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Abstract

We prove lower bounds for higher-order
methods in smooth non-convex finite-sum
optimization. Our contribution is threefold:
We first show that a deterministic algorithm
cannot profit from the finite-sum structure
of the objective, and that simulating a pth-
order regularized method on the whole func-
tion by constructing exact gradient infor-
mation is optimal up to constant factors.
We further show lower bounds for random-
ized algorithms and compare them with the
best known upper bounds. To address some
gaps between the bounds, we propose a new
second-order smoothness assumption that
can be seen as an analogue of the first-order
mean-squared smoothness assumption. We
prove that it is sufficient to ensure state-of-
the-art convergence guarantees, while allow-
ing for a sharper lower bound.

1 INTRODUCTION

Many problems in machine learning can be formu-
lated as empirical risk minimization, viewing the
loss function on each data point as a component
function fi in a sum. This problem can then be cast
as minimizing an objective function F : Rd → R,
F (x) = 1

n

∑n
i=1 fi(x) under a variety of smoothness

assumptions, where in each iteration, the derivatives
of the loss on a single data point can be queried.
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The ultimate goal would be to find

x∗ = arg min
x∈Rd

F (x).

Without relying on convexity, which is an unrealistic
assumption in many machine learning applications
(e.g. training neural networks (LeCun et al., 2015)
or robust linear regression (Yu and Yao, 2017)), we
consider the case where the objective is possibly
non-convex. In this setting, finding such a global min-
imum is in general NP-Complete (Murty and Kabadi,
1987), so theoretical guarantees are expressed in
terms of weaker requirements. Inspired by necessary
conditions for minima, customary guarantees are
approximate first-order or second-order stationary
points (FOSP, SOSP). We will focus here on the
oracle complexity of finding an ε-approximate
first-order stationary point of F , that is a point x,
such that ‖∇F (x)‖ ≤ ε. This is a standard problem
formulation commonly studied in the literature
(Carmon et al., 2019a,b; Arjevani et al., 2019; Fang
et al., 2018; Zhou and Gu, 2019; Zhou et al., 2019;
Zhou and Gu, 2020).

When machine learning data sets are large, gradi-
ents are often approximated by evaluating only a
subset of all training examples (Bottou et al., 2018).
This leads to a model where in each iteration of
an algorithm, one fi’s derivative information can be
queried. In this model, the most prevalent algorithms
today are stochastic gradient descent (SGD) and vari-
ants thereof. More query efficient algorithms have
been explored too. Variance reduction techniques
– first introduced for convex optimization (Johnson
and Zhang, 2013) – have been successfully applied in
the non-convex setting (Allen-Zhu and Hazan, 2016;
Reddi et al., 2016; Lei et al., 2017; Fang et al., 2018).
These algorithms draw their speedup from cleverly
constructed low-variance gradient estimators. On
the other hand, higher-order information provably
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helps speed up the convergence, and can potentially
be harnessed to get guarantees in terms of SOSPs
(Nesterov and Polyak, 2006; Birgin et al., 2017; Car-
mon et al., 2019a). Motivated by this fact there have
been successful attempts to apply variance reduction
techniques to higher-order algorithms, in order to
make practically relevant subsampled variants of clas-
sical procedures like the cubic regularized Newton’s
method (Zhou et al., 2019; Zhou and Gu, 2020).

These results naturally raise complexity-theoretic
questions and warrant the study of corresponding
lower bounds. In their seminal work Carmon
et al. (2019a) show that the optimal rate for the
n = 1, non-convex case is Θ(ε−(p+1)/p), by giving a
non-convex variant of Nesterov’s “worst function in
the world” (Nesterov, 2004). However, as mentioned
before, modern machine learning systems are typ-
ically working with datasets so large that computing
the full derivative information in each step of the
algorithm is impractical. It is therefore imperative to
understand the complexity of higher-order methods
in the finite-sum case.

We give the first lower bound results for the problem
of finding an approximate stationary point of a
sum of pth-order individually smooth non-convex
functions, in a model where the algorithm queries the
derivatives of individual functions at each time-step.
We provide lower bounds for both deterministic and
randomized algorithms. An overview of our results
is given in Table 1.

First we consider deterministic algorithms and show
that a pth-order regularized method that constructs
the full derivative at each iteration is optimal up to
constant factors. We use an adversarial construction
that forces the algorithm to spend a large number of
queries to discover useful information. To the best of
our knowledge, this result is also new for the widely
studied case of first-order smooth non-convex finite-
sum optimization and implies that gradient descent
on the full function is optimal up to constant factors.
With this result we demonstrates a clear separation
between deterministic and randomized algorithms.

1.1 Our Contributions

Further, we give the first lower bounds for randomized
algorithms in this setting, which allow for evaluation
of the new line of research of higher-order variance-
reduction. We derive the bounds with a probabilistic
construction, building on the family of zero-chain

Table 1: A comprehensive overview of the upper
and lower bounds for first-, second- and higher-order
oracle models. We assume each fi has Lipschitz
pth-order derivative tensor. The first row refers to
deterministic algorithms while the three below con-
cern the randomized setting. Our contributions are
highlighted in grey.

Upper bound Lower bound

Deter. O(nε
− p+1

p ) a Ω(nε
− p+1

p ) b

Rand.

p = 1 O(n
1
2 ε−2) c Ω(ε−2) d;f

p = 2 Õ(n
4
5 ε−

3
2 ) e Ω(n

1
4 ε−

3
2 ) f

p > 2 O(nε
− p+1

p ) a Ω(n
p−1
2p ε

− p+1
p ) f

a Birgin et al. (2017) b Theorem 3.5 c Fang et al.
(2018) d Zhou and Gu (2019) e Zhou et al. (2019)
f Theorem 4.7

functions first introduced by Carmon et al. (2019a).
In contrast to the first-order case studied by Zhou
and Gu (2019), we show a non-trivial dependence on
n for the p > 1 regime. Our bounds indicate that vari-
ance reduction indeed gets harder for higher-orders
of smoothness, which is consistent with practical find-
ings (Goodfellow et al., 2016). Contrary to some prior
work (Zhou and Gu, 2019; Han et al., 2021; Zhang
et al., 2021), we do not need the assumption that the
points queried by the algorithm must lie in the span
of previously queried points and oracle responses. Un-
der this assumption, lower bounds would not apply to
algorithms that add noise at each step (e.g. stochastic
gradient langevin dynamics (Welling and Teh, 2011))
or purposefully break with the span assumption to
get faster convergence rates (Hannah et al., 2018).

All our bounds are tight in terms of ε dependence,
but some gaps with respect to the dependence on n
remain. To alleviate this gap in the second-order case,
we introduce a new, weaker notion of second-order
smoothness and show that it is sufficient to guaran-
tee state-of-the-art oracle complexities for variance-
reduced methods, while allowing for a tighter lower
bound. To upper bound the oracle complexity in this
new setting, we show that the variance of SVRC’s
(Zhou et al., 2019) Hessian and gradient estimators
can be controlled via the second-order mean-cubed
smoothness of the finite-sum function. Table 2 shows
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Table 2: Lower and upper bounds for randomized
second-order methods under smoothness of individual
functions fi (Indiv.) and the third-moment smooth-
ness of Assumption 4.8 (Avg.). Our contributions
are again highlighted in grey.

Upper bound Lower bound

Indiv. Õ(n
4
5 ε−

3
2 ) a Ω(n

1
4 ε−

3
2 ) b

Avg. Õ(n
4
5 ε−

3
2 ) c Ω(n

5
12 ε−

3
2 ) d

a Zhou et al. (2019) b Theorem 4.7 c Theorem 4.9
d Theorem 4.10

our bounds and contrasts them with our results for
individually smooth functions.

1.2 Related Work

1.2.1 Stochastic Second-Order Methods

While there exist approaches exploiting third-order
derivatives (Lucchi and Kohler, 2019), most work
has focused on Hessian based algorithms: Zhou
et al. (2019) give a method (SVRC) that uses only
Õ(n4/5ε−3/2) 1 second-order oracle queries to find a
SOSP under a second-order smoothness assumption
on each of the fis. Shen et al. (2019) provide an even
faster trust-region method (STR2) that achieves the
second-order oracle complexity of Õ(n3/4ε−3/2), but
under the stronger assumption that the gradient is
Lipschitz continuous as well. Finally, we point out
that there is a line of research which tries to minimize
Hessian complexity at the cost of additional gradient
queries (Shen et al., 2019; Zhou and Gu, 2020). For
the higher-order oracle complexity measure that we
focus on here, SVRC and STR2 represent the best
known upper bounds for second-order randomized
algorithms. As we only assume pth-order smoothness,
we take SVRC (Zhou et al., 2019) as reference for
second-order methods.

1.2.2 Related Work on Lower Bounds

Lower bounds for smooth non-convex optimization
have all built on the works of Carmon et al. (2019a,b).
This line of work focuses on the case where the
objective is composed of a single smooth function
(i.e., n = 1) and full derivative information is avail-

1We use Õ to hide polylogarithmic factors in d, n and
1/ε

able at each iteration. Among other things, they
establish the optimal rate of Θ(ε−(p+1)/p) to find ε-
approximate FOSPs for algorithms having access to
as much derivative information as needed under the
assumption that the function is pth-order smooth.
We build on this by generalizing to the finite-sum
case. On the other hand, our work also draws on
that of Fang et al. (2018), which show a lower bound
for the first-order finite-sum case under the mean-
squared smoothness assumption. We generalize this
to arbitrary orders of smoothness, deriving bounds
which suggest that reducing the variance is harder
for higher-orders of smoothness. We also propose a
third-moment smoothness assumption on the Hessian
that can be seen as the higher-order analogue of the
mean-squared smoothness assumption.

Furthermore, Zhou and Gu (2019) prove lower bounds
on first-order algorithms for a variety of regimes in
finite-sum optimization, including the non-convex
case. A shortcoming of their results is that they
place a linear-span restriction on the algorithms in
question. This assumption may be violated, and our
work does not rely on it, which makes our bounds
more future proof. Indeed, there are indications that
breaking with the span assumption yields better rates
(Hannah et al., 2018). Another lower bounds paper
that shares some settings in common with ours is a
recent survey from Han et al. (2021).

It is worth noting that Arjevani et al. (2019) and
Arjevani et al. (2020) prove lower bounds for a dif-
ferent stochastic setting. In this model one does not
assume a finite-sum structure, but typically places
variance assumptions on the queried derivative in-
formation. The first paper focuses on first-order
stationary points, while the second is considering ap-
proximate local minima and higher-order algorithms.
Interestingly, they show that information beyond
second-order is not useful in stochastic non-convex
optimization (Arjevani et al., 2020). This is very
opposed to the deterministic finite-sum setting we
cover, where higher-order smoothness results in sub-
stantially more query efficient algorithms. Our results
suggest that the finite-sum randomized setting lies in
between these two: higher-order information helps to
get a better dependency on the accuracy parameter
ε, but the higher-order smoothness alone makes the
variance of an unbiased derivative estimator harder
to control, yielding an increasing dependence in n.
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2 PRELIMINARIES

2.1 Problem Description

We focus on finding ε-approximate first-order
stationary points. We assume that a problem
instance is a function F = 1

n

∑n
i=1 fi, which satisfies

the following assumption.
Assumption 2.1. We say F ∈ Fnp (∆,Lp) if for
some d, F : Rd → R, x 7→ 1

n

∑n
i=1 fi(x) satisfies the

following properties

i) Each function fi is pth-order smooth, i.e. its pth-
order derivative tensor is Lipschitz continuous
w.r.t. to the tensor operator norm:

‖∇pfi(x)−∇pfi(y)‖ ≤ Lp‖x− y‖.

ii) Assuming that an algorithm starts at iterate x0 =
0, the initial gap to optimality is bounded by

1

n

n∑
i=1

fi(x0)− inf
x

1

n

n∑
i=1

fi(x) ≤ ∆.

Whenever n, p, Lp and ∆ are obvious from con-
text, we say that F satisfies Assumption 2.1 if
F ∈ Fnp (∆,Lp).

2.2 Algorithm and Oracle Models

Usually, when pth-order smoothness is assumed, one
works with derivatives up to the pth order. Therefore,
in the interest of deriving lower bounds, it is even
stronger to let the algorithm have access to as many
derivatives as it could possibly require. It turns out
that this actually will not change the bounds, and
that they depend only on the order of smoothness
p of the considered function. We assume that an
algorithm queries iterates according to the following
definition, and we will lower bound the number of
such queries it needs to do to reach its objective.
Assumption 2.2. In the incremental higher-order
oracle model (IHO), an oracle for a function F =
1
n

∑
fi consists of a mapping2

O
(q)
F : [n]× Rd →

(
R,Rd, ...,R⊗

qd
)

(i,x) 7→ ∇(0:q)fi(x).

2We write i : j or [i : j] for the set of integers {i, . . . , j}
and let [m] := [1 : m]. Furthermore, we define R⊗kd to be
the space of k-dimensional tensors over Rd. We denote
by ∇(0:q) the union of derivative tensors up to the order
q.

We condense the notation by letting
O

(q)
F (i0:t−1,x(0:t−1)) correspond to the union of

all oracle responses before iteration t, i.e.

At this point we would like to mention that this is a
widely used model, but it is not the only one. There
are methods like Lite-SVRC (Zhou et al., 2018; Wang
et al., 2019; Zhou et al., 2019) and STR1 (Shen et al.,
2019) that minimize the number of Hessian queries at
the cost of slightly more gradient queries, since gradi-
ent computations are less expensive. Thus, a model
might allow for queries to different oracles. Finding
lower bounds in a model where multiple query com-
plexities are distinguished between has been done
in distributed convex optimization (e.g. Woodworth
et al. (2021)), where gradient oracle queries and com-
munication between workers are assumed to incur
separate costs. We leave exploring related ideas in
our setting to future work.

