net-
work (GCN) (Kipf and Welling, 2017). The GCN is
part of a class of GNNs called message passing neural
networks (Gilmer et al., 2017), where the computa-
tions are split into a message passing step in which
node features are aggregated over neighbourhoods in
the underlying graph structure and an update step in
which node features are processed, most commonly by
a Multi-Layer Perceptron (MLP).

While much work is being done in the empirical explo-
ration of GNNs, relatively fewer advances have been
made in their theoretical analysis. A major advance
in the theoretical line of research was the expressiv-
ity analysis of different message passing operators per-
formed by Xu et al. (2019) and Morris et al. (2019).
This analyses inspired many researchers to further in-
vestigate the expressivity of GNNs and resulted in a
multitude of new architectures being proposed (Maron
et al., 2019; Dasoulas et al., 2020). Another upcom-
ing topic in the development of GNNs is their robust-
ness to perturbations of the underlying graph structure
(Zügner and Günnemann, 2019; Sun et al., 2020).

https://github.com/ChangminWu/RobustGCN
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In the presented work, we introduce the random GCN,
in which parameters of the update step are ran-
domly sampled from Gaussian distributions rather
than trained as is commonly the case. The random
GCN allows us to make use of several powerful ran-
dom matrix theory tools to gain a theoretical under-
standing of the factors driving the inference obtained
from the GCN model. Our most insightful hypothesis
obtained in this way is that the message passing step
dilutes (or in the extreme case completely ignores) in-
formation present in the node features if the underlying
graph structure is noisy (or in the extreme case com-
pletely random). In our theoretical analysis we observe
that if information of the node features is introduced
to the message passing operation, then this loss of in-
formation is avoided. This leads us to hypothesise that
the addition of the node feature kernel to the message
passing operators in GNNs could render them more
robust to noise or mispecification of the underlying
graph structure.

In a second part of our presented work we test the hy-
potheses, obtained in our study of the random GCN,
on the state-of-the-art GCN architecture applied to six
real-world benchmark datasets. This allows us to em-
pirically verify our theoretical insight, rendering the
random features approach for theoretical analysis a
promising avenue for further theoretical study of GNN
architectures, and the inclusion of node feature infor-
mation in the message passing step a valid method to
increase the robustness of GNNs.

Our main findings may be summarised as: (i) We
contribute both a theoretical and an empirical under-
standing of how graph and node feature information
is processed by the GCN, and (ii) importantly find
that the preservation of node feature information is en-
tirely dependent on an informative underlying graph
structure. (iii) We furthermore, propose a novel GCN
message passing scheme which results in more robust
inference from a GCN to structural noise.

The remainder of this paper is organised as follows. In
Section 2 we introduce related literature. In Section 3
we propose the random GCN and analyse it using tools
from random matrix theory. The theoretical insight
from Section 3 is then empirically verified in Section
4, where we confirm our hypotheses on the standard
GCN on six benchmark datasets and observe the ro-
bust performance of the GCN when the node feature
kernel matrix is added in the message passing step.

2 RELATED WORK

There exists an extensive literature branch which stud-
ies adversarial attack and defence strategies on graph
data in the context of GNNs summarised in Günne-

mann (2022), Sun et al. (2020) and Zhou et al. (2020)
with the latter pointing out directly the need for the
development of more robust GNNs. In this paper we
present one approach to robustifying the performance
of GNNs to graph perturbations. In this literature the
focus often lies on specific attack strategies perturb-
ing the graph structure in order to alter the inference
obtained from a GNN, most commonly the GCN, and
defence strategies which aim to develop methodology
which is robust to these attacks. Recent advances in
this literature include, Zügner and Günnemann (2019)
proposing a meta learning approach to find optimal
graph perturbations. Their perturbation mechanism
is found to drastically decrease the global performance
of GNNs to be in some cases worse than simple bench-
marks such as logistic regression run on the node fea-
tures only. Zügner and Günnemann (2020) propose
an algorithm which certifies robustness of individual
nodes for the GCN used for node classification un-
der perturbations of the graph structure. In Geisler
et al. (2020) and Jin et al. (2021) the message passing
operator in the GCN is replaced by the Soft Mediod
function and the sum of several distance based ad-
jacency matrices, respectively, with the aim of more
robust GCN performance. Jin et al. (2020) propose
to learn the graph structure jointly with the GNN pa-
rameters to robustify performance and also Entezari
et al. (2020) propose to alter the graph structure by
using a low rank approximation of the adjacency ma-
trix. The works of Zhu et al. (2019) and Zhang and
Zitnik (2020) are most closely related to our proposi-
tion of using a node feature kernel to reweight edges
in Section 3.3 as they both propose to reweight edges
based on the node features. Our theoretical findings in
Section 3 support this approach of more directly tak-
ing the node features into account in the aggregation
scheme of GNNs to increasing their robustness.

This paper distinguishes itself from adversarial attacks
and defence literature fundamentally in that we study
untargeted, random graph perturbations which arise
as a result of mispecification of the data or uncer-
tainty in the recording methods of the networks. For
this kind of perturbation we are able to provide both
theoretical (on a toy data example) and empirical un-
derstanding, which enables us to offer a distinction
between the node feature data and the graph data in
networks data sets and how these different information
sources are processed by a GNN architecture.

Our work is also related to the literature studying the
challenges that heterophilic graphs pose for GNNs (Pei
et al., 2020; Zhu et al., 2020, 2021). This literature
distinguishes homophilic and heterophilic graphs, in
which edges in the graph predominantly connect nodes
of equal and unequal classes, respectively. Both of
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these structures can be, from a theoretical standpoint,
equally class-informative, it is only the structure of
the class-information which varies. In our work here
we consider an orthogonal problem, which is the sit-
uation of a diminishing class-structure in the graph,
independent of its homo- or heterophilic nature, and
the effect this diminishment has on the ability of GNNs
to process the information contained in the node fea-
tures.

3 ANALYSIS OF THE RANDOM
GCN

In this section we present our theoretical analysis and
main findings. Throughout this section ‖ · ‖ denotes
the Euclidean (resp., spectral) norm for vectors (resp.,
matrices); ‖ · ‖F denotes the Frobenius norm. Specifi-
cally, we consider a random GCN model1, defined as

Φ = σ(ÃXW ), (1)

where Ã ∈ Rn×n denotes the normalised adjacency op-
erator encoding the graph structure (see (3) for its def-
inition), X ∈ Rn×p corresponds to the node features,
W ∈ Rp×d is a random matrix with Wij ∼ N (0, 1)
independent and identically distributed (i.i.d.) and σ
is an activation function applied entry-wise. In partic-
ular, we will study the spectral behaviour of the Gram
matrix 2 defined as

G =
1

d
ΦΦᵀ =

1

d
σ(ÃXW )σ(W ᵀXᵀÃᵀ). (2)

To analyse G we require assumptions on the node fea-
tures and graph structure.

Assumption 1 (Node features). We suppose that
Xᵀ = [x1, . . . ,xn] ∈ Rp×n, where x1, . . . ,xn are in-
dependent node feature vectors, each being a sample
from one of k = 2 distribution classes C1 and C2. We
further assume that the node feature vectors xi follow
a Gaussian mixture model; Specifically, for xi ∈ Ca,
xi = (−1)a µ√p + zi for some vector µ ∈ Rp and
zi ∼ N (0, Ip/p).

We stress that Assumption 1 can be relaxed to a larger
class of random vectors x ∈ X , where X denotes any
normed space, satisfying the concentration property
P(|ϕ(x) − E[ϕ(x)]| > t) ≤ Ce−(t/σ)q with q ∈ R+,
for all 1-Lipschitz functions ϕ : X → R. Such vec-
tors are called random concentrated vectors and have
the particular property to be stable by Lipschitz trans-
formations (Louart and Couillet, 2018). The simplest

1In Section 4.1, we show that the performance of the
large random GCN matches that of the vanilla GCN.

