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Abstract

The mixture cure model allows failure proba-
bility to be estimated separately from failure
timing in settings wherein failure never oc-
curs in a subset of the population. In this pa-
per, we draw on insights from representation
learning and causal inference to develop a neu-
ral network based mixture cure model that
is free of distributional assumptions, yield-
ing improved prediction of failure timing, yet
still effectively disentangles information about
failure timing from information about failure
probability. Our approach also mitigates ef-
fects of selection biases in the observation
of failure and censoring times on estimation
of the failure density and censoring density,
respectively. Results suggest this approach
could be applied to distinguish factors pre-
dicting failure occurrence versus timing and
mitigate biases in real-world observational
datasets.

1 INTRODUCTION

The mixture cure model was originally described by
Farewell (1982) to model occurrence times of an event or
failure of interest that does not occur in all individuals
of the population. In contrast to standard approaches
to the modeling of failure times, including the well-
known Cox proportional hazards (Cox-PH) (Coxl |1972)
and accelerated failure time (AFT) (Wei, [1992) models,
the mixture cure model presumes that the population
is divided into susceptible and cured individuals, and
that failure can occur only in the former. Equivalently,
susceptible individuals may be viewed as those who
will fail in finite time, though not necessarily in a given
observation window.
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According to the mixture cure model, observations are
generated by first drawing a binary random variable
indicating susceptibility to failure. If the individual is
susceptible, we then draw failure and censoring times,
and the observed time is the minimum of the two, as in
standard approaches for failure time. If the individual is
not susceptible, on the other hand, we need only draw a
censoring time, which will be observed. The probability
of susceptibility versus cure typically follows a logistic
model, though alternatives have been explored (Amico
et al 2019). The failure density is commonly modeled
with Cox-PH, AFT (Xiang et al., 2011), or variants
such as semi-parametric AFT (Zhang and Peng, |2007)).

This model is appropriate in a wide variety of settings,
from recommender systems that predict user interests,
to industrial engineering models that predict tool de-
fects. However, it is particularly useful in settings where
learning is based on censored failure or event times, yet
prediction of the times themselves is secondary to the
effective prediction of failure susceptibility, or equiva-
lently, lifetime event probability. In medical scenarios,
for example, diagnosis times are often noisy and/or
systematically biased (von Allmen et al.l 2015} |Dovidio
and Fiske, [2012)), therefore predicting the presence or
absence of a condition of interest is more clinically
meaningful than predicting the likely timing of diag-
nosis. Moreover, in this application and many others,
we may wish to identify specific factors (predictors)
that predict failure susceptibility versus timing, which
requires a model that distinguishes between the two.

Because the mixture cure model has a failure time
model at its core, it can take advantage of recent work
to pair the failure time model with neural networks
and stochastic gradient descent. Several studies have
shown that replacing the usual linear formulation for
the log-hazard ratio (i.e., Cox-PH) or the parameters
of a parametric failure time density (e.g., AFT) with a
neural network can improve performance, particularly
on large datasets (Zheng et al., [2019; [Katzman et al.)
2018 Kvamme et al., 2019)). More recently, however,
this approach has been superseded by neural network
based models that do not impose parametric assump-
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tions on the form on the failure density (Ren et al.
2019} [Lee et al.| [2018; (Chapfuwa et al., |2018}; [Tjandra
et al., [2021).

Building on these developments, the first contribution
of this work is to introduce a mixture cure model that
is highly flexible in this same sense. Its flexibility allows
our neural mixture cure (NMC) model to make more
accurate failure time predictions, which in turn allows
it to more accurately estimate failure susceptibility.

At the same time, however, this flexibility comes at a
cost: the failure time prediction component of NMC can
place arbitrary mass — including mass corresponding to
the probability that a given individual is cured — at the
end of the observation window, which in turn prevents
us from distinguishing factors predicting failure timing
from those affecting failure susceptibility.

Moreover, accurately modeling the failure density in
this setting is challenging due to selection biases similar
to those known to compromise prediction of individual-
ized treatment effects from observational data. Specifi-
cally, selection biases in the observation of failure times
results from the effects of features on censoring times
and failure susceptibility, leading to poor prediction of
failure times in affected regions of the domain.

To overcome these challenges, we draw on recent work
in representation learning for causal inference shown to
improve the accuracy of predicted treatment effects by
balancing predictive features associated with treatment
versus no treatment (Hassanpour and Greiner, 2019;
Assaad et al.l [2021)).

