
Spectral Pruning for Recurrent Neural Networks

Takashi Furuya Kazuma Suetake Koichi Taniguchi
Hokkaido University

takashi.furuya0101@gmail.com
AISIN SOFTWARE

kazuma.suetake@aisin-software.com
Tohoku University

koichi.taniguchi.b7@tohoku.ac.jp

Hiroyuki Kusumoto Ryuji Saiin Tomohiro Daimon
Nagoya University

kusumoto-108@outlook.com
AISIN SOFTWARE

ryuji.saiin@aisin-software.com
AISIN SOFTWARE

tomohiro.daimon@aisin-software.com

Abstract

Recurrent neural networks (RNNs) are a class
of neural networks used in sequential tasks.
However, in general, RNNs have a large num-
ber of parameters and involve enormous com-
putational costs by repeating the recurrent
structures in many time steps. As a method
to overcome this difficulty, RNN pruning has
attracted increasing attention in recent years,
and it brings us benefits in terms of the reduc-
tion of computational cost as the time step
progresses. However, most existing methods
of RNN pruning are heuristic. The purpose of
this paper is to study the theoretical scheme
for RNN pruning method. We propose an
appropriate pruning algorithm for RNNs in-
spired by “spectral pruning”, and provide the
generalization error bounds for compressed
RNNs. We also provide numerical experi-
ments to demonstrate our theoretical results
and show the effectiveness of our pruning
method compared with the existing methods.

1 Introduction

Recurrent neural networks (RNNs) are a class of neural
networks used in sequential tasks. However, in gen-
eral, RNNs have a large number of parameters and
involve enormous computational costs by repeating the
recurrent structures in many time steps. These make
their application difficult in edge computing devices.

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

To overcome this difficulty, RNN compression has at-
tracted increasing attention in recent years. It brings
us more benefits in terms of the reduction of computa-
tional costs as the time step progresses, compared to
deep neural networks (DNNs) without any recurrent
structure. There are many RNN compression methods
such as pruning (Narang et al., 2017a; Tang and Han,
2015; Zhang and Stadie, 2019; Lobacheva et al., 2017;
Wang et al., 2019; Wen et al., 2020; Lobacheva et al.,
2020), low rank factorization (Kliegl et al., 2017; Tjan-
dra et al., 2017), quantization (Alom et al., 2018; Liu
et al., 2018), distillation (Shi et al., 2019; Tang et al.,
2016), and sparse training (Liu et al., 2021a,b; Dodge
et al., 2019; Wen et al., 2017). This paper is devoted to
the pruning of RNNs, and its purpose is to provide an
RNN pruning method with the theoretical background.

Recently, Suzuki et al. (Suzuki et al., 2020) proposed a
novel pruning method with the theoretical background,
called spectral pruning, for DNNs such as the fully con-
nected and convolutional neural network architectures.
The idea of the proposed method is to select important
nodes for each layer by minimizing the information
losses (see (2) in (Suzuki et al., 2020)), which can be
represented by the layerwise covariance matrix. The
minimization only requires linear algebraic operations.
Suzuki et al. (Suzuki et al., 2020) also evaluated gener-
alization error bounds for networks compressed using
spectral pruning (see Theorems 1 and 2 in (Suzuki
et al., 2020)). It was shown that the generalization
error bounds are controlled by the degrees of freedom,
which represents the intrinsic dimensionality of a model,
and is determined by the eigenvalues of the covariance
matrix (Mallows, 2000; Caponnetto and De Vito, 2007).
Hence, the characteristics of the eigenvalue distribution
have an influence on the error bounds. We can also
observe that in the generalization error bounds, there
is a bias-variance tradeoff corresponding to compress-
ibility. Numerical experiments have also demonstrated

Spectral Pruning for Recurrent Neural Networks

the effectiveness of spectral pruning.

In this paper, we extend the theoretical scheme of spec-
tral pruning to RNNs. Our pruning algorithm involves
the selection of hidden nodes by minimizing the infor-
mation losses, which can be represented by the time
mean of the covariance matrix instead of the layerwise
covariance matrix which appears in spectral pruning
of DNNs. We emphasize that our information losses
are derived from the generalization error bound. More
precisely, we show that choosing compressed weight
matrices which minimize the information losses reduces
the generalization error bound we evaluated in Section
4.1 (see sentences after Theorem 4.5). We also remark
that Suzuki et al. (Suzuki et al., 2020) has not clearly
mentioned anything about how the information losses
are derived. As in DNNs (Suzuki et al., 2020), we
can provide the generalization error bounds for RNNs
compressed with our pruning and interpret the degrees
of freedom and the bias-variance tradeoff.

We also provide numerical experiments to compare
our method with existing methods. We observed that
our method outperforms existing methods, and gets
benefits from over-parameterization (Chang et al., 2020;
Zhang et al., 2021) (see Sections 5.2 and 5.3). In
particular, our method can compress models with small
degradation (see Remark 3.2) when we employ IRNN,
which is an RNN that uses the ReLU as the activation
function and initializes weights as the identity matrix
and biases to zero (see (Le et al., 2015)).

The summary of our contributions is the following:

• A pruning algorithm for RNNs (Section 3) is pro-
posed by the analysis of generalization error (Re-
mark 4.3 and Theorem 4.8).

• The generalization error bounds for RNNs com-
pressed with our pruning algorithm are provided
(Theorem 4.8).

2 Related Works

One of the popular compression methods for RNNs
is pruning that removes redundant weights based on
certain criteria. For example, magnitude-based weight
pruning (Narang et al., 2017a,b; Tang and Han, 2015)
involves pruning trained weights that are less than the
threshold value decided by the user. This method has
to gradually repeat pruning and retraining weights to
ensure that a certain accuracy is maintained. However,
based on recent developments, the costly repetitions
might not always be necessary. In one-shot pruning
(Zhang and Stadie, 2019; Lee et al., 2018), weights are
pruned once prior to training from the spectrum of the
recurrent Jacobian. Bayesian sparsification (Lobacheva

et al., 2017; Molchanov et al., 2017) induce sparse
weight matrix by choosing the prior as log-uniform
distribution, and the weights are also once pruned if
the variance of the posterior over the weights is large.

While the above methods are referred to as weight
pruning, our spectral pruning is a structured pruning
where redundant nodes are removed. The advantage
of the structured pruning over the weight pruning is
that it more simply reduces computational costs. The
implementation advantages of structured pruning are
illustrated in (Wang et al., 2019). Although weight
pruning from large networks to small networks is less
likely to degrade accuracy, it usually requires an accel-
erator for addressing sparsification (see (Parashar et al.,
2017)). The structured pruning method discussed in
(Wang et al., 2019; Wen et al., 2020; Lobacheva et al.,
2020) induces sparse weight matrices in the training
process, and prunes weights close to zero, and does not
repeat fine-tuning. In our pruning, weight matrices are
trained by the usual way, and the compressed weight
matrices consist of the multiplication of the trained
weight matrix and the reconstruction matrix, and no
need to repeat pruning and fine-tuning. The idea of
the multiplication of the trained weight matrix and
the reconstruction matrix is a similar idea to low rank
factorization (Kliegl et al., 2017; Tjandra et al., 2017;
Prabhavalkar et al., 2016; Grachev et al., 2019; Denil
et al., 2013). In particular, the work (Denil et al., 2013)
is most related to spectral pruning, and it employs
the reconstruction matrix replacing the empirical co-
variance matrix with kernel matrix (see Section 3.1 in
(Denil et al., 2013)).

In general, RNN pruning is more difficult than DNN
pruning, because recurrent architectures are not robust
to pruning, that is, even a little pruning causes accumu-
lated errors and total errors increase significantly for
many time steps. Such a peculiar problem for recurrent
feature is also observed in dropout (see Introduction in
(Gal and Ghahramani, 2016; Zaremba et al., 2014)).

Our motivation is to theoretically propose the RNN
pruning algorithm. Inspired by (Suzuki et al., 2020),
we focus on the generalization error bound, and we
provide the algorithm so that the generalization error
bound becomes smaller. Thus, the derivation of our
pruning method would be theoretical, while that of
existing methods such as the magnitude-based pruning
(Narang et al., 2017a,b; Tang and Han, 2015; Wang
et al., 2019; Wen et al., 2020) would be heuristic. For
the study of the generalization error bounds for RNNs,
we refer to (Tu et al., 2019; Chen et al., 2019; Akpinar
et al., 2019; Joukovsky et al., 2021).

T. Furuya, K. Suetake, K. Taniguchi, H. Kusumoto, R. Saiin, T. Daimon

3 Pruning Algorithm

We propose a pruning algorithm for RNNs inspired by
(Suzuki et al., 2020). See Appendix A for a review of
spectral pruning for DNNs. Let D = {(Xi

T , Y
i
T)}ni=1

be the training data with time series sequences Xi
T =

(xit)
T
t=1 and Y iT = (yit)

T
t=1, where xit ∈ Rdx is an input

and yit ∈ Rdy is an output at time t. The training data
are independently identically distributed. To train the
appropriate relationship between input XT = (xt)

T
t=1

and output YT = (yt)
T
t=1, we consider RNNs f =

(ft)
T
t=1 as

ft =W oht + bo, ht = σ(Whht−1 +W ixt + bhi),

for t = 1, . . . , T , where σ : R → R is an activation
function, ht ∈ Rm is the hidden state with the initial
state h0 = 0, W o ∈ Rdy×m, Wh ∈ Rm×m, and W i ∈
Rm×dx are weight matrices, and bo ∈ Rdy and bhi ∈ Rm
are biases. Here, an element-wise activation operator is
employed, i.e., we define σ(x) := (σ(x1), . . . , σ(xm))

T

for x = (x1, . . . , xm) ∈ Rm.

Let f̂ = (f̂t)
T
t=1 be a trained RNN obtained from the

training data D with weight matrices Ŵ o ∈ Rdy×m,
Ŵh ∈ Rm×m, and Ŵ i ∈ Rm×dx , and biases b̂o ∈ Rdy
and b̂hi ∈ Rm, i.e., f̂t = Ŵ oĥt + b̂o, ĥt = σ(Ŵhĥt−1 +

Ŵ ixt + b̂hi) for t = 1, . . . , T . We denote the hidden
state ĥt by

ĥt = ϕ(xt, ĥt−1),

as a function with inputs xt and ĥt−1. Our aim is to
compress the trained network f̂ to the smaller network
f ♯ without loss of performance to the extent possible.

Let J ⊂ [m] be an index set with |J | = m♯, where
[m] := {1, . . . ,m}, and let m♯ ∈ N be the number of
hidden nodes for a compressed RNN f ♯ with m♯ ≤
m. We denote by ϕJ (xt, ĥt−1) = (ϕj(xt, ĥt−1))j∈J the
subvector of ϕ(xt, ht−1) corresponding to the index set
J , where ϕj(xt, ĥt−1) represents the j-th components
of the vector ϕ(xt, ĥt−1).

(i) Input information loss. The input information
loss is defined by

L(A)
τ (J) := min

A∈Rm×m♯

{
∥ϕ−AϕJ∥2n,T + ∥A∥2τ

}
, (3.1)

where ∥ · ∥n,T is the empirical L2-norm with respect to
n and t, i.e.,

∥ϕ−AϕJ∥2n,T

:=
1

nT

n∑
i=1

T∑
t=1

∥∥ϕ(xit, ĥit−1)−AϕJ(x
i
t, ĥ

i
t−1)

∥∥2
2
,

where ∥ · ∥2 is the Euclidean norm, ∥A∥2τ := Tr[AIτA
T]

for the regularization parameter τ ∈ Rm♯

+ := {x ∈

Rm
♯
l |xj > 0, j = 1, . . . ,m♯

l}, and Iτ := diag(τ). Here,
Σ̂I,I′ ∈ RK×H denotes the submatrix of Σ̂ correspond-
ing to the index sets I, I ′ ⊂ [m] with |I| = K, |I ′| = H,
i.e., Σ̂I,I′ = (Σ̂i,i′)i∈I,i′∈I′ . Based on the linear regu-
larization theory (see e.g., (Gockenbach, 2016)), there
exists a unique solution ÂJ ∈ Rm×m♯

of the minimiza-
tion problem of ∥ϕ−AϕJ∥2n,T + ∥A∥2τ , which has the
form

ÂJ = Σ̂[m],J

(
Σ̂J,J + Iτ

)−1
, (3.2)

where Σ̂ is the (noncentered) empirical covariance ma-
trix of the hidden state ϕ(xt, ĥt−1) with respect to n
and t, i.e.,

Σ̂ =
1

nT

n∑
i=1

T∑
t=1

ϕ(xit, ĥ
i
t−1)ϕ(x

i
t, ĥ

i
t−1)

T . (3.3)

We term the unique solution ÂJ as the reconstruction
matrix. Here, we would like to emphasize that the
mean of the covariance matrix with respect to time t
is employed in RNNs, while the layerwise covariance
matrix is employed in DNNs (see Appendix A). By
substituting the explicit formula of the reconstruction
matrix ÂJ into (3.1), the input information loss is
reformulated as:

L(A)
τ (J) = Tr

[
Σ̂− Σ̂[m],J

(
Σ̂J,J + Iτ

)−1
Σ̂J,[m]

]
. (3.4)

(ii) Output information loss. The hidden state of
a RNN is forwardly propagated to the next hidden
state or output, and hence, the two output information
losses are defined by

L(B,o)
τ (J) :=

dy∑
j=1

min
β∈Rm♯

{∥∥Ŵ o
j,:ϕ−βTϕJ

∥∥2
n,T

+
∥∥βT∥∥2

τ

}
,

(3.5)

L(B,h)
τ (J) :=

∑
j∈J

min
β∈Rm♯

{∥∥Ŵh
j,:ϕ−βTϕJ

∥∥2
n,T

+
∥∥βT∥∥2

τ

}
,

(3.6)
where Ŵ o

j,: and Ŵh
j,: denote the j-th rows of the matrix

Ŵ o and Ŵh, respectively. Then, the unique solutions
of the minimization problems of ∥Ŵ o

j,:ϕ − βTϕJ∥2n,T
+ ∥βT ∥2τ and ∥Ŵh

j,:ϕ − βTϕJ∥2n,T + ∥βT ∥2τ are β̂o =

(Ŵ o
j,:ÂJ)

T and β̂hj = (Ŵh
j,:ÂJ)

T , respectively. By sub-
stituting them into (3.5) and (3.6), the output infor-
mation losses are reformulated as

L(B,o)
τ (J)

= Tr

[
Ŵ o

(
Σ̂− Σ̂[m],J

(
Σ̂J,J + Iτ

)−1
Σ̂J,[m]

)
Ŵ oT

]
,

(3.7)

Spectral Pruning for Recurrent Neural Networks

L(B,h)
τ (J)

= Tr

[
Ŵh
J,[m]

(
Σ̂− Σ̂[m],J

(
Σ̂J,J + Iτ

)−1
Σ̂J,[m]

)
ŴhT

J,[m]

]
.