2G provides access to the internal functioning and per-
formance evaluation of the random GCN.

example of concentrated vectors is the standard Gaus-
sian vector z ∼ N (0, Ip) (Ledoux, 2005). A more
complicated class of examples arises from the fact that
the concentration property is stable through Lipschitz
maps: if z ∈ Rd is concentrated and g : Rd → Rp is
1-Lipschitz, then g(z) is also concentrated. A large
family of generative models falls under this more com-
plicated class of examples, such as, the “fake” images
generated by Generative Adversarial Networks due to
these images being constructed as Lipschitz transfor-
mations of random Gaussian vectors (Seddik et al.,
2020).

Now we introduce the underlying model that defines
the graph structure. We assume that the adjacency
matrix A of the graph is generated by a stochastic
block model (Karrer and Newman, 2011).
Assumption 2 (Graph structure). We assume that
the entries of A are independent (except for Aii = 1
for all i) Bernoulli random variables with parameter
πij = q2Cab ∈ (0, 1) for xi ∈ Ca and xj ∈ Cb. In par-
ticular, q ∈ (0, 1) represents the probability of an edge
occurring between two nodes, while Cab represents the
probability of an edge arising between nodes in classes
Ca and Cb.

Note that self-loops are implicitly added in Assump-
tion 2, where we assume Aii = 1 for all i. Therefore,
we consider that the normalised adjacency operator in
(1) is defined as

Ã =
1√
n

(A− qqᵀ) , (3)

where q = q1n
3. The centring by qqᵀ is necessary for

the eigenvectors corresponding to the extremal eigen-
values of the operator to be class informative (Li et al.,
2018), i.e., the centering operation removes the un-
informative eigenvector corresponding to the largest
eigenvalue of the adjacency matrix, simplifying the
theoretical analysis. Specifically, for our analysis in
the asymptotic regime where n→∞ (see Assumption
3 subsequently), the centring with qqᵀ and the normal-
isation by 1√

n
are required so that Ã has a bounded

spectral norm asymptotically. In practice, the centring
by qqᵀ is not feasible as it results in a dense matrix. In
our experiments in Section 4, we see this discrepancy
to be of little consequence in practice.
Remark 1. Assumption 2 allows us to sample directed
as well as undirected graphs. Often the spectral analy-
sis of graphs needs to be restricted to undirected graphs,
since the analysis of complex-valued spectra arising for
directed graphs poses a significant challenge. We are
able to include directed graphs since the Gram matrix,

3The vectors q can be consistently estimated through
the degree vector d = A1n as q ≈ d/

√
dᵀ1n.
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analysed in Section 3.1, and X̃X̃ᵀ, analysed in Sec-
tion 3.2, have real spectra even if the underlying graph
structure is directed.

3.1 Spectral Behaviour of the Gram Matrix

Let X̃ᵀ = [x̃1, . . . , x̃n] = XᵀÃ ∈ Rp×n, the entries of
the Gram matrix defined in (2) are given by

Gij =
1

d
σ(W ᵀx̃i)

ᵀσ(W ᵀx̃j) =
1

d

d∑
`=1

σ(wᵀ
` x̃i)σ(wᵀ

` x̃j),

where wᵀ
` denotes the `-th row of W ᵀ. Since all the

w` follow the same distribution N (0, Ip), taking the
expectation over w ∼ N (0, Ip) (conditionally on X
andA) yields the average Gram matrix Ḡ defined with
entries

Ḡij = Ew|X,A [σ(wᵀx̃i)σ(wᵀx̃j)] . (4)

In particular, in the large n, p, d limit, it has been
shown in (Louart et al., 2018) that the spectrum (and
largest eigenvectors) of G are fully described by Ḡ.
Specifically, the resolvent of G defined as,

Q(z) = (G+ zIn)
−1
, (5)

for z ∈ C+ (with =(z) > 0), has a deterministic
equivalent4 Q̄(z) (conditionally on X and A). In
other words, for all M ∈ Rn×n and u,v ∈ Rn of
bounded spectral and Euclidean norms, respectively,
with probability one, 1

n Tr
(
M(Q(z)− Q̄(z))

)
→

0, uᵀ(Q(z)− Q̄(z))v → 0, which we will simply ex-
press using the notation Q(z)↔ Q̄(z).

A large dimensional growth rate assumption provides
the existence of Q̄(z).

Assumption 3 (Growth rate). As n→∞, 1. p/n→
c ∈ (0,∞) and d/n → r ∈ (0,∞); 2. lim supn ‖X̃‖ <
∞5 and |Ca|/n → ca ∈ (0, 1); 3. σ is λσ-Lipschitz
continuous with λσ > 0 constant.

4Such a deterministic equivalent is a standard object
within random matrix theory (Hachem et al., 2007) since
it allows us to characterise the behaviour of the eigenval-
ues of G as well as its largest (often informative) eigenvec-
tors. Specifically, the spectral measure µn = 1

n

∑n
i=1 δλi(G)

of G (where λi(G) denotes the ith eigenvalue of G) is
related to Q(z) through the Stieltjes transform qn(z) =∫

(t − z)−1µn(dt) = 1
n

Tr(Q(−z)). While the eigenvector
ûi ∈ Rn corresponding to eigenvalue λi(G) is related to
Q(z) through the Cauchy-integral ûiûᵀ

i = −1
2πi

∮
Γi
Q(−z)dz

where Γi is a positively oriented complex contour surround-
ing λi(G).

5This assumption holds if additional assumptions on the
node feature mean vector µ and the graph parameters Cab,
which shall be provided Assumption 5, are placed.

Under Assumption 3, we have from (Louart et al.,
2018)

Q(z)↔ Q̄(z) =

(
Ḡ

1 + δg(z)
+ zIn

)−1

, (6)

where δg(z) is the unique positive solution to the fixed
point equation δg(z) = 1

n Tr(ḠQ̄(z)).

From (6), to describe the behaviour of G one needs
to address the non-linearity σ in the matrix Ḡ, this
is achieved by approximating Ḡ by a more tractable
form in the large n limit. An additional regularity
condition on σ is needed which we formulate now.
Assumption 4 (Regularity of σ). Suppose that σ
is twice differentiable with lim supn,x∈R |σ′′(x)| < ∞.
Furthermore, for ξ ∼ N (0, 1) suppose E[σ(ξ)] = 0 and
E[σ2(ξ)] = 1.

Denote the quantity bσ = E[σ′(ξ)]. Under Assump-
tions 3-4, from (Fan and Wang, 2020, Lemma F.1),
the average Gram matrix Ḡ can be approximated by
the n × n matrix G̃ = b2σX̃X̃

ᵀ + (1 − b2σ)In, since
almost surely as n→∞

1

n
‖Ḡ− G̃‖2F → 0. (7)

This approximation ensures in particular that Ḡ and
G̃ share the same spectrum.
Remark 2. The approximation of Ḡ by G̃ in (7)
is valid when the matrix X̃X̃ᵀ is of bounded spectral
norm. This will be ensured in Assumption 5 where ad-
ditional assumptions are placed on our model parame-
ters µ and Cab. Furthermore, since the node features
xi follow a Gaussian mixture model (as per Assump-
tion 1), if Ã has a bounded spectral norm, then the
matrix X̃ falls under the setting of (Fan and Wang,
2020) in which the relation in (7) holds.

Since the behaviour of the average Gram matrix Ḡ
reduces to the analysis of the spectral behaviour of
the matrix X̃X̃ᵀ as per the approximation in (7), we
will analyse X̃X̃ᵀ for the remainder of Section 3.

3.2 Spectral Behaviour of X̃X̃ᵀ

We first need further controls on the quantities µ and
Cab as we describe in the following assumption.
Assumption 5. As n → ∞, 1. lim supn ‖µ‖ < ∞;
2. Caa = 1 + ηa√

n
for a ∈ {1, 2} and Cab = 1 for a 6=

b ∈ {1, 2}, where ηa = (−1)aη and lim supn η <∞.
Remark 3. Assumption 5.2 defines a dense graph
such that the clustering with spectral methods is not
asymptotically trivial. Real-World graphs are usually
sparse and fall within our theoretical analysis by con-
sidering the entry-wise multiplication of the adjacency
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matrix A by a random binary mask as is done by
Zarrouk et al. (2020). Furthermore without loss of
generality, we have specified ηa = (−1)aη for clarity of
exposition of our theoretical results (Theorem 1), which
can be generalised to different choices of the inter-class
similarities (choices of ηa).

