
Encrypted Linear Contextual Bandit

Evrard Garcelon Vianney Perchet Matteo Pirotta
Meta AI & CREST, ENSAE CREST, ENSAE Meta AI

Abstract

Contextual bandit is a general framework for
online learning in sequential decision-making
problems that has found application in a wide
range of domains, including recommendation
systems, online advertising, and clinical trials.
A critical aspect of bandit methods is that
they require to observe the contexts –i.e., in-
dividual or group-level data– and rewards in
order to solve the sequential problem. The
large deployment in industrial applications
has increased interest in methods that pre-
serve the users’ privacy. In this paper, we
introduce a privacy-preserving bandit frame-
work based on homomorphic encryptionwhich
allows computations using encrypted data.
The algorithm only observes encrypted infor-
mation (contexts and rewards) and has no
ability to decrypt it. Leveraging the proper-
ties of homomorphic encryption, we show that
despite the complexity of the setting, it is pos-
sible to solve linear contextual bandits over
encrypted data with a Õ(d

√
T) regret bound

in any linear contextual bandit problem, while
keeping data encrypted.

1 INTRODUCTION

Contextual bandits have become a key part of several
applications such as marketing, healthcare and finance;
as they can be used to provide personalized e.g., adap-
tive service (Bastani and Bayati, 2020; Sawant et al.,
2018). In such application, algorithms receives as input
users’ features, i.e. the “contexts”, to tailor their rec-
ommendations. Those features may disclose sensitive
information, as personal (e.g., age, gender, etc.) or
geo-localized features are commonly used in recommen-
dation systems. Privacy awareness has increased over

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

years and users are less willing to disclose information
and are more and more concerned about how their
personal data is used (Das et al., 2021). For example,
a user may be willing to receive financial investment
suggestion but not to share information related to
income, deposits, properties owned and other assets.
However, without observing this important information
about a user, a service provider may not be able to
provide meaningful investment guidance to the user.
This example extends to many other applications. For
instance, suppose an user is looking for a restaurant
nearby, if the provider has no access to even a coarse
geo-location, it would not be able to provide mean-
ingful suggestions to the user. An effective approach
to address these concerns is to resort to end-to-end
encryption to guarantee that data is readable only by
the users (Kattadige et al., 2021). In this scenario, the
investment company or the service provider observes
only an encrypted version of user’s information and
have no ability to decrypt it. While this guarantee
high level of privacy, it is unclear whether the problem
remains learnable and how to design effective online
learning algorithms in this secure scenarios.

In this paper, we introduce - and analyze - the set-
ting of encrypted contextual bandit to model the men-
tioned scenarios. At each round, a bandit algorithm ob-
serves encrypted features (including e.g., geo-location,
food preferences, visited restaurants), chooses an ac-
tion (e.g., a restaurant) and observes an encrypted
reward (e.g., user’s click), that is used to improve the
quality of recommendations. While it is possible to ob-
tain end-to-end encryption –i.e., the bandit algorithm
only observes encrypted information that is not able
to decrypt– using standard encryption methods (e.g.,
AES, RSA, TripleDES), the provider may no longer be
able to provide a meaningful service since may not be
able to extract meaningful information from encrypted
features. We thus address the following question:

Is it possible to learn with encrypted contexts and
rewards? And what is the associated computational

and learning cost?

Homomorphic Encryption (Halevi, 2017, HE) is a pow-

Encrypted Linear Contextual Bandit

erful encryption method that allows to carry out com-
putation of encrypted numbers. While this is a very
powerful idea, only a limited number of operations
can be performed, notably only addition and/or mul-
tiplication. While HE has been largely investigated
in supervised learning (Badawi et al., 2020; Graham,
2015), little is known about online learning. In this pa-
per we aim to look into this direction. We approach the
aforementioned question via HE and from a theoretical
point-of-view. We consider the case of linear rewards
and investigate the design of a “secure” algorithm able
to achieve sub-linear regret in this setting. There are
several challenges in the design of bandit algorithms
that makes the application of HE techniques not easy.
First, it is not obvious that all the operations required
by a bandit algorithm (notably optimism) can be car-
ried out only through additions and multiplications.
Second, errors or approximations introduced by the HE
framework to handle encrypted data may compound
and prevent to achieve provably good performance.
Finally, a careful algorithmic design is necessary to
limit the total number of HE operations, which are
computationally demanding.

Contributions. Our main contributions can be sum-
marized as follows: 1) We introduce and formalize the
problem of secure contextual bandit with homomorphic
encryption. 2) We provide the first bandit algorithm
able to learn over encrypted data in contextual linear
bandits, a standard framework that allows us to de-
scribe and address all the challenges in leveraging HE
in online learning. Leveraging optimism (e.g., Abbasi-
Yadkori et al., 2011) and HE, we introduce HELBA
which balances security, approximation error due to
HE and computational cost to achieve a Õ(

√
T) regret

bound. This shows that i) it is possible to learn online
with encrypted information; ii) preserving users’ data
security has negligible impact on the learning process.
This is a large improvement w.r.t. ε-LDP which has
milder security guarantees and where the best known
bound is Õ(T 3/4/ε). 3) We discuss practical limita-
tions of HE and ways of improving the efficiency of the
proposed algorithm, mainly how the implementation
of some procedures can speed up computations and
allow to scale dimension of contexts. We report prelim-
inary numerical simulations confirming the theoretical
results.

Related work. To prevent information leakage, the
bandit literature has mainly focused on Differential
Privacy (DP) (e.g., Shariff and Sheffet, 2018; Tossou
and Dimitrakakis, 2016). While standard (ϵ, δ)-DP
enforces statistical diversity of the output of an algo-
rithm, it does not provide guarantees on the security
of user data that can be accessed directly by the al-
gorithm. A stronger privacy notion, called local DP,

requires data being privatized before being accessed by
the algorithm. While it may be conceptually similar
to encryption, i) it does not provide the same security
guarantee as encryption (having access to a large set of
samples may allow some partial denoising Cheu et al.
(2021)); and ii) it has a large impact on the regret of
the algorithm. For example, Zheng et al. (2020) re-
cently analyzed ε-LDP in contextual linear bandit and
derived an algorithm with Õ(T 3/4/ε) regret bound to
be compared with a Õ(

√
T) regret of non-private algo-

rithms. Homomorphic Encryption (e.g. Halevi, 2017)
has only been merely used to encrypt rewards in bandit
problems (Ciucanu et al., 2020, 2019), but in some
inherently simpler setting than the setting considered
here (see App. B).

2 HOMOMORPHIC ENCRYPTION

Homomorphic Encryption (Halevi, 2017) is a proba-
bilistic encryption method that enables an untrusted
party to perform some computations (addition and/or
multiplication) on encrypted data. Formally, given
two original messages m1 and m2 ∈ R, the addition
(resp. multiplication) of their encrypted versions (called
ciphertexts) is equal to the encryption of their sum
m1 +m2 (resp. m1 ×m2), hence the name “homomor-
phic”.1 We consider a generic homomorphic schemes
that generate a public key pk (distributed widely and
used to encrypt messages), and private keys sk (used
for decryption of encrypted messages). This private
key is, contrary to the public key, obviously assumed
to be kept private.

More precisely, we shall consider Leveled Fully Homo-
morphic encryption (LFHE) schemes for real numbers.
This type of schemes supports both additions and mul-
tiplications but only for a fixed and finite number of
operations, referred to as the depth. This limitation is a
consequence of HE’s probabilistic approach. Although
noisy encryption allows to achieve high security, after a
certain number of operations the data is drown in the
noise (e.g., Albrecht et al., 2015), resulting in an inde-
cipherable ciphertext (the encrypted message). In most
LFHE schemes, the depth is the maximum number of
operations possible before losing the ability to decrypt
the message. Often multiplications have a significantly
higher noise growth than addition and the depth refers
to the maximum number of multiplication between ci-
phertexts possible. The security of a LFHE schemes is
defined by κ ∈ N, usually κ ∈ {128, 192, 256}. A κ-bit
level of security means that an attacker has to perform
roughly 2κ operations to break the encryption scheme,

1Most schemes also support Single Instruction Multiple
Data (SIMD), i.e., the same operation on multiple data
points in parallel.

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

i.e., to decrypt a ciphertext without the secret key.

Formally, an LFHE scheme is defined by:
• A key generator function KeyGen(N,D, κ): takes as

input the maximum depth D (e.g., max. number of
multiplications), a security parameter κ and the de-
gree N of polynomials used as ciphertexts (App. C.1).
It outputs a secret key sk and a public key pk .

• An encoding function Encpk(m): encrypts the mes-
sage m ∈ Rd with the public key pk. The output is
a ciphertext ct, a representation of m in the space of
complex polynomials of degree N .

• A decoding function Decsk(ct): decrypts the cipher-
text ct of m ∈ Rd using the secret key sk and outputs
message m.

• An additive operator Add(ct1, ct2): for ci-
phertexts ct1 and ct2 of messages m1 and
m2, it outputs ciphertext ctadd of m1 + m2:
Decsk

(
Add

(
Encpk(m1),Encpk(m2)

))
= m1 +m2.

• A multiplicative operator Mult(ct1, ct2): similar to
Add but for ciphertexts ct1 and ct2 of messages m1

and m2 and output ciphertext ctmult of m1 ·m2.
To avoid to complicate the notation we will use clas-
sical symbols to denote addition and multiplication
between ciphertexts. Choosing D as small as possible
is essential, as it is the major bottleneck for perfor-
mance, in particular at the keys generation step. This
cost comes from the fact that the dimension of a ci-
phertext N needs to grow with D for a given security
level κ: namely N ≥ Ω(κD) (refer to App. C.1 for
more details). In this paper, we choose to use the
CKKS scheme (Cheon et al., 2017) because it supports
operations on real numbers.

Other HE schemes. Most HE schemes (ElGamal,
1985; Paillier, 1999; Rivest et al., 1978) are Partially
Homomorphic and only support either additions or mul-
tiplications, but not both. Other schemes that support
any number of operations are called Fully Homomor-
phic encryption (FHE) schemes. Most LFHE schemes
can be turned into FHE schemes thanks to the boot-
strapping technique introduced by Gentry and Boneh
(2009). However, the computational cost is extremely
high. It is thus important to optimize the design of
the algorithm to minimize its multiplicative depth and
(possibly) avoid bootstrapping (Acar et al., 2018; Ducas
and Micciancio, 2015; Zhao and Wang, 2018).

3 CONTEXTUAL BANDIT AND
ENCRYPTION

A contextual bandit problem is a sequential decision-
making problem with K ∈ N+ arms and horizon T ∈
N+ (e.g., Lattimore and Szepesvári, 2020). At each
time t ∈ [T] := {1, . . . , T}, a learner first observes a set

Algorithm 1 Encrypted Contextual Bandit (Server-
Side)

Input: Agent: A, public key: pk, horizon: T
for t = 1, . . . , T do

Agent A observes encrypted context (xt,a)a∈[K] =
(Encpk(st,a))a∈[K]

Agent A computes the next action as a function of
the encrypted history and (xt,a)a∈[K] and outputs an
encrypted action ut = Encpk(at)
Agent A observes encrypted reward yt = Encpk(rt)

end for

Algorithm 2 Encrypted Contextual Bandit (User-
Side)

Input: public key: pk, secret key: sk
for t = 1, . . . , T do

User t observes features (st,a)a≤K and sends
(xt,a)a∈[K] = (Encpk(st,a))a∈[K] to the server
User t receives encrypted action ut

User t decrypts action at = Decsk(ut)
User t observes reward rt = r(st,at) + ηt and sends
Encpk(rt) to the server

end for

of features (st,a)a∈[K] ⊂ Rd, selects an action at ∈ [K]
and finally observes a reward rt = r(st,at)+ηt where ηt
is a conditionally independent zero-mean noise. We do
not assume anything on the distribution of the features
(st,a)a. The performance of the learner A over T steps
is measured by the regret, that measures the cumulative
difference between playing the optimal action and the
action selected by the algorithm. Formally, let a⋆t =
argmaxa∈[K] r(st,a) be the optimal action at step t,
then the pseudo-regret is defined as:

RT =

T∑
t=1

r(st,a⋆
t
)− r(st,at

). (1)

To protect privacy and avoid data tempering, we intro-
duce end-to-end encryption to this protocol. Contexts
and rewards are encrypted before being observed by the
learner; we call this setting encrypted contextual bandit
(Alg. 1). Formally, at time t ∈ [T], the learner A ob-
serves encrypted features xt,a = Encpk(st,a) for all ac-
tions a ∈ A, and the encrypted reward yt = Encpk(rt)
associated to the selected action at. The learner may
know the public key pk but not the secure key sk.
The learner is thus not able to decrypt messages and
it never observes the true contexts and rewards. We
further assume that both the agent A and the users
follow the honest-but-curious model, that is to say each
parties follow their protocol honestly but try to learn
as much as possible about the other parties private

Encrypted Linear Contextual Bandit

data. 2 As a consequence, the learner can only do com-
putation on the encrypted information. As a result,
all the internal statistics used by the bandit algorithm
are now encrypted. On user’s side (see Alg. 2), upon
receiving an encrypted action ut = Encpk(at) and de-
crypting it at = Decsk(ut) using the secure key sk, the
user generates a reward rt = r(st,at) + ηt and sends to
the learner the associated ciphertext yt. The learning
algorithm is able to encrypt the action since the public
key is publicly available. See App. C for additional
details.

We focus on the well-known linear setting where re-
wards are linearly representable in the features. For-
mally, for any feature vector st,a, the reward is r(st,a) =
⟨st,a, θ⋆⟩, where θ⋆ ∈ Rd is unknown. For the analysis,
we rely on the following standard assumption:

Assumption 1. There exists S > 0 such that ∥θ⋆∥2 ≤
S and there exists L ≥ 1 such that, for all time t ∈ [T]
and arm a ∈ [K], ∥st,a∥2 ≤ L and rt = ⟨st,a, θ⋆⟩+ ηt ∈
[−1, 1] with ηt being σ-subGaussian for some σ > 0 .

4 AN ALGORITHM FOR
ENCRYPTED LINEAR
CONTEXTUAL BANDITS

In the previous section, we have introduced a generic
framework for contextual bandit with encrypted in-
formation. Here, we provide the first algorithm able
to learn with encrypted observations. In the non-

Algorithm 3 Simplified HELBA
for t = 1, . . . , T do

if Update (Step ❹) then
Step ❶: Estimate encrypted parameter using
{xl,al , yl}l∈[t−1]

end if
Observe encrypted contexts (xt,a)a∈[K] =
(Encpk(st,a))a∈[K]

Step ❷: Compute encrypted indexes (ρa(t))a∈[K]

Step ❸: Compute argmaxa{ρa(t)}
end for

secure protocol, algorithms based on the optimism-
in-the-face-of-uncertainty (OFU) principle such as Lin-
UCB (Chu et al., 2011) and OFUL (Abbasi-Yadkori
et al., 2011) have been proved to achieve the regret
bound O

(
Sd

√
T ln(TL)

)
. Clearly, they will fail to be

used as is in the secure protocol and need to be re-
thinked around the limitations of HE (mainly approx-
imations in most operations). As mentioned in the

2A trusted third party can be used to generate a public
and secret keys. Those keys are then sent to the users but
not to the agent A (see Sec. 6).

introduction, there are many, both theoretical and
practical, challenges to leverage HE in this setting. In-
deed, 1) computing an estimate of the parameter θ⋆
from ridge regression is extremely difficult with HE as
finding the inverse of a matrix is not directly feasible for
a leveled scheme (Esperança et al., 2017). 2) Similarly,
computing the bonus for the optimistic action selec-
tion requires invoking operations that are not naturally
available in HE hence incurring a large computational
cost. Finally, 3) computing the maximum element (or
maximum index) of a list of encrypted values is non-
trivial for the algorithm alone, as it cannot observe
the values to compare. In this section, we will pro-
vide HE compatible operations addressing these three
issues. Each step is highly non-trivial and correctly
combining them is even more challenging due to error
compounding. We believe the solution we provide for
each individual step may be of independent interest.

