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Abstract

Predicting stochastic spreading processes on
complex networks is critical in epidemic con-
trol, opinion propagation, and viral market-
ing. We focus on the problem of inferring
the time-dependent marginal probabilities of
states for each node which collectively quan-
tifies the spreading results. Dynamic Mes-
sage Passing (DMP) has been developed as
an efficient inference algorithm for several
spreading models, and it is asymptotically
exact on locally tree-like networks. However,
DMP can struggle in diffusion networks with
lots of local loops. We address this limita-
tion by using Graph Neural Networks (GNN)
to learn the dependency amongst messages
implicitly. Specifically, we propose a hybrid
model in which the GNN module runs jointly
with DMP equations. The GNN module re-
fines the aggregated messages in DMP it-
erations by learning from simulation data.
We demonstrate numerically that after train-
ing, our model’s inference accuracy substan-
tially outperforms DMP in conditions of var-
ious network structure and dynamics param-
eters. Moreover, compared to pure data-
driven models, the proposed hybrid model
has a better generalization ability for out-of-
training cases, profiting from the explicitly
utilized dynamics priors in the hybrid model.
A PyTorch implementation of our model is
at https://github.com/FeiGSSS/NEDMP.

1 INTRODUCTION

Stochastic spreading processes on complex networks
are widely used for modeling the epidemic spreading,
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information propagation, and transmission of social
behaviors. Given the initial states, accurately predict-
ing the spreading is of primary importance in many
domains. Since the stochastic nature of the processes,
the more reasonable is to predict the marginal proba-
bilities of each state for each node, as shown in Figure
1. In addition to being an accurate description of the
spreading, the predicted marginal probabilities could
also be used for inferring the source of spreading (Zhu
& Ying, 2016), maximizing the influence by selecting
a fixed size of initially activated nodes (Kempe, Klein-
berg, & Tardos, 2015), and determining an optimal set
of nodes to immunize (Pastor-Satorras & Vespignani,
2002).

Dynamics Message Passing (DMP) (Karrer & New-
man, 2010; Shrestha & Moore, 2014; Shrestha,
Scarpino, & Moore, 2015; A. Lokhov, Mézard, & Zde-
borová, 2015), a special case of Belief Propagation
(BP) on time trajectories, is an efficient algorithm
for inferring the marginal probabilities for stochastic
spreading processes on graphs. For spreading process
with unidirectional dynamics (e.g., SIR, SEIR), DMP
is exact on tree graphs and asymptotically exact on lo-
cally tree-like graphs, and has a linear computational
complexity in the number of edges and spreading time
steps. It typically yields accurate estimations on real
sparse networks for a large class of spreading dynam-
ics (A. Lokhov et al., 2015). Therefore, as an an-
alytical inference machine, it has been used for in-
ferring the patient zero (A. Lokhov, Mézard, Ohta,
& Zdeborová, 2014), reconstructing the dynamics pa-
rameters (A. Lokhov, 2016; Wilinski & Lokhov, 2021),
optimal deployment of resources (A. Lokhov & Saad,
2017), and functional immunization of networks (S. Li
et al., 2020).

However, same as other Belief Propagation algorithms,
the fundamental assumption of DMP is the indepen-
dence of neighboring messages, which limits the ability
of DMP to capture high-order interdependencies, i.e.,
DMP can struggle in graphs with short local loops.
As illustrated in Figure 2, since the existence of local
loops, DMP fails to approximate marginal probabili-
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ties in an example graph with only four nodes. Un-
fortunately, it is extremely challenging to handle mes-
sage dependence in those loops analytically (Cantwell
& Newman, 2019).

