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Abstract

Logistic Bandits have recently undergone
careful scrutiny by virtue of their combined
theoretical and practical relevance. This re-
search effort delivered statistically efficient
algorithms, improving the regret of previ-
ous strategies by exponentially large factors.
Such algorithms are however strikingly costly
as they require Ω(t) operations at each round.
On the other hand, a different line of research
focused on computational efficiency (O(1)
per-round cost), but at the cost of letting go
of the aforementioned exponential improve-
ments. Obtaining the best of both world
is unfortunately not a matter of marrying
both approaches. Instead we introduce a new
learning procedure for Logistic Bandits. It
yields confidence sets which sufficient statis-
tics can be easily maintained online without
sacrificing statistical tightness. Combined
with efficient planning mechanisms we design
fast algorithms which regret performance still
match the problem-dependent lower-bound
of Abeille et al. (2021). To the best of our
knowledge, those are the first Logistic Bandit
algorithms that simultaneously enjoy statis-
tical and computational efficiency.

1 INTRODUCTION

Logistic Bandit. The Logistic Bandit (LogB)
framework describes sequential decision making prob-
lems in which an agent receives structured binary ban-
dit feedback for her decisions. This namely allows
to model numerous real-world situations where ac-
tions are evaluated by success/failure feedback (e.g.
click/no-click in ad-recommandation problems). From
a theoretical standpoint, the LogB framework allows
a neat and concise study of the interactions between
non-linearity and the exploration/exploitation trade-
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off. Recent research efforts on this front were con-
ducted by Faury et al. (2020); Abeille et al. (2021);
Jun et al. (2021), relying on improved confidence sets
for the design and analysis of regret-minimizing LogB
algorithms. This has led to significant improvement
over the seminal work of Filippi et al. (2010), de-
flating the regret bounds by exponentially large fac-
tors. Their approach testifies of the importance of a
careful handling of non-linearity in order to achieve
optimal performances (i.e matching the regret lower-
bound from Abeille et al. (2021, Theorem 2)). From a
learning-theoretic standpoint, this line of work brings
the understanding of LogB almost to a tie with the
Linear Bandit (LinB). It highlights that some highly
non-linear LogB instances are easier to solve (in some
sense) than their LinB counterparts and brings for-
ward algorithms with largely improved practical per-
formances (see Abeille et al. (2021, Section H)).

Limitations. A severe drawback of those improved
LogB algorithms resides in their tremendous compu-
tational cost. For instance, the OFULog-r algorithm
of Abeille et al. (2021) requires to maintain batch
maximum-likelihood estimators (which cannot be up-
dated recursively) and to solve at every round expen-
sive convex programs. The computational hardness of
those tasks (respectively related to the learning and
planning mechanisms of the algorithm) largely exceeds
their LinB counterparts and lead to a painfully slow
algorithm - prohibitively so for situations where deci-
sions must be made on the fly. As a result, statistically
efficient yet fast LogB algorithms are still missing -
which is the topic of this paper.

Main Contributions. Our main contribution is (1)
a new learning procedure for LogB. It yields (2) a new
confidence set which sufficient statistics can be main-
tained at each round with Õ(1) operations, without
sacrificing statistical tightness. Furthermore (3) the
shape of this set enables the deployment of efficient
planning strategies as a plug-in. This enables the de-
sign of computationally efficient algorithms whose re-
gret guarantees match the lower-bound of Abeille et al.
(2021). To the best of our knowledge, those LogB
algorithms are the first to enjoy both statistical and
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computational efficiency simultaneously. We summa-
rize our contributions in Table 1.

Organization. We formally introduce the learning
problem in Section 2 and discuss previous works, their
limitations and remaining challenges. In Section 3 we
describe our new estimation method, coined Efficient
Local Learning for Logistic Bandits (ECOLog). We then
analyze an optimistic algorithm leveraging this proce-
dure and claim that it enjoys the same regret guar-
antees obtained by Abeille et al. (2021) while being
critically less computationally hungry. We exhibit the
main technical arguments needed to obtain this result
and discuss potential extensions as well as limitations
of our approach. In Section 4 we detail a variant of
our algorithm, more complex but better suited for de-
ployment in real-life situations. We provide similar
guarantees for this algorithm and illustrate its good
practical behavior with numerical simulations.

2 PRELIMINARIES

2.1 The Learning Problem

Setting. The LogB framework describes a repeated
game between an agent and her environment. At each
round, the agent selects an action (a vector in some
Euclidean space) and receives a binary, Bernoulli dis-
tributed reward. More precisely, given an arm-set1

A ⊂ Rd the agent plays at each round t an arm at ∈ A
and receives a stochastic reward rt+1 following:

rt+1 ∼ Bernoulli
(
µ(aTt θ?)

)
, (1)

where µ(z) = (1 + exp(−z))−1 is the logistic function.
The parameter θ? is unknown to the agent. We will
work under the following assumption, standard for the
study of LogB.

Assumption 1 (Bounded Decision Set). For any a ∈
A we have ‖a‖ ≤ 1. Also, ‖θ?‖ ≤ S where S is known.

Denote a? := arg maxa∈A a
Tθ? the best action in hind-

sight. The goal of the agent is to minimize her cumu-
lative pseudo-regret up to time T :

Regret(T ) := Tµ
(
aT? θ?

)
−

T∑
t=1

µ
(
aTt θ?

)
.

Reward Sensitivity. Central to the analysis of
LogB is the inverse minimal reward sensitivity κ. This
problem-dependent constant is defined as:

κ := 1/min
a∈A

min
‖θ‖≤S

µ̇(aTθ) .

1For the sake of exposition we here only consider the
static arm-set case. As later detailed, our results also apply
to time-varying arm-sets and contextual settings.

Briefly, κ measures the level of non-linearity of the re-
ward signal, usually high in LogB problems. As such
κ is typically very large (numerically) even for rea-
sonable configurations. We refer the reader to Faury
et al. (2020, Section 2) for a detailed discussion on the
importance of this quantity.

Additional Notations. For any t ≥ 1 we denote
the Ft := σ(a1, r2, .., at) the σ-algebra encoding the
information acquired after playing at and before ob-
serving rt+1. Throughout the paper time indexes re-
flect the measurability w.r.t Ft (for example, at is Ft-
measurable but not Ft+1-measurable). For any pair
(x, y) ∈ R×{0, 1} we define:

`(x, y) = −y logµ(x)− (1− y) log(1− µ(x)) ,

and the log-loss associated with the pair (at, rt+1)
writes `t+1(θ) := `(aTt θ, rt+1). Given a compact set
Θ ⊂ Rd its diameter under the arm-set A is:

diamA(Θ) = max
a∈A

max
θ1,θ2
|aT(θ1 − θ2)| .

We will use throughout the paper the symbol C to
denote universal constants (i.e independent of S, κ, d
or T ) which exact value can vary at each occurrence.
Similarly, we use the generic notation γt(δ) to denote
various slowly growing functions - more precisely such
that γt(δ) = Cpoly(S)d log(t/δ). The exact values for
the different occurrences of such functions are carefully
reported in the supplementary materials.

2.2 Previous Work, Limitations and
Remaining Challenges

Being a member of the Generalized Linear Bandit fam-
ily, the first algorithm for LogB was given by Filippi
et al. (2010). Their algorithm enjoys a regret scaling

as Õ(κd
√
T ) - which although tight in d and T , suffers

from a prohibitive dependency in κ. Further, it is com-
putationally inefficient as it requires the computation
of a batch estimator for θ? at each round (see Ap-
pendix E.2 for a detailed discussion). This efficiency
issue was fixed by Zhang et al. (2016); Jun et al. (2017);
Ding et al. (2021) who proposed fully online estima-
tion procedures. Their approaches however still suffer
from detrimental dependencies in κ.

Statistical Optimality. The κ dependency was
trimmed by Faury et al. (2020) who introduced an

algorithm enjoying Õ(d
√
T ) regret. Their approach

defers the effect of non-linearity (embodied by κ) to a
second-order term in the regret, dominated for large
values of T . Similar results were also achieved by Dong
et al. (2019), but only for the Bayesian regret. From a
statistical viewpoint the story was closed by Abeille
et al. (2021) who proved a Ω(d

√
µ̇(aT? θ?)T ) regret

lower-bound and matching regret upper-bounds (up
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Algorithm Regret Bound Cost Per-Round Minimax Efficient
GLM-UCB

Filippi et al. (2010)
Õ
(
κd
√
T
)

O
(
d2K + d2T

)
8 8

GLOC, OL2M
Jun et al. (2017)

Zhang et al. (2016)
Õ
(
κd
√
T
)

O
(
d2K

)
8 4

OFULog-r

Abeille et al. (2021)
Õ
(
d
√
T µ̇(aT? θ?)

)
O
(
d2KT

)
4 8

(ada-)OFU-ECOLog

(this paper)
Õ
(
d
√
T µ̇(aT? θ?)

)
Õ
(
d2K

)
4 4

Table 1: Comparison of frequentist regret guarantees and computational cost for different LogB algorithms, on
instances where |A| = K < +∞. An algorithm is called minimax-optimal if it matches the regret lower-bound
of (Abeille et al., 2021, Theorem 2) and efficient if it matches the computational cost of LinB algorithms (up
to logarithmic factors).

to logarithmic factors) for their algorithm OFULog-r.
Given the typical scalings of κ ∝ exp(‖θ?‖) and
µ̇(aT? θ?) ∝ exp(−‖θ?‖) this deflates the regret of previ-
ous approaches by exponentially large factors.

Computational Cost. Albeit statistically optimal,
the algorithms proposed by Abeille et al. (2021)
are strikingly computationally demanding and conse-
quently prohibitively slow for practical situations. Af-
ter inspection, two main computational bottlenecks of
their approach emerge from their learning and plan-
ning mechanisms. From the learning side, they con-
struct confidence regions of the form:{

θ, ‖θ − θ̂t‖2Ht−1(θ) ≤ γt(δ)
}
, (2)

where θ̂t = arg minRd
∑t−1
s=1 `s+1(θ)+λ‖θ‖2 and

Ht(θ) =

t∑
s=1

µ̇(aTs θ)asa
T
s + λId .

Those sufficient statistics are expensive to compute
as both require a linear pass (at least) on the data.
Note that simply testing whether a point lies in this
set is costly - it requires Ω(t) operations. The plan-
ning mechanism which leverages this confidence re-
gion suffers from this downside; to find an optimistic
arm it must solve one expensive convex program per
arm at every round. This program involves the com-
plete log-loss, which evaluation also takes Ω(t) op-
erations. Furthermore, bypassing optimism through
randomized exploration (e.g. Thompson Sampling) is
particularly challenging as the results of Agrawal and
Goyal (2013); Abeille and Lazaric (2017) do not apply
to non-ellipsoidal confidence regions.

Challenges. Our goal is to develop an efficient algo-
rithm (i.e with reduced per-round computational cost)
which still enjoys statistical optimality (i.e matches
the lower-bound of Abeille et al. (2021)). In light

of the previous discussion, a crucial step is to derive
an alternative to the confidence set from Equation (2)
which sufficient statistics can be updated at little cost.
This must be done without sacrificing the confidence
set’s appreciation of the effective reward sensitivity,
captured by the matrix Ht(θ) and central for opti-
mal performance. In other words, we seek to develop
an efficient estimation procedure that captures the lo-
cal effects of non-linearity. This rules out merging
the refined concentration tools of Faury et al. (2020)
with the online approaches of Zhang et al. (2016); Jun
et al. (2017) which explicitly ressorts to global quanti-
ties (e.g. κ) in their estimation routines.

3 MAIN RESULTS

In this section we present our approach to address the
aforementioned challenges. We introduce OFU-ECOLog,
an optimistic algorithm whose pseudo-code is pro-
vided in Algorithm 1. It is built on top on three
building blocks; (1) a short warm-up phase (forced-
exploration) of size τ described in Procedure 1, (2) the
ECOLog estimation procedure described in Procedure 2
and (3) an optimistic planning mechanism.

We provide in Section 3.1 theoretical guarantees for
the regret of OFU-ECOLog (Theorem 1) and quantify
its per-round computational cost (Proposition 1). It
demonstrates that OFU-ECOLog enjoys both statistical
and computational efficiency.

Each building block (1-3) and their specific roles are
detailed in subsequent sections. Section 3.2 is con-
cerned with the initial forced-exploration phase and
its length τ . Section 3.3 details the estimation pro-
cedure ECOLog and the confidence region it induces.
Section 3.4 details the efficient deployment of the op-
timistic exploration strategy and describes the exten-
sion of OFU-ECOLog to TS-ECOLog, where optimism is
replaced with randomization.
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Algorithm 1 OFU-ECOLog

input: failure level δ, warm-up length τ .
Set Θ← WarmUp(τ) (see Procedure 1). . forced-exploration
Initialize θτ+1 ∈ Θ, Wτ+1 ← Id and Cτ+1(δ)← Θ.
for t ≥ τ + 1 do

Play at ∈ arg maxa∈Amaxθ∈Ct(δ) a
Tθ . . planning

Observe reward rt+1, construct loss `t+1(θ) = `(aTt θ, rt+1).

Compute (θt+1, Wt+1)← ECOLog(1/t,Θ, `t+1,Wt, θt) (see Procedure 2). . learning

Compute Ct+1(δ)←
{
‖θ − θt+1‖2Wt+1

≤ γt(δ)
}

.

end for

Procedure 1 WarmUp

input: length τ .
Set λ← γτ (δ), initialize V0 ← λId.
for t ∈ [1, τ ] do

Play at ∈ arg maxA ‖a‖V−1
t−1

, observe rt+1.

Update Vt ← Vt−1 + ata
T
t /κ.

end for
Compute θ̂τ+1 ← arg minθ

∑τ
s=1 `s+1(θ) + λ‖θ‖2.

output: Θ =

{
θ,
∥∥∥θ − θ̂τ+1

∥∥∥2

Vτ

≤ γτ (δ)

}
.