(3.8)
Here, we remark that the output information losses
L
(B,o)
τ (J) and L

(B,h)
τ (J) are bounded above by the

input information loss L(A)
τ (J) (see Remark 4.3).

(iii) Compressed RNNs. We construct the com-
pressed RNN f ♯J by f ♯J,t = W ♯o

J h
♯
J,t + b♯oJ and h♯J,t =

σ(W ♯h
J h♯J,t−1 +W ♯i

J xt + b♯hiJ) for t = 1, . . . , T , where
W ♯o
J := Ŵ oÂJ , W ♯h

J := Ŵh
J,[m]ÂJ , W ♯i

J := Ŵ i
J,[dx]

,

b♯hiJ := b̂hiJ , and b♯oJ := b̂o.

(iv) Optimization. To select an appropriate index
set J , we consider the following optimization problem
that minimizes the convex combination of the input
and two output information losses:

min
J ⊂ [m]

s.t. |J| = m♯

{
θ1L

(A)
τ (J) + θ2L

(B,o)
τ (J) + θ3L

(B,h)
τ (J)

}
,

(3.9)
for θ1, θ2, θ3 ∈ [0, 1] with θ1 + θ2 + θ3 = 1, where
m♯
l ∈ [m] is a prespecified number. The optimal index

J♯ is obtained by the greedy algorithm. We term this
method as spectral pruning (for a schematic diagram of
spectral pruning, see Figure 1). The reason information
losses are employed in the objective will be theoretically
explained later, when the error bounds in Remark 4.3
and Theorem 4.5 are provided. We summarize our
pruning algorithm in the following.
Remark 3.1. In the case of the regularization param-
eter τ = 0, spectral pruning can be applied, but the
following points must be noted. In this case, the unique-
ness of the minimization problem of ∥ϕ−AϕJ∥2n,T with
respect to A does not generally hold (i.e., there might
be several reconstruction matrices). One of the solu-
tions is ÂJ = Σ̂[m],J Σ̂

†
J,J , which is the limit of (3.2)

as τ → 0, where Σ̂†
J,J is the pseudo-inverse of Σ̂J,J .

It should be noted that Σ̂†
J,J coincides with the usual

inverse Σ̂−1
J,J , when m♯ is smaller than or equal to the

rank of the covariance matrix Σ̂.
Remark 3.2. We consider the case of the regular-
ization parameter τ = 0 and m♯ ≥ mnzr, where mnzr

denotes the number of non-zero rows of Σ̂. Here, we
would like to remark on the relation between mnzr and
pruning. Let Jnzr be the index set such that [m] \ Jnzr
corresponds to zero rows of Σ̂. Then, by the defini-
tion (3.3) of Σ̂, we have for i = 1, · · · , n, t = 1, · · · , T ,
v ∈ [m] \ Jnzr

ϕv(x
i
t, ĥ

i
t−1) = 0,

which implies that ÃJnzr = I[m],Jnzr
is a trivial so-

lution of the minimization problem because ∥ϕ −

Algorithm 1 Spectral pruning

Require: Data set D = {(Xi
T , Y

i
T)}ni=1, Trained RNN

f̂ = (f̂t)
T
t=1 with f̂t = Ŵ oĥt+ b̂

o, ĥt = σ(Ŵhĥt−1+

Ŵ ixt+ b̂
hi), Number of hidden nodes m for trained

RNN f̂ , Number of hidden nodes m♯ ≤ m for re-
turned compressed RNN, Regularization param-
eter τ ∈ Rm♯

+ , Coefficients θ1, θ2, θ3 ∈ [0, 1] with
θ1 + θ2 + θ3 = 1.

1: Minimize
{
θ1L

(A)
τ (J) + θ2L

(B,o)
τ (J) + θ3L

(B,h)
τ (J)

}
for index J ⊂ [m] with |J | = m♯ by the greedy
algorithm where L(A)

τ (J), L(B,o)
τ (J), and L(B,h)

τ (J)
compute (3.4), (3.7), and (3.8), respectively.

2: Obtain optimal J♯.
3: Compute ÂJ♯ by (3.2).

4: Set W ♯o
J♯ := Ŵ oÂJ♯ , W ♯h

J♯ := Ŵh
J♯,[m]ÂJ♯ , W ♯i

J♯ :=

Ŵ i
J♯,[dx]

, b♯hi
J♯ := b̂hiJ♯ , b♯oJ♯ := b̂o.

5: return Compressed RNN f ♯
J♯ = (f ♯

J♯,t
)Tt=1 with

f ♯
J♯,t

=W ♯o
J♯h

♯
J♯,t

+ b♯o
J♯ and h♯

J♯,t
= σ(W ♯h

J♯ h
♯
J♯,t−1

+

W ♯i
J♯xt + b♯hi

J♯).

ÃJnzrϕJnzr∥2n,T = 0. Here, I[m],Jnzr is the submatrix
of the identity matrix corresponding to the index sets
[m] and Jnzr. If we choose ÃJnzr = I[m],Jnzr as the recon-
struction matrix, then the trivial compressed weights
can be obtained by simply removing the columns corre-
sponding to [m]\Jnzr, i.e., W ♯o := Ŵ oÃJnzr = Ŵ o

[m],Jnzr

and W ♯h := Ŵh
Jnzr,[m]ÃJnzr = Ŵh

Jnzr,Jnzr
, and its net-

work f ♯Jnzr coincides with the trained network f̂ for
training data, i.e., for i = 1, · · · , n, t = 1, · · · , T

f ♯Jnzr,t(X
i
t) = f̂t(X

i
t)

which means that the trained RNN is compressed to
size m♯ without degradation. On the other hand, in
the case of m♯ < mnzr, ÃJ = I[m],J is not a solution of
the minimization problem for any choice of the index
J , which means that the compressed network using
ÂJ = Σ̂[m],J Σ̂

†
J,J is closer to the trained network than

that using ÃJ = I[m],J . Therefore, spectral pruning
essentially contributes to compression when m♯ < mnzr.

4 Generalization Error Bounds for
Compressed RNNs

In this section, we discuss the generalization error
bounds for compressed RNNs. In Subsection 4.1, the
error bounds for general compressed RNNs are evalu-
ated to explain the reason for deriving spectral pruning
discussed in Section 3 in the error bound term. In

T. Furuya, K. Suetake, K. Taniguchi, H. Kusumoto, R. Saiin, T. Daimon

ℎ�−

+

+

+

�

�

�
�� ��

�ℎ �ℎ

�� �	

+

+

��

ℎ
 �−

��

�
�

�

�

� ℎ �
 �
ℎ

� 	 �	
� � �
 ��
�

� ℎ

Figure 1: Spectral pruning for RNN

Subsection 4.2, the error bounds for RNNs compressed
with spectral pruning are evaluated.

4.1 Error bound for general compressed
RNNs

Let (Xi
T , Y

i
T) be the training data generated indepen-

dently identically from the true distribution PT , and
let f ♯ be a general compressed RNN, and assume that
it belongs to the following function space:

F ♯
T = F ♯

T (Ro, Rh, Ri, R
b
o, R

b
hi)

:=

{
f ♯

∣∣∣ f ♯(XT) = (f ♯t (Xt))
T
t=1,

f ♯t (Xt) = (W ♯oσ(·) + b♯o) ◦ (W ♯hσ(·) +W ♯ixt + b♯hi)◦
· · · ◦ (W ♯hσ(·) +W ♯ix2 + b♯hi) ◦ (W ♯ix1 + b♯hi)

for XT ∈ supp(PXT
),

∥∥W ♯o
∥∥
F
≤ Ro,

∥∥W ♯h
∥∥
F
≤ Rh,∥∥W ♯i

∥∥
F
≤ Ri,

∥∥b♯o∥∥
2
≤ Rbo,

∥∥b♯hi∥∥
2
≤ Rbhi

}
,

where PXT
is the marginal distribution of PT with

respect to XT , and Ro, Rh, Ri, Rbo, Rbhi are the up-
per bounds of the compressed weights W ♯o ∈ Rdy×m♯

,
W ♯h ∈ Rm♯×m♯

, W ♯i ∈ Rm♯×dx , biases b♯o ∈ Rdy , and
b♯hi ∈ Rm♯

, respectively. Here, ∥·∥F denotes the Frobe-
nius norm.

Assumption 4.1. The following assumptions are
made: (i) The marginal distribution Pxt of PT with re-
spect to xt is bounded, i.e., there exists a constant
Rx independent of t such that ∥xt∥2 ≤ Rx for all
xt ∈ supp(Pxt

) and t = 1, . . . , T. (ii) The activa-
tion function σ : R → R satisfies σ(0) = 0 and
|σ(t)− σ(s)| ≤ ρσ|t− s| for all t, s ∈ R.

Under these assumptions, we obtain the following ap-
proximation error bounds between the trained network
f̂ and compressed networks f ♯.

Proposition 4.2. Let Assumption 4.1 hold. Let
(X1

T , Y
1
T), . . . , (X

n
T , Y

n
T) be sampled i.i.d. from the dis-

tribution PT . Then, for all f ♯ ∈ F ♯
T and J ⊂ [m] with

|J | = m♯, we have∥∥f̂ − f ♯
∥∥
n,T

≲
∥∥Ŵ oϕ−W ♯oϕJ

∥∥
n,T

+
∥∥Ŵh

J,[m]ϕ−W ♯hϕJ
∥∥
n,T

+
∥∥Ŵ i

J,[dx]
−W ♯i

∥∥
op

+
∥∥b̂hiJ − b♯hi

∥∥
2
+

∥∥b̂o − b♯o
∥∥
2
.

(4.1)

Here, ≲ implies that the left-hand side in (4.1) is
bounded above by the right-hand side times a con-
stant independent of the trained weights and biases
Ŵ , b̂ and compressed weights and biases W ♯, b♯. The
proof is given by direct computation. For the exact
statement and proof, see Appendix B.

Remark 4.3. Let f ♯J be the network compressed using
the reconstruction matrix (see (iii) in Section 3). By
applying Proposition 4.2 as f ♯ = f ♯J , we obtain∥∥f̂ − f ♯J

∥∥2
n,T

≲
∥∥Ŵ oϕ− Ŵ oÂJϕJ

∥∥2
n,T

+
∥∥Ŵ oÂJ

∥∥2
τ︸ ︷︷ ︸

=L
(B,o)
τ (J)

+
∥∥Ŵh

J,[m]ϕ− Ŵh
J,[m]ÂJϕJ

∥∥2
n,T

+
∥∥Ŵh

J,[m]ÂJ
∥∥2
τ︸ ︷︷ ︸

=L
(B,h)
τ (J)

≤
(∥∥Ŵ o

∥∥2
F
+

∥∥Ŵh
J,[m]

∥∥2
F

)(∥∥ϕ− ÂJϕJ
∥∥2
n,T

+
∥∥ÂJ∥∥2τ)︸ ︷︷ ︸

=L
(A)
τ (J)

,

(4.2)

i.e., the approximation error is bounded by the input
information loss.

For the RNN f = (ft)
T
t=1, the training error with

respect to the j-th component of the output is defined
as

Ψ̂j(f) :=
1

nT

n∑
i=1

T∑
t=1

ψ(yit,j , ft(X
i
t)j),

where Xt = (xt)
t
t=1 and ψ : R × R → R+ is a loss

function. The generalization error with respect to the
j-th component of the output is defined as

Ψj(f) := E

[
1

T

T∑
t=1

ψ(yt,j , ft(Xt)j)

]
,

Spectral Pruning for Recurrent Neural Networks

where the expectation is taken with respect to
(XT , YT) ∼ PT .