The success of Graph Neural Networks (GNNs) in
modelling complex pair-wise interactions (Sanchez-
Gonzalez et al., 2020; Fetaya et al., 2018; Cranmer
et al., 2020; Bapst et al., 2020) motivates us to model
the dependence of messages in local loops using train-
able GNNs. Specifically, GNNs can be used to learn a
refined aggregation operation for messages beyond the
naive independent assumption used in DMP. Several
works have applied GNNs to improve the estimation
accuracy of Belief Propagation algorithms. Gated re-
current GNNs are used in (Yoon et al., 2019) as an
end-to-end trainable inference algorithm for Binary
Markov Random Fields, and learned GNNs outper-
forms BP in loopy graphs. More recent works focus on
integrating the advantages of data-driven and model-
based methods. Instead of using a scalar damping fac-
tor, which is proposed to accelerate the convergence
of BP, Kuck et al.(Kuck et al., 2020) replace the con-
stant scalar factor with a trainable Neural Networks
layer. The proposed hybrid model converges much
faster than using scalar factors while returning an es-
timate of comparable quality. Methods in (Satorras &
Welling, 2021; Liang & Meyer, 2021) aim to improve
the estimation accuracy of BP for discrete and contin-
uous random variables, respectively. Since the inaccu-
racy of BP comes from the oversimplified aggregation
scheme of neighboring messages, those methods incor-
porate the GNNs into BP iterations as a trainable ag-
gregation block, which is used to refine the aggregated
messages in BP by learning from supervision data the
complex dependence of messages. The resulting hy-
brid model runs BP and GNNs co-jointly, and benefits
from the combination of physics prior and data-driven
neural networks. However, no work has applied GNNs
to improve the performance of DMP for better estima-
tion of marginal probabilities of spreading process on
graphs.

Inspired by (Yoon et al., 2019; Satorras & Welling,
2021), in this work, instead of analytically modeling
the complex dependence of messages in local loops,
we use a GNNs module to learn from simulation data.
In order to utilize the dynamical priors encoded in
DMP equations, we use GNN module only to refine
the inaccuracy aggregation operation in the iteration
of DMP, while the exact iteration rules in DMP re-
main the same. The resulting hybrid model, which
we call Neural Enhanced Dynamic Message Passing
(NEDMP), runs DMP and GNN jointly, and benefits
from complementation of model-based and data-driven
components. For better training, we design a penalty

term to enforce the monotone of predicted probabil-
ities, which conforms the physical prior of dynamics.
To verify the effectiveness of the hybrid model, utiliz-
ing the popular epidemic model Susceptible-Infected-
Recovered (SIR), we conduct experiments of marginal
probabilities inference on various graph structures and
dynamics parameters. The main contributions can be
summarized as follows: (1) We propose a customized
GNNs that runs on line graph, (2) We propose a hy-
brid model for marginal inference, which runs GNNs
and DMP jointly, (3) We design a dynamics-inspired
penalty term to train the model, and (4) We conduct
experiments on marginal probabilities inference prob-
lem on various graphs and dynamics parameters. The
results show that all the proposed models outperform
DMP, and the hybrid model, NEDMP, generalizes bet-
ter than pure data-driven models.

2 BACKGROUND

Dynamic message passing has been derived as the in-
ference algorithm for a wide range of diffusion pro-
cesses. Without loss of generality, we use SIR model
to demonstrate the spreading process on networks as
well as the marginal probability inference problem.

2.1 Problem Setting

For the discrete SIR model on a diffusion graph G =
(V, E), where V is the set of nodes and E is the set
of interactions, each node will take one of the three
states: susceptible (S), infected (I) or recovered (R) at
a specific time. Let σti ∈ {S, I,R} be the state of node
i at time step t, the states transition follows:

P(σt+1
i = I|σti = S) = 1−

∏
j∈Ni

(
1− βjiδσt

j ,I

)
P(σt+1

i = R|σti = I) = γi,

(1)

where Ni is the set of neighbors of node i, βji ∈ [0, 1]
is the infection rate of edge (j → i), γi ∈ [0, 1] is
the recovery rate of node i, and δ is the Kronecker
function.

Define the marginal probabilities of node i as:

P iS(t) = P(σti = S),

P iI (t) = P(σti = I),

P iR(t) = P(σti = R),

we now formulate the problem as follows:

Marginal Probability Inference (MPI). For the
SIR model on directed graph G = (V, E) with infection
rates {βij}(i→j)∈E , recovery rates {γi}i∈V , and initial
infectious nodes S ⊆ V, the goal is to infer the marginal
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Figure 1: Visualization of the marginal proba-
bilities over time, we use the SI model for illustra-
tion. Given a diffusion network with infected nodes (in
darkest color) at t = 0, the problem aims to compute
{P iI (t)}i∈V,t≥1, i.e, the time-dependent marginal prob-
abilities (indicated by color) of been infected for each
node. The values are obtained via 106 Monte Carlo
simulations.

probabilities conditioned on β, γ and S:

{P iS(t), P iI (t), P
i
R(t)}i∈V,1≤t≤T (2)

where T is a preset time step or the convergence time,
and P iS(t) + P iI (t) + P iR(t) = 1.
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Figure 2: An example that illustrates the lim-
itations of DMP. (Left): A simple example graph.
Color dashed lines indicate the dependencies of θ in
DMP. (Right): The approximated marginal probabil-
ity PR(t) of node 3 by DMP, compared to the true val-
ues obtained via 106 Monte Carlo simulations, where
the initial conditions are S = {0}, {βij} = {γi} = 0.5.