Alg. 3 report a simplified version of our HE bandit
algorithm. Informally, at each round t, our algorithm
HELBA (Homomorphically Encrypted Linear Ban-
dits) builds an HE estimate ωt of the unknown θ⋆

(ω⋆ = Encpk(θ
⋆)) using the observed encrypted sam-

ples, compute HE optimistic indexes (ρa(t))a for each
action and select the action maximizing the index. We
stress that all the mentioned statistics (ωt and ρa(t))
are encrypted values. Indeed, HELBA operates di-
rectly in the encrypted space, i.e., the space of complex
polynomials of degree N . Let’s analyze those three
steps.

Step ❶: HE Friendly Ridge Regression
The first step is to build an estimate of the parame-
ter θ⋆. In the non-encrypted case, we can simply use
θt = V −1

t

∑t−1
l=1 sl,al

rl, where Vt =
∑t−1

l=1 sl,al
sTl,al

+ λI.
With encrypted values (xl,al

, yl)l∈[t−1], it is possible to
compute an encrypted matrix Λt =

∑t−1
l=1 xl,al

xTl,al
+

λEncpk(I) = Encpk(Vt) and vector
∑t−1

l=1 xl,al
yl as

these operations (summing and multiplying) are HE
compatible. The issue resides in the computation of
Λ−1

t . An approximate inversion scheme can be lever-
aged though.

Given a matrix V ∈ Rd with eigenvalues λ1 ≥ . . . ≥
λd > 0 and c ∈ R such that for all i ∈ [d], λi ∈
Conv ({z ∈ R | |z − c| ≤ c}, 2c)\{0, 2c}3, we define the
following sequence of matrices (Guo and Higham, 2006)

Xk+1 = Xk(2Id−Mk), Mk+1 = (2Id−Mk)Mk, (2)

initialized at X0 = 1
c Id and M0 = 1

cV . We can show
that this sequence converges to V −1.

Proposition 2. If V ∈ Rd×d is a symmetric positive
definite matrix, c ≥ Tr(V) and for some precision level

3Conv(E) is the convex hull of set E.

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

ε > 0, the iterate in (2) satisfies ∥Xk − V −1∥ ≤ ε for

any k ≥ k1(ε) with k1(ε) = 1
ln(2) ln

(
ln(λ)+ln(ε)

ln(1−λ
c)

)
, where

λ ≤ λd is a lower bound to the minimal eigenvalue of
V and ∥ · ∥ is the matrix spectral-norm.

Since Vt is a regularized matrix, it holds that λd ≥
λ > 0 and by setting c = λd + L2t we get that
c ≥ Tr(Vt) ≥ maxi{λi}, for any step t ∈ [T]. There-
fore, we can apply iterations (2) to Λt = Encpk(Vt)
since are all HE compatible operations (additions and
matrix multiplications). For εt > 0, iterations (2)
gives a εt-approximation At := Xk1(εt) of V −1

t , i.e.,
∥Decsk(At) − V −1

t ∥ ≤ εt. As a consequence, an en-
crypted estimate of the unknown parameter θ⋆ can
be computed by mere simple matrix multiplications
ωt = At

∑t−1
l=1 xl,al

yl. Leveraging the concentration of
the inverse matrix, the following error bound for the
estimated parameter holds.

Corollary 3. Setting εt =
(
Lt3/2

√
L2t+ λ

)−1

in

Prop. 2, then ∥Decsk(ωt)− θt∥Vt ≤ t−1/2, ∀t.

This result, along with the standard concentration for
linear bandit (Abbasi-Yadkori et al., 2011, Thm. 2),
implies that, at all time steps t, with probability at
least 1− δ:

θ⋆ ∈ C̃t := { θ ∈ Rd | ∥Decsk(ωt)− θ∥Vt ≤ β̃t}, (3)

where ∥a∥B =
√
a⊤Ba and β̃t = t−1/2 + S

√
λ +

σ
√
d (ln (1 + L2t/λ) + ln(π2t2/(6δ))) is the inflated

confidence interval due to the approximate inverse (see
Prop. 9 in App. D.4). Note that β̃t is a plain scalar,
not an encrypted value.

Step ❷: Computing The Optimistic Index
Once solved the encrypted ridge regression, the next
step for HELBA is to compute an optimistic index
ρa(t) such that r(st,a) ⪅ Decsk(ρa(t)). For any fea-
ture vector st,a, by leveraging the confidence interval
in (3), the optimistic (unencrypted) index is given
by maxθ∈C̃t

⟨θ, st,a⟩ = ⟨Decsk(ωt), st,a⟩ + β̃t∥st,a∥V −1
t

.
Leveraging Prop. 2, the definition of εt in Cor. 3 and
∥st,a∥2 ≤ L, it holds that:

∀st,a, ∥st,a∥2V −1
t

− ∥st,a∥2Decsk(At) ≤ L2∥V −1
t − Decsk(At)∥

≤ Lt−
3
2 (λ+ L2t)−1/2

which leads to maxθ∈C̃t
⟨θ, st,a⟩ ≤ ⟨Decsk(ωt), st,a⟩ +√

∥st,a∥2Decsk(At)
+ L

(
t3/2

√
λ+ L2t

)−1. As a conse-
quence, we can write that the encrypted optimistic
index is given by:

ρa(t) ≈ ⟨ωt, xt,a⟩+ β̃t×

× sqrtHE

(
x⊤
t,aAtxt,a + L

(
t3/2

√
λ+ L2t

)−1︸ ︷︷ ︸
✣

)
(4)

where sqrtHE is an approximate root operator in the
encryption space. Unfortunately, computing the root
is a non-native operation in HE and we need to build
an approximation of it.

For a real value z ∈ [0, 1], we define the following
sequences (Cheon et al., 2020)

qk+1 = qk

(
1− vk

2

)
, vk+1 = v2k

(
vk − 3

4

)
(5)

where q0 = z and v0 = z − 1. It is possible to show
that this sequence converges to

√
z.

Proposition 4. For any z ∈ R+, c1, c2 > 0 with
c2 ≥ z ≥ c1 and a precision ε > 0, let qk be the
result of k iterations of Eq. (5), with q0 = z

c2
and v0 =

z
c2

− 1. Then, |qk
√
c2 −

√
z| ≤ ε for any k ≥ k0(ε) :=

1
ln(2)

(
ln
(
ln (ε)− ln

(√
c2
))

− ln
(
4 ln

(
1− c1

4c2

)))
.

Therefore, by setting z = ∥xt,a∥2At
+ c1 (i.e., as ✣

in Eq. (4)), c1 = L(t3/2
√
λ+ L2t)−1, c2 = c1 +

L2λ−1/2
(
1 + λ−1/2

)
and ε = t−1, we set

ρa(t) = ⟨ωt, xt,a⟩+ β̃t

(
√
c2qk0(1/t) +

1

t

)
, (6)

which implies that r(st,a) ⪅ maxθ∈C̃t
⟨θ, st,a⟩ ≤

Decsk(ρa(t)). Note that while ωt, xt,a and qi are en-
crypted values, β̃t, c1, c2 and t are plain scalars.

Step ❸: HE Approximate Argmax
The last challenge faced by the learning algorithm is
to compute argmaxa∈[K]{ρa(t)}. Although, it is the-
oretically possible to compute an argmax procedure
operating on encrypted numbers (Gentry and Boneh,
2009), it is highly non practical because it relies on boot-
strapping. Recently, Cheon et al. (2020) introduced an
homomorphic compatible algorithm (i.e., approximate),
called NewComp, that builds a polynomial approx-
imation of Comp(a, b) = 1{a>b} for any a, b ∈ [0, 1].
This algorithm allows to compute an HE friendly ap-
proximation of max{a, b} for any a, b ∈ [0, 1]. We
leverage this idea to derive acomp, a homomorphic
compatible algorithm to compute an approximation of
the maximum index (see Alg. 9 in App. D.5). Precisely,
acomp does not compute argmaxa∈[K]{ρa(t)} but an
approximate vector bt ≊ (1{a=argmaxi ρi(t)})a∈[K]. The
maximum index is the value a such that (bt)a is greater
than a threshold accounting for the approximation
error.

The acomp algorithm works in two phases.
First, acomp computes an approximation M of
maxi∈[K]{ρi(t)} by comparing each pair (ρi(t), ρj(t))
with i < j ≤ K. Second, each value ρa(t) is com-
pared to this approximated maximum value M to ob-
tain (bt)a, an approximate computation of 1{ρa(t)>M}.

Encrypted Linear Contextual Bandit

Cor. 5 shows that if a component of bt is big enough,
the difference between maxa ρa(t) and any arm with
4(bt)a ≥ t−1 is bounded by Õ(1/t) (proof in App. D.5).
Corollary 5. At any time t ∈ [T], any arm a ∈ [K]
satisfying (bt)a ≥ 1

4t is such that:

ρa(t) ≥ max
a′∈[K]

{ρa′(t)} − 1

t

− β̃t

t

[
2

t
+

√
L

t3/2
√
λ+ L2t

+ L

√
1

λ
+

1√
λ

] (7)

Cor. 5 shows that while an action a such that 4t(bt)a ≥
1 may not belong to argmaxa∈[K]{ρt(a)}, it can be
arbitrarily close, hence limiting the impact on the regret.
As shown later, this has little impact on the final regret
of the algorithm as the approximation error decreases
fast enough. Since bt is encrypted, the algorithm does
not know the action to play. bt is sent to the user who
decrypts it and selects the action to play (the user is the
only one having access to sk). bt ≈ (1{a=maxi∈[K] ρi(t)}
indicates to the user which action to take which is
necessary by design of the bandit problem. However, if
the user is able to invert the polynomial functions used
to compute bt thanks to the rescaling of the estimates
(ρa(t))a the latter can only learn a relative ranking for
this particular user and not the actual estimates.

Step ❹: Update Schedule
Thanks to these steps, we can prove (see App. ??) a

√
T

regret bound for HELBA when ωt is recomputed at
each step t. However, this approach would be impracti-
cal due to the extremely high number of multiplications
performed. In fact, inverting the design matrix at each
step incurs a large multiplicative depth and computa-
tional cost. The most natural way of reducing this cost
is to reduce the number of times the ridge regression is
solved. The arm selection policy will not be updated
at each time step but rather only when necessary. Re-
ducing the number of policy changes is exactly the aim
of low switching algorithms (see e.g., Abbasi-Yadkori
et al., 2011; Perchet et al., 2016; Bai et al., 2019; Ca-
landriello et al., 2020; Dong et al., 2020). We focus on
a dynamic, data-dependent batching since

√
T regret

is not attainable using a fixed known-ahead-of-time
schedule (Han et al., 2020).

Abbasi-Yadkori et al. (2011) introduced a low switch-
ing variant of OFUL (RSOFUL) that recomputes
the ridge regression only when the following condi-
tion: det(Vt+1) ≥ (1 + C)det(V) is met, with V the
design matrix after the last update. The regret of
RSOFUL scales as Õ(d

√
(1 + C)T). In the secure

setting, computing the determinant of an encrypted
matrix is costly (see e.g. Kaltofen and Villard, 2005)
and requires multiple matrix multiplications. The com-
plexity of checking the above condition with HE out-

weights the benefits introduced by the low switching
regime, rendering this technique non practical. In-
stead of a determinant-based condition, we consider a
trace-based condition, inspired by the update rule for
GP-BUCB (Desautels et al., 2014; Calandriello et al.,
2020).

The “batch j” is defined as the set of time steps between
j-th and (j + 1)-th updates of ω, and we denote by tj
the first time step of this batch. The design matrix
is now denoted by Λj = λEncpk(I) +

∑tj−1
l=1 xl,al

x⊺l,al
,

and more importantly is only updated at the beginning
of each batch j (and similarly for the inverse Aj and
vector ωj). The current batch j is ended if and only if
the following trace-based condition is met at some time
t:

C ≤ Tr

(
t−1∑

l=tj+1

Ajxl,al
x⊺l,al

)
=

t−1∑
l=tj+1

∥xl,al
∥2
Aj

(8)

The intuition behind this condition is that the trace of
V j = λI +

∑tj−1
l=1 sl,al

s⊺l,al
is enough to directly control

the regret. The following proposition shows that the
error due to the computation in the encrypted space
remains small.

Proposition 6. Let εj =
(
Lt

3/2
j

√
λ+ L2tj

)−1

and

Aj = Xk1(εj) as in Eq. (2) starting from M0 =

Λj/c with c ≥ λ + tjL
2. Then, for any j >

0:
∣∣∣Tr
(∑t−1

l=tj+1

(
Decsk(Aj) − V

−1

j

)
sl,al

s⊺l,al

)∣∣∣ ≤
L2εj(t− 1− tj).

Since the switching condition involves data-dependent
encrypted quantities, we leverage a similar procedure
as to compare indexes. We compute an (encrypted) ho-
momorphic approximation of the sign function thanks
to the acomp algorithm. The result is an encryption
of the approximation of 1{}. Similarly to computing
the argmax of (ρa(t))a, the algorithm cannot access the
result, thus it relies on the user to decrypt and send
the result of the comparison to decide whenever the
algorithm needs to update the approximate inverse Āj ,
. However, to prevent any information leakage, that
is to say the algorithm or the user learning about the
features of other users, we use a masking procedure
which obsfucates the result of the decryption to the
user (detailed in App. E.1.1 and App. E.1.2).

In non-encrypted setting, Cond. 8 can be used to dy-
namically control the growth of the regret, that is
bounded by O

(∑MT

j=0

∑tj+1

t=tj+1 ∥V
−1/2

j st,at
∥2
)
. But in

the secure setting, the regret can not be solely bounded
as before. The condition for updating the batch has to
take into account the approximation error introduced
by all the approximate operations. Let MT be the total
number of batches, then the contribution of the approxi-
mations to the regret scales as

∑MT−1
j=0 Õ((tj+1−tj)2εj).

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

We thus introduce an additional condition aiming at
explicitly controlling the length of each batch. Let
η > 0, then a new batch is started if Cond. (8) is met
or if: t ≥ (1 + η)tj . This ensures that the additional
regret term grows proportionally to the total number of
batches MT . Note that tj and t are not encrypted val-
ues and the comparison is “simple”. The full algorithm
is reported in App. A.

5 THEORETICAL GUARANTEES

The regret analysis of HELBA is decomposed in two
parts. First, we show that, the number of batches
is logarithmic in T . Then, we bound the error of
approximations per batch.

Proposition 7. For any T > 1, if C − Lη√
λ+L2

> 1
4 ,

the number of episodes MT of HELBA (see Alg. 3) is
bounded by:

MT ≤ 1 +
d ln

(
1 + L2T

λd

)
2 ln

(
3
4 + C − Lη√

λ+L2

) +
ln(T)

ln(1 + η)
(9)

The total number of multiplications to compute ωj is
T/MT -times smaller thanks to the low-switching con-
dition. This leads to a vast improvement in computa-
tional complexity. Note that at each round t, HELBA
still computes the upper-confidence bound on the re-
ward and the maximum action. Leveraging this result,
when any of the batch conditions is satisfied, the regret
can be controlled in the same way as the non-batched
case, up to a multiplicative constant.
Theorem 8. Under Asm. 1, for any δ > 0 and T ≥ d,
there exists constants C1, C2 > 0 such that the regret
of HELBA (Alg. 3) is bounded with probability 1− δ
by:

RT ≤ C1β
⋆

(√
(1.25 + C) dT ln

(
TL

λd

)
+

L3/2

√
λ

ln(T)

)

+C2β
⋆MT max

{
√
L+

η√
L
, η2 +

L
√
λ+ L2

3

}

with β⋆ = 1+
√
λS + σ

√
d
(
ln
(
1 + L2T

λd

)
+ ln

(
π2T 2

6δ

))
and MT as in Prop. 7.

