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Abstract

We consider the problem of identity testing
of Markov chain transition matrices based
on a single trajectory of observations under
the distance notion introduced by Daskalakis
et al. (2018a) and further analyzed by Cher-
apanamjeri and Bartlett (2019). Both works
made the restrictive assumption that the
Markov chains under consideration are sym-
metric. In this work we relax the symme-
try assumption and show that it is possible
to perform identity testing under the much
weaker assumption of reversibility, provided
that the stationary distributions of the refer-
ence and of the unknown Markov chains are
close under a distance notion related to the
separation distance. Additionally, we provide
intuition on the distance notion of Daskalakis
et al. (2018a) by showing how it behaves un-
der several natural operations. In particular,
we address some of their open questions.

1 INTRODUCTION

Efficiently distinguishing whether an unknown
stochastic process is identical to a reference one or
at least ε-far from it under some notion of distance
is a fundamental problem of the field of property
testing. Although the sample complexity in the iid
case under the total variation distance is known to
be of Θ(

√
d/ε2), where d is the support size (see

Waggoner (2015) for a summary), the Markovian case
remains far from being settled. In this setting one has
the transition matrix of some reference Markov chain
and needs to decide, with prescribed confidence, based
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on a single long trajectory sampled from an unknown
Markov chain which started from an arbitrary state,
whether the trajectory was sampled from the reference
Markov chain or from a Markov chain that is at least
ε-far from it, with respect to some notion of distance.

Identity testing in the Markovian setting was applied
by Daskalakis et al. (2017) on the problem of test-
ing whether an observed card shuffling is performed
according to a certain riffle shuffle model. More re-
cently, Matsui et al. (2022) used identity testing of
Markov chains to analyse COVID-19 evolution.

2 RELATED WORK AND
MOTIVATION

Prior work on the problem of identity testing of
Markov chains within the property testing framework
has so far focused on two main notions of distance:
On one hand, Daskalakis et al. (2018a), motivated by
Kazakos (1978), considered a distance notion defined
as the spectral radius of the entry-wise geometric mean
of the transition matrices. Restricting their analysis
to symmetric Markov chains, they obtained an upper
bound of Õ(d/ε+h) on the sample complexity where d
is the state space size, ε is the proximity parameter of
the test, h depends on the hitting time of the reference
Markov chain and the tilde notation hides polyloga-
rithmic factors in all quantities being used. They also
proved a lower bound of Ω(d/ε) and conjectured that
this is the true sample complexity. Subsequently and
still under the symmetry assumption, Cherapanamjeri
and Bartlett (2019) used sparsest-cut techniques to ob-
tain an upper bound of Õ(d/ε4) proving thereby that
the sample complexity is independent of the hitting
time.

In parallel, Wolfer and Kontorovich (2020) considered
a distance between Markov chains that relies on the
infinity norm over stochastic matrices. They showed
that, under this distance, the broader class of ergodic
Markov chains may be addressed and proved an upper
bound on the sample complexity of Θ̃((

√
d + trel)/π?)
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where trel and π? are, respectively, the relaxation time
and the minimum stationary probability of the refer-
ence Markov chain. Subsequently, Chan et al. (2021)
characterized the sample complexity of the problem in
terms of what they refer to as the k-cover time which
enabled them to generalize to all irreducible Markov
chains. At the same time, Fried and Wolfer (2021) too
extended the results of Wolfer and Kontorovich (2020)
to irreducible Markov chains by moving to the α-lazy
versions of the Markov chains under consideration.

3 MAIN CONTRIBUTION

In this work we relax the symmetry assumption of
Daskalakis et al. (2018a) and Cherapanamjeri and
Bartlett (2019), which poses a considerable limitation
in terms of applicability. In the words of Chan et al.
(2021, p. 3), “However, identity testing under this dis-
tance only works for symmetric Markov chains, which
is a quite restricted sub-family of Markov chains [. . . ].
Thus we do not study learning and testing problems
under this distance.”

Our main insight is that the methods of the afore-
mentioned works are not limited to symmetric Markov
chains and that a finer analysis allows to perform iden-
tity testing of Markov chains belonging to the much
larger and natural class of reversible Markov chains.
This generalization significantly enhances the applica-
bility of the distance notion since the class of reversible
Markov chains corresponds to random walks on net-
works (e.g. Levin and Peres (2017, Section 9.1)).

A consequence of the symmetry assumption of
Daskalakis et al. (2018a) and Cherapanamjeri and
Bartlett (2019) is that the stationary distributions of
the Markov chains under consideration are uniform. In
particular, despite the uncertainty regarding the un-
known Markov chain, we do know that its stationary
distribution is equal to the stationary distribution of
the reference Markov chain. In the generalization to
reversible Markov chains this property is lost and that
poses a challenge. Clearly, one possibility is to assume
that the reference and the unknown Markov chains
share the same (but now arbitrary) stationary distri-
bution. However, this assumption can be difficult to
verify empirically since stationary distributions could
be arbitrarily close while being different. We show that
with a more careful analysis and only at a constant
price in terms of the sample complexity, it is possi-
ble to perform identity testing on reversible Markov
chains whose stationary distributions are not too far
apart from each other.

Our main result is stated in the following theorem.
It uses the distance notion between Markov chains of
Daskalakis et al. (2018a) (cf. Definition 4.2) and of a

distance notion between probability distributions that
is closely related to the separation distance (cf. Defi-
nition 4.3):

Theorem 3.1. Suppose we have the transition matrix
P̄ of an irreducible and reversible Markov chain with
minimum stationary probability π? and let ε ∈ (0, 1).
There is a polynomial time algorithm which given ac-
cess to a single trajectory of length Õ

(
1/ε4π?

)
from

an unknown irreducible and reversible Markov chain
P with a stationary distribution π that satisfies∣∣∣∣∣∣π

π̄
− 1
∣∣∣∣∣∣
∞
≤ ε

2
,

distinguishes between

P = P̄ and Distance(P, P̄ ) ≥ ε,

with probability of success at least 3/5.

Remark 3.2. We make the following observations:

1. When the Markov chains are symmetric, π? = 1/d
and our upper bound of Õ

(
1/ε4π?

)
takes the form

of Õ
(
d/ε4

)
, restoring the result of Cherapanam-

jeri and Bartlett (2019, Theorem 10). Thus, our
generalization comes with no additional cost in
terms of the sample complexity.

2. Similar to the symmetric case, the upper bound
of Õ

(
1/ε4π?

)
involves only efficiently computable

parameters of the reference Markov chain and,
in particular, does not depend on the unknown
Markov chain.

3. Having an upper bound on the mixing time of
the unknown Markov chain significantly simpli-
fies the problem. Indeed, suppose the mixing
times of both the reference as well as the unknown
Markov chain are upper bounded by T . By thin-
ning the process and keeping pairs of observations
(Xt, Xt+1) separated roughly by Õ(T ) steps, a
trajectory of length Õ(Td/ε) yields Õ(d/ε) almost
independent pairs. This suffices to perform iden-
tity testing on the edge measures with respect to
the Hellinger distance which dominates the one
in Definition 4.2, allowing to solve the original
problem by reduction. In particular, under this
assumption, the requirement that the stationary
distributions are close is redundant. Addition-
ally, this shows that the dependency on π? in
our bound is not strictly necessary in this case.
This work is concerned with the more challenging
setting where the mixing time of the unknown
Markov chain is unknown, precluding this ap-
proach.

4. Both Daskalakis et al. (2018a) and Cherapanam-
jeri and Bartlett (2019) make use of the hitting
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time to bound the amount of time needed to visit
every state “enough” times, which is, in the sym-
metric case, the same for all states. In contrast,
in the reversible case, “enough” depends on the
weight of each state in the stationary distribution
and it is not clear how the hitting time could be
used in this case. We avoid the use of the hit-
ting time by applying the concentration bounds
of Paulin (2015).

5. The algorithm of Cherapanamjeri and Bartlett
(2019) has a polynomial time complexity and this
is unchanged in our generalization.