Procedure 2 ECOLog

input: accuracy ε, convex set Θ, `t+1, Wt, θt.
Compute D ← diamA(Θ), set η ← (2 +D)−1.
Solve to precision ε:

θt+1 = arg min
θ∈Θ

[
η ‖θ − θt‖2Wt

+ `t+1(θ)
]
.

Update Wt+1 ←Wt + µ̇(aTt θt+1)ata
T
t .

output: θt+1,Wt+1

3.1 Statistical and Computational
Efficiency

We claim the following result, which proof is deferred
to Appendix D.1.

Theorem 1 (Regret Bound). Let δ ∈ (0, 1]. Setting
τ =κS6γT (δ)2 ensures the regret of OFU-ECOLog(δ, τ)
satisfies with probability at least 1− 2δ:

Regret(T ) ≤ CSd
√
T µ̇(aT? θ?) log(T/δ)

+CS6κd2 log(T/δ)2 .

As promised the dominating term in OFU-ECOLog’s
regret-bound matches the lower-bound of Abeille et al.
(2021) and scales with the reward sensitivity at the
best action a?. Further, the second-order term identi-
cally matches its counterpart from previous work in its
scaling w.r.t d, T and κ. This establishes the statistical

efficiency and we now move up to the computational
cost. For this, we claim the following bound on the
complexity of OFU-ECOLog.

Proposition 1 (Computational Cost). Let |A| =
K < ∞. Each round t of OFU-ECOLog can be com-
pleted within O(Kd2 + d2 log(t)2) operations.

The proof is deferred to Appendix E.1. This result
mainly relies on the fact that the ECOLog routine (Pro-
cedure 2) solves convex programs that are cheap (i.e
for which gradients are inexpensive to compute) and
that can be efficiently preconditioned. Furthermore
OFU-ECOLog leverages ellipsoidal confidence sets, for
which optimism can be efficiently enforced (at least
for finite arm-sets). This fulfills our promise of com-
putational efficiency.

3.2 Warm-Up

One of the main challenge to avoid prohibitive expo-
nential dependencies in LogB is to tightly control the
reward sensitivity across A × Θ - that is, without re-
sorting to global problem-dependent constants (e.g.
κ). Following Faury et al. (2020) a first useful step
in that direction is to leverage the self-concordance
property of the logistic function. It ensures that for
any a ∈ A:

∀θ1, θ2 ∈ Θ, µ̇(aTθ1) ≤ µ̇(aTθ2) exp(diamA(Θ)) . (3)

The role of the warm-up phase is to identify a set Θ
containing θ? (with high probability) and which diam-
eter is a constant, independent of problem-dependent
quantities (e.g. ‖θ?‖ or S). The warm-up mecha-
nism described in Procedure 1 constructs such a set Θ
which diameter is controlled through the length τ of
this forced-exploration phase. In particular, we show
that if τ∝κ (Proposition 5 in the appendix):

diamA(Θ) ≤ 1 for Θ← WarmUp(τ) . (4)

Combining Equations (3) and (4) allows to control the
reward sensitivity across the set Θ at little cost (i.e in-
dependent of problem-dependent constants). Theoret-
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ically speaking, the regret incurred during the warm-
up phase forms a second-order term, dominated in
the overall regret bound. From a practical perspec-
tive however, resorting to forced-exploration is incon-
venient - a downside we address in Section 4.

Remark (Optimal Design). There exists alternatives
warm-up strategies which ensures similar guarantees -
see for instance Jun et al. (2021) for a solution based
on optimal design. It involves more complex mecha-
nisms to reduce the length τ - we stick here to a simple
strategy for the sake of exposition.

3.3 Efficient Local Learning

We now describe ECOLog, a new estimation routine
summarized in Procedure 2 which is at the core of the
online construction of tight confidence sets. It operates
on the convex set Θ returned by the warm-up proce-
dure. It maintains estimates {θt}t of θ? following the
update rule:

θt+1 = arg min
θ∈Θ

[
η ‖θ − θt‖2Wt

+ `t+1(θ)
]
, (5)

where Wt =

t−1∑
s=1

µ̇(aTs θs+1)asa
T
s + λId .

The learning rate η is tied to the diameter diamA(Θ)
of the decision set A × Θ. After round t, the next
estimate θt+1 minimizes an approximation of the true
cumulative log-loss

∑t
s=1 `s+1(θ) that is decomposed

in two terms. The first consists in a quadratic proxy
for the past losses constructed through the sequence
{θs}s≤t. It is designed to incorporate the information
acquired so far in the update since:

arg min
θ

t−1∑
s=1

`s+1(θ) ≈ arg min
θ
‖θ − θt‖2Wt

.

On the other hand, the second term is the instanta-
neous log-loss `t+1(θ) which accounts for the novel in-
formation of the pair (at, rt+1). The motivation be-
hind the overall structure of the update is the follow-
ing: while the cumulative log-loss is strongly convex
and can therefore be well approximated by a quadratic
function, the instantaneous loss `t+1 has flat tails
which cannot be captured by a quadratic shape.

Remark (Comparison with ONS). While at first
glance it resembles the Online Newton Step (ONS)
mechanisms used by Zhang et al. (2016); Jun et al.
(2017) there are two important differences. First, the
update is driven by the matrix Wt which relies on the
estimated reward sensitivity, and not on its worst-case
alternative κ. Second, we do not rely on (potentially
loose) approximations for `t+1. This rules out having
access to a closed-form for θt+1.

Since the solution of Equation (5) does not admit
a closed-form expression, one can only solve it up
to an ε accuracy (e.g. with projected gradient de-
scent). Formally, we compute estimators θ′t+1 such
that ‖θ′t+1− θt+1‖ ≤ ε. The following statement guar-
antees that this can be done at little cost.

Proposition 2 (Computational Cost). Running
ECOLog up to ε > 0 accuracy requires O(d2 log(1/ε)2)
operations.

For the sake of exposition, we ignore optimization er-
rors in the following since ε can be arbitrarily small.
The induced errors and their propagation are ad-
dressed in formal proofs in the supplementary.

Finally, the use of ECOLog at each round within Al-
gorithm 1 yields a sequence {θt,Wt}t associated with
the sets:

Ct(δ) :=
{
θ, ‖θ − θt‖2Wt

≤ γt(δ)
}
,

which are confidence regions for θ?.

Proposition 3 (Confidence Set). Under the condi-
tions of Theorem 1:

P(∀t ≥ τ, θ? ∈ Ct(δ)) ≥ 1− δ .

Proposition 3 emulates the original concentration re-
sults of Faury et al. (2020) (see Equation (2)). The
matrix Wt stands as an on-policy proxy for the “cor-
rect” concentration metric Ht(θ?). This ultimately
preserves statistical tightness (Theorem 1) but with
sufficient statistics that are now updated online.

Proof Sketch. We provide here the key technical
arguments behind the derivation of Proposition 3. It
is inspired and shares close connections with the work
of Jézéquel et al. (2020) - which was conducted for an
Online Convex Optimization setting.
A crucial ingredient for our analysis is a local quadratic
lower-bound2 for the logistic loss, stating that for any
θ ∈ Θ:

`t+1(θ?) & `t+1(θ) +∇`t+1(θ)T(θ? − θ)
+µ̇(aTt θ)(a

T
t (θ? − θ))2 .

Notice how the above does not depend on any global
quantities (e.g. S or ‖θ?‖). It allows to tie the param-
eters uncertainty ‖θ?− θt+1‖2Wt+1

to the excess cumu-

lative loss in {θs+1}s. Indeed algebraic manipulations
lead to:

‖θ? − θt+1‖2Wt+1
.

t∑
s=1

`s+1(θ?)− `s+1(θs+1) .

2Similar bounds appear in Jézéquel et al. (2020); Abeille
et al. (2021) but are used for different purposes.
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We are therefore left to bound the r.h.s. To do so we
introduce an intermediary parameter:

θ̄s = arg min
Θ

η‖θ − θs‖2Ws
+ `(aTs θ, 0) + `(aTs θ, 1) ,

and decompose the sum to control as follows:

t∑
s=1

`s+1(θ?)−`s+1(θ̄s) +

t∑
s=1

`s+1(θ̄s)−`s+1(θs+1) .

(6)

The parameter θ̄s is a Fs-measurable version of θs+1,
regularized in the last direction as by two logistic losses
fitting antipodal rewards (rs+1 = 0 and 1). The first
term in Equation (6) is tied to the stochastic nature
of the observations and is bounded using the concen-
tration inequality of Faury et al. (2020, Theorem 1).
With probability at least 1− δ,

t∑
s=1

`s+1(θ?)− `s+1(θ̄s) . log(t/δ) .

Bounding the second term requires quantifying the de-
viation between θs+1 and its Fs-measurable counter-
part θ̄s. Leveraging convexity leads to the sequence of
inequalities:

t∑
s=1

`s+1(θ̄s)−`s+1(θs+1) ≤
t∑

s=1

µ̇(aTs θ̄s)‖as‖2W−1
t+1

.
t∑

s=1

µ̇(aTs θs+1)‖as‖2W−1
t+1

. d log(t) .

The second inequality is obtained by relating the re-
ward sensitivities µ̇(aTs θ̄s) and µ̇(aTs θs+1). Both are
comparable thanks to the warm-up procedure. Indeed
from Equations (3) and (4),

µ̇(aTs θ̄s) ≤ exp(diamA(Θ))µ̇(aTs θs+1) . µ̇(aTs θs+1) .
(7)

The last inequality directly follows from the Elliptical
Potential Lemma (see Lemma 9).

Remark (Warm-Up and Online Newton Step). It is
natural to wonder whether the ONS-like approaches of
Zhang et al. (2016); Jun et al. (2017) could also benefit
from the refined parameter set returned by the warm-
up procedure. As detailed in Appendix B.3 this is not
the case. Their respective methods hard-code global
quantities within their updates steps (such as the min-
imum curvature of the log-loss, or the exp-concavity
constant). Those are related to κ and cannot be re-
moved even when operating close to θ?.

3.4 Exploration Strategy

Optimistic Exploration. OFU-ECOLog builds on
Ct(δ) (the confidence set of Proposition 3) to find an
optimistic arm. Formally, it prescribes playing:

at ∈ arg max
a∈A

max
θ∈Ct(δ)

aTθ .

A solution for this program might be expensive to com-
pute in general. However, the ellipsoidal nature of
Ct(δ) may simplify this task as it allows for an equiv-
alent definition of at as:

at ∈ arg max
a∈A

aTθt +
√
γt(δ)‖a‖W−1

t
.

For finite arm-sets (|A| = K<+∞) this program can
be solved by enumerating over the arms - bringing the
total cost of the optimistic planning to O(d2K).

Thompson-Sampling extension. The shape of
Ct+1(δ) also enables the use of randomized exploration
mechanisms in a principled fashion. For instance,
Thompson Sampling (TS) replaces the burden to find
an optimistic parameter by sampling in slightly in-
flated confidence sets (see Abeille and Lazaric (2017)).
It is often preferred in practical applications for its sim-
plicity and good empirical performances. It also allows
to deal with infinite arm-sets, whenever an oracle for
computing a?(θ) = arg maxa∈A a

Tθ is cheaply avail-
able for any θ (e.g. when the action space is the unit-
ball Bd). We introduce TS-ECOLog in Appendix D.2,
a TS version of OFU-ECOLog. It enjoys similar regret
bounds, but inflated by a

√
d factor (as in the LinB

case). The algorithm displays little conceptual novelty
compared to its linear counterpart, but its analysis re-
quires additional technical care to prove its statistical
efficiency. Overall, this answers positively the question
opened by Faury et al. (2020) about the extension of
their approach to randomized strategies.

4 REMOVING THE WARM-UP

Practical Limitations. Despite being rather com-
mon in the Generalized Linear Bandit literature (e.g.
(Li et al., 2017; Kveton et al., 2020; Jun et al., 2021;
Ding et al., 2021)) the use of warm-up phases is con-
cerning from a practical stand-point. Indeed (1) it
hard-codes a forced-exploration regime lasting at least
κ rounds at the beginning of any experiment. Given
the typical scaling of κ in practical situations this im-
plies that the algorithm selects actions at random for
the first few thousand steps. While it only impacts
low-order terms in the regret bound, it is problematic
to suffer this price by design, even when not necessary
(see Abeille et al. (2021, Section 4)). Furthermore,
(2) generalizing warm-up phases to handle contextual
arm-sets requires adopting strong distributional as-
sumptions on the contexts - leaving out the case where
an adversary picks context.
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Algorithm 2 ada-OFU-ECOLog

input: failure level δ.
Initialize Θ1 = {‖θ‖ ≤ S}, C1(δ)← Θ1, θ1 ∈ Θ, W1 ← Id and H1 ← ∅.
for t ≥ 1 do

Play at ∈ arg maxa∈Amaxθ∈Ct(δ) a
Tθ, observe reward rt+1.

Compute the estimators θ0
t , θ

1
t (see Equation (8)) and θ̄t.

if µ̇(aTt θ̄t) ≤ 2µ̇(aTt θ
0
t ) and µ̇(aTt θ̄t) ≤ 2µ̇(aTt θ

1
t ) then

Form the loss `t+1 and compute (θt+1, Wt+1)← ECOLog(1/t,Θt, `t+1,Wt, θt).

Compute Ct+1(δ)←
{
‖θ − θt+1‖2Wt+1

≤ γt(δ)
}

, set Ht+1 ← Ht.
else

Set Ht+1 ← Ht ∪ {at, rt+1} and compute θ̂Ht+1 = arg min
∑

(a,r)∈Ht+1
`(aTθ, r) + γt(δ)‖θ‖2.

Update VHt ←
∑
a∈Ht+1

aaT/κ+ γt(δ)Id, θt+1 ← θt and Wt+1 ←Wt.

Compute Θt+1 =
{
‖θ − θ̂Ht+1‖2VHt ≤ γt(δ)

}
.

end if

end for

Data-Driven Alternative. We relied so far on
warm-up phases to isolate the different challenges (lo-
cality, efficiency, statistical tightness). We now switch
gears and propose a refined approach which addresses
the issues raised by forced-exploration - however at
the cost of a more intricate algorithm. At the heart
of this refinement lies a data-dependent version of our
confidence set. This allows (1) the design an adaptive
mechanism which preserves statistical efficiency while
ultimately removing the need for forced-exploration.
Furthermore, it (2) extends the regret bound derived
in Section 3 to the contextual case, without requiring
any distributional assumptions on the exogenous con-
texts. To our knowledge, this is a first for approaches
resorting to warm-ups.