The first term of the regret highlights the impact of
the approximation of the square root and maximum
that are computed at each round. The second term
shows the impact of the approximation of the inverse.
It depends on the number of batches since the inverse
is updated only once per batch. By Prop. 7, we notice
that this term has a logarithmic impact on the regret.
Finally, the last term is the regret incurred due to low-
switch of the optimistic algorithm. We can notice that

the parameter C regulates a trade-off between regret
and computational complexity. This term is also the
regret incurred by running OFUL with trace condi-
tion instead of the determinant-based condition. This
further stress that the cost of encryption on the regret
is only logarithmic, leading to a regret bound of the
same order of the non-secure algorithms. But the com-
putationnal complexity of HELBA is multiple orders
higher than any non-encrypted bandit algorithm. For
example the complexity of computing a scalar product
with HE now scales with the ring dimension N and not
the dimension of the contexts anymore d≪ N .

6 DISCUSSION AND EXTENSIONS

In this section, we present a numerical validation of
the proposed algorithm in a secure linear bandit prob-
lem and we discuss limitations and possible extensions.

0 20 40 60 80 100 120
0

2

4

6

8

10

RSOFUL
RSOFUL-Tr
OFUL
HELBA

Figure 1: Regret on a toy problem
with 4 random uniform contexts.

Numerical
simulation.
Despite the
mainly theo-
retical focus of
the paper, we
illustrate the
performance of
the proposed
algorithm on
a toy example,
where we aim
at empirically
validating the
theoretical

findings. We consider a linear contextual bandit
problem with 4 contexts in dimension 2 and 2 arms.
As baselines, we consider OFUL, RSOFUL and
RSOFUL-Tr (a version of RSOFUL where the
determinant-based condition is replaced by the
trace-condition in (8)). We run these baselines on
non-encrypted data and compare the performance with
HELBA working with encrypted data. In the latter
case, at each step, contexts and rewards are encrypted
using the CKKS (Cheon et al., 2017) scheme with
parameter κ = 128, D = 100 and N = 216, a modulus
log(q0) = 4982 and a cyclotomic degree of M = 131072
chosen automatically by the PALISADE library (PAL,
2020) used for the implementation. The size of the
ciphertext is not allowed to grow and a relinearization
is performed after every operation. The variance of the
noise in the reward is σ = 0.5. Finally, we use C = 1
and η = 0.1 in HELBA. The regularization parameter
is set to 1 and L = 5.5. Fig. 1 shows the regret of the
algorithms averaged over 25 repetitions. We notice
that while the non-encrypted low-switching algorithms
(i.e., RSOFUL and RSOFUL-Tr) recompute the

Encrypted Linear Contextual Bandit

ridge regression only 11 times on average, their
performance is only slightly affected by this and it
is comparable to the one of OFUL. The reduced
number of updates is a significant improvement in
light of the current limitation in the multiplicative
depth of homomorphic schemes. This was the enabling
factor to implement HELBA. Note that the update
condition in HELBA increases the number of updates
to about 20 on average. As expected, the successive
approximations and low-switching combined worsen
the regret of HELBA. However, this small loss in
performance comes with a provable guarantee on the
security of users’ data.

Computational Complexity. Even though we re-
duced the number of multiplications and additions, the
total runtime of HELBA is still significant, several or-
ders of magnitude higher compared to the unencrypted
setting, the total time for T = 130 steps and κ = 128
bits was 20 hours and 39 minutes. We believe that a
speed up can be obtained by optimizing how matrix
multiplication is handled. For example, implementa-
tion optimization can increase the speed of computation
of logistic regression (Blatt et al., 2020). However, we
stress that HELBA is almost (up to the masking proce-
dure) agnostic to the homomorphic scheme used, hence
any improvement in the HE literature can be leveraged
by our algorithm. Bootstrapping procedures (Gentry
and Boneh, 2009) can be used for converting a leveled
schema into a Fully HE scheme. This mechanism, to-
gether with the low-switching nature of our algorithm,
can be the enabling tool for scaling this approach to
large problems as the multiplicative depth scales lin-
early with the dimension.

Discussion. Many other approaches are possible to
increase the computational efficiency, for example us-
ing a trusted execution environment (Sabt et al., 2015)
or leveraging user-side computational capacities. We
decided to design an algorithm where the major com-
putation (except for comparisons) are done server-side,
having in mind cloud-computing or recommendations
running on mobile phone. The objective was to make
as secure as possible this protocol so that the server
can leverage the information coming from all users.
However, if we assume that users have greater compu-
tation capabilities, the algorithm can delegate some
computations (see e.g., Blatt et al., 2020). For example,
for the inverse, the algorithm can generate a random
(invertible) matrix Nt, homomorphically compute VtNt

and sends the masked matrix, VtNt to the user. The
latter decrypts, inverts, re-encrypts the inverse and
sends it to the algorithm (see (Bost et al., 2015, Sec. 8)
for more details). A similar scenario, can be imagined
for computing a square root or a matrix multiplication.
This protocol requires users to perform computation-

ally heavy operations (inverting a matrix) locally. To
ensure security with this delegation, a verification step
is needed (see e.g., Bost et al., 2015) further increas-
ing communications between the user and the bandit
algorithm. We believe that an interesting direction for
future work is to integrate this protocol in a distributed
setting (i.e., federated learning). Using a server-side
trusted execution environment can speed up computa-
tions as operations are executed in the clear in private
regions of the memory.

Multi-users Setting. Usually contexts represent dif-
ferent users, described by their features st and some
users may want to use their own public key pkt (and
secret key skt) to encrypt those features. In that case,
HELBA can be used with a KeySwitching Fan and
Vercauteren; Brakerski (2012); Brakerski et al. (2014)
component. This operation takes a ciphertext c1 deci-
pherable by a secret key sk1 and output a ciphertext c2
decipherable by a secret key sk2. A user send the en-
crypted context/reward to the bandit algorithm which
perform a key switching (see App. C.2) with the help
of trusted third party who generate the set of keys
used by the learning algorithm such that all cipher-
texts received are decipherable by the same key and
compatible for homomorphic operations. KeySwitching
can be performed without accessing the data and with
some (or all) users using their own set of private/public
keys for encryption/decryption.

7 CONCLUSION
In this paper, we introduced the problem of encrypted
linear contextual bandits and provided an algorithm,
HELBA, with a regret similar to regret bounds achiev-
able in the non-encrypted setting. This algorithm
trades-off the approximation error and computational
complexity of HE and the need for accurate estimation
to obtain sublinear regret. We leave as open question
the design of an algorithm tailored to the characteris-
tics of the HE and extensions to either other algorithms
(e.g., Thompson sampling) or settings (e.g., reinforce-
ment learning).

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

Acknowledgments

V. Perchet acknowledges support from the French Na-
tional Research Agency (ANR) under grant number
#ANR-19-CE23-0026 as well as the support grant,
as well as from the grant "Investissements d’Avenir"
(LabEx Ecodec/ANR-11-LABX-0047).

References

PALISADE Lattice Cryptography Library (release
1.10.4). https://palisade-crypto.org/, Septem-
ber 2020.

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba
Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing
systems, 24:2312–2320, 2011.

Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and
Mauro Conti. A survey on homomorphic encryp-
tion schemes: Theory and implementation. ACM
Comput. Surv., 51(4), July 2018. ISSN 0360-0300.
doi: 10.1145/3214303. URL https://doi.org/10.
1145/3214303.

Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding,
Shafi Goldwasser, Sergey Gorbunov, Shai Halevi,
Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya
Lokam, Daniele Micciancio, Dustin Moody, Travis
Morrison, Amit Sahai, and Vinod Vaikuntanathan.
Homomorphic encryption security standard. Tech-
nical report, HomomorphicEncryption.org, Toronto,
Canada, November 2018.

Martin R Albrecht, Rachel Player, and Sam Scott. On
the concrete hardness of learning with errors. Journal
of Mathematical Cryptology, 9(3):169–203, 2015.

Ahmad Al Badawi, Jin Chao, Jie Lin, Chan Fook Mun,
Jun Jie Sim, Benjamin Hong Meng Tan, Xiao Nan,
Khin Mi Mi Aung, and Vijay Ramaseshan Chan-
drasekhar. Towards the alexnet moment for homo-
morphic encryption: Hcnn, thefirst homomorphic
cnn on encrypted data with gpus, 2020.

Yu Bai, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang.
Provably efficient q-learning with low switching cost.
In Advances in Neural Information Processing Sys-
tems, pages 8004–8013, 2019.

Hamsa Bastani and Mohsen Bayati. Online decision
making with high-dimensional covariates. Operations
Research, 68(1):276–294, 2020.

Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and
Shafi Goldwasser. Secure large-scale genome-wide
association studies using homomorphic encryption.
Proceedings of the National Academy of Sciences, 117
(21):11608–11613, 2020.

Raphael Bost, Raluca Ada Popa, Stephen Tu, and
Shafi Goldwasser. Machine learning classification
over encrypted data. 2015.

Zvika Brakerski. Fully homomorphic encryption with-
out modulus switching from classical gapsvp. In An-
nual Cryptology Conference, pages 868–886. Springer,
2012.

Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Com-
putation Theory (TOCT), 6(3):1–36, 2014.

Daniele Calandriello, Luigi Carratino, Alessandro
Lazaric, Michal Valko, and Lorenzo Rosasco. Near-
linear time gaussian process optimization with adap-
tive batching and resparsification. In International
Conference on Machine Learning, pages 1295–1305.
PMLR, 2020.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong-
soo Song. Homomorphic encryption for arithmetic of
approximate numbers. In International Conference
on the Theory and Application of Cryptology and
Information Security, pages 409–437. Springer, 2017.

Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim,
Hun Hee Lee, and Keewoo Lee. Numerical method
for comparison on homomorphically encrypted num-
bers. In International Conference on the Theory and
Application of Cryptology and Information Security,
pages 415–445. Springer, 2019.

Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim.
Efficient homomorphic comparison methods with
optimal complexity. In ASIACRYPT (2), volume
12492 of Lecture Notes in Computer Science, pages
221–256. Springer, 2020.

Albert Cheu, Adam D. Smith, and Jonathan R. Ullman.
Manipulation attacks in local differential privacy. J.
Priv. Confidentiality, 11(1), 2021.

Wei Chu, Lihong Li, Lev Reyzin, and Robert E.
Schapire. Contextual bandits with linear payoff func-
tions. In AISTATS, volume 15 of JMLR Proceedings,
pages 208–214. JMLR.org, 2011.

Radu Ciucanu, Pascal Lafourcade, Marius Lombard-
Platet, and Marta Soare. Secure best arm identi-
fication in multi-armed bandits. In International
Conference on Information Security Practice and
Experience, pages 152–171. Springer, 2019.

Radu Ciucanu, Anatole Delabrouille, Pascal Lafour-
cade, and Marta Soare. Secure cumulative reward
maximization in linear stochastic bandits. In In-
ternational Conference on Provable Security, pages
257–277. Springer, 2020.

Ivan Damgård, Valerio Pastro, Nigel P. Smart, and
Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In CRYPTO, volume

https://palisade-crypto.org/
https://doi.org/10.1145/3214303
https://doi.org/10.1145/3214303

Encrypted Linear Contextual Bandit

7417 of Lecture Notes in Computer Science, pages
643–662. Springer, 2012.

Sanchari Das, Robert S. Gutzwiller, Rod D. Roscoe,
Prashanth Rajivan, Yang Wang, L. Jean Camp, and
Roberto Hoyle. Panel: Humans and technology for
inclusive privacy and security, 2021.

Thomas Desautels, Andreas Krause, and Joel W Bur-
dick. Parallelizing exploration-exploitation tradeoffs
in gaussian process bandit optimization. Journal of
Machine Learning Research, 15:3873–3923, 2014.

Kefan Dong, Yingkai Li, Qin Zhang, and Yuan Zhou.
Multinomial logit bandit with low switching cost.
In International Conference on Machine Learning,
pages 2607–2615. PMLR, 2020.

Léo Ducas and Daniele Micciancio. Fhew: bootstrap-
ping homomorphic encryption in less than a second.
In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages
617–640. Springer, 2015.

Taher ElGamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
transactions on information theory, 31(4):469–472,
1985.

Pedro M Esperança, Louis JM Aslett, and Chris C
Holmes. Encrypted accelerated least squares regres-
sion. arXiv preprint arXiv:1703.00839, 2017.

Junfeng Fan and Frederik Vercauteren. Somewhat
practical fully homomorphic encryption.

Craig Gentry and Dan Boneh. A fully homomorphic
encryption scheme, volume 20. Stanford university
Stanford, 2009.

Benjamin Graham. Fractional max-pooling, 2015.
Chun-Hua Guo and Nicholas J Higham. A schur–

newton method for the matrix\boldmath p th root
and its inverse. SIAM Journal on Matrix Analysis
and Applications, 28(3):788–804, 2006.

Shai Halevi. Homomorphic encryption. In Tutorials
on the Foundations of Cryptography, pages 219–276.
Springer, 2017.

Kyoohyung Han, Seungwan Hong, Jung Hee Cheon,
and Daejun Park. Efficient logistic regression on
large encrypted data.

Yanjun Han, Zhengqing Zhou, Zhengyuan Zhou, Jose
Blanchet, Peter W Glynn, and Yinyu Ye. Sequen-
tial batch learning in finite-action linear contextual
bandits. arXiv preprint arXiv:2004.06321, 2020.

Awni Y. Hannun, Brian Knott, Shubho Sengupta, and
Laurens van der Maaten. Privacy-preserving contex-
tual bandits. CoRR, abs/1910.05299, 2019.

Roger A. Horn and Charles R. Johnson. Topics in
Matrix Analysis. Cambridge University Press, 1991.
doi: 10.1017/CBO9780511840371.

Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yong-
soo Song. Secure outsourced matrix computation and
application to neural networks. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1209–1222, 2018.

Erich Kaltofen and Gilles Villard. On the complexity of
computing determinants. computational complexity,
13(3-4):91–130, 2005.

Chamara Kattadige, Aravindh Raman, Kanchana
Thilakarathna, Andra Lutu, and Diego Perino.
360norvic: 360-degree video classification from
mobile encrypted video traffic. arXiv preprint
arXiv:2105.03611, 2021.

Tor Lattimore and Csaba Szepesvári. Bandit algo-
rithms. Cambridge University Press, 2020.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev.
On ideal lattices and learning with errors over rings.
Journal of the ACM (JACM), 60(6):1–35, 2013a.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev.
A toolkit for ring-lwe cryptography. In Annual Inter-
national Conference on the Theory and Applications
of Cryptographic Techniques, pages 35–54. Springer,
2013b.

Pascal Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Interna-
tional conference on the theory and applications of
cryptographic techniques, pages 223–238. Springer,
1999.

Vianney Perchet, Philippe Rigollet, Sylvain Chassang,
Erik Snowberg, et al. Batched bandit problems. The
Annals of Statistics, 44(2):660–681, 2016.

Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. Journal of the ACM
(JACM), 56(6):1–40, 2009.

Ronald L Rivest, Adi Shamir, and Leonard Adleman.
A method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM, 21
(2):120–126, 1978.

Yufei Ruan, Jiaqi Yang, and Yuan Zhou. Linear bandits
with limited adaptivity and learning distributional
optimal design. arXiv preprint arXiv:2007.01980,
2020.

Mohamed Sabt, Mohammed Achemlal, and Abdelmad-
jid Bouabdallah. Trusted execution environment:
what it is, and what it is not. In 2015 IEEE Trust-
com/BigDataSE/ISPA, volume 1, pages 57–64. IEEE,
2015.

Neela Sawant, Chitti Babu Namballa, Narayanan
Sadagopan, and Houssam Nassif. Contextual multi-
armed bandits for causal marketing. arXiv preprint
arXiv:1810.01859, 2018.

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

Abraham Seidenberg. Constructions in a polynomial
ring over the ring of integers. American Journal of
Mathematics, 100(4):685–703, 1978.

Roshan Shariff and Or Sheffet. Differentially private
contextual linear bandits. In NeurIPS, pages 4301–
4311, 2018.

Aristide C. Y. Tossou and Christos Dimitrakakis. Algo-
rithms for differentially private multi-armed bandits.
In AAAI, pages 2087–2093. AAAI Press, 2016.

Huazheng Wang, Qian Zhao, Qingyun Wu, Shubham
Chopra, Abhinav Khaitan, and Hongning Wang.
Global and local differential privacy for collabora-
tive bandits. In Fourteenth ACM Conference on
Recommender Systems, RecSys ’20, page 150–159.
Association for Computing Machinery, 2020. ISBN
9781450375832.

X. Zhao and Ailan Wang. Generalized bootstrapping
technique based on block equality test algorithm. Se-
cur. Commun. Networks, 2018:9325082:1–9325082:8,
2018.

Kai Zheng, Tianle Cai, Weiran Huang, Zhenguo Li,
and Liwei Wang. Locally differentially private (con-
textual) bandits learning. In NeurIPS, 2020.

Zhaowei Zhu, Jingxuan Zhu, Ji Liu, and Yang Liu.
Federated bandit: A gossiping approach. CoRR,
abs/2010.12763, 2020.

Supplementary Material:
Encrypted Linear Contextual Bandit

A SLOW-SWITCHING ALGORITHM

In this section, we present the detailed algorithm of Sec. 4.

Algorithm 4 Low-Switching HELBA (Server-Side)
Input: horizon: T , regularization factor: λ, failure probability: δ, feature bound: L, θ⋆ norm bound: S, dimension: d,
batch growth: η, trace condition: C
Set w1 = Encpk(0), Λ1 = Encpk(λI), Ā1 = Encpk(λ

−1I), V̌1 = Encpk(λI) ǧ0 = 0, j = 0 and t0 = 1
for t = 1 . . . , T do

Set β̃(t) = σ

√
d ln

((
1 +

L2tj
λ

)(
π2t2

6δ

))
+ t

−1/2
j + S

√
λ and ϵj = L(t

3/2
j

√
λ+ L2tj)

−1

Observe encrypted contexts (xt,a)a∈[K] = (Encpk(st,a))a∈[K]

for a = 1, . . . ,K do
Compute approximate square root sqrtHE

(
x⊤
t,aĀjxt,a + εj

)
Compute encrypted indexes ρa(t) = ⟨xt,a, wj⟩+ β̃(t)

(
sqrtHE

(
x⊤
t,aĀjxt,a + εj

)
+ t−1

)
(Step ❷)

Rescale encrypted indexes ρ̂a(t) =
ρa(t)−rmin
ρmax−rmin

with ρmax = rmax + 2β̃(t)
[
2
t
+ L

t3/2
√

λ+L2t
+ L2

(
1
λ
+ 1√

λ

)]
end for
Compute comparison vector bt ∈ RK using acomp (see Alg. 9 in App. D.5) with precision ε′t = (4.1t)−1 (Step ❸)
Observe encrypted reward yt and encrypted context xt,at

Update V̌t+1 = V̌t + xt,atx
⊺
t,at

and ǧt+1 = ǧt + ytxt,at

Compute Cond. (8) by computing δt with ε = 0.45 and ε′t = L2(1
λ
+ 1√

λ
)(t− 1− tj)) (see App. E.1.1).

Use masking procedure on δt (Alg. 10) and sends the masked ciphertext to the user
if δt ≥ 0.45 or t ≥ (1 + η)tj then

Set tj+1 = t, j = j + 1 and Λj+1 = V̌t

Compute Āj+1 = Xk1(εj+1/L2) as in Prop. 2 (V = Λj+1, c = λd+ L2tj+1) and wj+1 = Āj+1ǧtj+1

end if
end for

B ADDITIONAL RELATED WORK

In Federated Learning (a.k.a., collaborative multi-agent), DP and LDP guarantees can provide a higher level
of privacy at a small regret cost, leveraging collaboration between users Wang et al. (2020); Zhu et al. (2020).
Another collaborative approach to privacy-preserving machine learning, called Secure Multi-Party Computation
(MPC) (e.g. Damgård et al., 2012), divides computations between parties, while guarantying that it is not possible
for any of them to learn anything about the others. This has been recently empirically investigated in the bandit
framework Hannun et al. (2019). However, there is an additional strong assumption, that each party provides a
subset of the features observed at each round.

Finally, Homomorphic Encryption (HE) (e.g. Halevi, 2017) aims at providing a set of tools to perform computation
on encrypted data, outsourcing computations to potentially untrusted third parties (in our setting the bandit
algorithm) since data cannot be decrypted. HE has only been merely used to encrypt rewards in bandit problems
Ciucanu et al. (2020, 2019), but in some inherently simpler setting: i) contexts are not considered and arms’
features are not encrypted; ii) a trusted party decrypts data. In particular, the second point makes algorithm
design much easier but requires users to trust the third party which, in turn, can lead again to privacy/security
concerns. In the supervised learning literature, HE has been used to train neural networks (Badawi et al.,
2020) achieving 77.55% classification accuracy on CIFAR-10 (compared to a state-of-the-art accuracy of 96.53%
(Graham, 2015)) highlighting the potentially high impact of the approximation error due to HE.

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

C PROTOCOL DETAILS

The learning algorithm may try to break encryption by inferring a mapping between ciphertexts and values or
by storing all data. HE relies on the hardness of the Learning With Error problem (Albrecht et al., 2015) to
guarantee security. To break an HE scheme, an attacker has to perform at least 2κ operations to be able to
differentiate noise from messages in a given ciphertext. We refer to (Albrecht et al., 2018) for a survey on the
actual number of operations needed to break HE schemes with most of the known attacks. Although collecting
multiple ciphertexts may speedup some attacks, the security of any HE scheme is still guaranteed as long as long
the number of ciphertexts observed by an attacker is polynomial in N (Regev, 2009).

C.1 CKKS Encryption Scheme

In this section, we introduce the CKKS scheme Cheon et al. (2017). This scheme is inspired by the BGV scheme
Brakerski et al. (2014) but has been modified to handle the encryption of real numbers. The security of those
schemes relies on the assumption of hardness of the Learning With Errors (LWE), ring-LWE (RLWE) Regev
(2009). The scheme can be divided into 2 parts: encoding/decoding and encryption/decryption.

C.1.1 Encoding and Decoding of Messages.

In CKKS, the space of message is defined as CN/2 for some big even integer N ∈ N. This integer is a parameter
of the scheme chosen when generating the private and secret keys. CKKS scheme does not work directly on
the space CN/2 but rather on an integer polynomial ring R = Z[X]/

(
XN + 1

)
(the plaintext space) Seidenberg

(1978). Encoding a message m ∈ CN/2 into the plaintext space R is not as straightforward as using a classical
embedding of a vector into a polynomial because we need the coefficients of the resulting polynomial to be integers.
To solve this issue the CKKS scheme use a more sophisticated construction that the canonical embedding, based
on the subring H = {z ∈ CN | zj = z̄N−j , j ≤ N/2} which is isomomorphic to CN/2. Finally, using a canonical
embedding σ : R → σ(R) ⊂ H and the coordinate-wise random rounding technique developed in Lyubashevsky
et al. (2013b), the CKKS scheme is able to construct an isomorphism between CN/2 and R.

C.1.2 Encryption and Decryption of Ciphertexts.

Most public key scheme relies on the hardness of the Learning with Error (LWE) problem introduced in Regev
(2009). The LWE problem consists in distinguishing between noisy pairs (ai, ⟨ai, s⟩+ ei)i≤n ⊂ (Z/qZ)n × Z/qZ
and uniformly sampled pairs in (Z/qZ)n × Z/qZ where (ei)i≤n are random noises and q ∈ N. However, building
a cryptographic public key system based on LWE is computationally inefficient. That’s why CKKS relies on
the Ring Learning with Error (RLWE) introduced in Lyubashevsky et al. (2013a) which is based on the same
idea as LWE but working with polynomials Zq[X]/(XN + 1) instead on integer in Z/qZ. RLWE (and LWE)
problem are assumed to be difficult to solve and are thus used as bases for cryptographic system. The security of
those problems can be evaluated thanks to Albrecht et al. (2015) which gives practical bounds on the number of
operations needed for known attacks to solve the LWE (RLWE) problem.

The CKKS scheme samples a random s on R and defines the secret key as sk = (1, s). It then samples a vector a
uniformly on R/qLR (with qL = 2Lq0 where L is the depth of the scheme and q0 its modulus) and an error term
e sampled on R (usually each coefficient is drawn from a discrete Gaussian distribution). The public key is then
defined as pk = (a,−a.s+ e). Finally, to encrypt a message m ∈ CN/2 identified by a plaintext m ∈ R the scheme
samples an encrypting noise ν ∼ ZO(0.5)4. The scheme then samples e0, e1 ∈ ZN two independent random
variable from any distribution on R, usually a discrete Gaussian distribution. The ciphertext associated to the
message m is then [(ν · pk + (m+ e0, e1))]qL with [.]qL the modulo operator and qL = 2L. Finally, to decrypt a
ciphertext c = (c0, c1) ∈ R2

ql
(with l the level of the ciphertext, that is to say the depth of the ciphertext), the

scheme computes the plaintext m′ = [c0 + c1s]ql
5 and returns the message m′ associated to the plaintext m′.

4A random variable X ∼ ZO(0.5) such that X ∈ {0, 1,−1}N , (Xi)i≤N are i.i.d such that for all i ≤ N P(Xi = 0) =
1/2,P(Xi = 1) = 1/4 and P(Xi = −1) = 1/4

5for any n ∈ N, [.]n is the remainder of the division by n

Encrypted Linear Contextual Bandit

C.2 Key Switching

Homomorphic Encryption schemes needs all ciphertexts to be encrypted under the same public key in order to
perform additions and multiplications. As we mentioned in Sec. 6 one way to circumvent this issue is to use a
KeySwitching operation. The KeySwitching operation takes as input a cyphertext c1 encrypted thanks to a public
key pk1 associated to a secret key sk1 and transform it into a cyphertext encrypting the same message as c1 but
under a different secret key sk2.

The exact KeySwitching procedure for each scheme is different. We will use the CKKS scheme, inspired by the
BGV scheme Brakerski et al. (2014), where KeySwitching relies on two operations BitDecomp and PowerOf2,
described below,

1. BitDecomp(c, q) takes as input a ciphertext c ∈ RN with m the size of the ring dimension used in CKKS
and an integer q. This algorithm decomposes c in its bit representation (u0, . . . , u⌈log2(q)⌉) ∈ RN×⌈log2(q)⌉

such that c =
∑⌊log2(q)⌋

j=0 2juj

2. PowerOf2(c, q) takes as input a ciphertext c ∈ RN and an integer q. This algorithm outputs
(c, 2c, . . . , 2⌊log2(q)⌋c) ∈ Rm×⌈log2(q)⌉

The KeySwitching operation can then be decomposed as:

• the first party responsible for sk1 generates a new (bigger, in the sense that the parameter N is bigger than
sk1) public key p̃k1 still associated to sk1

• the owner of secret key sk2 computes PowerOf2(sk2) and add it to p̃k1. This object is called the KeySwitch-
ingKey.

• the new cyphertext is computed by mulitiplying BitDecomp(c1) with the KeySwitchingKey. This gives a
new cyphertext decryptable with the secret key sk2 and encrypted under a new public key pk2

Algorithm 5 KeySwitching Procedure
Input: Cyphertext: c, User: u, User public key/secret key: pku, sku, Bandit Algorithm: A, Trusted Third
Party: B, integer q
Alg. A receives cypthertext c encrpyted with key pku

B sends public key pk to u
u computes Encpku

(ksku) = Encpku
(PowerOf2(sku, q) + pk)

u sends Encpku
(ksku) to A

A computes the new cyphertext c′ = Encpku
(BitDecomp(c, q)⊺)Encpku

(ksku) = Encpku
(Encpk(c))

u decrypts c′ and sends the result to A

Alg. 5 allows us to perform the KeySwitching in a private manner for the CKKS scheme. Indeed, the key switch
operation requires to decompose a secret key thanks to the PowerOf2 procedure. If not done in a secure fashion
this could lead to a leak of the frist private key. It is thus necessary to ensure that this key is not distributed in
the clear. However, our private procedure requires communication between the bandit algorithm A and the user
u. In particular, the user still needs to receives the public key from the trusted third party. However, the user
does not need to be known ahead of time as previously.

D TOWARD AN ENCRYPTED OFUL

In this section, we provide the proof of the results of Step ❶, ❷ and ❸, i.e., the speed of convergence of iterating
Eq. (2) or Eq. (5), how to build a confidence intervals around θ⋆ and how the approximate argmax is computed
in Alg. 3.

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

D.1 Computing an Approximate Inverse

First, we prove Prop. 2. The proof of convergence the Newton method for matrix inversion is rather standard but
the proof of convergence for the stable method (Eq. (2)) is often not stated. We derive it here for completeness.
First, we recall Prop. 2.

Proposition. Given a symmetric positive definite matrix V ∈ Rd×d, c ≥ Tr(V) and a precision level ε > 0, the
iterate in (2) satisfies

∥Xk − V −1∥ ≤ ε

for any k ≥ k1(ε) with

k1(ε) =
1

ln(2)
ln

(
ln(λ) + ln(ε)

ln
(
1− λ

c

))
, where λ ≤ λd is a lower bound to the minimal eigenvalue of V and ∥ · ∥ is the matrix spectral-norm.

Proof. of Prop. 2. After k iterations of Eq. (2), we have that V Xk =Mk. Indeed we proceed by induction:

• For k = 0, M0 = 1
cV = V X0

• For k + 1 given the property at time k, V Xk+1 = V Xk(2Id −Mk) =Mk(2Id −Mk) =Mk+1

Let’s note Ek = Xk − V −1 and Ẽk =Mk − Id then:

Ek+1 = (Xk+1V − Id)V
−1 = (Mk+1 − Id)V

−1

= −
(
M2

k − 2Mk + Id
)
V −1

= − (Mk − Id)
2
V −1 = −Ẽ2

kV
−1

where the second equality is possible because V and (Xk)k∈N commute as for all k ∈ N, Xk is a polynomial
function of V .