In general, the exact computation of the marginals
above is #P-hard (Wang, Chen, & Wang, 2012). Fig-
ure 1 is a visualization of marginals evolving over time
on an example graph. We define MPI problem based
on the SIR model only for convenience, and the def-
inition can be easily generalized to other spreading
models on graph, such as Independent Cascade Model
(Kempe et al., 2015).

2.2 Dynamic Message Passing

Dynamic message passing is the state-of-the-art
method for inferring the time-dependent marginal
probabilities in stochastic processes, e.g., SIR. Utiliz-
ing the unidirectionality property of the SIR model,

the DMP equations for SIR are rigorously derived
(A. Lokhov et al., 2015) from the dynamic cavity
method (also known as Belief Propagation, BP) on
nodes’ time trajectories. It is proved (A. Y. Lokhov
& Saad, 2019) that DMP is exact on trees and graphs
without short loops. We briefly introduce the DMP
equations for the SIR model here, and the detailed
derivation is presented in the Appendix.

We begin with defining three intermediate dynamics
variables:

• θj→i(t): the probability that disease has not
spread through the edge (j → i) up to time t

• P i→kS (t): the probability that σti = S when node
i ignores infection from its neighbor node k;

• φj→i(t): the probability that disease has not
spread through the edge (j → i) up to time t
and node j is infected at time t ( i.e., σtj = I ).

Then, the marginal probabilities of SIR model can be
approximated using:

P iR(t) = P iR(t− 1) + γiP
i
I (t− 1), (3)

P iI (t) = 1− P iR(t− 1)− P iS(t− 1), (4)

P iS(t) = P iS(0)
∏
j∈Ni

θj→i(t), (5)

P i→kS (t) = P iS(0)
∏

j∈Ni\k

θj→i(t), (6)

The value of θj→i(t) is computed by closed iteration:

θj→i(t) = θj→i(t− 1)− βjiφj→i(t− 1), (7)

φj→i(t) =(1− βji)(1− γj)φj→i(t− 1)

+
(
P j→iS (t− 1)− P j→iS (t)

)
,

(8)

with the initial values:

θj→i(0) = 1, φj→i(0) = δσ0
j ,I

(9)

Following the equations above, we can recursively com-
pute the marginal probabilities of SIR model.

Like other BP algorithms, DMP builds on the assump-
tion that the graph structure is a tree, i.e., messages
from different neighbors are independent of each other.
This allows DMP to take the simplest approach (i.e.,∏

) to aggregate the messages from neighbors, as in
Equation (26) and (27).

However, the assumption also prevents DMP from
handling the high-order dependencies between neigh-
boring messages introduced by the local loops. As
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illustrated in Figure 2, when executing DMP in the
simple graph, θ1→3(t) and θ2→3(t) are no longer in-
dependent when t ≥ 2, since they all root from
θ0→1(t) and θ0→2(t) through blue and red paths re-
spectively. Thus, the resulting marginal probabilities,
when estimated using Equations (26) and (27), are no
longer accurate, i.e., P iS(t) 6= P iS(0)

∏
j∈Ni

θj→i(t) and

P i→kS (t) 6= P iS(0)
∏
j∈Ni\k θ

j→i(t).

Analytically extending DMP to high-order neighbor-
hood structures is very challenging (Cantwell & New-
man, 2019). Therefore, a reasonable choice is to use a
data-driven approach to learn a more appropriate mes-
sage aggregation function that can capture the com-
plex dependencies between messages.

3 METHOD

This section introduces our hybrid model, in which the
DMP iterates jointly with a GNNs module. The GNNs
module is designed to refine the aggregated messages
in the iteration process of DMP.