4 PRELIMINARIES

For d ∈ N we denote [d] = {1, 2, . . . , d} and write ∆d

for the set of all probability distributions over [d]. Vec-
tors will be written as row-vectors and for x ∈ Rd and
i ∈ [d] we write x(i) for the ith entry of x. Similarly,
if P is a square matrix of size d and i, j ∈ [d], we write
P (i, j) for the entry at the ith row and the jth column
of P . We refer to transition matrices of Markov chains
simply as Markov chains.

Irreducible and reversible Markov chains. De-
note by Mirr (resp. Mirr,rev,Merg,rev) the set of all
irreducible (resp. irreducible and reversible, ergodic
and reversible) Markov chains on the state space [d].
Let P ∈ Mirr, µ ∈ ∆d,m ∈ N and i1, . . . , im ∈ [d]. By
(Xt)t∈[m] ∼ (P, µ) we mean

P((X1, . . . , Xm) = (i1, . . . , im)) = µ(i1)

m−1∏
t=1

P (it, it+1).

For an entry-wise positive vector π ∈ Rd let 〈·, ·〉π be
the inner product on Rd given by

〈x, y〉π =
∑
i∈[d]

x(i)y(i)π(i), ∀x, y ∈ Rd

(cf. (Levin and Peres, 2017, p. 153)) and let || · ||2,π
be the induced norm. We write L2(π) :=

(
Rd, 〈·, ·〉π

)
for the corresponding Hilbert space. For P ∈ Mirr

with stationary probability π, the edge measure Q is
defined by Q = diag(π)P , where diag(π) is the diag-
onal matrix whose entries correspond to π (cf. Levin
and Peres (2017, p. 88)). Define the time reversal
of P by P ∗ = diag(π)−1PT diag(π) (e.g. Levin and
Peres (2017, 1.33)) and the multiplicative reversibiliza-
tion of P by P † = P ∗P (e.g. Fill (1991, 2.2)). Fi-
nally, the spectral gap γ of P ∈ Mirr,rev is defined by
γ = 1 − λ2 where λ2 is the second largest eigenvalue
of P (cf. Levin and Peres (2017, p. 154)).

Censored Markov chains. Let (Xt)t∈N be a
Markov chain with transition matrix P and let ∅ 6=
S ⊆ [d]. Consider the stochastic process (Xτt)t∈N
defined as follows: τ1 = inf{i ∈ N | Xi ∈ S} and
τt+1 = inf{i ∈ N | i > τt, Xi ∈ S} for every t ∈ N. It
is well known that (Xτt)t∈N is a Markov chain. It is
called the chain induced on S (Levin and Peres, 2017,
Example 13.19) or the watched chain on S (Lévy, 1951,
1952, 1958) and we shall denote its transition matrix
by Pcen(S). There is an explicit description of Pcen(S)
in terms of certain submatrices of P that uses the fol-
lowing notation: Let R, T ⊆ [d]. We write PR,T for
the matrix obtained from P by keeping only the rows
and columns with indices in R and T , respectively. If
R = T we write PR instead of PR,R. With this nota-
tion it holds

Pcen(S) = PS +

∞∑
t=1

PS,[d]\SP
t
[d]\SP[d]\S,S

(e.g. Kemeny et al. (2012, Lemma 6-6)). In addition,
Pcen(S) is irreducible (resp. ergodic) if P is irreducible
(resp. ergodic) and has the stationary distribution πS
given by

πS(i) =
π(i)

π(S)
, ∀i ∈ S

where π(S) =
∑
i∈S π(i) (e.g. (Zhao and Liu, 1996,

Lemma 2)). The following lemma generalizes to re-
versible Markov chains the statement in Cherapanam-
jeri and Bartlett (2019, Lemma 14) according to which
Pcen(S) is symmetric if P is symmetric. Its proof is
given in Appendix A.

Lemma 4.1. Let P ∈ Mirr,rev and let S ⊆ [d]. Then
Pcen(S) ∈Mirr,rev.

Statistical distances. The Hellinger distance and
the total variation distance between two distributions
p, q ∈ ∆d are given by

d2
Hel(p, q) =

1

2

∑
i∈[d]

(√
p(i)−

√
q(i)

)2

=1−
∑
i∈[d]

√
p(i)q(i)

and

dTV(p, q) =
1

2

∑
i∈[d]

|p(i)− q(i)|,

respectively.

It is well known (e.g. Gibbs and Su (2002, p. 13)) that

d2
Hel(p, q) ≤ dTV(p, q) ≤

√
2dHel(p, q). (1)
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For P, P̄ ∈ Mirr we denote by P ◦ P̄ the Hadamard
product of P and P̄ (e.g. Horn and Johnson (2012,
Definition 7.5.1)) and by

√
P the square matrix of size

d such that

√
P (i, j) =

√
P (i, j), ∀i, j ∈ [d].

For p, q ∈ ∆d, we define p ◦ q and
√
p analogously.

The following distance between two Markov chains was
proposed by Daskalakis et al. (2018a, p. 4) who mo-
tivated it by noticing that (a) it vanishes if and only
if the Markov chains share an identical essential com-
municating class and (b) it captures the ability to dis-
tinguish between the Markov chains based on a single
long trajectory (Daskalakis et al., 2018a, Claims 1 and
2). The distance relies on the spectral radius ρ(P ) of
a square matrix P defined by

ρ(P ) = max{|λ| | λ is an eigenvalue of P}

(e.g. Horn and Johnson (2012)).

Definition 4.2. Let P and P̄ be two Markov chains.
Define

Distance(P, P̄ ) = 1− ρ
(√

P ◦ P̄
)
.

We will perform identity testing on reversible Markov
chains whose stationary distributions are not too far
from each other under the following distance notion,
which is closely related to the separation distance (e.g.
Levin and Peres (2017, 6.7) or Aldous and Diaconis
(1987, p. 72)):

Definition 4.3. Let µ, ν ∈ ∆d such that ν is entry-
wise positive. Denote by 1 the vector in Rd that has
all entries equal to 1. Define∣∣∣∣∣∣µ

ν
− 1
∣∣∣∣∣∣
∞

:= max
i∈[d]

∣∣∣∣µ(i)

ν(i)
− 1

∣∣∣∣ .
5 STATE SPACE PARTITIONING

AND COMPONENT ANALYSIS

The main insight of Cherapanamjeri and Bartlett
(2019) that enables them to improve upon Daskalakis
et al. (2018a) and discard the dependency on the hit-
ting time is that in order to distinguish between two
different Markov chains it is sufficient to analyse tra-
jectories in subsets of states that are internally well
connected (see Corollary 5.4 and the paragraph pre-
ceding it). To achieve this they devise a new algorithm
for partitioning of the state space [d]. This algorithm,
upon receiving a reference Markov chain and a toler-
ance parameter, returns a tuple (S, T ) where S is a
set of well connected subsets of [d] (components) and

T is a subset of [d] in which the Markov chain does not
spend too much time. The subsets in S, together with
T , form a partition of [d]. The Markov chain identity
testing is then reduced to iid identity testing of distri-
butions induced by these components. In this section
we introduce the machinery and prove its properties.

5.1 Spectral and probabilistic properties of
the components

Recall that for P ∈ Mirr,rev and ν ∈ ∆d the matrix
diag(ν)P encodes a distribution over [d]2. If ν = π,
where π is the stationary distribution of P , the joint
distribution diag(ν)P corresponds to the edge measure
Q. To some component S ⊆ [d] we wish to similarly
associate a probability distribution over which we will
later apply iid identity testing. To this end, we first
consider diag(νS)PS . Second, we merge all the outgo-
ing transitions from S, i.e., all (i, j) ∈ S× [d] such that
j /∈ S, into a single symbol denoted by ∞. This is the
idea behind the following

Definition 5.1. Let P be a Markov chain and let
ν ∈ ∆d. For S ⊆ [d] such that ν(S) > 0 we denote
by Distribution(S, P, ν) the probability distribution on
the set S2 ∪ {∞} defined as follows:

Distribution(S, P, ν)(i, j) =
ν(i)P (i, j)

ν(S)
, ∀i, j ∈ S and

Distribution(S, P, ν)(∞) =

1−
∑
i,j∈S

Distribution(S, P, ν)(i, j).