Our main result (Theorem 1) provides a deterministic
equivalent for the resolvent of X̃X̃ᵀ defined as

QX̃(z) =
(
X̃X̃ᵀ + zIn

)−1

. (8)

Theorem 1. Define the quantities γf = ‖µ‖2, γg =
q2η, ν = q2(1 − q2) and the matrices U =

[
ȳ φ

]
∈

Rn×2,

B =

[
γ2
g(
γf
c + 1) γg(

γf
c + 1)

γg(
γf
c + 1)

γf
c

]
, T =

[
1 0
0 ν

]
,

where ȳ = y√
n
(with y ∈ {−1, 1}n the vector of labels)

and φ = 1√
n
Nȳ withN ∈ Rn×n a random matrix hav-

ing random i.i.d. entries with zero mean and variance
ν. Under Assumptions 1, 2, 3 and 5, the resolvent
QX̃(z) has a deterministic6 equivalent defined as

Q̄X̃(z) = ζ · (1 + δ1)
(
In − ζU

[
B−1 + ζT

]−1
Uᵀ
)
,

where ζ = 1+δ2
ν+z(1+δ1)(1+δ2) and (δ1, δ2) is the unique

couple solution of the fixed point equations system

δ1 =
1

c

ν(1 + δ1)

ν + z(1 + δ1)(1 + δ2)
, δ2 =

ν(1 + δ2)

ν + z(1 + δ1)(1 + δ2)
.

Sketch of proof. The proof starts by determining a
random equivalent of the adjacency matrix A. Since
Aij is Bernoulli distributed (see Assumption 2) with
parameter q2(1 + (−1)kiδki=kjη/

√
n) with ki ∈ {1, 2}

the class of node i, we may write Aij = q2 +
q2(−1)kiδki=kjη/

√
n + Nij where Nij is a zero mean

random variable with variance ν + O(n−
1
2 ). Hence,

‖Ã − (q2ηȳȳᵀ + 1√
n
N)‖ → 0 as n → ∞. Finally,

exploiting standard random matrix theory tools from
(Hachem et al., 2007; Louart and Couillet, 2018) pro-
vides the deterministic equivalent Q̄X̃(z).

In essence, Theorem 1 shows that the deterministic
equivalent Q̄X̃(z) is composed of two main terms: a
diagonal matrix ζ · (1 + δ1)In, which describes the be-
haviour of the noise in the data model (both adjacency
and node features), and an informative rank-2 matrix

6The matrix Q̄X̃(z) is not deterministic since it depends
on the random vector φ. However, since we are interested
in evaluating quantities of the forms 1

n
Tr(MQ̄X̃(z)) or

uᵀQ̄X̃(z)v for M , u and v independent of φ, Q̄X̃(z) has
a deterministic behaviour asymptotically as n→∞.

U
[
B−1 + ζT

]−1
Uᵀ which correlates with the vector

of labels ȳ if the adjacency matrix and/or the node
features are informative, i.e., values γg and γf , respec-
tively, are sufficiently large. Figure 1(a) and (b) depict
a histogram of the eigenvalues of X̃X̃ᵀ which con-
verges to the limiting distribution described by Theo-
rem 1, as well as its dominant eigenvector which cor-
relates with ȳ. Importantly, our analysis allows us to
conclude that when the graph structure is completely
noisy (i.e., η = 0), the dominant eigenvector of X̃X̃ᵀ

is no longer aligned with ȳ even if the node features
are informative (i.e., γf large) as will be clarified in
Corollary 2.

Corollary 2 (Case η = 0). Recall the notation and
Assumptions of Theorem 1, for η = 0 (i.e., a non-
informative graph structure), Q̄X̃(z) takes the form

Q̄X̃(z) = ζ · (1 + δ1)

(
In −

ζ2γf
c+ ζνγf

φφᵀ

)
. (9)

And, for ŷ the eigenvector of X̃X̃ᵀ corresponding to
its largest eigenvalue, |ȳᵀŷ|2 →n→∞ 0.

Sketch of proof. Expression (9) follows from Theorem
1 by simply taking the limit as η → 0. The second part
of the Corollary is obtained by computing |ȳᵀŷ|2 =
−1
2iπ

∮
Γ
ȳᵀQX̃(−z)ȳdz where Γ is a small positively ori-

ented complex contour surrounding the largest eigen-
value of X̃X̃ᵀ. Hence, using Q̄X̃(z) as a proxy allows
us to state |ȳᵀŷ|2 + 1

2iπ

∮
Γ
ȳᵀQ̄X̃(−z)ȳdz → 0 almost

surely as n→∞. The final result is obtained by show-
ing that ȳᵀφφᵀȳ concentrates around its expectation
with E [ȳᵀφφᵀȳ] = 1

nVar[ȳᵀNȳ] = ν
n → 0 and by

evaluating 1
2iπ

∮
Γ
ζ(−z)(1 + δ1(−z))dz = 0.

The main conclusion from Corollary 2 is that when the
graph structure is completely random (when η = 0,
‖Ã − 1√

n
N‖ → 0), the largest eigenvector of X̃X̃ᵀ

(which is intuitively supposed to be informative) does
not correlate with the labels vector ȳ independently
of the information contained in the node features. To
overcome this issue, we propose in the now following
Section 3.3 to utilise node feature kernels to ensure the
preservation of node feature information.

3.3 Message Passing through Node Feature
Kernels

As discussed in Section 3.2, when the graph structure
(in the extreme case) is completely random, the ran-
dom GCN model fails to extract information from the
node features. To make the message passing informa-
tive and thereby to robustify the GCN, we propose to
consider the operator Ã + K̄ instead of Ã, where K̄
is a kernel matrix computed on the node features X.
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Figure 1: (a) Eigenvalues distribution of X̃X̃ᵀ versus the theoretical density as per Theorem 1 (the theoretical
density is obtained as f(x) = 1

π limε→0=[q(x + iε)] where q(z) = 1
n Tr(Q̄X̃(z))). (b) Eigenvector of X̃X̃ᵀ

corresponding to its largest eigenvalue which correlates with ȳ. The parameters are: p = 1000, n = 200,
q = 0.5, η = 4 and µ = [2,0p−1]ᵀ. (c) Alignment between the largest eigenvector of X̃X̃ᵀ and the labels vector
ȳ for different added node feature kernel message passing strategies in terms of η. The different parameters
are: p = 500, n = 250, q = 0.4, µ = [1.7,0p−1]ᵀ and the kernel matrix has entries Kij = xᵀ

i xj , mean and
std computed over 100 runs. The GCN with message passing operator Ã + PKP outperforms other
models when the graph structure is noisy (i.e., low values of η).

Indeed, let K be a matrix with entries Kij = κ(xᵀ
i xj)

for some smooth function κ : R → R. Relying on
(El Karoui et al., 2010), the kernel matrix K can
be approximated in spectral norm asymptotically as
n→∞ by

K̃ = κ(0)1n1ᵀ
n + κ′(0)

(γf
c
ȳȳᵀ +ZZᵀ

)
+ ∆, (10)

where ∆ = κ′′(0)
2p 1n1ᵀ

n + (κ(1) − κ(0) − γf
c κ
′(0))In.

Hence, considering the matrix Ã+PKP , where P =
In − 1

n1n1ᵀ
n (the centring matrix), maintains the in-

formative nature of the message passing step (through
the term γf

c ȳȳ
ᵀ) even in the case where the opera-

tor Ã is not informative. Intuitively, the addition of
the node feature kernel can be interpreted as consid-
ering both the originally recorded graph and a node
feature similarity graph in the message passing archi-
tecture. This addition gives GNNs the necessary ex-
pressive ability to preserve information present in the
node features, which is lost in the case of uninforma-
tive or noisy graph structures.

Figure 1(c) shows the performance of different mes-
sage passing strategies (compared to random MLP
and spectral clustering; involving only node features
or adjacency matrix, respectively) which confirms the
effectiveness of introducing a node feature kernel in
the regime where the graph similarity is noisy (i.e.,
low values of η), a property which is also validated for
practical GCNs as we will discuss in Section 4.

