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Abstract

We study sampling from a target distribu-
tion ν∗ = e−f using the unadjusted Langevin
Monte Carlo (LMC) algorithm when the po-
tential f satisfies a strong dissipativity con-
dition and it is first-order smooth with a
Lipschitz gradient. We prove that, initial-
ized with a Gaussian random vector that
has sufficiently small variance, iterating the
LMC algorithm for Õ(λ2dε−1) steps is suffi-
cient to reach ε-neighborhood of the target
in both Chi-squared and Rényi divergence,
where λ is the logarithmic Sobolev constant
of ν∗. Our results do not require warm-start
to deal with the exponential dimension de-
pendency in Chi-squared divergence at ini-
tialization. In particular, for strongly convex
and first-order smooth potentials, we show
that the LMC algorithm achieves the rate
estimate Õ(dε−1) which improves the pre-
viously known rates in both of these diver-
gences, under the same assumptions. Trans-
lating this rate to other metrics, our results
also recover the state-of-the-art rates in KL
divergence, total variation and 2-Wasserstein
distance in the same setup. Finally, as we
rely on the log-Sobolev inequality, our frame-
work covers a range of non-convex potentials
that are first-order smooth and exhibit strong
convexity outside of a compact region.
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1 INTRODUCTION

We consider sampling from a target distribution ν∗ =
e−f using the Langevin Monte Carlo (LMC)

xk+1 = xk − η∇f(xk) +
√

2ηWk, (1.1)

where f : Rd → R is the potential function, Wk is
a d-dimensional isotropic Gaussian random vector in-
dependent from {xl}l≤k, and η is the step size. This
algorithm is the Euler discretization of the following
stochastic differential equation (SDE)

dzt = −∇f(zt)dt+
√

2dBt, (1.2)

where Bt denotes the d-dimensional Brownian motion.
The solution of the above SDE is referred to as the
first-order Langevin diffusion, and the convergence be-
havior of the LMC algorithm (1.1) is intimately related
to the properties of the diffusion process (1.2). Intu-
itively, fast mixing of LMC (1.1) is inherited from the
Langevin diffusion (1.2) since the Euler discretization
scheme with a sufficiently small step size ensures that
the Markov chain generated by the LMC iterations
tracks its continuous counterpart. Therefore, to en-
sure that the LMC algorithm converges, one typically
starts from conditions that imply the fast convergence
of the diffusion process given in (1.2).

Denoting the density of the Langevin diffusion zt with
πt, the following Fokker-Planck equation describes the
evolution of the dynamics (1.2)(Risken, 1996)

∂πt(x)
∂t = ∇ · (∇f(x)πt(x)) + ∆πt(x). (1.3)

Convergence to the equilibrium of the above equa-
tion has been studied extensively under various as-
sumptions and distance measures. We define the Chi-
squared, Kullback–Leibler (KL) and Rényi divergences
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between two probability distributions ρ and ν in Rd

χ2
(
ρ|ν
)

= −1 +

∫ (
ρ(x)
ν(x)

)2

ν(x)dx (1.4)

KL
(
ρ|ν
)

=

∫
log
(
ρ(x)
ν(x)

)
ρ(x)dx,

Rα (ρ|ν) =
1

α− 1
log

∫ (
ρ(x)
ν(x)

)α
ν(x)dx for α > 1.

The logarithmic Sobolev inequality (LSI) is a partic-
ularly useful condition on the target ν∗, equivalent to
the following for ν = e−f

∀ρ, KL
(
ρ|ν
)
≤ λ

2

∫ ∥∥∇ log ρ(x)
ν(x)

∥∥2
ρ(x)dx. (LSI)

LSI is known to hold for strongly log-concave distri-
butions (Bakry and Émery, 1985) in which case the
constant λ−1 is equal to the strong convexity constant
of the potential. This condition is also robust against
finite perturbations (Holley and Stroock, 1987) which
allows one to deal with non-convex potentials (to a
somewhat limited extent). If the target ν∗ satisfies
LSI, then the distribution πt convergences to the tar-
get ν∗ in all three divergence measures defined in (1.4)
exponentially fast, i.e. for all t ≥ 0

LSI =⇒


KL
(
πt|ν∗

)
≤ e−2t/λKL

(
π0|ν∗

)
,

χ2
(
πt|ν∗

)
≤ e−2t/λχ2

(
π0|ν∗

)
,

Rα (πt|ν∗) ≤ e−2t/αλRα (π0|ν∗) ,
(1.5)

Exponential convergence in Chi-squared divergence as
in (1.5) can be established under the Poincaré inequal-
ity (Cao et al., 2019; Chewi et al., 2020), which holds
for a wider class of potentials (Bakry et al., 2008)
(see Cao et al. (2019); Vempala and Wibisono (2019)
for the convergence of πt in Rényi divergence under
various conditions).

Under additional smoothness assumptions on the po-
tential function f , the fast convergence of the Langevin
diffusion (1.3) to equilibrium as in (1.5) can be trans-
lated to that of the LMC algorithm. In particular,
implications of LSI on the convergence of LMC are
relatively well-understood in KL divergence (Dalalyan,
2017b; Durmus and Moulines, 2017; Erdogdu and Hos-
seinzadeh, 2020). In addition to LSI, assuming further
that the gradient of the potential is Lipschitz contin-
uous, taking Õ(d/ε) steps is sufficient to reach the ε-
neighborhood of a d-dimensional target distribution
ν∗ in KL divergence (Vempala and Wibisono, 2019).
However, convergence in stronger notions of distance
such as Chi-squared and Rényi divergence are not ad-
equately shown in (Vempala and Wibisono, 2019) as
their results in Rényi divergence rely on two unverifi-
able assumptions: a Poincaré (or LSI) inequality on the
limit of the LMC iterates (rather than the target), a

growth condition on the Rényi divergence of this limit
from the target. However, such properties have not
been shown even in simple cases such as a strongly
convex target.

Ganesh and Talwar (2020) is an exception, where au-
thors analyzed the convergence of LMC in α-Rényi di-
vergence for strongly log-concave targets and obtained
the rate Õ(d/ε2), which implies the same rate of con-
vergence in Chi-squared divergence when α = 2. More
specifically, their result implies a convergence estimate
of Õ(d/ε2) in Chi-squared divergence for strongly con-
vex potentials that have Lipschitz gradients.

Chi-squared divergence is particularly of interest be-
cause it conveniently upper bounds a variety of dis-
tance measures. For example, KL divergence (rel-
ative entropy), total variation (TV) distance and 2-
Wasserstein (W2) metrics can be upper bounded as

TV (ρ, ν∗) ≤
√

KL
(
ρ|ν∗

)
/2 ≤

√
χ2
(
ρ|ν∗

)
/2

W2(ρ, ν∗)
2/(2λ) ≤ χ2

(
ρ|ν∗

)
. (1.6)

See Tsybakov (2008, Lem 2.7) together with Csiszár-
Kullback-Pinsker inequality (Bolley and Villani, 2005)
for the former, and see e.g. Liu (2020, Thm 1.1)
for the latter under (LSI). Therefore convergence in
Chi-squared divergence implies convergence in these
measures of distance as well. Moreover, for any 1-
Lipschitz test function φ and a target π satisfying LSI,
if χ2(ρN |π) . 1 then PρN (|φ(x) − Eπ[φ(x)]| ≥ t) .
exp(−t2), which allows us to get sub-Gaussian concen-
tration for the N -th LMC iterate (distributed as ρN )
around the expectation under the target Eπ[φ(x)].

Rényi-divergence is even stronger than Chi-squared,
and has important applications to the field of differen-
tial privacy (Dwork et al., 2014; Chaudhuri et al., 2012;
Zhang et al., 2016; Dwork and Feldman, 2018). One
formalization of this objective involves the α-Rényi di-
vergence (Mironov, 2017), in which an algorithm guar-
anteeing ε accuracy to the target in α-Rényi can gen-
erate a scheme guaranteeing the classical criteria for
differential privacy such as (ζ, δ)-DP or ζ-DP (McSh-
erry and Talwar, 2007; Hardt and Talwar, 2010). We
refer to the detailed discussion after Ganesh and Tal-
war (2020, Theorem 1).

Translating the existing rate estimate Õ(d/ε2) ob-
tained in Ganesh and Talwar (2020) using the above
inequalities (1.6), one cannot recover the state-of-the-
art convergence rates in TV,KL, andW2 metrics. For
example, the rate estimate Õ(d/ε2) in Chi-squared (or
Rényi) divergence implies the same rate in KL di-
vergence, which is substantially slower than the well-
known estimate Õ(d/ε) under the same assumptions
(see Dalalyan (2017b); Vempala and Wibisono (2019)).
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Our work bridges the gap in rates, and further extends
the analysis to strongly dissipative potentials. Our
contributions can be summarized as follows.

• We analyze first-order smooth potential f satisfy-
ing strong dissipativity in the sense of the following
assumption.

Assumption 1. The potential function f is first-
order smooth and strongly dissipative, i.e., ∀x, y

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ ,

〈x− y,∇f(x)−∇f(y)〉 ≥ m ‖x− y‖2 − b,

for some constants L,m > 0 and b ≥ 0, where we
also define the condition number as κ := L/m.

In this case, we prove that taking Õ
(
λ2L4

m2 × b+d
ε

)
steps of LMC is sufficient to obtain an ε-accurate
sample from a d-dimensional target in both Chi-
squared and Rényi divergence, where λ is the LSI
constant for ν∗ = e−f . Our results do not require
warm-start to deal with exponential dimension de-
pendency at initialization, and can tolerate non-
convexity as long as the tails of the potential is
growing quadratically fast.

• When translated to KL divergence, TV and W2

metrics using the inequalities (1.6), we obtain the

rate estimates Õ
(
λ2L4

m2 × b+d
ε

)
, Õ
(
λ2L4

m2 × b+d
ε2

)
, and

Õ
(
λ3L4

m2 × b+d
ε2

)
, respectively.

• For m-strongly convex potentials (b = 0), we have
λ−1 = m; thus, our rate estimate established in
Chi-squared divergence is able to recover the best-
known rate estimates1 for LMC in KL divergence,
TV and W2 metrics, respectively given as Õ(d/ε),

Õ(d/ε2), and Õ(d/ε2).
• We further discuss sampling from non-convex po-

tentials that are covered by our assumptions,
namely smooth potentials exhibiting strong con-
vexity outside of a compact region. By deriving
bounds on their LSI constant λ, we establish rate
estimates for LMC under various scenarios.

Our analysis builds on the prominent works by Vem-
pala and Wibisono (2019); Ganesh and Talwar (2020).
More specifically, we conduct a two-phase analysis:
In the first phase, we extend the analysis provided
in Ganesh and Talwar (2020) to potentials that are
strongly dissipative (e.g. strongly convex outside of

1Additional second order smoothness is known to speed
up the convergence in KL divergence and 2-Wasserstein
distance Mou et al. (2019); Dalalyan and Karagulyan
(2019); however, our focus in this paper is first-order
smoothness.

a compact region) and control key quantities that im-
pact the convergence of LMC for the interpolation pro-
cess. In the second phase, we analyze a differential in-
equality for the Chi-squared (and Rényi) divergence,
which resembles the (single-phase) analysis conducted
by Vempala and Wibisono (2019) for the KL diver-
gence, to obtain our final rate estimate. The rest of
the paper is organized as follows. We discuss related
work and notation in the rest of this section. In Sec-
tion 2, we motivate the two-phase analysis, and state
two key lemmas describing the characteristics of each
phase. Section 3 contains the main results on the con-
vergence of LMC. In Section 4, we provide examples
and discuss the relative merits of certain non-convexity
structures on our rate estimates. Finally in Section 5,
we discuss future work. Majority of the proofs and the
derivations are deferred to Appendix.