In the same way, balancing features associated with
susceptibility versus lack thereof is key to accurately
predict both failure times and censoring times, which
in turn improves prediction of event occurrence. So
motivated, we propose the disentangled mixture cure
model (DNMC) to improve the accuracy of failure time
predictions via a learned representation in which effects
of selection biases are reduced. By limiting information
about failure susceptibility in the learned representa-
tion used to predict failure timing, this approach also
allows factors predictive of the former to be easily dis-
tinguished from those predictive of the latter.

In summary, our contributions are as follows:

e Present a neural mixture cure (NMC) model free
of strong parametric assumptions.

e Motivate, develop, and present a disentangled neu-
ral mixture cure (DNMC) model.

e Show that DNMC can identify features predicting
failure timing, failure susceptibility, and both.

e Show that DNMC results in equal or better per-
formance compared to alternative methods.

e Using risk of stroke as real-world scenario, show
that DNMC identifies factors that differentially
predict susceptibility versus timing.

All code needed to replicate our results is available at
https://github.com/mengelhard/dnmc.

We begin by describing the existing mixture cure frame-
work, then extend it to NMC and DNMC.

2 MIXTURE CURE MODEL

Consider triplets of random variables {X,Y, S}, where
X € X C R? is a d-dimensional feature vector, Y €
(0,00) is an associated time, and S € {0,1} denotes
whether Y is a failure time or a right-censoring time.
Unlike the standard failure time model, the cure model
further supposes that individuals may or may not be
susceptible to failure, and that a latent variable F €
{0,1} indicates their susceptibility or lack thereof. If
E =0, then the individual is cured and cannot fail.

Variable | Description
X d-dimensional feature vector
T failure time
C right-censoring time
Y observed time
S indicates failure (1) vs censoring (0)
E indicates susceptible (1) vs cured (0)

Table 1: Definitions of Random Variables

Let T € (0,00) and C € (0,00) be unobserved (i.e.,
latent) random variables associated with failure and
censoring, respectively. In susceptible individuals, S
indicates whether failure occurs before censoring, and
Y is the minimum of T" and C. In cured individuals,
failure cannot occur, and therefore we have S = 0 and
Y =C. Thus, S and Y are determined by E, T, and
C as follows:

S=1(E=1)A(T < O)), (1)
v {min(T, C) %fE =1 @
C fE=0

If censoring times are independent of X, T, and FE, we
have the conditional dependence structure shown in

Figure

Suppose T is drawn from the failure density fr(t|x),
which has associated survival function Fp(tjz) =
1- fot fr(r|x)dr. Similarly, let C' be drawn from the
censoring density fc(c|x), which has associated “sur-
vival” function Fo(clz) =1 — [ Fo(r|z)dr.
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Figure 1: Conditional dependence structure among ob-
served (shaded) and unobserved (not shaded) random
variables under independent censoring.

In the mixture cure model, the density p(y, s|x) is a
mixture with components corresponding to susceptible
versus cured individuals, respectively. In susceptible
individuals, the model reduces to the standard failure
time model. In cured individuals, on the other hand,
failure cannot occur, so that YyVa, we have p(y, S =
1lz, E = 1) = 0, and the model reduces to the censoring
density fo(y|x). This may be summarized as follows:

p(y,S =slz, E =¢) =

ifEFE=1land S=1
Fr(yle) fo( if F=1and S =0
fe(ylz) if E=0and S=0"
0 if FE=0and S=1

fr(ylz)Fo(ylx)
ylz) (3)

Having specified the density conditioned on possible
values of E, we complete our model specification by
supposing that E ~ Bern(o(h(x)), where o(-) denotes
the logistic (i.e., sigmoid) function and h(-) : X — R.
Marginalizing over E, we may write the full model as:

ply. ske) = (o(h(@) fr(ylo) Fo(yl) )
x (o (h(@)) Fr(yle) fo(ylz) (4)
(- o(h(@)feln)

Once forms for fr(ylx), fo(ylx), and h(x) have been
specified, their parameters may be optimized to max-
imize the likelihood ), log(p(y,s|z)) for a given
dataset D = {X;,Y;, S;} V.

3 DISENTANGLING FAILURE
PROBABILITY FROM FAILURE
TIMING

Supposing independent censoring (see Figure , we
may omit fo(y|x) and Fe(y|x) from the likelihood in
when selecting parameters of fr(y|x), fo(y|z). Our

goals are to (a) learn parameters 6, of h(x), i.e., our
model of failure susceptibility; (b) learn parameters 61
of fr(ylzx), i.e., our model of the failure density; and
(¢) identify factors within X that are relevant to each.