4.1 An Adaptive Approach

Intuition. As highlighted by the proof sketch from
Section 3.3, the warm-up phase allows to tightly con-
trol the radius of Ct(δ). More precisely, it constructs
a small admissible set Θ that constrains the reward
sensitivities µ̇(aTs θ̄s) and µ̇(aTs θs+1) to be comparable
for all s (see Equation (7)).

A naive way to remove the need for enforcing this prop-
erty a priori would be to reject on-the-fly points that
don’t conform with the following condition:

µ̇(aTs θ̄s) ≤ 2µ̇(aTs θs+1) , (C0)

This high-level idea is behind the design of our adap-
tive mechanism, detailed below.

Adaptive Mechanism. Given (as, rs+1) if the as-
sociated θs+1 breaks (C0) we do not use it to update
our current estimate. Instead we leverage this infor-
mation to ensure that (C0) is more likely to hold in

the future. We maintain Hs+1 = {al, rl+1}l≤s formed
by pairs rejected up to round s and compute:

θ̂Hs+1 ∈ arg min
∑

(a,r)∈Hs+1

`(aTθ, r) + γs(δ)‖θ‖2 ,

and VHs =
∑
a∈Hs aa

T/κ + γs(δ)Id. We use this to
build the parameter set:

Θs+1 =
{
θ,
∥∥θ − θ̂Hs+1

∥∥2

VHs
≤ γs(δ)

}
.

We will use this convex set in the ECOLog procedure
for subsequent rounds. As points are being added to
{Hs}s the sequence of {Θs}s deflates. The down-
stream estimates {θs+1, θ̄s}s are therefore closer and
(C0) is more likely to hold. The key to assert the valid-
ity of this mechanism is to ensure that this sequential
refinement does not occur too often.

Technical Adjustment. The idea presented above
needs a slight technical refinement to bear a principled
algorithm. (C0) prescribes filtering the arm as accord-
ing to θs+1, an Fs+1-adapted quantities. This breaches
concentration properties we need to prove low-regret.
To circumvent this issue we fall back on an Fs-adapted
condition covering the potential values of θs+1 (de-
pending on the realization of rs+1). Let:

θus = arg min
θ∈Θs

[
η ‖θ − θs‖2Ws

+ `(aTs θ, u)
]
, (8)

for u ∈ {0, 1}. Note that θs+1 is either θ0
s or θ1

s . We
replace (C0) by the condition:

µ̇(aTs θ̄s) ≤ 2µ̇(aTs θ
u
s ), ∀u ∈ {0, 1} . (C1)

The algorithm ada-OFU-ECOLog presented in Algo-
rithm 2 combines this adjustment with the aforemen-
tioned adaptive mechanism.
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Figure 1: Numerical simulations on LogB problems. We implement algorithms as prescribed by theory (e.g. we
do not tune exploration) and average regret curves over 100 independent trajectories. (left) Regret curves on a
two-dimensional LogB problem with 20 arms, sampled at random within the unit ball. We chose a small number
of arms along with a short horizon to allow OFULog-r to run in a reasonable time. (center) Overall complexity of
the different algorithms for this same instance. As hinted by the regret and complexity bounds, ada-OFU-ECOLog
is the only one displaying good performances and at little computational cost. (right) Numerical simulations with
infinite arm-set (5-dimensional unit-ball) for which we evaluate the TS version of each algorithm (this excludes
OFULog-r which does not have a straightforward TS extension).

4.2 Theoretical Guarantees

Regret Bound. Thanks to its adaptivity, we can
claim regret guarantees for ada-OFU-ECOLog in con-
textual settings - i.e that holds for any sequence of
time-varying arm-set {At}t≥1.

Theorem 2. Let δ ∈ [0, 1). With probability at least
1−δ the regret of ada-OFU-ECOLog(δ) satisfies:

Regret(T ) ≤ CSd

√√√√ T∑
t=1

µ̇(aT?,tθ?) log(T/δ)

+CS6κd2 log(T/δ)2 ,

where a?,t = arg maxa∈At a
Tθ?.

The proof is deferred to Appendix D.3. This result es-
tablishes similar (although more general) regret guar-
antees than Theorem 1. The two bounds are identical
for constant arm-sets (At ≡ A). In the contextual

case, the leading term is
√
T
√∑T

t=1 µ̇(aT?,tθ?)/T , re-

placing the reward sensitivity at the optimal action by
its on-trajectory average version.

Computational Cost. The per-round computa-
tional cost of Algorithm 2 is larger than OFU-ECOLog

as it sometimes requires O(|Ht|) extra operations to

compute θ̂Ht . The computational overhead is small as
we can prove that |Ht| . κ.

Proposition 4. The per-round computational cost of
Algorithm 2 is bounded by O

(
κ+Kd2 + d2 log(T )2

)
.

This extra computation is needed only when violating
(C1) which happens at most for κ rounds.

Adaptivity in Practice. Theorem 2 and Propo-
sition 4 establish that hard-coding a warm-up phase
can be avoided with little to no impact on the worst-
case performance or computational cost. The adaptive
nature of ada-OFU-ECOLog allows to enjoy stronger
empirical performances in “nice” configurations. For
instance, in all the numerical experiments that fol-
low we found that the condition (C1) was never trig-
gered. In such cases, Algorithm 2 simply reduces to
OFU-ECOLog without any forced-exploration. This is
consistent with the analysis of Abeille et al. (2021,
Section 4) which suggests that low-order κ dependen-
cies (introduced here by the warm-up) can sometimes
be avoided.

4.3 Numerical Simulations

The numerical illustrations presented in Figure 1 are
consistent with our theoretical findings summarized in
Table 1.3 As predicted, ada-OFU-ECOLog enjoys best-
of-both-worlds properties by displaying small regret
and small computational cost. Additional numerical
illustrations for LogB instances of higher dimensions
can be found in Appendix G.
The value of κ for LogB instances we consider are
reasonable (comparable to real-life situations). Still,
it precludes the use of warm-up phase in practice for
it will simply last longer than the horizon we consider
(for which OFULog-r and ada-OFU-ECOLog already ex-
hibits asymptotic behavior). Note that this is even
worse for other approaches using forced-exploration
(Kveton et al., 2020; Ding et al., 2021) as their re-

3For reproducing experiments, see https://github.
com/criteo-research/logistic_bandit.

https://github.com/criteo-research/logistic_bandit
https://github.com/criteo-research/logistic_bandit
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spective warm-ups are typically even longer (∝ κ2).
Finally, we report results for an infinite arm-set for
which our approach yields the only tractable algorithm
enjoying statistical efficiency.
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Supplementary Material

ORGANIZATION OF THE APPENDIX

This appendix is organized as follows:

• In Appendix A we recall important notations and introduce some central inequalities.

• In Appendix B we link the length of the warm-up to the diameter of the set Θ it returns.

• In Appendix C we prove that Ct(δ) is a confidence region for θ?.

• In Appendix D we prove the different regret upper-bounds announced in the main paper

• In Appendix E we detail the computational cost of the different approaches discussed in the main paper.

• In Appendix F we list some auxiliary results, needed for the analysis.

• In Appendix G we provide additional numerical illustrations.
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A PRELIMINARIES

A.1 Notations

We detail below useful notations that will be used throughout the appendix. Below T ∈ N+, U is a set, Θ ⊂ Rd
is a compact set, a ∈ A, r ∈ {0, 1} and x, y ∈ Rd.

[T ] the set of integers from 1 to T .

|U | cardinality of U .

diam(Θ) = maxθ1,θ2 ‖θ1 − θ2‖ diameter of Θ.

diamA(Θ) = maxa∈Amaxθ1,θ2 |aT(θ1 − θ2)| diameter of Θ under A.

µ(x) = (1 + exp(−x))−1 the logistic function at x.

`(x, r) = −r logµ(x)− (1− r) log(1− µ(x)) log-loss associated to (x, r).

`t+1(θ) = `(aTt θ, rt+1) instantaneous log-loss of θ at round t.
¯̀
t+1(θ) = `(aTt θ, 1− rt+1) “reverse” instantaneous log-loss of θ at round t.

Ht(θ) =
∑t
s=1 µ̇(aTs θ)asa

T
s + λId Hessian of the cumulative-log loss at θ up to t.

Vt =
∑t
s=1 asa

T
s /κ+ λId linear-like design-matrix up to t.

Note that for all θ s.t ‖θ‖ ≤ S we have µ̇(aTs θ) ≥ 1/κ by definition of κ. Therefore:

∀θ s.t ‖θ‖ ≤ S, Ht(θ) � Vt . (9)

Below we define several “slowly growing” functions (uniformly denoted γt(δ) in the main paper). They will be
used throughout the proofs.

λt(δ) = d log((4 + t/4)/δ) , (10)

γt(δ) = (S + 3/2)2λt(δ) , (11)

βt(δ) =
(
5/2 + (S + 3/2)2 + S

)2
γt(δ) , (12)

νt(δ) = 1/2 + 2 log
(

2
√
t/4 + 1/δ

)
, (13)

σt(δ) = 8S2 + 6 + 4 log(t) + 9νt(δ) + 18 exp(1)d log(1 + t/(4d)) , (14)

ηt(δ) = 4 + 4 log(t) + 16S2 + (2 + 2S)2νt(δ)/2 + 8(1 + S)d log(1 + t/d) . (15)

A.2 Useful Inequalities and Self-Concordant Control

A central idea when analyzing LogB is to tightly link estimation errors (e.g. between θ1 and θ2) to prediction
errors (e.g. between µ(aTθ1) and µ(aTθ2)). Exact Taylor expansion is a powerful tool to achieve this; as for
previous works we will use it abundantly and in the following lines we introduce useful notations to this end.
Specifically, for any a ∈ A and x, y ∈ R define:

α(x, y) =

∫ 1

v=0

µ̇(x+ v(y − x))dv = α(y, x) , (16)

α̃(x, y) =

∫ 1

v=0

(1− v)µ̇(x+ v(y − x))dv . (17)

After exact Taylor expansions we have the following identities for all θ1, θ2 ∈ Rd:

µ(aTθ2)− µ(aTθ1) = α(aTθ1, a
Tθ2)aT(θ2 − θ1) , (18)

`t+1(θ2)− `t+1(θ1) = ∇`t+1(θ1)T(θ2 − θ1) + α̃(aTθ1, a
Tθ2)(aT(θ2 − θ1))2 . (19)

Below are reminded some useful inequalities that stem from the self-concordance property of the logistic function
(the fact that |µ̈| ≤ µ̇) The proofs can all be found in Appendix F of Abeille et al. (2021).

α(x, y) ≥ (1 + |x− y|)−1µ̇(z) for z ∈ {x, y} , (20)

α̃(x, y) ≥ (2 + |x− y|)−1µ̇(x) , (21)

µ̇(x) ≤ µ̇(y) exp (|x− y|) . (22)
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Procedure 1 WarmUp (detailed)

input: length τ .
Set λ← λτ (δ), initialize V0 ← λId. . λt(δ) is defined in Equation (10)
for t ∈ [1, τ ] do

Play at ∈ arg maxA ‖a‖V−1
t−1

, observe rt+1.

Update Vt ← Vt−1 + ata
T
t /κ.

end for
Compute θ̂τ+1 ← arg minθ

∑τ
s=1 `s+1(θ) + λ‖θ‖2/2.

output: Θ =

{
θ,
∥∥∥θ − θ̂τ+1

∥∥∥2

Vτ

≤ βτ (δ)

}
. . βt(δ) is defined in Equation (12)

B WARM-UP PROCEDURE

We recall the warm-up procedure in Procedure 1 for which we now we give the exact values for the “slowly
growing” functions that we use.

B.1 Warm-up Length and Parameter Set

The goal of this section is to prove the claim behind Equation (4), tying the length of the warm-up phase to the
diameter of the induced parameter set Θ. The formal claim is made explicit in the following proposition.

Proposition 5. Let δ ∈ (0, 1]. Setting τ = CκS6d2 log(T/δ)2 ensures that Θ returned by WarmUp(τ) satisfies:

(1) P(θ? ∈ Θ) ≥ 1− δ ,
(2) diamA(Θ) ≤ 1 .

Proof. The set Θ returned by WarmUp(τ) is:

Θ =
{
θ,
∥∥θ − θ̂τ+1

∥∥2

Vτ
≤ βτ (δ)

}
. (23)

where βt(δ) is defined in Equation (12). It satisfies βt(δ) ≤ CS6d log(t/δ).
To prove (1) we claim Lemma 1 which proof is deferred to Appendix C.1.

Lemma 1. Let δ ∈ (0, 1]. Then:

P
(
∀t ≥ 1,

∥∥θ? − θ̂t+1

∥∥2

Ht(θ?)
≤ βt(δ)

)
≥ 1− δ .

The proof of (1) directly follows:

P (θ? ∈ Θ) = P
(∥∥θ? − θ̂τ+1

∥∥2

Vτ
≤ βτ (δ)

)
(def. of Θ)

≥ P
(∥∥θ? − θ̂τ+1

∥∥2

Hτ (θ?)
≤ βτ (δ)

)
(Vτ � Hτ (θ?), Equation (9))

≥ 1− δ . (Lemma 1)

To prove (2) we claim Lemma 2 which proof is provided in Appendix B.2:

Lemma 2. Let T ∈ N+ and τ ∈ [T ]. Let Θ the set returned by WarmUp(τ). Then:

diamA(Θ) ≤ 4

√
κβT (δ)d log(1 + T )

τ
.

Therefore τ = 16κdβT (δ) log(1 + T ) ensures that diamA(Θ) ≤ 1. Since βT (δ) ≤ CS6d log(T/δ) setting:

τ = CκS6d2 log(T/δ)2 ,

yields diamA(Θ) ≤ 1 which finishes proving (2).
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B.2 Proof of Lemma 2

Lemma 2. Let T ∈ N+ and τ ∈ [T ]. Let Θ the set returned by WarmUp(τ). Then:

diamA(Θ) ≤ 4

√
κβT (δ)d log(1 + T )

τ
.