Related work. Convergence in Lp norms for some
stochastic processes under a Poincaré inequality was
first established in Cattiaux et al. (2010a). Started by
the pioneering works by Durmus and Moulines (2016);
Dalalyan (2017b); Durmus and Moulines (2017), non-
asymptotic analysis of LMC has drawn a lot of interest
(Dalalyan, 2017a; Cheng and Bartlett, 2018; Cheng
et al., 2018; Durmus and Moulines, 2019; Durmus
et al., 2019; Vempala and Wibisono, 2019; Dalalyan
and Karagulyan, 2019; Brosse et al., 2019; Li et al.,
2019; Erdogdu and Hosseinzadeh, 2020). It is known

that Õ (d/ε) steps of LMC yield an ε-accurate sample
in KL divergence for strongly convex and first-order
smooth potentials (Cheng and Bartlett, 2018; Durmus
et al., 2019). This is still the best rate obtained in
this setup, and recovers the fastest rates in total varia-
tion and 2-Wasserstein metrics (Durmus and Moulines,
2017; Dalalyan, 2017b; Durmus and Moulines, 2019).
For the same setting, Ganesh and Talwar (2020)

showed that Õ
(
d/ε2

)
steps are enough for ε-accurate

solution in Rényi divergence. Recently, these global
curvature assumptions are relaxed to growth condi-
tions (Cheng et al., 2018; Erdogdu et al., 2018). For
example, Vempala and Wibisono (2019) established
convergence guarantees for LMC when sampling from
targets distributions that satisfy a log-Sobolev inequal-
ity, and has a smooth potential. This corresponds
to potentials with quadratic tails (Bakry and Émery,
1985; Bobkov and Götze, 1999) up to finite pertur-
bations (Holley and Stroock, 1987); thus, this result is
able to deal with non-convex potentials while achieving
the same rate of convergence Õ (d/ε) in KL divergence.
Their proof for Rényi, however, relies on assumptions
on the limit of the LMC iterates and thus is incon-
clusive. Convergence of zigzag samplers is established
in Chi-squared divergence under a warm-start condi-
tion, in order to deal with the ill behavior at initial-
ization (Lu and Wang, 2020).
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Notation. Throughout the paper, log denotes the
natural logarithm. For a real number x ∈ R, we denote
its absolute value with |x|. We denote the Euclidean
norm of a vector x ∈ Rd with ‖x‖. The gradient, di-
vergence, and Laplacian of f are denoted by ∇f(x),
∇ · f(x) and ∆f(x), respectively.

We use E [x] to denote the expected value of a ran-
dom variable or a vector x over all the randomness
inside the brackets. For probability densities p,q on
Rd, we use KL

(
p|q
)
, χ2

(
p|q
)
, and Rα (p|q) to denote

their KL (or relative entropy), Chi-squared, and Rényi
divergence (for α > 1), respectively, which are de-
fined in (1.4). To ease the notation, we often use
p
q (x) instead of p(x)/q(x). We denote the Borel σ-

field of Rd with B(Rd). 2-Wasserstein metric and
the total variation (TV) distance are defined respec-

tively as W2(p, q) = infν(
∫
‖x− y‖2 dν(p, q))1/2 and

TV (p, q) = supA∈B(Rd)

∣∣∫
A

(p(x)− q(x))dx
∣∣ , where in

the first formula, infimum runs over the set of prob-
ability measures on Rd × Rd that has marginals with
corresponding densities p and q. Multivariate Gaus-
sian distribution with mean µ ∈ Rd and covariance
matrix Σ ∈ Rd×d is denoted with N (µ,Σ).

2 TWO-PHASE ANALYSIS:
MOTIVATION

A representative analysis of LMC starts with the in-
terpolation process (Vempala and Wibisono, 2019),

dx̃t = −∇f(xbt/ηc)dt+
√

2dBt with x̃0 = x0. (2.1)

The drift ∇f(xbt/ηc) of the above process is evaluated
at the LMC iterate xbt/ηc, and is constant within each
interval t ∈ [kη, (k + 1)η) for an integer k. With the
right coupling of the Brownian motion in (2.1) and
the additive Gaussian term in the LMC update (1.1),
the solution of (2.1) produces the LMC iterates for
t = ηk (i.e. x̃kη = xk) by interpolating the discrete
algorithm to a continuous-time process. We denote
by ρ̃t and ρk, the distributions of x̃t and xk, and we
observe easily that ρ̃kη = ρk. As the interpolation
process is continuous in time, we can work with its
Fokker-Planck equation. In Lemma 1, we show that
the time derivative of χ2

(
ρ̃t|ν∗

)
differs from that of the

continuous-time process by an additive error term.

To get this differential inequality, it is sufficient if the
target satisfies a Poincaré inequality (PI)

∀ρ, χ2
(
ρ|ν∗

)
≤ λ

∫ ∥∥∇ ρ(x)
ν∗(x)

∥∥2
ν∗(x)dx. (PI)

We note that the above condition holds under LSI with
the same constant λ (Villani, 2021), and emphasize
that our final convergence results (in both Chi-squared

and Rényi divergence) require the stronger condition
LSI even though PI suffices for the following lemma.

Lemma 1. If ν∗ satisfies PI, then the following in-
equality governs the evolution of the Chi-squared diver-
gence of the interpolated process (2.1) from the target

d

dt
χ2
(
ρ̃t|ν∗

)
≤ − 3

2λ
χ2
(
ρ̃t|ν∗

)
(2.2)

+ 2E
[
ρ̃t
ν∗

(x̃t)
2
]1/2

E
[∥∥∇f(x̃t)−∇f(xbt/ηc)

∥∥4
]1/2

.

The above differential inequality will be used to es-
tablish a single step bound that can be iterated to
yield the final convergence result. For this, one needs
to control i) the additive error term in (2.2), namely
E[‖∇f(x̃t) − ∇f(xbt/ηc)‖4] under a smoothness con-
dition on the potential function, and ii) the expected

squared ratio of densities E[ ρ̃tν∗ (x̃t)
2] which is harder to

bound. Therefore we conduct our convergence analy-
sis in two phases. In the first phase, we show that
after taking N steps of LMC, the expected squared ra-
tio (over the interpolation process) is bounded by an
absolute constant at time Nη, and moreover it stays
uniformly bounded for the time interval [Nη, 2Nη].

E
[
ρ̃T
ν∗

(x̃T )2
]
≤ B for Nη ≤ T ≤ 2Nη, (2.3)

where B is an absolute constant. The above opaque
condition would ultimately imply that the LMC iter-
ates also stay warm when the iteration counter belongs
to the interval [N, 2N ].

Motivating Example. In this toy example, the
above uniform warmness condition (2.3) is verified
for sampling from a Gaussian target e−f using LMC
with step size η. Assume for simplicity that f(x) =
1
2‖x‖

2 + C, where C is the normalizing constant and
x0 ∼ N (0, σ2

0I). For an integer k ≥ 0, t ∈ [0, η), and
T = kη+t, it is easy to compute the distribution of the
interpolation process ρ̃T = N (0, σ2

T I) where σ2
T :=

(1− t)2σ2
kη + 2t and σ2

kη := (1− η)2kσ2
0 + 1−(1−η)2k

1−η/2 .

The expected squared ratio can be calculated as

E
[
ρ̃T
ν∗

(x̃T )2
]

= 1
(3/σ2

T−2)d/2σ3d
T

whenever σ2
T <

3
2 .

For simplicity, let us initialize with σ2
0 = 0.5/(1−η/2).

For a sufficiently small step size η, one can verify
that σ2

kη is monotonically increasing and converges

to 1/(1 − η/2) < 1.5. Moreover, σ2
0 > 1/2 bounded

away from 0. Therefore, at initialization (for k = 0)

we have E
[
ρ̃0
ν∗

(x̃0)2
]
≈ ed. However, notice that

if at any point along the iterations, the condition
1 − 1

d ≤ σ2
kη ≤ 1 + 1

d is satisfied, then we can show

E
[
ρ̃T
ν∗

(x̃T )2
]

= O(1) in the subsequent iterations, and
accordingly B in (2.3) becomes O(1). Note that the
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denominator σ → (3/σ2 − 2)d/2σ3d attains its mini-
mum value in the interval [1− 1

d , 1+ 1
d ] on its boundary

(assuming d > 3). Then the resulting upper bound on
its inverse becomes O(1). On the other hand, reaching
1− 1

d ≤ σ
2
T ≤ 1+ 1

d in this setting is exponentially fast,
which suggests a two-phase analysis. First, we prove
that the distribution ρ̃T gets close to target ν∗ so that
their expected squared ratio reduces to and remains at
O(1). Then in the next phase, we proceed the analysis
with the differential inequality in Lemma 1 to obtain
the final convergence estimate. The above argument
is formalized in Assumption 1.

The strong dissipativity condition is equivalent to
Cheng et al. (2018, Assumption 3). The target satis-
fies a LSI under strong dissipativity which can be eas-
ily deduced from Bakry and Émery (1985); Cattiaux
et al. (2010b) (see Section C, cf. Raginsky et al. (2017,
Prop 3.2)). For strongly convex potentials (b = 0),
by the Bakry-Émery criterion we have λ = 1/m, i.e.,
the LSI constant is equal to the inverse of the strong
convexity parameter of the potential. By plugging in
y = 0, elementary algebra reveals that the strong dissi-
pativity implies the standard 2-disspativity condition
〈x,∇f(x)〉 ≥ m′‖x‖2 − b′, which is commonly em-
ployed in recent analyses in sampling and non-convex
optimization (Raginsky et al., 2017; Yu et al., 2020;
Erdogdu and Hosseinzadeh, 2020). While the stronger
version does not cover all the potentials covered by the
standard dissipativity, it still allows for finite pertur-
bations (similar to 2-dissipativity and LSI), which we
discuss in detail in Section 4.

First phase. We have the following in the first phase.

Lemma 2. For α > 1 and for a potential f satisfying
Assumption 1, initialize the LMC algorithm with x0 =
N (0, σ2I) for σ2 < (1 +L)−1. If the step size satisfies
η ≤ 2

‖∇f(0)‖2 ∧
1∧m

4(1∨L2) and for some absolute constant

c, the following conditions hold

cα2κ2L2N(b+ d+ logN)η2 ≤ 1

Nη ≥ 2αλ log(4αdCσ),

where Cσ = 1 + f(0)+‖∇f(0)‖2
d − log(σ2[(1 + L) ∧ 2π])

is dimension free, λ is the LSI constant of f , then

E
[
ρ̃T
ν∗

(x̃T )2α−2
]
≤ 14α

1
4 , ∀T ∈ [Nη, 2Nη].

This is shown in two parts: first by using the con-
vergence of the continuous time process to the tar-
get in Rényi (Cao et al., 2019), and by bounding
the Rényi of the interpolation process from the con-
tinuous process via a careful limiting argument that
builds on Ganesh and Talwar (2020). When the jumps
‖z̃t − zkh‖ ≤ δ, ‖x̃t − xkh‖ ≤ δ for t ∈ [kh, (k + 1)h)

are bounded for an appropriately small δ, we can show
this Lemma using Girsanov’s Theorem. To extend this
to the general case, we show a that these jumps are
bounded with high probability and then uncondition
from the high probability event to complete the argu-
ment. The details of this proof are highly technical,
and we defer it to Section A. We use the above bound
for α = 2 for the Chi-squared divergence, but the case
α > 2 will be useful when we extend the results to the
Rényi divergence. After taking N iterations of LMC,

the expected density ratio E
[
ρ̃T
ν∗

(x̃T )2α−2
]

is bounded

and it stays bounded in the subsequent N iterations,
as in (2.3).

Second phase. In the next stage, we use a differ-
ential inequality in Chi-squared divergence only for
the iterations ranging from step N to 2N . Since for
these iterations, we have a uniform bound on the ex-
pected squared ratio over the interpolation process (by
Lemma 2), we can simply integrate the differential in-
equality in Lemma 1 to obtain the single step bound.