Let P, P̄ ∈Mirr,rev with stationary distributions π, π̄,
respectively, where we assume that P̄ is given and that
P is unknown. A key property is that a positive dis-
tance between P and P̄ results in a positive Hellinger
distance between the probability distributions induced
by the corresponding edge measures over a component
S, provided that in P̄ there is enough weight on the
transitions between states in S (cf. Cherapanamjeri
and Bartlett (2019, Lemma 13)). But, since in the
reversible case the stationary distributions are, in gen-
eral, not uniform, it is not clear how to sample from
the unknown edge measure. We solve this problem by
sampling from the joint distribution R = diag(π̄)P .
This approach is guaranteed to succeed if π is not too
far from π̄. This is the content of the following lemma.
A sketch of its proof is given here while the full proof
is given in Appendix B.

Lemma 5.2. Let P, P̄ ∈Mirr,rev with stationary dis-
tributions π, π̄, respectively. Let ε ∈ (0, 1) be such that
Distance(P, P̄ ) ≥ ε and∣∣∣∣∣∣π

π̄
− 1
∣∣∣∣∣∣
∞
≤ ε

2
.



Sela Fried, Geoffrey Wolfer

Let S ⊆ [d] such that∑
i,j∈S

Distribution(S, P̄ , π̄)(i, j) ≥ 1− ε

16
.

Then

d2
Hel(Distribution(S, P, π̄),Distribution(S, P̄ , π̄)) ≥

ε2

128
.

Proof sketch. Let Q̄ = diag(π̄)P̄ and R = diag(π̄)P .
From the reversibility of P, P̄ it follows that√
P ◦ P̄ is self-adjoint in L2

(√
π ◦ π̄

)
. Applying the

Courant–Fischer principle (e.g. Helmberg (2008, p.
219)), taking u to be the characteristic function of S
and using the AM-GM inequality we obtain

ρ
(√

P ◦ P̄
)

= max
u6=0

〈
√
P ◦ P̄ u, u〉√π◦π̄
||u||2

2,
√
π◦π̄

≥
∑
i,j∈S

√
R(i, j)

π̄(S)

√
Q̄(i, j)

π̄(S)

√
π(i)

π̄(i)

√
π̄(S)

π(S)
.

The assumption on π
π̄ guarantees that

√
π(i)
π̄(i)

√
π̄(S)
π(S) is

not too small. The claim follows by distinguishing
between two cases.

Connectivity (or conductance) measures how a
Markov chain navigates among its states and is con-
trolled by the Cheeger constant (cf. Levin and Peres
(2017, p. 88)):

Definition 5.3. Let P ∈Mirr,rev with stationary dis-
tribution π and edge measure Q. Let I ⊆ [d] and
S $ I. The bottleneck ratio of S in I is defined by

Φ(P, S, I) =

∑
i∈S,j∈I\S Q(i, j)

min{π(S), π(I \ S)}

and the Cheeger constant of P is defined by

Φ?(P ) = min
S$[d]

Φ(P, S, [d]).

We shall refer to a component S ⊆ [d] for which the
condition in the following corollary is satisfied with
some α > 0 as well connected. A well connected com-
ponent allows to control the spectral gap of the in-
duced censored Markov chain:

Corollary 5.4. Let P ∈ Mirr,rev with stationary dis-
tribution π. Let S ⊆ [d] and α ≥ 0 be such that

Φ(P,R, S) ≥ α, ∀R $ S.

Then γ ≥ α2

2 where γ is the spectral gap of Pcen(S).

Proof. Let Q be the edge measure of P and suppose

R $ S is such that π(R) ≤ π(S)
2 . Since Pcen(S)(i, j) ≥

P (i, j) for every i, j ∈ S, we obtain

Φ(Pcen(S), R, S) =

∑
i∈R,j∈S\R

π(i)
π(S)Pcen(S)(i, j)

π(R)/π(S)

≥
∑
i∈R,j∈S\RQ(i, j)

π(R)

= Φ(P,R, S) ≥ α.

Thus, Φ?(Pcen(S)) ≥ α. By Cheeger’s inequality (Sin-
clair and Jerrum, 1989, Lemma 3.3), the spectral gap
γ of Pcen(S) satisfies γ ≥ Φ?(Pcen(S))2/2.

Recall that the state space partitioning algorithm, in
addition to the well connected components, returns a
subset T ⊆ [d] comprising of states that belong to no
component. The following lemma bounds the largest
eigenvalue of the submatrix PT . Its proof is a variation
of the proof of (Sinclair and Jerrum, 1989, Lemma 3.3)
and is given in Appendix C. The bound is then used
in Lemma 5.6 to upper bound the time the Markov
chain spends in T . The proof of Lemma 5.6 is given
in Appendix D.

Lemma 5.5. Let P ∈ Mirr,rev with stationary distri-
bution π and edge measure Q. Let T $ [d] and α ≥ 0
be such that∑

i∈R,j∈[d]\RQ(i, j)

π(R)
≥ α, ∀R ⊆ T.

Let λ denote the largest eigenvalue of PT . Then

λ ≤ 1− α2

2
.

Lemma 5.6. Let P ∈ Mirr,rev with stationary distri-
bution π and edge measure Q. Let T $ [d] and α > 0
be such that∑

i∈R,j∈[d]\RQ(i, j)

π(R)
≥ α, ∀R ⊆ T.

Denote (πT )? = mini∈T {π(i)}. Let δ ∈ (0, 1) and sup-

pose m ≥ Ω

(
log 1

(πT )?
log 1

δ

α2

)
. Then

P

(
m∑
t=1

1{Xi /∈ T} ≥ Ω

(
mα2

log 1
(πT )?

))
≥ 1− δ.

5.2 Markov chain partitioning algorithm

In Cherapanamjeri and Bartlett (2019) an algorithm
for partitioning the state space [d] is devised which,
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upon receiving a reference Markov chain and a tol-
erance parameter, returns two objects: A set S of
subsets of [d] in which the iid identity tester will be
applied and T ⊆ [d] in which the Markov chain does
not spend too much time. The properties of these two
objects are given in the following theorem. The algo-
rithm (and its analysis) needs to be modified in order
to be applicable beyond the symmetric case. In the
rest of the section we give only the details whose mod-
ification was more involved. The reader is referred to
Cherapanamjeri and Bartlett (2019, Appendix A) for
the complete description and analysis of the algorithm.

Theorem 5.7. Let P ∈ Mirr,rev with stationary dis-
tribution π and edge measure Q. Let β ∈ (0, 1). There
exists an algorithm that returns a tuple (S, T ) such
that S ⊆ [d],∀S ∈ S, T ⊆ [d] and S ∪ {T} is a parti-
tion of [d]. Furthermore, for every S ∈ S it holds:

(1)
∑
i,j∈S Q(i,j)

π(S) ≥ 1− β.

(2) Φ(P,R, S) ≥ Ω
(

β
log2 d

)
, ∀R $ S.

(3)
∑
i∈R,j∈[d]\RQ(i,j)

π(R) ≥ Ω
(

β
log d

)
, ∀R ⊆ T .

Definition 5.8. Let S $ [d]. The cut metric associ-
ated with S is defined by

δS(i, j) =

{
0 if i, j ∈ S or i, j ∈ [d] \ S
1 otherwise.

Definition 5.9. Let P ∈Mirr,rev with stationary dis-
tribution π and edge measure Q. Let I ⊆ [d] and
T $ I. The sparsest cut with component constraints
(SPCCC) is defined as

S∗ = arg min
T⊆S$I

∑
i,j∈I Q(i, j)δS(i, j)∑
i,j∈I π(i)π(j)δS(i, j)

.

The corresponding linear programming relaxation is
given by

min
∑
i,j∈I

Q(i, j)δij such that

δii = 0, ∀i ∈ I

δij ≤ δik + δkj , ∀i, j, k ∈ I∑
i,j∈I

π(i)π(j)δij = 1

δij ≥ 0

δij = 0, ∀i, j ∈ T (2)

δik = δjk, ∀i, j ∈ T, k ∈ I.