Proof. The proof is inspired by the demonstration of Lemma 8 of from Valko et al. (2014). Recall:

Θ =
{
θ,
∥∥θ − θ̂τ+1

∥∥2

Vτ
≤ βτ (δ)

}
,

with Vτ =
∑τ
s=1 asa

T
s /κ+ λτ (δ)Id and for all s ≤ τ :

as ∈ arg max
A

‖a‖V−1
s−1

. (24)

Therefore:

diamA(Θ) = max
a∈A

max
θ1,θ2
|aT(θ1 − θ2)| .

≤ max
a∈A

max
θ1,θ2
‖a‖V−1

τ
‖θ1 − θ2‖Vτ

(Cauchy-Schwarz)

≤ 2
√
βτ (δ) max

a∈A
‖a‖V−1

τ
(θ1, θ2 ∈ Θ)

= 2
√
βτ (δ)

√
max
a∈A
‖a‖2

V−1
τ

= 2
√
βτ (δ)τ−1/2

√√√√ τ∑
s=1

max
a∈A
‖a‖2

V−1
τ

≤ 2
√
βτ (δ)τ−1/2

√√√√ τ∑
s=1

max
a∈A
‖a‖2

V−1
s−1

(Vτ � Vs−1)

≤ 2
√
βτ (δ)τ−1/2

√√√√ τ∑
s=1

‖as‖2V−1
s−1

(Equation (24))

= 2
√
βτ (δ)τ−1/2

√
κ

√√√√ τ∑
s=1

‖as/
√
κ‖2

V−1
s−1

≤ 4
√
βτ (δ)τ−1/2

√
κ
√
d log(1 + τ/d) (Lemma 9)

which yields the announced result since T ≥ τ . Notice the re-normalization of the action by κ so that we can
apply the Elliptical Potential Lemma (Lemma 9) directly.

B.3 ONS and Warm-Up

The ONS-like approaches of Zhang et al. (2016); Jun et al. (2017) do not use a warm-up procedure and rely on
a “crude” parameter set Θ0 = {θ, ‖θ‖ ≤ S}. As discussed in the main paper (see Section 3.3) it is natural to
wonder whether their mechanisms could be directly improved (by order of magnitude κ) by using the refined
parameter Θ returned by the warm-up procedure. This is unfortunately not the case; both approaches hard-
codes the κ-dependency in the size of their parameter updates. This dependency can only be marginally reduced
when using Θ.

For instance Jun et al. (2017) rely the exp-concavity constant of the log-loss to design their update rule. Formally,
for a parameter set Θ′ it is defined as (see Hazan (2016, Definition 4.1)):

ρ(Θ′) := sup
r>0

{
r s.t ∇2

θ`(a
Tθ, r) � r∇θ`(aTθ, r)∇θ`(aTθ, r)T, ∀θ ∈ Θ′,∀(a, r) ∈ A× {0, 1}

}
.
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After some straight-forward manipulations it writes as:

ρ(Θ′) = sup
r>0

{
r s.t r ≤ µ̇(aTθ)/(µ(aTθ)− r)2, ∀θ ∈ Θ′,∀(a, r) ∈ A× {0, 1}

}
≤ 2 min

θ∈Θ′
min
a∈A

µ̇(aTθ) .

The update rule designed by Jun et al. (2017) hard-codes a factor ρ(Θ0)−1 in their update rule and therefore in
the radius of the associated confidence regions. This induces exponentially inflated confidence sets as:

ρ(Θ0)−1 ≥ κ/2 = C exp(S) .

Refining this dependency by using a smaller Θ does not remove such exponential dependencies in problem-
dependent constants (e.g. ‖θ?‖, S). Indeed if Θ is the set returned by WarmUp(τ) under the conditions of
Proposition 5:

ρ(Θ)−1 ≥ C exp(‖θ?‖) .

A similar argument holds for the update mechanism Zhang et al. (2016), which rely on the strong-convexity
constant of the log-loss.
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C CONCENTRATION AND CONFIDENCE SETS

C.1 Refinement of Faury et al. (2020)

In the following, we consider that we have adaptively collected the dataset {at, rt+1}t. We denote:

θ̂t+1 := arg min
θ

t∑
s=1

`s+1(θ) + λt(δ)‖θ‖2/2 ,

where λt(δ) is defined in Equation (10). Directly following the proof of Faury et al. (2020, Lemma 11):

P
(
∀t ≥ 1,

∥∥θ? − θ̃t+1

∥∥2

Ht(θ?)
≤ 4(1 + 2S)2γt(δ)

)
≥ 1− δ , (25)

where θ̃t+1 is obtained by “projecting” θ̂t+1 on the ball {‖θ‖ ≤ S} through a non-convex minimization routine.
The slowly growing function γt(δ) is obtained after applying simple upper-bounding operations to Faury et al.
(2020, Theorem 1) and is formally defined in Equation (11). It checks:

γt(δ) ≤ CS2d log(t/δ) .

The following proposition establishes that Equation (25) still holds when θ̃t+1 is replaced by θ̂t+1, at the price
of only a minor degradation of the bound. This essentially removes the need to solve a non-convex program
whenever ‖θ̂t+1‖ ≥ S. The function βt(δ) is defined in Equation (12) and checks βt(δ) ≤ CS6d log(t/δ).

Lemma 1. Let δ ∈ (0, 1]. Then:

P
(
∀t ≥ 1,

∥∥θ? − θ̂t+1

∥∥2

Ht(θ?)
≤ βt(δ)

)
≥ 1− δ .

Remark 1. Whenever ‖θ̂t+1‖ ≤ S one can directly use the bound given in Equation (25), which is then valid

for θ̃t+1 = θ̂t+1.

Proof. The proof leverages the self-concordance property of the logistic function by using some intermediary
results from Abeille et al. (2021). In the following, we denote for all θ:

gt(θ) :=

t∑
s=1

µ(aTs θ)as + λθ and Gt(θ) =

t∑
s=1

α(aTs θ, a
T
s θ?)asa

T
s ,

where α(x, y) is defined in Appendix A.1. Further, define the event Eδ as follows:

Eδ :=

{
∀t ≥ 1,

∥∥∥gt(θ?)− gt(θ̂t+1)
∥∥∥2

Ht(θ?)−1
≤ γt(δ)

}
.

By Lemma 1 of Faury et al. (2020) we have that P(Eδ) ≥ 1 − δ. From the demonstration of Lemma 2 from
Abeille et al. (2021) it can also be extracted that if Eδ holds then for any t ≥ 1:

Ht(θ?) �
(

1 + γt(δ)/λt(δ) +
√
γt(δ)/λt(δ)

)
Gt(θ̂t+1)

=
(
5/2 + (S + 3/2)2 + S

)
Gt(θ̂t+1) . (26)

Finally, recall that by the mean-value theorem we have the following identity for any θ:

gt(θ)− gt(θ?) = Gt(θ)(θ − θ?) . (27)

We conclude by chaining inequalities, assuming that Eδ holds (which happens with probability at least 1− δ);∥∥∥θ? − θ̂t+1

∥∥∥2

Ht(θ?)
≤
(
5/2 + (S + 3/2)2 + S

) ∥∥∥θ? − θ̂t+1

∥∥∥2

Gt(θ̂t+1)
(Equation (26))

=
(
5/2 + (S + 3/2)2 + S

) ∥∥∥gt(θ?)− gt(θ̂t+1)
∥∥∥2

Gt(θ̂t+1)−1
(Equation (27))

≤
(
5/2 + (S + 3/2)2 + S

)2 ∥∥∥gt(θ?)− gt(θ̂t+1)
∥∥∥2

Ht(θ?)−1
(Equation (26))

≤
(
5/2 + (S + 3/2)2 + S

)2
γt(δ) = βt(δ) , (Eδ holds)

which proves the announced result.
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C.2 Statement of Theorem 3

The goal of this section is to justify the confidence sets used in the main paper through the statement of the
more general Theorem 3 (see below). In particular, we deal here with the optimization errors introduced when
running the ECOLog procedure.

Algorithm 4 Efficient Local Learning for Logistic Bandits (ECOLog, sequential form)

input: Compact convex sets {Θt}t, optimization accuracies {εt}t.
Let W1 ← Id, θ

′
1 ∈ Θ1. . initialization

Let D ← supt≥1 diamA(Θt).
for t ≥ 1 do

Receive the pair (at, rt+1).
Define θt+1 as:

θt+1 = arg min
θ∈Θt

(
1

2 +D
‖θ − θ′t‖

2
Wt

+ `t+1(θ)

)
.

Compute θ′t+1 by solving the above program to accuracy εt.
Update Wt+1 ←Wt + µ̇(aTt θ

′
t+1)ata

T
t .

end for

We detail in Algorithm 4 the pseudo-code for ECOLog in its sequential form. It takes as input a sequence of
compact convex sets {Θt}t and a sequence {εt}t of optimization accuracy. Note the use of:

D := sup
t≥1

diamA(Θt)

If this quantity is unknown, D is replaced by an upper-bound on the supremum (the tighter, the better). Our use
of ECOLog in both Algorithms 1 and 2 falls under this general description. For instance Algorithm 1 instantiates
this procedure with Θt ≡ Θ (the set returned by the warm-up) for which D ≤ 1 (see Proposition 5).

We assume that at each round t ≥ 1 the true minimizer:

θt+1 = arg min
θ∈Θt

(
1

2 +D
‖θ − θt‖2Wt

+ `t+1(θ)

)
, (28)

can computed up to accuracy εt. In other words, we have access to θ′t+1 such that:∥∥θt+1 − θ′t+1

∥∥ ≤ εt . (29)

We discuss in Appendix E.1 how such θ′t+1 can be efficiently computed. We denote {(θ′t+1,Wt+1)}t the sequence
of parameters maintained by ECOLog({Θt}t, {εt}t) and claim the following concentration bound. The function
νt(δ) is defined in Equation (13). Numerical constants can be improved by a more careful analysis.

Theorem 3. Let δ ∈ (0, 1] and assume that θ? ∈ Θt for all t ≥ 1. Then:

P

(
∀t ≥ 1,

∥∥θ′t+1 − θ?
∥∥2

Wt+1
≤ 8S2 + 4

t∑
s=1

sε2
s + 2D2 + (2 +D)2νt(δ)/2 + 2(2 +D)2 exp(D)d log(1 + t/(4d))

)
≥ 1− δ .

C.3 Proof of Theorem 3

An important technical piece of our analysis resides in the following Lemma, which derives a local quadratic
lower-bound for the logistic loss `t+1(θ). It is extracted from the self-concordance analysis of Abeille et al.
(2021). A slightly stronger form, derived through other means, also appears in Jézéquel et al. (2020). The proof
is deferred to Appendix C.3.1.

Proposition 6 (Local Quadratic Lower-Bound). For all t ≥ 1 and any θ, θr ∈ Θt:

`t+1(θ) ≥ `t+1(θr) +∇`t+1(θr)
T(θ − θr) +

µ̇(aTt θr)

2 + diamA(Θt)
(aTt (θ − θr))2 .
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Another important intermediary result is given by the following Lemma. It is obtained by directly leveraging
the update rule. The proof is deferred to Appendix C.3.2.

Lemma 3. At any round t ≥ 1:

∇`t+1(θt+1)T(θt+1 − θ?) ≤ (1 +D/2)−1(θt+1 − θ′t)TWt(θ? − θt+1) .

Combining Proposition 6 and Lemma 3 yields the following result, tying the deviation between θ′t+1 and θ? with
the excess loss incurred by {θs+1}ts=1. The proof is deferred to Appendix C.3.3.

Lemma 4. For any t ≥ 1 the following holds:

∥∥θ′t+1 − θ?
∥∥2

Wt+1
≤ 4S2 + 4

t∑
s=1

sε2
s + (4 + 2D)

[
t∑

s=1

`s+1(θ?)− `s+1(θs+1)

]
.

To obtain a valid confidence set from Lemma 4 we are left to bound
∑t
s=1 `s+1(θ?)− `s+1(θs+1). To do so, and

inspired by the analysis of Jézéquel et al. (2020) in the online convex optimization setting, we introduce:

θ̄t := arg min
Θ

(
1

2 +D
‖θ − θt‖2Wt

+ `(aTt θ, 0) + `(aTt θ, 1)

)
. (30)

Note that θ̄t is Ft-measurable (θt+1 is Ft+1 measurable). We rely on the following decomposition and bound
each term of the r.h.s separately:

t∑
s=1

`s+1(θ?)− `s+1(θs+1) =

[
t∑

s=1

`s+1(θ?)− `s+1(θ̄s)

]
+

[
t∑

s=1

`s+1(θ̄s)− `s+1(θs+1)

]
. (31)

The first term is bounded with high probability as stated below. The proof is deferred to Appendix C.3.4 and
uses a 1-dimensional version of a concentration result from Faury et al. (2020).

Lemma 5. Let δ ∈ (0, 1]. We have:

P

(
∀t ≥ 1,

t∑
s=1

`s+1(θ?)− `s+1(θ̄s) ≤ (2 +D)νt(δ)/4 +D2(2 +D)−1

)
≥ 1− δ′ .

We now turn on bounding the second term in Equation (31) - that is:

t∑
s=1

`s+1(θ̄s)− `s+1(θs+1) .

We claim the following intermediary result, which proof is deferred to Appendix C.3.5.

Lemma 6. The following result holds for any t ≥ 1:

t∑
s=1

`s+1(θ̄s)− `s+1(θs+1) ≤ (1 +D)

t∑
s=1

µ̇(aTs θ̄s) ‖as‖
2
W−1
s+1

.

We finish the bound by the following result, a consequence of the self-concordance property of the logistic
function. The proof is deferred to Appendix C.3.6.