Therefore, we have for any k ∈ N:

∥Ek+1∥ = ∥Ẽ2
kV

−1∥ ≤ ∥V −1∥ × ∥Ẽk∥2 (10)

But at the same time:

∥Ẽk+1∥ = ∥Mk+1 − Id∥ = ∥Mk(2Id −Mk)− Id∥ = ∥ − (Mk − Id)
2∥ ≤ ∥Ẽk∥2 (11)

thus iterating Eq. (11), we have that for all k ∈ N, ∥Ẽk∥ ≤ ∥Ẽ0∥2
k

. And then ∥Ẽk∥ ≤ ∥Ẽ0∥2
k∥V −1∥, therefore

using that any V symmetric definite positive ∥V −1∥ = ∥V ∥−1 then for all k ∈ N:

∥Ek∥ ≤
∥∥∥∥Vc − Id

∥∥∥∥2k ∥V ∥−1 (12)

But ∥Ẽ0∥ =
∥∥ 1
cV − Id

∥∥ = maxi∈[d]

∣∣λi

c − 1
∣∣ where λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0 are the (ordered) eigenvalues of V .

However c ≥ Tr(V) thus 0 ≤ λi/c ≤ 1 for all i ≤ d. Therefore ∥Ẽ0∥ ≤ 1 − λd

c . We also have that ∥V ∥ = λ1.
Using Eq. (12), we have for all k:

∥Ek ∥ ≤
(
1− λd

c

)2k

λ−1
1 ≤

(
1− λ

c

)2k

λ−1 (13)

for any 0 ≥ λ ≤ λd. Finally, Eq. (13) implies that ∥Ek∥ ≤ ε as soon as:

k ≥ 1

ln(2)
ln

(
ln(λ) + ln(ε)

ln
(
1− λ

c

)) (14)

for any 0 ≥ λ ≤ λd and λε ≤ 1.

Encrypted Linear Contextual Bandit

D.2 Computing an Approximate Square Root

The proof of Prop. 4 is very similar to the proof of Prop. 2 thanks the analysis of the convergence speed in Cheon
et al. (2019). First, let us recall Prop. 4.
Proposition. For any z ∈ R+, c1, c2 > 0 with c2 ≥ z ≥ c1 and a precision ε > 0, let qk be the result of k iterations

of Eq. (5), with q0 = z
c2

and v0 = z
c2

− 1. Then, |qk
√
c2 −

√
z| ≤ ε for any k ≥ k0(ε) :=

1
ln(2) ln

(
ln(ε)−ln(

√
c2)

4 ln
(
1− c1

4c2

)).

Proof. of Prop. 4. Because 0 ≤ c1 < x < c2, we have that x
c2

∈ (0, 1), hence thanks to Lemma 2 of Cheon et al.
(2019), we have that after k iterations: ∣∣∣∣qk −

√
x

c2

∣∣∣∣ ≤ (1− x

4c2

)2k+1

(15)

where qk is the k-th iterate from iterating Eq. (5) with q0 = x
c2

and v0 = q0 − 1. Then because x ≥ c1, we have
that 1− x

4c2
≤ 1− c1

4c2
. Stated otherwise,∣∣∣∣qk −

√
x

c2

∣∣∣∣ ≤ (1− c1
4c2

)2k+1

(16)

Therefore, for k ≥ 1
ln(2) ln

(
ln(ε)−ln(

√
c2)

2 ln
(
1− c1

4c2

)), the result follows since:

√
c2

∣∣∣∣qk −
√
x

c2

∣∣∣∣ ≤ ε (17)

D.3 Computing an Optimistic Ellipsoid Width.

The next step to build an optimistic algorithm is to compute a confidence ellipsoid around the estimate θ̃t such
that the true parameter θ⋆ belongs to this confidence ellipsoid with high probability. First, we need an estimate
of the distance between θ⋆ and θ̃t that is the object of Cor. 3. The proof of Cor. 3, is based on the fact that the
approximated inverse is closed enough to the true inverse. Let’s recall Cor. 3 first.

Corollary. Setting εt =
(
Lt3/2

√
L2t+ λ

)−1

in Prop. 2, then ∥Decsk(ωt)− θt∥Vt
≤ t−1/2, ∀t.

Proof. of Cor. 3. Let’s note Āt, the result of iterating Eq. (2), k1(εt) times with V = Vt and c = λd+L2t. Thanks
to the definition of Decsk(wt) and θt = V −1

t bt, we have:

∥Decsk(wt)− θt∥Vt =

∥∥∥∥∥V 1/2
t

(
V −1
t − Decsk(Āt)

) t−1∑
l=1

rlsl,al

∥∥∥∥∥
2

(18)

=

∥∥∥∥∥(V −1
t − Decsk(Āt)

)
V

1/2
t

t−1∑
l=1

rlsl,al

∥∥∥∥∥
2

(19)

≤ ∥Decsk(Āt)− V −1
t ∥

∥∥∥∥∥V 1/2
t

t−1∑
l=1

rlsl,al

∥∥∥∥∥
2

(20)

But Tr(Vt) ≤ λd+ L2t and λmin(Vt) ≥ λ. Therefore thanks to Prop. 2 Āt is such that:

∥Decsk(Āt)− V −1
t ∥ ≤ εt (21)

We also have that: ∥∥∥∥∥V 1/2
t

t−1∑
l=1

rlsl,al

∥∥∥∥∥
2

≤ ∥
√
Vt∥

∥∥∥∥∥
t−1∑
l=1

rlsl,al

∥∥∥∥∥
2

(22)

≤ Lt
√
∥Vt∥ ≤ Lt

√
λ+ L2t (23)

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

because rl ∈ [−1, 1] for all l ≤ t and λmax(Vt) ≤ λ+ L2t. Finally, we have that:

∥θt − θ̃t∥Vt
≤ εtLt

√
λ+ L2t ≤ t−1/2 (24)

D.4 Approximate Confidence Ellipsoid

Finally thanks to Cor. 3, we can now prove that with high probability θ⋆ belongs to the inflated confidence
intervals C̃t for all time t. That is the object of Prop. 9.
Proposition 9. For any δ > 0, we have that with probability at least 1− δ:

θ⋆ ∈
+∞⋂
t=1

Ct(δ) :=
{
θ | ∥θ − Decsk(wt)∥Vt

≤ β̃(t)
}

(25)

with β̃(t) = t−1/2 +
√
λS + σ

√
d(ln(1 + L2t/(λd)) + ln(π2t2/(6δ))

Proof. of Prop. 9. Using Cor. 3 and Thm. 2 in Abbasi-Yadkori et al. (2011), we have that for any time t that
with probability at least 1− δ:

∥θ⋆ − Decsk(wt)∥Vt ≤ ∥θt − Decsk(wt)∥Vt + ∥θ⋆ − θt∥Vt (26)

≤ t−1/2 +
√
λS + σ

√
d(ln(1 + L2t/(λd)) + ln(1/δ)) (27)

where wt computed as in Alg. 4 and θt is the ridge regression estimate computed at every time step in OFUL.
Taking a union bound with high-probability event means that with probability at least 1− 6δ

π2 , we have:

∥θ⋆ − θt∥Vt ≤ ∥θt − Decsk(wt)∥Vt + ∥θ⋆ − θt∥Vt (28)

≤ t−1/2 +
√
λS + σ

√
d(ln(1 + L2t/(λd)) + ln(π2t2/(6δ))) (29)

D.5 Homomorphic Friendly Approximate Argmax

As mentioned in Sec. 4, an homomorphic algorithm can not directly compute the argmax of a given list of values.
In this work, we introduce the algorithm Alg. 9 to compute the comparison vector bt ≊

(
1{a=argmaxi∈[K] ρi(t)}

)
with (ρa(t))a∈[K] the UCBs defined in Sec. 4. This algorithm is divided in two parts. First, it computes an
approximate maximum, M of (ρa(t))a∈[K] thanks to Alg. 8 and then compares each values (ρa(t))a∈[K] to this
approximate maximum M thanks to the algorithm NewComp of Cheon et al. (2020) (recalled as Alg. 6).

Algorithm 6 NewComp
Input: Entry numbers: a, b ∈ [0, 1], n and depth d
Set x = a− b
for k = 1, . . . , d do

Compute x = fn(x) =
∑n

i=0
1
4i

(
2i
i

)
x(1− x2)i

end for
Return: (x+ 1)/2

Rescaling the UCB index: In order to use the HE-friendly algorithms of Cheon et al. (2020), we need to
rescale the UCB-index to lies in [0, 1]. Determining the range of those indexes is the purpose of the following
proposition.
Proposition 10. For every time t ≥ 1, assuming rl ∈ [−1, 1] for any l ≤ t and L ≥ 1 then for any δ > 0 we
have that with probability at least 1− δ:

−1 ≤ ρa(t) ≤ 1 + 2β̃(t)

[
2t−1 + L

√
1

λ
+

1√
λ
+

√
L

t3/2
√
λ+ L2t

]
(30)

where ρa(t) = ⟨θ̃t, xt,a⟩+ β̃(t)
[
qk0(t−1) + t−1

]
the UCB index of arm a at time t.

Encrypted Linear Contextual Bandit

Algorithm 7 NewMax
Input: Entry numbers: a, b ∈ [0, 1], n and depth d
Set x = a− b, y = a+b

2
for k = 1, . . . , d do

Compute x = fn(x) =
∑n

i=0
1
4i

(
2i
i

)
x(1− x2)i

end for
Return: y + a+b

2 · x

Algorithm 8 amax
Input: Entry numbers: (ai)i≤K , n and depth d
Set m = a1
for i = 2, . . . ,K do

Compute m = max{m, ai} thanks to NewMax in Cheon et al. (2020) with parameter a = m, b = ai, n and
d

end for

Proof. of Prop. 10. For δ > 0, we denote E =
⋂+∞

l=1

{
θ⋆ ∈ C̃l(δ)

}
so that, using Prop. 9, P(E) ≥ 1− δ. Under

the event E, we have for any arm a:

−1 ≤ ⟨xt,a, θ⋆⟩ ≤ ρa(t) ≤ ⟨xt,a, θ⋆⟩+ 2β̃(t)
[
qk0(1/t) + t−1

]
(31)

On the other hand thanks to Prop. 4, we have that qk0(t−1) ≤
√
∥x∥2Decsk(At)

+ L
t3/2

√
λ+L2t

+ t−1. and also

∥x∥2At
≤ L2

(
1
λ + 1√

λ

)
.

Indeed because Decsk(At) is a polynomial function of Vt, we have that Decsk(At) is symmetric and Decsk(At)Vt =
VtDecsk(At), hence Decsk(At) and V −1

t are diagonalizable in the same basis therefore ∥Decsk(At) − V −1
t ∥ =

maxi≤d |λi(Decsk(At))− λi(V
−1
t)| with λi(M) the i-th biggest eigenvalue of M . Hence:

λ1(Decsk(At)) ≤
1

λ
+

1

Lt3/2
√
λ+ L2t

(32)

and:

λd(Decsk(At)) ≥
1

λ+ L2t
− 1

Lt3/2
√
λ+ L2t

> 0 (33)

for t ≥ 2. Therefore, we have that for any arm a:

ρa(t) ≤ ⟨θ⋆, xt,a⟩+ 2β̃(t)

[
2t−1 + L

√
1

λ
+

1√
λ
+

√
L

t3/2
√
λ+ L2t

]
(34)

Computing the Comparaison Vector: The algorithm Alg. 9 operates on values in [0, 1] therefore using
Prop. 10, we can compute rescaled UCB index, noted ρ̃a(t) ∈ [0, 1]. We are then almost ready to prove Cor. 5,
we just need two lemmas which relates the precision of Alg. 9 and Alg. 8 to the precision of NewComp and
NewMax of Cheon et al. (2020).

The first lemma (Lem. 11) gives a lower bound on the depth needed for Alg. 8 to achieve a given precision.
Lemma 11. For any sequences (ai)i≤K ∈ [0, 1]K , for any precision 0 < ε < K/4, n ∈ N⋆ and

d(ε, n) ≥
ln

(
ln(K

ε)
ln(2) − 2

)
ln(cn)

(35)

with cn = 2n+1
4n

(
2n
n

)
. Noting M the result of Alg. 8 with parameter (ai)i, n and d(ε, n), we have that:∣∣∣M −max

i
ai

∣∣∣ ≤ ε (36)

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

Algorithm 9 acomp
Input: Entry numbers: (ai)i≤K , precision ε

Set depth d = 1 +

⌊
3.2 + ln(1/ε)

ln(3/2) +
ln(ln(1/ε)

ln(2)
−2)

ln(2)

⌋
and depthmax d′ = 1

ln(3/2) ln

(
α ln(1

ε)
ln(2) − 2

)
with α = 3

2 +

5.2 ln(3/2)
ln(4) + ln(3/2)

2 ln(2)

Compute M = amax((ai)i≤K , n, d)
for i = 2, . . . ,K do

Set bi = NewComp(ai,M, n, d′)
end for

Proof. of Lemma 11. Thanks to Corollary 4 in Cheon et al. (2020), we have that for any n and depth

d ≥
ln(ln(1/ε)

ln(2)
−2)

ln(cn)
(with cn = 2n+1

4n

(
2n
n

)
) and number a, b:

|NewMax(a, b, n, d)−max{a, b}| ≤ ε (37)

Let’s note mk the iterate m of Alg. 8 at step k ∈ [K] in the for loop. We show that by induction∣∣mk −maxi∈[k] ai
∣∣ ≤ kε.

• By definition m1 = a1 and |m1 −maxi≤1 ai| = 0

• Using that |max{a, c} −max{b, c}| ≤ |a− b| for any a, b, c ∈ R, we have:∣∣∣∣mk+1 − max
i≤k+1

ai

∣∣∣∣ = ∣∣∣NewMax(mk, ak+1, n, d)−max{mk, ak+1}

+max{mk, ak+1} −max{max
i≤k

ai, ak+1}
∣∣∣

≤ |NewMax(mk, ak+1, n, d)−max{mk, ak+1}|
+ |max{mk, ak+1} −max{max

i≤k
ai, ak+1}|

≤ ε+ |mk −max
i≤k

ai| ≤ (k + 1)ε

Finally, because M = mK , we just need to choose d ≥
ln(ln(K/ε)

ln(2)
−2)

ln(cn)
to get the result.

The next lemma (Lem. 12) has the same purpose of Lem. 11 but this time for Alg. 9. The proof is based on
properties of the polynomial function used by the algorithm NewComp in order to predict the result of the
comparison when the margin condition of NewComp (that is to say the result of the comparison of a, b ∈ [0, 1]
is valid if and only if |a− b| ≥ ε for some ε > 0) is not satisfied.
Lemma 12. For ε ∈ (0, 1/4) and sequence (ai)i≤K ∈ [0, 1]K , let’s denote (bi)i≤K te result of Alg. 9 ruuned with
parameter (ai)i≤K , n = 1, d′ = d2(ε) and d = d3(ε) with:

d2(ε) =

⌊
3.2 +

ln(1/ε)

ln(cn)
+

ln
(
ln
(
1
ε

)
/ ln(2)− 2

)
ln(n+ 1)

⌋
+ 1 (38)

d3(ε) ≥ 1

ln(cn)
ln

(
α ln

(
1
ε

)
ln(2)

− 2

)
(39)

where α = 3
2 + 5.2 ln(cn)

ln(4) + ln(cn)
2 ln(n+1) . Then selecting any i ≤ K such that bi ≥ ε (and there is at least one such

index i), we have that ai ≥ maxk ak − 2ε

Proof. of Lemma 12. Thanks to Corollary 1 in Cheon et al. (2019), we have that for each i ≤ K,

|bi − Comp(ai,M)| ≤ ε as soon as |ai −M | > ε and d′ =
⌊
3.2 + ln(1/ε)

ln(cn)
+

ln(ln(1
ε)/ ln(2)−2)
ln(n+1)

⌋
+ 1. For i ∈ [K], we

have that:

Encrypted Linear Contextual Bandit

• If maxk≤K ak ≥ ai ≥M +ε then Comp(ai,M) = 1, |bi−1| ≤ ε and ai ≥ maxk≤K ak−|maxk≤K ak−M |−ε

• If ai ≤M − ε then Comp(ai,M) = 0, thus |bi| ≤ ε and ai ≤ maxk≤K ak + |maxk≤K ak −M | − ε

Therefore for any ai such that |ai −M | > ε then the resulting bi is either bounded by 1− ε or ε.