Lemma 3. Instantiate the assumptions of Lemma 2
for α = 2. If further η ≤ λ

2 , then for any iteration
number k such that 2N ≥ k ≥ N , the following in-
equality controls the evolution of LMC in χ2

χ2
(
ρk+1|ν∗

)
≤
(
1− 3η

4λ

)
χ2
(
ρk|ν∗

)
+cβL2(b+ d)η2 (2.4)

β2 := 1+ σ4(1+2/d)+6σ2‖x∗‖2/d+‖x∗‖4/d2
(1+b/d)2 + σ2+‖x∗‖2/d

1+b/d is

dimension-free and c is an absolute constant.

The proof follows by integrating the differential in-
equality derived in Lemma 1 for t ∈ [0, η] after us-
ing the uniform bound on the expected squared ratio
given by Lemma 2, which we defer to Section A. The
key innovation of the above result is that the additive
error term in (2.4), the second term on the right hand
side, has O(dη2) dependence for the LMC iterations
ranging from N to 2N . This is because the constant
β is uniformly bounded in dimension.

3 MAIN RESULTS

In this section, we first provide results on the conver-
gence of LMC (1.1) by simply iterating the single step
bound in Lemma 3.

Theorem 4. Let the potential f satisfy Assumption 1
and suppose we run 2N iterations of LMC (1.1) with
step size η to sample from ν∗ = e−f . If we initialize
x0 with N (0, σ2I) for some σ2 < (1 + L)−1, in order
to get χ2

(
ρ2N |ν∗

)
≤ ε, it is sufficient if the following
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inequalities hold

η ≤ 2
‖∇f(0)‖2 ∧

1∧m
4(1∨L2) ∧

λ
2 ∧

c3
βλL2 × ε

b+d (3.1)

Nη ≥ c2λ log
(
144dCσ/ε

)
c1 ≥ κ2L2(b+ d+ logN)Nη2,

where λ is the LSI constant of the target, c1, c2, c3 are
absolute constants, and Cσ and β are dimension free
constants defined respectively in Lemmas 2 and 3.

Consequently, if we choose

η = c3
β ×

m2

λL4 log(L
4λ2

m2 )
× ε

b+d ×
1

log(144dCσ/ε)2
(3.2)

N = c2β
c3
× λ2L4 log(

λ2L4

m2 )

m2 × b+d
ε × log(144dCσ/ε)

3,

then 2N iterations of LMC yield χ2
(
ρ2N |ν∗

)
≤ ε for

N ≥ 2 and for ε > 0 sufficiently small.

The above theorem implies that Õ(λ2L4/m2 × d/ε)
steps of LMC algorithm is sufficient to obtain an ε-
accurate sample in Chi-squared divergence. The rate
estimate given in (3.2) can be slightly improved to
O(d/ε log(d/ε) log(d)2) in terms of ε dependency at the
expense of introducing more complicated expressions;
yet, we use (3.2) for simplified exposition.

For strongly convex potentials (i.e. λ = 1/m and b =
0), we can recover the condition number dependency
of Vempala and Wibisono (2019) in the case κ2 . ε−1.
This can be seen by choosing η = c × m

L2 × ε
d and

N = C × κ2 × d
ε and verifying the conditions in (3.1).

As ε is the error tolerance and is typically chosen to be
very small, this condition is reasonable in practice. In
the case that the condition number satisfies κ2 � ε−1

(which we believe is unrealistic), then our rate becomes
O(κ4) as stated in the theorem, which is worse than
the known dependency O(κ2).

The theorem states that if the step size and the number
of iterations satisfy the three conditions given in (3.1),
the LMC algorithm is guaranteed to produce an ε-
accurate sample in exactly 2N iterations. We empha-
size that this result may not hold for the subsequent
iterates of LMC because of the last condition (3.1),
due to the delicate bound we construct using Lemma 2,
which will be violated as N →∞. Rate estimates with
this restriction are frequent in the literature (Shen and
Lee, 2019; Ganesh and Talwar, 2020; Erdogdu and
Hosseinzadeh, 2020). This typically occurs when there
is a diverging bound on a quantity that appears in the
convergence analysis. In our case, the source of this
is the expected squared ratio bounded in Lemma 2.
We note that LMC is ergodic (Mattingly et al., 2002)
and its subsequent iterates after iteration 2N remain ε-
accurate in KL divergence and 2-Wasserstein distance
from the target under LSI (Vempala and Wibisono,

Table 1: Translation of the rate estimate in Chi-
squared divergence to various divergences by choosing
an appropriate accuracy level εχ2 in Theorem 4.

εχ2 N η

χ2 ε Õ
(
λ2L4

m2 × b+d
ε

)
Õ
(
m2

λL4 × ε
b+d

)
KL ε Õ

(
λ2L4

m2 × b+d
ε

)
Õ( m

2

λL4 × ε
b+d

)
TV 2ε2 Õ

(
λ2L4

m2 × b+d
ε2

)
Õ
(
m2

λL4 × ε2

b+d

)
W2 ε2/2λ Õ

(
λ3L4

m2 × b+d
ε2

)
Õ
(

m2

λ2L4 × ε2

b+d

)
2019). Therefore we can likely show this for N → ∞
with a different proof technique.

We can translate our rate estimate in Chi-squared di-
vergence using (1.6), to obtain guarantees in KL di-
vergence, TV, and W2 metrics.

Corollary 5. Instantiate the assumptions and the no-
tation in Theorem 4. Table 1 summarizes the conver-
gence rate estimates in various measures of distance.

For strongly convex potentials (i.e. λ = 1/m and
b = 0), the above rate estimates recover the state-
of-the-art estimates in all of the above measures of
distance in both accuracy ε and dimension d. In other
words, there is no loss in converting the rates using
the inequalities (1.6).

3.1 Extending to Rényi Divergence

The results presented in the previous section for the
Chi-squared divergence can be extended to the Rényi
divergence with minimal effort. The key is to establish
a differential inequality in this measure of distance as
given below (cf. Lemma 1), which will be solved and
iterated to yield a convergence rate in the Rényi di-
vergence. Contrary to Lemma 1 which was established
under PI, the following result is established under LSI.

Lemma 6. If ν∗ satisfies LSI and α > 1, then the fol-
lowing inequality controls the evolution of the α-Rényi
divergence of the interpolated process from the target

d
dtRα (ρ̃t|ν∗) ≤ − 3

2αλRα (ρ̃t|ν∗)

+ αE
[
ρ̃t
ν∗

(x̃t)
2α−2

] 1
2 E
[∥∥∇f(x̃t)−∇f(xbt/ηc)

∥∥4
] 1

2

.

The proof of the above statement is similar to that
of Lemma 1, and deferred to Section B. To iterate
the bound obtained using Lemma 6, we again con-
duct a two-phase analysis. In the first phase, we use

Lemma 2; N steps of LMC implies that E
[
ρ̃t
ν∗

(x̃t)
2α−2

]
is bounded by O(α0.25), and stays bounded in the sub-
sequent N iterations. In the second phase, we use
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the following generalization of the single-step bound
in Lemma 3 for the Rényi divergence.

Lemma 7. Under the assumptions of Lemma 2, and
if we additionally have η ≤ 2αλ

3 , then for any iteration
k such that k ∈ [N, 2N ], LMC satisfies Rα (ρk+1|ν∗) ≤
(1− 3η

4αλ )Rα (ρk|ν∗)+cβL2(b+d)α9/8η2, where c is an
absolute constant and β is defined in Lemma 3.

The immediate consequence of this lemma is a bound
on the Rényi divergence, which is stated below.

Theorem 8. For α > 1 and for a potential f satis-
fying Assumption 1, suppose we run 2N iterations of
LMC (1.1) with step size η to sample from ν∗ = e−f .
If we initialize x0 with N (0, σ2I) for some σ2 < (1 +
L)−1, in order to get Rα (ρ2N |ν∗) ≤ ε, it is sufficient
if the following inequalities hold

η ≤ 2
‖∇f(0)‖2 ∧

1∧m
4(1∨L2) ∧

2αλ
3 ∧

c3
βλL2α17/8 × ε

(b+d)

Nη ≥ c2αλ log
(

6α2dCσ
(α−1)ε

)
c1 ≥ α2κ2L2(b+ d+ logN)Nη2,

where λ is the LSI constant of the target, c1, c2, c3 are
absolute constants, and Cσ and β are dimension free
constants defined respectively in Lemmas 2 and 3.

Consequently, if we choose

η = c3
β ×

m2

L4λ log
(
L4λ2

m2

) × 1
α3 × ε

b+d ×
1

log
(

6α2dCσ
(α−1)ε

)2
N = c2β

c3
× L4λ2 log

(
L4λ2

m2

)
m2 × α4 × b+d

ε × log
(

6α2dCσ
(α−1)ε

)3
,

then, 2N steps of LMC yield Rα (ρ2N |ν∗) ≤ ε for N ≥
2 and for a sufficiently small ε > 0.

The above theorem is similar to Theorem 4; there-
fore the same remarks also apply to this result. One
important difference is the α dependency of the rate

O(α4 log( α2

α−1 )3), which diverges as α → 1 and α →
∞. If one is interested in α ≈ 1, then using the mono-
tonicity of Rényi divergence, one can obtain better rate
estimates, for example by bounding Rα by R2.

4 EXAMPLES

Assumption 1 implies that the target satisfies a log-
Sobolev inequality. This can be deduced from the
results of Bakry and Émery (1985); Cattiaux et al.
(2010b), and a derivation is provided in Section C (cf.
Raginsky et al. (2017, Prop 3.2)). The proof relies on
showing the Lyapunov condition found in Bakry et al.
(2008) for the functional W (x) = exp(γ2 ‖x− x∗‖

2
)

for some critical point x∗ of f , and yields an LSI
constant of order O(d2eOscR(f)), where OscR(f) =
sup‖x−x∗‖≤R f(x) − inf‖x−x∗‖≤R f(x). However, un-
der more specific curvature conditions on the potential,

one can obtain better estimates on the LSI constant,
as seen below.

4.1 Strongly convex and first-order smooth
potentials

Potentials that are in this category satisfy LI �
∇2f(x) � mI. It is easy to see that Assumption 1
holds for the same parameters L,m, and b = 0. More-
over, due to the Bakry-Émery criterion, the target
ν∗ = e−f satisfies LSI with constant λ = 1/m.

While strongly convex potentials have often been stud-
ied in prior work, the known rate in χ2 and Rényi
divergence is O(d/ε2) (Ganesh and Talwar, 2020).
Our analysis instead obtains O(d/ε); this represents
a significant improvement to the known convergence
rates. When translated to KL divergence (using (1.4)),
our rate recovers the state-of-the-art rates for the
same class of potentials (Dalalyan, 2017b; Durmus and
Moulines, 2017).

Despite their apparent simplicity, this function class
contains numerous practical applications.

Ex 1: Gaussian mixtures. In this case, we consider
sampling from potentials of the form

ν∗(x) ∝ exp
(
− 1

2 ‖x− a‖
2 )

+ exp
(
− 1

2 ‖x+ a‖2
)

with a ∈ Rd a parameter controlling the modal separa-
tion. These potentials have strongly convex densities if
‖a‖2 < 1, with first, second and third order derivatives
all being Lipschitz (Dalalyan, 2017b).

Ex 2: Bayesian logistic regression. Consider data
samples V = {vi}ni=1 ∈ Rn×d, y = {yi}ni=1 ∈ Rn,
and a Bernoulli distribution P(y = 1|v) = 1/(1 +
exp(−〈x, v〉)) with parameter x ∈ Rd. If we use the
prior x ∼ N (0, αΣ−1

V ) where ΣV = V >V/n, then the
resulting posterior is proportional to

exp(y>V x−
n∑
i=1

log(1 + exp(〈x, vi〉))− α
2 ‖Σ

1/2
V x‖2).

Again, the potential is strongly convex, with Lipschitz
derivatives up to the third order (Dalalyan, 2017b).