Lemma 7. The following result holds for any t ≥ 1:

t∑
s=1

µ̇(aTs θ̄s) ‖as‖
2
W−1
s+1
≤ exp(D)d log ((1 + t/(4d)) .
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Combining Lemmas 6 and 7 yields that:

t∑
s=1

`s+1(θ̄s)− `s+1(θs+1) ≤ (1 +D) exp(D)d log ((1 + t/(4d)) .

Assembling this result with Equation (31) yields that ∀t ≥ 1:

t∑
s=1

`s+1(θ?)− `s+1(θs+1) ≤

[
t∑

s=1

`s+1(θ?)− `s+1(θ̄s)

]
+ (1 +D) exp(D)d log ((1 + t/(4d)) .

Thanks to Lemma 5 this further yields that with probability at least 1− δ:

∀t ≥ 1,

t∑
s=1

`s+1(θ?)− `s+1(θs+1) ≤ (2 +D)νt(δ)/4 +D2(2 +D)−1 + (1 +D) exp(D)d log ((1 + t/(4d)) .

Assembling this result with Lemma 4 along with simple bounding operations yield the announced result.

C.3.1 Proof of Proposition 6

Proposition 6 (Local Quadratic Lower-Bound). For all t ≥ 1 and any θ, θr ∈ Θt:

`t+1(θ) ≥ `t+1(θr) +∇`t+1(θr)
T(θ − θr) +

µ̇(aTt θr)

2 + diamA(Θt)
(aTt (θ − θr))2 .

Proof. By a exact second-order Taylor of `t+1(θ) decomposition around θr yields (see Equation (19)):

`t+1(θ) = `t+1(θr) +∇`t+1(θr)
T(θ − θr) + α̃(aTt θ, a

T
t θr)(a

T
t (θ − θr))2 ,

Further by Equation (21) we have:

α̃(aTt θ, a
T
t θr) ≥ µ̇(aTt θr)/(2 + |aTt (θr − θ)|)

≥ µ̇(aTt θr)/(2 + diamA(Θt)) , (θr, θ ∈ Θt, def. of diamA(Θt))

which concludes the proof.

C.3.2 Proof of Lemma 3

Lemma 3. At any round t ≥ 1:

∇`t+1(θt+1)T(θt+1 − θ?) ≤ (1 +D/2)−1(θt+1 − θ′t)TWt(θ? − θt+1) .

Proof. Denote L̃t+1(θ) := (2 + D)−1 ‖θ − θ′t‖
2
Wt

+ `t+1(θ) the function minimized by θt+1 over Θt. Since Θt is

a convex set and L̃t+1 a convex function, we have that for any θ ∈ Θt (see Lemma 11);

0 ≤ ∇L̃t+1(θt+1)T(θ − θt+1)

=
(
(1 +D/2)−1Wt(θt+1 − θ′t) +∇`t+1(θt+1)

)T
(θ − θt+1)

= (1 +D/2)−1(θt+1 − θ′t)TWt(θ − θt+1) +∇`t+1(θt+1)T(θ − θt+1)

Taking θ = θ? ∈ Θt (by assumption) in the above inequality yields the announced result.

C.3.3 Proof of Lemma 4

Lemma 4. For any t ≥ 1 the following holds:

∥∥θ′t+1 − θ?
∥∥2

Wt+1
≤ 4S2 + 4

t∑
s=1

sε2
s + (4 + 2D)

[
t∑

s=1

`s+1(θ?)− `s+1(θs+1)

]
.
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Proof. By Proposition 6, and because θt+1, θ? ∈ Θt (by construction for θt+1 and by assumption for θ?) the
following holds for any s ≥ 1:

`s+1(θ?) ≥ `s+1(θs+1) +∇`s+1(θs+1)T(θ? − θs+1) +
µ(aTs θs+1)

2 + diamA(Θt)
(aTs (θ? − θs+1))2

≥ `s+1(θs+1) +∇`s+1(θs+1)T(θ? − θs+1) +
µ(aTs θs+1)

2 +D
(aTs (θ? − θs+1))2 . (D ≥ diamA(Θ))

After re-arranging this yields:

`s+1(θs+1)− `s+1(θ?) ≤ ∇`s+1(θs+1)T(θs+1 − θ?)− (2 +D)−1µ̇(aTs θs+1)(aTs (θs+1 − θ?))2 .

Using Lemma 3 in the above inequality gives:

(1 +D/2) (`s+1(θs+1)− `s+1(θ?)) ≤ (θs+1 − θ′s)TWs(θ? − θs+1)− 1

2
µ̇(aTs θs+1)(aTs (θs+1 − θ?))2 ,

= −1

2
‖θs+1 − θ?‖2Ws

+
1

2
‖θ′s − θ?‖

2
Ws
− 1

2
‖θs+1 − θ′s‖

2
Ws

− 1

2
µ̇(aTs θs+1)(aTs (θs+1 − θ?))2 ,

= −1

2
‖θs+1 − θ?‖2Ws+1

+
1

2
‖θ′s − θ?‖

2
Ws
− 1

2
‖θs+1 − θ′s‖

2
Ws

≤ −1

2
‖θs+1 − θ?‖2Ws+1

+
1

2
‖θ′s − θ?‖

2
Ws

≤ −1

2
‖θs+1 − θ?‖2Ws+1

+
1

2
‖θs − θ?‖2Ws

+
1

2
‖θs − θ′s‖

2
Ws

≤ −1

2
‖θs+1 − θ?‖2Ws+1

+
1

2
‖θ′s − θ?‖

2
Ws

+ sε2
s−1

since ‖θ′s − θ?‖
2
Ws
≤ λmax(Ws) ‖θ′s − θs‖

2 ≤ 2sε2
s−1. By re-arranging:

(2 +D) (`s+1(θ?)− `s+1(θs+1))− ‖θs+1 − θs‖2Ws
≥ ‖θs+1 − θ?‖2Ws+1

− ‖θs − θ?‖2Ws
− 2sε2

s−1

and summing from s = 1 to t:

(2 +D)

t∑
s=1

`s+1(θ?)− `s+1(θs+1) ≥
t∑

s=1

[
‖θs+1 − θ?‖2Ws+1

− ‖θs − θ?‖2Ws

]
− 2

t∑
s=1

sε2
s−1

= ‖θt+1 − θ?‖2Wt+1
− ‖θ1 − θ?‖2W1

− 2

t∑
s=1

sε2
s−1 (telescopic sum)

= ‖θt+1 − θ?‖2Wt+1
− ‖θ1 − θ?‖2 − 2

t∑
s=1

sε2
s−1 (W1 = Id)

After re-arranging and setting ε0 = 0 (there is no program to solve at t = 0);

‖θt+1 − θ?‖2Wt+1
≤ 4S2 + 2

t−1∑
s=1

sε2
s + (2 +D)

[
t∑

s=1

`s+1(θ?)− `s+1(θs+1)

]
.

This concludes the proof as:∥∥θ′t+1 − θ?
∥∥2

Wt+1
≤ 2 ‖θt+1 − θ?‖2Wt+1

+ 2
∥∥θ′t+1 − θt+1

∥∥2

Wt+1
((a+ b)2 ≤ 2(a2 + b2)

≤ 2 ‖θt+1 − θ?‖2Wt+1
+ 2(1 + t)

∥∥θ′t+1 − θt+1

∥∥2
(Wt+1 � (1 + t)Id)

≤ 2
∥∥θ′t+1 − θ?

∥∥2

Wt+1
+ 4tε2

t .
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C.3.4 Proof of Lemma 5

Lemma 5. Let δ ∈ (0, 1]. We have:

P

(
∀t ≥ 1,

t∑
s=1

`s+1(θ?)− `s+1(θ̄s) ≤ (2 +D)νt(δ)/4 +D2(2 +D)−1

)
≥ 1− δ′ .

Proof. Using Proposition 6 with θ = θ? and θr = θ̄s yields:

t∑
s=1

`s+1(θ?)− `s+1(θ̄s) ≤
t∑

s=1

∇`s+1(θ?)
T(θ? − θ̄s)− (2 +D)−1

t∑
s=1

µ̇(aTs θ?)(a
T
s (θ? − θ̄s))2

=

t∑
s=1

(µ(aTs θ?)− rs+1)aTs (θ? − θ̄s)− (2 +D)−1
t∑

s=1

µ̇(aTs θ?)(a
T
s (θ? − θ̄s))2

= D

t∑
s=1

ηs+1xs −D2(2 +D)−1Xt , (32)

where we denoted xs := aTs (θ? − θ̄s)/D, Xt :=
∑t
s=1 µ̇(aTs θ?)x

2
s and ηs+1 := µ(aTs θ?) − rs+1. We use a

1-dimensional version of the concentration result provided by Theorem 1 of Faury et al. (2020) to bound∑t
s=1 ηs+1xs. We remind its general form below for the sake of completeness.

Theorem 4 (Theorem 1 of Faury et al. (2020)). Let {Ft}∞t=1 be a filtration. Let {xt}∞t=1 be a stochastic
process in B2(d) such that xt is Ft-measurable. Let {ηt}∞t=2 be a martingale difference sequence such that ηt+1

is Ft+1 measurable. Furthermore, assume that conditionally on Ft we have |ηt+1| ≤ 1 almost surely, and note
σ2
t := E

[
η2
t+1|Ft

]
. Let λ > 0 and for any t ≥ 1 define:

Ht :=

t∑
s=1

σ2
sxsx

T
s + λId, St+1 :=

t∑
s=1

ηs+1xs.

Then for any δ ∈ (0, 1]:

P

(
∃t ≥ 1, ‖St+1‖H−1

t
≥
√
λ

2
+

2√
λ

log

(
det (Ht)

1
2λ−

d
2

δ

)
+

2√
λ
d log(2)

)
≤ δ.

Recall that we use the filtration Ft := σ (a1, r2, . . . , at). In our case, xs is 1-dimensional, is Fs-measurable and
satisfies |xs| ≤ 1 almost surely (by definition of D, and since both θ?, θ̄s ∈ Θt). Further, ηs+1 is Fs+1-measurable
and thanks to Equation (1) we have:

E [ηs+1|Fs] = 0 and E
[
η2
s+1|Fs

]
= µ̇(aTs θ?) .

Furthermore, note that with the notations of Theorem 4 we have Ht = Xt + 1. By a direct application of
Theorem 4 we obtain that with probability at least 1− δ:

∀t ≥ 1,

t∑
s=1

ηs+1xs ≤
√
Xt + 1

√
1/2 + 2 log

(
2
√
Xt + 1

δ

)

=
√
Xt + λ

√√√√√1/2 + 2 log

2
√∑t

s=1 µ̇(aTs θ?)z
2
s + 1

δ


≤
√
Xt + 1

√√√√1/2 + 2 log

(
2
√
t/4 + 1

δ

)
(µ̇ ≤ 1/4, |zs| ≤ 1)

=
√
νt(δ)

√
Xt + 1 (def. of νt(δ))

≤ νt(δ)

4D(2 +D)−1
+D(2 +D)−1(Xt + 1)
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where in the second to last inequality we used the fact that ∀a, b, ζ > 0 we have
√
ab ≤ a/(2ζ) + ζb/2 (applied

with a = γt(δ), b = Xt + λ and ζ = 2D(2 +D)−1. Re-injecting in Equation (32) yields that with probability at
least 1− δ:

∀t ≥ 1,

t∑
s=1

`s+1(θ?)− `s+1(θ̄s) ≤ (2 +D)νt(δ)/4 +D2(2 +D)−1 .

C.3.5 Proof of Lemma 6

Lemma 6. The following result holds for any t ≥ 1:

t∑
s=1

`s+1(θ̄s)− `s+1(θs+1) ≤ (1 +D)

t∑
s=1

µ̇(aTs θ̄s) ‖as‖
2
W−1
s+1

.

Proof. By convexity of `s+1(·) one has that for all s ≥ 1:

`s+1(θ̄s)− `s+1(θs+1) ≤ ∇`s+1(θ̄s)
T(θ̄s − θs+1)

≤
∥∥∇`s+1(θ̄s)

∥∥
W−1
s+1

∥∥θ̄s − θs+1

∥∥
Ws+1

(Cauchy-Schwarz) (33)

Since `(aTs θ, 0) + `(aTs θ, 1) = `s+1(θ) + ¯̀
s+1(θ), one can re-write the computation of θ̄s as:

θ̄s = arg min
θ∈Θs

1

2 +D
‖θ − θs‖2Wt

+ `s+1(θ) + ¯̀
s+1(θ) .

By convexity of the objective function minimized by θ̄s and convexity of Θs we therefore have the following
inequality (see Lemma 11) for any s ≥ 1:

(1 +D/2)−1(θ̄s − θs)TWs(θs+1 − θ̄s) +∇`s+1(θ̄s)
T(θs+1 − θ̄s) +∇¯̀

s+1(θ̄s)
T(θs+1 − θ̄s) ≥ 0 .

since θs+1 ∈ Θs by definition. By re-arranging this yields:

(1 +D/2)∇¯̀
s+1(θ̄s)

T(θs+1 − θ̄s) ≥ (θ̄s − θs)TWs(θ̄s − θs+1) + (1 +D/2)∇`s+1(θ̄s)
T(θ̄s − θs+1)

=
∥∥θ̄s − θs+1

∥∥2

Ws
+ (θs+1 − θs)TWs(θ̄s − θs+1)

+ (1 +D/2)∇`s+1(θ̄s)
T(θ̄s − θs+1) .

By the same argument, since θ̄s ∈ Θs we also have the inequality:

(θs+1 − θs)TWs(θ̄s − θs+1) ≥ (1 +D/2)∇`s+1(θs+1)T(θs+1 − θ̄s) .