The second option is if |ai −M | ≤ ε then the NewComp algorithm provides no guarantee to the result of the
algorithm. However the algorithm applies a function fn6 multiple times to its input. For every x ∈ [−1, 1]:

|fn(x)| ≤ cn|x| and fn([−1, 1]) ⊂ [−1, 1] (40)

with cn = 2n+1
4n

(
2n
n

)
. Hence:

∀x ∈ [−1, 1] |f (d
′)

n (x)| ≤ cn|f (d
′−1)

n (x)| ≤ cd”n |x| (41)

But if |ai −M | ≤ ε, f (d
′)

n (ai −M) ≤ cd
′

n |ai −M | ≤ cd
′

n ε thus
∣∣bi − 1

2

∣∣ ≤ cd
′

n ε
2 .

Finally for each i, we only three options for bi:

• If |ai −M | ≤ ε then
∣∣bi − 1

2

∣∣ ≤ cd
′

n ε
2 and ai ≥ maxk ak − (ε+ |maxk ak −M |) ≥ maxk ak − 2ε

• If |ai −M | ≥ ε and ai ≤M − ε then |bi| ≤ ε and ai ≤ maxk ak + |M −maxk ak| − ε ≤ maxk ak

• If |ai −M | ≥ ε and ai ≥M + ε then |bi − 1| ≤ ε and ai ≥ maxk ak − (|M −maxk ak|+ ε) ≥ maxk ak − 2ε

To finish the proof, we just need to ensure that there exists at least one i such that bi ≥ ε. Noting i⋆ = argmaxk ak,
if the amax algorithm is used with depth d such that:

d ≥ 1

ln(cn)
ln

(
α ln

(
1
ε

)
ln(2)

− 2

)
(42)

where α = 3
2 + 5.2 ln(cn)

ln(4) + ln(cn)
2 ln(n+1) , we have |ai⋆ −M | ≤ εα ≤ ε and bi⋆ ≥ 1

2 − cd
′

n εα

2 > ε. Hence there always
exists an index i such that bi ≥ ε.

Finally, thanks to Lem. 12, we can finally prove Cor. 5. The proof of this corollary simply amounts to choose the
right precision for NewComp algorithm at every step of Alg. 9. First let’s recall Cor. 5.
Corollary. For any time t, selecting any arm a such that (bt)a ≥ 1

4t then:

ρa(t) ≥ max
k≤K

ρk(t)−
1

t

(
1 + β̃⋆(t)

)
(43)

where β̃⋆(t) = β̃(t)
[
2t−1 +

√
L

t3/2
√
λ+L2t

+ L
√

1
λ + 1√

λ

]
Proof. of Cor. 5. Using Lem. 12 with ε = 1

4t yields the following result:

ρ̃i(t) ≥ max
k≤K

ρ̃k(t)−
1

2t
(44)

But for any i ≤ K, ρ̃i(t) = (ρi(t)+1)/

(
2 + 2β̃(t)

[
2t−1 +

√
L

t3/2
√

λ+L2tj
+ L

√
1
λ + 1√

λ

])
. Hence the result.

E SLOW SWITCHING CONDITION AND REGRET OF HELBA

In this appendix, we present the analysis of the regret of HELBA. The proof is decomposed in two steps. The
first one is the analysis of the number of batches for any time T . That is the object of the Sec. E.1. The second
part of the proof amounts to bounding the regret as a function of the number of batches (Sec. E.2).

6For all x ∈ [−1, 1], fn(x) =
∑n

i=0
1
4i

(
2i
i

)
x(1− x2)i.

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

E.1 Number of batches of HELBA (Proof of Prop. 7)

We first prove Prop. 7 which states that the total number of batches for HELBA is logarithmic in T contrary
to HELBA where the parameter are updated a linear number of times. The proof of this proposition is
itself divided in multiple steps. First, we show how using NewComp to compare the parameter C and
Tr
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
(for any batch j) relate to the comparison of C and Tr

(
V̄ −1
j

∑t−1
l=tj+1 sl,al

s⊺l,al

)
.

Then, we show how Condition 8 relates to the det-based condition used in RSOFUL which allows us to finish
the proof of Prop. 7 following the same reasoning as in Abbasi-Yadkori et al. (2011).

E.1.1 Homomorphically Friendly Comparison for Condition 8

We first prove the following proposition, bounding the error made by our algorithm when using
Tr
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
instead of Tr

(
V̄ −1
j

∑t−1
l=tj+1 sl,al

s⊺l,al

)
.

Proposition 13. For an batch j, time t ≥ tj + 1, ε < 1/2 and ε′ > 0, let’s note δt the result of NewComp

applied with parameters a =
Tr

(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
L2

(
1
λ+ 1√

λ

)
(t−1−tj)

, b = C

L2
(

1
λ+ 1√

λ

)
(t−1−tj)

7, n = 1 and d5(ε) such that:

d5(ε) ≥ 3.2 +
ln(1/ε′)

ln(cn)
+

ln
(
ln
(
1
ε

)
/ ln(2)− 2

)
ln(n+ 1)

(45)

then:

• if δt > ε:

C − ε′L2

(
1

λ
+

1√
λ

)
(t− 1− tj) ≤ Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,al
s⊺l,al

 (46)

• else if δt ≤ ε:

Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,al
s⊺l,al

 ≤ C + ε′L2

(
1

λ
+

1√
λ

)
(t− 1− tj) (47)

Proof. of Prop. 13. We consider the two cases, depending if δt is bigger than ε or not.

If δt > ε: we proceed by separation of cases.

• If
∣∣∣Tr
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
− C

∣∣∣ > ε′L2
(

1
λ + 1√

λ

)
(t− 1− tj):∣∣∣∣∣∣δt − Comp

Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,al
s⊺l,al

 , C

∣∣∣∣∣∣ ≤ ε

thanks to Cor. 1 in Cheon et al. (2020) for the precision of NewComp. We also used the fact that for any
x, y ∈ R and z ∈ R⋆

+, Comp(x/z, y/z) = Comp(x, y). Using the equation above:

Comp

Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,al
s⊺l,al

 , C

 ≥ δt − ε > 0

because we assumed here that δt > ε. This readily implies that
Comp

(
Tr
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
, C
)

= 1 because Comp(a, b) ∈ {0, 1} for any a, b ∈ [0, 1].

7with the convention that 0/0 = 0 and C/0 = 1

Encrypted Linear Contextual Bandit

But, because we are in the case that:∣∣∣∣∣∣Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,al
s⊺l,al

− C

∣∣∣∣∣∣ > ε′L2

(
1

λ
+

1√
λ

)
(t− 1− tj)

we have that either Tr
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
> C + ε′L2

(
1
λ + 1√

λ

)
(t − 1 − tj)

or Tr
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
< C − ε′L2

(
1
λ + 1√

λ

)
(t − 1 − tj). Hence, because

Comp
(
Tr
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
, C
)
= 1, we have that Tr

(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
> C that

is to say:

Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,als
⊺
l,al

 ≥ C + ε′L2

(
1

λ
+

1√
λ

)
(t− 1− tj)

≥ C − ε′L2

(
1

λ
+

1√
λ

)
(t− 1− tj)

• If
∣∣∣Tr
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
− C

∣∣∣ ≤ ε′L2
(

1
λ + 1√

λ

)
(t− 1− tj): We can not use Cor. 5 from Cheon

et al. (2020). However, in this case we directly have by definition of the absolute value that:

− ε′L2

(
1

λ
+

1√
λ

)
(t− 1− tj) ≤ Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,als
⊺
l,al

− C (48)

If δt ≤ ε: Again, we distinguish the two different cases possible.

• If
∣∣∣Tr
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
− C

∣∣∣ > ε′L2
(

1
λ + 1√

λ

)
(t − 1 − tj): Using Cor. 1 from Cheon et al.

(2020), we have once again that:∣∣∣∣∣∣δt − Comp

Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,al
s⊺l,al

 , C

∣∣∣∣∣∣ ≤ ε

Therefore Comp
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al
, C
)
≤ δt + ε ≤ 2ε < 1 (because ε < 1/2). But Comp(a, b) ∈

{0, 1} for any a, b ∈ [0, 1] which means that Comp
(
Tr
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
, C
)

= 0. But we

assumed that
∣∣∣Tr
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
− C

∣∣∣ > ε′L2
(

1
λ + 1√

λ

)
(t− 1− tj), in other words:

Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,al
s⊺l,al

 > C + ε′L2

(
1

λ
+

1√
λ

)
(t− 1− tj) ≥ C or

Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,al
s⊺l,al

 < C − ε′L2

(
1

λ
+

1√
λ

)
(t− 1− tj)

(49)

But Comp
(
Tr
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
, C
)
= 0, it is thus only possible that

Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,al
s⊺l,al

 ≤ C − ε′L2

(
1

λ
+

1√
λ

)
(t− 1− tj)

• If
∣∣∣Tr
(
Decsk(Āj)

∑t−1
l=tj+1 sl,al

s⊺l,al

)
− C

∣∣∣ ≤ ε′:

In this case, by definition we have

Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,als
⊺
l,al

 ≤ C + ε′L2

(
1

λ
+

1√
λ

)
(t− 1− tj)

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

The previous proposition ensures that when a batch is ended because δt > 0.45 then we have, for a small enough
ε′, that, Tr

(
Decsk(Āj)

∑t−1
l=tj+1 xl,al

x⊺l,al

)
≥ C ′ for some constant C ′. However, thanks to Prop. 2 we have that

for any batch j, that for all l ∈ {tj + 1, . . . , t− 1}:

∥x∥2
V̄ −1
j

− ∥x∥2Decsk(Āj)
≤ L2∥V̄ −1

j − Decsk(Āj)∥ ≤ L

t
3/2
j

√
λ+ L2tj

(50)

Summing over all time steps l ∈ [tj + 1, t− 1], we have that:∣∣∣∣∣∣Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,al
s⊺l,al

− Tr

V̄ −1
j

t−1∑
l=tj+1

sl,al
s⊺l,al

∣∣∣∣∣∣ ≤ L(t− 1− tj)

t
3/2
j

√
λ+ L2tj

(51)

Therefore when δt > 0.45, we that:

Tr

V̄ −1
j

t−1∑
l=tj+1

sl,al
s⊺l,al

 ≥ C − ε′tL
2

(
1

λ
+

1√
λ

)
(t− 1− tj)−

L(t− 1− tj)

t
3/2
j

√
λ+ L2tj

(52)

but ε′t =
1

4tL2
(

1
λ+ 1√

λ

)
(t−1−tj)

so:

Tr

V̄ −1
j

t−1∑
l=tj+1

sl,al
s⊺l,al

 ≥ C − 1

4t
− L(t− 1− tj)

t
3/2
j

√
λ+ L2tj

(53)

But if δt ≤ 0.45:

Tr

V̄ −1
j

t−1∑
l=tj+1

sl,al
s⊺l,al

 ≤ C + ε′tL
2

(
1

λ
+

1√
λ

)
(t− 1− tj) +

L(t− 1− tj)

t
3/2
j

√
λ+ L2tj

(54)

or using the definition of ε′t:

Tr

V̄ −1
j

t−1∑
l=tj+1

sl,al
s⊺l,al

 ≤ C +
1

4t
+

L(t− 1− tj)

t
3/2
j

√
λ+ L2tj

(55)

E.1.2 Masking Procedure:

In order to prevent any leakage of information when the user decrypts the result of this approximate comparison,
we use a masking procedure where the algorithm adds a big noise to the bit encrypting the approximation of
the comparison, somehow masking its value to the user. In order for this procedure to be secure, the algorithm
needs to sample the noise from a distribution such the resulting distribution of the result observed by the user is
independent of the value of δt (see Prop. 13). Formally, we add a noise ξ ∼ Ξ such that for any x, x′ ∈ [0, 1]:

P (Decsk(ξ + x)) = P (Decpk(ξ + x′)) (56)

Finding such distribution is highly dependent on the encryption scheme used and its parameters. In our
implementation, we used the CKKS scheme with depth D = 100, level of security κ = 128 and a log size of
modulus log2(q0) = 4982. Therefore, for a cyphertext ct at a given level l encrypting a number x ∈ [0, 1] with a
pair of public and secret key (pk, sk) we have that:

Decsk(ct) = ⟨ct, sk⟩(modql) (57)

Encrypted Linear Contextual Bandit

with ql = 2lq0. When sampling an integer r uniformly in {0, . . . , ql − 1}, we have that for any k ∈ {0, . . . , ql − 1}
the distribution of r + k(modql) is uniform over {0, . . . , ql − 1}. We leverage this result to creates a masking
procedure detailed in Alg. 10

Algorithm 10 Masking Procedure
Input: ciphertext: ct, modulus factor: ql, cyclotomial polynomial degree: M
Sample uniformly r in {0, . . . , ql − 1}
Compute the polynomial r̃ ∈ Z[X]/(XM + 1) such that r̃(X) = r
Return: ct+ r̃

Upon receiving the decryption of ct+ r̃, the unmasking procedure is consists in simply subtracting r.

E.1.3 Impact on the Growth of the determinant:

In this section, we study the impact on the determinant of the design matrix when Condition 8 is satisfied for
some constant C ′. Our result is based on the classic following lemma.

Lemma 14. For any positive definite symmetric matrix A,B and symmetric semi-positive definite matrix C
such that A = B + C we have that:

det(A)
det(B)

≥ 1 + Tr
(
B−1/2CB−1/2

)
(58)

Proof. of Lemma 14. Using that A = B + C:

det(A)
det(B)

= det
(
Id +B−1/2CB−1/2

)
≥ 1 + Tr

(
B−1/2CB−1/2

)
= 1 + Tr

(
B−1C

)
(59)

The last inequality is a consequence of the following inequality:

∀n ∈ N⋆,∀a ∈ Rn
+, 1 +

n∑
i=1

ai ≤
n∏

i=1

(1 + ai) (60)

Indeed Id +B−1/2CB−1/2 is symmetric definite positive hence its eignevalues are positive.

Therefore, using the lemma above applied to the design matrix, Vt = V̄j +
∑t−1

l=tj+1 sl,al
s⊺l,al

for t ≥ tj + 1, we
have that:

det (Vt) ≥

1 + Tr

V̄ −1
j

t−1∑
l=tj+1

sl,al
s⊺l,al

 det(V̄j) (61)

E.1.4 Putting Everything Together:

We are finally, ready to prove an upper-bound on the number of batches. First, let’s recall Prop. 7.