Ex 3: Bounded perturbations. We also admit
potentials f = fsc + fp such that fsc is m0-
strongly convex with L0-Lipschitz gradient, and
fp satisfies |fp| ∨ ‖∇fp‖ ∨

∥∥∇2fp

∥∥ ≤ B. Then
〈∇f(x)−∇f(y), x−y〉 = 〈∇fsc(x)−∇fsc(y), x−y〉+
〈∇fp(x)−∇fp(y), x−y〉, which is bounded by

m0 ‖x− y‖2−2B ‖x− y‖ ≥ m ‖x− y‖2−b, where the
last inequality holds for m = m0/2 and b = 2B2/m.
We also have ‖∇2f‖ ≤ ‖∇2fsc‖+‖∇2fp‖ ≤ L0 +B :=
L. Thus, Assumption 1 holds for such functions.
Further, by the Holley-Stroock lemma (Holley and
Stroock, 1987), LSI is satisfied for λ = m−1

0 e2B .
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4.2 Strong convexity outside a ball

For a second class of examples, consider potentials
that are strongly convex outside a ball. If we as-
sume that f has continuous and upper bounded
Hessian ∇2f(x) � M0I, this assumption means
inf‖x‖≥r∇2f(x) � m0I, inf‖x‖<r∇2f(x) � −kI,
where m0 > 0 is the convexity parameter, and r ≥ 0,
k > 0. This condition implies f is first-order smooth
with L := M0∨k. The first condition in (4.2) is enough
to verify strong dissipativity; we write y = x+ s3z for
s3 = ‖x− y‖ , ‖z‖ = 1, and let s1, s2 ∈ [0, s3] such that
‖x+ sz‖ ≤ r ⇐⇒ s ∈ [s1, s2]. Then,

〈∇f(x)−∇f(y), x− y〉 =

∫
s∈[0,s1]∪[s2,s3]

〈
∇2f(x+ sz)z, s3z

〉
ds

+ 〈∇f(x+ s2z)−∇f(x+ s1z), s3z〉,

which is bounded by m0(s3 − 2r)s3 − 2Lrs3 ≥
m0

2 ‖x− y‖
2− 2

m0
(m0r+Lr)2, where outside of the ball

we use strong convexity, and inside we use smoothness.

For LSI, we replace f with a strongly convex function
f̃(x) = f(x)+0.5(k+m0) ‖x‖2 1{‖x‖≤r}, so that∇2f̃ �
m0I everywhere. Then ‖f − f̃‖∞ ≤ 0.5(k + m0)r2,
and by the Holley-Stroock perturbation lemma (Hol-
ley and Stroock, 1987), λ ≤ λf̃ · exp

(
(k +m0)r2

)
=

m−1
0 exp

(
(k +m0)r2

)
.

Ex: Student’s t-Regression, Gaussian prior.
Consider the function with α > 0

f(x) = 1
2 log(1 + ‖x‖2) + α

2 ‖x‖
2

+ constant.(4.1)

The gradient is x
1+‖x‖2 +αx, which is (α+1)-Lipschitz,

and Hessian is αI + (1+‖x‖2)I−2xx>

(1+‖x‖2)2
. When α < 1/8 is

sufficiently small, this function is non-convex. How-
ever, if we take the radius to be ‖x‖ ≥ 1/

√
α; we

find strong convexity outside the ball with m0 =
α2(α + 3)/(α + 1)2, and k = −1/8. Strong dis-
sipativity is satisfied, and LSI holds with constant
(α+1)2

α2(α+3) exp
(α2(α+3)
α(α+1)2 + 1

8α

)
.

For instance, when data is heavy tailed, Student’s
t-distribution is used to model the errors. Under
a Gaussian prior on the coefficients x ∼ N (0, αI),
the posterior distribution has the potential f(x) =∑n
i=1 log(1+(yi−〈vi, x〉)2)+ α

2 ‖x‖
2
+constant, where

{vi}ni=1, {yi}ni=1 are data samples as before. Notice
that the potential has the same form as (4.1). Un-
der suitable assumption on data, one can use the same
steps above to verify our conditions.

4.3 Non-uniform strong convexity

Finally, we consider functions which are similar to
the previous section, but with variable convexity

inf‖x‖≥r∇2f(x) � m0(r)I. Then if supr≥0m0(r) > 0,
strong dissipativity holds for the same reason as in the
prior subsection, since we need only fix some r > 0,
where m0(r) > 0 to recover the first inequality in (4.2).
LSI is satisfied as well (Chen and Wang, 1997) with the

constant λ bounded by λ ≤ a20
2 exp

(∫ a0
0
rm0(r)dr − 1

)
where a0 uniquely solves

∫ a
0
m0(r) = 2/a.

Ex: Heavy-tailed regression, corrupted noise.
Consider the function

f(x) = − 1
2 log(β + exp(−‖x‖2)) + α

2 ‖x‖
2

+ constant,

where β > 0, α > 0. The gradient is x
β exp(‖x‖2)+1

+αx,

which is α+ 1
1+β -Lipschitz, and the Hessian is

β exp(‖x‖2)(I− 2xx>) + I

(β exp(‖x‖2) + 1)2
+ αI.

In this case,

m0(r) = α− β exp(r2)(2r2 − 1)− 1

(β exp(r2) + 1)2
≥ α− r2

β exp (r2)
.

Since r2

β exp(r2) → 0, this quantity eventually be-

comes positive. By our argumentation, the function
is strongly dissipative and we can solve for the LSI
constant numerically.

For an instance of this, consider linear regression
on data {vi}ni=1, {yi}ni=1, with corrupted Gaussian
noise such that with small probability the noise
is sampled from uniform distribution (arises in vi-
sual reconstruction problems (Blake and Zisserman,
1987)). Assuming a prior x ∼ N (0, αI), we ob-
tain the following potential for the posterior f(x) =

− 1
2

∑n
i=1 log

(
β + exp(−(yi − 〈vi, x〉)2)

)
+ α

2 ‖x‖
2

+
constant. Our assumptions can be verified using the
same steps, under suitable conditions on the data.

5 CONCLUSION

In this paper, we analyzed the convergence of unad-
justed LMC algorithm for a class of potentials that are
first-order smooth and strongly dissipative. We used
the Fokker-Planck equation of the interpolated process
alongside the smoothness assumptions to obtain a dif-
ferential inequality which in turn yielded a single step
bound to be iterated to obtain our main convergence
results. The obtained rates improve upon the exist-
ing rates in Chi-squared and Rényi divergence, and
recover the state-of-the-art rates in KL, TV, and W2.

We highlight a few important future directions below.

• Although we assumed LSI throughout the paper,
Poincaré inequality is sufficient to establish the
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differential inequality in Lemma 1. The restric-
tion is due to the strong dissipativity assump-
tion, which enforces a quadratic growth on the
potential function; thus, LSI must hold. This
also enforces at least linear growth on the gra-
dient, which prevents us from considering weakly
smooth potentials that satisfy Hölder continuity.
Relaxing this assumption may allow one to es-
tablish convergence only under the Poincaré in-
equality, which permits weakly smooth potentials
that have at least linear growth. We note that
this setting is already considered in Erdogdu and
Hosseinzadeh (2020) under the KL divergence.

• The rate estimates presented in this paper do not
hold for all iterates as N → ∞, similar to Shen
and Lee (2019); Ganesh and Talwar (2020); Er-
dogdu and Hosseinzadeh (2020). This is an arti-
fact of our proof technique, and hopefully can be
remedied in the future work.

• In some toy examples such as the Gaussian, the
rate is instead Õ(

√
d/ε) iterations to obtain ε

Chi-squared divergence. This is Õ(
√
d/ε) better

than the rate estimate we obtained in the current
paper, and is due to the additional second-order
smoothness of the Gaussian potential. Improv-
ing the rate under additional smoothness is an
interesting direction left for future work.

• Similar techniques can be utilized to establish
convergence rates for other numerical schemes (Li
et al., 2019); the ones that satisfy certain optimal-
ity criteria are of particular interest (Shen and
Lee, 2019; Cao et al., 2020; He et al., 2020).
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vergence rates for Langevin dynamics in the noncon-
vex setting. arXiv preprint arXiv:1805.01648. (Cited

on pages 3 and 5.)

Chewi, S., Gouic, T. L., Lu, C., Maunu, T., Rigollet,
P., and Stromme, A. (2020). Exponential ergod-
icity of mirror-Langevin diffusions. arXiv preprint
arXiv:2005.09669. (Cited on page 2.)

Dalalyan, A. (2017a). Further and stronger anal-
ogy between sampling and optimization: Langevin
Monte Carlo and gradient descent. In Proceedings of
the 2017 Conference on Learning Theory, volume 65
of Proceedings of Machine Learning Research, pages
678–689. PMLR. (Cited on page 3.)

Dalalyan, A. S. (2017b). Theoretical guarantees for
approximate sampling from smooth and log-concave
densities. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 79(3):651–676.
(Cited on pages 2, 3, and 7.)

Dalalyan, A. S. and Karagulyan, A. (2019). User-
friendly guarantees for the Langevin Monte Carlo
with inaccurate gradient. Stochastic Processes and
their Applications, 129(12):5278–5311. (Cited on

page 3.)

Durmus, A., Majewski, S., and Miasojedow, B. (2019).
Analysis of Langevin Monte Carlo via Convex Op-
timization. Journal of Machine Learning Research,
20(73):1–46. (Cited on page 3.)

Durmus, A. and Moulines, E. (2016). Sampling
from strongly log-concave distributions with the
Unadjusted Langevin Algorithm. arXiv preprint
arXiv:1605.01559, 5. (Cited on page 3.)

Durmus, A. and Moulines, E. (2017). Nonasymptotic
convergence analysis for the unadjusted langevin al-
gorithm. Annals of Applied Probability, 27(3):1551–
1587. (Cited on pages 2, 3, and 7.)

Durmus, A. and Moulines, E. (2019). High-
dimensional Bayesian inference via the unadjusted
Langevin algorithm. Bernoulli, 25(4A):2854–2882.
(Cited on page 3.)

Dwork, C. and Feldman, V. (2018). Privacy-preserving
prediction. In Conference On Learning Theory,
pages 1693–1702. PMLR. (Cited on page 2.)

Dwork, C., Roth, A., et al. (2014). The algorithmic
foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407. (Cited on

page 2.)

Erdogdu, M. A. and Hosseinzadeh, R. (2020). On the
convergence of Langevin Monte Carlo: The inter-
play between tail growth and smoothness. arXiv
preprint arXiv:2005.13097. (Cited on pages 2, 3, 5, 6,

and 9.)

Erdogdu, M. A., Mackey, L., and Shamir, O. (2018).
Global non-convex optimization with discretized dif-
fusions. In Advances in Neural Information Process-
ing Systems, pages 9671–9680. (Cited on page 3.)

Ganesh, A. and Talwar, K. (2020). Faster differen-
tially private samplers via Rényi divergence analysis
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A PROOFS OF THE MAIN RESULTS

Proof of Lemma 1. The proof follows from similar lines that lead to a differential inequality in KL divergence
(see for example Vempala and Wibisono (2019)). Let ρ̃t|k denote the distribution of x̃t conditioned on xk for
k = bt/ηc, which satisfies

∂ρ̃t|k(x)

∂t
= ∇ · (∇f(xk)ρ̃t|k(x)) + ∆ρ̃t|k(x).