4 EXPERIMENTS

In order to validate our theoretical findings in real-
world scenarios, we experiment on the node classifi-
cation task using GCNs on perturbed data. In Sec-
tion 4.1, we begin by justifying the use of the random

GCN in the theoretical analysis. Then, we discuss
results from experiments on both synthetic and real-
world graphs involving a perturbation scheme on their
edges. We show that the observed phenomena extend
to deeper GCN architectures, and cases with node fea-
ture perturbations. Finally, in the case of deeper GCN
models under structural perturbation, we demonstrate
that our proposed method is comparable with state-of-
the-art GNN models also placing a particular empha-
sis on the node features and can be further improved
when combined with other techniques.

We work on synthetic SBM graphs aligned with As-
sumption 5, with the intra-community link probability
being q2(1 + η√

n
) and the inter-community link prob-

ability being q2. We vary the parameter η to gen-
erate SBM graphs with different types of community
structure and keep other parameters fixed as q = 0.5,
p = 2500, n = 1600, µ = (2, 0, . . . , 0).

We furthermore work with six real-world datasets
which often serve as node classification benchmarks.
These are the three well-studied citation networks of
Cora, CiteSeer and PubMed (Sen et al., 2008), an ex-
tended version of Cora (Bojchevski and Günnemann,
2018), called CoraFull, an Amazon co-purchase graph
of Photo and a Co-author network from the authors
of Computer Science (CS) (Shchur et al., 2018). We
follow the semi-supervised node classification setting
proposed by Yang et al. (2016), i.e., we use their
train/valid/test split for Cora/CiteSeer/PubMed, and
we randomly sample 20 nodes from each class as train-
ing set, 500 nodes as validation set and another 1000
nodes as test set for CoraFull/Photo/CS. Each exper-
iment is repeated 10 times. Implementation details
and a summary of dataset statistics can be found in
the Supplementary Material Section D.
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Figure 2: Performance change over the embedding di-
mension with different models: random GCN, vanilla
GCN and MLP.

Perturbation Scheme The studied perturbation
scheme involves both edge-deletion noise, where a cer-
tain amount of existing edges are randomly sampled
and removed from original graph, and edge-insertion
noise, where we add a certain amount of connections
sampled from the non-existing edges in the original
graph. We consider scenarios where edges are removed
or added or both. The ratio of edges changed, i.e., the
perturbation ratio, is denoted by α for edge-deletion
and β for edge-insertion. A node feature kernel ma-
trix is added to study its impact in practice, as shown
in the following equation,

X(i+1) = σ
(

(εÂ+ (1− ε)N (K))X(i)W
)
, (11)

where Â is the GCN message passing operator of the
perturbed graph, N (K) = D

−1/2
K KD

−1/2
K is the nor-

malised kernel matrix built from node features (DK =
diag(K1n)). We are degree normalising the kernel to
match the graph representation of the GCN message
passing operator.

Node Feature Kernels As stated in Section 3.3,
we use the kernel to introduce information from the
node features to the message passing structure. The
choices of qualified smooth kernel functions are many.
In our experiment, we perform a proof of concept using
the simple linear kernel, defined as the inner product
between node features Kij = xᵀ

i xj .

Kernel Sparsification Using the full kernel matrix,
where the kernel value is recorded between every pair
of nodes, is both computationally costly and may in-
corporate redundant information. Therefore, we adopt
a sparsification method using the adjacency matrix of
the graph, with which (11) can be rewritten as,

X(i+1) =σ
(

(εÂ+ (1− ε)N (K ◦ Â))X(i)W
)
, (12)

where ◦ denotes Hadamard product. A consequence
of this sparsification method is that the added compu-
tational cost stemming from the consideration of the
node feature kernel is linear in the number of edges

in the graph |E|, where E denotes the graph’s edge
set, and the node feature dimension p, i.e., of order
O(|E|p). Our initial experiments sparsifying the ker-
nel matrix by using a threshold below which all entries
are set to zero resulted in worse performance and in-
troduced the threshold as an extra hyperparameter.
Therefore, we chose to only pursue the sparsification
scheme in (12). This preliminary observation could
be a result of the particular node features that are
recorded in our datasets.

4.1 Experiment Analysis

Asymptotic Analysis of Random GCN To vali-
date the practical applicability of the theoretical anal-
ysis in Section 3, we study the asymptotic behaviour of
the random GCN, the vanilla GCN and a MLP base-
line when the hidden dimension of node features grows.
In Figure 2, we observe that with increasing hidden di-
mension, the performance of both the vanilla GCN and
MLP remains stable, while the performance of random
GCN converges to vanilla GCN’s accuracy. Between
hidden dimensions of 2000 and 3000 the performance
of random GCN starts to match that of vanilla GCN.
Hence, we have given an empirical indication of the
conditions under which our theoretical model, the ran-
dom GCN, and the vanilla GCN are equivalent.

Robustness to Structural Noise: Synthetic
SBM We first test the performance of the proposed
model on synthetic SBM graphs. Three types of SBM
graph are considered, which are distinguished by the
parameter η. η = 0, η = 4 and η = −4 correspond
to the cases where the synthetic graph has no, a ho-
mophilic and a heterophilic community structure, re-
spectively. We experiment on perturbation scenarios
with different egde-deletion and edge-insertion ratios.
For each scenario, we record the performance of the
vanilla GCN as well as its performance after adding
the node-feature kernel, denoted by an appendage “-
k”7 in Table 1.

When a graph has no community structure, structural
perturbation has little impact and adding node-feature
information boosts the performance. When the graphs
are homophilic and with a clear community structure,
the impact from graph-structural noise become more
visible. Adding a node-feature kernel significantly im-
proves the model’s robustness against edge-deletion
and edge-insertion noise and their mix. The same con-
clusion can be drawn on heterophilic graphs perturbed
by edge-insertion noise.

7If not specified, the weight coefficient ε of the added
kernel in graph propagation is set to 0.5.
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Table 1: Performance of GCN with node-feature kernel under perturbation on synthetic SBM graphs. The best
results are set to bold if their range of one standard deviation does not overlap with the standard deviation of
their counterpart.

SBM(q = 0.5, η = 0) SBM(q = 0.5, η = 4) SBM(q = 0.5, η = −4)
(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 50.53± 0.49 66.36± 0.81 64.42± 0.43 62.26± 1.04 63.20± 0.94 61.03± 1.08

Deletion (0.2, 0.0) 51.03± 0.56 65.44± 1.07 58.63± 0.68 71.57± 1.42 60.89± 0.83 54.91± 1.00
(0.5, 0.0) 49.29± 0.59 64.14± 1.01 60.76± 1.29 68.80± 2.04 58.41± 1.11 59.51± 2.47

Insertion (0.0, 0.5) 50.57± 0.75 68.57± 1.25 60.49± 0.40 68.20± 1.38 58.82± 1.16 63.54± 0.97
(0.0, 1.0) 49.19± 0.47 59.31± 0.58 53.67± 1.11 66.57± 1.73 54.87± 0.53 60.84± 0.75

Delet.+Insert. (0.5, 0.5) 49.26± 0.59 68.84± 0.86 50.50± 0.37 63.36± 1.67 50.94± 0.86 63.02± 0.91
(0.5, 1.0) 49.84± 0.69 65.49± 1.22 48.34± 0.22 60.16± 1.21 49.23± 0.45 59.64± 1.33

Table 2: Performance of GCN with and without node-feature kernel under perturbation on six real-world datasets.
The format follows Table 1.