3.1 Graph Neural Networks on Line Graph

Notice that DMP for SIR is essentially a message-
passing process on line graph L = (NL, EL) with non-
backtracking adjacency, i.e., NL = E and EL = {(i →
j)→ (j → k)}i,j,k∈V,i6=k. To enable better integration
of DMP and GNNs, we first define a special case of
GNNs on line graph L. Specifically, we customize and
extend Gated Graph Neural Networks (Y. Li, Tarlow,
Brockschmidt, & Zemel, 2016) on graph L.

Mathematically, at every time step t > 0, each node
(i → j) in graph L is associated with a hidden state
hi→j(t) ∈ RD. In our scenarios, node (i→ j) receives
time-varying inputs xi→j(t) ∈ RF . We combine the
inputs with hidden states as the messages h̃i→j(t):

h̃i→j(t) = φm
(
hi→j(t)⊕ φe

(
xi→j(t)

))
, (10)

where the ⊕ is the concatenation operator. We then
aggregate the incoming messages for target node (i→
j):

h̃→(i→j)(t) = φa(
∑

k 6=j,(k→i)∈NL

h̃k→i(t)), (11)

Finally, we update the hidden states for every node
(i→ j) based on the aggregated messages and current
states via gated recurrent unit (GRU):

hi→j(t+ 1) = GRU
(
h̃→(i→j)(t), hi→j(t)

)
. (12)

The functions φm, φe and φa are nonlinear functions
mapping input to RD, and are instantiated as mul-
tilayer perceptron (MLP) with Rectified Linear Unit

Figure 3: Visualization of NEDMP.

(ReLU) as the activation function. The parameters of
φm, φe, φa and GRU are shared by all nodes (i → j)
and time steps t.

The equations above define one iteration of GNNs from
time step t to t+ 1 on line graph L. To achieve time-
dependent prediction, we can iterate those equations
and feed {h̃i→j(t)}t>0 to a nonlinear readout function
φR:

ŷi(t) = φR(
∑

k,(k→i)∈NL

h̃k→i(t)), (13)

ŷi→j(t) = φR(h̃→(i→j)(t)), (14)

where ŷi(t) and ŷi→j(t) corresponding to the node-
wise and edge-wise prediction in graph G.

3.2 Neural Enhanced Dynamic Message
Passing (NEDMP)

As discussed in Section (2.2), the inference inaccuracy
of DMP is due to its inability to capture the high-
order interdependencies while the graph neural net-
works are good at capturing high-order relations (Wu
et al., 2019). In order to break this limitation of DMP
and also to preserve the precise physically inspired
part of DMP, we propose a hybrid model of GNNs
and DMP, which is an extension of NEBP in (Satorras
& Welling, 2021).

Specifically, the hybrid model runs GNNs and DMP on
the line graph L jointly. The GNNs module preserves
and updates the hidden states for each node by incor-
porating the messages from DMP iterations; in return,
the GNNs module outputs a refinement of aggregated
messages in DMP. We name this model Neural En-
hanced Dynamic Message Passing (NEDMP), which
benefits from the complementary strengths.

We adopt the GNNs variant introduced in Section
(3.1), termed as Φ. And the messages {θi→j(t)} from
DMP are provided as the inputs {xi→j(t)} to Φ. We
initialize {hi→j(0)} as:

hi→j(0) = φe(θ
i→j(0)) (15)
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Since we aim to refine the aggregated messages P̃ iS(t)
and P̃ i→kS (t) in DMP iteration, it is reasonable to in-
tegrate those values into Φ as the prediction baseline.
Therefore, we modify the readout function in Φ as fol-
lows:

ξi(t), ζi(t) =

φR

P̃ iS(t)⊕
∑

k,(k→i)∈NL

h̃k→i(t)

 ,
(16)

ξi→j(t), ζi→j(t) =

φR

(
P̃ i→jS (t)⊕ h̃→(i→j)(t)

) (17)

where φR is a nonlinear function mapping inputs to
[0, 1]2, and is instantiated as multilayer perceptron
(MLP) with Sigmoid as the activation function. Uti-
lizing the readouts of module Φ, we can finally refine
the messages by applying affine transformation:

P iS(t) = P̃ iS(t) · ξi(t) + ζi(t), (18)

P i→kS (t) = P̃ i→kS (t) · ξi→k(t) + ζi→k(t), (19)

The refined P iS(t) and P i→kS (t) are fed back to DMP for
the next iteration. The whole framework of NEDMP
is visualized in Figure 3.