We will now think of an algorithm as generating
a sequence of indices and iterates, namely those it
queries the IHO on.
Assumption 2.3. We will assume that an algorithm
A has access to an infinite sequence of random bits
ξ ∼ U([0, 1]) drawn at the beginning of the proce-
dure. 3 Then, A consists of a sequence of mappings
{A(t)}t∈N which produce indices and iterates [it,x(t)]
based on previous oracle responses:

A(t)
{
ξ, i0:t−1,x(0:t−1),O

(q)
F (i0:t−1,x(0:t−1))

}
.

Without loss of generality, we set x(0) = 0 because if
a function f is difficult to optimize for starting point
0, then x 7→ f(x − x(0)) is difficult to optimize for
starting point x(0). Finally, we set no restrictions on
how i0 is chosen.

Note that this is quite a general assumption, merely
capturing the fact that the algorithm performs some
arbitrary computation between different queries. It
is worth mentioning that in our setting, any potential
randomness is inside the algorithm and not the oracle.

2.3 Complexity Measure

Finally, we need a proper measure to characterize the
complexity of an algorithm. We choose the following.
Definition 2.4. We define the oracle complexity
Tε(A, F ) of an algorithm A on F as the infimum

3For a deterministic algorithm, we simply assume the
sequence is fixed.
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over all t ∈ N such that the following holds with
probability at most 1

2 :

∀s ≤ t : ‖∇F (x(s))‖ > ε.

In other words, this corresponds to t such that for
all larger t′, with probability 1/2 the algorithm will
encounter an iterate s ≤ t′ with sufficiently small
gradient.

We note that Tε(A, F ) ≥ t implies that for all s ≤ t,
P (‖∇F (x(s))‖ > ε) ≥ 1/2, and so by Markov’s in-
equality, ε/2 ≤ εP (‖∇F (x(s))‖ > ε) ≤ E‖∇F (x(s))‖
for all s ≤ t. This implies that we can also compare
our lower bounds to the methods which give guaran-
tees in terms of a complexity that ensures an output
with a small gradient in expectation.

3 DETERMINISTIC METHODS

In this section, we show that any algorithm that can
not resort to randomness can outperform only by a
constant factor one that simulates a higher-order regu-
larized method (Birgin et al., 2017). By the latter, we
mean a procedure which constructs the full derivative
information at each step by querying all n functions.

Inspired by Carmon et al. (2019a) and Woodworth
and Srebro (2016), we define a family of hard in-
stances that we will later instantiate depending on
the algorithm’s behaviour. The main intuition is to
utilize an underlying function which has a large gradi-
ent as long as there are coordinates left which are very
close to zero. Depending on the queries of the algo-
rithm, we will adversarially and incrementally choose
a rotation of the input space in such a way that these
coordinates indeed stay close to zero for a long time.
Definition 3.1. Let K ∈ N and for k ∈ [K] let
δk ∈ {0, 1} be arbitrary. We define the function
fK,δ : RK → R as

fK,δ(x) := −δ1Ψ(1)Φ(x1)

+

K∑
k=2

δk [Ψ(−xk−1)Φ(−xk)− Ψ(xk−1)Φ(xk)] ,

where the functions Φ and Ψ are given by

Ψ(x) :=

{
0 x ≤ 1/2

exp
(

1− 1
(2x−1)2

)
otherwise

and
Φ(x) :=

√
e

∫ x

−∞
e−

1
2 t

2

dt.

We should emphasize that the function f̄K defined
by Carmon et al. (2019a) can be represented by fK,1.

For the remaining parts of this section, assume the
algorithm A, the number of functions n and param-
eters ∆ and Lp to be fixed. The idea is to con-
struct n functions of the above family, where each
function fi(x) will be given (modulo rescaling) by
fK+1,δi(V

Tx) for some suitable δi ∈ {0, 1}K+1 and
shared V ∈ Rd×K+1. This can be seen as a non-
convex instantiation of the ideas introduced by Wood-
worth and Srebro (2016) for first-order algorithms.
We will split up the iterates of the algorithm in rounds,
starting at k = 2 and ending at k = K + 1. Thus
after round k, in total k− 1 rounds will have elapsed.
We define a round to span queries to dn/2e different
functions. With those concepts in hand, we define
the hard instance as:

Definition 3.2. For i ∈ [n] let δi,1 = 1[i ≤ dn/2e].
For k ∈ [2 : K + 1] let δi,k = 1 iff A does not query
function i during round k. Further, let d ≥ K+1 and
let V ∈ Ortho(d,K+1) be a matrix with orthonormal
columns. Let λ, σ > 0 be parameters we will fix later.
Then, we define

fi(x) = λσp+1fK+1,δi

(
VTx/σ

)
,

and consequently F (x) = 1
n

∑n
i=1 fi(x).

We now prove that there exists an adversarial rotation
with the following property:

Lemma 3.3. In Definition 3.2, V can be chosen
such that for the sequence of indices and iterates
{[it,x(t)]} that algorithm A produces up to the end of
round K + 1, we have 〈vK+1,x

(t)〉 = 0 for all t.

A key property of the function f̄K = fK,1 is that
as long as the last coordinate in its input is zero,
the gradient of the function will be lower bounded
by a constant. This property can be transferred to
F = 1

n

∑
fi:

Lemma 3.4. For all iterates up to the end of round
K + 1, we have

(
VTx(t)

)
K+1

= 0, and consequently

‖∇F (x(t))‖ > λσp/4.

To show the main result, we have to set the
scaling parameters such that our function respects
Assumption 2.1. Note that λ controls the smoothness
parameter, σ controls the gradient norm lower bound
and K needs to be chosen as large as possible, but
in a way that makes F respect the initial optimality



On the Oracle Complexity of Higher-Order Smooth Non-Convex Finite-Sum Optimization

gap ∆. Together, they can be chosen to imply the
theorem below.
Theorem 3.5. For any p and deterministic algorithm
A satisfying Assumption 2.3, for any n, ∆ and Lp
and ε there exists a function F ∈ Fnp (∆,Lp) such
that

Tε(A, F ) ≥ Ω
(

(Lp/`p)
1/p

∆nε−(p+1)/p
)
, (1)

where the constant factors hidden by Ω do not depend
on n, ε or p and `p ≤ exp

(
5
2p log p+ cp

)
for some

constant c < ∞. Moreover, the dimension of this
function merely needs to be of the same order as (1).

To summarize, we get a lower bound of
Ω
(
nε−(p+1)/p

)
. In the noiseless n = 1 setting, the

optimal complexity is characterized by Θ(ε−(p+1)/p)
(Carmon et al., 2019a). Indeed, Birgin et al. (2017)
prove this to be achievable with higher-order regular-
ized methods, subsuming results known for gradient
descent and cubic regularization. These methods also
imply that Theorem 3.5 characterizes the optimal ora-
cle complexity, as we can simulate a higher-order regu-
larized method by spending n queries at each iterate.

4 RANDOMIZED METHODS

When constructing hard instances for randomized al-
gorithms, one does not have the luxury of reacting to
the algorithm’s queries, because we cannot anticipate
the random seed ξ. The approach taken here is to
draw orthogonal vectors from some high-dimensional
space and show that with some fixed probability, the
iterates of the algorithm will be close to orthogonal
to this set of important directions.

The analysis of those constructions is quite intricate,
and the dimension of the domain required is larger,
even more so when dropping the assumption that the
iterates stay in the span of the queried derivatives
(as assumed, e.g. by Zhou and Gu (2019)). We will
first provide a sketch of the main argument, and then
go on to state the key results.

To reason about the construction, a very useful notion
is that of a higher-order (robust) zero-chain (Carmon
et al., 2019a).
Definition 4.1 [Robust zero-chain]. A function f :
Rd → R is a robust zero-chain if for all i ∈ [d] and
x ∈ Rd the following implication holds: If |xj | < 1

2
for all j ≥ i, then

∀y ∈ N(x) : f(y) = f(y1, . . . , yi, 0, . . . , 0),

where N(x) denotes an open neighborhood of x.

One can observe that the partial derivatives of such
a function f at x are zero for all indices j > i, which
is the key to ensure that the oracle responses give
away information slowly.

Recall the function f̄K = fK,1 from Definition 3.1.
This function is a robust zero-chain for any K ≥ 1
(Carmon et al., 2019a). Since it also has the desirable
property that its gradient is large as long as there
remain coordinates which are close to zero, we can
exploit copies of it in a lower bound construction.
Instead of using a single matrix V to rotate the input
adversarially, we will follow Fang et al. (2018) and
use n different matrices Bi with orthogonal columns
drawn at random and prove that with some fixed
probability for a large number of iterates

〈bi,K ,x(t)〉 < 1/2.

This will (similarly as in the deterministic case) im-
ply that the gradient of function i is bounded from
below. We will refer to the process of the algorithm
finding inputs that make these inner products large
as “discovering” coordinates.
Definition 4.2 [Finite-sum hard distribution]. Let
n,K ∈ N. Let d ∈ N be divisible by n and let
R = 230

√
K. Then draw B =

[
B1 | · · · |Bn

]
∈

Ortho(d/n, nK) uniformly at random and let C =[
C1 | · · · |Cn

]
∈ Ortho(d, d) be arbitrary. We define

our unscaled hard instance as F ∗ = 1
n

∑n
i=1 f

∗
i with

f∗i (x) = f̂K;Bi(C
T
i x) where

f̂K;Bi(y) := f̄K
(
BT
i ρ (y)

)
+

1

10
‖y‖2

and
ρ(y) :=

y√
1 + ‖y‖2/R2

.

Because of the random choice of matrix B, this in-
duces a distribution.

This construction has been used in Fang et al. (2018)
to show a lower bound for the first-order mean-
squared setting and the last two definitions are orig-
inally due to Carmon et al. (2019a). In the follow-
ing, we generalize their result to arbitrary orders of
smoothness. A brief discussion is in order: the pur-
pose of Bi is as discussed above, namely using the
zero-chain property of f̄K to make sure that any algo-
rithm has a hard time discovering coordinates. The
composition with ρ ensures that an algorithm cannot
simply make the iterates large to learn coordinates,
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and Ci will be useful to bound the gradient norm of
F in terms of the ‖∇fi‖’s: exactly what we need for
a lower bound.

Our goal is to derive lower bounds for any possible
Lipschitz constants and optimality gaps. This means
that we will scale F ∗ to meet the various requirements.
The notion of a function-informed process (Carmon
et al., 2019a) will enable us to reason about a scaled
version of our function F ∗ while thinking about what
another algorithm would do on the unscaled F ∗.
Definition 4.3 [Function-informed process]. We call
a sequence of indices and iterates {[it, x(t)]}t∈N in-
formed by a function F if it follows the same distri-
bution as A[F ] for some randomized A.
Lemma 4.4. Let F be an instance of a finite-
sum optimization problem. Let a, b > 0. Con-
sider the function G(x) = aF (x/b) and assume
{[it,x(t)]}t∈N is produced by A on function G, i.e.
A[G] = {[it,x(t)]}t∈N. Then {[it,x(t)/b]}t∈N is in-
formed by F .

Above, we hinted at the importance of small inner
products of the iterates with the columns of the
matrices Bi. This intuition is formalized in the
lemma below, that generalizes results from Fang
et al. (2018), Woodworth and Srebro (2016) and
Carmon et al. (2019a).
Lemma 4.5. Let {[it,x(t)]}t∈N be informed by F ∗
drawn from the distribution in Definition 4.2, let
δ ∈ (0, 1) and T = nK

2 . For any t ∈ [T ] and i ∈ [n],
let It−1

i be the number of occurrences of index i in
i0:t−1, i.e. the number of queries with index i up to
iteration t (the iteration producing x(t)). Let I−1

i = 0

by default. For any t ∈ {0, . . . , T} define U (t)
i to be

the set of the last K− I(t−1)
i columns of Bi (provided

K − It−1
i ≥ 1, otherwise the set is empty). More

formally

U (t)
i :=

{
bi,It−1

i +1, . . . ,bi,K

}
.

Then the following holds for some constant c0 <∞: if
d ≥ c0n3K2 log(n

2K2

δ ), then with probability at least
1− δ we have ∀t ∈ {0, . . . , T}, ∀i ∈ [n], ∀u ∈ U (t)

i

|〈u, ρ(CT
i x

(t))〉| < 1

2
.

The key takeaway from Lemma 4.5 is that for each
index i ∈ [n] the algorithm needs K queries to that
index to learn all columns of Bi. Consequently, the in-
put of the zero-chain f̄K stays small in absolute terms

for the coordinates corresponding to columns in U (t)
i

with high probability. This is good because f̄K ’s large-
gradient property (see discussion preceding Lemma
3.4) then makes the gradient of F ∗ large as well:

Lemma 4.6. Let {[it,x(t)]}t∈N be informed by F ∗
drawn from the distribution in Definition 4.2 and let
δ ∈ (0, 1). Then the following holds for some numer-
ical constant c0 <∞: if d ≥ c0n3K2 log(n

2K2

δ ), with
probability at least 1−δ we have for all t ∈ {0, . . . , T}

‖∇F ∗(x(t))‖ > 1/(4
√
n).

4.1 Lower Bound for the Individual Smooth
Setting

To derive results for any incarnation of the func-
tion classes in Assumption 2.1, one can rescale the
function and the inputs and use the above lemmas, ex-
ploiting the fact that they hold for function-informed
processes. The analysis yields:

Theorem 4.7. For any randomized algorithm A
satisfying Assumption 2.3, p ∈ N, ∆, Lp, ε and

n ≤ cp∆
2p
p+1L

2
p+1
p ε−2, there exists a dimension

d ≤ Õ(n
2p−1
p ∆L

2/p
p ε−

2(p+1)
p ) ≤ Õ(n2∆L2

pε
−4) and

a function F ∈ Fnp (∆,Lp) such that

Tε(A, F ) ≥ Ω
(
Lp

1
p ˆ̀−

1
p

p ∆n
p−1
2p ε−

p+1
p

)
,

where ˆ̀
p ≤ exp(cp log p+c) for some constant c <∞.