Proposition. If C − Lη√
λ+L2

> 1
4 , the number of episodes in Alg. 4, MT for T steps, is bounded by:

MT ≤ 1 +
d ln

(
1 + L2T

λd

)
2 ln

(
3
4 + C − Lη√

λ+L2

) +
ln(T)

ln(1 + η)
(62)

Proof. of Lem. 7. Let’s define for i ≥ 1, the macro-episode:

ni = min {t > ni−1 | δt > εt} (63)

with n0 = 0. In other words, macro-episodes are episodes such that the norm of the context has grown too big. It
means that for all episodes between two macro-episodes the batches are ended because the current batch is too

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

long. Therefore for macro-episode i, thanks to Eq. (51) and Prop. 13:

C − ε′ni
L2

(
1

λ
+

1√
λ

)
(ni − 1− tj)−

L(ni − 1− tj)

t
3/2
j

√
λ+ L2tj

≤ Tr

V̄ −1
j

ni−1∑
l=tj+1

sl,al
s⊺l,al

 (64)

where ε′ni
=
(
4niL

2
(

1
λ + 1√

λ

)
(ni − 1− tj)

)−1

as defined in Alg. 4. But the batch j for which ni = tj+1 is such
that tj+1 − tj ≤ ηtj + 1 (thanks to the second if condition in Alg. 4). Hence:

L(ni − 1− tj)

t
3/2
j

√
λ+ L2tj

≤ Lη√
tj(λ+ L2tj)

≤ Lη√
λ+ L2

(65)

Therefore by Lem. 14 we have that:

det V̄j+1 ≥
(
1 + C −

(
1

4
+

Lη√
λ+ L2

))
det V̄j (66)

because for all t, ε′tL2
(

1
λ + 1√

λ

)
(t− 1− tj) ≤ 1

4 and because for any episode j between two macro-episodes i
and i+ 1 the determinant of the design matrix is an increasing function of the episode (because for two matrices
M,N symmetric semi-definite positive det(M +N) ≥ det(M)).

Thus det V̄ji ≥ (34 + C − Lη√
λ+L2

) det V̄ji−1
where ji is the episode such that ni = tji+1. Therefore the number of

macro-episodes M1 is such that: (
3

4
+ C − Lη√

λ+ L2

)M1−1

≤ det(V̄MT
)

det(V̄0)
(67)

where V̄MT
is the design matrix after T steps (or MT batches) and V̄0 = λId. This upper bound gives that:

M1 ≤ 1 +
ln
(

det(V̄MT
)

det(V̄0)

)
ln
(

3
4 + C − Lη√

λ+L2

) (68)

if 3
4 + C − Lη√

λ+L2
> 1. Moreover, thanks to Lemma 10 in Abbasi-Yadkori et al. (2011), the log-determinant of

the design matrix is bounded by: ln
(

det(V̄MT
)

det(V̄0)

)
≤ d ln

(
1 + TL2

λd

)
. In addition, there is at most 1 + ln(ni+1/ni)

ln(1+η)

batches between macro-episode i and i+ 1. Therefore:

MT ≤
M1−1∑
i=0

1 +
1

ln(1 + η)
ln(ni+1/ni) =M1 +

ln(T)

ln(1 + η)

≤ 1 +
d ln

(
1 + L2T

λd

)
2 ln

(
3
4 + C − Lη√

λ+L2

) +
ln(T)

ln(1 + η)

E.2 Regret Upper Bound (Proof of Thm. 8)

Now that we have shown an upper-bound on the number of bathes for the HELBA algorithm, we are ready to
prove the regret bound of Thm. 8. The proof of this theorem follows the same logic as the regret analysis of
OFUL. That is to say, we first show a high-probability upper bound on the regret thanks to optimism and then
proceed to bound each term of the bonus used in HELBA.

We first show the following lemma giving a first upper bound on the regret relating the error due to the
approximation of the argmax and optimism.

Encrypted Linear Contextual Bandit

Lemma 15. For any δ > 0, the regret of Alg. 4 is bounded with probability at least 1− δ by:

RT (HELBA) ≤
MT−1∑
j=0

tj+1∑
t=tj+1

4

t

(
1 + 2β̃(j)

[
2

t
+

√
L

t
3/2
j

√
tjL2 + λ

+ L

√
1

λ
+

1√
λ

])
︸ ︷︷ ︸

:= 1○

+

MT−1∑
j=0

tj+1∑
t=tj+1

2β̃(j)

[
sqrtHE

(
s⊤t,aDecsk(Āj)st,a +

L

t
3/2
j

√
λ+ L2tj

)
+

1

t

]
︸ ︷︷ ︸

:= 2○

(69)

where for every time step t, a⋆t = argmaxa∈[K]⟨xt,a, θ⋆⟩, MT is the number of batches and RT (HELBA) =∑T
t=1⟨θ⋆, st,a⋆

t
− st,at

⟩.

Proof. of Lem. 15. First, let’s define E the event that all confidence ellipsoids, C̃j , contain θ⋆ with probability at
least 1− δ. That is to say E =

{
θ⋆ ∈

⋂+∞
j=1 C̃j(δ)

}
. Thanks to Prop. 9, P (E) ≥ 1− δ. Because E is included in

the event described by Prop. 9.

Therefore conditioned on the event E, after T steps the regret can be decomposed as:

RT (HELBA) =

T∑
t=1

⟨θ⋆, st,a⋆
t
⟩ −max

a≤K
Decsk(ρa(t)) + max

a≤K
Decsk(ρa(t))− Decsk(ρat

(t))

+ Decsk(ρat
(t))− ⟨θ⋆, st,at

⟩

(70)

where ρa(t) is the optimistic upper bound on the reward of arm a computed by Alg. 4 and a⋆t =
argmaxa∈[K]⟨θ⋆, st,a⋆

t
⟩. Now for any t ≤ T , under the event E, ⟨θ⋆, st,a⋆

t
⟩ ≤ maxa≤K Decsk(ρa(t)). But thanks to

Cor. 5, for any t ≥ 1 inside batch j:

max
a

Decsk(ρa(t))− Decsk(ρat(t)) ≤
1

t

(
1 + β̃(j)

[
2

t
+

√
L

t
3/2
j

√
λ+ L2tj

+ L

√
1

λ
+

1√
λ

])
(71)

In addition, we have that under event E:

Decsk(ρat(t))− ⟨θ⋆, st,at⟩ = ⟨θ̃j − θ⋆, st,at⟩+ β̃(j)

[
sqrtHE

(
s⊤t,aDecsk(Āj)st,a +

L

t
3/2
j

√
λ+ L2tj

)
+

1

t

]

But still conditioned on the event E, ⟨θ̃j − θ⋆, st,at
⟩ ≤ ∥θ̃j − θ⋆∥V̄j

∥st,at
∥V̄ −1

j
≤ β̃(j)∥st,at

∥V̄ −1
j

≤

β̃(j)

[
sqrtHE

(
s⊤t,at

Decsk(Āj)st,at
+ L

t
3/2
j

√
λ+L2tj

)
+ 1

t

]
. Putting the last two equations together, for every step

t ≤ T :

⟨θ⋆, st,a⋆
t
− st,at

⟩ ≤1

t

(
1 + β̃(j)

[
2

t
+

√
L

t
3/2
j

√
λ+ L2tj

+ L

√
1

λ
+

1√
λ

])

+ 2β̃(j)

[
sqrtHE

(
s⊤t,at

Decsk(Āj)st,at +
L

t
3/2
j

√
λ+ L2tj

)
+

1

t

]

Bounding 1○. We now proceed to bound each term in Eq. (69). The following lemma is used to 1○.
Lemma 16. For all t ≥ 1:

MT−1∑
j=0

tj+1∑
t=tj+1

1

t

(
1 + β̃(j)

[
2

t
+

√
L

t
3/2
j

√
tjL2 + λ

+ L

√
1

λ
+

1√
λ

])
≤ O(ln(T)3/2) (72)

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

Proof. of Lem. 16. Because tj ≥ 1:

L

t
3/2
j

√
λ+ L2tj

≤ L√
λ
, β̃(j) ≤ 1 +

√
λS + σ

√
d

(
ln

(
1 +

L2T

λd

)
+ ln

(
π2T 2

6δ

))
(73)

Bounding each component of the sum of 1○ in Eq. (69) individually, we get:

MT−1∑
j=0

tj+1∑
t=tj+1

1

t
≤ (1 + ln(T)) (74)

Hence:

MT−1∑
j=0

tj+1∑
t=tj+1

1

t

(
1 + β̃(j)

[
2

t
+

√
L

t
3/2
j

√
tjL2 + λ

+ L

√
1

λ
+

1√
λ

])
≤ (1 + ln(T))

[
1+

(
1 +

√
λS + σ

√
d

(
ln

(
1 +

L2T

λd

)
+ ln

(
π2T 2

6δ

)))(
2 + L

√
1

λ
+

1√
λ
+

√
L√
λ

)]

Lem. 16 shows that the error from our procedure to select the argmax induces only an additional logarithmic cost
in T compared with the regret of directly selecting the argmax of the UCBs (ρa(t))a≤K .

Bounding 2○. We are now left with bounding the second term in Eq. (69). This term is usually the one
that appears in regret analysis for linear contextual bandits. First, 2○ can be further broke down thanks to the
following lemma.
Lemma 17. For all t ≥ 1,

MT−1∑
j=0

tj+1∑
t=tj+1

β̃(j)

[
sqrtHE

(
s⊤t,at

Decsk(Āj)st,at +
L

t
3/2
j

√
λ+ L2tj

)
+

1

t

]
≤

MT−1∑
j=0

tj+1∑
t=tj+1

2β̃(j)

t︸ ︷︷ ︸
:= a○

+

MT−1∑
j=0

tj+1∑
t=tj+1

β̃(j)∥st,at∥V̄ −1
j︸ ︷︷ ︸

:= b○

+

MT−1∑
j=0

tj+1∑
t=tj+1

β̃(j)

√
2L

t
3/2
j

√
λ+ L2tj︸ ︷︷ ︸

:= c○

(75)

Proof. of Lem. 17. For any time t ≥ 1 thanks to Prop. 4, we have:

sqrtHE

(
s⊤t,at

Decsk(Āj)st,at +
L

t
3/2
j

√
λ+ L2tj

)
≤ 1

t
+

√
∥st,at∥2Decsk(Āj)

+
L

t
3/2
j

√
λ+ L2tj

≤ 1

t
+

√
L

t
3/2
j

√
λ+ L2tj

+ ∥st,at∥2V̄ −1
j

+ ∥st,at∥22∥Decsk(Āj)− V̄ −1
j ∥

≤ 1

t
+

√
2L

t
3/2
j

√
λ+ L2tj

+ ∥st,at∥2V̄ −1
j

≤ 1

t
+

√
2L

t
3/2
j

√
λ+ L2tj

+ ∥st,at∥V̄ −1
j

We proceed to bound each term a○, b○, c○. Bounding b○ is similar to the analysis of OFUL. On the other hand,
bounding neatly c○ is the reason why we introduced the condition that a new episode is started is t ≥ (1 + η)tj .

The following lemma bounds a○ which is simply a numerical error due to the approximation of the square root.

Encrypted Linear Contextual Bandit

Lemma 18. For any T ≥ 1,
MT−1∑
j=0

tj+1∑
t=tj+1

4β̃(j)

t
≤ 4

(
1 +

√
λS + σ

√
d

(
ln

(
1 +

L2T

λd

)
+ ln

(
π2T 2

6δ

)))
(1 + ln(T)) (76)

Proof. of Lem. 18. Using the upper bound on the β̃(j) shown in the proof of Lem. 16, we get the result.

We are finally left with the two terms b○ and c○. The first term, b○, will be compared to the bonus used in
OFUL so that we can use Lemma 11 in Abbasi-Yadkori et al. (2011) to bound it. But first, we need to show how
the norm for two different matrices A and B relates to each other.
Lemma 19. For any context x ∈ Rd and symmetric semi-definite matrix A,B and C such that A = B + C then:

∥x∥2B−1 ≤ λmax

(
Id +B−1/2CB−1/2

)
∥x∥2A−1 ≤

(
1 + Tr

(
B−1/2CB−1/2

))
∥x∥2A−1 (77)

where λmax(.) returns the maximum eigenvalue of a matrix.

Proof. of Lemma 19. We have by definition of A and B:

⟨x,A−1x⟩ = ⟨x, (B + C)−1x⟩ = ⟨x,B−1/2(Id +B−1/2CB−1/2)−1B−1/2x⟩ (78)

= ⟨B−1/2x, (Id +B−1/2CB−1/2)−1(B−1/2x)⟩ (79)

≥ λmin

(
(Id +B−1/2CB−1/2)−1

)
∥B−1/2x∥2 (80)

≥ 1

λmax(Id +B−1/2CB−1/2)
∥x∥2B−1 (81)

Hence:

∥x∥2B−1 ≤ λmax

(
Id +B−1/2CB−1/2

)
∥x∥2A−1 (82)

The result follows from Weyl’s inequality Horn and Johnson (1991), that is to say for all symmetric matrix M,N
λmax(M + N) ≤ λmax(M) + λmax(N). And the fact that all eigenvalues of B−1/2CB−1/2 are positive hence
λmax(B

−1/2CB−1/2) ≤ Tr(B−1/2CB−1/2) = Tr(CB−1).

We are now able to bound b○ using Lemma 11 in Abbasi-Yadkori et al. (2011).
Lemma 20. If λ ≥ L2 we have:

MT−1∑
j=0

tj+1∑
t=tj+1

2β(j)∥st,at∥V̄ −1
j

≤ β⋆

√
2d ln

(
1 +

TL2

λd

)[√
T

(
1.25 + C + L2

(
1

λ
+

1√
λ

))

+

√
MT

(
η2 +

L

(λ+ L2)3/2

)] (83)

with β⋆ = 1 +
√
λS + σ

√
d
(
ln
(
1 + L2T

λd

)
+ ln

(
π2T 2

6δ

))
Proof. of Lem. 20. For any time t in batch j, we have thanks to Lem. 19 that:

∥st,at
∥V̄ −1

j
≤

√√√√√1 + Tr

V̄ −1
j

t−1∑
l=tj+1

sl,al
s⊺l,al

∥st,at
∥V −1

t
(84)

with Vt = λId +
∑t−1

l=1 sl,al
s⊺l,al

. The rest of the proof relies on bounding Tr
(
V̄ −1
j

∑t−1
l=tj+1 sl,al

s⊺l,al

)
. To do so,

we will use the following inequality, see Eq. (51):

− L(t− 1− tj)

t
3/2
j

√
λ+ L2tj

≤ Tr

(V̄ −1
j − Decsk(Āj)

) t−1∑
l=tj+1

sl,al
s⊺l,al

 ≤ L(t− 1− tj)

t
3/2
j

√
λ+ L2tj

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

Thereforeδt ≤ 0.45 during batch j, because it is not over while no condition is satisfied. Thanks to Prop. 13 with
ε′ = 1

4tL2(t−1−tj)
, we get:

∀t ∈ {tj + 1, . . . tj+1 − 1}, Tr

Decsk(Āj)

t−1∑
l=tj+1

sl,al
s⊺l,al

 ≤ C +
t− 1− tj

4t

However, for t = tj+1 we have either that δtj+1
> 0.45 or tj+1 ≥ (1 + η)tj :

• If δtj+1 ≤ 0.45, then Tr
(
Decsk(Āj)

∑tj+1−1
l=tj+1 sl,al

s⊺l,al

)
≤ C +

tj+1−1−tj
4t

• If δtj+1
> 0.45, then Tr

(
Decsk(Āj)

∑tj+1−1
l=tj+1 sl,al

s⊺l,al

)
≥ C − tj+1−1−tj

4t but δtj+1−1 ≤ 0.45

thus Tr
(
Decsk(Āj)

∑tj+1−2
l=tj+1 sl,al

s⊺l,al

)
≤ C +

t−1−tj
4t . Therefore, using that ∥st,at

∥2Decsk(Āj)
≤

λmax(Decsk(Āj))∥st,at
∥22 ≤ L2

(
1
λ + 1

L
√
λ+L2

)
. Hence, we have that:

Tr

Decsk(Āj)

tj+1−1∑
l=tj+1

sl,al
s⊺l,al

 ≤ C +
t− 1− tj

4t
+ L2

(
1

λ
+

1

L
√
λ+ L2

)
(85)

To sum up, for all tj + 1 ≤ t ≤ tj+1:

Tr

V̄ −1
j

t−1∑
l=tj+1

sl,al
s⊺l,al

 ≤ C +
t− 1− tj

4t
+ L2

(
1

λ
+

1√
λ

)
+

L(t− 1− tj)

t
3/2
j

√
λ+ L2tj

(86)

Overall, we have that:

MT−1∑
j=0

tj+1∑
t=tj+1

∥st,at∥V̄ −1
j

≤
MT−1∑
j=0

tj+1∑
t=tj+1

√√√√√1 + Tr

V̄ −1
j

t−1∑
l=tj+1

sl,als
⊺
l,al

∥st,at∥V −1
t

(87)

≤
MT−1∑
j=0

tj+1∑
t=tj+1

∥ st,at∥V −1
t

√
1 + C +

t− 1− tj
4t

+ L2

(
1

λ
+

1√
λ

)
+

L(t− 1− tj)

t
3/2
j

√
λ+ L2tj

(88)

≤

√
5

4
+ C + L2

(
1

λ
+

1√
λ

)√√√√T

T∑
t=1

∥st,at∥2V −1
t

+

MT−1∑
j=0

tj+1∑
t=tj+1

∥ st,at∥V −1
t

√
L(t− 1− tj)

t
3/2
j

√
λ+ L2tj

(89)

where the last inequality is due to Cauchy-Schwarz inequality. The first term in inequality Eq. (89) is bounded
by using Lemma 29 in Ruan et al. (2020),

T∑
t=1

∥xt,at
∥2
V −1
t

≤ 2 ln

(
det(VT)
det(V0)

)
≤ 2d ln

(
1 +

TL2

λd

)
(90)

In addition, the last term in Eq. (89) is bounded by:
MT−1∑
j=0

tj+1∑
t=tj+1

L(t− 1− tj)

t
3/2
j

√
λ+ L2tj

≤
MT−1∑
j=0

L(tj+1 − tj)
2

2t
3/2
j

√
λ+ L2tj

(91)

But a consequence of the second condition is that the length of batch j satisfies tj+1 − tj ≤ ηtj + 1. Therefore:
MT−1∑
j=0

Lf(tj+1 − tj)
2

2t
3/2
j

√
λ+ L2tj

≤
MT−1∑
j=0

L(ηtj + 1)2

2t
3/2
j

√
λ+ L2tj

(92)

≤
MT−1∑
j=0

L(η2t2j + 1)

t
3/2
j

√
λ+ L2tj

(93)

≤
MT−1∑
j=0

η2 +
L

(λ+ L2)3/2
≤ η2MT +

LMT

(λ+ L2)3/2
(94)

Encrypted Linear Contextual Bandit

Putting everything together we get:

MT−1∑
j=0

tj+1∑
t=tj+1

∥st,at∥V̄ −1
j

≤

√
5

4
+ C + L2

(
1

λ
+

1√
λ

)√
2Td ln

(
1 +

TL2

λd

)

+

√
2d ln

(
1 +

TL2

λd

)(
η2MT +

LMT

(λ+ L2)3/2

)

Hence the result using the upper bound on β̃(j) proved in Lem. 16.

Finally, the last term to bound is c○, that we do similarly to the end of the proof of Lem.20.

Lemma 21. For all T ≥ 1,

MT−1∑
j=0

tj+1∑
t=tj+1

2β̃(j)

√
2L

t
3/2
j

√
λ+ L2tj

≤ 2
√
2LMTβ

⋆

[
1 +

η√
L

]
(95)

with β⋆ = 1 +
√
λS + σ

√
d
(
ln
(
1 + L2T

λd

)
+ ln

(
π2T 2

6δ

))
and MT the number of episodes.

Proof. of Lem. 21. We have:

MT−1∑
j=0

tj+1∑
t=tj+1

2β̃(j)

√
2L

t
3/2
j

√
λ+ L2tj

≤ 2
√
2Lmax

j
β̃(j)

MT−1∑
j=0

√
1

t
3/2
j

√
λ+ L2tj

(tj+1 − tj) (96)

But the condition on the length of the batch ensures that for any batch j, tj+1 − tj ≤ ηtj + 1, thus equation
above can be bounded by:

MT−1∑
j=0

tj+1∑
t=tj+1

2β̃(j)

√
2L

t
3/2
j

√
λ+ L2tj

≤ 2
√
2Lmax

j
β̃(j)

MT +

MT−1∑
j=0

η

√ √
tj√

λ+ L2tj

 (97)

≤ 2
√
2Lmax

j
β̃(j)

MT +

MT−1∑
j=0

η√
L

 (98)

≤ 2
√
2LMT max

j
β̃(j)

[
1 +

η√
L

]
(99)

Hence the result.

Finally, we can finish the proof of Thm. 8, but we first recall its statement.
Theorem. Under Asm. 1, for any δ > 0 and T ≥ d, there exists universal constants C1, C2 > 0 such that the
regret of HELBA (Alg. 4) is bounded with probability at least 1− δ by:

RT ≤C1β
⋆

(√(
5

4
+ C

)
dT ln

(
TL

λd

)
+

L3/2

√
λ

ln(T)

)
+ C2β

⋆MT max

{
√
L+ η, η2 +

L
√
λ+ L2

3

}

Proof. of Thm. 8. For any δ > 0, let’s define the event E as in the proof of Lem. 15. Then conditioned on this
event, we have using Lem. 15:

RT (HELBA) ≤
MT−1∑
j=0

tj+1∑
t=tj+1

4

t

(
1 + 2β̃(j)

[
2

t
+

√
L

t
3/2
j

√
tjL2 + λ

+ L

√
1

λ
+

1√
λ

])

+

MT−1∑
j=0

tj+1∑
t=tj+1

2β̃(j)

[
sqrtHE

(
s⊤t,at

Decsk(Āj)st,at +
L

t
3/2
j

√
λ+ L2tj

)
+

1

t

] (100)

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

But using Lem. 16 to bound the first term of the RHS equation above but also Lem. 17, 18, 20 and 21 to the
bound the second term, we get:

RT (HELBA) ≤ (1 + ln(T))

[
1 + β⋆

(
6 + L

√
1

λ
+

1√
λ
+

√
L√
λ

)]

+β⋆

√
2d ln

(
1 +

TL2

λd

)[√
5

4
+ C + L2

(
1

λ
+

1√
λ

)√
T +

(
η2 +

L

(λ+ L2)3/2

)
MT

]

+2
√
2LMTβ

⋆

[
1 +

η√
L

]
(101)

with β⋆ = 1 +
√
λS + σ

√
d
(
ln
(
1 + L2T

λd

)
+ ln

(
π2T 2

6δ

))
and MT = 1 +

d ln
(
1+L2T

λd

)
2 ln

(
3
4+C− Lη√

λ+L2

) + ln(T)
ln(1+η)

F IMPLEMENTATION DETAILS:

In this section, we further detail how HELBA is implemented. In particular, we present the matrix multiplication
and matrix-vector operations.

For the experiments, we used the PALISADE library (development version v1.10.4) PAL (2020). This library
automatically chooses most of the parameters used for the CKKS scheme. In particular the ring dimension of the
ciphertext space is chosen automatically. In the end, the user only need to choose four parameters: the maximum
multiplicative depth (here chosen at 100), the number of bits used for the scaling factor (here 50), the batch size
that is to say the number of plaintext slots used in the ciphertext (here 8) and the security level (here chosen at
128 bits for Fig. 1).

F.1 Matrix/Vector Encoding

Usually, when dealing with matrices and vectors in homomorphic encryption there are multiple ways to encrypt
those. For example, with a vector y ∈ Rd one can create d ciphertexts encrypting each value yi for all i ≤ d. This
approach is nonetheless expensive in terms of memory. An other approach is to encrypt directly the whole vector
in a single ciphertext. A ciphertext is a polynomial (X 7→

∑N
i=0 aiX

i) where each coefficient is used to encrypt a
value of y (ai = yi for i ≤ d). This second method is oftentimes preferred as it reduce memory usage.

It is possible to take advantage of this encoding method in order to facilitate computations, e.g., matrix
multiplication, matrix-vector operation or scalar product. In this work, we need to compute the product of square
matrices of size d× d, thus we choose to encrypt each matrix/vector as a unique ciphertext (assuming d ≤ N).
We have two different encoding for matrices and vectors. For a matrix A = (ai,j)i∈{0,...,p−1},j∈{0,...,q−1} with
p, q ∈ N, we first transform A into a vector of size pq, ã = (a0,0, a0,1, . . . , a0,q−1, . . . , a1,0, . . . , a1,q−1, . . . , ap−1,q−1).
This vector is then encrypted into a single ciphertext. But for a vector y ∈ Rq, we create a bigger vector of
dimension pq (here p is a parameter of the encoding method for vectors), ỹ = (yj)i∈{0,...,p−1},j∈{0,...,q−1} =
(y0, . . . , yq−1, y0, . . . , yq−1, . . . , yq−1). We choose those two encodings because the homomorphic multiplication
operation of PALISADE only perform a coordinate-wise multiplication between two ciphertexts. Therefore, using
this encoding, a matrix-vector product for a matrix A ∈ Rp×q, a vector y ∈ Rq, a public key pk can be computed
as:

cA × cy = Encpk(ã · ỹ) = Encpk

((
a0,0y0, a0,1y1, . . . , a0,q−1yq−1, a1,0y0, a1,1y1, . . . , a1,q−1yq−1,

. . . , ap−1,q−1yq−1

))

with ã the encoding of A, cA = Encpk(ã), ỹ the encoding of y of dimension pq and cy = Encpk(ỹ), ×
the homomorphic multiplication operation and ã · ỹ the element-wise product. Then using EvalSumCol (an
implementation of the SumColVec method from Han et al. in the PALISADE library) to compute partial sums

Encrypted Linear Contextual Bandit

of the coefficients of cA × cy, we get:

EvalSumCol(cA × cy, p, q) = Encpk

((
q−1∑
j=0

a0,jyj , . . . ,

q−1∑
j=0

a0,jyj ,

q−1∑
j=0

a1,jyj , . . . ,

q−1∑
j=0

a1,jyj ,

. . . ,

q−1∑
j=0

ap−1,jyj

))

Finally, the matrix-vector product Ay is computed by EvalSumCol(cA × cy, p, q) taking the coefficient at (j + j ·
p)j∈[p].

F.2 Matrix Multiplication

Using the encoding of App. F.1 we have a way to compute a matrix-vector product therefore computing the
product between two square matrices M,N ∈ Rp×p can be done using a series of matrix-vector products. However,
this approach requires p ciphertexts to represent a matrix. We then prefer to use the method introduced in
Sec. 3 of Jiang et al. (2018). This method relies on the following identity for any matrices M,N ∈ Rp×p and
i, j ∈ {0, . . . , p− 1}:

(MN)i,j =

p−1∑
k=0

Mi,kNk,j

=

p−1∑
k=0

Mi,[i+k+j]pN[i+k+j]p,j

=

p−1∑
k=0

σ(M)i,[j+k]pτ(N)[i+k]p,j

=

p−1∑
k=0

(ϕk ◦ σ(M))i,j(ψ
k ◦ τ(N))i,j

(102)

where we define σ, τ, ψ and ϕ as: and [.]p is the modulo operator. Therefore, using Eq. (102) we have that

• σ(M)i,j =Mi,[i+j]p

• τ(M)i,j =M[i+j]p,j

• ψ(M)i,j =Mi,[i+1]p

• ϕ(M)i,j =M[i+1]p,j

computing the product between M and N can simply be done by computing a component-wise multiplication
between (ϕk ◦ σ(M))i,j and (ψk ◦ τ(N))i,j for all k ∈ {0, . . . , p − 1}. Those quantities can in turn be easily
computed thanks to a multiplication between a plaintext and a ciphertext (this does not impact the depth of the
ciphertext).

F.3 Influence of the Security Level

Finally, we investigate the influence of the security level κ on the running time and regret of HELBA. As
mentioned in Sec. 6 the security parameter κ ensures that an attacker has to perform at least 2κ operations in
order to decrypt a ciphertext encrypted using an homomorphic encryption scheme. But, the security parameter
also has an impact on the computational efficiency of our algorithm. Indeed the dimension N of the ciphertext
space, i.e., the degree of the polynomials in Z[X]/(XN + 1), increases with the multiplicative depth D and κ.
However, this means that our algorithm has to compute operations with polynomials of higher dimensions hence
more computationally demanding.

The library PALISADE allows us to choose κ ∈ {128, 192, 256}. We executed HELBA with the same parameter
and the same environment of Sec. 6 except for the parameter κ which now varies in {128, 192, 256}. First, we
investigate the regret of for each parameter κ, this parameter should have no impact on the regret HELBA, as
showed in Fig. 2.

Second, we investigate the running time for each κ ∈ {128, 192, 256}. Table 1 shows the ratio between the total
computation time of 130 steps using the environment described in Sec. 6 with HELBA for different security

Evrard Garcelon, Vianney Perchet, Matteo Pirotta

0 20 40 60 80 100 120
0

2

4

6

8

10

RSOFUL
RSOFUL-Tr
OFUL
HELBA, κ = 128 bits
HELBA, κ = 192 bits
HELBA, κ = 256 bits

Figure 2: Regret of HELBA for κ ∈ {128, 192, 256}

Table 1: Ratio of running time for HELBA as a function of κ for the bandit problem of Sec. 6. We use the
running time with κ = 128 bits and T = 130 steps as a reference to compute the ratio between this time and the
total time for κ ∈ {192, 256}.

κ (Bits) Ratio Execution Time

128 1
192 1.016
256 1.026

parameters and κ = 128 bits. In order to investigate only the effect of the parameter κ, the results in Table 1 are
expressed as a ratio. For reference, the total time for T = 130 steps and κ = 128 bits was 20 hours and 39 minutes.
As we observe in Table 1 the impact on the security parameter is around 1% and 2% of the total computation
time for 128 bits. This increase in computation time represents between 20 and 40 minutes of computation which
in some applications can be prohibitive.

	INTRODUCTION
	HOMOMORPHIC ENCRYPTION
	CONTEXTUAL BANDIT AND ENCRYPTION
	AN ALGORITHM FOR ENCRYPTED LINEAR CONTEXTUAL BANDITS
	THEORETICAL GUARANTEES
	DISCUSSION AND EXTENSIONS
	CONCLUSION
	SLOW-SWITCHING ALGORITHM
	ADDITIONAL RELATED WORK
	PROTOCOL DETAILS
	CKKS Encryption Scheme
	Encoding and Decoding of Messages.
	Encryption and Decryption of Ciphertexts.

	Key Switching

	TOWARD AN ENCRYPTED OFUL
	Computing an Approximate Inverse
	Computing an Approximate Square Root
	Computing an Optimistic Ellipsoid Width.
	Approximate Confidence Ellipsoid
	Homomorphic Friendly Approximate Argmax

	SLOW SWITCHING CONDITION AND REGRET OF HELBA
	Number of batches of HELBA (Proof of Prop. 7)
	Homomorphically Friendly Comparison for Condition 8
	Masking Procedure:
	Impact on the Growth of the determinant:
	Putting Everything Together:

	Regret Upper Bound (Proof of Thm. 8)

	IMPLEMENTATION DETAILS:
	Matrix/Vector Encoding
	Matrix Multiplication
	Influence of the Security Level