Taking expectation with respect to xk and using Bayes’ rule, we get

∂ρ̃t(x)

∂t
= ∇ ·

(
ρ̃t(x)

(
E [∇f(xk)−∇f(x)|x̃t = x] +∇ log

(
ρ̃t(x)

ν∗(x)

)))
. (A.1)

Now we consider the time derivative of Chi-squared divergence of ρ̃t from the target ν∗

d

dt
χ2
(
ρ̃t|ν∗

)
= 2

∫
ρ̃t(x)

ν∗(x)
×∇ ·

(
ρ̃t(x)

(
E [∇f(xk)−∇f(x)|x̃t = x] +∇ log

(
ρ̃t(x)

ν∗(x)

)))
dx

1
= −2

∫
ρ̃t(x)

〈
∇ ρ̃t(x)

ν∗(x)
,E [∇f(xk)−∇f(x)|x̃t = x] +∇ log

(
ρ̃t(x)

ν∗(x)

)〉
dx

2
≤ −3

2

∫ ∥∥∥∥∇ ρ̃t(x)

ν∗(x)

∥∥∥∥2

ν∗(x)dx+ 2

∫
E
[
ρ̃t(x)

ν∗(x)
‖∇f(x)−∇f(xk)‖2 |x̃t = x

]
ρ̃t(x)dx

3
≤ − 3

2λ
χ2
(
ρ̃t|ν∗

)
+ 2E

[
ρ̃t(x̃t)

ν∗(x̃t)
‖∇f(x̃t)−∇f(xk)‖2

]
,

where step 1 follows from the divergence theorem, step 2 from 〈a, b〉 ≤ 1
4 ‖a‖

2
+ ‖b‖2 and in step 3, we used

PI with ρ replaced by ρ̃t. Finally, the result follows from the Cauchy-Schwartz inequality on the second term.

Proof of Lemma 2. We use Cauchy-Schwarz inequality to get

Eρ̃T
[
ρ̃T
ν∗

(x)2α−2

]
≤ Eν∗

[
πT
ν∗

(x)4α−3

] 1
2

EπT
[
ρ̃T
πT

(x)4α−2

] 1
2

.

We apply Lemma 25, and find that

logEν∗
[
πT
ν∗

(x)4α−3

]
≤exp(− 2T

(4α− 3)λ
) logEν∗

[
ρ0

ν∗
(x)4α−3

]
,

as π0 = ρ0. Choosing T ≥ Nη = (4α−3)λ
2 log log(Eν∗

[
ρ0
ν∗

(x)4α−3
]
) yields 1 on the RHS, implying

Eν∗
[
πT
ν∗

(x)4α−3
]
≤ e. With our initialization, we next use Lemma 26 to get Eν∗

[
ρ0
ν∗

(x)4α−3
]
≤ ed(4α−3)Cσ ,

which is substituted into the final bound. We can apply a crude bound of Eν∗
[
ρ0
ν∗

(x)4α−3
]
≤ exp (4αdCσ), where

Cσ is as in the remark after Lemma 26.

For the second term, we apply Lemma 14 with 16α− 10 and number of iterations 2N , under the condition that

cα2κ2L2(b+ d+ log 2N)Nη2 ≤ 1.

Then we get EπT
[
ρ̃T
πT

(x)4α−2
]
≤ 20e

√
α; combining these two terms yields the final bound.

Proof of Lemma 3. Suppose x∗ is the global minimizer of f (therefore ∇f(x∗) = 0). From Lemma 10 and
η ≤ m/L2 we have

‖x− η∇f(x)− x∗‖2 ≤ (1−mη) ‖x− x∗‖2 + 2bη.

Using the previous inequality with the fact that Gaussian has zero odd moments and Lemma 22 we get

E
[
‖xk − x∗‖2

]
≤ E

[
‖x0 − x∗‖2

]
+

2(b+ d)

m
.
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Doing the same for power 4 we get the following

E
[
‖xk+1 − x∗‖4

]
≤ (1−mη)E

[
‖xk − x∗‖4

]
+ 12η(b+ d)E

[
‖xk − x∗‖2

]
+ 12η2(b+ d)2.

Plugging the bound on E
[
‖xk − x∗‖2

]
back in the previous inequality and using Lemma 22, we get the following

E
[
‖xk − x∗‖4

]
≤

E
[
‖x0 − x∗‖4

]
(b+ d)2

+
12

m

E
[
‖x0 − x∗‖2

]
b+ d

+
2

m
+ η

 (b+ d)2.

For t ≤ η, we write

E
[∥∥∥t∇f(xk) +

√
2Bt

∥∥∥4
]
≤ 8η4E

[
‖∇f(xk)‖4

]
+ 32E [‖Bt‖]4

≤ 8η4L4E
[
‖xk − x∗‖4

]
+ 96η2d2.

By combining the last two inequalities we get the following.

E
[∥∥∥t∇f(xk) +

√
2Bt

∥∥∥4
]

≤

96 + 8η2L4

E
[
‖x0 − x∗‖4

]
(b+ d)2

+
12E

[
‖x0 − x∗‖2

]
m(b+ d)

+
24

m2
+

12η

m

 (b+ d)2η2,

using the definition of β and moments of Gaussian and the bound on η we get

E
[∥∥∥t∇f(xk) +

√
2Bt

∥∥∥4
]1/2

≤ cβ(b+ d)η, (A.2)

for some universal constant c. Now if the conditions of Lemma 2 hold, then we have the expected ratio of the
densities bounded by an absolute constant for N ≤ kη + t ≤ 2N . Combining this with the previous bound, we
obtain

E
[
ρ̃kη+t

ν∗
(x̃kη+t)

2

]1/2

E
[
‖∇f(x̃kη+t)−∇f(xk)‖4

]1/2
≤ cβL2(b+ d)η

where c is an absolute constant.

We plug in the derived upper bounds back in (2.2) to get

d

dt
χ2
(
ρ̃kη+t|ν∗

)
≤ − 3

2λ
χ2
(
ρ̃kη+t|ν∗

)
+ cβL2(b+ d)η.

Integrating this differential inequality and using t ≤ η results in the following single step bound

χ2
(
ρk+1|ν∗

)
≤
(

1− 3η

4λ

)
χ2
(
ρk|ν∗

)
+ cβL2(b+ d)η2,

where we used η ≤ λ
2 and that e−x ≤ 1− x/2 for x ∈ [0, 1], and we absorbed universal constants into c.

Proof of Theorem 4. In the first phase, by Lemma 2, we used the first N steps of LMC to show that the
expected squared ratio of densities evaluated at the interpolation process is bounded by an absolute constant
and it stays bounded for the subsequent N iterations. This allows us to iterate the single-step bound provided
by Lemma 3, for which we need to bound its starting point, the LMC iteration N . We write

χ2
(
ρN |ν∗

)
= Eν∗

[
ρN
ν∗

(x)
2

]
− 1 ≤ EπNη

[
ρN
πNη

(x)
4

]1/2

Eν∗
[
πNη
ν∗

(x)
3

]1/2

− 1,
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by Cauchy-Schwartz inequality. We bound the right hand side term by term with an absolute constant. For the
first term we use Lemma 14 for α = 14. In order for it to be bounded by 22e, it is sufficient if the following holds
that c1κ

2L2N(b+ d+ logN)η2 ≤ 1, where c1 is some universal constant. The second term can be written as

Eν∗
[
πNη
ν∗

(x)
3

]
= Eν∗

[
πNη
ν∗

(x)
4α−3

]
for α = 3/2,

for which we already obtained an upper bound in the proof of Lemma 2. That is, whenever Nη ≥ 3λ
2 log(6dCσ),

the right hand side is bounded by e. Thus, we have χ2
(
ρN |ν∗

)
≤ 12.

In the second phase of the analysis, we use the differential inequality. Iterating the single step bound in Lemma 3
with the help of Lemma 22, together with the upper bound on the initialization of the second phase, we get

χ2
(
ρ2N |ν∗

)
≤ exp

(
− 3ηN

4λ

)
12 + cλL2β(b+ d)η,

where we used the bound on Chi-square divergence in step N and absorbed absolute constants into c. To make
this less than ε, it suffices if the following additional inequalities hold

Nη ≥ 4

3
λ log

24

ε
, η ≤ 1

2cβλL2
× ε

b+ d

for some absolute constant c. Combining the above conditions with the conditions of used Lemmas, and simpli-
fying the statements, we obtain the inequalities in (3.1).

For the last statement, it suffices to check the inequalities in (3.1) for the given choice of step size and the
number of iterations.

A.1 Proofs for the Rényi Divergence

Proof of Lemma 6. Define the following quantities for α ≥ 1 between two densities p, q

Fα (p|q) = Eq
[
p

q
(x)α

]
, Gα (p|q) = Eq

[
p

q
(x)α−2

∥∥∥∥∇pq (x)

∥∥∥∥2
]
.

Then we have (α − 1)Rα (p|q) = logFα (p|q). Note that Fα (p|q) ≥ 1 for any p, q. We have the following result
for the Langevin diffusion.

Lemma 9. (Adapted from (Vempala and Wibisono, 2019, Lemma 5)) If q satisfies LSI with constant λ, then

Gα (p|q)
Fα (p|q)

≥ 2

α2λ
Rα (p|q) .

The above lemma was used in Vempala and Wibisono (2019) to prove the exponential convergence of the Langevin
diffusion. We use it in a similar way, but for the interpolation process.

Consider the dynamics in (A.1) and write to express the time-derivative of Fα as

d

dt
Fα (ρ̃t|ν∗) = α

∫
ρ̃t
ν∗

(x)α−1 ∂ρ̃t(x)

∂t
dx

= α

∫
ρ̃t
ν∗

(x)α−1∇ ·
(
ρ̃t(x)

(
E [∇f(xk)−∇f(x)|x̃t = x] +∇ log

ρ̃t
ν∗

(x)

))
dx

1
= α(α− 1)

∫
ρ̃t
ν∗

(x)α−2

〈
∇ ρ̃t
ν∗

(x),E [∇f(x)−∇f(xk)|x̃t = x]−∇ log
ρ̃t
ν∗

(x)

〉
ρ̃t(x)dx,
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where in 1 we use the divergence theorem. For the first term, we write∫
ρ̃t
ν∗

(x)α−2

〈
∇ ρ̃t
ν∗

(x)

√
ν∗(x)

ρ̃t(x)
,

√
ρ̃t(x)

ν∗(x)
E [∇f(x)−∇f(xk)|x̃t = x]

〉
ρ̃t(x)dx

1
≤ 1

4

∫
ρ̃t
ν∗

(x)α−2

∥∥∥∥∇ ρ̃tν∗ (x)

∥∥∥∥2

ν∗(x)dx

+

∫
E
[
ρ̃t
ν∗

(x)α−1 ‖∇f(x)−∇f(xk)‖2 |x̃t = x

]
ρ̃t(x)dx

=
1

4
Gα (ρ̃t|ν∗) + E

[
ρ̃t
ν∗

(x̃t)
α−1 ‖∇f(x̃t)−∇f(xk)‖2

]
,

where in 1 we used that 〈a, b〉 ≤ 1
4 ‖a‖

2
+ ‖b‖2. For the second term, we find∫

ρ̃t
ν∗

(x)α−2

〈
∇ ρ̃t
ν∗

(x),−∇ log
ρ̃t
ν∗

(x)

〉
ρ̃t(x)dx = −Gα (ρ̃t|ν∗)

Combining terms, we get

d

dt
Rα (ρ̃t|ν∗) =

1

(α− 1)Fα (ρ̃t|ν∗)
dFα (ρ̃t|ν∗)

dt

≤ −3α

4

Gα (ρ̃t|ν∗)
Fα (ρ̃t|ν∗)

+ α
E
[
ρ̃t
ν∗

(x̃t)
α−1 ‖∇f(x̃t)−∇f(xk)‖2

]
Fα (ρ̃t|ν∗)

1
≤ −3α

4

Gα (ρ̃t|ν∗)
Fα (ρ̃t|ν∗)

+ αE
[
ρ̃t
ν∗

(x̃t)
2α−2

] 1
2

E
[
‖∇f(x̃t)−∇f(xk)‖4

] 1
2

,

where in 1 we use a Cauchy-Schwarz inequality and that Fα (ρ̃t|ν∗) ≥ 1. It remains to apply Lemma 9 on the
first term.