3.3 Training

We can obtain the ground-truth marginal probabilities
qi(t) = [qiS(t), qiI(t), q

i
R(t)] by extensive Monte Carlo

simulations. Therefore, the simplest way to optimize
the proposed model NEDMP is to minimize the cross-
entropy(CE) loss:

l(P, q) =
1

|V|T
∑
i∈V

∑
1≤t≤T

CE(P i(t), qi(t)) (20)

where T is the preset time length or the conver-
gence time step, P i(t) is the predicted probabilities by
model. It is worth noticing that the dynamics of SIR
model ensure the monotone of node’s marginals, i.e.,
∀t1 ≤ t2, i ∈ V: P iS(t1) ≥ P iS(t2) and P iR(t1) ≤ P iR(t2),
which the sole objective in Equation (20) may fail to
capture. Thus, we add a regularization term to enforce
this limitation:

Re =∑
i∈V

∑
1≤t≤T

[ReLu(P iS(t+ 1)− P iS(t))

+ relu(P iR(t)− P iR(t+ 1))]

(21)

We combine the regularization to the cross-entropy
loss with a factor λ as the final objective function:

L(P, q) = l(P, q) + λ ·Re (22)

4 EXPERIMENTS AND RESULTS

We conduct experiments on a set of synthetic and real
networks to evaluate the performance of the proposed
model NEDMP with respect to the MPI problem of
the SIR model. Specifically, in Section 4.1 we eval-
uate the performance of all methods on diverse sets
of graphs and dynamics parameters, where the train-
ing and testing sets come from the same distribution.
In Section 4.2, we evaluate the generalization ability
of the proposed models on instances that have graph
structure or dynamics parameters out of the training
distribution.

Data Generation. For the training and testing in all
experiments, we obtain the ground-truth of marginal
probabilities by averaging over 105 Monte Carlo sim-
ulations.

Baselines. We compare three methods for the MPI
problem of SIR model:

• DMP (A. Lokhov et al., 2014): An efficient in-
ference algorithm for SIR model, and it is asymp-
totically exact on locally tree-like networks.

• GNN (Yoon et al., 2019): This work proposed
two pure data-driven models for inferring the
marginal probabilities for probabilistic graphical
models. Considering the variant msg-GNN (sim-
ilar to the model proposed in Section (3.1)) in-
creases the computational consumption, with no
improvement in accuracy, we adapt the variant
node-GNN for our problem (details in Appendix).

• NEDMP: A hybrid model in which DMP and
GNNs module runs jointly. The GNNs module
is designed to improve the accuracy of messages
in DMP by learning the high-order dependencies
from simulation data.

Evaluation Metrics. Averaged L1 error is used as
the performance metrics for all experiments:

L1 =
1

|N |T
∑
i∈N

∑
1≤t≤T

‖P i(t)− qi(t)‖1 (23)

Training Details. We optimize the proposed mod-
els with loss function in Eq.(22) with λ = 5. The
maximum time step T is 30. We use the Adam
optimizer(Kingma & Ba, 2015) with the learning rate
0.01 and batch size of 1. The learning rate reduces by
a factor of 0.5 whenever the learning stagnates. We
use early stopping with patience 15. The dimensions
of all hidden states are D = 32. Each dataset in the
following experiments is split by 6:2:2 for training, val-
idation, and testing, respectively.
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Figure 4: Performance on diverse graph structure. For each graph structure, the estimated marginals are
plotted as horizontal coordinates while the vertical coordinates represent the ground truth. For visual simplicity,
we only show the marginal probability P iR(T ) for each node i in testing graphs. The corresponding dot will lie
on the diagonal line if it is accurately estimated.

4.1 Performance Within the Training
Distribution

The complexity of MPI comes from two parts: the
topology structure of the graph as well as the values of
dynamics parameters, i.e., β, γ and S. Therefore, it is
necessary to train and test the methods over different
graph structures and parameter ranges. Particularly,
the training and testing set are generated within the
same distribution of β, γ and S. We also evaluate the
methods on several real networks.