However, our goal to disentangle failure probability
from failure timing is complicated by several factors.

First, we wish to use a flexible model for fr that does
not place assumptions on the distribution of failure
times, which has been shown to yield superior perfor-
mance across a range of failure time benchmark tasks
(Miscouridou et al.|, [2018; [Lee et al.L|2018; Tjandra et al.|
2021)). In contrast to a standard failure time model,
however, this lack of distributional assumptions makes
the mixture cure model non-identifiable: f7 can ignore
h by shifting mass corresponding to Pr(E = 0) (i.e.,
not susceptible) to the end of the observation window
and scaling the remainder of its mass to compensate.
This has no effect on the likelihood, but results in a de-
generate mixture cure model that does not distinguish
failure susceptibility from failure timing.

Second, the learning of fr is challenging due to two,
closely related forms of selection bias:

1. In any failure time model, T" is observed more often
in individuals with earlier failure times, leading to
poor estimation of fr in regions of X associated
with later failure times.

2. Unique to the cure model, T is observed more
often in individuals who are susceptible to failure,
leading to poor estimation of fr in regions of X
associated with low susceptibility.

To mitigate effects of selection bias and ensure infor-
mation about failure susceptibility is captured by h,
not fr, we aim to learn an intermediate representation
Q) : X — Q that will serve as the input to fr, and
that has three important, related properties: (a) €
does not contain information about failure susceptibil-
ity; (b) susceptible versus cured individuals have similar
distributions over €2; and (c¢) individuals with earlier
versus later failure times have similar distributions over
Q. More precisely, we would like po(w|S = 0) to be
similar to po(w|S = 1); and pa(w|E = 0) to be similar
to pa(w|E = 1), where w = Q(x).

Along with €, we design additional representations
O(): X - P and U : X — P to capture information
predictive of failure susceptibility and information pre-
dictive of both susceptibility and timing, respectively,
while applying regularization to limit the presence of
redundant information across representations. The de-
pendence of E and T on the representations ®, ¥, and
€ is summarized in Figure 2f(a).
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Returning to 2, we enforce properties (a)-(c) by min-
imizing d(pg(w|S = 1),pa(w|S = O)), where d(p, q)
denotes the maximum mean discrepancy (MMD) (Gret-
ton et al.| 2012) between the densities p and g. This en-
sures po(w|S = 0) is similar to po(w|S = 1). We would
also like po(w|E = 0) to be similar to po(w|E = 1),
but in contrast to .S, which is observed, the failure
susceptibility F is not observed, therefore we cannot
minimize d(po(w|E = 1), pa(w|E = 0)) directly. How-
ever, we will show in Section [3.I] that under typical
conditions, d(pa(w|S = 1), pa(w|S = 0)) is an upper
bound on d(pa(w|E = 1), pa(w|E = 0)).

Writing the complete collection of model parameters
as @ = {0r,0y,0s,0v,0q}, we solve for:

N

1
argmin [ — —w; lo iy Si|®i; 0
& <N 2 gp(yi, silzi; )
+ad(pa(w|S = 1;00),pa(w|S = 0;0q))  (5)
+ARR(0))7

where Ay and \p are hyperparameters weighting com-
ponents of the loss corresponding to the distance d(-, )
and a regularizer R(-), respectively. In our experiments,
R(+) is an L2 penalty applied to all neural network pa-
rameters.

3.1 Bounding the Distance between
Conditional Densities

We wish to minimize a distance between pg(w|S = 0)
and po(w|S = 1), as well as between pq(w|E = 0)
and po(w|E = 1), where w = Q(x). Here we use the
maximum mean discrepancy (MMD), a distance metric
defined as follows:

MMDI[F, p, q] (6)
‘= sup (E’zwp(z)(f(z)) - EZ""I(Z) (f(Z)))

feF

Claim 1. Suppose p(x) is a mizture of a finite num-
ber of densities p1,...,pK, with corresponding weights

wy, ..., wi. Then d(p,q) < S0, wrd(pr, q).
Proof. Writing E, ) (f(2)) as E,(f(2)), we have:
dp.a) = sup (E(f(2)) ~ Eo(/()
= sup ([ 40 we By, (£(2)] — Ey(f(2))))

feF

= sup (T3, we By, (£(2) — Eg(£(2)))])

fer
< i weswpser (Ep (£(2) B, (),

where the equality between the second and third lines
follows from the fact that Zfil wy = 1. O

To make our notation more concise, let p, = po(w|E =
1), let pos = pa(w|S = 0), let pose = pa(w|S =
0,E = 1), and so on. Note that p; = pse, since
Pr(S = 1,E = 0) = 0, and similarly p-. = p-s -,
since Pr(S=0,E=1)=0.