Re-injecting above this yields that:

(1 +D/2)∇¯̀
s+1(θ̄s)

T(θs+1 − θ̄s) ≥
∥∥θ̄s − θs+1

∥∥2

Ws
+ (1 +D/2)(θ̄s − θs+1)T(∇`s+1(θ̄s)−∇`s+1(θs+1))

=
∥∥θ̄s − θs+1

∥∥2

Ws
+ (1 +D/2)(µ(aTs θ̄s)− µ(aTs θs+1))aTs (θ̄s − θs+1)

=
∥∥θ̄s − θs+1

∥∥2

Ws
+ (1 +D/2)α(aTs θ̄s, a

T
s θs+1)(aTs (θ̄s − θs+1))2

≥
∥∥θ̄s − θs+1

∥∥2

Ws
+ (1 +D/2)(1 +D)−1µ̇(aTs θs+1)(aTs (θ̄s − θs+1))2

where in the second to last inequality we used Equation (20) to obtain α(aTs θ̄s, a
T
s θs+1) ≥ (1 + D)−1µ̇(aTs θs+1)

(since θs+1, θ̄s ∈ Θs). After easy manipulations this yields:∥∥θ̄s − θs+1

∥∥2

Ws+1
≤ (1 +D)∇¯̀

s+1(θ̄s)
T(θs+1 − θ̄s)

≤ (1 +D)
∥∥∇¯̀

s+1(θ̄s)
∥∥
W−1
s+1

∥∥θ̄s − θs+1

∥∥
Ws+1
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and therefore we obtain that
∥∥θ̄s − θs+1

∥∥
Ṽs+1

≤ (1 +D)
∥∥∇¯̀

s+1(θ̄s)
∥∥
W−1
s+1

. Assembling with Equation (33);

`s+1(θ̄s)− `s+1(θs+1) ≤ (1 +D)
∥∥∇`s+1(θ̄s)

∥∥
W−1
s+1

∥∥∇¯̀
s+1(θ̄s)

∥∥
W−1
s+1

= (1 +D)|µ(aTs θ̄s)− rs+1||µ(aTs θ̄s)− 1 + rs+1| ‖as‖2W−1
s+1

= (1 +D)|µ(aTs θ̄s)||µ(aTs θ̄s)− 1| ‖as‖2W−1
s+1

(rs+1 ∈ {0, 1})

= (1 +D)µ̇(aTs θ̄s) ‖as‖
2
W−1
s+1

(µ(1− µ) = µ̇)

Summing yields the announced result.

C.3.6 Proof of Lemma 7

Lemma 7. The following result holds for any t ≥ 1:

t∑
s=1

µ̇(aTs θ̄s) ‖as‖
2
W−1
s+1
≤ exp(D)d log ((1 + t/(4d)) .

Proof. By Equation (22), for all s ≥ 1:

µ̇(aTs θ̄s) ≤ exp
(
|aTs (θ′s+1 − θ̄s)|

)
µ̇(aTs θs+1)

≤ exp(D)µ̇(aTs θ
′
s+1) . (θs+1, θ̄s ∈ Θs, D ≥ diamA(Θs))

Denoting xs =
√
µ(aTs θ

′
s+1)as and Mt+1 =

∑t
s=1 xsx

T
s , we have:

t∑
s=1

µ̇(aTs θ̄s) ‖as‖
2
W−1
s+1
≤ exp(D)

∑̇t

s=1
µ(aTs θ

′
s+1) ‖as‖2W−1

s+1

≤ exp(D)

t∑
s=1

‖xs‖2M−1
s+1

= exp(D)

t∑
s=1

Tr(M−1
s+1xsx

T
s )

= exp(D)

t∑
s=1

Tr(M−1
s+1(Ms+1 −Ms))

≤ exp(D) log (|Mt+1| / |M1|) (Lemma 4.6 of Hazan (2016))

≤ exp(D)d log(1 + t/(4d)) ,

where we last used Lemma 10 along with ‖xs‖2 ≤ µ̇(aTs θ
′
s+1) ≤ 1/4.

C.4 Proof of Proposition 3

We prove below Proposition 3 from the main paper. It justifies the confidence sets used in OFU-ECOLog.

In this context, we have Θt ≡ Θ, the set returned by the warm-up procedure run with the conditions of
Proposition 5 and εs = 1/s.

Proposition 3 (Confidence Set). Let δ ∈ (0, 1] and {(θt,Wt)}t the parameters maintained by Algorithm 1 with
τ set according to Proposition 5. Then:

P
(
∀t ≥ 1,

∥∥θ? − θ′t+1

∥∥2

Wt+1
≤ σt(δ) and θ? ∈ Θ

)
≥ 1− 2δ .

The function σt(δ) is defined in Equation (14) and checks σt(δ) ≤ CS2d log(t/δ).
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Proof. By Proposition 5 we know that diamA(Θ) ≤ 1 so we can set D = 1. For the rest of the proof we assume
that the event {θ? ∈ Θ} holds - this happens with probability at least 1−δ according to Proposition 5. Theorem 3
therefore applies since Θ is convex and compact. This yields:

P

(
∀t ≥ 1, ‖θ? − θt+1‖2Wt

≤ 8S2 + 4

t∑
s=1

sε2
s + 2 + 9νt(δ) + 18 exp(1)d log(1 + t/(4d))

)
≥ 1− δ .

After a classic bound on the harmonic function; for t ≥ 1:

t∑
s=1

sε2
s =

t∑
s=1

1/s ≤ 1 + log(t) ,

we are left to apply a naive union bound with the event {θ? ∈ Θ} to finish the proof.

C.5 A Data-Dependent Version

The following result justifies the confidence regions used in ada-OFU-ECOLog.

Proposition 7. Let δ ∈ (0, 1] and {(θt,Wt,Θt)}t maintained by Algorithm 2. Then:

P
(
∀t ≥ 1 , θ? ∈ Θt and

∥∥θ? − θ′t+1

∥∥2

Wt+1
≤ ηt(δ)

)
≥ 1− 2δ .

The function ηt(δ) is defined in Equation (15) and checks ηt(δ) ≤ CS2d log(t/δ).

Proof. This result can be easily be retrieved from the proof of Theorem 3. The sets:

Θt+1 =
{
θ,
∥∥θ − θ̂Ht+1

∥∥2

VHt
≤ βt(δ)

}
,

maintained in Algorithm 2 are indeed compact and convex. Further, they contain θ? with high probability:

1− δ ≤ P
(
∀t ≥ 1,

∥∥θ? − θ̂Ht+1

∥∥2

HHt (θ?)
≤ βt(δ)

)
(Lemma 1)

≤ P
(
∀t ≥ 1,

∥∥θ? − θ̂Ht+1

∥∥2

VHt
≤ βt(δ)

)
(Equation (9))

= P (∀t ≥ 1, θ? ∈ Θt) .

Further, recall that the inequality:

µ̇(aTs θ̄s) ≤ 2µ̇(aTs θs+1) ,

holds by construction in Algorithm 2. When it is not satisfied, the couple (as, rs+1) is not fed to the ECOLog

procedure. This essentially allows to replace exp(D) in Lemma 7 by a constant factor (here, 2). From there,
following the demonstration of Theorem 3 up to straight-forward adaptations (e.g to deal with the fact that
some rounds are ignored from the learning when the above inequality is not satisfied) yields that under the event
{∀t ≥ 1, θ? ∈ Θt}:

P
(
∀t ≥ 1,

∥∥θ? − θ′t+1

∥∥2

Wt+1
≤ ηt(δ)

)
≥ 1− δ .

A union bound finishes the proof.
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D REGRET BOUNDS

To reduce clutter and fit with the notations adopted in the main text, we go back in this section to identifying θt
and its ε-approximation θ′t. This does not impact the validity of the regret bounds - the effects of optimization
errors are fully dealt with in the radius of the confidence sets we designed in Appendix C.2.

D.1 Proof of Theorem 1

Theorem 1 (Regret Bound). Let δ ∈ (0, 1]. Setting τ = CκS6d2 log(T/δ)2 ensures the regret of OFU-ECOLog(δ, τ)
satisfies with probability at least 1− 2δ:

Regret(T ) ≤ CSd log(T/δ)
√
T µ̇(aT? θ?) + CS6κd2 log(T/δ)2 .

Algorithm 1 OFU-ECOLog

input: failure level δ, warm-up length τ .
Set Θ← WarmUp(τ) (see Procedure 1). . forced-exploration
Initialize θτ+1 ∈ Θ, Wτ+1 ← Id and Cτ+1(δ)← Θ.
for t ≥ τ + 1 do

Play at ∈ arg maxa∈Amaxθ∈Ct(δ) a
Tθ . . planning

Observe reward rt+1, construct loss `t+1(θ) = `(aTt θ, rt+1).

Compute (θt+1, Wt+1)← ECOLog(1/t,Θ, `t+1,Wt, θt) (see Procedure 2). . learning

Compute Ct+1(δ)←
{
‖θ − θt+1‖2Wt+1

≤ σt(δ)
}

. . σt(δ) is defined in Equation (14)

end for

Proof. According to Proposition 3 (its detailed version in Appendix C.4) setting τ = CκS6d2 log(T/δ) ensures:

P
(
θ? ∈ Θ and ‖θt − θ?‖2Wt

≤ σt(δ) for all t ≥ τ + 1
)
≥ 1− 2δ ,

In the rest of the proof we assume that the above event, denoted Eδ, holds.

Since µ(·) ∈ (0, 1) the regret incurred during warm-up can be directly bounded by τ . Therefore for T ≥ τ + 1;

Regret(T ) ≤ CκS6d2 log(T/δ) +

T∑
t=τ+1

µ(aT? θ?)− µ(aTt θ?)

≤ CκS6d2 log(T/δ) +R(T ) ,

where we defined R(T ) =
∑T
t=τ+1 µ(aT? θ?) − µ(aTt θ?). To control this term we follow the usual strategy for

bounding the regret of optimistic algorithms, and re-use tools introduced by Faury et al. (2020); Abeille et al.
(2021) - adapted to our confidence set. In the following, we denote for t ≥ τ + 1:

(at, θ̃t) ∈ arg max
A,Ct(δ)

aTθ .

where Ct(δ) = {θ, ‖θt − θ‖2Wt
≤ σt(δ)}. Because Eδ holds this implies that the couple (at, θ̃t) is optimistic.

Formally: aTt θ̃t ≥ aT? θ?. We start by tying the regret to the prediction error of θ̃t+1 and continue with a
second-order Taylor expansion.

R(T ) =

T∑
t=τ+1

µ(aT? θ?)− µ(aTt θ?)

≤
T∑

t=τ+1

µ(aTt θ̃t)− µ(aTt θ?) (optimism, µ↗)

≤
T∑

t=τ+1

µ̇(aTt θ?)a
T
t (θ̃t − θ?) + α̃(aTt θ?, a

T
t θ̃t)(a

T
t (θ̃t − θ?))2 (Taylor, |µ̈| ≤ µ̇)

=: R1(T ) +R2(T ) .
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Above, we defined R1(T ) =
∑T
t=τ+1 µ̇(aTt θ?)a

T
t (θ̃t − θ?) and R2(T ) =

∑T
t=τ+1 α̃(aTt θ?, a

T
t θ̃t)(a

T
t (θ̃t − θ?))2. We

start by bounding R2(T );

R2(T ) ≤
T∑

t=τ+1

(aTt (θ̃t − θ?))2/2 (|µ̇| ≤ 1)

≤
T∑

t=τ+1

‖at‖2W−1
t
‖θ̃t − θ?‖2Wt

/2 (Cauchy-Schwarz)

≤ 2σt(δ)

T∑
t=τ+1

‖at‖2W−1
t

(θ̃t, θ? ∈ Ct(δ))

≤ CdS2 log(T/δ)

T∑
t=τ+1

‖at‖2W−1
t

(Equation (14))

≤ CdS2 log(T/δ)

T∑
t=τ+1

‖at‖2V−1
t

≤ Cd2κS2 log(T/δ)2 (Lemma 9)

We last applied Lemma 9 with xt = at/
√
κ, and proceeded with some simple upper-bounding operations. The

second to last inequality is a consequence of Abeille et al. (2021, Lemma 9) which ensures:

µ̇(aTs θ
′
s+1) ≥ µ̇(aTs θ?) exp(−|aTs (θ′s+1 − θ?)|)

≥ µ̇(aTs θ?) exp(−1) (θ?, θ
′
s+1 ∈ Θ, diamA(Θ) ≤ 1)

≥ exp(−1)κ .

We now turn our attention to R1(T ).

R1(T ) =

T∑
t=τ+1

µ̇(aTt θ?)a
T
t (θ̃t − θ?)

≤
T∑

t=τ+1

√
µ̇(aTt θ?)

√
exp(|aTt (θt+1 − θ?)|)µ̇(aTt θt+1)aTt (θ̃t − θ?) (Abeille et al., 2021, Lemma 9))

≤
√
e

T∑
t=τ+1

√
µ̇(aTt θ?)

√
µ̇(aTt θt+1)aTt (θ̃t − θ?) (diamA(Θ) ≤ 1)

≤
√
e

T∑
t=τ+1

√
µ̇(aTt θ?)

√
µ̇(aTt θt+1)‖at‖W−1

t
‖θ̃t − θ?‖Wt

(Cauchy-Schwarz)

≤ e
T∑

t=τ+1

√
µ̇(aTt θ?)

√
µ̇(aTt θt+1)‖at‖W−1

t

(
‖θt − θ?‖Wt

+ ‖θ̃t − θt‖Wt

)
(Triangle ineq.)

≤ 2e
√
σT (δ)

T∑
t=τ+1

√
µ̇(aTt θ?)

√
µ̇(aTt θt+1)‖at‖W−1

t
(θ̃t, θ? ∈ Ct(δ))

≤ CS
√
d log(T/δ)

√√√√ T∑
t=τ+1

µ̇(aTt θ?)

√√√√ T∑
t=τ+1

µ̇(aTt θt+1)‖at‖2W−1
t

(Cauchy-Schwarz)

≤ CS
√
d log(T/δ)

√
d log(1 + T/d)

√√√√ T∑
t=τ+1

µ̇(aTt θ?) (Lemma 9)
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where Lemma 9 was used with xt =
√
µ̇(aTt θt+1)at (and µ̇ ≤ 1). From then, we can directly follow the proof of

Theorem 1 from Abeille et al. (2021) (more precisely, follow the reasoning employed in their Section C.1 page
18) for which we extract that:

T∑
t=τ+1

µ̇(aTt θ?) ≤ RT + T µ̇(aT? θ?) .