For fixed p, cp is also a universal constant.

Our result is essentially a lower bound of
Ω
(
n
p−1
2p ε−

p+1
p

)
for fixed p, up to constant factors.

The increasing dependence on n is consistent with the
empirical observation that higher-order methods typ-
ically need to employ larger batch sizes (see Section
8.1.3 in Goodfellow et al. (2016)).

For second-order algorithms, the best rate with our in-
dividual smoothness assumption is achieved by Zhou
et al. (2019). Their algorithm finds an approximate lo-
cal minimum in Õ(n4/5ε−3/2) oracle calls. Our lower
bound reads as Ω(n1/4ε−3/2) for Assumption 2.1 with
p = 2, which implies it exhibits a Õ(n11/20) gap.

4.2 A new Assumption for Second-Order
Smoothness

We point out that a similar n1/2 gap is present in
the case of p = 1 (Zhou and Gu, 2019; Han et al.,
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2021), which remains an open problem. For the first-
order setting, a way to get matching bounds is to use
the first-order mean-squared smoothness assumption,
yielding the optimal Θ(

√
n/ε−2) oracle complexity

(Fang et al., 2018). It has been observed by Zhou
and Gu (2019) that this assumption is sufficient for a
variety of first-order methods. This raises a natural
question: is there a second-order analogue to mean-
squared smoothness? The mean-squared assumption
effectively controls the second moment of the random
variable that arises when fixing x,y, drawing fi at
random and considering ∇fi(x)−∇fi(y). For cubic
regularization methods, a natural analogue is the
third moment of the Hessian difference.

In the following, we will show that one can indeed
weaken the assumption of the SVRC algorithm from
Zhou et al. (2019) to Assumption 4.8.

Assumption 4.8. We say a function F =
∑n
i=1 fi

with fi : Rd → R respects the third-moment smooth-
ness assumption with constant L2 if for any x,y ∈ Rd(

Ei‖∇2fi(x)−∇2fi(y)‖3
) 1

3 ≤ L2‖x− y‖.

The expected value is taken w.r.t. a uniform distri-
bution on [n]. We continue to assume F satisfies
Assumption 2.1 ii).

Note that this assumption is weaker than the usual
second-order smoothness, but it is stronger than a
second moment assumption, due to E[|X|s]1/s ≤
E[|X|t]1/t for s < t. Furthermore, by Jensen’s in-
equality, F has Lipschitz continuous Hessian, which
is one reason why the assumption turns out to be
useful. The second one is that error terms for cubic
regularization are third powers, so this assumption
provides a more natural fit than, say, a mean-squared
Lipschitz assumption on the Hessian.

With some changes to the convergence analysis, the
guarantees of SVRC (actually even to second-order
stationarity) can essentially be retained.

Theorem 4.9. SVRC under Assumption 4.8 needs
Õ
(
n+∆

√
L2n

4/5ε−3/2
)

oracle queries to find a
point xout such that E‖∇F (xout)‖ ≤ ε.

What is now left to do is to provide a tighter lower
bound. Indeed, the following holds:

Theorem 4.10. For any randomized algorithm A sat-
isfying Assumption 2.3, ∆, L2, ε, and n ≤ c∆12/7L

6/7
2

ε18/7

there exists a dimension d ≤ Õ(n2∆L2ε
−3) and a

function F = 1
n

∑n
i=1 fi that satisfies Assumption

4.8 such that

Tε(A, F ) ≥ Ω
(
L

1/2
2 ∆n5/12ε−

3
2

)
,

where the constants hidden by Ω do not depend on ε
or n. c is also a universal constant.

Note the n1/6 difference when compared to Theo-
rem 4.7. So – to conclude – under Assumption 4.8
and p = 2, one can find an ε-approximate local mini-
mum in Õ(n4/5ε−3/2) oracle queries while the lower
bound lies at Ω(n5/12ε−3/2). While the gap remains
at Ω(n23/60), this is a notable improvement over the
results for Assumption 2.1, which means that the
third-moment smoothness assumption gets us closer
to understanding the fundamental limits for higher-
order variance-reduced methods.

5 DISCUSSION

In this work, we analyzed the oracle complexity of
higher-order smooth non-convex finite-sum optimiza-
tion. We showed that speedup (e.g. through variance
reduction) requires randomization. In the random-
ized case, our bounds indicate that variance reduction
is harder for stochastic estimators of a higher-order
derivative tensor than for the gradient. We intro-
duced a new, weaker notion of higher-order smooth-
ness that may prove to be a viable choice for the
further study of the complexity of non-convex finite-
sum optimization and be of independent interest.

To the best of our knowledge, we are the first to show
a non-trivial dependency on n in a non-convex finite-
sum randomized setting with individually smooth
functions. Still, in this regime our bounds are not
tight. This gap also appears in a variety of other non-
convex finite-sum lower bound constructions (Zhou
and Gu, 2019; Han et al., 2021). Interestingly, the
gap is not present when working with convex func-
tions (Woodworth and Srebro, 2016). We conjecture
that this difference is due to the definition of success
typically used in both scenarios and the fact that all
constructions we know of (including ours) force some
form of orthogonality between derivatives of differ-
ent functions (up to shared terms stemming from
shared regularizers). In the convex case, success is
to provably bound suboptimality by ε. If one con-
structs a problem instance F (x) = 1

n

∑
i f̃i(x) that

satisfies 〈∇f̃i(x),∇f̃j(x)〉 = 0 for i 6= j and is able
to guarantee that a constant fraction 0 < c ≤ 1 of
the f̃is is larger than a constant c′, the lower bound
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c · c′ on the value of F follows. When bounding the
gradient norm – which is the quantity of interest in
the non-convex case – this approach is less fruitful, as
‖∇f̃i(x)‖ > c′ for a c-fraction of indices only implies
‖∇F (x)‖ > c×c′√

n
, i.e. we lose a factor of

√
n. This

may suggest that getting sharper lower bound is in-
deed difficult, and that progress could be made on
the algorithmic side. Whether this is possible hinges
on the question of whether individual smoothness
of functions is stronger – for algorithmic purposes –
than its moment-based counterpart.

Finally, we mention that our deterministic con-
struction does not suffer from this lost factor.
Unfortunately, the adversarial nature of the construc-
tion renders it unusable for the randomized setting.
Nonetheless, this feature could make it of theoretical
interest for future work.
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Supplementary Material:
On the Oracle Complexity of Higher-Order Smooth Non-Convex

Finite-Sum Optimization

The appendix is structured in 4 parts. Appendix A provides all omitted proofs for Section 3, while Appendix
B provides the same for Section 4, up to the end of Section 4.1. In Appendix C we give the proofs for
Theorems 4.9 and 4.10. Finally Appendix D contains the proof of a simple observation that is needed for all
constructions.

A LOWER BOUNDS FOR DETERMINISTIC ALGORITHMS

We first prove Lemmas 3.3 and 3.4 in Appendices A.1 and A.2 respectively, and then prove the main
Theorem 3.5 in Appendix A.3.

A.1 Proof of Lemma 3.3

Proof [of Lemma 3.3]. We will omit the scaling parameters as they do not influence the proof in any way
and define for k ∈ [K] the shorthand yk = yk(x) = 〈vk,x〉. We will construct the oracle such that during
round r ∈ [2 : K + 1], its responses are based on the function:

fri (x) = −δi,1Ψ(1)Φ(y1)

+

r−1∑
k=2

δi,k [Ψ(−yk−1)Φ(−yk)− Ψ(yk−1)Φ(yk)] .

We will show that V can be chosen such that these responses are consistent with Definition 3.2. By consistence,
we mean equality of the function values and derivatives at the queried indices and points.

By construction, the answers for round r, only depend on vk and δi,k for k < r. This allows us to determine
δi,r and vr at the end of round r. Specifically, we will choose vr such that 〈vr,x(t)〉 = 0 for all iterates
occurring before the end of round r (i.e. all queries made so far). Further, vr needs to be orthogonal to vk
for all k < r. These orthogonality constraints imply a requirement on the dimension of the domain of F . This
dimension d must therefore be linear in the sum of K and of the final lower bound, to ensure orthogonality to
both iterates and between the columns of V is possible. As mentioned above, we will also choose δi,r = 1 iff
function i was not queried during round r.

We must now prove that for all q ≥ 0 and iterates t queried during round r, we have ∇qfrit(x(t)) = ∇qfit(x(t)),
guaranteeing that our oracle is aligned with the function from Definition 3.2. For simplicity, we define x = x(t)

and i = it. Then, we can write fi(x) as

fri (x) + δi,r[Ψ(−yr−1)Φ(−yr)− Ψ(yr−1)Φ(yr)] + gri (x)

for gri (x) = fi(x) − fri (x). Since function i was queried during round r, we have δi,r = 0, and so
fi(x) = fri (x) + gri (x). Hence, it suffices that ∇qgri (x) = 0 ∈ R⊗qd. Indeed, Ψ(z) = 0 for all |z| ≤ 1/2. By our
choice of V, we have 〈vk,x〉 = 0 for all k ≥ r. Since all terms in gri have a multiplicative factor Ψ(±〈vk−1,x〉)
for some k ≥ r + 1, the function gri is indeed constant 0 inside a neighbourhood of x, and so all its derivative
tensors are 0 at x. �
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A.2 Proof of Lemma 3.4

Before showing Lemma 3.4, we should stress that a key property of the function f̄K = fK,1 is that as long as
the last coordinate in its input is zero, the gradient of the function will be lower bounded by a constant.

Lemma A.1 [Lemma 2 in Carmon et al. (2019a)]. Let x ∈ RK with |xk| < 1 for some k ∈ [K]. Then, there
exists l ≤ k with |xl| < 1 and ∣∣∣∣∂f̄K∂xl (x)

∣∣∣∣ > 1.

Proof [of Lemma 3.4]. By Lemma 3.3, we have (VTx(t))K+1 = 0 for all iterates up until the end of round
K + 1 and will therefore be able to apply Lemma A.1. We use ∇̃ to denote the gradient with respect to
VTx/σ and write

λσp+1∇̃

[
1

n

n∑
i=1

fK+1,δi(V
Tx/σ)

]
=

1

n

⌈n
2

⌉
λσp+1∇̃

[
f̄K+1(VTx/σ)

]
.

Using the chain rule, we see that

∇F (x) =
1

n

⌈n
2

⌉
λσpV∇̃

[
f̄K+1(VTx/σ)

]
,

and thus by Lemma A.1 and by the fact that VTV = IK+1

‖∇F (x)‖ ≥ λσp

4
.

�

A.3 Proof of Theorem 3.5

Along with Lemma 3.4, we need the following result that will allow us to ensure F satisfies Assumption 2.1.

Lemma A.2. For all K and δ ∈ {0, 1}K , the function fK,δ from Definition 3.1 satisfies

i) The initial sub-optimality can be bounded by fK,δ(0)− infx∈RK fK,δ(x) ≤ 12K.

ii) The function is p-th order `p-smooth with `p ≤ exp( 5
2p log p+ cp) for some numerical constant c <∞.

To show Lemma A.2, we need the following technical result, which is a subset of Lemma 1 in Carmon et al.
(2019a).

Lemma A.3. For the functions from Definition 3.1 we have

i) Both Ψ and Φ are infinitely differentiable, and for all q ∈ N we have

sup
x
|Ψ (q)(x)| ≤ exp

(
5q

2
log(4q)

)
and sup

x
|Φ(q)(x)| ≤ exp

(
3q

2
log

3q

2

)
.

ii) The functions and derivatives Ψ , Ψ ′, Φ, Φ′ are non-negative and bounded, with

0 ≤ Ψ < e, 0 ≤ Ψ ′ ≤
√

54/e, 0 < Φ <
√

2πe and 0 < Φ′ ≤
√
e.
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Now we present our proof, closely following Carmon et al. (2019a), Appendix B.2. We account for the
indicators δk used in our construction, validating that they do not affect the aforementioned properties.

Proof [of Lemma A.2]. Fix K ∈ N, δ ∈ {0, 1}K . We first bound the suboptimality gap. We have fK,δ(0) ≤ 0
because −δ1Ψ(1)Φ(0) ≤ 0 by Lemma A.3 ii). By the same arguments, for any x, we have

fK,δ(x) = −δ1Ψ(1)Φ(x1) +

K∑
k=2

δk[Ψ(−xk−1)Φ(−xk)− Ψ(xk−1)Φ(xk)]

≥ −δ1Ψ(1)Φ(x1)−
K∑
k=2

δk[Ψ(xk−1)Φ(xk)] ≥ −δ1(e ·
√

2πe)−
K∑
k=2

δk[e
√

2πe] > −K · e ·
√

2πe ≥ −12K.

Thus, we get our bound on suboptimality.
For the second part, let x ∈ RK . For a unit vector v ∈ RK we define the directional projection hx,v(θ) =

fK,δ(x + θv). It suffices to show that |h(p+1)
x,v (0)| ≤ `p for any x,v, because the directional projection is

infinitely differentiable, by Lemma A.3. Fix x,v ∈ RK . We can write

h(p+1)
x,v (0) =

K∑
j1,...,jp+1=1

∂j1 · · · ∂jp+1
fK,δ(x)vj1 · · · vjp+1

.

All multiplicative terms in fK,δ have zero derivatives unless all derivatives are w.r.t. adjacent indices. Defining
for convenience v0 = vK+1 = 0 we can express the above as

h(p+1)
x,v (0) =

∑
γ∈{0,1}p∪{0,−1}p

K∑
j=1

∂j+γ1 · · · ∂j+γp∂jfK,δ(x)vj+γ1 · · · vj+γpvj .