Consider d(pe, p-.), the distance between densities con-
ditioned on the value of e; it is this distance we wish to
minimize. Since e is not observed, we cannot minimize
this quantity directly. However, there are two condi-
tions under which we may justify minimizing d(ps, ps)
instead.

Claim 2. Writing pe as aps + (1 — a)p_s., where
a=Pr(S=1E=1); and p—s as Bp-e + (1 — B)p-s.e,
where § = Pr(E = 0[S = 0), the distance d(pe,p-e) S
bounded as follows:

d(Pes p-e) <ad(ps, p-s) (7)
+[a(1 - ﬁ) + (1 - a)}d(p—'s,evpﬂe)'

Proof. See Appendix; the proof is straightforward from
Claim 1 and properties of the metric d(-,-). O

Note that 3 = Pr(E = 0)/(Pr(E =0)+ (1 —a)Pr(E =
1)) (see Appendix), so that « ~ 1 implies 5 = 1, and
a ~ 0 implies § ~ Pr(E = 0). From this, we see that
d(ps,p—s) becomes an upper bound on d(p., p-.) as
a — 1. However, this condition on « implies that al-
most all failures are observed, in which case a standard
failure time model would more suitable.

Importantly, there is a second, more applicable condi-
tion under which d(ps, p—s) provides an upper bound
ot d(pes p-c), namely when d(p-s e, p-c) < d(py. p-s).
Recalling that p—s = Bp-e + (1 — B)ps,e, this is sat-
isfied when the representations Q(x) are more similar
between the two subpopulations of individuals without
observed events — in other words, those who are versus
are not susceptible — than between individuals with
observed events versus those without. Although this
condition is not guaranteed to hold, we anticipate it
will hold under typical conditions, which allows us to
approximately match po(w|E = 0) to po(w|E = 1) by
using S, which is observed, as a proxy for F, which is
not. Our empirical results support this approach.

4 DEPENDENT CENSORING

In settings with covariate-dependent censoring, which
is common in medical applications, accurately modeling
the censoring density f¢ is challenging due to selection
bias similar to that described in the previous section:

1. C is observed more often for regions of X associ-
ated with (a) later failure times, and (b) earlier



Matthew Engelhard, Ricardo Henao

(=)
() ()
5

(a) ®, ¥, and © under independent censoring

(b) ®, ¥, and © under dependent censoring

Figure 2: Conditional dependence structure among observed (shaded) and unobserved (not shaded) random
variables, including the learned representations ®, ¥, and 2.

censoring times, leading to poor estimation of f¢
in regions of X associated with earlier failure or
later censoring.

2. Again, unique to the cure model, C' is observed
more often in individuals who are not susceptible
to failure, leading to poor estimation of fo in
regions of X with high susceptibility in settings
where early failure is common.

These effects are mitigated by the same strategy de-
scribed to improve learning fr. As before, our goal
is to learn a representation Q(-) : X — Q such that
the density is similar for individuals with earlier ver-
sus later failure times as well as for susceptible versus
cured individuals. The former can be achieved directly
by minimizing d(pa(w|S = 1), pa(w|S = 0)). Under
typical conditions this also achieves the latter objec-
tive, because d(pa(w|S = 1), pa(w|S = 0)) is an upper
bound on d(pg(w|E =1),pa(w|FE = O)) (Section .

Note that for cases in which censoring times are ob-
served in all individuals, including those with observed
failure times, we may be interested in estimating the
causal effect of failure on the censoring time. In this
case, there is a counterfactual outcome that is never
observed, namely, the censoring time had failure not
occurred in individuals for whom failure did occur, and
the censoring time had failure occurred in individuals
for whom it did not. Although we defer this direc-
tion for future work, this direct connection to causal
methods makes the relationship between this work and
previous work to learn disentangled representations to
more accurately estimate causal effects (Hassanpour
and Greiner} 2019)) more clear.