Cora CiteSeer PubMed
(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 79.37± 0.65 76.94± 0.35 67.45± 0.82 68.08± 0.91 76.04± 0.67 74.68± 0.76

Deletion (0.2, 0.0) 76.15± 0.81 74.83± 1.24 66.79± 0.57 66.94± 0.82 75.82± 0.99 74.28± 0.39
(0.5, 0.0) 72.49± 0.50 71.18± 1.00 63.53± 0.75 64.84± 1.14 73.95± 0.64 73.25± 0.75

Insertion (0.0, 0.5) 68.57± 0.73 73.10± 1.10 59.85± 0.89 66.11± 1.34 64.18± 0.67 72.38± 0.79
(0.0, 1.0) 64.14± 1.02 73.36± 0.98 55.39± 0.93 64.94± 0.77 60.56± 0.80 71.31± 0.51

Delet.+Insert. (0.5, 0.5) 54.98± 1.13 66.46± 1.03 52.84± 0.68 59.03± 1.04 62.62± 0.72 70.32± 0.82
(0.5, 1.0) 48.09± 0.88 62.52± 0.59 42.28± 1.07 58.07± 1.34 53.25± 1.57 69.65± 0.60

CoraFull Photo CS
(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 57.21± 0.84 56.88± 0.48 90.94± 0.49 90.09± 0.65 92.89± 0.41 92.63± 0.31

Deletion (0.2, 0.0) 57.25± 0.67 55.56± 0.69 91.87± 0.40 92.19± 0.45 90.58± 0.48 90.89± 0.48
(0.5, 0.0) 53.90± 0.70 54.62± 0.87 91.10± 0.40 87.97± 0.54 89.75± 0.60 91.27± 0.67

Insertion (0.0, 0.5) 48.11± 0.89 51.79± 0.65 82.79± 1.43 84.18± 1.27 87.16± 0.65 90.81± 0.70
(0.0, 1.0) 41.76± 1.03 51.91± 1.00 72.70± 6.40 79.58± 1.80 80.34± 0.80 90.61± 0.37

Delet.+Insert. (0.5, 0.5) 34.70± 0.47 46.50± 0.61 69.70± 3.70 74.65± 2.36 73.75± 0.98 87.28± 0.72
(0.5, 1.0) 27.50± 1.04 43.04± 0.77 61.13± 2.49 63.73± 5.04 66.26± 0.95 87.51± 0.58

Robustness to Structural Noise: Real-World
datasets In this set of experiments, we study the
change of model performance under the same pertur-
bation setting on real-world datasets. Table 2 shows
the results over different perturbation scenarios.

Naturally the performance decreases gradually when
edges are removed or added, as we can see from each
column. Edge-insertion noise seems to have a larger
impact on the performance than the edge-deletion
noise on these real-world datasets. But this influence
can be largely compensated by adding the node feature
kernel. Unlike results from synthetic SBM graphs, for
edge-deletion noise, the addition of the kernel on real-
world datasets seems to have almost no impact.

Deeper GCN architecture and Benchmark
Models The previous experiments are based on
a single-layer GCN model. In practice, the best-
performing GCN models on these datasets often con-
tain several message-passing layers and therefore, we
want to observe whether our theoretical results can
be extrapolated to the multi-layer case. We build a
4-layer GCN model and repeat our experiments on
the Cora and CS datasets. The results are shown
in Table 3. Results of the remaining datasets can be
found in the Supplementary Material Section E. More-

over, we also consider varying the weight coefficient
of the added node-feature kernel in graph propagation
and compare with two models specifically proposed for
deep GNN architectures: Jumping Knowledge (JK,
Xu et al. (2018)) and a GCN with residual connec-
tions and an identity mapping (GCNII, Chen et al.
(2020)). Although not designed to tackle the graph-
structural perturbation problem that we study in this
paper, the two models both utilise node feature in-
formation, which makes them reasonable baselines for
our proposed method.

As we can see from Table 3, there is no fundamen-
tal change in the trends observed for the single-layer
model. Adding the node-feature kernel helps robustify
model performance against perturbation when edges
are inserted and/or removed. The improvement is even
more significant when the weight coefficient ε on the
kernel in graph propagation is increased. Additionally,
our proposed method, with a high weight on the kernel,
is comparable to GCNII model and in general performs
better than the JK model. However, since JK can eas-
ily be combined with our method, the node-feature
kernel and JK architecture yields the best-performing
model as can be seen in the rightmost column of Ta-
ble 3.
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Table 3: Performance of GCN with and without node-feature kernel under perturbation on deep GCN models,
compared with jump knowledge and GCNII. The format follows Table 1, where in addition we underline the
second best result.

Cora
(α, β) GCN GCN-k (ε = 0.5) GCN-k (ε = 0.2) GCN-jk GCNII GCN-k-jk

(0.0, 0.0) 79.05± 1.36 79.67± 1.17 79.27± 1.50 80.39± 1.13 79.62± 1.24 79.74± 0.75
Deletion (0.5, 0.0) 74.20± 1.15 72.22± 1.25 72.74± 1.23 74.97± 0.71 73.87± 0.91 74.16± 0.77
Insertion (0.0, 1.0) 53.48± 3.49 63.20± 1.78 71.24± 1.04 65.86± 0.62 68.26± 1.15 72.94± 0.67

Delet.+Insert. (0.5, 0.5) 47.40± 1.73 57.34± 1.53 60.77± 1.57 57.94± 0.92 62.54± 1.55 67.11± 0.93

CS
(α, β) GCN GCN-k (ε = 0.5) GCN-k (ε = 0.2) GCN-jk GCNII GCN-k-jk

(0.0, 0.0) 88.44± 0.84 89.81± 0.52 91.64± 0.39 90.19± 0.59 92.13± 0.39 91.73± 0.26
Deletion (0.5, 0.0) 86.68± 0.57 86.17± 1.06 88.91± 0.62 88.44± 0.69 90.01± 0.69 91.43± 0.60
Insertion (0.0, 1.0) 35.84± 6.91 81.06± 3.94 88.27± 0.92 81.70± 0.63 89.33± 1.02 91.42± 0.48

Delet.+Insert. (0.5, 0.5) 45.08± 4.82 76.27± 1.08 82.23± 1.08 73.08± 1.07 88.66± 0.70 87.53± 0.85

Table 4: Performance of GCN with and without node-feature kernel under both graph-structural and node-
feature perturbation on PubMed dataset. The format follows Table 1.

γ = 0.5 γ = 1.0 γ = 5.0
(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 72.78± 1.62 73.88± 2.04 68.40± 2.95 66.82± 1.81 42.43± 2.95 39.14± 2.6
Deletion (0.5, 0.0) 71.61± 1.31 70.33± 2.38 63.81± 3.43 64.93± 2.14 40.41± 1.92 38.11± 1.99
Insertion (0.0, 1.0) 58.23± 1.79 68.14± 1.67 55.37± 3.33 63.35± 2.30 38.25± 1.93 38.72± 1.93

Node feature noise We now study how node fea-
ture noise interacts with our proposed model. We
perform the experiments with the same perturbation
setting on the PubMed dataset. But add Gaussian
noise N (0, γ diag(σi)) to the node features where σi
is the estimated variance of the ith feature and γ is
a scaling parameter. The results are recorded in Ta-
ble 4. We observe that only when the node feature
noise is five times larger than the graph structure noise
(γ = 5), the addition of the node feature kernel stops
to benefit the model performance. Our previous find-
ings still hold if the node feature noise is reasonably
small (γ ≤ 1).

5 CONCLUSION

We have introduced the random GCN, which we anal-
ysed theoretically using random matrix theory. Our
analysis allowed us to conclude that perturbations of
the graph structure strongly influence the performance
of the GCN regardless of the information contained in
the node features. For stochastic blockmodel graphs
the presence of community structure (and the degree
to which this structure is present) is required (ben-
eficial) for a message passing scheme which leads to
eigenvectors of the message passing operator’s Gram
matrix that align with the node labels. These con-
clusions were confirmed in multiple experiments with
the standard GCN architecture on synthetic and real-
world datasets. On both synthetic and real-world data
we observe the introduction of a node feature kernel to
the GCN’s message passing scheme to significantly im-
prove the performance of the GCN in the presence of

a noisy graph structure.
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Supplementary Material:
Node Feature Kernels Increase Graph Convolutional Network

Robustness

A RANDOM MATRIX THEORY BACKGROUND

We begin by recalling several random matrix theory tools that are needed to establish our main results. First,
we recall a fundamental result (Theorem 3) from Louart and Couillet (2018) which provides a deterministic
equivalent for the resolvent of a sample covariance matrix.
Theorem 3 (Deterministic equivalent for sample covariance matrices Louart and Couillet (2018)). Let M ∈
Rn×n such that ‖MMᵀ‖ < ∞8 w.r.t. n and Z̃ ∈ Rn×p some random matrix with i.i.d. entries having zero
mean, unit variance and a finite forth order moment. In the limit n→∞ with p/n→ c ∈ (0,∞), the resolvent

Q(z) =
(

1
pMZ̃Z̃ᵀMᵀ + zIn

)−1

for z ∈ C with =(z) > 0, admits a deterministic equivalent Q̄(z) defined as

Q̄(z) =

(
MMᵀ

1 + δ(z)
+ zIn

)−1

,

where δ(z) is the unique solution to the fixed point equation δ(z) = 1
p Tr

(
MᵀQ̄(z)M

)
.