Proof of Lemma 7. The bound on the second term in (7) is obtained directly from (A.2), as

E
[
‖∇f(x̃kη+t)−∇f(xk)‖4

] 1
2 ≤ cβL2(b+ d)η.

So combining this with Lemma 2, for any k ∈ [N, 2N ], we get

E
[
ρ̃kη+t

ν∗
(x̃kη+t)

2α−2

] 1
2

E
[
‖∇f(x̃kη+t)−∇f(xk)‖4

] 1
2 ≤ cβL2(b+ d)α1/8η.

Substitution into Lemma 6 yields

d

dt
Rα (ρ̃t|ν∗) ≤ −

3

2αλ
Rα (ρ̃t|ν∗) + cβL2(b+ d)α9/8η.

It remains to integrate this for t ≤ η, and apply e−x ≤ (1− x
2 ) for x ∈ [0, 1], and η ≤ 2αλ

3 .

Proof of Theorem 8. In the first phase, in accordance with the proof of Theorem 4, we will need to ensure
that the density ratio at step N remains bounded. So we again write

Eν∗
[
ρ̃Nη
ν∗

(x)α
]
≤ EπNη

[
ρ̃Nη
πNη

(x)2α

] 1
2

Eν∗
[
πNη
ν∗

(x)2α−1

] 1
2

.

For the first term, we can use Lemma 14 with 8α− 2, so that again we have the condition

cα2κ2L2(b+ d+ logN)Nη2 ≤ 1,
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to guarantee that the first term is bounded by 7α0.25. The second term is bounded via a Hölder inequality

Eν∗
[
πNη
ν∗

(x)2α−1

]
≤ Eν∗

[
πNη
ν∗

(x)4α−3

] 2α−1
4α−3

,

which is simply bounded by exp( 2α−1
4α−3 ) under the conditions of Lemma 2. Consequently the Rényi divergence at

k = N is bounded by

Rα (ρN |ν∗) ≤
log(12α)

α− 1
.

In the second phase, we simply iterate the differential inequality in Lemma 7 and apply Lemma 21 to get

Rα (ρ2N |ν∗) ≤ exp

(
−3Nη

4αλ

)
log(12α)

α− 1
+ cβλL2(b+ d)α17/8η.

Thus we obtain ε accuracy if the following inequalities hold

Nη ≥ 4

3
αλ log

2 log(12α)

(α− 1)ε
, η ≤ 1

2cβλL2α17/8
× ε

b+ d

for some absolute constant c. Combining these conditions with the conditions of other lemmas used above and
simplifying the expressions using α,Cσ > 1 ≥ ε, we conclude the proof of the first part for the given choice of η
and N , and choosing a sufficiently small ε.

The second part of the theorem follows from verifying the conditions in the first part, and choosing a suitably
small accuracy ε.

B MAIN TECHNICAL LEMMAS

Let Xt show the clipped interpolation process, with step size η, which is defined similar to interpolation process
with the following exception: if for any s ≤ t we have

∥∥Xs −Xbs/ηcη
∥∥ > r we change Xt to ⊥. We define

Xj
t similarly, with step size η/j for j ∈ N and define X ′t similarly for the continuous time process. We use

the same r and η for all processes, in other words we change Xj
t and X ′t to ⊥ when for some s ≤ t we have∥∥∥Xj

s −X
j
bs/ηcη

∥∥∥ > r and
∥∥∥X ′s −X ′bs/ηcη∥∥∥ > r, respectively. We refer to these processes as clipped processes that

are started from the same distribution. Let Pt(x), P jt (x) and Qt(x) show the density of Xt, X
j
t and X ′t at x.

We prove a bound on the probability of jump on both continuous time and discrete time process that will be used
to remove the bounded movement assumption. This part is an extension of Lemma 13 in Ganesh and Talwar
(2020). First we prove both continuous-time and discrete-time processes satisfy a semi-contraction inequality.

Lemma 10. If f satisfies Assumption 1 and zt and z′t are two instances of Langevin diffusion with synchronously
coupled Brownian motion, then we have the following

‖zt − z′t‖ ≤ e−mt ‖z0 − z′0‖+

√
b

m
(1− e−2mt).

Furthermore, if η ≤ m/L2, then gradient descent satisfies the following

‖(x− η∇f(x))− (y − η∇f(y))‖2 ≤ (1−mη) ‖x− y‖2 + 2ηb.

Proof. For discrete-time, the results follow from elementary calculations. For continuous-time, by coupling the
Brownian motions and subtracting we get the following,

d

dt
(zt − z′t) = − (∇f(zt)−∇f(z′t)) ,
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then we differentiate ‖zt − z′t‖
2

with respect to time to get

d

dt
‖zt − z′t‖

2
= −2〈zt − z′t,∇f(zt)−∇f(z′t)〉 ≤ −2m ‖zt − z′t‖

2
+ 2b,

where the last step follows from strong dissipativity. Solving this differential inequality and using the inequality√
x+ y ≤

√
x+
√
y concludes the proof.

The second statement follows from

‖x− η∇f(x)− (y − η∇f(x))‖2 = ‖x− y‖2 − 2η〈x− y,∇f(x)−∇f(y)〉+ η2 ‖∇f(x)−∇f(y)‖2

≤(1− 2ηm+ η2L2)‖x− y‖2 + 2ηb

≤(1−mη)‖x− y‖2 + 2ηb,

where we used Assumption 1 for the first inequality, and that η ≤ m/L2 for the second inequality.

Lemma 11. Suppose the potential satisfies Assumption 1 and x0 = z0 ∼ N (0, σ2I), for σ2 < (L + 1)−1. If the
step size is small enough, η ≤ 1∧m

4(1∨L2) ∧
2

‖∇f(0)‖2 , then each of the following jump conditions, denoted with E1
δ

and E2
δ , happens with probability at least 1− δ.

∀t ≤ Nη :
∥∥x̃t − x̃bt/ηcη∥∥ ≤ (2κ+ 1)

(
1 +
√
b+
√
d+ 2

√
log (2(N + 1)/δ)

)√
2η,

∀t ≤ Nη :
∥∥zt − zbt/ηcη∥∥ ≤ (5κ+ 1)

(
1 +
√
b+
√
d+ 2

√
log (2(N + 1)/δ)

)√
2η.

Remark. The RHS of both of the bounds can be written as cκ
(√

b+
√
d+

√
logN/δ

)√
η, for a universal

constant c (note that κ > 1).

Proof. In order to ease the notation we will use Btu to denote Bt+u −Bt. From Lemma 20 we know that

√
2 sup
s≤η

∥∥Bkηs ∥∥ ≤√2η

(
√
d+ 2

√
log

2(N + 1)

δ

)
,

with probability at least 1− δ
N+1 , for all k ≤ N . We also note that the initial distribution x0 ∼ ρ0 satisfies the

following (see Lemma 19)

P

[
‖x0‖ ≤

2
√

2

m
√
η

(
1 +
√
b+
√
d+ 2

√
log

2(N + 1)

δ

)]
≥ 1− δ

N + 1
.

First, we prove the discrete-time case. By plugging y = 0 into Lemma 10 and taking the square root, we get the
following

‖x− η∇f(x)‖ ≤ (1− mη

2
) ‖x‖+

√
2bη + η ‖∇f(0)‖ ,

thus, we can write

‖xk+1‖ ≤ ‖xk − η∇f(xk)‖+
√

2
∥∥Bkηη ∥∥

≤ (1− mη

2
) ‖xk‖+

√
2η(1 +

√
b) +

√
2 sup
s≤η

∥∥Bkηs ∥∥ ,
where we used η2 ‖∇f(0)‖2 ≤ 2η. This, combined with the high probability bound on x0 and supremum of
Brownian motion with the aid of union bound implies the following happens for k ≤ N , with probability at least
1− δ.

‖xk‖ ≤
2
√

2

m
√
η

(
1 +
√
b+
√
d+ 2

√
log

2(N + 1)

δ

)
.
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Let k = bt/ηc, we write ∥∥x̃t − x̃ηbt/ηc∥∥ ≤ η ‖∇f(xk)‖+
√

2 sup
t≤η

∥∥∥Bkηt ∥∥∥
≤ ηL ‖xk‖+ η ‖∇f(0)‖+

√
2 sup
t≤η

∥∥∥Bkηt ∥∥∥
≤ ηL ‖xk‖+

√
2η +

√
2 sup
t≤η

∥∥∥Bkηt ∥∥∥ ,
combining this with the high probability bound on the Brownian motion and ‖xk‖ (note that there is no need for
union bound as this event is subset of the high probability event on the norm of the Brownian motion) concludes
the proof for the discrete case.

We use a similar structure for proving the continuous-time case. Let z′u denote the continuous time Langevin
dynamics started at z′0 = 0. We write

‖z′u‖ ≤
∫ u

0

‖∇f(z′s)‖ ds+
√

2 ‖Bu‖ ≤ L
∫ u

0

‖z′s‖ ds+ η ‖∇f(0)‖+ sup
s≤η

√
2 ‖Bs‖ ,

for u ≤ η. Using Grönwall inequality (Lemma 21), we get the following (for u ≤ η)

‖z′u‖ ≤ eLu
(
η ‖∇f(0)‖+ sup

s≤η

√
2 ‖Bs‖

)
≤ 2

(
η ‖∇f(0)‖+ sup

s≤η

√
2 ‖Bs‖

)
.

where the last inequality is because u ≤ η ≤ log 2/L. Plug z′0 = 0 in Lemma 10 and shift z0 to zt, using the
semi-group property, to get the following

‖zt+u‖ ≤ e−mu ‖zt‖+ ‖z′u‖+

√
b

m
(1− e−2mu) (B.1)

≤ (1−mu/2) ‖zt‖+ 2

(√
2η + sup

s≤η

√
2
∥∥Bts∥∥)+

√
2bη,

where the last inequality follows from 4mu ≤ 4mη ≤ 1, and η2 ‖∇f(0)‖2 ≤ 2η. We plug u = η in the previous
inequality and use the high probability bound on the Brownian motion and z0 = x0 with union bound to get

‖zkη‖ ≤ 4
√

2
m
√
η (1 +

√
b+
√
d+ 2

√
log 2(N+1)

δ ) with probability at least 1− δ for all k ≤ N .

Next, we modify (B.1) as follows

‖zt+u‖ ≤ ‖zt‖+ 2

(√
2η + sup

s≤η

√
2 ‖Bs‖

)
+
√

2bη.

Using this inequality with previous high probability bound on ‖zkη‖ shows that the following happens with
probability at least 1− δ for all t ≤ Nη.

‖zt‖ ≤
5
√

2

m
√
η

(
1 +
√
b+
√
d+ 2

√
log

2(N + 1)

δ

)
,

where we used η ≤ 1/4m. Finally we use the following inequality to connect this tail bound to probability of
jump

∥∥zt − zbt/ηcη∥∥ =

∥∥∥∥∥
∫ t

bt/ηcη
−∇f(zs)ds+

√
2dBs

∥∥∥∥∥
≤ ηL sup

s≤Nη
‖zs‖+ η ‖∇f(0)‖+

√
2 sup
s≤η

∥∥∥Bbt/ηcηs

∥∥∥ .
Combining previous inequality with high probability bounds on ‖zt‖ and the Brownian motion and using

η2 ‖∇f(0)‖2 ≤ 2η concludes the proof for the continuous-time case (where again, there is no need for union
bound as this event is subset of the high probability event on the norm of the Brownian motion).
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Finally, we collect all the upper bounds on η in a more compact form

η ≤ 1 ∧m
4(1 ∨ L2)

∧ 2

‖∇f(0)‖2
≤ 2

‖∇f(0)‖2
∧ 4

mσ2
∧ m

L2
∧ 1

4m
∧ log 2

L
.