5 MODEL DESCRIPTIONS

All models compared in this work follow the approach
described by [Miscouridou et al.| (2018)), |Lee et al.| (2018]),
Tjandra et al.| (2021)), and others, which does not as-
sume a specific form for the failure density. Instead,
failure times are discretized by partitioning the time
horizon (0, Tymax) into K intervals such that all intervals
contain approximately the same number of events. The
probability of failure in each interval is then predicted
by neural network with softmax activation.

Disentangled Neural Mixture Cure (DNMC)
The DNMC model was instantiated via encoder net-
works for the representations ®, ¥, and €2, which were
parameterized by 0¢, 0y, and 0q, respectively; as well
as decoder networks fr, fco, and h, which were pa-
rameterized by 0y, 0., and 0, respectively. In our
experiments, each encoder was comprised of a single
fully-connected layer with 256 units and ReLU acti-
vation. For all DMNC models, the maximum mean
discrepancy used a Gaussian kernel with bandwidth set
based on the median heuristic (Garreau et al.l 2017]),
and loss as defined in . To evaluate the effect of
the inclusion of ¥ on performance and identification
of features, we also explored DNMC-V¥, which omits
the encoder for ¥ such that fr and fo are functions
of Q only, and h is a function of ® only. DNMC-V¥ was
otherwise identical to DNMC.

Neural Mixture Cure (NMC) The NMC model
was instantiated via neural networks predicting fr, fc,
and h, respectively, directly from the input «. With the
exception of the MMD term in , which is omitted, the
loss is identical to the DMNC loss. In our experiments,
each network was comprised of two fully-connected lay-
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ers of 256 units each, with ReLU activation, such that
the total number of layers and hidden units in NMC
matched that of DNMC. However, DNMC contains
approximately 3 x 2562 additional parameters due to
the fact that fr, fc, and h are each based on two of
the three latent representations ®, ¥, and €.

Neural Survival (NSurv) The neural survival
(NSurv) model is identical to NMC with the excep-
tion of the network predicting h, which is omitted. The
NSurv loss corresponds to the standard failure time
model. Equivalently, F is assumed to be 1 for all indi-
viduals. This model follows the approach to prediction
of failure times used in [Miscouridou et al.| (2018)), Lee
et al| (2018), Tjandra et al| (2021), which does not
assume a specific form for the failure density.

Multilayer Perceptron (MLP) Finally, we com-
pared all models to a simple MLP trained to predict the
failure indicator .S. This model is identical to the NMC
sub-network predicting h, and is trained to minimize
the cross-entropy loss between o(h(x)) and S.

6 EXPERIMENTS

6.1 Datasets

Northern Alberta Cancer Dataset (NACD)
This dataset was analyzed by [Yu et al.|(2011) when de-
veloping the multi-task logistic regression approach to
the prediction of failure times. It is publicly available,
and was originally derived from the Alberta Cancer
Registry by the University of Alberta Cross Cancer
Institute. The dataset contains survival times for 2,402
cancer patients along with demographics, laboratory
measurements, reported symptoms, and other features
collected before the patient’s first chemotherapy treat-
ment. The survival time is right-censored in 879 pa-
tients (36.6%).

Study to Understand Prognoses and Prefer-
ences for Outcomes and Risks of Treatments
(SUPPORT) This publicly available dataset, devel-
oped by [Knaus et al.| (1995), contains survival times
for 9,105 seriously ill, hospitalized adult patients along
with demographic information, medical history, phys-
iologic and neurologic measures, and other features.
The survival time is right-censored in 2904 patients
(31.9%).

Pooled Stroke Risk Cohorts This dataset con-
tains stroke occurrence and timing information pooled
across three cohorts: the Framingham Offspring study
(N=8,348) (Feinleib et al.| [1975), the Atherosclero-
sis Risk in Communities (ARIC) Study (N=23,158)

(investigators|, |1989), and the Multi-Ethnic Study of
Atherosclerosis (MESA) (N=6,390) (Bild et al., 2002).
Features include demographic information and cardio-
vascular and other medical history. Stroke was observed
in 1,543 of the 37,896 total patients (4.1%).

6.2 Performance Measures

AUC The area under the receiver operating char-
acteristic (AUC) assesses binary classification perfor-
mance of the learned py, (e|z) in predicting the prob-
ability of failure susceptibility. It is calculated using
standard methods on the test set based on the pre-
dicted pg, (e|z) and true E, when it is known. Since F
is not directly observed, the performance of pg, (e|x)
can only be assessed for experiments with synthetic
data, semi-synthetic data, or synthetic censoring. For
the NSurv model, which predicts only the failure den-
sity, AUC was calculated based on predicted expected
failure times by sweeping a threshold across the full
range of these predictions.