Proof. Denote ai = Mz̃i, hence

Q(z) =

(
1

p

n∑
i=1

aia
ᵀ
i + zIn

)−1

= Q−i −
Q−i

1
paia

ᵀ
iQ−i

1 + 1
pa

ᵀ
iQ−iai

,

where Q−i =
(

1
p

∑n
j 6=i aja

ᵀ
j + zIn

)−1

, and we also have

Q(z)ai =
Q−iai

1 + 1
pa

ᵀ
iQ−iai

.

A deterministic equivalent for Q(z) (which approximates E[Q(z)]) is of the form Q̄(z) = (F + zIn)
−1 for some

deterministic matrix F , by computing the difference Q̄(z)− E[Q(z)] using the above identities, we obtain

Q̄(z)− E[Q(z)] =
1

n

n∑
i=1

E

[
Q−i

(
aia

ᵀ
i

1 + 1
pa

ᵀ
iQ−iai

− F

)
Q̄(z)

]

+
1

n2

n∑
i=1

E
[
Q−i(z)aia

ᵀ
iQ−i(z)FQ̄(z)

]
.

It can be shown that the matrix 1
n2

∑n
i=1 E

[
Q−i(z)aia

ᵀ
iQ−i(z)FQ̄(z)

]
has a vanishing operator norm as n→∞.

Therefore, F can be taken as

F =
E [aia

ᵀ
i ]

1 + E
[

1
pa

ᵀ
iQ−iai

] =
MMᵀ

1 + 1
p Tr(MᵀE [Q−i]M)

Which provides the defined deterministic equivalent in Theorem 3.

Another useful result which is known as the perturbation lemma (Silverstein and Bai, 1995) is also needed here.
8‖MMᵀ‖ remains constant as n goes to infinity.
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Lemma 4 (Perturbation lemma Silverstein and Bai (1995)). Let A,B ∈ Rn×n some symmetric matrices,
u ∈ Rn, γ ∈ R and z ∈ C with =(z) > 0, then∣∣Tr

(
A(B + γuuᵀ + zIn)−1

)
− Tr

(
A(B + zIn)−1

)∣∣ ≤ ‖A‖
|=(z)|

.

In particular, for A = 1
nIn, we have 1

n Tr(B + γuuᵀ + zIn)−1 = 1
n Tr(B + zIn)−1 +O(n−1), which shows that

the spectral measure of B + γuuᵀ is asymptotically close to that of B in the large n limit.

Finally, we will need the Woodbury matrix identity from the following Lemma.
Lemma 5 (Woodbury identity). Let A ∈ Rn×n and B ∈ Rk×k invertible and U ∈ Rn×k, then

(A+UBUᵀ)
−1

= A−1 −A−1U
(
B−1 +UᵀA−1U

)−1
UᵀA−1.

B PROOF OF THEOREM 1

The proof starts by establishing a random equivalent for the normalised Adjacency operator given by Ã =
1√
n

(A− qqᵀ). By Assumptions 2, 3 and 5, we have straightforwardly that, almost surely∥∥∥∥Ã− (q2ηȳȳᵀ +
1√
n
N

)∥∥∥∥→ 0, (13)

where N is a random matrix with i.i.d. entries of zero mean and variance ν = q2(1 − q2). Besides, since
E [XXᵀ] = ‖µ‖2

c ȳȳᵀ + In, letting γf = ‖µ‖2 and γg = q2η, we consider the equivalent multiplicative model for
Y defined as

Y =

(
γgȳȳ

ᵀ +
1√
n
N

)(γf
c
ȳȳᵀ + In

) 1
2

Z,

where Z is random matrix with i.i.d. entries of zero mean and variance 1
p . Conditionally on N , applying

Theorem 3 for M =
(
γgȳȳ

ᵀ + 1√
n
N
) (γf

c ȳȳ
ᵀ + In

) 1
2 , a deterministic equivalent of QY (z) = (Y Y ᵀ + zIn)

−1

is given by

Q̄Y |N (z) =


(
γgȳȳ

ᵀ + 1√
n
N
) (γf

c ȳȳ
ᵀ + In

) (
γgȳȳ

ᵀ + 1√
n
N
)

1 + δ1(z)
+ zIn

−1

(14)

=

(
UBUᵀ + 1

nNN
ᵀ

1 + δ1(z)
+ zIn

)−1

, (15)

where

U = [ȳ,φ] ∈ Rn×2, B =

[
γ2

2

(
γ1
c + 1

) (
γ1
c + 1

)
γ2(

γ1
c + 1

)
γ2

γ1
c

]
(16)

with φ = 1√
n
Nȳ, ȳ = y/

√
n and δ1(z) = 1

p Tr
((
UBUᵀ + 1

nNN
ᵀ
)
Q̄Y |N (z)

)
. Applying Lemma 4,

δ1(z) is simply the solution to δ1(z) = 1
p Tr

(
1
nNN

ᵀQ̄Y |N (z)
)
. Moreover, defining the matrix Q̄−BY |N (z) =(

1
nNN

ᵀ

1+δ1(z) + zIn

)−1

, we have by Lemma 5

Q̄Y |N (z) = Q̄−BY |N (z)− Q̄−BY |N (z)U
(

(1 + δ1(z))B−1 +UᵀQ̄−BY |N (z)U
)−1

UᵀQ̄−BY |N (z). (17)

Again by Theorem 3, a deterministic equivalent of Q̄−BY |N (z) is given by

Q̄−BY (z) =

(
νIn

(1 + δ1(z))(1 + δ2(z))
+ zIn

)−1

=
(1 + δ1(z))(1 + δ2(z))

ν + z(1 + δ1(z))(1 + δ2(z))
In, (18)

where δ2(z) is the unique solution to δ2(z) = 1
n Tr

(
νIn

(1+δ1(z))Q̄
−B
Y (z)

)
= ν(1+δ2(z))

ν+z(1+δ1(z))(1+δ2(z)) , and similarly δ1(z)

satisfies δ1(z) = 1
c

ν(1+δ1(z))
ν+z(1+δ1(z))(1+δ2(z)) . Therefore, replacing Q̄−BY |N (z) in (17) by its deterministic equivalent

Q̄−BY (z) and since UᵀU → T almost surely, provides the final result of Theorem 3.4.
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Table 5: Statistics of the datasets used in our experiments.
Dataset #features #nodes #edges #classes

Cora 1433 2708 5208 7
CiteSeer 3703 3327 4552 6
PubMed 500 19717 44338 3
CORA-Full 8710 18703 62421 67
Photo 745 7487 119043 8
CS 6805 18333 81894 15

C Proof of Corollary 2

Following the same procedure as in Section B, when η = 0, a deterministic equivalent for QY (z) takes the form

Q̄Y (z) = ζ(z)(1 + δ1(z))

(
In −

ζ2(z)γf
c+ νγfζ(z)

φφᵀ

)
. (19)

By definition of the deterministic equivalent, we have almost surely

|ȳᵀŷ|2 =
−1

2πi

∮
Γ

ȳᵀQY (−z)ȳdz →n→∞
−1

2πi

∮
Γ

ȳᵀQ̄Y (−z)ȳdz. (20)

Hence, we need to evaluate the Cauchy-integral −1
2πi

∮
Γ
ȳᵀQ̄Y (−z)ȳdz. In particular, the quadratic form

ȳᵀQ̄Y (z)ȳ evaluates as

ȳᵀQ̄Y (z)ȳ = ζ(z)(1 + δ1(z))

(
1− ζ2(z)γf

c+ νγfζ(z)
ȳᵀφφᵀȳ

)
→n→∞ ζ(z)(1 + δ1(z)).