We can bound

max
j∈[K]

max
γ∈{0,1}p∪{0,−1}p

|∂j+γ1 · · · ∂j+γp∂jfK,δ(x)|≤ max
k∈[0:k+1]

{
4 sup
y∈R

∣∣∣Ψ (k)(y)
∣∣∣ sup
y′∈R

∣∣∣Φ(p+1−k)(y′)
∣∣∣} .

Here, we have used that δ can only (potentially) suppress terms and that there are only 4 terms which may
involve partial derivatives with respect to either xj and xj+1 or xj and xj−1. Note that if γ 6= 0, there are
only 2 such terms.
With Lemma A.3, the above can be further bounded by

4
√

2πe · e2.5(p+1) log(4(p+1)) ≤ e2.5p+log p+4p+10.

We define `p = 2p+1e2.5p+log p+4p+10 ≤ e2.5p+log p+5p+11. Finally, we can bound the quantity of interest

|h(p+1)
x,v (0)| ≤

∑
γ∈{0,1}p∪{0,−1}p

2−(p+1)`p

∣∣∣∣∣∣
K∑
j=1

vj+γ1 · · · vj+γpvj

∣∣∣∣∣∣ ≤ `p,
because

∣∣∣∑K
j=1 vj+γ1 · · · vj+γpvj

∣∣∣ ≤ 1, which follows from v being a unit vector (see Carmon et al. (2019a),
B.2). This concludes the proof. �
Now we are ready to prove the main Theorem of this section.

Proof [of Theorem 3.5]. At this point, we are ready to proceed with our argument. Recall Definition 3.2 of
the hard instance F = 1

n

∑
fi with V ∈ Ortho(d,K + 1):

fi(x) = λσp+1fK+1,δi(V
Tx/σ).
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We will guarantee smoothness through λ, bound the gradient norm from below through σ and finally control
the distance to optimality with K. By Lemma D.1 and Lemma A.2ii), we can write for any x,y ∈ Rd

‖∇pfi(x)−∇pfi(y)‖ ≤ λ`p‖VT (x− y)‖ ≤ λ`p‖x− y‖,

where the second inequality follows because d ≥ K + 1 and because we can complete V to be a square
orthogonal matrix. We see that the choice λ = Lp/`p guarantees pth-order smoothness with constant Lp.

Next, we will turn to bounding the gradient from below. By Lemma 3.4, we can lower bound ‖∇F (x(t))‖ > λσp

4
for all iterates up to the end of round K + 1. We desire a lower bound for ε-stationarity, so we will choose

σ =
(

4ε`p
Lp

) 1
p

.

As a last step, we will choose K such that the initial gap on suboptimality is bounded by ∆. For that, we use
Lemma A.2i). We want

F (0)− inf
x∈Rd

F (x) ≤ 1

n

n∑
i=1

[
fi(0)− inf

x∈Rd
fi(x)

]

≤ λσp+1

n

n∑
i=1

[
fK+1,δi(0)− inf

y∈RK+1
fK+1,δi(y)

]
≤ 12λσp+1(K + 1) ≤ ∆.

As a larger value of K yields a better bound, we can choose

K + 1 =

⌊
∆

192

(
Lp
`p

) 1
p 1

ε
p+1
p

⌋
≤ ∆

12

`p
Lp

(
Lp

4ε`p

) p+1
p

.

Because K is the number of rounds and each round consists of Ω(n) queries, this yields a Ω
((

Lp
`p

)1/p
∆n

ε(p+1)/p

)
lower bound, as desired. As explained in the proof of Lemma 3.3, the dimension d must merely be larger than
the sum of the lower bound and the number of rounds, i.e. linear in the lower bound. This completes the
proof. �

B LOWER BOUNDS FOR RANDOMIZED ALGORITHMS

We first prove Lemmas 4.4, 4.5 and 4.6 in Appendices B.1, B.2 and B.3 respectively, and then prove the main
Theorem 4.7 in Appendix B.4.

B.1 Proof of Lemma 4.4

Proof [of Lemma 4.4]. We have ∇pG(x) = a
bp∇

pF (x/b). We have to exhibit an algorithm B such that B[F ]

follows the same distribution as {[it,x(t)/b]}t∈N.

Let {A(t)}t∈N be the sequence of mappings that produce the iterates of A. With some mild abuse of notation
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we may write 4

Aξ[G](t) = A(t)
{

ξ, i0:t−1,x(0:t−1),

∇(0:q)gi0(x(0)), . . . ,∇(0:q)git−1

(
x(t−1)

) }
= A(t)

{
ξ, i0:t−1,x(0:t−1), gi0:t−1

(
x(0:t−1)

)
,

∇gi0:t−1

(
x(0:t−1)

)
, . . . ,∇qgi0:t−1

(
x(0:t−1)

) }
.

B shall choose i0 exactly like A does. We define the sequence of mappings {B(t)}t∈N underlying B on arbitrary
input H = 1

n

∑n
i=1 hi as

Bξ[H](t)

= B(t)
{

ξ, i0:t−1,y(0:t−1), hi0:t−1

(
y(0:t−1)

)
,

∇hi0:t−1

(
y(0:t−1)

)
, . . . ,∇qhi0:t−1

(
y(0:t−1)

) }
=

1

b
A(t)

{
ξ, i0:t−1, b · y(0:t−1), a · hi0:t−1

(
y(0:t−1)

)
,

a

b
∇hi0:t−1

(
y(0:t−1)

)
, . . . ,

a

bq
∇qhi0:t−1

(
y(0:t−1)

) }
,

where we apply the outer division only on the iterates and not the indices. We can check by induction that
for a fixed random seed ξ, Bξ[F ](t) =

Aξ[G](t)

b for all t ∈ N: The base case is clear as i0 does not depend on
any oracle queries and x(0) = 0 is deterministic. Now assume that the equality holds for all t′ < t. Then

Bξ[F ](t)

I.H.
= B(t)

{
ξ, i0:t−1,

x(0:t−1)

b
, fi0:t−1

(
x(0:t−1)

b

)
,

∇fi0:t−1

(
x(0:t−1)

b

)
, . . . ,∇qfi0:t−1

(
x(0:t−1)

b

) }
=

1

b
A(t)

{
ξ, i0:t−1, b · x

(0:t−1)

b
, a · fi0:t−1

(
x(0:t−1)

b

)
,

a

b
∇fi0:t−1

(
x(0:t−1)

b

)
, . . . ,

a

bq
∇qfi0:t−1

(
x(0:t−1)

b

) }
=

1

b
A(t)

{
ξ, i0:t−1,x(0:t−1), gi0:t−1

(
x(0:t−1)

)
,

∇gi0:t−1

(
x(0:t−1)

)
, . . . ,∇qgi0:t−1

(
x(0:t−1)

) }
=

Aξ[G](t)

b
.

Therefore B[F ] follows the same distribution as {[it,x(t)/b]}t∈N and so the sequence is informed by F , as
desired. �

4We use ∇kgi0:t−1(x(0:t−1)) to denote the sequence of all queried kth-order derivatives to produce iterate t.
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B.2 Proof of Lemma 4.5

The proof of Lemma 4.5 follows that of Lemma 12 in Fang et al. (2018) 5 and is similar to Lemma 4 in
Carmon et al. (2019a). The reader accustomed to lower bounds for convex optimization will be familiar with
the ideas involved (e.g. Lemma 6 and 7 in Woodworth and Srebro (2016)).

Proof [of Lemma 4.5]. First, we define quantities that we will use throughout the proof.

Define y
(t)
i = ρ(CT

i x
(t)) =

CTi x√
1+‖CTi x‖2/R2

. Then y
(t)
i ∈ Rd/n satisfies ‖y(t)

i ‖ ≤ R. Let V(t)
i be the set of

previous transformed iterates at index i along with the discovered columns of B of after iteration t:

V(t)
i = {y(0)

i , . . . ,y
(t)
i } ∪

n⋃
j=1

{bj,1, . . . ,bj,min(K,Itj)
}.

Let U (t)
i be defined as in the premise of Lemma 4.5 and denote by Ũ (t)

i its “complement" (all other columns):

Ũ (t)
i =

{
bi,1, . . . ,bi,min(K,It−1

i )

}
.

Define U (t) =
⋃n
i=1 U

(t)
i and Ũ (t) =

⋃n
i=1 Ũ

(t)
i and let P(t)

i denote the orthogonal projection onto the span of
V(t)
i . Let P(t)⊥

i = I−P
(t)
i be its orthogonal complement. Both of these are mappings from Rd/n → Rd/n.

Recall that our ultimate goal is to show that {[it,x(t)]}t∈N being informed by F ∗ implies that with probability
1− δ, for all t ∈ {0, . . . , T}, all i ∈ [n] and all corresponding u ∈ U (t)

i the inequality

|〈u,y(t)
i 〉| <

1

2
(2)

holds. The case t = 0 is obviously true, so from now on we focus on showing (2) for t ≥ 1. We will first define
an auxiliary event, show that it implies our result and then bound its probability. For any t ∈ [T ] define the
event

Gt =
⋃
i∈[n]

⋃
u∈U(t)

{∣∣∣〈u,P(t−1)⊥
i y

(t)
i 〉
∣∣∣ < a‖P(t−1)⊥

i y
(t)
i ‖
}
,

where a = min
(

1
3(T+1) ,

1
2(1+

√
3T )R

)
. Note that the union is over U (t) and not U (t)

i . Let G≤t = ∩tj=1G
j . We

first show that G≤T implies (2).

Assume U (t)
i 6= ∅, otherwise (2) holds trivially. For any i ∈ [n], t ∈ [T ] and u ∈ U (t)

i we have

|〈u,y(t)
i 〉| ≤

∣∣∣〈u,P(t−1)
i y

(t)
i + P

(t−1)⊥
i y

(t)
i 〉
∣∣∣

<
∣∣∣〈u,P(t−1)

i y
(t)
i 〉
∣∣∣+ a‖P(t−1)⊥

i y
(t)
i ‖

≤ R‖P(t−1)
i u‖+ aR.

In the second step we used G≤T and in the third step we used Cauchy-Schwarz and the fact that P(t−1)
i and

P
(t−1)⊥
i are orthogonal projectors and therefore self-adjoint. If we manage to show ‖P(t−1)

i u‖ ≤
√

3Ta =: b

we are done, because the choice of a then implies that aR+R‖P(t−1)
i u‖ ≤ 1

2 .

We will show this by induction over t ∈ [T ]: Consider t = 1 and let i ∈ [n] be arbitrary. We have
V(t−1)
i = V(0)

i = {y(0)
i ,bi0,1} = {0,bi0,1}. Because u can be any column of B except bi0,1 we have

5The main difference is that we make clear (thanks to the formalism of a robust zero-chain), that it does not matter
how many derivatives the algorithm has access to, hence the identical statement.
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P
(t−1)
i u = 0. For the induction step, another way to write the vectors in V(t−1)

i is in the order they are
discovered. That is, add to the set each iterate at i and an additional column of Bij for the queried index ij
at iteration j. We get the sequence

y
(0)
i , bi0,min(I0

i0
,K), y

(1)
i , bi1,min(I1

i1
,K), . . . , y

(t−1)
i , bit−1,min(It−1

it−1 ,K).

We will now apply the Gram-Schmidt procedure on these vectors. Remember that for a sequence of vectors
vi the Gram-Schmidt procedure (without normalization) constructs vectors

u1 = v1

u2 = v2 − proju1
(v2)

...
uk = vk − proju1,...,uk−1

(vk),

where projS shall denote the projection on a set of vectors S. Applying this scheme to our sequence above,
we get vectors 6 {

y
(z)
i −P

(z−1)
i y

(z)
i

}t−1

z=0
=
{
P

(z−1)⊥
i y

(z)
i

}t−1

z=0

and {
biz,min(Iz

iz
,K) −P

(z−1)
i biz,min(Iz

iz
,K) − proj

P
(z−1)⊥
i y

(z)
i

biz,min(Iz
iz
,K)

}t−1

z=0

=:
{
P̂

(z−1)⊥
i biz,min(Iz

iz
,K)

}t−1

z=0
.

We have proj
P

(z−1)⊥
i y

(z)
i

=
(P

(z−1)⊥
i y

(z)
i )(P

(z−1)⊥
i y

(z)
i )T

‖P(z−1)⊥
i y

(z)
i ‖2

and therefore write the projection P̂
(z−1)
i onto V(z−1)

i ∪

{y(z)
i } as

P̂
(z−1)
i = P

(z−1)
i +

(P
(z−1)⊥
i y

(z)
i )(P

(z−1)⊥
i y

(z)
i )T

‖P(z−1)⊥
i y

(z)
i ‖2

.