Theorem 5.10. Given an instance of the SPCCC
problem there exists a polynomial time algorithm
FindComp that returns S′ $ I such that S′ ∩ T = ∅
and ∑

i,j∈I Q(i, j)δS′(i, j)∑
i,j∈I π(i)π(j)δS′(i, j)

≤ O(log d) min
T⊆S$I

∑
i,j∈I Q(i, j)δS(i, j)∑
i,j∈I π(i)π(j)δS(i, j)

.

(3)

Proof. The proof of Linial et al. (1995, Theorem 4.1)
literally extends to our case (the symmetry of Q(i, j)
due to reversibility and the symmetry of π(i)π(j) are
crucial) and establishes (3) for some S′ $ I. We shall
provide only the details necessary to prove the claim
regarding the intersection: First, notice that it suffices
to prove that either S′ ∩ T = ∅ or (I \ S′) ∩ T = ∅
since the left hand-side of (3) is the same for both
S′ and I \ S′ and we let the algorithm return the set
satisfying the intersection condition. Now, denote by
δ the minimizing metric that is found by the linear
program above. By Bourgain’s metric-embedding the-
orem (e.g. Linial et al. (1995, Corollary 3.4)), there
are x1, . . . , xd ∈ Rm where m = O(log2 d) such that
for every i, j ∈ I it holds

Ω

(
1

log d

)
δij ≤ ||xi − xj ||1 ≤ δij .

It follows from this, together with the constraint (2),
that xi = xj for every i, j ∈ T . Recall that by the
proof of Linial et al. (1995, Theorem 4.1), S′ = {i ∈
I | xi(r) = 1} for some r ∈ [m]. Conclude that either
T ⊆ S′ or T ⊆ I \ S′.

Corollary 5.11. In the setting of Theorem 5.10, for
S′ returned by the FindComp algorithm it holds

Φ(P, S′, I) ≤ O(log d) min
T⊆S$I

Φ(P, S, I).

Proof. Let S $ I. It is easy to see that∑
i,j∈I Q(i, j)δS(i, j)∑
i,j∈I π(i)π(j)δS(i, j)

=

∑
i∈S,j∈I\S Q(i, j)

π(S)π(I \ S)
. (4)

Now, assume that π(I)
2 ≤ π(S) ≤ π(I). Then

1 ≤ π(I) min{π(S), π(I \ S)}
π(S)π(I \ S)

≤ 2.

By symmetry, this holds also if π(I)
2 ≤ π(I \S) ≤ π(I).

Conclude that

π(I)
∑
i∈S,j∈I\S Q(i, j)

2π(S)π(I \ S)
≤ Φ(P, S, I)

≤
π(I)

∑
i∈S,j∈I\S Q(i, j)

π(S)π(I \ S)
.

(5)
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The claim follows by combining (3), (4) and (5) to-
gether.

5.3 Sample generation

Both Daskalakis et al. (2018a) and Cherapanamjeri
and Bartlett (2019) reduce the Markov chain identity
testing to identity testing of distributions in the iid
case and use a black box tester which we will refer to as
iidTester (cf. (Daskalakis et al., 2018b, Algorithm 1)).
The algorithm accepts the arguments (Yt)t∈[m], p̄, ε, δ
and returns either 0 or 1. The guarantees on the
tester’s performance as well as the meaning of each of
its arguments is given in the following lemma, which
is used in Lemma 5.16.

Lemma 5.12. Suppose we have the description of a
probability distribution p̄ ∈ ∆d and let ε, δ ∈ (0, 1).
Then there is a tester called iidTester such that if it is

given m ≥ Ω
(√

d log 1
δ

ε2

)
iid samples (Yt)t∈[m] from an

unknown probability distribution p ∈ ∆d the following
holds with probability at least 1− δ:

iidTester
(
(Yt)t∈[m], p̄, ε, δ

)
=

{
0 if p = p̄

1 if dHel(p, p̄) ≥ ε.

The iid sampling process from the (Markovian) ob-
served trajectory comprises of two stages: First, sam-
ple from [d] according to the stationary distribution
π̄ of the reference Markov chain. Second, record the
transitions from these states in the trajectory (cf.
Daskalakis et al. (2018a, pp. 12-13)). This process
is Cherapanamjeri and Bartlett (2019, Algorithm 1)
and will be referred to as iidGenerator. Notice that
when it is applied on S ⊆ [d], instead of sampling uni-
formly and iid from S, which corresponds to the sym-
metric case, it needs to sample from S according to
the distribution π̄S . We elaborate on the iidGenerator
algorithm in Appendix H.

Following Daskalakis et al. (2018a), Cherapanamjeri
and Bartlett (2019, Lemma 19) use a bound involving
the hitting time to guarantee enough visits of each
state in a component. It is not immediately clear how
this approach generalizes to the reversible case. We,
instead, exploit the concentration bounds of Paulin
(2015) that rely on the spectral gap. This comes at no
additional cost and arguably simplifies the analysis.

The following two lemmas give guarantees for the suc-
cess of this iid sampling process. Their proofs are given
in Appendix E and F.

Lemma 5.13. Let P ∈ Merg,rev with stationary dis-
tribution π and spectral gap γ. Let µ ∈ ∆d and
δ ∈ (0, 1). Assume (Xt)t∈N ∼ (P, µ). For m ∈ N
and i ∈ [d] denote by Nm(i) =

∑
t∈[m] 1{Xt = i} the

number of occurrences of state i in (Xt)t∈[m]. Suppose

m ≥ Ω
(

log 1
δπ?

π?γ

)
. Then

P
(
Nm(i) ≥ π(i)

2
m, ∀i ∈ [d]

)
≥ 1− δ.

Lemma 5.14. Let m ∈ N and suppose (Yt)t∈[m] are
iid sampled according to a distribution p ∈ ∆d. Let
v ∈ {0, 1, . . . ,m}d be the histogram of (Yt)t∈[m] and let

δ ∈ (0, 1). Assume m ≥ Ω
(

log d
δ

p?

)
. Then

P (v(i) ≤ 2mp(i), ∀i ∈ [d]) ≥ 1− δ.

In Lemma 5.16 it is assumed that there is access to
enough iid samples from Distribution(S, P, π̄). The
following lemma upper bounds the number of visits
to S that guarantees this. Due to the way the identity
tester of the Markov chains is defined, such a guaran-
tee is only needed in the case that P = P̄ .

Lemma 5.15. Let P ∈ Merg,rev with stationary dis-
tribution π. Let ε ∈ (0, 1) and let (S, T ) be the tu-
ple returned by the state space partitioning algorithm
(Theorem 5.7) applied on P and β = ε. Let µ ∈ ∆d

and suppose (Xt)t∈N ∼ (P, µ). Then it is possible, with
probability at least 9

10 , to generate m
4 iid samples from

Distribution(S, P, π), for every S ∈ S that is visited at

least m ≥ Ω

(
log4 d log d

(πS)?

ε2(πS)?

)
times.

Proof. Let S ∈ S. By Theorem 5.7 (2),

Φ(P,R, S) ≥ Ω

(
ε

log2 d

)
, ∀R $ S.

By Corollary 5.4, γ ≥ Ω
(

ε2

log4 d

)
where γ is the spec-

tral gap of Pcen(S). Thus, by Lemma 5.13 applied
on Pcen(S) and δ = 1

20d , in a trajectory of length

m ≥ Ω

(
log4 d log 20d2

(πS)?

ε2(πS)?

)
each state i ∈ S is visited at

least π(i)
2π(S)m times, with probability at least 1 − 1

20d .

By Lemma 5.14, applied on p = πS and δ = 1
20d , if m

satisfies the above inequality, then

P
(
v(i) ≤ 2m

π(i)

π(S)
, ∀i ∈ S

)
≥ 1− 1

20d
.

Intersecting the above two events, we conclude that,
with probability at least 1− 1

10d , we can to generate m
4

iid samples from Distribution(S, P, π). By the union
bound, with probability at least 9

10 , this is true for
every S ∈ S that is visited at least m times.
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5.4 Reduction to the iid case

The following lemma shows that in order to perform
identity testing of Markov chains it suffices to perform
identity testing in the iid case over any component in
S that is visited enough times:

Lemma 5.16. Let P, P̄ ∈Mirr,rev with stationary dis-
tributions π, π̄, respectively, and let ε ∈ (0, 1). Assume
that ∣∣∣∣∣∣π

π̄
− 1
∣∣∣∣∣∣
∞
≤ ε

2
.