Assumption 4.4. The following assumptions are
made: (i) The loss function ψ(yt,j , 0) is bounded, i.e.,
there exists a constant Ry such that |ψ(yt,j , 0)| ≤ Ry for
all yt,j ∈ supp(Pyt,j), t = 1, . . . , T , j = 1, . . . , dy. (ii)
ψ is ρψ-Lipschitz continuous, i.e., |ψ(y, f)−ψ(y, g)| ≤
ρψ|f − g| for all y, f, g ∈ R.

We obtain the following generalization error bound for
f ♯ ∈ F ♯

T (Ro, Rh, Ri, R
b
o, R

b
hi).

Theorem 4.5. Let Assumptions 4.1 and 4.4 hold, and
let (X1

T , Y
1
T), . . . , (X

n
T , Y

n
T) be sampled i.i.d. from the

distribution PT . Then, for any δ ≥ log 2, we have
the following inequality with probability greater than
1− 2e−δ:

Ψj(f
♯) ≲ Ψ̂j(f̂) +

{∥∥Ŵ oϕ−W ♯oϕJ
∥∥
n,T

+
∥∥Ŵh

J,[m]ϕ−W ♯hϕJ
∥∥
n,T

+
∥∥Ŵ i

J,[dx]
−W ♯i

∥∥
op

+
∥∥b̂hiJ − b♯hi

∥∥
2
+
∥∥b̂o − b♯o

∥∥
2

}
+

1√
n
(m♯)

5
4R

1/2
∞,T ,

(4.3)

for j = 1, . . . , dy and for all J ⊂ [m] with |J | = m♯,
and f ♯ ∈ F ♯

T , where R∞,t is defined by

R∞,t := Roρσ(RiRx +Rbhi)

(t∑
l=1

(Rhρσ)
l−1

)
+Rbo.

Here, ≲ implies that the left-hand side in (4.3) is
bounded above by the right-hand side times a con-
stant independent of the trained weights and biases Ŵ ,
b̂, compressed weights and biases W ♯, b♯, compressed
number m♯, and the number of samples n. We remark
that some omitted constants blow up as increasing T ,
but they can be controlled by increasing sampling num-
ber n (see Theorem C.1). The idea behind the proof
is that the generalization error is decomposed into the
training, approximation, and estimation errors. The ap-
proximation and estimation errors are evaluated using
Proposition 4.2 and the estimation of the Rademacher
complexity, respectively. For the exact statement and
proof, see Appendix C.

The second term in (4.3) is the approximation error
bound between f̂ and f ♯ regarded as the bias, which is
given by Proposition 4.2, while the third term is the esti-
mation error bound regarded as the variance. It can be
observed that minimizing the terms ∥Ŵ oϕ−W ♯oϕJ∥n,T
and ∥Ŵh

J,[m]ϕ −W ♯hϕJ∥n,T with respect to W ♯o and
W ♯h is equivalent to the output information losses (3.5)
and (3.6) with τ = 0, respectively, which means that
(iii) in Section 3 with τ = 0 constructs the compressed

RNN such that the bias term becomes smaller. Con-
sidering τ ̸= 0 prevents the blow up of ∥W ♯o∥F and
∥W ♯h∥F , which means that the regularization parame-
ter τ plays an important role in preventing the blow
up of the variance term because R∞,T in the variance
term includes the upper bounds Ro and Rh of ∥W ♯o∥F
and ∥W ♯h∥F . Therefore, (iii) with τ ̸= 0 constructs
the compressed RNN such that the generalization er-
ror bound becomes smaller. In addition, selecting an
optimal J for minimizing the information losses (see
(iv) in Section 3) further decreases the error bound.

4.2 Error bound for RNNs compressed with
spectral pruning

Next, we evaluate the generalization error bounds for
the RNN f ♯J compressed using the reconstruction ma-
trix (see (iii) in Section 3). We define degrees of freedom
N̂(λ) by

N̂(λ) := Tr
[
Σ̂(Σ̂ + λI)−1

]
=

m∑
j=1

µ̂j
µ̂j + λ

,

where µ̂j is an eigenvalue of Σ̂. It represents the intrin-
sic dimensionality of a model (Mallows, 2000; Capon-
netto and De Vito, 2007). Throughout this subsection,
the regularization parameter τ ∈ Rm♯

+ is chosen as
τ = λm♯τ ′, where λ > 0 satisfies

m♯ ≥ 5N̂(λ) log(16N̂(λ)/δ̃), (4.4)

for a prespecified δ̃ ∈ (0, 1/2). Here, τ ′ = (τ ′j)j∈J ∈
Rm♯

is the leverage score defined by for k ∈ [m]

τ ′k :=
1

N̂(λ)

[
Σ̂(Σ̂ + λI)−1

]
k,k

=
1

N̂(λ)

m∑
j=1

U2
k,j

µ̂j
µ̂j + λ

,

(4.5)
where U = (Uk,j)k,j is the orthogonal matrix that di-
agonalizes Σ̂, i.e., Σ̂ = Udiag {µ̂1, . . . , µ̂m}UT . The
leverage score includes the information of the eigenval-
ues and eigenvectors of Σ̂, and indicates that the large
components correspond to the important nodes from
the viewpoint of the spectral information of Σ̂. Let q
be the probability measure on [m] defined by

q(v) := τ ′v for v ∈ [m]. (4.6)

Proposition 4.6. Let v1, . . . , vm♯ be sampled i.i.d.
from the distribution q in (4.6), and J = {v1, . . . , vm♯}.
Then, for any δ̃ ∈ (0, 1/2) and λ > 0 satisfying (4.4),
we have the following inequality with probability greater
than 1− δ̃:

L(A)
τ (J) ≤ 4λ. (4.7)

T. Furuya, K. Suetake, K. Taniguchi, H. Kusumoto, R. Saiin, T. Daimon

The proof is given in Appendix E. In the proof, we
essentially refer to previous work (Bach, 2017). Com-
bining (4.2) and (4.7), we conclude that∥∥f̂ − f ♯J

∥∥2
n,T

≲ λ. (4.8)

It can be observed that the approximation error bound
(4.8) is controlled by the degrees of freedom. If the
eigenvalues of Σ̂ rapidly decrease, then N̂(λ) is a rapidly
decreasing function as λ is large. Therefore, in that
case, we can choose a smaller λ even when m♯ is fixed.
We will numerically study the relationship between the
eigenvalue distribution and the input information loss
in Section 5.1.

We make the following additional assumption.
Assumption 4.7. Assume that the upper bounds for
the trained weights and biases are given by ∥Ŵ o∥F ≤
R̂o, ∥Ŵh∥F ≤ R̂h, ∥Ŵ i∥F ≤ R̂i, ∥b̂hi∥2 ≤ R̂bhi, and
∥b̂o∥2 ≤ R̂bo.

We have the following generalization error bound.
Theorem 4.8. Let Assumptions 4.1, 4.4, and 4.7
hold, and let (X1

T , Y
1
T), . . . , (X

n
T , Y

n
T) and v1, . . . , vm♯

be sampled i.i.d. from the distributions PT and q in
(4.6), respectively. Let J = {v1, . . . , vm♯}. Then, for
any δ ≥ log 2 and δ̃ ∈ (0, 1/2), we have the following
inequality with probability greater than (1− 2e−δ)δ̃:

Ψj(f
♯
J) ≲ Ψ̂j(f̂) +

√
λ+

1√
n
(m♯)

5
4 , (4.9)

for j = 1, . . . , dy and for all λ > 0 satisfying (4.4).

Here, ≲ implies that the left-hand side in (4.9) is
bounded above by the right-hand side times a con-
stant independent of λ, m♯, and n. We remark that
some omitted constants blow up as increasing T , but
they can be controlled by increasing sampling number
n (see Theorem F.1). The proof is given by the combi-
nation of applying Theorem 4.5 as f ♯ = f ♯J and using
Proposition 4.6. For the exact statement and proof,
see Appendix F. It can be observed that in (4.9), a
bias-variance tradeoff relationship exists with respect
to m♯. When m♯ is large, λ can be chosen smaller
in condition (4.4), which implies that the bias term
(the second term in (4.9)) becomes smaller, but the
variance term (the third term in (4.9)) becomes larger.
In contrast, the bias becomes larger and the variance
becomes smaller when m♯ is small. Further remarks
on Theorem 4.8 are given in Appendix G.

5 Numerical Experiments

In this section, numerical experiments are detailed
to demonstrate our theoretical results and show the

effectiveness of spectral pruning compared with existing
methods. In Sections 5.1 and 5.2, we select the pixel-
MNIST as our task and employ the IRNN, which is
an RNN that uses the ReLU as the activation function
and initializes weights as the identity matrix and biases
to zero (see (Le et al., 2015)). In Section 5.3, we
select the PTB (Marcus et al., 1993) and employ the
RNNLM whose RNN layer is orthodox Elman-type.
For RNN training details, see Appendix H. We choose
parameters θ1 = 1, θ2 = θ3 = 0 in (iv) of Section
3, i.e., we minimize only the input information loss.
This choice is not so problematic because the bound of
output information loss automatically becomes smaller
with minimizing the input one (see Remark 4.3). We
choose the regularization parameter τ = 0, where this
choice regards f̂ as a well-trained network and gives
priority to minimizing the approximation error between
f̂ and f ♯J (see below Theorem4.5).

5.1 Eigenvalue distribution and information
loss

First, we numerically study the relationship between
the eigenvalue distribution and the information loss.
Figure 2a shows the eigenvalue distribution of the co-
variance matrix Σ̂ with 128 hidden nodes, which are
sorted in decreasing order. In this experiment, al-
most half of the eigenvalues are zero, which cannot be
visualized in the figure. Figure 2b shows the input in-
formation loss L(A)

0 (J) versus the compressed number
m♯. The information losses vanish when m♯ > mnzr

(see Remark 3.2). The blue and pink curves correspond
to MNIST1 and FashionMNIST2, respectively. It can
be observed that the eigenvalues for MNIST decrease
more rapidly than those for FashionMNIST, and the
information losses for MNIST decrease more rapidly
than those for FashionMNIST. This phenomenon co-
incides with the interpretation on Proposition 4.6 (see
the discussion below (4.8)).

5.2 Pixel-MNIST (IRNN)

We compare spectral pruning with other pruning meth-
ods in pixel-MNIST (IRNN). Table 1 summarizes the
accuracies and the number of weight parameters for
different pruning methods. We consider one-third com-
pression in the hidden state, i.e., for the node pruning,
128 hidden nodes were compressed to 42 nodes, while
for weight pruning, 1282(= 16384) hidden weights were
compressed to 422(= 1764) weights.

“Baseline(128)” and “Baseline(42)” represent direct
training (not pruning) with 128 and 42 hidden nodes,
respectively. “Spectral w/ rec.(ours)” represents spec-

1http://yann.lecun.com/exdb/mnist/
2https://github.com/zalandoresearch/fashion-mnist

Spectral Pruning for Recurrent Neural Networks

(a) Eigenvalue distribution for Σ̂ (b) Input information loss vs. m♯

Figure 2: Relationship between the eigenvalue distribution and the input information loss

Table 1: Pixel-MNIST (IRNN)

Method Accuracy[%] (std) Finetuned
Accuracy[%](std)

input
-hidden

hidden
-hidden

hidden
-out total

Baseline(128) 96.80 (0.23) - 128 16384 1280 17792
Baseline(42) 93.35 (0.75) - 42 1764 420 2226
Spectral w/ rec.(ours) 92.61 (2.46) 97.08 (0.16) 42 1764 420 2226
Spectral w/o rec. 83.60 (8.24) - 42 1764 420 2226
Random w/ rec. 34.72 (32.47) - 42 1764 420 2226
Random w/o rec. 23.13 (16.09) - 42 1764 420 2226
Random Weight 10.35 (1.38) - 128 1764 1280 3172
Magnitude-based Weight 11.06 (0.70) 94.41 (3.02) 128 1764 1280 3172
Column Sparsification 84.80 (7.29) - 128 5376 1280 6784
Low Rank Factorization 9.65 (3.85) - 128 10752 1280 12160

tral pruning with the reconstruction matrix (i.e., the
compressed weight is chosen as W ♯h = Ŵh

J,[m]ÂJ with
the optimal J with respect to (3.9)), while “Spectral
w/o rec.” represents spectral pruning without the re-
construction matrix (i.e., W ♯h = Ŵh

J,J with the opti-
mal J with respect to (3.9)), which idea is based on
(Luo et al., 2017). “Random w/ rec.” represents ran-
dom node pruning with the reconstruction matrix (i.e.,
W ♯h = Ŵh

J,[m]ÂJ , where J is randomly chosen), while
“Random w/o rec.” represents random node pruning
without the reconstruction matrix (i.e., W ♯h = Ŵh

J,J ,
where J is randomly chosen). “Random Weight” rep-
resents random weight pruning. For the reason that
we compare with random pruning, see the introduc-
tion of (Zhang and Stadie, 2019). “Magnitude-based
Weight” represents magnitude-based weight pruning
based on (Narang et al., 2017a). “Column Sparsifica-
tion” represents the magnitude-based column sparsifi-
cation during training based on (Wang et al., 2019).
“Low Rank Factorization” represents low rank factor-
ization which truncates small singular values of trained
weights based on (Prabhavalkar et al., 2016). “Accu-
racy[%](std)” and “Finetuned Accuracy[%](std)” rep-
resent their mean (standard deviation) of accuracy

before and after fine-tuning, respectively. “# input-
hidden”, “# hidden-hidden”, and “# hidden-out” repre-
sent the number of input-to-hidden, hidden-to-hidden,
and hidden-to-output weight parameters, respectively.
“total” represents their sum. For detailed procedures of
training, pruning, and fine-tuning, see Appendix H.