Indeed, since the mapping X 7→ 1√
n
ȳᵀXȳ is 1√

n
-Lipschitz transformation w.r.t. the Frobenius norm ‖ · ‖F , then

we have the concentration inequality, for all t ≥ 0

P
(∣∣∣∣ 1√

n
ȳᵀNȳ − E

[
1√
n
ȳᵀNȳ

]∣∣∣∣ > t

)
≤ C e− (

√
n t/ν)2 , (21)

for some constant C ≥ 0 independent of n. In particular, since E
[

1√
n
ȳᵀNȳ

]
= 0, we have

P

(∣∣∣∣∣
(

1√
n
ȳᵀNȳ

)2

− E

[(
1√
n
ȳᵀNȳ

)2
]∣∣∣∣∣ > t

)
≤ C e−

√
n t
2ν , (22)

which shows that ȳᵀφφᵀȳ =
(

1√
n
ȳᵀNȳ

)2

concentrates around its mean value, with

E

[(
1√
n
ȳᵀNȳ

)2
]

=
1

n
Var [ȳᵀNȳ] =

1

n

n∑
i,j=1

ȳ2
i ȳ

2
jVar[Nij ] =

‖ȳ‖4 ν
n

→ 0.

Therefore, ȳᵀφφᵀȳ → 0 almost surely as n → ∞. The final step consists in evaluating the integral
1

2πi

∮
Γ
ζ(−z)(1 + δ1(−z))dz = 0 since the function z 7→ ζ(−z)(1 + δ1(−z)) does not have singularities on the

contour Γ. Indeed, this integral corresponds to the only noise case from the data model (i.e., Y = 1√
n
NZ).

D DATASETS AND IMPLEMENTATION DETAILS

Summary statistics of the datasets we used are shown in Table 5. As mentioned in the main paper, we experiment
on citation networks of Cora/CiteSeer/Pubmed/CoraFull (Sen et al., 2008; Shchur et al., 2018), as well as Amazon
co-purchase networks of Photo and Co-author network of authors from Computer Science (CS) domain (Shchur
et al., 2018). For train/valid/test splits, we follow the public split on Cora/CiteSeer/PubMed and construct the
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Table 6: Performance of the GCN with and without node-feature kernel under perturbation on six real-world
datasets with multiple train/valid/test splits. The format follows Table 1 in the main paper.

Cora CiteSeer PubMed
(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 76.25± 2.32 75.48± 1.87 66.31± 2.04 66.53± 2.10 74.80± 2.07 76.93± 2.20

Deletion (0.2, 0.0) 74.82± 1.68 73.26± 1.88 64.96± 1.57 64.27± 2.34 75.14± 2.06 74.21± 2.84
(0.5, 0.0) 70.78± 1.53 70.80± 1.83 63.14± 1.49 62.74± 1.80 74.17± 1.75 74.11± 2.06

Insertion (0.0, 0.5) 67.01± 2.11 71.96± 1.79 57.35± 2.02 62.19± 1.68 63.70± 2.95 71.62± 2.01
(0.0, 1.0) 58.92± 2.29 68.50± 1.45 50.53± 2.13 59.60± 2.04 57.07± 1.94 69.56± 1.92

CoraFull Photo CS
(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 58.42± 2.12 57.64± 1.45 91.48± 0.94 91.05± 1.28 92.09± 0.98 92.62± 0.92

Deletion (0.2, 0.0) 56.36± 1.70 57.18± 1.68 90.51± 1.29 91.30± 1.22 91.37± 1.26 91.79± 0.91
(0.5, 0.0) 54.58± 1.33 53.44± 1.47 90.07± 1.63 90.16± 1.10 89.78± 1.04 91.08± 1.27

Insertion (0.0, 0.5) 48.53± 1.58 53.55± 1.44 81.77± 2.31 83.52± 1.43 88.19± 0.96 91.25± 1.00
(0.0, 1.0) 43.18± 1.73 50.77± 1.89 75.21± 4.30 79.02± 3.04 83.83± 1.60 90.32± 0.89

train/valid/test set on CoraFull/Photo/CS by randomly sampling 20 nodes from each class to form the training
set and 500/1000 nodes respectively from the rest to form the validation and test set, as proposed in Yang et al.
(2016).

In line with our theoretical analysis, the main GCN architecture on which we experimented in this paper is a
single-layer GCN (one iteration of message passing and update) stacked with a Multi-Layer Perception (MLP).
The objective of the experiments is to validate our theoretical hypotheses and experiment with the robustness
of GCN models under graph structure perturbation. We also study empirically to what extent the validated
hypotheses extrapolate to scenarios where deeper GCN architectures with multiple layers of graph propagation
are used and/or node features are also perturbed. In comparison to the state-of-the-art models, in particular to
those which also place particular emphasis on the node features, we demonstrate that our proposed method has
superior or comparable performance and can be further improved when combined with other techniques.

All the experiments are performed using the Adam optimiser (Kingma and Ba, 2014) and the same set of hyper-
parameters, with learning rate being 1e-2, number of epochs being 200 and hidden feature dimension being 128.
We repeat each experiment 10 times and report the resulting means and standard deviations to accurately report
the impact of random initialisation.

We have made our implementation publicly available online9. It is built upon the open source library PyTorch
Geometric (PyG) under MIT license (Fey and Lenssen, 2019). The experiments are run on a Intel(R) Xeon(R)
W-2123 processor with 64GB ram and a NVIDIA GeForce RTX 2080Ti GPU with 12GB ram.

E ADDITIONAL EXPERIMENTS

E.1 Multiple Splits

Shchur et al. (2018) argue that different train/valid/test splits of datasets may have a non-negligible impact on
the performance of GNN models for the node classification task. To investigate the influence of different splits on
our hypothesis, we construct train/valid/test split for each dataset following Yang et al. (2016) over 10 random
seeds. As each experiment is repeated 10 times, a total of 100 results is obtained for a specific setting, i.e.,
specific α, β or ε. Similar to the results of one split, we report the mean and standard deviations of the 100
results in Table 6. Although the standard deviation increases since we introduce more variation in the multi-split
setting, the general trend remains the same, as shown in Table 6. Our conclusion drawn in the main paper still
holds: perturbations of the graph structure strongly influence the performance of the GCN and adding a node
feature kernel can robustify the GCN against such perturbations.

E.2 Models beyond the GCN

We also study the behaviour of our proposed method in a more general Message-Passing Neural Network (MPNN)
setting beyond the GCN. We choose three characteristic models, which are GIN (Xu et al., 2019), GraphSage
(Hamilton et al., 2017) and GAT (Veličković et al., 2018) models, and observe their performance under graph

9https://github.com/ChangminWu/RobustGCN

https://github.com/ChangminWu/RobustGCN
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Table 7: Performance of the GIN/GraphSage/GAT with and without node-feature kernel under perturbation on
three citation datasets. The format follows Table 1 in the main paper.