The orthogonalized vectors give us a basis in which we can write the norm ‖P(t−1)
i u‖2 as

t−1∑
z=0

∣∣∣∣∣
〈

P
(z−1)⊥
i y

(z)
i

‖P(z−1)⊥
i y

(z)
i ‖

,u

〉∣∣∣∣∣
2

+

t−1∑
z=0, Iz

iz
≤K

∣∣∣∣∣
〈

P̂
(z−1)⊥
i biz,Iz

iz

‖P̂(z−1)⊥
i biz,Iz

iz
‖
,u

〉∣∣∣∣∣
2

. (3)

Note that the set we applied Gram-Schmidt on was not linearly independent so we may get 0-vectors. These
do not influence the calculations, so we simply assume they are not present in (3) from now on. The first
term in (3) is bounded by ta2 by the induction hypothesis. Let z be arbitrary but fixed and assume Iziz ≤ K.
Recall the definition of U (t). Then u = bi,j for some j > It−1

i ≥ Izi . B has orthonormal columns and so
u⊥biz,Iz

iz
. We will bound the second term in (3) now:∣∣∣〈P̂(z−1)⊥

i biz,Iz
iz
,u
〉∣∣∣

=
∣∣∣〈biz,Iz

iz
− P̂

(z−1)
i biz,Iz

iz
,u
〉∣∣∣

=

∣∣∣∣∣
〈
biz,Iz

iz
−P

(z−1)
i biz,Iz

iz
− (P

(z−1)⊥
i y

(z)
i )(P

(z−1)⊥
i y

(z)
i )T

‖P(z−1)⊥
i y

(z)
i ‖2

biz,Iz
iz
,u

〉∣∣∣∣∣
≤
∣∣∣〈P(z−1)

i biz,Iz
iz
,u
〉∣∣∣+

∣∣∣∣∣
〈

P
(z−1)⊥
i y

(z)
i

‖P(z−1)⊥
i y

(z)
i ‖

,u

〉〈
P

(z−1)⊥
i y

(z)
i

‖P(z−1)⊥
i y

(z)
i ‖

,biz,Iz
iz

〉∣∣∣∣∣, (4)

6Where P
(−1)
i = 0d/n,d/n is the zero matrix for convenience.
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where in the last step we used u⊥biz,Iz
iz

and the triangle inequality. For an orthonormal projector P and
any vectors v,u we have 〈Pv,u〉 = 〈Pv,Pu〉. Therefore the left term in (4) can be bounded by b2 as follows:∣∣∣〈P(z−1)

i biz,Iz
iz
,u
〉∣∣∣ =

∣∣∣〈P(z−1)
i biz,Iz

iz
,P

(z−1)
i u

〉∣∣∣
≤ ‖P(z−1)

i biz,Iz
iz
‖‖P(z−1)

i u‖
≤ b2. (5)

The last step holds because of the induction hypothesis. Indeed, we have u ∈ U (t) ⊂ U (z) and biz,Iz
iz

=

biz,Iz−1
iz

+1 ∈ U
(z)
iz ⊂ U (z).

Next, our assumption is that G≤T happens and therefore Gz as well. Using its definition twice on the right
term in (4) yields ∣∣∣∣∣

〈
P

(z−1)⊥
i y

(z)
i

‖P(z−1)⊥
i y

(z)
i ‖

,u

〉〈
P

(z−1)⊥
i y

(z)
i

‖P(z−1)⊥
i y

(z)
i ‖

,biz,Iz
iz

〉∣∣∣∣∣ ≤ a2. (6)

We bound the norm in the denominator of the right term in (3) by

‖P̂(z−1)⊥
i biz,Iz

iz
‖2 = ‖biz,Iz

iz
‖2 − ‖P̂(z−1)

i biz,Iz
iz
‖2

= ‖biz,Iz
iz
‖2 − ‖P(z−1)

i biz,Iz
iz
‖2 −

∣∣∣∣∣
〈

P
(z−1)⊥
i y

(z)
i

‖P(z−1)⊥
i y

(z)
i ‖

,biz,Iz
iz

〉∣∣∣∣∣
2

≥ 1− b2 − a2.

The first step is justified by the Pythagorean theorem because P̂(z−1)⊥
i biz,Iz

iz
and P̂

(z−1)
i biz,Iz

iz
are orthogonal.

The second follows by the Pythagorean theorem and the definition of P̂(z−1). For the inequality, we use the
same arguments as in (5) and (6).

We can return to (3). Recall that b =
√

3Ta and thus a2 + b2 = 3Ta2 + a2 = (3T + 1)a2 ≤ a by definition of
a. We use this in step (∗) below:

‖P(t−1)
i u‖2 =

t−1∑
z=0

∣∣∣∣∣
〈

P
(z−1)⊥
i y

(z)
i

‖P(z−1)⊥
i y

(z)
i ‖

,u

〉∣∣∣∣∣
2

+

t−1∑
z=0, Iz

iz
≤K

∣∣∣∣∣
〈

P̂
(z−1)⊥
i biz,Iz

iz

‖P̂(z−1)⊥
i biz,Iz

iz
‖
,u

〉∣∣∣∣∣
2

≤ ta2 + t
(a2 + b2)2

1− (a2 + b2)

(∗)
≤ ta2 + t

a2

1− a
≤ 3Ta2

= b2,

where the last inequality holds because a ≤ 1/2 and t ≤ T . This concludes the induction. We have thus
proven that G≤T implies our result, namely that equation (2) holds for all t ∈ {0, . . . , T}, all i ∈ [n] and all
corresponding u ∈ U (t)

i .

We now derive an upper bound for the probability of the complement event (G≤T )c. Note that if G≤T does
not happen, then there is a smallest t for which it fails. For convenience, let G<1 be an event that always
happens. Using a union bound, this argumentation is reflected by

P((G≤T )c ≤
T∑
t=1

P((G≤t)c |G<t). (7)
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We will bound the probability P((G≤t)c |G<t). For the remainder of the proof, we need matrices analogous to
the sets U (t) and Ũ (t). First define ît to be the sequence i0:t−1. Then let

Ũît

j =
[
bj,1 | · · · |bj,min(K,It−1

j )

]
,

where It−1
j is according to the sequence ît. Then define Ũît = [Ũît

1 · · · Ũît

n ]. Similarly, we define the
“complement" matrices

Uît

j =
[
bj,It−1

j +1 | · · · |bj,K
]
.

Note that for any j, one of Uît

j or Ũît

j could potentially be empty. This will not be problematic in what
follows. Analogous to before Uît = [Uît

1 · · ·Uît

n ]. Finally Ūît = [Ũît ,Uît ] is a matrix with all columns of B,
but in different order. For our event, by the law of total probability we have

P((G≤t)c |G<t)

=
∑
ît0∈Ŝt

E
ξ,Ũît0

[
P((G≤t)c |G<t, ît = ît0, ξ, Ũ

ît0)P(̂it = ît0 |G<t, ξ, Ũît0)
]
. (8)

In the rest, we show for all (fixed) t, ξ0, Ũ0, î
t
0 a bound on the probability

P((G≤t)c |G<t, ît = ît0, ξ = ξ0, Ũ
ît0 = Ũ0)

≤
∑
i∈[n]

u∈U(t)

P
(∣∣∣〈u,P(t−1)⊥

i y
(t)
i 〉
∣∣∣ ≥ a‖P(t−1)⊥

i y
(t)
i ‖ |G

<t, ît = ît0, ξ = ξ0, Ũ
ît0 = Ũ0

)
. (9)

A bound on (9) is also a bound for (8), because∑
ît0∈Ŝt

E
ξ,Ũît0

P(̂it = ît0 |G<t, ξ, Ũît0) = 1.

First, we show that given G<t, the next iterate [it,x(t)] produced by A only depends on Ũît and not the full
draw of Ūît , because f̄K is a robust zero-chain. This is formalized below:

Lemma B.1. For every t ∈ [T ], there exist measurable functions A(t)
+ and A(t)

− such that

[it,x(t)] = A
(t)
+ (ξ, Ũît , ît)1G<t +A

(t)
− (ξ, Ūît , ît)1(G<t)c .

Proof [of Lemma B.1]. Recall the definition f∗i (x) = f̂K;Bi(C
T
i x) = f̄K(BT

i ρ(C
T
i x)) + 1

10‖C
T
i x‖2 for

convenience. The sequence {[it,x(t)]}t∈N is informed by F ∗. Therefore, for any t ∈ N, there exists a
measurable mapping A(t) such that:

[it,x(t)] = A(t)
{
ξ, ît,x(0:t−1),∇(0:q)f∗i0(x(0)), . . . ,∇(0:q)f∗it−1(x(t−1))

}
.

We show our result by induction on t ∈ [T ]. The base case is clear, as the first iterate is x(0) = 0. For the
step, assume G<t+1 happens and that the result holds for any s ≤ t. By the derivation on the previous
pages we have |〈bit,j ,y(t)

it 〉| < 1/2 for all j ≥ It−1
it + 1 = Itit . Then because f̄K is a robust zero-chain and C

is fixed, ∇(0:q)f∗i (x(t)) only depends on x(t) and columns of Bit with indices up to min(K, Itit). Note that
Ũît+1

contains all of those columns of Bit . Therefore the computation of the pair [it,x(t)] only depends on
x(0), . . . ,x(t), ît+1 and Ũît+1

in case G<t+1 happens. In that case, we may write

[it+1,x(t+1)] = A
(t+1)
+ (ξ, Ũît+1

, ît+1),
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with the dependence on the previous iterates being implicit (justified by the induction hypothesis). This leads
to the statement of this sub-lemma. �

For t ∈ [T ], condition on G<t, ît = ît0, ξ = ξ0 and Ũît0 = Ũ0. Consequently, the iterates x(1), . . . ,x(t) are
deterministic and so are the yi’s. Thus for all i ∈ [n], the quantity P

(t−1)⊥
i y

(t)
i is deterministic as well (recall

the definition of V(t−1)
i ).

For any (still random) u ∈ U (t)
i , we are interested in (recall (9)):

P
(∣∣∣〈u,P(t−1)⊥

i y
(t)
i 〉
∣∣∣ ≥ a‖P(t−1)⊥

i y
(t)
i ‖ |G

<t, ît = ît0, ξ = ξ0, Ũ
ît0 = Ũ0

)
≤ P

(∣∣∣∣∣
〈

P
(t−1)⊥
i u

‖P(t−1)⊥
i u‖

,
P

(t−1)⊥
i y

(t)
i

‖P(t−1)⊥
i y

(t)
i ‖

〉∣∣∣∣∣ ≥ a |G<t, ît = ît0, ξ = ξ0, Ũ
ît0 = Ũ0

)
.

The inequality follows because ‖P(t−1)⊥
i u‖ ≤ ‖u‖, which holds as P(t−1)⊥

i is an orthogonal projector. By
the previous discussion, we know the second term in this scalar product is a deterministic unit vector in the

space orthogonal to V(t−1)
i

7. What remains to study is the distribution of P
(t−1)⊥
i u

‖P(t−1)⊥
i u‖

. We wish to show that

P
(t−1)⊥
i u

‖P(t−1)⊥
i u‖

is a uniformly distributed unit vector in the space orthogonal to V(t−1)
i . Let Zi ∈ Rd/n×d/n be a

rotation that lets the span of V(t−1)
i invariant, i.e. ZTi u = u = Ziu for any u ∈ V(t−1)

i . For a random variable
X, let pX denote its density. We want to show the equality:

p
Uît0

(U0 |G<t, ît = ît0, ξ = ξ0, Ũ
ît0 = Ũ0)

= p
Uît0

(ZiU0 |G<t, ît = ît0, ξ = ξ0, Ũ
ît0 = Ũ0),

to show the distribution of P
(t−1)⊥
i u

‖P(t−1)⊥
i u‖

is indeed uniform.

Let Ū0 = [Ũ0,U0]. We lighten the notation up a bit by omitting the random variables where they are clear
from context. Using conditional densities:

p
Uît0

(U0 | ît0, G<t, ξ0, Ũ0) =
P(G<t, ît = ît0 | ξ0,U0, Ũ0)p

ξ,Ūît0
(ξ0, Ū0)

P(G<t, ît = ît0 | ξ0, Ũ0)p
ξ,Ũît0

(ξ0, Ũ0)

=
P(G<t, ît = ît0 | ξ0, Ū0)p

Ūît0
(Ū0)

P(G<t, ît = ît0 | ξ0, Ũ0)p
Ũît0

(Ũ0)
.

Plugging in ZiU0 and using ZiŨ0 = Ũ0 we obtain

p
Uît0

(ZiU0 |G<t, ît0, ξ0, Ũ0) =
P(G<t, ît = ît0 | ξ0,ZiŪ0)p

Ūît0
(ZiŪ0)

P(G<t, ît = ît0 | ξ0, Ũ0)p
Ũît0

(Ũ0)
.

Because of the uniform distribution of B and thus also of Ūît0 , it suffices to show that

P(G<t, ît = ît0 | ξ0, Ū0) = P(G<t, ît = ît0 | ξ0,ZiŪ0).

This probability is either 0 or 1, because we condition on all the randomness involved. We show by induction
on s ∈ [t] that P(G<t, ît = ît0 | ξ0, Ū0) = 1 implies P(G<t, îs = îs0 | ξ0,ZiŪ0) = 1. The other direction is
analogous.

7This set is also deterministic as a consequence of the conditioned variables.
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Therefore assume ît = ît0 and that G<t happens, conditioned on ξ = ξ0 and Ūît0 = Ū0. The base case is
trivial, because G<1 always happens. For the inductive step, let s ≥ 2 and assume that îs−1 = îs−1

0 and
G<s−1 happen, conditioned on ξ = ξ0 and Ūît0 = ZiŪ0 (induction hypothesis).

Let i′s−1, x′(s−1) denote the next index and iterate the algorithm produces, given Ūît0 = ZiŪ0. By Lemma
B.1, the induction hypothesis allows us to write for some A(s−1)

+

[i′s−1,x′(s−1)] = A
(s−1)
+ (ξ0,ZiŨ0, î

s−1
0 )

= A
(s−1)
+ (ξ0, Ũ0, î

s−1
0 )

= [is−1,x(s−1)], (10)

where we also used ZiŨ0 = Ũ0. This means that îs = îs0 iff î′s = îs0, which gets us halfway there. We just
have to show that G<s happens as well, given Ūît0 = ZiŪ0. Of course, showing Gs−1 suffices, by the induction
hypothesis. For this, let u ∈ U (s−1) and i ∈ [n]. We have〈

Ziu,
P

(s−2)⊥
i y

′(s−1)
i

‖P(s−2)⊥
i y

′(s−1)
i ‖

〉
=

〈
u,ZTi

P
(s−2)⊥
i y

(s−1)
i

‖P(s−2)⊥
i y

(s−1)
i ‖

〉

=

〈
u,

P
(s−2)⊥
i y

(s−1)
i

‖P(s−2)⊥
i y

(s−1)
i ‖

〉
.