We demonstrate that spectral pruning significantly out-
performs other pruning methods. The reason spec-
tral pruning can compress with small degradation is
that the covariance matrix Σ̂ has a small number
of non-zero rows (we observed around 50 non-zero
rows). For the detail of non-zero rows, see Remark
3.2. Our method of fine-tuning outperforms “Base-
line(42)”, which means that the spectral pruning gets
benefits from over-parameterization (Chang et al., 2020;
Zhang et al., 2021). Since the magnitude-based weight
pruning is the method to require the fine-tuning (e.g.,
see (Narang et al., 2017a)), we have also compared
our method with the magnitude-based weight pruning
with fine-tuning, and observed that our method outper-
forms the magnitude-based weight pruning as well. We
also remark that our method of fine-tuning overcomes
“Baseline(128)”.

T. Furuya, K. Suetake, K. Taniguchi, H. Kusumoto, R. Saiin, T. Daimon

Table 2: PTB (RNNLM)

Method Perplexity (std) Finetuned
Perplexity (std)

input
-hidden

hidden
-hidden

hidden
-out total

Baseline(128) 114.66 (0.35) - 1270016 16384 1270016 2556416
Baseline(42) 145.85 (0.74) 132.46 (0.74) 416724 1764 416724 835212
Spectral w/ rec.(ours) 207.63 (2.19) 124.26 (0.39) 416724 1764 416724 835212
Spectral w/o rec. 433.99 (10.64) - 416724 1764 416724 835212
Random w/ rec. 243.76 (9.46) - 416724 1764 416724 835212
Random w/o rec. 492.06 (22.40) - 416724 1764 416724 835212
Random Weight 203.41 (2.02) - 1270016 1764 1270016 2541796
Magnitude-based Weight 168.57 (2.57) 115.65 (0.31) 1270016 1764 1270016 2541796
Magnitude-based Weight ♢ 201.41 (3.60) 126.20 (0.28) 416724 1764 416724 835212
Column Sparsification 128.98 (0.52) - 1270016 5376 1270016 2545408
Low Rank Factorization 126.24 (1.79) - 1270016 10752 1270016 2550784

5.3 PTB (RNNLM)

We compare spectral pruning with other pruning meth-
ods in the PTB (RNNLM). Table 2 summarizes the
perplexity and the number of weight parameters for dif-
ferent pruning methods. As in Section 5.2, we consider
one-third compression in the hidden state, and how
to represent “Method” is the same as Table 1 except
for “Magnitude-based Weight ♢”, which represents the
magnitude-based weight pruning for not only hidden-
to-hidden weights but also input-to-hidden and hidden-
to-out weights so that the number of resultant weight
parameters is the same as Spectral w/ rec.(ours).

We demonstrate that our method of fine-tuning out-
performs other pruning methods except for magnitude-
based weight pruning. Even though "Low Rank Fac-
torization" retains large number of weight parameters,
its perplexity is slightly worse than our method of fine-
tuning. On the other hand, our method of fine-tuning
can not outperform “Magnitude-based Weight”, but it
can slightly under the condition of the same number of
weight parameters. We also remark that our method of
fine-tuning overcomes “Baseline(42)”, although it does
not overcome “Baseline(128)”.

Therefore, we conclude that spectral pruning works
well in Elman-RNN, especially in IRNN.

Limitations and Future Works

In this paper, we show the generalization error bounds
for compressed RNNs, but there are some limitations.
The bounds are obtained under the assumption that the
length T of time series data is fixed, and they also blow
up as T goes to infinity. In the future, we will analyse
the generalization error without the assumption and
improve the bounds to sharper ones. The other limita-
tion is that we only treat Elman-RNNs. It would be

interesting to extend our work to the long short-term
memory (LSTM), which is more sophisticated and com-
monly used architecture than Elman-RNNs, although
Elman-RNNs continue to be used today in applications
such as edge computing devices. The properties of
LSTMs are different from those of Elman-RNNs in
that LSTMs have gated architectures including prod-
uct operations, which might require more complicated
analysis of the generalization error bounds as compared
to Elman-RNNs. Hence, the investigation of spectral
pruning for LSTMs is beyond the scope of this study
and will be the focus of future work.

Acknowledgements

The authors are grateful to Professor Taiji Suzuki for
useful discussions and comments on our work. The first
author was supported by Grant-in-Aid for JSPS Fellows
(No.21J00119), Japan Society for the Promotion of
Science.

References

Nil-Jana Akpinar, Bernhard Kratzwald, and Stefan
Feuerriegel. Sample complexity bounds for recurrent
neural networks with application to combinatorial
graph problems. arXiv preprint arXiv:1901.10289,
2019.

Md Zahangir Alom, Adam T Moody, Naoya Maruyama,
Brian C Van Essen, and Tarek M Taha. Effective
quantization approaches for recurrent neural net-
works. In 2018 International Joint Conference on
Neural Networks (IJCNN), pages 1–8. IEEE, 2018.

Francis Bach. On the equivalence between kernel
quadrature rules and random feature expansions.
The Journal of Machine Learning Research, 18(1):
714–751, 2017.

Peter Bartlett, Dylan J Foster, and Matus Telgarsky.

Spectral Pruning for Recurrent Neural Networks

Spectrally-normalized margin bounds for neural net-
works. arXiv preprint arXiv:1706.08498, 2017.

Andrea Caponnetto and Ernesto De Vito. Optimal
rates for the regularized least-squares algorithm.
Foundations of Computational Mathematics, 7(3):
331–368, 2007.

Xiangyu Chang, Yingcong Li, Samet Oymak, and
Christos Thrampoulidis. Provable benefits of overpa-
rameterization in model compression: From double
descent to pruning neural networks. arXiv preprint
arXiv:2012.08749, 2020.

Minshuo Chen, Xingguo Li, and Tuo Zhao. On gen-
eralization bounds of a family of recurrent neural
networks. arXiv preprint arXiv:1910.12947, 2019.

Misha Denil, Babak Shakibi, Laurent Dinh,
Marc’Aurelio Ranzato, and Nando De Freitas.
Predicting parameters in deep learning. arXiv
preprint arXiv:1306.0543, 2013.

Jesse Dodge, Roy Schwartz, Hao Peng, and Noah A
Smith. Rnn architecture learning with sparse regu-
larization. arXiv preprint arXiv:1909.03011, 2019.

Yarin Gal and Zoubin Ghahramani. A theoretically
grounded application of dropout in recurrent neural
networks. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016. URL https:
//proceedings.neurips.cc/paper/2016/file/
076a0c97d09cf1a0ec3e19c7f2529f2b-Paper.pdf.

Evarist Giné and Richard Nickl. Mathematical Foun-
dations of Infinite-Dimensional Statistical Models,
volume 40. Cambridge University Press, 2015.

Mark S Gockenbach. Linear inverse problems and
Tikhonov regularization, volume 32. American Math-
ematical Soc., 2016.

Artem M Grachev, Dmitry I Ignatov, and Andrey V
Savchenko. Compression of recurrent neural net-
works for efficient language modeling. Applied Soft
Computing, 79:354–362, 2019.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
Tying word vectors and word classifiers: A loss
framework for language modeling. arXiv preprint
arXiv:1611.01462, 2016.

Boris Joseph Joukovsky, Tanmoy Mukherjee, Nikos
Deligiannis, et al. Generalization error bounds for
deep unfolding rnns. In Proceedings of Machine
Learning Research. Journal of Machine Learning Re-
search, 2021.

Markus Kliegl, Siddharth Goyal, Kexin Zhao, Kavya
Srinet, and Mohammad Shoeybi. Trace norm regu-
larization and faster inference for embedded speech

recognition rnns. arXiv preprint arXiv:1710.09026,
2017.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A
simple way to initialize recurrent networks of rectified
linear units. arXiv preprint arXiv:1504.00941, 2015.

Michel Ledoux and Michel Talagrand. Probability in
Banach Spaces: isoperimetry and processes. Springer
Science & Business Media, 2013.

Namhoon Lee, Thalaiyasingam Ajanthan, and
Philip HS Torr. Snip: Single-shot network prun-
ing based on connection sensitivity. arXiv preprint
arXiv:1810.02340, 2018.

Shiwei Liu, Decebal Constantin Mocanu, Yulong Pei,
and Mykola Pechenizkiy. Selfish sparse rnn training.
arXiv preprint arXiv:2101.09048, 2021a.

Shiwei Liu, Iftitahu Ni’mah, Vlado Menkovski, Dece-
bal Constantin Mocanu, and Mykola Pechenizkiy.
Efficient and effective training of sparse recurrent
neural networks. Neural Computing and Applications,
pages 1–12, 2021b.

Xuan Liu, Di Cao, and Kai Yu. Binarized lstm lan-
guage model. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2113–2121,
2018.

Ekaterina Lobacheva, Nadezhda Chirkova, and Dmitry
Vetrov. Bayesian sparsification of recurrent neural
networks. arXiv preprint arXiv:1708.00077, 2017.

Ekaterina Lobacheva, Nadezhda Chirkova, Alexander
Markovich, and Dmitry Vetrov. Structured spar-
sification of gated recurrent neural networks. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 4989–4996, 2020.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A
filter level pruning method for deep neural network
compression. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 5058–
5066, 2017.

Colin L Mallows. Some comments on cp. Technometrics,
42(1):87–94, 2000.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. Building a large annotated corpus of
english: The penn treebank. 1993.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry
Vetrov. Variational dropout sparsifies deep neural
networks. In International Conference on Machine
Learning, pages 2498–2507. PMLR, 2017.

Sharan Narang, Greg Diamos, Shubho Sengupta, and
Erich Elsen. Exploring sparsity in recurrent neural
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,

https://proceedings.neurips.cc/paper/2016/file/076a0c97d09cf1a0ec3e19c7f2529f2b-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/076a0c97d09cf1a0ec3e19c7f2529f2b-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/076a0c97d09cf1a0ec3e19c7f2529f2b-Paper.pdf

T. Furuya, K. Suetake, K. Taniguchi, H. Kusumoto, R. Saiin, T. Daimon

April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017a. URL https://openreview.
net/forum?id=BylSPv9gx.

Sharan Narang, Eric Undersander, and Gregory Di-
amos. Block-sparse recurrent neural networks. arXiv
preprint arXiv:1711.02782, 2017b.

Angshuman Parashar, Minsoo Rhu, Anurag Mukkara,
Antonio Puglielli, Rangharajan Venkatesan, Brucek
Khailany, Joel Emer, Stephen W Keckler, and
William J Dally. Scnn: An accelerator for
compressed-sparse convolutional neural networks.
ACM SIGARCH Computer Architecture News, 45
(2):27–40, 2017.

Rohit Prabhavalkar, Ouais Alsharif, Antoine Bruguier,
and Lan McGraw. On the compression of recurrent
neural networks with an application to lvcsr acoustic
modeling for embedded speech recognition. In 2016
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5970–5974.
IEEE, 2016.

Yangyang Shi, Mei-Yuh Hwang, Xin Lei, and Haoyu
Sheng. Knowledge distillation for recurrent neural
network language modeling with trust regulariza-
tion. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 7230–7234. IEEE, 2019.

Taiji Suzuki, Hiroshi Abe, Tomoya Murata, Shingo
Horiuchi, Kotaro Ito, Tokuma Wachi, So Hirai,
Masatoshi Yukishima, and Tomoaki Nishimura. Spec-
tral pruning: Compressing deep neural networks via
spectral analysis and its generalization error. In
Christian Bessiere, editor, Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pages 2839–2846. Interna-
tional Joint Conferences on Artificial Intelligence
Organization, 7 2020. Main track.

Shijian Tang and Jiang Han. A pruning based method
to learn both weights and connections for lstm. Pro-
ceedings of the Advances in Neural Information Pro-
cessing Systems, NIPS, Montreal, QC, Canada, pages
7–12, 2015.

Zhiyuan Tang, Dong Wang, and Zhiyong Zhang. Re-
current neural network training with dark knowledge
transfer. In 2016 IEEE international conference on
acoustics, speech and signal processing (ICASSP),
pages 5900–5904. IEEE, 2016.

Andros Tjandra, Sakriani Sakti, and Satoshi Naka-
mura. Compressing recurrent neural network with
tensor train. In 2017 International Joint Confer-
ence on Neural Networks, IJCNN 2017, Anchorage,
AK, USA, May 14-19, 2017, pages 4451–4458. IEEE,
2017. doi: 10.1109/IJCNN.2017.7966420. URL
https://doi.org/10.1109/IJCNN.2017.7966420.

Zhuozhuo Tu, Fengxiang He, and Dacheng Tao. Under-
standing generalization in recurrent neural networks.
In International Conference on Learning Represen-
tations, 2019.

Shaorun Wang, Peng Lin, Ruihan Hu, Hao Wang, Jin
He, Qijun Huang, and Sheng Chang. Acceleration of
lstm with structured pruning method on fpga. IEEE
Access, 7:62930–62937, 2019.