Cora
(α, β) GIN GIN-k Sage Sage-k GAT GAT-k

(0.0, 0.0) 78.56± 1.12 78.59± 0.8 75.94± 0.25 77.12± 0.65 78.20± 0.54 78.55± 0.69

Deletion (0.2, 0.0) 76.61± 0.58 76.73± 1.79 73.87± 0.92 75.29± 1.25 75.54± 0.77 77.01± 0.30
(0.5, 0.0) 71.31± 1.06 70.57± 0.63 67.35± 0.92 71.98± 0.99 71.25± 0.89 72.37± 0.74

Insertion (0.0, 0.5) 71.08± 1.08 72.19± 0.87 70.24± 1.01 71.42± 1.23 67.45± 1.21 72.13± 0.53
(0.0, 1.0) 66.21± 1.52 67.96± 0.67 66.0± 1.23 70.57± 0.95 62.14± 1.46 67.68± 0.89

Delet.+Insert. (0.5, 0.5) 56.82± 1.35 62.41± 1.07 61.86± 1.32 63.61± 0.94 53.82± 0.86 61.04± 1.24
(0.5, 1.0) 51.20± 2.04 59.28± 0.97 60.56± 0.81 64.13± 0.52 46.97± 1.15 52.13± 1.36

CiteSeer
(α, β) GIN GIN-k Sage Sage-k GAT GAT-k

(0.0, 0.0) 66.24± 0.89 66.96± 0.86 67.74± 0.85 68.97± 0.60 68.19± 0.92 67.82± 0.87

Deletion (0.2, 0.0) 62.24± 1.19 66.70± 1.44 65.97± 1.06 66.22± 0.78 66.31± 0.93 66.90± 0.94
(0.5, 0.0) 62.01± 1.01 62.30± 1.24 63.24± 0.59 64.97± 1.03 63.61± 1.03 65.43± 0.83

Insertion (0.0, 0.5) 58.90± 1.31 64.75± 1.49 64.71± 0.94 66.21± 0.72 59.44± 1.34 62.61± 1.30
(0.0, 1.0) 54.61± 1.28 59.25± 0.99 62.08± 0.99 63.04± 1.07 50.34± 0.99 58.46± 0.98

Delet.+Insert. (0.5, 0.5) 50.46± 2.02 57.9± 1.51 57.88± 1.35 63.56± 0.67 50.75± 1.21 55.81± 1.04
(0.5, 1.0) 43.98± 1.55 48.4± 1.47 58.51± 1.13 59.52± 1.07 43.56± 1.19 50.17± 1.35

PubMed
(α, β) GIN GIN-k Sage Sage-k GAT GAT-k

(0.0, 0.0) 77.13± 0.36 77.02± 0.58 76.44± 0.59 77.09± 0.64 76.08± 0.81 76.63± 0.47

Deletion (0.2, 0.0) 75.96± 0.47 75.45± 0.44 75.38± 0.34 75.83± 0.83 75.93± 0.46 76.17± 0.55
(0.5, 0.0) 74.29± 0.79 76.09± 0.45 72.10± 1.60 76.24± 0.49 73.46± 0.45 76.05± 0.51

Insertion (0.0, 0.5) 71.85± 0.79 73.63± 1.10 73.48± 0.48 74.18± 0.43 67.42± 0.63 69.80± 0.69
(0.0, 1.0) 64.27± 1.60 69.61± 1.3 74.37± 0.72 74.44± 0.32 64.73± 0.98 65.38± 0.73

Delet.+Insert. (0.5, 0.5) 64.65± 1.07 68.24± 0.61 72.59± 0.61 74.87± 0.37 62.66± 0.81 66.51± 0.9
(0.5, 1.0) 59.12± 1.19 63.20± 1.41 73.77± 0.37 72.64± 0.45 58.58± 0.80 63.60± 1.27

structural perturbation with node feature kernel (our proposed method) on three citation datasets. The models
are also implemented as a single graph-propagation layer followed by a MLP readout, as was the case for the
GCN. Results are gathered in Table 7. Similar to the results of the GCN, we can observe from Table 7 that
on every model and every dataset, adding a node-feature kernel in the graph propagation helps to robustify
the model performance against structural noises, in particular when edges are added. This empirical evidence
demonstrates the versatility of our proposed method for a general MPNN model.

E.3 Deeper GCN architecture and Benchmark Models

In this set of experiments, we observe to what extent the conclusions drawn in our theoretical analysis carry
over to deeper GCN architectures, and how our proposed model performs against similar methods in the deeper
architecture setting. We add three extra message passing layer to the previous single-layer model and repeat
our experiments on this deeper model as well as two state-of-the-art methods, the Jumping Knowledge (JK) and
the GCN with residual connections and an identity mapping (GCNII), which are specifically designed for deeper
models and take also advantage of the node feature information. Part of the results have already been shown in
Section 4.1 of the main paper. In Table 8 we show the results of the remaining four datasets, which agree with
the trends observed in the main paper.

E.4 Node Feature Noise

We now provide further experiment results in Figure 3 studying how node feature noise interacts with our
proposed model. We observe that only when the node feature noise is five times larger than the graph structure
noise, it starts to overshadow the benefit of adding the node feature kernel, as we can see from the pink curves,
with-kernel (dashed or dotted line) performs worse than without-kernel (solid line). Otherwise, the performance
of our kernel is robust and matches the observed trend repeatedly demonstrated in the previous experiments.
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Table 8: Performance of the GCN with and without node-feature kernel under perturbation on deep GCN models,
compared with jump knowledge and GCNII. The format follows Table 1 in the main paper, where in addition
we underline the second best result.

CiteSeer
(α, β) GCN GCN-k (ε = 0.5) GCN-k (ε = 0.2) GCN-jk GCNII GCN-k-jk

(0.0, 0.0) 66.72± 1.93 66.76± 0.78 67.75± 1.39 68.70± 1.06 67.59± 0.81 69.10± 0.92
Deletion (0.5, 0.0) 62.68± 1.39 64.52± 2.03 62.72± 1.65 65.49± 0.94 61.91± 1.52 63.82± 2.01
Insertion (0.0, 1.0) 45.14± 1.89 48.39± 1.88 56.69± 1.91 53.26± 1.44 57.41± 1.67 62.83± 1.06

Delet.+Insert. (0.5, 0.5) 39.68± 1.96 48.26± 1.91 51.10± 1.26 49.50± 0.86 53.19± 1.58 58.12± 1.02

PubMed
(α, β) GCN GCN-k (ε = 0.5) GCN-k (ε = 0.2) GCN-jk GCNII GCN-k-jk

(0.0, 0.0) 76.50± 0.71 77.82± 0.86 77.80± 0.92 77.36± 0.74 78.14± 0.87 77.56± 1.62
Deletion (0.5, 0.0) 73.92± 0.64 74.53± 0.97 76.19± 0.73 73.00± 0.93 75.00± 0.65 75.60± 1.09
Insertion (0.0, 1.0) 46.98± 2.87 68.29± 7.93 72.42± 1.11 65.01± 1.70 72.86± 0.75 73.20± 0.89

Delet.+Insert. (0.5, 0.5) 62.35± 1.01 65.19± 1.78 70.79± 1.08 65.07± 0.83 69.06± 0.67 66.28± 1.37

CoraFull
(α, β) GCN GCN-k (ε = 0.5) GCN-k (ε = 0.2) GCN-jk GCNII GCN-k-jk

(0.0, 0.0) 49.33± 0.61 55.27± 0.97 52.38± 1.62 58.56± 1.20 56.83± 0.67 56.10± 0.89
Deletion (0.5, 0.0) 46.80± 1.35 45.33± 1.37 46.71± 1.12 51.42± 1.48 51.57± 1.03 51.76± 1.32
Insertion (0.0, 1.0) 3.52± 0.76 9.60± 2.62 19.59± 2.42 42.07± 0.92 48.79± 1.28 52.00± 0.87

Delet.+Insert. (0.5, 0.5) 7.10± 1.60 12.98± 1.56 22.06± 1.27 38.74± 0.86 41.27± 1.31 45.74± 1.22

Photo
(α, β) GCN GCN-k (ε = 0.5) GCN-k (ε = 0.2) GCN-jk GCNII GCN-k-jk

(0.0, 0.0) 87.67± 1.59 89.59± 0.63 88.64± 1.19 91.82± 0.58 92.05± 0.88 92.42± 0.58
Deletion (0.5, 0.0) 88.04± 1.02 88.81± 0.33 87.23± 1.20 90.44± 1.07 87.65± 1.85 91.45± 0.52
Insertion (0.0, 1.0) 27.75± 3.39 29.6± 3.22 24.05± 2.56 77.54± 3.44 85.68± 1.94 81.89± 3.24

Delet.+Insert. (0.5, 0.5) 31.27± 4.58 27.65± 6.01 29.32± 4.17 75.38± 5.41 87.32± 1.11 73.57± 5.92

Figure 3: Experiment Results with the co-appearance of graph structural noise and node feature noise on three
citation datasets. The vertical line at a rate of 1 represents the performance on the unperturbed graph. On its
left is the edge deletion case, with rate less than 1, where the most perturbed case corresponds to rate 0; on
the right is the edge insertion case, where the perturbations grow with the rate. Different colours represent the
extent of node feature perturbation.
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