Graph Structures. As shown in Figure 4, we choose
eight types of graph structure with the number of
nodes |N | ≈ 12. For each structure, we generate
200 samples for training and testing. Each of the
samples has one randomly chosen node as the ini-
tial infectious seed, and dynamics parameters from
β ∼ U(0.4, 0.6) and γ ∼ U(0.2, 0.5). After train-
ing, we run each method on testing graphs, and plot
the inferred marginal probabilities, paired with ground
truth, at time step T for each method in Figure 4. The
first row in Figure 4 verifies the inaccuracy of DMP in
loopy graphs, as well as that DMP, is the upper bound
of true influence (A. Y. Lokhov & Saad, 2019). The
flexibility and powerful inference ability of both GNN
and NEDMP are validated by the bottom two rows
which show almost accurate inferences in all kinds of
graphs.

Dynamics Parameters. With the structure fixed as
the n-regular graph, we vary the dynamics parameters
β, γ, and S around the tipping point to evaluate the
performance of proposed models, as shown in Figure

5. For each combination of parameters, we generate
200 samples for training and testing. When param-
eters approach the poles of the x-axis, the diffusion
steps are too few to form loopy paths, resulting in triv-
ial instances for MPI problem. This is why the error
curve of DMP is bell-shaped. The two trained mod-
els GNN and NEDMP have similar performance, and
both outperform DMP in all ranges of parameters. As
parameters approach the area with loopier diffusion
paths, the performances of the learning-based models
degrade much slower than DMP.

Real Diffusion Networks. We also train and test
all the methods on six true diffusion networks (Rossi
& Ahmed, 2015), and all the graphs are preprocessed
as undirected graphs. Again, we generate 200 sam-
ples for each graph as the training and testing set.
For each sample, two randomly selected nodes are set
as the initially infected nodes. And dynamics param-
eters are randomly sampled from β ∼ U(0, 0.3) and
γ ∼ U(0.1, 0.4). Same as previous, within the distri-
bution of training set, GNN and NEDMP have com-
parable performances, and all outperform DMP based
on metrics L1.

4.2 Out of Distribution Generalization

It is well known that the neural network model suf-
fers from poor generalization. Using hand-engineering
and end-to-end learning cooperatively, a hybrid model
which benefits from their complementary strengths
can be one way to break the generalization limitation
(Shlezinger, Whang, Eldar, & Dimakis, 2020). The
proposed NEDMP is such a hybrid model while GNN
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Figure 5: Performance of various dynamics parameters. In the left and middle figures, the graph
structures are fixed to a 3-regular graph with |N | = 20, and we increase the graph size to |N | = 100 in the right
figure. β∗ in the left and middle figure is the tipping point of diffusion.

Table 1: L1 error on real networks (lower is better).

dolphins fb-food fb-social norwegain openflights top-500
#Nodes 62 620 1899 1482 2939 500
#Edges 159 2102 20296 4006 15677 2980
DMP 0.089 ± 0.126 0.096 ± 0.177 0.023 ± 0.062 0.103 ± 0.199 0.077 ± 0.125 0.064 ± 0.089
GNN 0.028 ± 0.033 0.030 ± 0.039 0.021 ± 0.037 0.018 ± 0.042 0.032 ± 0.044 0.033 ± 0.048

NEDMP 0.027 ± 0.036 0.034 ± 0.044 0.024 ± 0.043 0.023 ± 0.054 0.048 ± 0.064 0.032 ± 0.044

is a purely data-driven model. To better understand
the generalization ability of those two kinds of models,
we conduct experiments on structure and parameter
generalization.

Structure Generalization. We freeze the models
trained on specific graph structures in Section 4.1, and
then test them on all eight graph structure datasets.
For instance, a GNN model trained on tree graphs is
then tested on all graph structures, and the eight test-
ing L1 errors are visualized as the first row in Figure
7(a). All the off-diagonal cells in Figure 7(a,b) are
the generalization errors for the corresponding model.
The average of generalization errors are 0.128, 0.035
for GNN and NEDMP respectively. The superiority
of NEDMP in generalization verifies the strengths of
the hybrid model.

Dynamics Parameters Generalization. We con-
sider the model generalization over β, γ and S. We fix
the graph structure as the Watts–Strogatz graph. As
shown in Figure 6, for each parameter spectrum, we
train the GNN and NEDMP on a small range of pa-
rameter values (bounded by the two vertical dashed
lines). Then the trained models are tested on the
whole parameter spectrum; the out-of-set results are
presented in Figure 6. As expected, GNN degrades
rapidly as the parameter away from the training set.
Surprisingly, NEDMP can maintain almost the same
performance outside the training distribution, and it
even outperforms DMP under all unseen parameters.