Let (S, T ) be the tuple returned by the state space par-
titioning algorithm (Theorem 5.7) applied on P̄ and
β = ε

16 . Let µ ∈ ∆d and suppose (Xt)t∈N ∼ (P, µ).

Let S ∈ S and assume that we have m ≥ Ω
(
|S| log d
ε2

)
iid samples (Yt)t∈[m] from Distribution(S, P, π̄). Then,

with probability at least 9
10 ,

iidTester

(
(Yt)t∈[m], Distribution(S, P̄ , π̄),

ε2

128
,

1

10d

)

=

{
0 if P = P̄

1 if Distance(P, P̄ ) ≥ ε.

Proof. Let Q̄ be the edge measure of P̄ . By Theorem
5.7 (1),∑

i,j∈S
Distribution(S, P̄ , π̄)(i, j) =

∑
i,j∈S Q̄(i, j)

π(S)

≥1− ε

16
.

By Lemma 5.2,

d2
Hel(Distribution(S, P, π̄),Distribution(S, P̄ , π̄)) ≥

ε2

128
.

Since |S| ≤ d, the claim follows from a union bound
and the guarantees of Lemma 5.12.

6 PROOF OF THEOREM 3.1

To avoid periodicity issues, we exploit the fact (Propo-
sition 7.1 (i)) that the distance between two Markov
chains does not change much if the Markov chains are
replaced by their respective α-lazy versions, as long as
α is not too big. Thus, we may assume that P, P̄ are
ergodic, at the cost of replacing ε with ε

2 . Let (S, T ) be
the tuple returned by the state space partitioning al-
gorithm (Theorem 5.7) applied on P and β = ε. First
assume that P = P̄ . Let Q be the edge measure of P .
By Theorem 5.7 (3),∑

i∈R,j∈[d]\RQ(i, j)

π(R)
≥ Ω

(
ε

log d

)
, ∀R ⊆ T.

Applying Lemma 5.6 with α = ε
log d and δ = 1

10 we

have that if m ≥ Ω

(
log6 d log 1

π?
log d

π?

ε4π?

)
then

P

(
m∑
t=1

1{Xt ∈
⋃
S∈S

S} ≥ Ω

(
log4 d log d

π?

ε2π?

))
≥ 9

10
.

It holds∑
S∈S

1

(πS)?
=
∑
S∈S

π(S)

mini∈S{π(i)}
≤
∑
S∈S

π(S)

π?
=

1

π?
.

Thus, by the strong form of the pigeonhole princi-
ple (e.g. Brualdi (1977, Theorem 2.2.1)), at least one

S ∈ S is visited more than Ω

(
log4 d log d

π?

ε2(πS)?

)
times. By

Lemma 5.15, with probability at least 9
10 , we may sam-

ple

Ω

(
log4 d log d

π?

ε2(πS)?

)
≥ Ω

(
|S| log d

ε2

)
iid samples from

Distribution(S, P, π̄) = Distribution(S, P̄ , π̄).

Applying Lemma 5.16 we identify that P = P̄ with
probability of success at least 9

10 . We conclude that,
in this case, the tester succeeds with probability at
least 7

10 .

Assume now that Distance(P, P̄ ) ≥ ε. In this case the
algorithm fails only if the iid sampling succeeds in at
least one component S ∈ S but the iid tester fails on
S. The probability that this happens is upper bounded
by 1

10 (Lemma 5.12).

7 SOME PROPERTIES OF THE
DISTANCE

The purpose of this section is to develop intuition for
the distance notion considered in this work (Defini-
tion 4.2). This will be done by establishing its be-
haviour under several natural operations, two of which
were inspired by Daskalakis et al. (2018a, Open Ques-
tions 2 and 3). The proof of the following proposition
is given in Appendix G .

Proposition 7.1. Let P, P̄ ∈ Mirr with stationary
distributions π, π̄, time reversals P ∗, P̄ ∗ and multi-
plicative reversibilizations P †, P̄ †, respectively. Let
ε ∈ (0, 1).

(i) Assume that Distance(P, P̄ ) ≥ ε. Let α = ε2

2
√

2

and consider the α-lazy versions of P and P̄ :

P ′ = αI + (1− α)P,

P̄ ′ = αI + (1− α) P̄ ,

respectively. Then Distance(P ′, P̄ ′) ≥ ε
2 .
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(ii) It holds

Distance(P ∗, P̄ ∗) = Distance(P, P̄ ).

(iii) Assume that P, P̄ are reversible and that∣∣∣∣∣∣π
π̄
− 1
∣∣∣∣∣∣
∞
< ε.

Let α ∈ [0, 1] and denote P (α) = αP +(1−α)P̄ .
Then

Distance(P, P (α)) ≥ 1−
√
α− 2

√
1− α
1− ε

+ 2

√
1− α
1− ε

Distance(P, P̄ ).

(iv) Let k ∈ N. Then

1− (1−Distance(P, P̄ ))k ≥ Distance(P k, P̄ k).

(v)
Distance(P k, P̄ k) −→

k→∞
d2

Hel(π, π̄).

(vi) It holds

Distance(P †, P̄ †) ≤ 2Distance(P, P̄ ).

(vii) There exist irreducible and reversible Markov
chains that are arbitrarily close under the dis-
tance such that the Hellinger distance between
their stationary distributions is bounded away
from 0.

Remark 7.2. Property (i) exhibits the robustness
of the distance under transitions to α-lazy versions.
This allows us to handle arbitrary irreducible Markov
chains, although we invoke the concentration bounds
of Paulin (2015) which hold only for ergodic Markov
chains.

Property (iii) addresses Daskalakis et al. (2018a, Open
Questions 2) asking how the distance between two
Markov chains changes when one substitutes one of
them with a convex combination of both.

Property (iv) addresses Daskalakis et al. (2018a, Open
Questions 3) asking how the distance between two
Markov chains is related to the distance between the
same Markov chains being observed only at intervals
of size k.

Property (v) is related to the previous one and shows
that with increasing k it becomes increasingly harder
to distinguish between two Markov chains that have
the same stationary distribution.

Reversible Markov chains enjoy favourable properties.
One way to make an irreducible Markov reversible is

by moving to its multiplicative reversibilization. It
is therefore natural to ask how the distance behaves
under this operation. This is addressed in (vi).

Finally, property (vii) reflects the fact that if two re-
ducible Markov chains share an identical essential com-
municating class, the distance between them is 0 (cf.
Daskalakis et al. (2018a, Claim 1)).

8 CONCLUSION

In this work we have replaced the restrictive symme-
try assumption made by Daskalakis et al. (2018a) and
Cherapanamjeri and Bartlett (2019) with the more
natural one of reversibility and showed that it is pos-
sible to perform identity testing in this class under the
distance notion between Markov chains introduced by
Daskalakis et al. (2018a), provided that the station-
ary distributions of the reference and of the unknown
Markov chains are not too far from each other under
a certain distance notion between probability distri-
butions. In addition, we provided intuition regarding
the distance notion between Markov chains by mak-
ing statements on its behaviour under several natural
operations. The next step in our research agenda in
identity testing of Markov chains is to investigate the
possibility of removing the assumption on the closeness
of the stationary distributions of the reference and the
unknown chain Markov chains.

Societal impact The problem of goodness-of-fit is
fundamental in statistics. We do not foresee any new
negative societal impact arising from this research that
has not been well-understood by now.
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Supplementary Material:
Identity Testing of Reversible Markov Chains

A PROOF OF LEMMA 4.1

Suppose P is reversible, i.e. P satisfies the detailed balance equation (e.g. Levin and Peres (2017, (1.30)):

Q(i, j) = Q(j, i), ∀i, j ∈ [d].