Time-Dependent Concordance Index (CI) Cor-
rect ordering of failure time predictions is typically
assessed using the concordance index (CI) developed
by [Harrell Jr et al.| (1984), which quantifies the de-
gree to which the order of predicted failure risks agrees
with the observed failure times. However, our model
allows relative risk between individuals to vary over
time. Thus, we instead use the time-dependent concor-
dance index developed by |Antolini et al.| (2005, which
compares individuals’ predicted risk at observed failure
times to the predicted risk at that time for other indi-
viduals with later failure times. Pairs of failure times
contribute to the CI only if (a) both failure times are
known, or (b) one failure time is known, the other is
censored, and the known failure time occurs before the
censoring time.

6.3 Training and Evaluation

For all tasks, data were partitioned into training
(~60%), validation (~20%), and test (~20%) sets. In
all experiments, the time horizon (0, Ti,ax) was parti-
tioned into K = 10 intervals. L2-regularization was
used in all models with Ag = 0.03, which was chosen
because it maximized the performance of our primary
baseline model, NSurv, on the NACD semi-synthetic
validation set. This value was expected to perform
well across all models due to the similarities in archi-
tectures and number of parameters. The strength of
MMD regularization was also chosen based on per-
formance on the NACD semi-synthetic validation set.
Values above Ay = 10 tended to make training less
stable and consistent. All models were evaluated on
12 different versions of the semi-synthetic and syn-
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Dataset Model AUC CI
DNMC .88+.02 | .89+.02
NACD DNMC-V | .88+.02 | .89+.02
Semi- NMC .88+.02 | .89+.02
Synthetic NSurv .80£.08 .88+.02
MLP .75+.08 NA
DNMC .794+.06 | .88+.03
SUPPORT | DNMC-V¥ | .76+.11 | .88+.02
Semi- NMC .80+.05 | .87+.04
Synthetic NSurv .69£.09 | .88+.03
MLP J71+.11 NA

Table 2: Performance with known failure susceptibility
(semi-synthetic data).

thetic censoring datasets generated with three different
random seeds, and with four different degrees of over-
lap between factors affecting failure susceptibility and
other factors. Hyperparameters were identical across
all runs. Reported performance measures are the mean
and standard deviation of each measure over all runs.
All models were implemented in Tensorflow 2.4

2016), trained via backpropagation with the

Adam optimizer (Kingma and Bal [2014)), a batch size
of 100, learning rate of 1 x 1073, and no dropout.

6.4 Performance on Semi-Synthetic Data

Evaluation of NMC and DNMC on semi-synthetic data
is critical because failure susceptibility is unknown in
real datasets, but must be known in order to evaluate
our models’ performance in predicting it. Moreover, to
evaluate performance in identifying factors predicting
failure susceptibility, failure timing, and both, these
factors must also be known. However, we use real
features from NACD and SUPPORT, providing a more
realistic data distribution.

As described in the previous section, a total of 24 dis-
tinct semi-synthetic datasets were generated based on
(a) two datasets (i.e., NACD and SUPPORT), (a) three
random seeds, and (b) four degrees of overlap (4, 8, 12,
16) in the factors affecting failure susceptibility, failure
and censoring timing, and both. Specific features af-
fecting susceptibility, timing, and both were selected
at random, and 20 features in total were used in each
run. Coeflicients corresponding to each feature were
drawn from a standard normal distribution and applied
to determine the probability of failure susceptibility,
which was then drawn from a Bernoulli distribution,
and the failure and censoring times.

The mean and standard deviation of the AUC and CI
across all semi-synthetic datasets is shown in Table
Note that the MLP model predicts only failure suscep-
tibility and not the failure density, so only the AUC
and not the CI is applicable.

Dataset Model AUC CI
DNMC .87+.03 | .70+.02
NACD DNMC-V | .87+.03 | .69£.02
Synthetic NMC .87+.03 | .69+.02
Censoring NSurv .87£.03 .69£.02
MLP .88+.03 NA
DNMC 77+.08 | .64+.04
SUPPORT | DNMC—-V¥ | .76+.08 | .63+.04
Synthetic NMC 75+.10 | .63+.05
Censoring NSurv S77+.08 | .64+.04
MLP .76+£.10 NA

Table 3: Performance with known failure susceptibility
(synthetic censoring data).

NACD with known failure susceptibility
(semi-synthetic)

==

0

SUPPORT with known failure susceptibility
(real failures with synthetic censoring)

.