Liangjiang Wen, Xueyang Zhang, Haoli Bai, and
Zenglin Xu. Structured pruning of recurrent neural
networks through neuron selection. Neural networks
: the official journal of the International Neural Net-
work Society, 123:134–141, 2020.

Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia
Zhang, Wenhan Wang, Fang Liu, Bin Hu, Yiran
Chen, and Hai Li. Learning intrinsic sparse struc-
tures within long short-term memory. arXiv preprint
arXiv:1709.05027, 2017.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329, 2014.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learn-
ing (still) requires rethinking generalization. Com-
munications of the ACM, 64(3):107–115, 2021.

Matthew Shunshi Zhang and Bradly Stadie. One-
shot pruning of recurrent neural networks by
jacobian spectrum evaluation. arXiv preprint
arXiv:1912.00120, 2019.

https://openreview.net/forum?id=BylSPv9gx
https://openreview.net/forum?id=BylSPv9gx
https://doi.org/10.1109/IJCNN.2017.7966420

Spectral Pruning for Recurrent Neural Networks

Appendix

A Review of Spectral Pruning for DNNs

Let D = {(xi, yi)}ni=1 be training data, where xi ∈ Rdx is an input and yi ∈ Rdy is an output. The training data
are independently identically distributed. To train the appropriate relationship between input and output, we
consider DNNs f as

f(x) = (W (L)σ(·) + b(L)) ◦ · · · ◦ (W (1)x+ b(1)),

where σ : R → R is an activation function, W (l) ∈ Rml+1×ml is a weight matrix, and b(l) ∈ Rml+1 is a bias. Let f̂
be a trained DNN obtained from the training data D, i.e.,

f̂(x) = (Ŵ (L)σ(·) + b̂(L)) ◦ · · · ◦ (Ŵ (1)x+ b̂(1)).

We denote the input with respect to l-th layer by

ϕ(l)(x) = σ ◦ (Ŵ (l−1)σ(·) + b̂(l−1)) ◦ · · · ◦ (Ŵ (1)x+ b̂(1)).

Let J (l) ⊂ [ml] be an index set with |J (l)| = m♯
l , where [ml] := {1, . . . ,ml} and m♯

l ∈ N is the number of nodes of
the l-th layer of the compressed DNN f ♯ with m♯

l ≤ ml. Let ϕ(l)
J(l)(x) = (ϕ

(l)
j (x))j∈J(l) be a subvector of ϕ(l)(x)

corresponding to the index set J (l), where ϕ(l)j (x) is the j-th components of the vector ϕ(l)(x).

(i) Input information loss. The input information loss is defined by

L(A,l)
τ (J (l)) := min

A∈Rml×m
♯
l

{∥∥ϕ(l) −Aϕ
(l)

J(l)

∥∥2
n
+

∥∥A∥∥2
τ

}
, (A.1)

where ∥ · ∥n is the empirical L2-norm with respect to n, i.e.,

∥∥ϕ(l) −Aϕ
(l)

J(l)

∥∥2
n
:=

1

n

n∑
i=1

∥∥ϕ(l)(xi)−Aϕ
(l)

J(l)(x
i)
∥∥2
2
, (A.2)

where ∥ · ∥2 is the Euclidean norm and ∥A∥2τ := Tr [AIτA
T] for a regularization parameter τ ∈ Rm

♯
l

+ . Here,

Rm
♯
l

+ :=
{
x ∈ Rm

♯
l |xj > 0, j = 1, . . . ,m♯

l

}
and Iτ := diag(τ). By the linear regularization theory, there exists a

unique solution Â(l)

J(l) ∈ Rml×m♯
l of the minimization problem of ∥ϕ(l) −Aϕ

(l)

J(l)∥2n + ∥A∥2τ , and it has the form

Â
(l)

J(l) = Σ̂
(l)

[ml],J(l)

(
Σ̂

(l)

J(l),J(l) + Iτ
)−1

, (A.3)

where Σ̂(l) is the (noncentered) empirical covariance matrix of ϕ(l)(x) with respect to n, i.e.,

Σ̂(l) =
1

n

n∑
i=1

ϕ(l)(xi)ϕ(l)(xi)T ,

and Σ̂
(l)
I,I′ = (Σ̂

(l)
i,i′)i∈I,i′∈I′ ∈ RK×H is the submatrix of Σ̂(l) corresponding to index sets I, I ′ ⊂ [m] with |I| = K

and |I ′| = H. By substituting the explicit formula (A.2) of the reconstruction matrix Â(l)

J(l) into (A.1), the input
information loss is reformulated as

L(A,l)
τ (J (l)) = Tr

[
Σ̂(l) − Σ̂

(l)

[ml],J(l)

(
Σ̂

(l)

J(l),J(l) + Iτ
)−1

Σ̂
(l)

J(l),[ml]

]
. (A.4)

(ii) Output information loss. For any matrix Z(l) ∈ Rm×ml with an output size m ∈ N, we define the output
information loss by

L(B,l)
τ (J (l)) :=

m∑
j=1

min
β∈Rm

♯
l

{∥∥Z(l)
j,: ϕ

(l) − βTϕ
(l)

J(l)

∥∥2
n
+
∥∥βT∥∥2

τ

}
, (A.5)

T. Furuya, K. Suetake, K. Taniguchi, H. Kusumoto, R. Saiin, T. Daimon

where Z(l)
j,: denotes the j-th row of the matrix Z(l). A typical situation is that Z(l) = Ŵ (l). The minimization

problem of ∥Z(l)
j,: ϕ

(l) − βTϕJ(l)∥2n + ∥βT ∥2τ has the unique solution

β̂
(l)
j = (Z

(l)
j,: Â

(l)

J(l))
T ,

and by substituting it into (A.5), the output information loss is reformulated as

L(B,l)
τ (J (l)) = Tr

[
Z(l)

(
Σ̂(l) − Σ̂

(l)

[m],J(l)

(
Σ̂

(l)

J(l),J(l) + Iτ
)−1

Σ̂
(l)

J(l),[m]

)
Z(l)T

]
.

(iii) Compressed DNN by the reconstruction matrix. We construct the compressed DNN by

f ♯
J(1:L)(x) = (W

♯(L)

J(L)σ(·) + b♯(L)) ◦ · · · ◦ (W ♯(1)

J(1)x+ b♯(1)),

where J (1:L) = J (1) ∪ · · · ∪ J (L), and b♯(l) = b̂(l) and W ♯(l)

J(l) is the compressed weight as the multiplication of the
trained weight Ŵ (l)

J(l+1),[ml]
and the reconstruction matrix ÂJ(l) , i.e.,

W
♯(l)

J(l) := Ŵ
(l)

J(l+1),[ml]
ÂJ(l) . (A.6)

.

(iv) Optimization. To select an appropriate index set J (l), we consider the following optimization problem that
minimizes a convex combination of input and output information losses, i.e.,

min
J(l)⊂[ml] s.t. |J(l)|=m♯

l

{
θL(A,l)

τ (J (l)) + (1− θ)L(B,l)
τ (J (l))

}
,

for θ ∈ [0, 1], where m♯
l ∈ [m] is a prespecified number. We adapt the optimal index J♯(1:L) in the algorithm. We

term this method as spectral pruning.

In (Suzuki et al., 2020), the generalization error bounds for compressed DNNs with the spectral pruning have
been studied (see Theorems 1 and 2 in (Suzuki et al., 2020)), and the parameters θ, τ , and Z(l) are chosen such
that its error bounds become smaller.

B Proof of Proposition 4.2

We restate Proposition 4.2 in an exact form as follows:

Proposition B.1. Suppose that Assumption 4.1 holds. Let {(Xi
T , Y

i
T)}ni=1 be sampled i.i.d. from the distribution

PT . Then,

∥f̂ − f ♯∥n,T ≤
√
3

{∥∥Ŵ oϕ−W ♯oϕJ
∥∥
n,T

+Roρσmax{1, (Rhρσ)T−2}T
∥∥Ŵh

J,[m]ϕ−W ♯hϕJ
∥∥
n,T

+Roρσ

(T∑
t=1

(Rhρσ)
t−1

)(
Rx

∥∥Ŵ i
J,[dx]

−W ♯i
∥∥
op

+ ∥b̂hiJ − b♯hi∥2
)
+
∥∥b̂o − b♯o

∥∥
2

}
, (B.1)

for all f ♯ ∈ F ♯
T (Ro, Rh, Ri, R

b
o, R

b
hi) and J ⊂ [m] with |J | = m♯.

Proof. Let f̂ = (f̂t)
T
t=1 be a trained RNN and f ♯ ∈ F ♯

T (Ro, Rh, Ri, R
b
o, R

b
hi). Let us define functions ϕ and ϕ♯ by

ϕ(x, h) := σ(Ŵhh+ Ŵ ix+ b̂hi) for x ∈ Rdx , h ∈ Rm,

ϕ♯(x, h♯) := σ(W ♯hh♯ +W ♯ix+ b♯hi) for x ∈ Rdx , h♯ ∈ Rm
♯

, (B.2)

and denote the hidden states by

ĥt := ϕ(xt, ĥt−1), h♯t := ϕ♯(xt, h
♯
t−1) for t = 1, 2, · · · , T. (B.3)

Spectral Pruning for Recurrent Neural Networks

If a training data Xi
T = (xit)

T
t=1 is used as input, we denote its hidden state by

ĥit := ϕ(xit, ĥ
i
t−1), h♯it := ϕ♯(xit, h

♯i
t−1),

and its outputs at time t by

f̂t(X
i
t) = Ŵ oϕ(xit, ĥ

i
t−1) + b̂o, f ♯t (X

i
t) =W ♯oϕ♯(xit, h

♯i
t−1) + b♯o,

for t = 1, 2, . . . , T . Then, we have

∥∥f̂t(Xi
t)− f ♯t (X

i
t)
∥∥
2
≤

∥∥Ŵ oϕ(xit, ĥ
i
t−1)−W ♯oϕJ(x

i
t, ĥ

i
t−1)

∥∥
2

+
∥∥W ♯oϕJ(x

i
t, ĥ

i
t−1)−W ♯oϕ♯(xit, h

♯i
t−1)

∥∥
2
+
∥∥b̂o − b♯o

∥∥
2
.

(B.4)

If we can prove that the second term of right-hand side in (B.4) is estimated as

∥∥W ♯oϕJ(x
i
t, ĥ

i
t−1)−W ♯oϕ♯(xit, h

♯i
t−1)

∥∥
2

≤ Roρσ

{
max

{
1, (Rhρσ)

t−2
} t−1∑
l=1

∥∥Ŵh
J,[m]ϕ(x

i
t−l, ĥ

i
t−l−1)−W ♯hϕJ(x

i
t−l, ĥ

i
t−l−1)

∥∥
2

+

t∑
l=1

(Rhρσ)
l−1

(∥∥Ŵ i
J,[dx]

−W ♯i
∥∥
op
∥xit−l+1∥2 +

∥∥b̂hiJ − b♯hi
∥∥
2

)}
, (B.5)

then by using the inequalities (B.4) and (
∑K
k=1 ak)

2 ≤ K
∑K
k=1 a

2
k, we have

∥∥f̂t(Xi
t)− f ♯t (X

i
t)
∥∥2
2
≤ 3

{∥∥Ŵ oϕ(xit, ĥ
i
t−1)−W ♯oϕJ(x

i
t, ĥ

i
t−1)

∥∥2
2

+

(
Roρσmax

{
1, (Rhρσ)

t−2
} t−1∑
l=1

∥∥Ŵh
J,[m]ϕ(x

i
t−l, ĥ

i
t−l−1)−W ♯hϕJ(x

i
t−l, ĥ

i
t−l−1)

∥∥
2

)2

+

(
Roρσ

t∑
l=1

(Rhρσ)
l−1

(∥∥Ŵ i
J,[dx]

−W ♯i
∥∥
op
∥xit−l+1∥2 +

∥∥b̂hiJ − b♯hi
∥∥
2

)
+
∥∥b̂o − b♯o

∥∥
2

)2
}
.