Assume without loss that S = [k] for some k ∈ [d] and let i, j ∈ [k]. We have

πS(i)Pcen(S)(i, j) =
π(i)

π(S)

(
PS +

∞∑
t=1

PS,[d]\SP
t
[d]\S]P[d]\S,S

)
(i, j)

=
1

π(S)

(
π(i)PS(i, j) + π(i)

( ∞∑
t=1

PS,[d]\SP
t
[d]\SP[d]\S,S

)
(i, j)

)

=
1

π(S)

(
π(j)PS(j, i) +

∞∑
t=1

(
π(i)PS,[d]\SP

t
[d]\SP[d]\S,S

)
(i, j)

)
. (6)

Now, let t ∈ N. We have

(
π(i)PS,[d]\SP

t
[d]\SP[d]\S,S

)
(i, j) =

d∑
l=k+1

d∑
m=k+1

π(i)P (i, l)P t(l,m)P (m, j)

=π(j)

d∑
l=k+1

d∑
m=k+1

P (l, i)P t(m, l)P (j,m)

=
(
π(j)PS,[d]\SP

t
[d]\SP[d]\S,S

)
(j, i).

Thus,

(6) =
1

π(S)

(
π(j)PS(j, i) +

∞∑
t=1

(
π(j)PS,[d]\SP

t
[d]\SP[d]\S,S

)
(j, i)

)
=πS(j)Pcen(S)(j, i).

B PROOF OF LEMMA 5.2

It is easy to see that
√
P ◦ P̄ is self-adjoint in L2

(√
π ◦ π̄

)
. Let 1S ∈ Rd be given by

1S(i) =

{
1 i ∈ S
0 otherwise,

∀i ∈ [d].
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Let Q̄ = diag(π̄)P̄ be the edge measure and let R = diag(π̄)P . Then

ρ
(√

P ◦ P̄
)

= max
u 6=0

〈
√
P ◦ P̄ u, u〉√π◦π̄
||u||2

2,
√
π◦π̄

(i)

≥
〈
√
P ◦ P̄1S ,1S〉√π◦π̄
||1S ||22,√π◦π̄

=

∑
i,j∈S

√
R(i, j)

√
Q̄(i, j)

√
π(i)
π̄(i)∑

i∈S
√
π(i)

√
π̄(i)

=

∑
i,j∈S

√
R(i,j)
π̄(S)

√
Q̄(i,j)
π̄(S)

√
π(i)
π̄(i)∑

i∈S

√
π(i)
π(S)

√
π̄(i)
π̄(S)

√
π(S)
π̄(S)

(ii)

≥
∑
i,j∈S

√
R(i, j)

π̄(S)

√
Q̄(i, j)

π̄(S)

√
π(i)

π̄(i)

√
π̄(S)

π(S)

(iii)

≥
∑
i,j∈S

√
R(i, j)

π̄(S)

√
Q̄(i, j)

π̄(S)

√
1− ε

2

√
1 +

ε

2︸ ︷︷ ︸
≥1− ε2

,

where (i) is due to the Courant–Fischer principle (e.g. Helmberg (2008, p. 219)), (ii) stems from the AM-GM
inequality as follows:

∑
i∈S

√
π(i)

π(S)

√
π̄(i)

π̄(S)
≤ 1

2

∑
i∈S

(
π(i)

π(S)
+
π̄(i)

π̄(S)

)
= 1

and (iii) follows by definition of π(S) and the assumption that
∣∣∣∣π
π̄ − 1

∣∣∣∣
∞ ≤

ε
2 :

π(S) =
∑
i∈S

π(i) ≤
(

1 +
ε

2

)∑
i∈S

π̄(i) =
(

1 +
ε

2

)
π̄(S).

By assumption, Distance(P, P̄ ) ≥ ε. Thus,

ε ≤ 1−
(

1− ε

2

) ∑
i,j∈S

√
R(i, j)

π̄(S)

√
Q̄(i, j)

π̄(S)
.

It follows

ε

2
≤
(

1− ε

2

)1−
∑
i,j∈S

√
R(i, j)

π̄(S)

√
Q̄(i, j)

π̄(S)

 ≤ 1−
∑
i,j∈S

√
R(i, j)

π̄(S)

√
Q̄(i, j)

π̄(S)
. (7)

We distinguish between two cases: First assume that

∑
i,j∈S

Distribution(S, P, π̄)(i, j) ≥ 1− 5ε

16
. (8)
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In this case we have

d2
Hel(Distribution(S, P, π̄), Distribution(S, P̄ , π̄))

≥1

2

∑
i,j∈S

(√
Distribution(S, P, π̄)(i, j)−

√
Distribution(S, P̄ , π̄)(i, j)

)2

=
1

2

∑
i,j∈S

(√
R(i, j)

π̄(S)
−

√
Q̄(i, j)

π̄(S)

)2

=
1

2

∑
i,j∈S

(
R(i, j)

π̄(S)
+
Q̄(i, j)

π̄(S)
− 2

√
R(i, j)

π̄(S)

√
Q̄(i, j)

π̄(S)

)

≥1− 3ε

16
−
∑
i,j∈S

√
R(i, j)

π̄(S)

√
Q̄(i, j)

π̄(S)

≥ε− 3ε

16
=

13ε

16
≥ ε2

128

where in the second inequality we used (8), (7) and that, by assumption,∑
i,j∈S

Distribution(S, P̄ , π̄)(i, j) ≥ 1− ε

16
.

Consider now the case ∑
i,j∈S

Distribution(S, P, π̄)(i, j) ≤ 1− 5ε

16
.

In this case we have

dTV(Distribution(S, P, π̄),Distribution(S, P̄ , π̄)) ≥1

2

∑
i,j∈S

(
Q̄(i, j)

π̄(S)
− R(i, j)

π̄(S)

)

≥1

2

(
1− ε

16
− 1 +

5ε

16

)
=

ε

16
.

By (1),

d2
Hel(Distribution(S, P, π̄),Distribution(S, P̄ , π̄)) ≥ ε2

128
.

C PROOF OF LEMMA 5.5

Denote m = |T | and assume without loss that T = [m]. There exists a non negative left Perron vector u ∈ Rm
corresponding to λ which we may assume to be not descending, i.e.,

u(1) ≤ u(2) ≤ · · · ≤ u(m).

By abuse of notation we denote by u the vector in Rd obtained from u by extending it with d−m zeros. Now,

define û ∈ Rd by û(i) = u(i)
π(i) ,∀i ∈ [d]. It holds

〈u(I − P ), û〉 = (1− λ)〈u, û〉. (9)

The right-hand side of (9) equals

(1− λ)
∑
i∈[d]

π(i)û(i)2
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while the left-hand side is bounded below by∑
1≤i<j≤d

Q(i, j) (û(i)− û(j))
2
.

Thus,

1− λ ≥
∑

1≤i<j≤dQ(i, j) (û(i)− û(j))
2∑

i∈[d] π(i)û(i)2
.

Now, ∑
1≤i<j≤d

Q(i, j) (û(i) + û(j))
2 ≤ 2

∑
i∈[d]

π(i)û(i)2.

It follows that

1− λ ≥ 1

2

(∑
1≤i<j≤dQ(i, j)

(
û(i)2 − û(j)2

)∑
i∈[d] π(i)û(i)2

)2

.

Now, for 1 ≤ k ≤ d− 1 let Sk = [k]. Then∑
1≤i<j≤d

Q(i, j)
(
û(i)2 − û(j)2

)
=

m∑
k=1

(
û(k)2 − û(k + 1)2

) ∑
i∈Sk,j∈S̄k

Q(i, j)

≥α
m∑
k=1

(
û(k)2 − û(k + 1)2

) k∑
l=1

π(l)

=α

m∑
l=1

π(l)

m∑
k=l

(
û(k)2 − û(k + 1)2

)
=α

d∑
l=1

π(l)û(l)2.

D PROOF OF LEMMA 5.6

Let πT be the vector obtained from π by keeping only the entries at indices belonging to T and let λ be the

largest eigenvalue of PT . By Lemma 5.5, λ ≤ 1− α2

2 . Let k =
8 log 1

(πT )?

α2 and let j ∈ [k]. Define

Yj = 1{∃i ∈ [(j − 1)k + 1, jk] | Xi /∈ T}.