Predicted failure probability
(i.e. susceptibility)

[ v
'
'

Susceptible
but did not fail

Susceptible
and did fail

Susceptible
but did not fail

Susceptible

Not
susceptible and did fail

Not
susceptible

Figure 3: Predicted susceptibility to failure in (a) the
cured population, (b) the portion of the susceptible
population with no failure observed, and (c) the portion
of the susceptible population with failure observed.

6.5 Performance on Real Data with
Synthetic Censoring

While semi-synthetic data allows NMC and DNMC
performance to be fully evaluated, the relationship
between predictors and failure times may not be an
adequate surrogate for real-world complexities. Using
real failure times is therefore preferable, but failure
susceptibility still must be known in order to evaluate
the AUC of our models in predicting it. Thus, to further
evaluate under more realistic conditions, we repeated
our experiments with synthetic failure susceptibility,
but real failure times. For individuals not susceptible
to failure (synthetic) but with observed failure times
(real), the failure time was changed to a censoring time.

Similar to the semi-synthetic datasets, a total of 24
synthetic censoring scenarios were considered. The
mean and standard deviation of the AUC and CI across
all synthetic censoring datasets is shown in Table [3]

Results across both the semi-synthetic datasets and real
datasets with synthetic censoring show that NMC is
consistently superior to NSurv and MLP. Furthermore,
DNMC performance is equal to or better than NMC
performance, while also permitting factors predicting
failure susceptibility versus timing to be identified and
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differentiated.

6.6 Identification of Factors

The extent to which DNMC correctly identified factors
affecting failure susceptibility, failure timing, and both
was evaluated on the semi-synthetic datasets, and is
summarized in Figure [

The presented values are based on coefficients in the
first layer of the encoders for ®, ¥, and €, respectively.
® is intended to capture factors predicting only F,
failure susceptibility, which are known in the semi-
synthetic datasets. Similarly, 2 is intended to capture
factors predicting only T, the failure time, and C, the
censoring time, which are also known. Finally, ¥ is
designed to capture factors predicting E as well as T'
and C.

More precisely, these values are the average of the
coefficients in the slice of a given layer corresponding
to the features it is intended to capture, which should
be large. This is contrasted with the average value of
coefficients in the complementary slice, which should
be small. As Figure [4] shows, identification of these
factors is more effective with stronger MMD penalty
Mg, as expected and intended. For A\; values below
0.1, identification of factors was poor. For values of \g
between 1 and 10, identification gradually improved
without loss of performance. However, when values
were increased beyond 10, training became less stable
and consistent.

6.7 Analysis of Stroke Risk

Prediction of stroke is a suitable application for the
mixture cure framework, because not all individuals
are susceptible to stroke. Furthermore, understanding
which risk factors predict stroke susceptibility, stroke
timing, and both is of considerable clinical interest.
Applying DNMC to the previously described pooled
stroke risk cohorts therefore provided an opportunity
to demonstrate its potential clinical value.

All models were applied and had similar prediction
performance (CI = 0.72) on a held-out test set with ap-
proximately equal numbers of participants from each of
the three cohorts. Additionally, average DNMC coeffi-
cients corresponding to each feature in the first layer of
Q and @, respectively, were used to quantify the impor-
tance of that feature on stroke timing and susceptibility,
respectively. Results are shown in Table [4]

Not surprisingly, current age has the greatest effect
on the predicted time until stroke occurrence, which
is consistent with well-known increases in stroke rates
with age. In contrast, age has much less effect on
predicted susceptibility, which may be viewed as the

Effect on Effect on
Predictor Timing Predictor Suscept.
Age 1.0 L Vent Hyp 1.0
Total Chol 0.81 Systolic BP 0.97
Systolic BP 0.79 Hx of CVD 0.91
HDL Chol 0.70 Atrial Fib 0.87
Curr Smoker 0.56 On BP Med 0.85
Sex 0.56 Diabetes 0.80
Hx of CVD 0.37 Sex 0.79
Diabetes 0.36 Curr Smoker 0.73
On BP Med 0.35 Total Chol 0.69
L Vent Hyp 0.33 HDL Chol 0.64
Atrial Fib 0.15 Age 0.57

Table 4: Predictors ordered by their effects on stroke
timing (left) and stroke susceptibility (right), as quan-
tified by the average coefficient magnitude in the first
layer of the encoder for €2 and ®, respectively. Values
are relative to the largest value to conserve space.

individual’s lifetime stroke probability. Other results
are more difficult to interpret, but it is notable that
aside from current age, total cholesterol has the most
profound effect on the predicted time until stroke oc-
currence. Moreover, susceptibility is predominantly
associated with other cardiovascular conditions such
as left ventricular hypertrophy (L Vent Hyp), atrial
fibrillation (Atrial Fib) and history of cardiovascular
disease (Hx of CVD).