NEDMP is so robust to parameters because the GNN
module in NEDMP does not interact with parameters
directly; parameters are encoded by well-established
updating equations in the DMP module, which enables
the hybrid model to generalize to unseen values.

5 DISCUSSION

In this work, we propose a hybrid model Neural En-
hanced Dynamic Message Passing (NEDMP), which
runs DMP and GNN jointly, for the marginal proba-
bilities inference problem of the SIR model. We test
the performance of inference in diverse sets of graph
structures and dynamics parameters, and the results
show that after training the proposed model signifi-
cantly outperforms DMP in all kinds of graph struc-
ture within the training distribution. The generaliza-
tion ability of the proposed model is evaluated by in-
ferring on graph structures and parameters that are
out of the training distribution. The results show
that NEDMP generalizes much better than the pure
data-driven model since it incorporates the informa-
tive dynamics-based prior bias from DMP module.

This work is also a demonstration of the emerging
field of hybrid physics-guided machine learning (Rai &
Sahu, 2020). We use physics priors (DMP) to guide the
design of the neural networks and regularize the train-
ing process. In future work, incorporating the physic
prior and graph neural networks more compactly can
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Figure 6: Generalization Performance on Dynamics Parameters. GNN and NEDMP are trained in a
small range of parameter values, bounded by two vertical dashed lines, and then tested out-of-set. The graph
structure is fixed to be Watts–Strogatz graph with 50 nodes, each node connects 5 nearest neighbors and the
probability of rewiring each edge is p = 0.2.

tr
ee

gr
id
ba

rb
el
l

re
gu

la
r

er
03

er
05

er
08
co

m
pl

et
e

tree

grid

barbell

regular

er03

er05

er08

complete

tr
ee

gr
id
ba

rb
el
l

re
gu

la
r

er
03

er
05

er
08
co

m
pl

et
e

tr
ee

gr
id
ba

rb
el
l

re
gu

la
r

er
03

er
05

er
08
co

m
pl

et
e

0.0

0.1

0.2

0.3

0.4

L
1

 E
rr

o
r

DMP, L1=0.07NEDMP, L1=0.05GNN, L1=0.11
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be a promising direction.

As demonstrated in the experiments, NEDMP can be
an efficient estimator for the spreading processing on
graphs, which makes it potentially useful for forecast-
ing and controlling epidemics (e.g., COVID-19) or ru-
mor spreading on social networks. However, since
NEDMP relies on the line graph of spreading networks,
it is computationally hard to be applied to large so-
cial networks. Reducing the complexity of NEDMP is
requisite for realistic scenarios, which is left for future
work.
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Supplementary Material:
Neural Enhanced Dynamic Message Passing

A Derivation of DMP Equations for SIR Model

We follow (A. Lokhov et al., 2015) to introduce the DMP equations for the SIR model as well as the physical
sense of intermediate dynamic variables.

We start with the updated rules of P iR(t) and P iI (t), derived directly from SIR model:

P iR(t) = P iR(t− 1) + γiP
i
I (t− 1) (24)

P iI (t) = 1− P iR(t− 1)− P iS(t− 1) (25)

Let θj→i(t) be the probability that disease has not spread through the edge (j → i) up to time t, and P iS(t) is
updated by Eq.(26) which is exact on the tree and approximate on general graphs :

P iS(t) = P iS(0)
∏
j∈Ni

θj→i(t) (26)

Before deriving the close form of θj→i(t), we introduce two useful intermediate dynamic variables:

• P
i\k
S (t): the probability that σti = S when node i ignores all infection from its neighbor node k;

• φj→i(t): the probability that disease has not spread through the edge (j → i) up to time t and node j is
infected at time t ( i.e., σtj = I ).

By excluding node k from Ni in Eq.(26), we have

P
i\k
S (t) = P iS(0)

∏
j∈Ni\k

θj→i(t) (27)

Utilizing variable φj→i(t− 1), we have the update rule for θj→i(t):

θj→i(t) = θj→i(t− 1)− βjiφj→i(t− 1) (28)

The change of φj→i(t− 1) comes from two parts: (1) When node j is infected at time t− 1, it becomes recovery
with probability γj or infects node i with rate βji in the next time step; (2) When node j is susceptible at time

t−1, it turns into infected with probability P
j\i
S (t−1)−P j\iS (t). Therefore, we have the update rule for φj→i(t):