Hence, by taking the average over i = 1, . . . , n and t = 1, . . . , T , and by using the inequality
∑T
t=1(

∑t
l=1 al)

2 ≤
T 2

∑T
t=1 a

2
t , we obtain

∥∥f̂ − f ♯
∥∥2
n,T

=
1

nT

n∑
i=1

T∑
t=1

∥∥f̂t(Xi
t)− f ♯t (X

i
t)
∥∥2
2

≤ 3

{
1

nT

n∑
i=1

T∑
t=1

∥∥Ŵ oϕ(xit, ĥ
i
t−1)−W ♯oϕJ(x

i
t, ĥ

i
t−1)

∥∥2
2︸ ︷︷ ︸

=∥Ŵ oϕ−W ♯oϕJ∥2
n,T

+
(
Roρσmax

{
1, (Rhρσ)

T−2
}
T
)2 1

nT

n∑
i=1

T∑
t=1

∥∥Ŵh
J,[m]ϕ(x

i
t, ĥ

i
t−1)−W ♯hϕJ(x

i
t, ĥ

i
t−1)

∥∥2
2︸ ︷︷ ︸

=∥Ŵh
J,[m]

ϕ−W ♯hϕJ∥2
n,T

+

(
Roρσ

(T∑
t=1

(Rhρσ)
t−1

)(∥∥Ŵ i
J,[dx]

−W ♯i
∥∥
op
∥xit−l+1∥2 +

∥∥b̂hiJ − b♯hi
∥∥
2

)
+
∥∥b̂o − b♯o

∥∥2
2

)2
}
,

T. Furuya, K. Suetake, K. Taniguchi, H. Kusumoto, R. Saiin, T. Daimon

which concludes the inequality (B.1). It remains to prove (B.5). We calculate that

∥∥W ♯oϕJ(x
i
t, ĥ

i
t−1)−W ♯oϕ♯(xit, h

♯i
t−1)

∥∥
2

≤
∥∥W ♯o

∥∥
op

∥∥σ(Ŵh
J,[m]ϕ(x

i
t−1, ĥ

i
t−2) + Ŵ i

J,[dx]
xit + b̂hiJ

)
− σ

(
W ♯hϕ♯(xit−1, h

♯i
t−2) +W ♯ixit + b♯hi

)∥∥
2

≤ Roρσ

{∥∥Ŵh
J,[m]ϕ(x

i
t−1, ĥ

i
t−2)−W ♯hϕ♯(xit−1, h

♯i
t−2)

∥∥
2︸ ︷︷ ︸

=:Ht−1

+
∥∥Ŵ i

J,[dx]
−W ♯i

∥∥
op
∥xit∥2 +

∥∥b̂hi − b♯hi
∥∥
2

}
,

(B.6)

where ∥ · ∥op is the operator norm (which is the largest singular value). Concerning the quantity Ht−1, we estimate

Ht−1 ≤
∥∥Ŵh

J,[m]ϕ(x
i
t−1, ĥ

i
t−2)−W ♯hϕJ(x

i
t−1, ĥ

i
t−2)

∥∥
2

+
∥∥W ♯hϕJ(x

i
t−1, ĥ

i
t−2)−W ♯hϕ♯(xit−1, h

♯i
t−2)

∥∥
2
,

and moreover, the second term is estimated as

∥∥W ♯hϕJ(x
i
t−1, ĥ

i
t−2)−W ♯hϕ♯(xit−1, h

♯i
t−2)

∥∥
2

≤
∥∥W ♯h

∥∥
op

∥∥σ(Ŵh
J,[m]ϕ(x

i
t−2, ĥ

i
t−3) + Ŵ i

J,[dx]
xit−1 + b̂hiJ

)
− σ

(
W ♯hϕ♯(xit−2, h

♯i
t−3) +W ♯ixit−1 + b♯hi

)∥∥
2

≤ Rhρσ

{
Ht−2 +

∥∥Ŵ i
J,[dx]

−W ♯i
∥∥
op
∥xit−1∥2 +

∥∥b̂hiJ − b♯hi
∥∥
2

}
,

for all t. Thus, we have the recursive inequality

Ht−1 ≤
∥∥Ŵh

J,[m]ϕ(x
i
t−1, ĥ

i
t−2)−W ♯hϕJ(x

i
t−1, ĥ

i
t−2)

∥∥
2

+Rhρσ

{
Ht−2 +

∥∥Ŵ i
J,[dx]

−W ♯i
∥∥
op
∥xit−1∥2 +

∥∥b̂hiJ − b♯hi
∥∥
2

}
,

(B.7)

for t = 2, . . . , T . By repeatedly substituting (B.7) into (B.6), we arrive at (B.5):

∥∥W ♯o ϕJ(x
i
t, ĥ

i
t−1)−W ♯oϕ♯(xit, h

♯i
t−1)

∥∥
2

≤ Roρσ

{ t−1∑
l=1

(Rhρσ)
l−1︸ ︷︷ ︸

≤max{1,(Rhρσ)t−2}

∥∥Ŵh
J,[m]ϕ(x

i
t−l, ĥ

i
t−l−1)−W ♯hϕJ(x

i
t−l, ĥ

i
t−l−1)

∥∥
2

+

t∑
l=1

(Rhρσ)
l−1

(∥∥Ŵ i
J,[dx]

−W ♯i
∥∥
op
∥xit−l+1∥2 +

∥∥b̂hiJ − b♯hi
∥∥
2

)}
.

Thus, we conclude Proposition B.1.

C Proof of Theorem 4.5

We restate Theorem 4.5 in an exact form as follows:

Theorem C.1. Suppose that Assumptions 4.1 and 4.4 hold. Let {(Xi
T , Y

i
T)}ni=1 be sampled i.i.d. from the

Spectral Pruning for Recurrent Neural Networks

distribution PT . Then, for any δ ≥ log 2, we have the following inequality with probability greater than 1− 2e−δ:

Ψj(f
♯) ≤ Ψ̂j(f̂) +

√
3ρψ

{∥∥Ŵ oϕ−W ♯oϕJ
∥∥
n,T

+Roρσmax{1, (Rhρσ)T−2}T
∥∥Ŵh

J,[m]ϕ−W ♯hϕJ
∥∥
n,T

+Roρσ

(T∑
t=1

(Rhρσ)
t−1

)(
Rx

∥∥Ŵ i
J,[dx]

−W ♯i
∥∥
op

+
∥∥b̂hiJ − b♯hi

∥∥
2

)
+

∥∥b̂o − b♯o
∥∥
2

}

+
1√
n

{
ĉρψ

√
m♯

T

(T∑
t=1

M
1/2
t R

1/2
∞,t

)
+ 3

√
2δ(ρψR∞,T +Ry)

}
,

for j = 1, . . . , dy and for all J ⊂ [m] with |J | = m♯ and f ♯ ∈ F ♯
T (Ro, Rh, Ri, R

b
o, R

b
hi), where ĉ := 192

√
5, and

R∞,t and Mt are defined by

R∞,t := Roρσ(RiRx +Rbhi)

(t∑
l=1

(Rhρσ)
l−1

)
+Rbo, (C.1)

Mt := Roρσ

[(
dymin{

√
m♯,

√
dy}+ dxmin{

√
m♯,

√
dx}

)
RiRx

+
(
dymin{

√
m♯,

√
dy}+ 1

)
Rbhi

](t−1∑
l=0

(Rhρσ)
l

)

+ (m♯)
3
2Rhρ

2
σRo(RiRx +Rbhi)

(t−1∑
l=1

l−1∑
k=0

(Rhρσ)
t−1−l+k

)
+ dyR

b
o.

(C.2)

Proof. The generalization error of f ♯t ∈ F ♯
t is decomposed into

Ψj(f
♯) = Ψj(f̂) +

(
Ψ̂j(f

♯)− Ψ̂j(f̂)
)
+

(
Ψj(f

♯)− Ψ̂j(f
♯)
)
,

where the second term Ψ̂j(f
♯) − Ψ̂j(f̂) is called the approximation error and the third term Ψj(f

♯) − Ψ̂j(f
♯)

is called the estimation error. Since the loss function ψ is ρψ-Lipschitz continuous, the approximation error is
evaluated as

∣∣Ψ̂j(f ♯)− Ψ̂j(f̂)
∣∣ ≤ 1

nT

n∑
i=1

T∑
t=1

∣∣ψ(yit,j , f ♯t (Xi
t)j)− ψ(yit, f̂t(X

i
t)j)

∣∣
≤ ρψ
nT

n∑
i=1

T∑
t=1

∣∣f ♯(Xi
t)j − f̂t(X

i
t)j

∣∣
≤ ρψ
nT

n∑
i=1

T∑
t=1

∥∥f ♯t (Xi
t)− f̂t(X

i
t)
∥∥
2

≤ ρψ

√√√√ 1

nT

n∑
i=1

T∑
t=1

∥∥f ♯t (Xi
t)− f̂t(Xi

t)
∥∥2
2
= ρψ

∥∥f ♯ − f̂
∥∥
n,T

.

The term ∥f ♯ − f̂∥n,T is evaluated by Proposition 4.2 (see also Proposition B.1). In the rest of the proof, let us
concentrate on the estimation error bound.

First, we define the following function space

G♯T,j :=
{
gj

∣∣∣∣ gj(YT , XT) =
1

T

T∑
t=1

ψ(yt,j , ft(Xt)j) for (XT , YT) ∈ supp(PT), f ∈ F ♯
T ,

}

T. Furuya, K. Suetake, K. Taniguchi, H. Kusumoto, R. Saiin, T. Daimon

for j = 1, . . . , dy. For gj ∈ G♯T,j , we have

∣∣gj(YT , XT)
∣∣ ≤ 1

T

T∑
t=1

{
|ψ(yt,j , ft(Xt)j)− ψ(yt,j , 0)|+ |ψ(yt,j , 0)|

}
≤ 1

T

T∑
t=1

(
ρψ|ft(Xt)j |+Ry

)
≤ ρψ

T

T∑
t=1

∥ft(Xt)∥2 +Ry.

The quantity ∥ft(Xt)∥2 is evaluated by

∥ft(Xt)∥2 ≤ Roρσ
∥∥W ♯hϕ♯(xt−1, h

♯i
t−2) +W ♯ixt + b♯hi

∥∥
2
+Rbo.

The recurrent structure (B.2) and (B.3) give∥∥W ♯hϕ♯ (xt−1, h
♯i
t−2) +W ♯ixt + b♯hi

∥∥
2

≤ Rhρσ
∥∥W ♯hϕ♯(xt−2, h

♯i
t−3) +W ♯ixt−1 + b♯hi

∥∥
2
+RiRx +Rbhi,

as this is repeated

∥∥W ♯hϕ♯(xt−1, h
♯i
t−2) +W ♯ixt + b♯hi

∥∥
2
≤ (RiRx +Rbhi)

(t∑
l=1

(Rhρσ)
l−1

)
.

Hence, we see from (C.1) that

∥ft(Xt)∥2 ≤ Roρσ(RiRx +Rbhi)

(t∑
l=1

(Rhρσ)
l−1

)
+Rbo = R∞,t,

which implies that

∣∣gj(YT , XT)
∣∣ ≤ ρψRoρσ(RiRx +Rbhi)

{
1

T

T∑
t=1

t∑
l=1

(Rhρσ)
l−1

}
+Rbo +Ry

≤ ρψRoρσ(RiRx +Rbhi)

(T∑
t=1

(Rhρσ)
t−1

)
+Rbo +Ry

= ρψR∞,T +Ry.

By Theorem 3.4.5 in (Giné and Nickl, 2015), for any δ > log 2, we have the following inequality with probability
grater than 1− 2e−δ:∣∣Ψj(f ♯)− Ψ̂j(f

♯)
∣∣ ≤ sup

gj∈G♯
T,j

∣∣∣∣ 1n
n∑
i=1

gj(Y
i
T , X

i
T)− EPT

[gj(YT , XT)]

∣∣∣∣
≤ 2Eϵ

[
sup

gj∈G♯
T,j

∣∣∣∣ 1n
n∑
i=1

ϵigj(Y
i
T , X

i
T)

∣∣∣∣
]
+ 3(ρψR∞,T +Ry)

√
2δ

n
,

where (ϵi)
n
i=1 is the i.i.d. Rademacher sequence (see, e.g., Definition 3.1.19 in (Giné and Nickl, 2015)). The first

term of right-hand side in the above inequality, called the Rademacher complexity, is estimated by using Theorem
4.12 in (Ledoux and Talagrand, 2013), and Lemma A.5 in (Bartlett et al., 2017) (or Lemma 9 in (Chen et al.,
2019)) as follows:

Eϵ

[
sup

gj∈G♯
T,j

∣∣∣∣ 1n
n∑
i=1

ϵigj(Y
i
T , X

i
T)

∣∣∣∣
]
≤ 1

T

T∑
t=1

Eϵ

[
sup

ft,j∈F♯
t,j

∣∣∣∣ 1n
n∑
i=1

ϵiψj(y
i
t,j , ft(X

i
t)j)

∣∣∣∣
]

≤ 2ρψ
T

T∑
t=1

Eϵ

[
sup

ft,j∈F♯
t,j

∣∣∣∣ 1n
n∑
i=1

ϵift(X
i
t)j

∣∣∣∣
]

≤ 2ρψ
T

T∑
t=1

inf
α>0

(
4α√
n
+

12

n

∫ 2R∞,t
√
n

α

√
logN(F ♯

t,j , ϵ, ∥ · ∥S) dϵ
)
,

Spectral Pruning for Recurrent Neural Networks

where F ♯
t,j and ∥ · ∥S are defined by

F ♯
t,j :=

{
ft,j

∣∣ ft,j(Xt) = ft(Xt)j for Xt ∈ supp(PXt
), f ∈ F ♯

T

}
,

∥ft,j∥S :=

(n∑
i=1

|ft(Xi
t)j |2

)1/2

.

Here, we denote by N(F, ϵ, ∥ · ∥) the covering number of F which means the minimal cardinality of a subset
C ⊂ F that covers F at scale ϵ with respect to the norm ∥ · ∥. By using Lemma D.1 in Appendix D, for any
δ > log 2, we conclude the following estimation error bound:∣∣Ψj(f ♯)− Ψ̂j(f

♯)
∣∣

≤ 16ρψα√
n

+
48ρψ
nT

T∑
t=1

∫ 2R∞,t
√
n

α

√
logN(F ♯

t,j , ϵ, ∥ · ∥S) dϵ+ 3(ρψR∞,T +Ry)

√
2δ

n

≤ 48ρψ
nT

√
10m♯n1/4

T∑
t=1

M
1/2
t

∫ 2R∞,t
√
n

α

dϵ√
ϵ
+ 3(ρψR∞,T +Ry)

√
2δ

n
+O(α)

=
ĉρψ

√
m♯

√
nT

(T∑
t=1

M
1/2
t R

1/2
∞,t

)
+ 3(ρψR∞,T +Ry)

√
2δ

n
+O(α),

for all α > 0 with probability grater than 1− 2e−δ, where ĉ := 192
√
5, and Mt is defined by (C.2). The proof of

Theorem C.1 is complete.