Now we prove the continuous-time and discrete-time clipped processes stay sufficiently close to each other. In
order to prove that we first state a lemma that describes the behavior of discrete chain as step size approaches
zero. We will show that the Rényi divergence of the discrete-time process and the continuous-time process
converges to zero as the step size approaches zero. The proof relies on the Girsanov theorem and Lemma 11.

Lemma 12. Let ΓηT ,ΠT be the distribution of the paths on [0, T ] of the interpolated time process with step-size
η, and continuous time process respectively. Starting from x0 = z0 = N (0, σ2I) for σ2 ≤ (L + 1)−1, and under
Assumption 1, for any T > 0, α ≥ 1

lim
η→0

Rα (ΓηT |ΠT ) = 0.

Proof. Denote our underlying probability space by (Ω,F , P ); let Z = {f |f : [0, T ] → Rd} be the space of
possible paths. We use the notations x̃·(ω) and z·(ω) to denote one realization of discrete and continuous time
process. Using Girsanov’s Theorem (see Lemma 24), we define the measure Q

dQ

dP
(ω) = N(x̃·)

, exp

(
− 1√

2

∫ T

0

(
∇f(x̃s)−∇f(x̃bs/ηcη)

)>
dBs −

1

4

∫ T

0

∥∥∇f(x̃s)−∇f(x̃bs/ηcη)
∥∥2
ds

)
,

such that the P -law of z· equals the Q-law of x̃·. Note that Novikov condition can be checked by using Lemmas 11
and 18 and smoothness of potential. Thus, we can write the following

ΠT (A) = P ({ω|z·(ω) ∈ A})
= Q ({ω|x̃·(ω) ∈ A})

=

∫
1{x̃·(ω)∈A}N(x̃·(ω))dP (ω)

=

∫
x̃·∈A

N(x̃·)dΓηT (x̃·),

for any measurable A ∈ Z. This implies the following about the Radon–Nikodym derivative

dΠT

dΓηT
(x̃.) = N(x̃.).

Raising to power −(α− 1) and using the definition of N and taking expectation we get

EΠT

[(
dΓηT
dΠT

)α]
= EΓηT

[(
dΓηT
dΠT

)α−1
]

= E
[

exp

(
α− 1√

2

∫ T

0

(
∇f(x̃s)−∇f(x̃bs/ηcη)

)>
dBs+

α− 1

4

∫ T

0

∥∥∇f(x̃s)−∇f(x̃bs/ηcη)
∥∥2
ds

)]
.

If we define Ms =
√

2(α− 1)
(
∇f(x̃s)−∇f(x̃bs/ηcη)

)
, this expectation is equal to the following

E

[
exp

(
1

2

∫ T

0

M>s dBs −
1

4

∫ T

0

‖Ms‖2 ds+

∫ T

0

(
1

4
+

1

8(α− 1)

)
‖Ms‖2 ds

)]
.
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Subsequently, the following holds by Cauchy-Schwartz

EΠT

[(
ΓηT
ΠT

)α]
≤ E

[
exp

(∫ T

0

M>s dBs −
1

2

∫ T

0

‖Ms‖2 ds

)]1/2

× E

[
exp

{(
(α− 1)2 +

α− 1

2

)∫ T

0

∥∥∇f(x̃s)−∇f(x̃bs/ηcη)
∥∥2
ds

}]1/2

≤ E

[
exp

(
α2

∫ T

0

∥∥∇f(x̃s)−∇f(x̃bs/ηcη)
∥∥2
ds

)]1/2

,

where the last inequality step follows from Lemma 23 and again Novikov’s condition holds as argued before. We
use Assumption 1, and the first event in Lemma 11 to get∫ T

0

∥∥∇f(x̃s)−∇f(x̃bs/ηcη)
∥∥2
ds ≤ L2

∫ T

0

∥∥x̃s − x̃bs/ηcη∥∥2
ds

≤ KTL2κ2

(
b+ d+ log

T

ηδ

)
η,

with probability at least 1 − δ, if η, is sufficiently small for some universal constant K. Letting the event in
which this bound holds be called Eδ, by calculating the conditional expectation we get

E

[
exp

(
cα2

∫ T

0

∥∥∇f(x̃s)−∇f(x̃bs/ηcη)
∥∥2
ds

)
|Eδ

]

≤ exp

(
Kcα2TL2κ2

(
b+ d+ log

T

ηδ

)
η

)
≤ δ−γc(η) exp

(
Kcα2TL2κ2 (b+ d+ log T − log η) η

)
,

where γc(η) = Kcα2TL2κ2η, and we absorbed constants into K. For any fixed c, we know limη→0 γc(η) = 0,
therefore for small enough η, we have γc(η) < 1, thus we can apply Lemma 18 with θ = c and γ = γc(η) to get

E

[
exp

(
α2

∫ T

0

∥∥∇f(x̃s)−∇f(x̃bs/ηcη)
∥∥2
ds

)]
≤ 2

2
c c

c− 1
exp

(
Kα2TL2κ2 (b+ d+ log T − log η) η

)
.

We substitute this into our earlier bound,

EΠT

[(
ΓηT
ΠT

)α]
≤ 2

2
c c

c− 1
exp

(
Kα2TL2κ2 (b+ d+ log T − log η) η

)
.

We take the limit as η → 0 to get

lim
η→0

EΠT

[(
ΓηT
ΠT

)α]
≤ 2

2
c c

c− 1
.

Finally, we take another limit as c→∞ to get

lim
η→0

EΠT

[(
ΓηT
ΠT

)α]
≤ 1.

Substituting this into the definition of the Rényi divergence and using continuity of log at 1 concludes the
proof.
Now using the previous lemma, we extend (Ganesh and Talwar, 2020, Corollary 11) to the interpolation process
under strong dissipativity.

Lemma 13. If P0 = Q0 = N (0, σ2I) for σ2 < (L+ 1)−1, then the following holds for α ≥ 2, when Assumption 1
is satisfied.

EQT
[
PT
QT

(x)
α

]
≤ exp

(
Tα(α− 1)L2r2

)
(B.2)
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Proof. We use the same argument as in (Ganesh and Talwar, 2020, Lemma 10). By sampling both Xt and X ′t
at multiples of η/j and at the final moment(T ), we get the following tuples.

X0−T = {Xiη/j}0≤i<jT/η + {XT }, Xj
0−T = {Xj

iη/j}0≤i<jT/η + {Xj
T },

where by + we mean appending the element to the end of the tuple. In order to use Lemma 17, we consider
functions φ1 and φ2 that append one new sample to the tuples of sampled clipped processes. For example φ1 gets
{Xiη/j}0≤i<k and applies Langevin update rule along with the clipping criteria for step size η/j using the gradient
at the last multiple of η to produce {Xiη/j}0≤i≤k. φ2 is defined similarly but uses gradient at last multiple of η/j.

Note that we get X0−T and Xj
0−T by multiple applications of φ1 and φ2, except for the final iterate. Assume X̃ is

a deterministic tuple (i.e. point mass) we bound Rα

(
φ1(X̃)|φ2(X̃)

)
. If X̃ contains ⊥ then this is zero, therefore

we assume X̃ does not contain jumps larger than r and by data processing inequality (Lemma 16) we can ignore
clipping done by φ1 and φ2. Since X̃ was a point mass, both φ1(X̃) and φ2(X̃) are Gaussians with possibly
different means, which cannot differ more than Lrη/j, because of smoothness of potential and assumption that

jumps are smaller than r. Thus, Lemma 15 implies Rα

(
φ1(X̃)|φ2(X̃)

)
≤ αL2r2η/4j. Let T = kη/j + t′ such

that t′ < η/j. We can apply Lemma 17 for k times to get that the Rényi divergence between {Xiη/j}0≤i<jT/η
and {Xj

iη/j}0≤i<jT/η is bounded by αL2r2(T−t′)
4 . Now modifying φ1 and φ2 to use time t′ instead of η/j, by the

same argument as before and using Lemma 17 once more, we can conclude that

Rα

(
X0−T |Xj

0−T

)
≤ αL2r2T

4
.

To go back to PT and QT we write

Rα (PT |QT ) ≤ α− 0.5

α− 1
R2α

(
PT |P jT

)
+R2α−1

(
P jT |QT

)
,

where we used Cauchy-Schwartz inequality. Taking the limit as j →∞ and using α ≥ 2, we get

Rα (PT |QT ) ≤ 2 lim
j→∞

R2α

(
PT |P jT

)
+ lim
j→∞

R2α−1

(
P jT |QT

)
.

The second term in RHS converges to 0, since by data processing inequality (see Lemma 16) we have

lim
j→∞

R2α−1

(
P jT |QT

)
≤ lim
j→∞

R2α−1

(
Γ
η/j
T |ΠT

)
= 0,

where the last step is due to Lemma 12. Therefore, we get the following

Rα (PT |QT ) ≤ 2 lim
j→∞

R2α

(
PT |P jT

)
≤ 2 lim

j→∞
R2α

(
X0−T |Xj

0−T

)
≤ TαL2r2,

where the second inequality follows from data processing inequality (Lemma 16). This in turn implies (B.2).
Finally, we combine the previous results to go back to the unclipped process.

Lemma 14. Suppose Assumption 1 holds and x0 = z0 = N (0, σ2I) for σ2 < (L+1)−1. If η ≤ 1∧m
4(1∨L2) ∧

2
‖∇f(0)‖2 ,

and for some universal constant c we have Nη2 ≤ 1
cκ2L2α2 , then for any T ≤ Nη and α ≥ 2, we have the

following

EπT
[
ρ̃T
πT

(x)
α
4 + 1

2

]
≤ 5α+ 10√

α
× exp

(
cTκ2L2α2(b+ d+ log (N))η

)
.

Proof. Considering the events E1
δ1
, E2
δ2

from Lemma 11, we plug the following value in (B.2)

r = cκ(
√
b+
√
d+

√
log (N/δ1) +

√
log (N/δ2))

√
η,

where c is a universal constant such that the remark after Lemma 11 holds. This implies r2 ≤
cκ2 (b+ d+ log (N/δ1) + log (N/δ2)) η, where we absorbed universal constants into c. We write

EπT
[
PT
πT

(x)
α

∣∣∣∣E2
δ2

]
≤ 1

1− δ2
EQT

[
PT
QT

(x)α
]

≤ 2 exp
(
Tα(α− 1)L2r2

)
≤

2 exp
(
cTκ2L2α2(b+ d+ log (N))η

)
(δ1δ2)cTκ2L2α2η

,
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where the first step follows from πT (x) ≥ QT (x) (for x ∈ Rd), and the second from Lemma 13. In order to utilize
Lemma 18 we set γ = cTκ2L2α2η and we need γ < 1 which combined with T ≤ Nη shows that it is sufficient if
we have

Nη2 ≤ 1

cκ2L2α2
.

Lemma 18 implies

EπT
[
PT
πT

(x)
α
2

]
≤ 4
√

2
exp

(
cTκ2L2α2(b+ d+ log (N))η

)
δcTκ

2L2α2η
1

,

where universal constants are again absorbed into c. For replacing PT with ρ̃T we write

EπT
[
PT
πT

(x)
α
2

]
=

∫
Rd

PT (x)α/2

πT (x)α/2−1
dx

=
α

2

∫
Rd

∫ PT (x)

0

yα/2−1

πT (x)α/2−1
dydx

=
α

2

∫
Rd

(∫ ρ̃T (x)

0

yα/2−11{y≤PT (x)}

πT (x)α/2−1
× 1

ρ̃T (x)
dy

)
ρ̃T (x)dx

=
α

2
Ex∼ρ̃T ,y∼U(0,ρ̃T (x))

[
yα/2−1

πT (x)α/2−1

∣∣∣∣y ≤ PT (x)

]
× Px∼ρ̃T ,y∼U(0,ρ̃T (x)) [y ≤ PT (x)] .