We distinguish between two cases:

1. X(j−1)k+1 /∈ T : In this case, P(Yj = 1 | X1, . . . , X(j−1)k+1) = 1.

2. X(j−1)k+1 = i ∈ T : In this case, with D = diag(πT ) where

P(Yj = 0 | X1, . . . , X(j−1)k+1) =eTi P
k−1
T 1

=eTi D
−1DP k−1

T 1

=
〈
P k−1
T 1, D−1ei

〉
πT

=

√
π(T )

π(i)

〈
P k−1
T

1√
π(T )

1,
√
π(i)D−1ei

〉
πT

. (10)

Notice that

∣∣∣∣∣∣∣∣ 1√
π(T )

1

∣∣∣∣∣∣∣∣
πT

=
∣∣∣∣∣∣√π(i)D−1ei

∣∣∣∣∣∣
πT

= 1. By the Courant–Fischer principle (e.g. Helmberg (2008,

p. 219)),

(10) ≤ 1√
(πT )?

(
1− α2

2

)k−1

≤ 1

2
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where in the first inequality we also used that
√

π(T )
π(i) ≤

1√
(πT )?

and in the second the definition of k.

Combining the two cases we obtain, P(Yj = 1 | X1, . . . , X(j−1)k) ≥ 1
2 . Thus,

P

(
m∑
i=1

1{Xi /∈ T} ≥
m

4k

)
≥ P

m/k∑
i=1

Yi ≥
m

4k

 ≥ 1− δ

where in the second inequality we used an adaptation of Hoeffding’s inequality stated and proved in the following
lemma.

Lemma D.1. Let α ≥ 0 and let (Bt)t∈N be Bernoulli random variables, not necessarily independent, such that
for every t ∈ N it holds

min
b1,...,bt−1∈{0,1}

E [Bt | B1 = b1, . . . , Bt−1 = bt−1] ≥ α.

Then

P

(
n∑
t=1

Bt ≤
αn

2

)
≤ e−α

2n
2 .

Proof. Let n ∈ N and λ > 0. By Markov’s inequality,

P

(
n∑
t=1

Bt ≤
αn

2

)
≤ eλαn2 E

[
n∏
t=1

e−λBt

]
.

Now,

E

[
n∏
t=1

e−λBt

]
=

∑
b1,...,bn∈{0,1}

n∏
t=1

e−λbtP (B1 = b1, . . . , Bn = bn)

=
∑

b1∈{0,1}

e−λb1P (B1 = b1)
∑

b2∈{0,1}

e−λb2P (B2 = b2 | B1 = b1) · · ·

∑
bn∈{0,1}

e−λbnP (Bn = bn | B1 = b1, . . . , Bn−1 = bn−1) .

For the last term in the above equality it holds∑
bn∈{0,1}

e−λbnP (Bn = bn | B1 = b1, . . . , Bn−1 = bn−1) = EBn | B1=b1,...,Bn−1=bn−1

[
e−λBn

]
≤ e−λα+λ2

8

where the inequality is due to Hoeffding’s lemma (e.g. Massart (2007, Lemma 2.6)). Proceeding inductively, we
obtain

E

[
n∏
t=1

e−λBt

]
≤
(
e−λα+λ2

8

)n
.

Thus,

P

(
n∑
t=1

Bt ≤
αn

2

)
≤
(
e−λα+λ2

4

)n/2
≤ e−α

2n
2 .

where in the second inequality we used that −λα+ λ2

4 attains a minimum of −α2 at λ = 2α.
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E PROOF OF LEMMA 5.13

Let m ∈ N. Consider first the stationary case, i.e., µ = π. By Paulin (2015, Theorem 3.4),

P
(
|Nm(i)−mπ(i)| ≥ 1

2
π(i)

)
≤ 2 exp

(
−mγπ(i)

36

)
.

Thus, there exists a universal constant c′ such that if m >
c′ log d

δ

π(i)γ then

P
(
Nm(i) /∈

(
1

2
mπ(i),

3

2
mπ(i)

))
<
δ

d
.

Now, in order to accommodate for non-stationary chains, by Paulin (2015, Proposition 3.10), we need to replace
log d

δ with

log
d||µ/π||2,π

δ
≤ log

d

δπ?
≤ 2 log

1

δπ?
.

Replacing π(i) with π? and using the union bound proves the assertion.

F PROOF OF LEMMA 5.14

It holds

P (∃i ∈ [d] s.t v(i) > 2mp(i)) ≤dmax
i∈[d]

P(v(i) > 2mp(i)))

≤d exp

(
− m2p2

?

2
(
mp?(1− p?) + mp?

3

))
≤d exp

(
−mp?

4

)
< δ

where the second inequality is due to Bernstein’s inequality (e.g. Dubhashi and Panconesi (2009, Theorem
1.2)).

G PROOF OF PROPOSITION 7.1

(i) Let i, j ∈ [d]. It holds(√
P ′ ◦ P̄ ′

)
(i, j) =

√
((1− α)P (i, j) + α1{i = j})

(
(1− α) P̄ (i, j) + α1{i = j}

)
=

√
(1− α)

2
P (i, j)P̄ (i, j) + α1{i = j}

(
(1− α)P (i, j) + (1− α)P̄ (i, j) + α

)
≤
√
P (i, j)P̄ (i, j) +

√
2α1{i = j}

=
(√

P ◦ P̄ +
√

2αI
)

(i, j).

Now,

ρ
(√

P ′ ◦ P̄ ′
)
≤ ρ

(√
P ◦ P̄ +

√
2αI

)
= ρ

(√
P ◦P̄

)
+
√

2α

where the inequality is due to the monotonicity of the spectral radius (e.g. Horn and Johnson (2012,
Theorem 8.1.18)). Thus,

Distance(P ′, P̄ ′) ≥ Distance(P, P̄ )−
√

2α =
ε

2
.
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(ii) Using that the spectral radius is invariant under transposition and matrix similarity,

ρ
(√

P ∗ ◦ P̄ ∗
)

=ρ

(√
P ∗ ◦ P̄ ∗

T
)

=ρ
(√

DπPDπ−1 ◦Dπ̄P̄Dπ̄−1

)
=ρ
(
D√π◦π̄

√
P ◦ P̄D−1√

π◦π̄

)
=ρ
(√

P ◦ P̄
)
.

(iii) Let i, j ∈ [d]. Then

√
P ◦ P (α)(i, j) =

√
P ◦

(
αP + (1− α)P̄

)
(i, j) ≤

√
αP (i, j) +

√
1− α

√
P ◦ P̄ (i, j)

where the inequality is due to the subadditivity of the function x 7→
√
x. By Horn and Johnson (2012,

Theorem 8.1.18),

ρ
(√

P ◦ P (α)
)
≤ ρ

(√
αP +

√
1− α

√
P ◦ P̄

)
.

Now, with D = diag(π)
1
2 and D̄ = diag(π̄)

1
2 , both D−1PD and

√
(DD̄)−1P ◦ P̄ (DD̄) are symmetric.

Furthermore, for every i, j ∈ [d] it holds

(
D−1

√
P ◦ P̄D

)
(i, j) =π(j)−

1
2

√
P (i, j)P̄ (i, j)π(i)

1
2

=

√√√√π(j)−
1
2P (i, j)π(i)

1
2 π̄(j)−

1
2 P̄ (i, j)π̄(i)

1
2

√
π(i)π̄(j)

π̄(i)π(j)

≤ 4

√
1 + ε

1− ε

√
(DD̄)−1P ◦ P̄ (DD̄)(i, j).

Thus,

ρ
(√

αP +
√

1− α
√
P ◦ P̄

)
=ρ
(√

αD−1PD +
√

1− αD−1
√
P ◦ P̄D

)
≤ρ

(
√
αD−1PD +

√
1− α 4

√
1 + ε

1− ε

√
(DD̄)−1P ◦ P̄ (DD̄)

)

≤
√
αρ
(
D−1PD

)
+
√

1− α 4

√
1 + ε

1− ε
ρ
(
D−1

√
P ◦ P̄D

)
=
√
α+
√

1− α 4

√
1 + ε

1− ε
ρ
(√

P ◦ P̄
)

where the first inequality is due to the monotonicity of the spectral radius (e.g. Horn and Johnson (2012,
Theorem 8.1.18)) and the second inequality is due to the fact that the spectral radius is subadditive for
symmetric matrices (e.g. Olver et al. (2006, Theorem 9.21 together with Exercise 9.2.37)).