D Upper Bound of the Covering Number

Lemma D.1. Under the same assumptions as in Theorem C.1, the covering number N(F ♯
t,j , ϵ, ∥ · ∥S) has the

following bound:

logN(F ♯
t,j , ϵ, ∥ · ∥S) ≤

10m♯n1/2Mt

ϵ
,

for any ϵ > 0, where Mt is given by (C.2).

Proof. The proof is based on the argument of the proof of Lemma 3 in (Chen et al., 2019). For f ♯t,j , f̃
♯
t,j ∈ F ♯

t,j ,
we estimate

|f ♯t (Xt)j − f̃ ♯t (Xt)j | ≤
∥∥f ♯t (Xt)− f̃ ♯t (Xt)

∥∥
2

≤
∥∥W ♯o − W̃ ♯o

∥∥
op

∥∥ϕ♯(xt, h♯t−1)
∥∥
2

+
∥∥W̃ ♯oϕ̃♯(xt, h̃

♯
t−1)− W̃ ♯oϕ♯(xt, h

♯
t−1)

∥∥
2
+

∥∥b♯o − b̃♯o
∥∥
2
.

The second term of right-hand side is estimated as∥∥W̃ ♯oϕ̃♯(xt, h̃
♯
t−1)− W̃ ♯oϕ♯(xt, h

♯
t−1)

∥∥
2

≤
∥∥W̃ ♯o

∥∥
op
ρσ

(∥∥W̃ ♯hϕ̃♯(xt−1, h̃
♯
t−2)−W ♯hϕ♯(xt−1, h

♯
t−2)

∥∥
2

+
∥∥W ♯i − W̃ ♯i

∥∥
op

∥∥xt∥∥2 + ∥∥b♯hi − b̃hi
∥∥
2

)
.

We estimate the first term of right-hand side in the above inequality as∥∥W̃ ♯hϕ̃♯(xt−1, h̃
♯
t−2)−W ♯hϕ♯(xt−1, h

♯
t−2)

∥∥
2

≤
∥∥W̃ ♯h

∥∥
op

∥∥ϕ̃♯(xt−1, h̃
♯
t−2)− ϕ♯(xt−1, h

♯
t−2)

∥∥
2
+

∥∥W ♯h − W̃ ♯h
∥∥
op

∥∥ϕ♯(xt−1, h
♯
t−2)

∥∥
2

≤
∥∥W̃ ♯h

∥∥
op
ρσ

(∥∥W̃ ♯hϕ̃♯(xt−2, h̃
♯
t−3)−W ♯hϕ♯(xt−2, h

♯
t−3)

∥∥
2

+
∥∥W ♯i − W̃ ♯i

∥∥
op

∥∥xt−1

∥∥
2
+
∥∥b̃hi − b♯hi)

∥∥
2

)
+

∥∥W ♯h − W̃ ♯h
∥∥
op

∥∥ϕ♯(xt−1, h
♯
t−2)

∥∥
2
,

T. Furuya, K. Suetake, K. Taniguchi, H. Kusumoto, R. Saiin, T. Daimon

and as this is repeated, we eventually obtain∥∥W̃ ♯oϕ̃♯(xt, h̃
♯
t−1)− W̃ ♯oϕ♯(xt, h

♯
t−1)

∥∥
2

≤ Roρσ

{ t−1∑
l=0

(Rhρσ)
l
(∥∥W ♯i − W̃ ♯i

∥∥
op

∥∥xt−l∥∥2 + ∥∥b♯hi − b̃♯hi
∥∥
2

)
+

t−1∑
l=1

(Rhρσ)
t−1−l∥∥ϕ♯(xl, h♯l−1)

∥∥
2

∥∥W ♯h − W̃ ♯h
∥∥
op

}
.

Summarizing the above, we have

|f ♯t (Xt)j − f̃ ♯t (Xt)j | ≤
∥∥W ♯o − W̃ ♯o

∥∥
op

∥∥ϕ♯(xt, h♯t−1)
∥∥
2

+Roρσ

{
t−1∑
l=0

(Rhρσ)
l
(∥∥W ♯i − W̃ ♯i

∥∥
op

∥∥xt−l∥∥2 + ∥∥b♯hi − b̃♯hi
∥∥
2

)
+

t−1∑
l=1

(Rhρσ)
t−1−l∥∥ϕ♯(xl, h♯l−1)

∥∥
2

∥∥W ♯h − W̃ ♯h
∥∥
op

}
+

∥∥b♯o − b̃♯o
∥∥
2
.

Since ∥∥ϕ♯t(xt, h♯t−1)
∥∥
2
≤ ρσ

(∥∥W ♯h
∥∥
op

∥∥ϕ♯(xt−1, h
♯
t−2)

∥∥
2
+
∥∥W ♯i

∥∥
op

∥∥xt∥∥2 + ∥∥b♯hi∥∥
2

)
≤ ρσ(RiRx +Rbhi)

t−1∑
l=0

(Rhρσ)
l,

and

t−1∑
l=1

(Rhρσ)
t−1−l∥∥ϕ♯t(xl, h♯l−1)

∥∥
2
≤ ρσ(RiRx +Rbhi)

t−1∑
l=1

l−1∑
k=0

(Rhρσ)
t−1−l(Rhρσ)

k

= ρσ(RiRx +Rbhi)

t−1∑
l=1

l−1∑
k=0

(Rhρσ)
t−1−l+k,

we see that

|f ♯t (Xt)j − f̃ ♯t (Xt)j | ≤ ρσ(RiRx +Rbhi)

(t−1∑
l=0

(Rhρσ)
l

)
︸ ︷︷ ︸

=:Lo,t

∥∥W ♯o − W̃ ♯o
∥∥
op

+ ρσRoRx

(t−1∑
l=0

(Rhρσ)
l

)
︸ ︷︷ ︸

=:Li,t

∥∥W ♯i − W̃ ♯i
∥∥
op

+ ρσRo

(t−1∑
l=0

(Rhρσ)
l

)
︸ ︷︷ ︸

=:Lb,t

∥∥b♯hi − b̃♯hi
∥∥
2

+ ρ2σRo(RiRx +Rbhi)

(t−1∑
l=1

l−1∑
k=0

(Rhρσ)
t−1−l+k

)
︸ ︷︷ ︸

=:Lh,t

∥∥W ♯h − W̃ ♯h
∥∥
op

+
∥∥b♯o − b̃♯o

∥∥
2
.

(D.1)

Since the right-hand side of (D.1) is independent of the training data Xi
t , we estimate

∥∥f ♯t (Xt)j − f̃ ♯t (Xt)j
∥∥
S
=

(n∑
i=1

∣∣f ♯t (Xi
t)j − f̃ ♯t (X

i
t)j

∣∣2)1/2

≤
√
n
(
Lo,t

∥∥W ♯o − W̃ ♯o
∥∥
op

+ Li,t
∥∥W ♯i − W̃ ♯i

∥∥
op

+ Lb,t
∥∥b♯hi − b̃♯hi

∥∥
2
+ Lh,t

∥∥W ♯h − W̃ ♯h
∥∥
op

+
∥∥b♯o − b̃♯o

∥∥
2

)
.

Spectral Pruning for Recurrent Neural Networks

Then, the covering number N(F ♯
t,j , ϵ, ∥ · ∥S) is bounded as follows

N(F ♯
t,j , ϵ, ∥ · ∥S) ≤ N

(
HW ♯o,Ro

,
ϵ

5
√
nLo,t

, ∥ · ∥F
)
N
(
HW ♯i,Ri

,
ϵ

5
√
nLi,t

, ∥ · ∥F
)

×N
(
Hb♯hi,Rb

hi
,

ϵ

5
√
nLb,t

, ∥ · ∥F
)
N
(
HW ♯h,Rh

,
ϵ

5
√
nLh,t

, ∥ · ∥F
)
N
(
Hb♯o,Rb

o
,

ϵ

5
√
n
, ∥ · ∥F

)
,

where we used the notation
HA,R :=

{
A ∈ Rd1×d2 | ∥A∥F ≤ R

}
.

By Lemma 8 in (Chen et al., 2019), the above five covering numbers are bounded as

N
(
HW ♯o,Ro

,
ϵ

5
√
nLo,t

, ∥ · ∥F
)
≤

(
1 +

10min{
√
m♯,

√
dy}RoLo,t

√
n

ϵ

)m♯dy

,

N
(
HW ♯i,Ri

,
ϵ

5
√
nLi,t

, ∥ · ∥F
)
≤

(
1 +

10min{
√
m♯,

√
dx}RiLi,t

√
n

ϵ

)m♯dx

,

N
(
Hb♯hi,Rb

hi
,

ϵ

5
√
nLb,t

, ∥ · ∥F
)
≤

(
1 +

10RbhiLb,t
√
n

ϵ

)m♯

,

N
(
HW ♯h,Rh

,
ϵ

5
√
nLh,t

, ∥ · ∥F
)
≤

(
1 +

10
√
m♯RhLh,t

√
n

ϵ

)(m♯)2

,

N
(
Hb♯o,Rb

o
,

ϵ

5
√
n
, ∥ · ∥F

)
≤

(
1 +

10Rbo
√
n

ϵ

)dy
.

Therefore, by using log(1 + x) ≤ x for x ≥ 0, we conclude that

logN(F ♯
t,j , ϵ, ∥ · ∥S)

≤
10m♯dymin{

√
m♯,

√
dy}RoLo,t

√
n

ϵ
+

10m♯dxmin{
√
m♯,

√
dx}RiLi,t

√
n

ϵ

+
10m♯RbhiLb,t

√
n

ϵ
+

10(m♯)
5
2RhLh,t

√
n

ϵ
+

10m♯dyR
b
o

√
n

ϵ

=
10m♯

√
nMt

ϵ
,

where Mt is the constant given by (C.2). The proof of Lemma D.1 is finished.

E Proof of Proposition 4.6

We review the following proposition (see Proposition 1 in (Suzuki et al., 2020) and Proposition 1 in (Bach, 2017)).

Proposition E.1. Let v1, . . . , vm♯ be i.i.d. sampled from the distribution q in (4.6), and J = {v1, . . . , vm♯}.
Then, for any δ̃ ∈ (0, 1/2) and λ > 0, if m♯ ≥ 5N̂(λ) log(16N̂(λ)/δ̃), then we have the following inequality with
probability greater than 1− δ̃:

inf
α∈Rm♯

{∥∥zTϕ− αTϕJ
∥∥2
n,T

+ λm♯
∥∥αT∥∥2

τ ′

}
≤ 4λzT Σ̂(Σ̂ + λI)−1z, (E.1)

for all z ∈ Rm.

Proof. Let ej be an indicator vector which has 1 at the j-th component and 0 in other components for j = 1, . . . ,m.

T. Furuya, K. Suetake, K. Taniguchi, H. Kusumoto, R. Saiin, T. Daimon

Applying Proposition E.1 with z = ej and taking the summation over j = 1, . . . ,m, we obtain

L(A)
τ (J) =

∥∥ϕ− ÂJϕJ
∥∥2
n,T

+ λm♯
∥∥ÂJ∥∥2τ ′

≤
m∑
j=1

{∥∥eTj ϕ− eTj ÂJϕJ
∥∥2
n,T

+ λm♯
∥∥eTj ÂJ∥∥2τ ′

}
=

m∑
j=1

inf
α∈Rm♯

{∥∥eTj ϕ− αTϕJ
∥∥2
n,T

+ λm♯
∥∥αT∥∥2

τ ′

}
≤ 4λ

m∑
j=1

eTj Σ̂(Σ̂ + λI)−1ej ≤ 4λ.

F Proof of Theorem 4.8

We restate Theorem 4.8 in an exact form as follows:

Theorem F.1. Suppose that Assumptions 4.1, 4.4 and 4.7 hold. Let {(Xi
T , Y

i
T)}ni=1 and {vj}m

♯

j=1 be sampled
i.i.d. from the distributions PT and q in (4.6), respectively. Let J = {v1, . . . , vm♯}. Then, for any δ ≥ log 2 and
δ̃ ∈ (0, 1/2), we have the following inequality with probability greater than (1− 2e−δ)δ̃:

Ψj(f
♯
J) ≤ Ψ̂j(f̂)

+
√
3ρψ

{
2R̂o + 4R̂oρσ

√
m

1− 2δ̃
max

{
1,

(
2ρσR̂h

√
m

1− 2δ̃

)T−2}
TR̂h

}
√
λ

+
1√
n

{
ĉρψ

√
m♯

T

(T∑
t=1

M̂
1/2
t R̂

1/2
∞,t

)
+ 3

√
2δ(ρψR̂∞,T +Ry)

}

≲ Ψ̂j(f̂) +
√
λ+

1√
n
(m♯)

5
4 R̂

1/2
∞,T ,

(F.1)

for j = 1, . . . , dy and for all λ > 0 satisfying (4.4), where R̂∞,t and M̂t are defined by

R̂∞,t := 2ρσR̂o

√
m

1− 2δ̃
(R̂iRx + R̂bhi)

{
t∑
l=1

(
2ρσR̂h

√
m

1− 2δ̃

)l−1
}

+ R̂bo,

M̂t := 2ρσR̂o

√
m

1− 2δ̃

{(
dymin{

√
m♯,

√
dy}+ dxmin{

√
m♯,

√
dx}

)
R̂iRx

+
(
dymin{

√
m♯,

√
dy}+ 1

)
R̂bhi

}{
t−1∑
l=0

(
2ρσR̂h

√
m

1− 2δ̃

)l}

+ 4(m♯)3/2R̂hR̂o
m

1− 2δ̃
ρ2σ(R̂iRx + R̂bhi)

{
t−1∑
l=1

l−1∑
k=0

(
2ρσR̂h

√
m

1− 2δ̃

)t−1−l+k
}

+ dyR̂
b
o.