Assembling the bounds on R2(T ), R1(T ) and
∑T
t=τ+1 µ̇(aTt θ?) we obtain that:

R(T ) ≤ CκS2d2 log(T/δ)2 + CSd log(T/δ)
√
RT + T µ̇(a?θ?) .

Because x2 − bx− c ≤ 0 ⇒ x2 ≤ 2b2 + 2c we have:

R(T ) ≤ CSd log(T/δ)
√
T µ̇(a?θ?) + CκS2d2 log(T/δ)2 ,

which concludes the proof.

Remark 2. The scaling w.r.t S of the regret’s second-order term is driven by the length τ of the warm-up phase.
As anticipated in Remark 1 this scaling is reduced when ‖θ̂τ‖ ≤ S which often happens in practice. In this case,
we obtain a second-order term which exactly matches the one of Abeille et al. (2021).

D.2 The TS-ECOLog algorithm

In this section we introduce the TS version of OFU-ECOLog whose pseudo-code is provided in Algorithm 3.

Algorithm 3 TS-ECOLog

input: failure level δ, warm-up length τ , distribution DTS

Set Θ← WarmUp(τ) (see Procedure 1). . forced-exploration
Initialize θτ+1 ∈ Θ, Wτ+1 ← Id.
for t ≥ τ + 1 do

Set reject← true . sampling

while reject do

Sample η ∼ DTS, let θ̃t = θt + σt(δ)W
−1/2
t η.

If θ̃t ∈ Θ set reject← false

end while

Play at ∈ arg maxa∈A a
Tθ̃t.

Observe reward rt+1, construct loss `t+1(θ) = `(aTt θ, rt+1).

Compute (θt+1, Wt+1)← ECOLog(1/t,Θ, `t+1,Wt, θt) (see Procedure 2). . learning

end for

The algorithm display little novelty compared to the linear case studied by Agrawal and Goyal (2013); Abeille
and Lazaric (2017). The only difference is a rejection sampling step on Θ. The analysis is also similar, up to
minor modifications. The following statement provides a regret guarantee for TS-ECOLog.

Theorem 5. Let δ ∈ (0, 1] and DTS a distribution satisfying Definition 1 of Abeille and Lazaric (2017). Setting
τ = CκS6d2 log(T/δ)2 ensures that the regret of TS-ECOLog(δ, τ,DTS) satisfies with probability at least 1− δ:

Regret(T ) ≤ CSd3/2 log(T/δ)
√
T µ̇(aT? θ?) + CS6κd3 log(T/δ)2 .

Proof. According to Proposition 3 (its detailed version in Appendix C.4) setting τ = CκS6d2 log(T/δ) ensures:

P
(
θ? ∈ Θ and ‖θt − θ?‖2Wt

≤ σt(δ) for all t ≥ τ + 1
)
≥ 1− 2δ .

As in the proof of Theorem 1 we assume that the above event, denoted Eδ, holds.
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We decompose the regret as:

Regret(T ) ≤ τ +

T∑
t=τ+1

µ(aT? θ?)− µ(aTt θ?)

= τ +

T∑
t=τ+1

µ(aT? θ?)− µ(aTt θ̃t) +

T∑
t=τ+1

µ(aTt θ̃t)− µ(aTt θ?)

≤ CκS6d2 log(T/δ)2 +RTS(T ) +RPRED(T ) .

Above, we defined RTS(T ) =
∑T
t=τ+1 µ(aT? θ?)−µ(aTt θ̃t) and RPRED(T ) =

∑T
t=τ+1 µ(aTt θ̃t)−µ(aTt θ?). To bound

RPRED(T ) one can directly follow the strategy employed in Appendix D.1. The only difference comes from the
radius of the “effective” confidence set that is used - inflated by

√
d because of the concentration properties of

DTS. This leads to:

RPRED(T ) ≤ CSd3/2 log(T/δ)
√
T µ̇(a?θ?) + CκS2d3 log(T/δ)2

We now turn to RTS(T ). Following Abeille and Lazaric (2017) we denote J(θ) = maxa∈A a
Tθ. We have:

RTS(T ) =

T∑
t=τ+1

µ(aT? θ?)− µ(aTt θ̃t)

=

T∑
t=τ+1

α(aT? θ?, a
T
t θ̃t)(a

T
? θ? − aTt θ̃t) (exact first-order Taylor)

=

T∑
t=τ+1

α(J(θ?), J(θ̃t))(J(θ?)− J(θ̃t)) (def. of J) (34)

By convexity of J along with the computations of its sub-gradients (see Section C of Abeille and Lazaric (2017));

|J(θ?)− J(θ̃t)| ≤ max
{
|∇J(θ?)

T(θ? − θ̃t)|, |∇J(θ̃t)
T(θ? − θ̃t)|

}
(convexity of J)

≤ max
{
|aT? (θ? − θ̃t)|, |aTt (θ? − θ̃t)|

}
(∇J(θ) = arg max

a∈A
aTθ)

≤ diamA(Θ) (θ̃t, θ? ∈ Θ)

≤ 1 . (Proposition 5)

Therefore:

α(J(θ?), J(θ̃t)) =

∫ 1

v=0

µ̇(J(θ?) + v(J(θ̃t)− J(θ?))dv

≤ µ̇(J(θ?))

∫ 1

v=0

exp(v|J(θ̃t)− J(θ?)|)dv (Lemma 9 of Abeille et al. (2021))

≤ µ̇(J(θ?))

∫ 1

v=0

exp(v)dv (|J(θ?)− J(θ̃t) ≤ 1)

≤ 2µ̇(J(θ?)) .

Plugging the above inequality in Equation (34) yields:

RTS(T ) ≤ 2µ̇(J(θ?))

T∑
t=τ+1

J(θ?)− J(θ̃t)

= 2µ̇(aT? θ?)

T∑
t=τ+1

J(θ?)− J(θ̃t) .
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From then on we can follow the proof of Abeille and Lazaric (2017) which in the linear case studies exactly∑
t J(θ?)−J(θ̃t). Directly following their line of proof yields

∑
t J(θ?)−J(θ̃t) . C

√
d
√
σT (δ)

∑
t ‖at‖W−1

t
+
√
T .

This concludes the proof since σT (δ) ≤ CS2d log(T/δ) and:

µ̇(aT? θ?)

T∑
t=τ+1

‖at‖W−1
t

=
√
µ̇(aT? θ?)

T∑
t=τ+1

√
µ̇(aT? θ?)‖at‖W−1

t

≤ C
√
µ̇(aT? θ?)

T∑
t=τ+1

√
µ̇(aT? θt+1)

√
exp(|aT? (θ? − θt+1)|)‖at‖W−1

t

≤ C
√
µ̇(aT? θ?)

T∑
t=τ+1

√
µ̇(aT? θt+1)

√
exp(2diamA(Θ))‖at‖W−1

t
(θt+1, θ? ∈ Θ)

≤ C
√
µ̇(aT? θ?)

T∑
t=τ+1

√
µ̇(aT? θt+1)‖at‖W−1

t
(diamA(Θ) ≤ 1)

≤ C
√
T µ̇(aT? θ?)

√
d log(T ) .

where we last used Cauchy-Schwarz inequality and Lemma 9.

D.3 Proof of Theorem 2

Theorem 2. Let δ∈ [0, 1). With probability at least 1−δ the regret of ada-OFU-ECOLog(δ) satisfies:

Regret(T ) ≤ CSd

√√√√ T∑
t=1

µ̇(aT?,tθ?) log(T/δ) + CS6κd2 log(T/δ)2 ,

where a?,t = arg maxa∈At a
Tθ?.

Algorithm 2 ada-OFU-ECOLog

input: failure level δ.
Initialize Θ1 = {‖θ‖ ≤ S}, C1(δ)← Θ1, θ1 ∈ Θ, W1 ← Id and H1 ← ∅.
for t ≥ 1 do

Play at ∈ arg maxa∈Amaxθ∈Ct(δ) a
Tθ, observe reward rt+1.

Compute the estimators θ0
t , θ

1
t (see Equation (8)) and θ̄t.

if µ̇(aTt θ̄t) ≤ 2µ̇(aTt θ
0
t ) and µ̇(aTt θ̄t) ≤ 2µ̇(aTt θ

1
t ) then

Form the loss `t+1 and compute (θt+1, Wt+1)← ECOLog(1/t,Θt, `t+1,Wt, θt).

Compute Ct+1(δ)←
{
‖θ − θt+1‖2Wt+1

≤ ηt(δ)
}

, set Ht+1 ← Ht. . ηt(δ) is defined in Equation (15)

else

Set Ht+1 ← Ht ∪ {at, rt+1} and compute θ̂Ht+1 = arg min
∑

(a,r)∈Ht+1
`(aTθ, r) + γt(δ)‖θ‖2.

Update VHt ←
∑
a∈Ht+1

aaT/κ+ γt(δ)Id, θt+1 ← θt and Wt+1 ←Wt.

Compute Θt+1 =
{
‖θ − θ̂Ht+1‖2VHt ≤ βt(δ)

}
∩Θ1 . . βt(δ) is defined in Equation (12)

end if

end for

Proof. We denote T the set of rounds at which condition (C1) breaks. Formally;

T :=
{
t ∈ [T ], µ̇(aTt θ̄t) ≥ 2µ̇(aTt θ

1
t ) or µ̇(aTt θ̄t) ≥ 2µ̇(aTt θ

0
t )
}
.

We claim the following result bounding the cardinality of T . The proof is deferred to Appendix D.3.1.

Lemma 8. The following inequality holds:

|T | ≤ CS6κd2 log(T/δ)2 .
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We follow a naive (but sufficient) bounding strategy. For rounds t ∈ T we crudely bound the instantaneous
regret by its maximal value (e.g. 1);

Regret(T ) ≤ |T |+
∑

t∈[T ]\T

µ̇(aT?,tθ?)− µ̇(aTt θ?) (µ ∈ (0, 1))

≤ CS6κd2 log(T/δ)2 +RT (Lemma 8)

where RT :=
∑
t/∈T µ̇(aT?,tθ?)− µ̇(aTt θ?). In the following, we denote for t /∈ τ :

(at, θ̃t) ∈ arg max
At,Ct(δ)

aTθ .

where Ct(δ) = {θ, ‖θt − θ‖2Wt
≤ ηt(δ)} and ηt(δ) is defined in Equation (15). In the following,

we assume that the following event holds:

Eδ = {t ∈ [T ] \ T , θ? ∈ Ct(δ) ∩Θt} ,

This happens with probability at least 1− 2δ according to Proposition 7. This implies that the couple (at, θ̃t) is

optimistic. Formally: aTt θ̃t ≥ aT?,tθ?. Therefore:

R(T ) =
∑

t∈[T ]\T

µ(aT?,tθ?)− µ(aTt θ?)

≤
∑

t∈[T ]\T

µ(aTt θ̃t)− µ(aTt θ?) (optimism, µ↗)

≤
∑

t∈[T ]\T

µ̇(aTt θ?)a
T
t (θ̃t − θ?) + α̃(aTt θ?, a

T
t θ̃t)(a

T
t (θ̃t − θ?))2 (Taylor, |µ̈| ≤ µ̇)

=: R1(T ) +R2(T ) .

The bound on R2(T ) is directly extracted from the proof of Theorem 1 presented in Appendix D.1.

R2(T ) ≤ Cd2κS2 log(T/δ)2 .

The story is slightly different for R1(T ) and the proof laid out in Appendix D.1 needs to be slightly adapted.
We need to differentiate the rounds where µ̇(aTt θ?) ≤ µ̇(aTt θt+1) and the rounds where µ̇(aTt θ?) ≥ µ̇(aTt θt+1).
In what follows we focus only on the latter (for the former we can directly adapt the approach laid out in Ap-
pendix D.1).

R1(T ) =
∑

t∈[T ]\T

µ̇(aTt θ?)a
T
t (θ̃t − θ?)

≤
∑

t∈[T ]\T

µ̇(aTt θt+1)aTt (θ̃t − θ?) + aTt (θ̃t − θ?)|aTt (θ? − θt+1)| (|µ̈| ≤ 1)

≤
∑

t∈[T ]\T

µ̇(aTt θt+1)‖at‖W−1
t
‖θ̃t − θ?‖Wt

+ ‖at‖2W−1
t
‖θ̃t − θ?‖Wt

‖θt+1 − θ?‖Wt

≤ C
√
ηT (δ)

∑
t∈[T ]\T

µ̇(aTt θt+1)‖at‖W−1
t

+ C
√
ηT (δ)

∑
t∈[T ]\T

‖at‖2W−1
t
‖θt+1 − θ?‖Wt

≤ C
√
ηT (δ)

∑
t∈[T ]\T

µ̇(aTt θt+1)‖at‖W−1
t

+ C
√
ηT (δ)

∑
t∈[T ]\T

‖at‖2W−1
t
‖θt+1 − θ?‖Wt+1

(Wt �Wt+1)

≤ C
√
ηT (δ)

∑
t∈[T ]\T

µ̇(aTt θt+1)‖at‖W−1
t

+ CηT (δ)
∑

t∈[T ]\T

‖at‖2W−1
t
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The second term in the above inequality is bounded exactly as in R2(T ); this yields:

R1(T ) ≤ C
√
ηT (δ)

∑
t∈[T ]\T

µ̇(aTt θt+1)‖at‖W−1
t

+ CκS2d2 log(T )2 (cf. bound on R2(T ))

≤ C
√
ηT (δ)

√ ∑
t∈[T ]\T

µ̇(aTt θt+1)

√ ∑
t∈[T ]\T

µ̇(aTt θt+1‖at‖2W−1
t

+ CκS2d2 log(T/δ)2 (Cauchy-Schwarz)

≤ CSd log(T/δ)

√ ∑
t∈[T ]\T

µ̇(aTt θt+1) + CκS2d2 log(T/δ)2 (Lemma 9)

≤ CSd log(T/δ)

√ ∑
t∈[T ]\T

µ̇(aTt θ?) + CκS2d2 log(T/δ)2 (by hyp.)

Again, by following the proof of Theorem 1 from Abeille et al. (2021) we get that:∑
t∈[T ]\T

µ̇(aTt θ?) ≤ RT +
∑

t∈[T ]\T

µ̇(aT?,tθ?) .