The first equality follows because P(s−2)⊥
i y

′(s−1)
i = P

(s−2)⊥
i y

(s−1)
i by (10) and the second step follows because

P
(s−2)⊥
i y

(s−1)
i = y

(s−1)
i −P

(s−2)
i y

(s−1)
i is in the span of V(s−1)

i ⊂ V(t)
i and left invariant by ZTi . Thus Gs−1

holds as well, conditioned on Ūît0 = ZiŪ0.

This concludes the inductive step and therefore our proof that P
(t−1)⊥
i u

‖P(t−1)⊥
i u‖

is a uniformly distributed unit

vector in a subspace of Rd/n of dimension at least

d′ ≥ d/n− |V(t−1)
i | ≥ d/n− (t− 1)−

n∑
j=1

min(I
(t−1)
j ,K) ≥ d/n− 2t.

We may write our probability to bound

P

(∣∣∣∣∣
〈

P
(t−1)⊥
i u

‖P(t−1)⊥
i u‖

,
P

(t−1)⊥
i y

(t)
i

‖P(t−1)⊥
i y

(t)
i ‖

〉∣∣∣∣∣ ≥ a |G<t, ît = ît0, ξ = ξ0, Ũ
ît0 = Ũ0

)
as

P(|v1| ≥ a),

where v is a uniformly distributed unit vector in Rd′ . This is because for the dot product, only the angle

between the two vectors matters and with all conditioned variables, P
(t−1)⊥
i y

(t)
i

‖P(t−1)⊥
i y

(t)
i ‖

is fixed so we may assume

w.l.o.g. that it is equal to e1. By a standard concentration of measure bound on the sphere (see Lecture 8 in
Ball (1997)) we get

P(|v1| ≥ a) = P(|v1| > a) ≤ 2e−d
′a2/2 ≤ 2e−

a2

2 (d/n−2t) ≤ 2e−
a2

2 (d/n−2T ).

Returning to (9) we get for all t ∈ [T ] a bound for (8) of

P((G≤t)c |G<t) ≤ n · nK · 2e− a
2

2 (d/n−2T ),
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and therefore by (7)

P((G≤T )c) ≤ T · n · nK · 2e− a
2

2 (d/n−2T ) ≤ 2(nK)(n2K)e−
a2

2 (d/n−2T ).

Setting

d/n ≥ 2

a2
log

(
2n3K2

δ

)
+ 2T

gives us a probability δ bound. By the definitions of a and T , the choice

d/n ≥ 2 max(9n2K2, 12nKR2) log

(
2n3K2

δ

)
+ nK

suffices. This concludes the proof. �

B.3 Proof of Lemma 4.6

The proof is related to Carmon et al. (2019a), Lemma 5.

Proof [of Lemma 4.6]. Fix t ∈ {0, . . . , T}. For any i ∈ [n], define y
(t)
i = ρ(CT

i x
(t)). Then Lemma 4.5 gives

for all u ∈ U (t)
i that |〈u,y(t)

i 〉| < 1/2. Therefore for each i with U (t)
i 6= ∅ we have some k ∈ [K] with

|〈bi,k,y(t)
i 〉| <

1

2
< 1.

With z = BT
i y

(t)
i , by Lemma A.1 there exists an index j ≤ k with |zj | = |〈bi,j ,y(t)

i 〉| < 1 and∣∣∣∣∂f̄K∂zj (BT
i y

(t))

∣∣∣∣ =

∣∣∣∣∂f̄K∂zj (z)

∣∣∣∣ > 1.

Define f̃K;Bi(y
(t)
i ) = f̄K(BT

i y
(t)
i ) and recall the definitions of f̄K and f̂K;Bi . They give

f̂K;Bi(C
T
i x) = f̃K;Bi(ρ(CT

i x)) +
1

10
‖CT

i x‖2 = f̄K(BT
i ρ(CT

i x)) +
1

10
‖CT

i x‖2.

By the chain rule we have

BT
i (∇f̃K;Bi(y

(t)
i )) = BT

i (Bi∇f̄K(BT
i y

(t)
i )) = ∇f̄K(BT

i y
(t)
i ).

Combining this with the above we deduce that∣∣∣〈bi,j ,∇f̃K;Bi(y
(t)
i )〉

∣∣∣ =

∣∣∣∣∂f̄K∂zj (BT
i y

(t))

∣∣∣∣ > 1.

Carmon et al. (2019a) show that |〈bi,j ,y(t)
i 〉| < 1 and

∣∣∣〈bi,j ,∇f̃K;Bi(y
(t)
i )〉

∣∣∣ > 1 imply

‖∇f̂K;Bi(C
T
i x

(t))‖ > 1

2
,

where the gradient is w.r.t. the function argument, i.e. CT
i x

(t). They show this in the proof of Lemma 5, in
the calculations following Equation (14) 8.

8With slightly different naming. Replace U with Bi and u(j) with bi,j , T with K and x(t) with CT
i x

(t). Also note
that this is the part where the added regularization term in f̂ is needed.



Nicolas Emmenegger, Rasmus Kyng, Ahad N. Zehmakan

The only thing that remains to show is that this indeed guarantees ∇F ∗(x(t)) to be large. Note that in each
iteration, one of the Ui’s shrinks in size by at most 1, while the others do not change. That means that after
t ≤ T = nK

2 iterations, at most bn/2c indices i can have U (t)
i = ∅. Let J ⊂ [K] be the set of those indices i

with U (t)
i 6= ∅. Then |J | ≥ n/2 and

‖∇F ∗(x(t))‖2 = ‖ 1

n

n∑
i=1

∇f∗i (x(t))‖2

= ‖ 1

n

n∑
i=1

∇
[
f̂K;Bi

(
CT
i x

(t)
)]
‖2

= ‖ 1

n

n∑
i=1

Ci∇f̂K;Bi

(
CT
i x

(t)
)
‖2

=
1

n2

n∑
i=1

n∑
j=1

(
∇f̂K;Bi

(
CT
i x

(t)
))T

CT
i Cj∇f̂K;Bj

(
CT
j x

(t)
)

(∗)
=

1

n2

n∑
i=1

(
∇f̂K;Bi

(
CT
i x

(t)
))T

CT
i Ci∇f̂K;Bi

(
CT
i x

(t)
)

=
1

n2

n∑
i=1

‖∇f̂K;Bi

(
CT
i x

(t)
)
‖2

≥ 1

n2

∑
i∈J
‖∇f̂K;Bi

(
CT
i x

(t)
)
‖2

≥ 1

n2

n

2

1

4

≥ 1

16n
.

where (∗) is because of the definition of C ∈ Ortho(d, d). �

B.4 Proof of Theorem 4.7

The function f̂K;Bi from Definition 4.2 has some very useful properties regarding its Lipschitz constants and
its gap to optimality.
Lemma B.2 [Lemma 6 in Carmon et al. (2019a)]. The function f̂K;Bi satisfies the following properties:

i) f̂K;Bi(0)− infy∈Rd/n f̂K;Bi(y) ≤ 12K.

ii) For every p ≥ 1, the pth-order derivatives of f̂K;Bi are ˆ̀
p-Lipschitz continuous, where ˆ̀

p ≤ exp(cp log p+c)
for a numerical constant c <∞.

With this, we can proceed with the proof of the main lower bound theorem.

Proof [of Theorem 4.7]. We define the functions

fi(x) = λσp+1f∗i

(x
σ

)
= λσp+1f̂K;Bi

(
CT
i x

σ

)
,

giving us

F (x) =
1

n

n∑
i=1

fi(x).
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We will choose the scaling parameters to ensure that our instance belongs to the desired function class. We
have

‖∇pfi(x)−∇pfi(y)‖ ≤ λˆ̀
p‖CT

i x−CT
i y‖

≤ λˆ̀
p‖x− y‖. (11)

The first inequality follows from Lemmas D.1 and B.2 and the second holds because Ci can be extended to
the orthonormal matrix C. The choice λ =

Lp
ˆ̀
p
accomplishes our goal of smoothness with parameter Lp.

Now fix an algorithm A and assume {[it,x(t)]}t∈N are the iterates produced by A on F . Consequently,
by Lemma 4.4 {[it,x(t)/σ]}t∈N is informed by F ∗. Therefore, we can apply Lemma 4.6 on the sequence
{[it,x(t)/σ]}t∈N to bound

‖∇F (x(t))‖2 = ‖λσp∇F ∗(x(t)/σ)‖2

= λ2σ2p‖∇F ∗(x(t)/σ)‖2

4.6
≥ σ2pλ2

16n
,

for all t ∈ [0 : T ] with probability 1− δ for a sufficiently large dimension d (that depends on δ). We will fix
this dimension at the end. To get a lower bound for an ε precision requirement we can choose σ to be

σpλ

4
√
n

= ε ⇐⇒ σ =

(
4
√
nεˆ̀

p

Lp

) 1
p

.

As a last step, we will guarantee the optimality gap requirement. From Lemma B.2, we immediately have

F (0)− inf
x∈Rd

F (x) ≤ 12λσp+1K.

We require

12λσp+1K = 12
Lp
ˆ̀
p

(
4
√
nεˆ̀

p

Lp

) p+1
p

K ≤ ∆.

To get the best possible bound, we choose

K =

 ∆

192

(
Lp
ˆ̀
p

) 1
p

1

n
p+1
2p ε

p+1
p

 .
We will need that this K is at least 1 in order to get a sensible bound, as becomes clear in the subsequent
steps. To enforce this, we may require that

c̃p∆ (Lp)
1
p

1

ε
p+1
p

≥ n
p+1
2p ,

or in other words,

n ≤ cp
∆

2p
p+1L

2
p+1
p

ε2

for some constants cp, c̃p that depend on p. As Lemma 4.6 yields the lower bound T = nK
2 we get a lower

bound of

Ω

(Lp
ˆ̀
p

) 1
p
∆n

p−1
2p

ε
p+1
p
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with probability at least 1/2 for large enough dimension d (see below). Thus there must be a fixed function F
such that for this many iterations – with probability 1/2 depending only on ξ – the iterates A produces on F
all have gradient larger than ε. For the dimension requirement, one can plug in the values of K and δ = 1/2

into the dimension requirement of Lemma 4.6, to see that some d ∈ Õ(n
2p−1
p ∆L

2/p
p ε−

2(p+1)
p ) ≤ Õ(n2∆L2

pε
−4)

suffices. �

C PROOFS OF RESULTS UNDER ASSUMPTION 4.8

In Appendix C.1 we will first state a stronger statement than 4.9, namely Theorem C.1, and then show
that Theorem 4.9 follows from that. The subsequent sections will be dedicated to proving Theorem C.1:
in Appendix C.2 we will state and prove all lemmas necessary and then in Appendix C.3, we will prove
Theorem C.1. Finally, in Appendix C.4 we will prove the lower bound Theorem 4.10.

C.1 Proof of Theorem 4.9

The convergence analysis in this section follows that of SVRC (Zhou et al., 2019). This supports our claim
that Assumption 4.8 is a natural smoothness assumption. We refer the reader to Algorithm 1 for a description
of SVRC.

Algorithm 1 SVRC (Zhou et al., 2019)
Input: Gradient and Hessian batch sizes bg, bh, cubic penalty parameter M , number of epochs S and steps
per epoch T . Starting point x0

x̂1 = x0

for s = 1 to S do
xs0 = x̂s

gs = ∇F (x̂s), Hs = ∇2F (x̂s)
for t = 0 to T − 1 do

Sample index sets Ig, Ih, with |Ih| = bh, |Ig| = bg
vst = 1

bg

∑
it∈Ig [∇fit(xst )−∇fit(x̂s)] + gs − ( 1

bg

∑
it∈Ig ∇

2fit(x̂
s)−Hs)(xst − x̂s)

Us
t = 1

bh

∑
jt∈Ih [∇2fjt(x

s
t )−∇2fjt(x̂

s)] + Hs

hst = arg minh[〈vst ,h〉+ 1
2 〈U

s
th,h〉+ M

6 ‖h‖
3]

xst+1 = xst + hst
end for
x̂s+1 = xsT

end for
Input: xout = xst , where s ∈ [S], t ∈ [T ] are chosen uniformly at random.

Recall the terminology in Algorithm 1. We will commonly call vst and Us
t the gradient and Hessian estimators

respectively, we will refer to x̂s as the snapshot point, and to hst as the step. Finally, we will define

ms
t (h) = 〈vst ,h〉+

1

2
〈Us

th,h〉+
M

6
‖h‖3,

so that hst = arg minhm
s
t (h). To aid in the analysis, we define the following quantity also introduced in Zhou

et al. (2019):

µ(x) = max

{
‖∇F (x)‖3/2,−λ

3
min(∇2F (x))

L
3/2
2

}
.

Whenever µ(x) ≤ ε3/2, x is an ε-approximate local minimum (Zhou et al., 2019). In Section C.3, we will show
that we can bound the expected value of this quantity as follows (see also Theorem 6 in Zhou et al. (2019)):
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Theorem C.1. Let M = CML2 for CM = 150. Let T ≥ 2 and choose bg ≥ 5T 4 and bh ≥ 3000T 2 log3 d.
Then

E[µ(xout)] ≤
240C2

ML
1/2
2 ∆

ST
.

Using this, we proceed with the proof of the main upper bound result.

Proof [of Theorem 4.9]. We first check that in the setting of Theorem 4.9, the assumptions of Theorem C.1
hold. It is clear that T ≥ 2 and that bg = 5 max{n4/5, 24} = 5T 4. Further, bh = 3000 max{4, n2/5} log3 d =
3000T 2 log3 d. Plugging in the choices of S and T into the result of Theorem C.1, one gets

E[µ(xout)] ≤
240C2

ML
1/2
2 ∆

ST
≤ 240C2

ML
1/2
2 ∆

max{1, 240C2
ML

1/2
2 ∆n−1/5ε−3/2}max{2, n1/5}

≤ ε3/2,

as desired. In particular, we have

E[‖∇F (xout)‖]3/2 ≤ E[‖∇F (xout)‖3/2] ≤ ε3/2,

allowing comparison with our lower bound from Theorem 4.10.