φj→i(t) = (1− βji)(1− γj)φj→i(t− 1) +
(
P
j\i
S (t− 1)− P j\iS (t)

)
(29)

To complete the recursion updating rules, we give the initial values as:

θj→i(0) = 1, φj→i(0) = δσ0
j ,I

(30)

B Baseline GNN

Graph Neural Networks (GNNs) model the pair-wise interactions by implementing a trainable recurrent message
passing mechanism in the graph structure, and has three main steps: Message Passing, Update and Readout.
After t− 1 iterations of GNNs, let mu(t− 1) as node u’s hidden states. In the next iteration, Message Passing
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step firstly aggregates all information from u’s neighborhood Nu as a message vector m→u(t), and then node u
updates its hidden status to mu(t) by combining mu(t−1) and m→u(t) in the step Update. The updated hidden
states are then fed into a task-specified Readout function R for node-wise predictions in step t.

The marginal probabilities are dependent on the nodes initial infection status S ∈ {0, 1}|V|, nodes attributes
γ ∈ [0, 1]|V|, as well as the edge attributes β ∈ [0, 1]|E|. Therefore, we first embed those attributes into vectors:

X0 = φn(S ⊕ γ), E0 = φe(β), (31)

where ⊕ is the concatenation operator, φn : R2 → RD, φe : R → RD and D is the preset number of hidden
dimension, X0 ∈ R|V|×D, E0 ∈ R|E|×D. The nonlinear functions φn, φe are shared by all nodes and edges,
respectively.

We present the details of proposed specific GNN for MPI as follows:

• Step 1: Hidden status Initialization. Unlike (Yoon et al., 2019) initializing hidden status as zeros, we
initialize the hidden states from nodes attributes:

mi(0) = φinit(X
i
0), (32)

where φinit is a nonlinear function mapping the inputs to RD.

• Step 2: Message Passing. For node i in GNN, the incoming messages m→i(t) are the summations of the
adjacent hidden states. To enable the messages explicitly dependent on initial conditions, before summation,
we concatenate the E0, X0 to the corresponding hidden states. Then we have:

m→i(t) = φ2

∑
j∈Ni

φ1

(
mj(t− 1)⊕ Ej→i0

) , (33)

where φ1 and φ2 are nonlinear functions mapping the inputs to RD.

• Step 3: Update. Before updating, we concatenate the incoming messages with the target-nodes initial
attributes, which is an imitation of Eq.(27) in DMP, to filter the incoming messages. We then update nodes
hidden status with a Gated Recurrent Unit (GRU):

mi(t) = GRU
(
φ3
(
m→i(t)⊕Xi

0

)
,mi(t− 1)

)
, (34)

and φ3 is a trainable nonlinear function.

• Step 4: Readout. At each time step t (i.e. GNN tth layer), the predicted marginals for node i in GNN is
computed by a Softmax function R:

P̂ i(t) = R
(
φ4(mi(t)⊕Xi

0)
)

(35)

where φ4 is trainable nonlinear functions. The concatenation of hidden status and Xi
0 aims to imitate

Eq.(26) in DMP.

Repeat Step 2-4 until termination condition is satisfied.

In our implementation, all the nonlinear functions φn, φe, φinit, φ1,2,3,4 are specified by MLP with ReLU as the
activation function, and φ1,2,3,4 are shared across all time steps (GNN layers).

C The benefits of using the NEDMP in the within-distribution case.

Obtaining the ground truth as the training labels for large graphs is computationally expensive. This requires
a sample-efficient model. Compared to the pure data-driven baseline GNN, the proposed model NEDMP is
a physics-informed hybrid model, to which the DMP module provides strong regularization. Therefore, the
NEDMP is much more sample-efficient than the baseline. For two real networks, we increase the number of
training samples from 3 to 52, and the validation error of NEDMP and GNN is plotted in Figures 8 and 9. The
NEDMP can achieve satisfactory error for both networks with limited training samples, while the GNN requires
more training data. Therefore, using NEDMP is a better choice when obtaining the training data is expensive.
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Figure 8: Val. error for network dolphins Figure 9: Val. error for network norwegain

D Implementation Details

We implement our model utilizing Pytorch1 and Pytorch-Geometric. We train and test our model on Ubuntu
18.04.5 with Intel Xeon Gold 6248 CPU and NVIDIA Tesla V100 GPU.

1https://github.com/pytorch/
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