Proof. Let δ̃ ∈ (0, 1/2), and let f ♯J be the compressed RNN with parameters

W ♯o
J := Ŵ oÂJ , W ♯h

J := Ŵh
J,[m]ÂJ , W ♯i

J := Ŵ i
J,[dx]

, b♯hiJ := b̂hiJ , and b♯oJ := b̂o.

Once we can prove that

f ♯J ∈ F ♯
T

(
2R̂o

√
m

1− 2δ̃
, 2R̂h

√
m

1− 2δ̃
, R̂i, R̂

b
o, R̂

b
hi

)
, (F.2)

Spectral Pruning for Recurrent Neural Networks

we can apply Theorem C.1 with f ♯ = f ♯J to obtain, for any δ ≥ log 2, the following inequality with probability
greater than 1− 2e−δ:

Ψj(f
♯
J) ≤ Ψ̂j(f̂) +

√
3ρψ

{∥∥Ŵ oϕ−W ♯oϕJ
∥∥
n,T

+ 2R̂o

√
m

1− 2δ̃
ρσmax

{
1,

(
2R̂h

√
m

1− 2δ̃
ρσ

)T−2}
T
∥∥Ŵh

J,[m]ϕ−W ♯hϕJ
∥∥
n,T

}

+
1√
n

{
ĉρψ

√
m♯

T

(T∑
t=1

M̂
1/2
t R̂

1/2
∞,t

)
+ 3

√
2δ(ρψR̂∞,T +Ry)

}
,

(F.3)

for j = 1, . . . , dy. Moreover, by using Proposition E.1, we have∥∥Ŵ oϕ−W ♯o
J ϕJ

∥∥2
n,T

=
∥∥Ŵ oϕ− Ŵ oÂJϕJ

∥∥2
n,T

≤
dy∑
j=1

(∥∥Ŵ o
j,:ϕ− Ŵ o

j,:ÂJϕJ
∥∥2
n,T

+ λm♯
∥∥Ŵ o

j,:ÂJ
∥∥2
τ ′

)

=

dy∑
j=1

inf
α∈Rm♯

(∥∥Ŵ o
j,:ϕ− αTϕJ

∥∥2
n,T

+ λm♯
∥∥αT∥∥2

τ ′

)

≤ 4λ

dy∑
j=1

Ŵ o
j,:Σ̂(Σ̂ + λI)−1(Ŵ o

j,:)
T

≤ 4λ
∥∥Ŵ o

∥∥2
F
≤ 4λ(R̂o)

2,

(F.4)

and ∥∥Ŵh
J,[m]ϕ−W ♯h

J ϕJ
∥∥2
n,T

=
∥∥Ŵh

J,[m]ϕ− Ŵh
J,[m]ÂJϕJ

∥∥2
n,T

≤
∑
j∈J

(∥∥Ŵh
j,:ϕ− Ŵh

j,:ÂJϕJ
∥∥2
n,T

+ λm♯
∥∥Ŵh

j,:ÂJ
∥∥2
τ ′

)
=

∑
j∈J

inf
α∈Rm♯

(∥∥Ŵh
j,:ϕ− αTϕJ

∥∥2
n,T

+ λm♯
∥∥αT∥∥2

τ ′

)
≤ 4λ

∑
j∈J

Ŵh
j,:Σ̂(Σ̂ + λI)−1(Ŵh

j,:)
T

≤ 4λ
∥∥Ŵh

∥∥2
F
≤ 4λ(R̂h)

2.

(F.5)

Therefore, by combining (F.3), (F.4) and (F.5), we conclude the inequality (F.1). It remains to prove (F.2).
Finally, we prove that (F.2) holds with probability greater than δ̃.

Let us recall the definition (4.5) of the leverage score τ ′ = (τ ′j)j∈J ∈ Rm♯

, i.e.,

τ ′j :=
1

N̂(λ)

[
Σ̂(Σ̂ + λI)−1

]
j,j
, j = 1, · · · ,m.

By Markov’s inequality, we have

P

[∑
j∈J

(τ ′j)
−1 <

mm♯

1− 2δ̃

]
= 1− P

[∑
j∈J

(τ ′j)
−1 ≥ mm♯

1− 2δ̃

]

≥ 1−
E
[∑

j∈J(τ
′
j)

−1
]

mm♯

1−2δ̃

= 2δ̃,

(F.6)

because E
[∑

j∈J(τ
′
j)

−1
]
= mm♯ (see the proof of Lemma 1 in (Suzuki et al., 2020)). Therefore, the probability

of two events (E.1) and ∑
j∈J

(τ ′j)
−1 <

mm♯

1− 2δ̃
, (F.7)

T. Furuya, K. Suetake, K. Taniguchi, H. Kusumoto, R. Saiin, T. Daimon

happening simultaneously is greater than (1− δ̃) + 2δ̃ − 1 = δ̃. By the same argument as in (F.4) and (F.5), and
by using (F.6), we have

∥∥W ♯o
J

∥∥2
F
=
λm♯

λm♯

∥∥Ŵ oÂJ
∥∥2
F

≤
(
∑
j∈J(τ

′
j)

−1)

λm♯

dy∑
j=1

(∥∥Ŵ o
j,:ϕ− Ŵ o

j,:ÂJϕJ
∥∥2
n,T

+ λm♯
∥∥Ŵ o

j,:ÂJ
∥∥2
τ ′

)
≤ 4(R̂o)

2 m

1− 2δ̃
,

∥∥W ♯h
J

∥∥2
F
=
λm♯

λm♯

∥∥Ŵh
J,[m]ÂJ

∥∥2
F

≤
(
∑
j∈J(τ

′
j)

−1)

λm♯

∑
j∈J

(∥∥Ŵh
j,:ϕ− Ŵh

j,:ÂJϕJ
∥∥2
n,T

+ λm♯
∥∥Ŵh

j,:ÂJ
∥∥2
τ ′

)
≤ 4(R̂h)

2 m

1− 2δ̃
,

and ∥∥W ♯i
J

∥∥2
F
≤

∥∥Ŵ i
∥∥2
F
≤ (R̂i)

2,
∥∥b♯oJ ∥∥2

F
≤

∥∥b̂o∥∥2
F
≤ (R̂bo)

2,
∥∥b♯hiJ ∥∥2

F
≤

∥∥b̂hi∥∥2
F
≤ (R̂bhi)

2.

Hence, (F.2) holds with probability greater than δ̃. Thus, we conclude Theorem F.1.

G Remarks for Theorems 4.8 and F.1

Remark G.1. We remark that the index J in Theorem 4.8 is a random variable with a distribution q. If the
deterministic J satisfying (E.1) and (F.7) is considered, the inequality (4.9) holds with a probability greater than
1− 2e−δ, which is the same probability obtained with the inequality in Theorem 2 of (Suzuki et al., 2020). The
index J in Theorem 2 of (Suzuki et al., 2020) is chosen deterministically by minimizing the information losses (2)
with the additional constraint

∑
j∈J (τ

′
j)

−1 < 5
3mm

♯. This constraint can be interpreted as the leverage score τ ′J
corresponding to J becomes larger, which implies that important nodes are selected from the spectral information
of the covariance matrix Σ̂.
Remark G.2. In the case of m > mnzr, we can obtain a sharper error bound than (4.9) in Theorem 4.8. More
precisely, the constant omitted in (4.9), which depends on the size m of f̂ , can be improved to the constant
depending on mnzr, not on m. In fact, when m > mnzr, let f̂nzr be the network obtained by deleting the nodes
corresponding to the non-zero rows of the covariance matrix Σ̂. By the same argument, replacing Ψ̂j(f̂) with
Ψ̂j(f̂nzr) in the proof of Theorem 4.8, we can obtain Theorem 4.8 by replacing m by mnzr, which means that a
sharper error bound can be obtained.

H Detailed configurations for training, pruning and fine-tuning

Employed architecture for the Pixel-MNIST classification task consists of a single IRNN layer and an output
layer, while that for the PTB word level language modeling consists of an embedding layer, a single RNN layer
and an output layer, where we can merge an embedding weight matrix and an RNN input weight matrix into an
single weight matrix. The loss function is the cross entropy function following the soft-max function for both
tasks. Each training and fine-tuning is optimized by Adam, and hyper-parameters obtained by grid search are
summarized in Table 3, where “FT” means the parameter used in fine-tuning and “bptt” means the step size for
back-propagation through time. As regards regularization techniques for the PTB task, we adopt the dropout,
whose ratio is 0.1, in any case and the weight tying (Inan et al., 2016) in effective case.

We sample five models for each baseline in section 5. Furthermore, pruning methods including randomness are
applied five times for each baseline model. Other detailed configurations for each method are the following:

• Baseline (128)

– train:

Spectral Pruning for Recurrent Neural Networks

Table 3: Hyper-parameters for learning.

Task epochs (FT) batch size learning rate (FT) LR decay (step) gradient clip bptt

Pixel-MNIST 500 (250) 120 10−4 (5−5) 0.95 (10) 1.0 784
PTB 200 (200) 20 5.0 (2.5) 0.95 (1) 0.01 35

∗ hidden size: 128
∗ weight tying: True

• Baseline (42)

– train:
∗ hidden size: 42
∗ weight tying: True

– prune:
∗ None

– finetune: (only PTB case)
∗ hidden size: 42 (stay)
∗ weight tying: False

• Spectral w/ rec. or w/o rec.

– train:
∗ Use Baseline (128)

– prune:
∗ size of hidden-to-hidden weight matrix: 16384(= 128× 128) → 1764(= 42× 42)

∗ size of input-to-hidden weight matrix: 128(= 1× 128) → 42(= 1× 42) (Pixel-MNIST) or 1270016(=
9922× 128) → 416724(= 9922× 42) (PTB)

∗ size of hidden-to-output weight matrix: 1280(= 128 × 10) → 420(= 42 × 10) (Pixel-MNIST) or
1270016(= 9922× 128) → 416724(= 9922× 42) (PTB)

∗ Reduce the RNN weight matrices based on our proposed method with or without the reconstruction
matrix

– finetune:
∗ hidden size: 42 (reduced from 128)
∗ weight tying: False

• Random w/ rec. or w/o rec.

– Same as “Spectral” except for reducing the RNN weight matrices randomly in pruning phase

• Column Sparsification

– train:
∗ hidden size: 128
∗ weight tying: True
∗ Mask the lowest 86(= 128− 42) columns of the hidden-to-hidden weight matrix by L2-norm for each

iteration (add noise to the weight matrix before masking when applied to the IRNN)
– prune:

∗ Fix the mask
– finetune:

∗ None

• Low Rank Factorization

– train:
∗ Use Baseline (128)

T. Furuya, K. Suetake, K. Taniguchi, H. Kusumoto, R. Saiin, T. Daimon

– prune:
∗ intrinsic parameters of hidden-to-hidden weight matrix: 16384(= 128× 128) → 10752(= 128× 42 +
42× 128)

∗ Decompose hidden-to-hidden weight matrix based on SVD: W = USV ⊤ →W ′ = U [:, : 42]S[: 42]V ⊤[:
42, :]

∗ Entry of S, which is singular values, are in descending order
– finetune:

∗ None

• Magnitude-based Weight

– train:
∗ Use Baseline (128)

– prune:
∗ parameters of hidden-to-hidden weight matrix: 16384(= 128× 128) → 1764(= 42× 42)

∗ Remove the lowest 14620(= 128× 128− 42× 42) parameters by L1-norm
– finetune:

∗ hidden size: 128 (stay but have sparse weight matrix)

• Random Weight

– Same as “Magnitude-based Weight” except for removing parameters randomly in pruning phase

	Introduction
	Related Works
	Pruning Algorithm
	Generalization Error Bounds for Compressed RNNs
	Error bound for general compressed RNNs
	Error bound for RNNs compressed with spectral pruning

	Numerical Experiments
	Eigenvalue distribution and information loss
	Pixel-MNIST (IRNN)
	PTB (RNNLM)

	Review of Spectral Pruning for DNNs
	Proof of Proposition 4.2
	Proof of Theorem 4.5
	Upper Bound of the Covering Number
	Proof of Proposition 4.6
	Proof of Theorem 4.8
	Remarks for Theorems 4.8 and F.1
	Detailed configurations for training, pruning and fine-tuning