During each epoch, n oracle calls are needed to construct gs and Hs, requiring Sn calls overall. To compute
vst and Us

t , we need

bg + bh = 5 max{n4/5, 24}+ 3000 max{4, n2/5} log3

oracle queries at each iteration, requiring ST (bg + bh) calls over all epochs and iterations. The total number
of oracle queries is therefore at most

Sn+ ST (bg + bh)

= max{1, 240C2
ML

1/2
2 ∆n−1/5ε−3/2}n

+ (max{1, 240C2
ML

1/2
2 ∆n−1/5ε−3/2})(max{2, n1/5})(5 max{n4/5, 24}+ 3000 max{4, n2/5} log3 d)

≤ Õ

(
n+

∆L
1/2
2 n4/5

ε3/2

)
.

�

C.2 Lemmas Required in the Proof of Theorem C.1

We will need some auxiliary lemmas to conduct the proof. The first is a version of Lemma 1 from Nesterov
and Polyak (2006), but tailored to our finite-sum setting.

Lemma C.2. Let F = 1
n

∑
fi satisfy Assumption 4.8. Then we have for any x and y:

Ei
[
‖∇fi(y)−∇fi(x)−∇2fi(x)(y − x)‖2

]
≤ 1

3
L2

2‖x− y‖4.

and for any h:

F (x + h) ≤ F (x) + 〈∇F (x),h〉+
1

2
〈∇2F (x)h,h〉+

L2

6
‖h‖3.
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Proof [of Lemma C.2]. We have

Ei‖∇fi(y)−∇fi(x)−∇2fi(x)(y − x)‖2 = Ei‖
∫ 1

0

[∇2fi(x + τ(y − x))−∇2fi(y)](y − x)dτ‖2

≤ Ei
∫ 1

0

‖∇2fi(x + τ(y − x))−∇2fi(y)‖2‖x− y‖2dτ

=

∫ 1

0

Ei‖∇2fi(x + τ(y − x))−∇2fi(y)‖2‖x− y‖2dτ

≤
∫ 1

0

L2
2‖x + τ(y − x)− y‖2‖x− y‖2dτ

=
L2

2

3
‖x− y‖4,

where the first inequality is because of ‖
∫ 1

0
vdτ‖2 ≤

(∫ 1

0
‖v‖dτ

)2

≤
∫ 1

0
‖v‖2dτ and the second inequality

follows because of Assumption 4.8 and E[|X|s]1/s ≤ E[|X|t]1/t for s ≤ t. �

We also take the following lemma directly from Zhou et al. (2019). Its proof exploits the optimality of hst .

Lemma C.3 [Lemma 24 in Zhou et al. (2019)]. For the iterates in Algorithm 1 under the assumptions of
Theorem 4.9 we have

vst + Us
th

s
t +

M

2
‖hst‖hst = 0,

Us
t +

M

2
‖hst‖I � 0,

〈vst ,hst 〉+
1

2
〈Us

th
s
t ,h

s
t 〉+

M

6
‖hst‖3 ≤ −

M

12
‖hst‖3.

Lemmas C.4 and C.6 resemble Lemmas 25 and 26 in Zhou and Gu (2019) and bound the variances of the
gradient and Hessian estimators of SVRC. Under the new smoothness Assumption 4.8, some constant factors
change and the batch size for the Hessian estimator must comply to some stronger requirements, but other
than that, third-moment smoothness is a viable alternative to an individual smoothness assumption. The
proofs are analogous to the proofs of their respective counterparts.

The first lemma bounds the variance of vst :

Lemma C.4. The gradient estimator vst in Algorithm 1 satisfies

Eit‖∇F (xst )− vst‖3/2 ≤
2L

3/2
2

b
3/4
g

‖xst − x̂s‖3,

where Eit is the expectation over the batch indices it ∈ Ig.

To prove Lemma C.4 we will need the following technical result:

Lemma C.5 [Lemma 31 in Zhou et al. (2019)]. Suppose a1, . . . ,aN are i.i.d. and Eai = 0 for all i. Then

E‖ 1

N

N∑
i=1

ai‖3/2 ≤
1

N3/4
(E‖ai‖2)3/4.
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Proof [of Lemma C.4]. Using the definition of vst , we can write

Eit‖∇F (xst )− vst‖3/2

= Eit‖
1

bg

∑
[∇fit(xst )−∇fit(x̂s)] + gs −

[
1

bg

∑
∇2fit(x̂

s)−Hs

]
(xst − x̂s)−∇F (xst )‖3/2

= Eit‖
1

bg

∑
[∇fit(xst )−∇fit(x̂s)−∇2fit(x̂

s)(xst − x̂s)− (∇F (xst )−∇F (x̂s)−∇2F (x̂s)(xst − x̂s))]‖3/2

≤ 1

b
3/4
g

(
Eit‖∇fit(xst )−∇fit(x̂s)−∇2fit(x̂

s)(xst − x̂s)− (∇F (xst )−∇F (x̂s)−∇2F (x̂s)(xst − x̂s))‖2
)3/4

≤ 33/4

b
3/4
g

(
Eit‖∇fit(xst )−∇fit(x̂s)−∇2fit(x̂

s)(xst − x̂s)‖2

+ Eit‖(∇F (xst )−∇F (x̂s)−∇2F (x̂s)(xst − x̂s))‖2
)3/4

≤ 33/4

b
3/4
g

(
L2

2

3
‖xst − x̂s‖4 +

L2
2

3
‖xst − x̂s‖4

)3/4

=
2L

3/2
2

b
3/4
g

‖xst − x̂s‖3.

The first inequality is because of Lemma C.5. Indeed, as the different indices are independent, and the
expectation is taken over the batch indices, we can apply Lemma C.5. The second holds due to the basic
inequality ‖u + v‖2 ≤ 3(‖u‖2 + ‖v‖2). The third inequality is because of Lemma C.2. �

This lemma bounds the variance of Us
t :

Lemma C.6. If bh ≥ 12000 log3 d, the Hessian estimator Us
t satisfies

Ejt‖∇2F (xst )−Us
t‖3 ≤ 15000L3

2

(
log d

bh

)3/2

‖xst − x̂s‖3,

where Ejt is the expectation over the batch indices jt ∈ Ih.

In the proof of Lemma C.6, we will need the following matrix-moment inequality.

Lemma C.7 [Lemma 32 in Zhou et al. (2019)]. Suppose that q ≥ 2, p ≥ 2, and fix r ≥ max{q, 2 log p}.
Consider i.i.d. random self-adjoint matrices Y1, . . . ,YN with dimension p× p, EYi = 0. It holds that[

E‖
N∑
i=1

Yi‖q
]1/q

≤ 2
√
er‖

(
N∑
i=1

EY2
i

)1/2

‖+ 4er(Emax
i
‖Yi‖q)1/q.

Proof [of Lemma C.6]. We can rewrite

Ejt‖∇2F (xst )−Us
t‖3 = Ejt‖∇2F (xst )−

1

bh

[∑
[∇2fjt(x

s
t )−∇2fjt(x̂

s) + Hs]
]
‖3

= Ejt‖
1

bh

[∑
[∇2fjt(x

s
t )−∇2fjt(x̂

s) + Hs −∇2F (xst )]
]
‖3.

Applying Lemma C.7, and using our third-moment assumption, we can bound this further. The Lemma
controls the third moment of a sum with a sum of second moments and an additive term of the third moment
of the maximum matrix. While Assumption 4.8 is not ideal for bounding maximum terms, we may replace
the maximum with a sum over the whole batch, which is sufficient in this case. This only makes the batch
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size requirement grow polylogarithmically in the dimension of the domain. We proceed with the proof. Define
Yjt = ∇2fjt(x

s
t )−∇2fjt(x̂

s) + Hs −∇2F (xst ) and set N = bh, q = 3, p = d and r = 2 log p. Then(
Ejt‖

∑
Yjt‖3

)1/3

≤ 2
√
er‖
(∑

EjtY2
jt

)1/2

‖+ 4er(Ejt max
jt
‖Yjt‖3)1/3. (12)

We bound both terms separately. For the first, we follow the original proof and get

2
√
er‖
(∑

EjtY2
jt

)1/2

‖ = 2
√
er‖
∑

EjtY2
jt‖

1/2

= 2
√
bher‖EjtY2

jt‖
1/2

≤ 2
√
bher

(
Ejt‖Y2

jt‖
)1/2

≤ 2
√
bher

(
Ejt‖Yjt‖2

)1/2
.

Plugging back the definition of Yjt , and using Assumption 4.8 along with E[|X|s]1/s ≤ E[|X|t]1/t for s ≤ t
allows us to bound

2
√
bher

(
Ejt‖Yjt‖2

)1/2
= 2
√
bher

(
Ejt‖∇2fjt(x

s
t )−∇2fjt(x̂

s) + Hs −∇2F (xst )‖2
)1/2

≤ 2
√
bher

(
3Ejt‖∇2fjt(x

s
t )−∇2fjt(x̂

s)‖2 + 3Ejt‖Hs −∇2F (xst )‖2
)1/2

≤ 2
√
bher

(
6L2

2‖xst − x̂s‖2
)1/2

≤ 5L2

√
bher‖xst − x̂s‖. (13)

For the second term in Equation (12) we write

4er
(
Ejt max

jt
‖Yjt‖3

)1/3 ≤ 4er
(
Ejt
∑
‖Yjt‖3

)1/3
≤ 4b

1/3
h er

(
Ejt‖Yjt‖3

)1/3
= 4b

1/3
h er

(
Ejt‖∇2fjt(x

s
t )−∇2fjt(x̂

s) + Hs −∇2F (xst )‖3
)1/3

≤ 4(7bh)1/3er
(
Ejt‖∇2fjt(x

s
t )−∇2fjt(x̂

s)‖+ ‖Hs −∇2F (xst )‖3
)1/3

≤ 4(7bh)1/3er
(
2L3

2‖xst − x̂s‖3
)1/3

≤ 4(7bh)1/3er
(
2L3

2‖xst − x̂s‖3
)1/3

≤ 10L2b
1/3
h er‖xst − x̂s‖. (14)

Plugging in Equations (13) and (14) into (12) we get(
Ejt‖

∑
Yjt‖3

)1/3

≤ 5L2

√
bher‖xst − x̂s‖+ 10L2b

1/3
h er‖xst − x̂s‖,

and therefore for the quantity we are interested in:

Ejt‖∇2F (xst )−Us
t‖3 ≤ 125L3

2

(√
er

bh
+

2er

b
2/3
h

)3

‖xst − x̂s‖3

≤ 125L3
2

(√
2e log d

bh
+

4e log d

b
2/3
h

)3

‖xst − x̂s‖3 (15)

≤ 15000L3
2

(
log d

bh

)3/2

‖xst − x̂s‖3.
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Because in (15) the first term in the parentheses dominates if bh ≥
√

8e log d
6, for which bh ≥ 12000 log3 d is

sufficient. �

For completeness, we provide the rest of the lemmas from Zhou et al. (2019) that are needed in the analysis.
We change the wording a bit, to make their applicability explicit, but all the proofs in the original paper can
be applied unchanged, as is easily checked.

Lemma C.8 can be derived using the Cauchy-Schwarz and Young inequalities.

Lemma C.8 [Lemma 27 in Zhou et al. (2019)]. For the iterates in Algorithm 1 under the assumptions of
Theorem 4.9 and for any h, we have

〈∇F (xst )− vst ,h〉 ≤
M

27
‖h‖3 +

2‖∇F (xst )− vst‖3/2

M1/2
,

〈∇2F (xst )−Us
t ,h〉 ≤

2M

27
‖h‖3 +

27

M2
‖∇2F (xst )−Us

t‖3.

Lemma C.9 [Lemma 28 in Zhou et al. (2019)]. For the iterates in Algorithm 1 under the assumptions of
Theorem 4.9 and for any h, we have

µ(xst + h) ≤ 9C
3/2
M

[
M3/2‖h‖3 + ‖∇F (xst )− vst‖3/2 +M−3/2‖∇2F (xst )−Us

t‖3

+ ‖∇ms
t (h)‖3/2 +M3/2

∣∣‖h‖ − ‖hst‖∣∣3].
Lemma C.10 [Lemma 29 in Zhou et al. (2019)]. For any x,y,h and C ≥ 3/2 we have

‖x + h− y‖3 ≤ 2C2‖h‖3 + (1 + 3/C)‖x− y‖3.

Lemma C.11 [Lemma 30 in Zhou et al. (2019)]. Define cT = 0 and for t ∈ [0 : T − 1] define ct =
ct+1(1 + 3/T ) +M(500T 3)−1. Then for any t ∈ [1 : T ] we have:

M/24− 2ctT
2 ≥ 0.