Assembling the different bounds and solving the implicit inequation on RT yields the announced result.

D.3.1 Proof of Lemma 8

Lemma 8. The following inequality holds:

|T | ≤ CS6κd2 log(T/δ)2 .

Proof. Denote for u ∈ {0, 1}:

Tu :=
{
t ∈ [T ], µ̇(aTt θ̄t) ≥ 2µ̇(aTt θ

u
t )
}
,

so that T = T0 ∪ T1. By Abeille et al. (2021, Lemma 9) we know that:

µ̇(aTt θ̄t) ≤ µ̇(aTt θ
u
t ) exp

(
|aTt (θ̄t − θut )|

)
Therefore by straight-forward manipulations:

t ∈ T =⇒ ∃u ∈ {0, 1} s.t |aTt (θ̄t − θut )| ≥ log(2) . (35)

We can now bound |T | thanks to the form of Θt (which contains θ̄t and θut by construction) and the Elliptical
Potential lemma.

|T | log(2)2 ≤
∑
t∈T

∣∣aTt (θ̄t − θut )
∣∣2

≤
∑
t∈T0

‖at‖2(VHt )−1

∥∥θ̄t − θut ∥∥2

VHt
(Cauchy-Schwarz)

≤ 4βT (δ)
∑
t∈T
‖at‖2(VHt )−1 (θ̄t, θ

u
t ∈ Θt)

≤ 8κβT (δ)d log(T ) (Lemma 9)

We applied Lemma 9 with xs = as/
√
κ, and after checking that in Algorithm 2 the matrix VHt is indeed updated

in rounds t ∈ T . This conclude the proof since βt(δ) ≤ CS6d log(T/δ).
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E Computational Costs

E.1 Proof of Propositions 1 and 4

The goal of this section is to examine the per-round complexity of the algorithms laid out in the main paper.

E.1.1 Per-Round Cost of ECOLog

We start by the main computational bottleneck of our approach, which is the ECOLog procedure (see its sequential
form in Algorithm 4). It involves computing θ′t+1 - an εt-approximation (in `2-norm) of θt+1, and updating the
matrix Wt+1 (along with its inverse which will be used for the planning mechanism). We claim the following
result, a slightly more detailed version of Proposition 2 in the main text.

Proposition 8. Fix t ∈ N+. Assume that Θt is a bounded and closed ellipsoid and εt > 0. Completing round t
of ECOLog can be done within O(d2 log(diam(Θt))/εt)

2) operations.

Proof. Given θ′t+1 the matrix Wt+1 can be updated at cost O(d2) since:

Wt+1 = Wt + µ̇(aTt θ
′
t+1)atat .

The cost of maintaining W−1
t+1 is the same thanks to the Sherman-Morrison formula. The main computational

complexity therefore stems from the computation of θ′t+1. Recall:

θt+1 = arg min
θ∈Θt

1

2 +D
‖θ − θ′t‖

2
Wt

+ `t+1(θ) ,

where D ≥ diamA(Θt). Let Wt = LtL
T
t the Cholesky decomposition of Wt (it exists since Wt is p.s.d). By

denoting zt = LT
t θ
′
t, performing the change of variable z ← LT

t θ and removing constants we obtain:

θt+1 = L−Tt arg min
L−T
t z∈Θ

(
L̄t+1(z) :=

1

2 +D
‖z‖2 +

2

2 +D
zTzt + `t+1(L−Tt z)

)
.

By direct computations:

∇2L̄t+1(z) = (1 +D/2)−1Id + µ̇(aTt L−Tt z)L−1
t ata

T
t L−Tt .

proving that for all z ∈ Rd (using the fact that µ̇ ∈ [0, 1/4] and Wt � Id) :

0 ≺ (1 +D/2)−1 � ∇2L̄t+1(z) � (1 +D/2)−1 + 1/4 .

The function L̄t+1(z) is therefore strongly convex and (5/4 + D/8)−1 well-conditioned. Furthermore, note the
convexity of the constraint {z, L−Tt z ∈ Θ} since Θ itself is convex.

Let θ′t+1 be returned by the Projected Gradient Descent algorithm (see (Hazan, 2016, Algorithm 2) for instance)
ran for T steps, where:

T = (9/4 +D/8) log(diam(Θt)/εt) .

By Lemma 12 this ensures that:

‖θt+1 − θ′t+1‖ ≤ εt ,

which is enough to complete round t of the ECOLog procedure. Because the gradients of L̄t+1(θ) only take
O(d2) operations to compute, the cost of running the Projected Gradient Descent algorithm for T rounds is
O(T (d2 + proj(Θt))). The quantity proj(Θt) is the cost of projection the estimate on the set {L−Tt z ∈ Θt}. This
constraint set is ellipsoidal since Θt is an ellipsoid (by assumption). Projecting on this set therefore boils down
to solving a one-dimensional convex problem (see Lemma 13). Similarly, this program is solved to accuracy ε
in O(d2 log(1/ε)) (it involves some matrix-vector multiplications and triangular inverse solving, hence the d2

dependency). To finish the proof we are therefore left with evaluating the cost of computing the Cholesky factor
Lt. This quantity can be maintained online and updated at cost O(d2) thanks to the rank-one nature of Wt’s
update (see for instance Golub and van Loan (2013, Section 6.5.4)).
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E.1.2 Proof of Proposition 1

Proposition 1 (Computational Cost). Let |A| = K <∞. Each round t of OFU-ECOLog can be completed within
O(Kd2 + d2 log(t)2) operations.

Proof. Recall that in OFU-ECOLog we have Θt ≡ Θ where D = 1 satisfies D ≥ diamA(Θ) (see Proposition 5) and
εt = 1/t. Easy computations further show that diam(Θ) ≤ poly(S); for instance, a crude bound yields that for
all θ1, θ2 ∈ Θ

‖θ1 − θ2‖2 ≤ λτ (δ)−1 ‖θ1 − θ2‖2Vτ
(Vτ ≥ λτ (δ)Id)

≤ 4λτ (δ)−1βτ (δ) (θ1, θ2 ∈ Θ)

= poly(S) (see Equations (10) and (12))

Proposition 8 hence ensures that the cost running the ECOLog routine at round t of OFU-ECOLog is at most
Cd2 log(poly(S)t)2. The optimistic planning mechanism requires performing K matrix-vector products, which
cost is O(Kd2). This finishes the proof.

Remark. The proof discards the cost of the warm-up; its only computational bottleneck is the computation of
θ̂τ . This happens only once and boils down to the minimization of a well-conditioned (after preconditioning by
Vτ ) convex function - which is therefore cheap, typically O(τ log(T )) where τ is the length of the warm-up.

E.1.3 Proof of Proposition 4

Proposition 4. The per-round computational cost of Algorithm 2 is bounded by O
(
κ+Kd2 + d2 log(T )2

)
.

Proof. The proof is essentially the same as for Proposition 1. The main difference is the value of diamA(Θ); it
is now bounded by poly(S) (by using a similar argument that in Appendix E.1.2 when we bounded diam(Θ)).

As discussed in the main text there is however an additional cost inherited from the computations of θ̂Ht .
This requires minimizing a well-conditioned (after preconditioning by VHt ) convex function which gradients are
computed atO(d|Ht|) cost. Lemma 8 proves that |Ht| ≤ κ; therefore the computational overhead isO(κd log(T )).
Note that precisely because of Lemma 8, it turns out that this extra-cost only needs to be paid at most ≈ κ
times (and not at every round as suggested by Proposition 4).

E.2 Computational Costs of Other Approaches

We briefly discuss the computational cost we announced in Table 1 for GLM-UCB Filippi et al. (2010) and OFULog-r

Abeille et al. (2021). Both require the computation of the MLE estimator:

θ̂t+1 = arg min
θ

{
Lt+1(θ) :=

t∑
s=1

`s+1(θ) + λ‖θ‖2
}
.

An efficient way to solve θ̂t+1 to ε accuracy (typically with ε = 1/T to preserve regret guarantees) is to run a
gradient descent (GD) algorithm with Vt-preconditioning. This step is important as in all generality Lt+1 can
be 1/t well-conditioned; running GD directly on Lt+1 will therefore require O(t log(1/ε) to reach ε-accuracy.
Preconditioning allows to reduce this cost to O(log(1/ε)). The cost of computing the gradient of Lt+1 (and
its pre-conditioned version) is still high, typically Ω(t) (more precisely, Ω(d2t) for the preconditioned version

which involves matrix-vector multiplication). Overall, the cost of computing θ̂t+1 to ε accuracy is therefore
O(d2t log(1/ε)).

For GLM-UCB a O(d2K) additional cost is to be added to account for the optimistic planning. Things are worse
for OFULog-r as at round t and for every arm a ∈ A it needs to solve a convex program of the form:

max
θ

{
aTθ s.t Lt+1(θ) ≤ γt(δ)

}
.

Projecting on the set {Lt+1(θ) ≤ γt(δ)} is as costly as computating of θ̂t+1, hence the additional Õ(Kd2T )
computational cost.
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F AUXILIARY RESULTS

The following version of the Elliptical Potential lemma (see, e.g, (Abbasi-Yadkori et al., 2011, Lemma 11))
is a direct consequence of (Faury et al., 2020, Lemma 15) along with the determinant-trace inequality (see
Lemma 10).

Lemma 9 (Elliptical potential). Let λ ≥ 1 and {xs}∞s=1 a sequence in Rd such that ‖xs‖ ≤ X for all s ∈ N.
Further, define Vt :=

∑t
s=1 xsx

T
s + λId. Then:

T∑
t=1

‖xt‖2V−1
t−1
≤ 2d(1 +X2) log

(
1 +

TX2

dλ

)

The following is extracted from (Abbasi-Yadkori et al., 2011, Lemma 10).

Lemma 10 (Determinant-Trace inequality). Let {xs}∞s=1 a sequence in Rd such that ‖xs‖ ≤ X for all s ∈ N,
and let λ be a non-negative scalar. For t ≥ 1 define Vt :=

∑t
s=1 xsx

T
s + λId. The following inequality holds:

det(Vt) ≤
(
λ+ tX2/d

)d
The following statements are standard results from the convex optimization literature.

Lemma 11 (Section 4.2.3 of Boyd and Vandenberghe (2004)). Let f : Rd → R a differentiable and convex
function and C ⊂ Rd a convex set. Further, denote:

x0 := arg min
x∈C

f(x) .

Then for any y ∈ C:

∇f(x0)T(y − x) ≥ 0 .

Lemma 12. Let f : Rd → R a twice differentiable and strongly convex function such that for all x ∈ Rd:

0 � αId � ∇2f(x) � βId .

Let C ⊂ Rd a convex set, x0 = arg minC f(x) and γ = α/β. Let xT+1 be the estimator returned by the projected
gradient descent algorithm (Algorithm 2 in Hazan (2016)) with step-size 1/β run for T rounds. For ε > 0 setting:

T = (1 + γ−1) log (diam(C)/ε) ,

ensures that ‖xT+1 − x0‖ ≤ ε.

Proof. The proof is standard in the convex optimization literature. We remind it briefly for completeness.

f(xT+1) ≥ f(x0) +∇f(x0)T(xT+1 − x0) +
α

2
‖xT+1 − x0‖2

≥ f(x0) +
α

2
‖xT+1 − x0‖2 (Lemma 11)

Furthermore by convexity:

f(xT+1) ≤ f(xT ) +∇f(xT )T(xT+1 − xT ) +
β

2
‖xT+1 − xT ‖2

≤ f(xT ) +∇f(xT )T(x0 − xT )− β

2
‖xT+1 − x0‖2 +

β

2
‖xT − x0‖2

≤ f(x0)− β

2
‖x0 − xT+1‖2 +

β − α
2
‖xT − x0‖2 .
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The second to last inequality uses the definition of xT+1 (given by the projected gradient descent algorithm).
Plugging everything together yields:

‖xT+1 − x0‖2 ≤
β − α
β + α

‖xT − x0‖2

≤
(
β − α
β + α

)T
‖x1 − x0‖2

≤
(

1− 2α

β + α

)T
diam(C)2

≤ exp(−2Tα/(β + α))diam(C)2 .

Solving for ‖xT+1 − x0‖2 ≤ ε2 yields the announced result.

Lemma 13 (Ellipsoidal Projection). Let x ∈ Rd and A ∈ Rd×d a p.s.d matrix. Let y be the projection of x onto
the set {z, ‖z‖2A/2 ≤ 1}. Then y = (Id + λ?A

−1)−1x where λ? is the solution of the following one-dimensional
strongly concave program:

λ? = arg max
λ≥0

−2λ− xTA1/2(λId + A)−1A1/2x .

Proof. By definition of the projection onto a convex set:

y := arg min
1
2‖z‖

2
A−1≤1

{
f(z) :=

1

2
‖x− z‖2

}

Introducing the Lagrangian L(z, λ) := ‖x− z‖2/2 + λ(‖z‖2A−1/2− 1) and by strong duality:

f(y) = min
z

max
λ≥0

L(z, λ)

= max
λ≥0

min
z
L(z, λ) .

Denoting z(λ) = arg minz L(z, λ), direct computation yields that:

z(λ) = (Id + λA−1)−1x .

Replacing into the dual problem, one obtains y = z(λ?) where λ? solves the program:

λ? = arg max
λ≥0

−λ− xTA1/2(λId + A)−1A1/2x/2 .
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G ADDITIONAL EXPERIMENTS

The results reported in Figure 2 complements Figure 1 from the main text, for LogB instances of higher dimension
and varying values of κ. As promised by the regret bounds, the improvement brought by ada-OFU-ECOLog over
its statistically sub-optimal predecessors increases as κ grows (i.e as the reward signal gets more non-linear).
We did not evaluate the performances of OFULog-r in this setting - it is unfortunately too computationally
demanding to complete in reasonable time.
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Figure 2: Numerical simulations on LogB problems of dimensions d = 10 and varying value of κ. Regret curves
are averaged over 100 independent trajectories, for fixed arm-sets of cardinality 200.
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