We consider RHS term by term. For the first term we write

Ex∼ρ̃T ,y∼U(0,ρ̃T (x))

[
yα/2−1

πT (x)α/2−1

∣∣∣∣y ≤ PT (x)

]
= Ex∼ρ̃T ,y∼U(0,ρ̃T (x))

[
yα/2−1

πT (x)α/2−1

∣∣∣∣Eδ1]
with the right coupling between y and the path x.. For the second term we have

Px∼ρ̃T ,y∼U(0,ρ̃T (x)) [y ≤ PT (x)] =

∫
Rd

∫ PT (x)

0

dy

ρ̃T (x)
ρ̃T (x)dx =

∫
Rd
PT (x)dx ≥ 1− δ1 ≥

1

2
.

Putting these together we get

Ex∼ρ̃T ,y∼U(0,ρ̃T (x))

[
yα/2−1

πT (x)α/2−1

∣∣∣∣Eδ1] ≤ 4

α
EπT

[
PT
πT

(x)α/2
]

≤ 16
√

2

α

exp
(
cTκ2L2α2(b+ d+ log (N))η

)
δcTκ

2L2α2η
1

.

Using Lemma 18 another time, we need to set γ = cTκ2L2α2η. The condition γ < 1 is already satisfied as we
used this lemma before (with a different c). Therefore, we get the following (universal constants are absorbed
into c again.)

Ex∼ρ̃T ,y∼U(0,ρ̃T (x))

[
y
α
4−

1
2

πT (x)
α
4−

1
2

]
≤ 217/4

√
α

exp
(
cTκ2L2α2(b+ d+ log (N))η

)
.

Finally, we write

EπT
[
ρ̃T
πT

(x)
α
4 + 1

2

]
= (

α

4
+

1

2
)Ex∼ρ̃T ,y∼U(0,ρ̃T (x))

[
y
α
4−

1
2

πT (x)
α
4−

1
2

]

≤ (
α

4
+

1

2
)
217/4

√
α

exp
(
cTκ2L2α2(b+ d+ log (N))η

)
.
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C LOGARITHMIC SOBOLEV INEQUALITY UNDER ASSUMPTION 1

For some m, b > 0, assume that the following holds

〈∇f(x)−∇f(y), x− y〉 ≥ m‖x− y‖2 − b for all x, y ∈ Rd.

Define the Lyapunov function W (x) = exp{γ2 ‖x− x∗‖
2} for some γ and a critical point x∗ of f . We have

∇W (x) = γ(x− x∗)W (x) and ∆W (x) = γ(d+ γ‖x− x∗‖2)W (x)

and consequently

LW (x)

W (x)
=γ
(
d+ γ‖x− x∗‖2 − 〈x− x∗, f(x)〉

)
≤γ
(
d+ b+ (γ −m)‖x− x∗‖2

)
.

Next, choosing γ = m/2 and defining R2 = 2
m (d+ b+ 1), one can show that the right hand side above is upper

bounded by

−m
2

+
m

2
(d+ b)1{‖x−x∗‖≤R}.

Thus, the target ν∗ = e−f satisfies the Lyapunov condition given in Bakry et al. (2008), and consequently satisfies
a Poincaré inequality with a constant upper bounded with

λ ≤ 2

m

(
1 + c

m

2
(d+ b)eOscR(f)

)
where OscR(f) = sup‖x−x∗‖≤R f(x) − inf‖x−x∗‖≤R f(x) and c is a absolute constant. This bound is of order

O(deOscR(f)). Further using the results of Cattiaux et al. (2010b), one can show that LSI holds for this class of
potentials with a constant bounded by O(d2eOscR(f)).

D USEFUL LEMMAS

Lemma 15. (From Van Erven and Harremos (2014)) The Rényi divergence of two Gaussians can be calculated
as follows

Rα
(
N (0, σ2I)|N (x, σ2I)

)
=
α ‖x‖2

2σ2
.

Lemma 16. (Data processing inequality, From Van Erven and Harremos (2014)) Suppose x1 ∼ ρ1 and x2 ∼ ρ2.
For any function f , let f(x1) ∼ π1 and f(x2) ∼ π2, then Rα (π1|π2) ≤ Rα (ρ2|ρ2) .

Lemma 17. (From Mironov (2017)) Let ∆(S1),∆(S2) be the space of probability measures on S1, S2 let φ1, φ
′
1 :

∆(S1) → ∆(S2) and φ2, φ
′
2 : ∆(S2) → P be maps such that for any distributions δ that is a point mass (on

either ∆(S1) or ∆(S2)) we have Rα (φi(δ)|φ′i(δ)) ≤ εi. Then, for any probability measure ρ ∈ ∆(S1) we have
Rα (φ2(φ1(ρ))|φ′2(φ′1(ρ))) ≤ ε1 + ε2.

Lemma 18. (Adapted from (Ganesh and Talwar, 2020, Lemma 14)) Let Y > 0 (a.s),γ < 1 and θ > 1 + γ. If
for all 0 < δ < 1/2 an event Eδ has probability at least 1− δ, and E

[
Y θ|Eδ

]
≤ β

δγ , then E [Y ] ≤ 22/θβ1/θ θ
θ−1 . In

particular, if θ = 2, we get: E [Y ] ≤ 4
√
β.

Lemma 19. For W ∼ N (0, I) we have the following tail bound for x ≥ 0

P
[
‖W‖ ≥

√
d+ x

]
≤ exp (−x2/2),

Proof. Suppose W = (w1, . . . , wd) and denote
√
d+ x with a. We write

P [‖W‖ ≥ a] = P
[
exp

(
t ‖W‖2

)
≥ exp (ta2)

]
≤

E
[
exp (tw2

1)
]d

exp (ta2)
= exp

(
−ta2 − d

2
ln (1− 2t)

)
,
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for all t < 1/2, therefore we can plug t = 1
2

(
1− d

a2

)
, and put a =

√
d+ x back to get

P
[
‖W‖ ≥

√
d+ x

]
≤ exp (−x2/2)× exp

(
−d
(
x√
d
− ln (1 +

x√
d

)

))
≤ exp

(
−x2/2

)
,

where the last inequality holds since x√
d
− ln (1 + x√

d
) ≥ 0.

Lemma 20. For d-dimensional Brownian motion Bt we have (x ≥ 0)

P
[
sup
s≤t
‖Bs‖ ≥

√
t(
√
d+ x)

]
≤ 2 exp (−x2/4).

Proof. Let r denote
√
t(
√
d+ x) and τ denote the first exit time of Bt out of the ball of radius r around origin.

Note that τ < t coincides with sups≤t ‖Bs‖ > r, furthermore ‖Bτ‖ = r. We write

P
(

sup
s≤t
‖Bs‖ ≥ r

)
≤ P (‖Bt‖ ≥ r) + P (τ < t, ‖Bt‖ < r)

= P (‖Bt‖ ≥ r) + E
[
1{τ<t}P (‖Bt −Bτ +Bτ‖ < r|τ,Bτ )

]
≤ P (‖Bt‖ ≥ r) + E

[
1{τ<t}P (〈Bt −Bτ , Bτ 〉 < 0|τ,Bτ )

]
= P (‖Bt‖ ≥ r) + P

(
sup
s≤t
‖Bs‖ ≥ r

)
/2,

where the last step follows from independence of updates and normality. Rearranging and using Lemma 19
concludes the proof.

Lemma 21. (Grönwall inequality Bellman (1943)) For a function v satisfying v(t) ≤ C + A
∫ t

0
v(s)ds, for

0 ≤ t ≤ T with A > 0. The following holds: v(t) ≤ CeAt.
Lemma 22. For a real sequence {θk}k≥0, if we have θk ≤ (1− a)θk−1 + h for some a ∈ (0, 1), and h ≥ 0, then
θk ≤ e−akθ0 + h/a.

Proof. Recursion on θk ≤ (1− a)θk−1 + h yields

θk ≤ (1− a)kθ0 + h(1 + (1− a) + (1− a)2 + · · ·+ (1− a)k−1) ≤ (1− a)kθ0 +
h

a
.

Using the fact that 1− a ≤ e−a completes the proof.

Lemma 23. (Exponential Martingale Theorem (Ikeda and Watanabe, 2014, Chapter III, Theorem 5.3)) Let Bt
be a Brownian motion and Ft its associated filtration. If for an Ft-adapted stochastic process Mt and some
T ≥ 0, the following (Novikov’s) condition holds

E

[
exp

(
1

2

∫ T

0

‖Ms‖2 ds

)]
<∞,

then exp
(∫ t

0
M>s dBs − 1

2

∫ t
0
‖Ms‖2 ds

)
is an exponential Martingale and in particular its expectation is equal to

1 for all t ≤ T .

Lemma 24. (Girsanov Theorem, Adapted from (Oksendal, 2013, Theorem 8.6.8)) Let xt, yt ∈ Rd be defined as
follows

dxt(ω) = b(xt(ω))dt+
√

2dBt(ω),

dyt(ω) = γ(ω, t)dt+
√

2dBt(ω),

such that y0 = x0 and ω is an element of underlying probability space Ω. Let {Ft} be the natural filtration for
Bt and P be the measure such that Bt is Brownian with respect to P and let

Mt(ω) , exp

(
− 1√

2

∫ t

0

(γ(ω, s)− b(ys(ω)))>dBs(ω)− 1

4

∫ t

0

‖γ(ω, s)− b(ys(ω))‖2 ds
)
.
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If Mt is a martingale with respect to Ft, in particular if γ(ω, s)− b(ys(ω)), satisfies Novikov’s condition, then on
FT we have a unique measure Q such that

dQ

dP
(ω) = MT (ω),

with the property that the Q-law of y· is equal to the P -law of x·, where x·(ω) and y·(ω) are one realization of xt
and yt on [0, T ].

Finally, we state two helper lemmas. The first lemma shows the convergence of continuous time process when
the target satisfies LSI.

Lemma 25 (Adapted from Theorem 3 in Vempala and Wibisono (2019)). If f = − log ν∗ satisfies (LSI), then
the following holds

logEν∗
[
πT
ν∗

(x)
α

]
≤ e− 2T

αλ logEν∗
[
π0

ν∗
(x)

α

]
.

We briefly remark that the analog of the above lemma in Chi-squared divergence requires only the (PI).

In the second helper lemma, we prove that initializing with a normal distribution with a sufficiently small variance

will cause Eν∗
[
ρ0
ν∗

(x)
α
]

to be of order Õ(cαd) for some constant c.

Lemma 26. Suppose f is L-smooth and α ≥ 2, then the following holds for ν∗ = e−f and ρ0 = N (0, σ2I) when
σ2 < (L+ 1)−1.

Eν∗
[
ρ0

ν∗
(x)

α

]
≤

exp
(

(α− 1)(f(0) + ‖∇f(0)‖2
2 )

)
(2πσ2)

αd
2

(
2π

α
σ2 − (α− 1)(L+ 1)

) d
2

.

Remark. For the sake of simplicity, we use the following crude bound

Eν∗
[
ρ0

ν∗
(x)

α

]
≤ eαdCσ with Cσ = 1 + f(0)+‖∇f(0)‖2

d − log(σ2[(1 + L) ∧ 2π])

where Cσ is a dimension free constant that does not depend on α.

Proof. For any x we have

f(x) ≤ f(0) +
‖∇f(0)‖2

2
+

(
L+ 1

2

)
‖x‖2 .

Thus, we can write

Eν∗
[
ρ0

ν∗
(x)

α

]
≤ 1

(2πσ2)
αd
2

∫
Rd

exp

(
−α ‖x‖

2

2σ2
+ (α− 1)f(x)

)
dx

≤
exp

(
(α− 1)(f(0) + ‖∇f(0)‖2

2 )
)

(2πσ2)
αd
2

∫
Rd

exp

(
−1

2

( α
σ2
− (α− 1)(L+ 1)

)
‖x‖2

)
dx

≤
exp

(
(α− 1)(f(0) + ‖∇f(0)‖2

2 )
)

(2πσ2)
αd
2

(
2π

α
σ2 − (α− 1)(L+ 1)

) d
2

.