C.3 Proof of Theorem C.1

Proof [of Theorem C.1]. This proof is very close to identical to the one of Theorem 6 in Zhou et al. (2019),
but we give it again for completeness, with the changes coming from the slightly modified lemmas. We can
bound the function value at the next iterate F (xt+1) as follows:

F (xst+1) ≤ F (xst ) + 〈∇F (xst ),h
s
t 〉+

1

2
〈∇2F (xst )h

s
t ,h

s
t 〉+

L2

6
‖hst‖3 (16)

= F (xst ) + 〈vst ,hst 〉+
1

2
〈Us

th
s
t ,h

s
t 〉+

M

6
‖hst‖3 + 〈∇F (xst )− vst ,h

s
t 〉

+
1

2
〈
(
∇2F (xst )−Us

t

)
hst ,h

s
t 〉+

M − L2

6
‖hst‖3

≤ F (xst )−
M

2
‖hst‖3 +

(
M

27
‖hst‖3 +

2‖∇F (xst )− vst‖3/2

M1/2

)
+

1

2

(
2M

27
‖hst‖3 +

27

M2
‖∇2F (xst )−Us

t‖3
)
− M − L2

6
‖hst‖3 (17)

≤ F (xst )−
M

12
‖hst‖3 +

2

M1/2
‖∇F (xst )− vst‖3/2 +

27

M2
‖∇2F (xst )−Us

t‖3. (18)

(16) holds due to Lemma C.2 and (17) is valid because of Lemmas C.3 and C.8.
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Define
Rst = E

[
F (xst ) + ct‖xst − x̂s‖3

]
,

where cT = 0 and ct = ct+1(1 + 3/T ) +M(500T 3)−1 for t ∈ [0 : T − 1]. We use Lemma C.10 with T ≥ 2 ≥ 3/2
to get a recurrence – involving the step – for the cubed distance from an iterate to the snapshot point:

ct+1‖xst+1 − x̂s‖3 ≤ 2ct+1T
2‖hst‖3 + ct+1(1 + 3/T )‖xst − x̂s‖3. (19)

We can make use of Lemma C.9 with h = hst followed by Lemma C.3

(240C2
ML

1/2
2 )−1µ(xst+1) ≤ M

24
‖hst‖3 +

‖∇F (xst )− vst‖3/2

24M1/2
+
‖∇2F (xst )−Us

t‖3

24M2

+
‖∇ms

t (h
s
t )‖3/2

24M1/2
+
M

24

∣∣‖hst‖ − ‖hst‖∣∣3
=
M

24
‖hst‖3 +

‖∇F (xst )− vst‖3/2

24M1/2
+
‖∇2F (xst )−Us

t‖3

24M2
, . (20)

In the first step we used CM = 150 and M = CML2 and in the second we used the optimality of hst as an
argument of ms

t . Our aim is to get a telescoping sum for the Rt’s. For that, we start by combining (18), (19)
and (20) (this time the expectation is over all the randomness involved in the algorithm):

Rst+1 + (240C2
ML

1/2
2 )−1E[µ(xt+1)] = E

[
F (xst+1) + ct+1‖xst+1 − x̂s‖3 + (240C2

ML
1/2
2 )−1µ(xst+1)

]
≤ E

[
F (xst ) + ct+1(1 + 3/T )‖xst − x̂s‖3 − (M/24− 2ct+1T

2)‖hst‖3
]

+ E
[
3M−1/2‖∇F (xst )− vst‖3/2 + 28M−2‖∇2F (xst )−Us

t‖3
]

≤ E
[
F (xst ) + ct+1(1 + 3/T )‖xst − x̂s‖3

]
+ E

[
3M−1/2‖∇F (xst )− vst‖3/2 + 28M−2‖∇2F (xst )−Us

t‖3
]
, (21)

because by Lemma C.11 we have M/24− 2ct+1T
2 ≥ 0 for any t ∈ [T ]. In the second term of (21), we recover

the gradient and Hessian estimator variances that Lemmas C.4 and C.6 control. Indeed, taking iterated
expectations yields

3M−1/2‖∇F (xst )− vst‖3/2 ≤
6L

3/2
2

M1/2b
3/4
g

E‖xst − x̂s‖3 ≤ M

1000T 3
E‖xst − x̂s‖3.

Here we have used that M = 150L2 and bg ≥ 5T 4. For the Hessian estimator, we get

28M−2‖∇2F (xst )−Us
t‖3 ≤

28 · 15000L3
2

M2(bh/ log d)3/2
E‖xst − x̂s‖3

≤ 28 · 15000M

1503(3000)3/2T 3
E‖xst − x̂s‖3

≤ M

1000T 3
E‖xst − x̂s‖3,

where we additionally use bh ≥ 3000T 2 log3 d. Note that our larger bh actually gives us better constant factors
than we derive, but we do not need this and therefore keep the same as in the original proof. From here, we
exactly follow said original proof from Zhou et al. (2019). We can plug those 2 bounds back into (21) and use
the definition of ct to get the recurrence

Rst+1 + (240C2
ML

1/2
2 )−1E[µ(xt+1)] ≤ E

[
F (xst ) + ‖xst − x̂s‖3

(
ct+1(1 + 3/T ) +

M

500T 3

)]
= E[F (xst ) + ct‖xst − x̂s‖3] = Rst .
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We will now do 2 steps of telescoping. First, let s ∈ [S] be arbitrary. As cT = 0 and xsT = x̂s+1 by
definition, we have RsT = E[F (xsT ) + cT ‖xsT − x̂s‖3] = EF (xsT ) = EF (x̂s+1). As xs0 = x̂s, we have
Rs0 = E[F (xs0) + c0‖xs0 − x̂s‖3] = EF (x̂s). Thus, rearranging and telescoping the above from t = 0 to T − 1
yields

EF (x̂s)− EF (x̂s+1) = Rs0 −RsT ≥
T∑
t=1

(240C2
ML

1/2
2 )−1E[µ(xst )].

Further, we can telescope this from s = 1 to S and obtain

∆ ≥ F (x̂1)− F (x̂S) =

S∑
s=1

[
EF (x̂s)− EF (x̂s+1)

]
≥ (240C2

ML
1/2
2 )−1

S∑
s=1

T∑
t=1

E[µ(xst )].

The first inequality holds because of the definition of x0 = x̂1 and because the choice of hst guarantees the
iterates do not yield increases in function value over time. Therefore, picking a random iterate xst , we will have

E[µ(xst )] ≤
240C2

ML
1/2
2 ∆

ST
,

as desired. �

C.4 Proof of Theorem 4.10

Proof [of Theorem 4.10]. Let σ, λ > 0 be parameters yet to be chosen. The same is true for d and K.
According to Definition 4.2, we define the scaled functions

fi(x) = 3
√
nλσ3f∗i

(x
σ

)
= 3
√
nλσ3f̂K;Bi

(
CT
i x

σ

)
,

giving us

F (x) =
1

n

n∑
i=1

fi(x).

We will choose the scaling parameters to ensure that our instance satisfies Assumption 4.8, deriving the lower
bound as we go along. We first guarantee smoothness: for any x,y ∈ Rd we have

Ei‖∇2fi(x)−∇2fi(y)‖3 =
1

n

n∑
i=1

‖∇2fi(x)−∇2fi(y)‖3

≤ 1

n

n∑
i=1

( 3
√
nλˆ̀

2)3‖CT
i x−CT

i y‖3 (22)

= λ3 ˆ̀3
2

n∑
i=1

‖CT
i (x− y)‖2‖CT (x− y)‖

= λ3 ˆ̀3
2‖CT (x− y)‖3

= λ3 ˆ̀3
2‖x− y‖3,

where (22) follows from Lemmas D.1 and B.2. So, the choice λ = L2
ˆ̀
2
therefore accomplishes third-moment

smoothness with parameter L2.

Now fix an algorithm A and assume {[it,x(t)]}t∈N are the iterates produced by A on F . Consequently,
by Lemma 4.4 {[it,x(t)/σ]}t∈N is informed by F ∗. Therefore we can apply Lemma 4.6 on the sequence
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{[it,x(t)/σ]}t∈N to get

‖∇F (x(t))‖2 = ‖ 3
√
nλσ2∇F ∗(x(t)/σ)‖2

= n2/3λ2σ4‖∇F ∗(x(t)/σ)‖2

≥ n2/3λ2σ4 1

16n

=
σ4λ2

16n1/3
.

To get a lower bound for an ε precision requirement we can choose σ to be

σ2λ

4n1/6
= ε ⇐⇒ σ =

(
4εˆ̀

2n
1/6

L2

)1/2

.

Next, we will guarantee the optimality gap requirement. We have

F (0)− inf
x∈Rd

F (x) ≤ 3
√
nλσ3

[
1

n

n∑
i=1

f̂K;Bi

(
CT
i 0

σ

)
− 1

n

n∑
i=1

inf
x∈Rd

f̂K;Bi

(
CT
i x

σ

)]

≤ 3
√
nλσ3 1

n

n∑
i=1

[
f̂K;Bi (0)− inf

y∈Rd/n
f̂K;Bi (y)

]
≤ 12 3

√
nλσ3K,

where the last step uses Lemma B.2 i). We require

12 3
√
nλσ3K = 12 3

√
n
L2

ˆ̀
2

(
4εˆ̀

2n
1/6

L2

)3/2

K = 96n7/12

(
ˆ̀
2

L2

)1/2

ε3/2K ≤ ∆.

Our bounds get better with larger values of K, so we want to choose K as

K =

⌊
∆

96n7/12

(
L2

ˆ̀
2

)1/2
1

ε3/2

⌋
.

We need K ≥ 1 to have a sensible bound as becomes apparent below, and so we require

c̃∆L
1/2
2

1

ε3/2
≥ n7/12,

or more concisely

n ≤ c∆12/7L
6/7
2

ε18/7
,

for some universal constants c, c̃. As Lemma 4.6 yields the lower bound T = nK
2 , we get a lower bound of

Ω

((
L2

ˆ̀
2

)1/2
∆n5/12

ε3/2

)
with probability at least 1/2 for large enough dimension d (see below). Thus there must be a fixed function F
such that for this many iterations – with probability 1/2 depending only on ξ – the iterates A produces on F
all have gradient larger than ε. This means that

Tε(A, F ) ≥ Ω
(√

L2∆n
5/12

ε3/2

)
.

For the requirement on the dimension d for the bound from Lemma 4.6 to hold, we can plug in our values of
K and δ = 1/2 to see that some d ∈ Õ(n2∆L2ε

−3) suffices. This concludes the proof. �
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D SHARED TECHNICAL LEMMA

We need the following result to guarantee the smoothness of our constructions.

Lemma D.1. Assume m1 ≥ m2. Let f : Rm2 → R and for C ∈ Ortho(m1,m2) let g : Rm1 → Rm2 , x 7→ CTx.
We will show that for any x,y ∈ Rm1 :

‖∇p[f(CTx)]−∇p[f(CTy)]‖ ≤ ‖∇̃pf(CTx)− ∇̃pf(CTy)‖,

where the gradient operator ∇ is with respect to x while ∇̃ is with respect to g(x) = CTx. Further, if f is
pth-order smooth with constant L, then for any σ > 0

‖∇p[σp+1f(CTx/σ)]−∇p[σp+1f(CTy/σ)]‖ ≤ L‖CT (x− y)‖.

Proof [of Lemma D.1]. We are interested in the tensor ∇p[f(CTx)]. Fix indices i1, . . . , ip and let Ξ be the
set of partitions of [p]. For a set S ⊂ [p] let iS = {ij | j ∈ S}. Define ∇|S|iS to be the order |S| partial derivative
operator with respect to the coordinates with indices in iS . Applying the higher-order chain rule we obtain

∇pi1,...,ip [f(CTx)] =
∑

(S1,...,SL)∈Ξ

m2∑
j1,...,jL=1

(
L∏
l=1

∇|Sl|iSl
gjl(x)

)
∇̃Lj1,...,jLf(CTx).

Now we use that gjl ’s second and higher-order derivatives are zero, and that ∇igjl(x) = ∇i[〈cjl ,x〉] = ci,jl .
This means that in the above sum, the only partition that matters has L = p and |S1|, . . . , |Sp| = 1. W.l.o.g.
we may take Sl = {l} and consequently iSl = {il}. Then our expression simplifies to

∇pi1,...,ip [f(CTx)] =
∑

(S1,...,SL)∈Ξ

m2∑
j1,...,jL=1

(
L∏
l=1

∇|Sl|iSl
gjl(x)

)
∇̃Lj1,...,jLf(CTx)

=

m2∑
j1,...,jp=1

(
p∏
l=1

∇ilgjl(x)

)
∇̃pj1,...,jpf(CTx)

=

m2∑
j1,...,jp=1

(
p∏
l=1

cil,jl

)
∇̃pj1,...,jpf(CTx).
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We now bound the tensor operator norm from the Lemma statement: let v(1), ...,v(p) ∈ Rm1 be arbitrary
unit vectors. Then we have〈

∇p[f(CTx)]−∇p[f(CTy)], v(1) ⊗ · · · ⊗ v(p)
〉

=

m1∑
i1,...,ip=1

v
(1)
i1
· · · v(p)

ip

m2∑
j1,...,jp=1

(
p∏
l=1

cil,jl

)
∇̃pj1,...,jp(f(CTx)− f(CTy))

=

m2∑
j1,...,jp=1

m1∑
i1,...,ip=1

v
(1)
i1
· · · v(p)

ip

(
p∏
l=1

cil,jl

)
∇̃pj1,...,jp(f(CTx)− f(CTy))

=

m2∑
j1,...,jp=1

m1∑
i1,...,ip=1

(
p∏
l=1

v
(l)
il
cil,jl

)
∇̃pj1,...,jp(f(CTx)− f(CTy))

=

m2∑
j1,...,jp=1

(
p∏
l=1

(
m1∑
il=1

v
(l)
il
cil,jl

))
∇̃pj1,...,jp(f(CTx)− f(CTy))

=

m2∑
j1,...,jp=1

((
〈v(1), cj1〉

)
· · ·
(
〈v(p), cjp〉

))
∇̃pj1,...,jp(f(CTx)− f(CTy))

=

m2∑
j1,...,jp=1

((
CTv(1)

)
j1
· · ·
(
CTv(p)

)
jp

)
∇̃pj1,...,jp(f(CTx)− f(CTy))

=
〈
∇̃pf(CTx)− ∇̃pf(CTy), CTv(1) ⊗ · · · ⊗CTv(p)

〉
≤ ‖∇̃pf(CTx)− ∇̃pf(CTy)‖.

The first statement follows because C has orthonormal columns and can be extended to an Rm1×m1 matrix
C̃. Then ‖CTv(k)‖ ≤ ‖C̃Tv(k)‖ = ‖v(k)‖ = 1 for all k ∈ [p], which justifies the application of the operator
norm definition. Because v(1), ...,v(p) were arbitrary, we obtain the desired inequality.

The second statement follows from p applications of the chain rule. �
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