While AUC cannot be evaluated in this setting, since
stroke susceptibility is unknown in patients without an
observed stroke, comparing the predicted probability
of stroke susceptibility between individuals who had a
stroke versus others shows a large effect size between
groups (Cohen’s d = 0.61). This effect was statistically
significant (Mann-Whitney U = 907093; p < 10~26).

7 CONCLUSIONS

The mixture cure model is designed to predict failure
or event times that occur in some individuals and not
in others. In this paper, we introduced a neural mix-
ture cure model that extends the recent development
of flexible, neural network based failure time models
to the mixture cure setting. Drawing on parallels to
causal inference and representation learning, we then
developed the disentangled neural mixture cure model,
which ensures factors predicting failure susceptibility
are distinguished from those predicting failure timing
while also mitigating effects of selection bias to improve
prediction of failure and censoring times. Results on
semi-synthetic data showed that this approach allows
factors predicting failure susceptibility versus timing to
be identified. We then applied this approach to identify
factors predicting stroke susceptibility versus timing
and observed that such factors are distinct and consis-
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Figure 4: Correct identification of features affecting failure timing, failure susceptibility, and both in DNMC
models with weak (Ag=1.0) versus strong (Aq=10.0) MMD regularization on 2. Model coefficients corresponding to
the true features are larger than other coefficients, and this effect is more pronounced with stronger regularization
(A¢ = 10.0). Weak regularization (A\y < 1.0) resulted in poor identification, and excessive regularization

(Mg > 10.0) led to inconsistent performance.

tent with clinical reasoning. As future work we will
seek to extend the proposed approach for counterfactual
prediction for comparative effectiveness applications.
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Supplementary Material:
Disentangling Whether from When in a Neural Mixture Cure Model
for Failure Time Data

A SOCIETAL IMPACT

This work was motivated by the need to mitigate effects of bias when developing predictive models from
observational health datasets, including electronic health records. In healthcare, disparities exist in both in rates
of diagnosis and in the timing of diagnosis. This is true for autism, ADHD, and many other mental health and
physical health conditions with profound effects on long-term health and quality of life. This work does not
address disparities in rates of diagnosis, but it does address disparities in the timing of diagnosis by disentangling
information about diagnosis probability from information about diagnosis timing. Specifically, our approach
limits the degree to which disparities in diagnosis timing present in the training data compromise the model’s
diagnosis risk predictions, which allows individuals at risk for these conditions to be identified more equitably,
potentially contributing to more equitable treatment and outcomes.

Furthermore, by improving methods to accurately estimate the censoring density in the mixture cure setting, this
work improves our ability to identify individuals who are most likely to be lost to follow-up before their health
conditions are recognized and treated, which disproportionately affects disadvantaged groups. Identifying these
individuals permits interventions that aim to provide them with access to care and other resources that may
improve their long-term health outcomes.

B CO2 FOOTPRINT

All experiments were conducted using a single Tesla V100-PCIE-16GB GPU, which has an estimated carbon
efficiency of 0.432 kgCOqeq/kWh. A total of 96 hours of compute time were required, resulting in estimated total
emissions of 12.44 kgCOseq, which is comparable to driving 50.3 kilometers in a typical car.

These estimates were generated using the MachineLearning Impact calculator presented by |[Lacoste et al.| (2019)).

C DETAILS OF EQUATION (7)

Additional details related to equation (7) are found below.

d(pesp-e) < ad(ps, p-e) + (1 — @)d(P-s,e, P-e)
< a(d(ps,p-s) + d(p-s, P-e)) + (1 = @)d(P-s.e, P-c)
= (d(ps; p-s) + d(Bp-e + (1 = B)p-s.e:P=e)) + (1 = @)d(ps s P-e) (8)
< ad(ps, p-s) + afd(p-e, p-c) + (1 = B)d(pae; P-s,e) + (1 — @)d(P-s,es Pe)
= ad(ps, p-s) + [a(1 = B) + (1 — a)ld(p-s,e, P-e)


https://mlco2.github.io/impact#compute
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