(iv) By monotonicity of the spectral radius (e.g. Zhan (2013, Corollary 6.15)), it suffices to show that for each
i, j ∈ [d] it holds √

P ◦ P̄
k

(i, j) ≤
√
P k ◦ P̄ k(i, j).
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We proceed by induction. The claim is obviously true for k = 1. Suppose it holds for k ∈ N. We have

√
P ◦ P̄

k+1

(i, j) =

d∑
l=1

√
P ◦ P̄ (i, l)

√
P ◦ P̄

k

(l, j)

≤
d∑
l=1

√
P (i, l)P k(l, j)

√
P̄ (i, l)P̄ k(l, j)

≤

√√√√ d∑
l=1

P (i, l)P k(l, j)

√√√√ d∑
l=1

P̄ (i, l)P̄ k(l, j)

=

√
P k+1

1 ◦ P k+1
2 (i, j)

where we used the induction hypothesis in the first inequality and Cauchy-Schwarz in the second.

(v) It holds

P k −→
k→∞

− π −

−
... −

− π −

 and P̄ k −→
k→∞

− π̄ −

−
... −

− π̄ −


where convergence is under the infinity norm over matrices. Thus,

Distance(P k, P̄ k) −→
k→∞

d2
Hel(π, π̄).

(vi) It holds √
P † ◦ P̄ † =

√
P ∗P ◦ P̄ ∗P̄

≥
√
P ∗ ◦ P̄ ∗

√
P ◦ P̄

=

√
D−1
π PTDπ ◦D−1

π̄ P̄TDπ̄

√
P ◦ P̄

=D−1√
π◦π̄

√
P ◦ P̄

T

D√π◦π̄

√
P ◦ P̄

=
√
P ◦ P̄

∗√
P ◦ P̄

=
√
P ◦ P̄

†

where the first inequality is due to Drnovšek and Peperko (2006, Theorem 2.2). It follows that

ρ
(√

P † ◦ P̄ †
)
≥ ρ

(√
P ◦ P̄

†
)
≥ ρ

(√
P ◦ P̄

)2

where the second inequality is due to Weyl (e.g. Gohberg and Krĕın (1978, Lemma 3.3)).

(vii) For α ∈ (0, 1) define

P =

(
1− α α

1
2

1
2

)
and P̄ =

(
1− α α
α 1− α

)
.

Clearly, P, P̄ are irreducible and reversible and one verifies easily that

(a) The stationary distributions of P, P̄ are π =
(

1
2

1
2 +α

, α
1
2 +α

)
, π̄ =

(
1
2 ,

1
2

)
, respectively.

(b) 1−
∑
i∈[2]

√
π(i)π̄(i) −→

α→0
1− 1√

2
> 1

4 .

(c) Distance(P, P̄ ) −→
α→0

0.
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H ON THE IIDGENERATOR ALGORITHM

Let P ∈Mirr with stationary distribution π and let µ ∈ ∆d. Let (Xt)t∈N ∼ (P, µ). For i ∈ [d] we define the first
hitting time for i to be

τ
(i)
1 = inf {t ≥ 1 : Xt = i}

(cf. Levin and Peres (2017, p. 11)) and for 1 < s ∈ N we define the sth hitting time for i to be

τ (i)
s = inf

{
t > τ

(i)
s−1 : Xt = i

}
.

Following Daskalakis et al. (2018a, pp. 12-13), for v ∈ Nd we define the mapping Ψv : {0, 1, . . . , d}∞ →
∏d
i=1[d]v(i)

by

(Xt)t∈N 7→
((

X
τ
(1)
t +1

)
t∈[v(1)]

,
(
X
τ
(2)
t +1

)
t∈[v(2)]

, . . . ,
(
X
τ
(d)
t +1

)
t∈[v(d)]

)
.

The map outputs, when given a trajectory sampled from P , for each i ∈ [d], the first state that has been visited
immediately after hitting i, for each of the first v(i) visits to i. It is a consequence of the Markov property that
all the coordinates of Ψv

(
(X)t∈N

)
are independent and that for each i ∈ [d], the ith entry of the d-tuple consists

of a sample that is iid according to the conditional distribution defined by the ith row of P . That is, for i ∈ [d]
it holds (

X
τ
(i)
t +1

)
t∈[v(i)]

∼ P (i, ·)⊗v(i).

The mapping Ψv allows us to sample from the edge measure Q = diag(π)P of P as described in the following
two-stages procedure: Let m ∈ N be the desired size of the sample. First sample from m iid random variables
Z1, . . . , Zm ∼ π⊗m and denote by v the corresponding histogram, i.e., v(i) =

∑m
t=1 1[Zt = i], for every i ∈ [d].

Second, define Φπ : [d]∞ → ([d]× [d])m by

(Xt)t∈N 7→ (Yk)k∈[m],

where

Yk =

Zk, ((Ψv(Xt)t∈N) (Zk))

1 +

k−1∑
j=1

1[Zj = Zk]

 , ∀k ∈ [m].

Then (Yk)k∈[m] ∼ Q⊗m. For an infinite trajectory, the mapping Φπ is well-defined almost surely since, by
assumption, P is irreducible. However, applied on a finite trajectory (Xt)

n
t=1 for some n ∈ N, the well-definedness

of Φπ ((Xt)
n
t=1) is a random event that strongly depends on n and on the properties of the Markov chain P .

Notice that the procedure above may be performed with any probability distribution ν ∈ ∆d (instead of π). In
this case the sampling is from diag(ν)P (instead of Q). Now, recall that in Lemma 5.16 it is assumed that one
has access to m ∈ N iid samples from Distribution(S, P, π̄) where ∅ 6= S ⊆ [d], π̄ is the stationary distribution
of the reference Markov chain and P is the transition matrix of the unknown Markov chain. To achieve this, we
define ν ∈ ∆d as follows:

ν(i) =

{
π(i)
π(S) i ∈ S
0 otherwise,

∀i ∈ [d] (11)

and apply Φν on a trajectory (Xt)t∈N. This gives (Yk)k∈[m] in which we replace every Yk whose second coordinate
does not belong to S with the symbol∞. The pseudocode for the procedure of sampling from Distribution(S, P, π̄)
is given in Cherapanamjeri and Bartlett (2019, Algorithm 1). One only needs to replace the line

“v ← l samples from Uniform(T )

with

“v ← l samples from ν”

where ν is defined in (11).
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I ALGORITHM FOR MARKOV CHAIN IDENTITY TESTING

Input: d, ε, P̄ , (Xt)t∈[m]

Output: Accept = 0 or Reject = 1
(S, T )← Partition([d],Θ(ε))
π̄ ← StationaryDistribution(P̄ )
for S ∈ S do

ν ← [0]d
for i ∈ [d] do

if i ∈ S then
ν[i]← π̄[i]/

∑
j∈S π̄[j]

end

end
(π̄S)? ← max(ν)
l← Õ

(
1/ε2(π̄S)?

)
Y ← iidGenerator((Xt)t∈[m], S, ν, l)
if Y 6= False then

return iidTester(Y,Distribution(S, P̄ , π̄),Θ(ε2),Θ(1/d))
end

end
return Reject

Remark I.1. 1. “Accept” means that the trajectory (Xt)t∈[m] from the unknown Markov chain P suggests
that P = P̄ and “Reject” means that probably Distance(P, P̄ ) ≥ ε.

2. The StationaryDistribution algorithm is any algorithm that upon receiving the transition matrix of an
irreducible Markov chain returns its stationary distribution.

3. The Partition algorithm corresponds to Cherapanamjeri and Bartlett (2019, Algorithms 3 and 4) and its
necessary modifications are described in Section 5.2.

4. The assignment to l follows Lemma 5.15.

5. The iidGenerator algorithm corresponds to Daskalakis et al. (2018b, Algorithm 1) and is described in full
detail in Section H.

6. The iidTester algorithm corresponds to (Daskalakis et al., 2018b, Algorithm 1). See also Section 5.3 and
Lemma 5.16.


