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Abstract

We consider a multi-armed bandit setting
where, at the beginning of each round, the
learner receives noisy independent, and pos-
sibly biased, evaluations of the true reward
of each arm and it selects K arms with the
objective of accumulating as much reward
as possible over T rounds. Under the as-
sumption that at each round the true re-
ward of each arm is drawn from a fixed dis-
tribution, we derive different algorithmic ap-
proaches and theoretical guarantees depend-
ing on how the evaluations are generated.
First, we show a Õ(T 2/3) regret in the general
case when the observation functions are a ge-
nearalized linear function of the true rewards.
On the other hand, we show that an improved
Õ(

√
T ) regret can be derived when the obser-

vation functions are noisy linear functions of
the true rewards. Finally, we report an em-
pirical validation that confirms our theoreti-
cal findings, provides a thorough comparison
to alternative approaches, and further sup-
ports the interest of this setting in practice.

1 INTRODUCTION

Consider an idealized content reviewing task in a large
social media firm, where the objective is to identify
harmful content that violates the platforms’ commu-
nity standards. Given the large volume of content gen-
erated on a daily basis, it may not be possible to ask
human reviewers to provide a thorough assessment of
each piece of content. For this reason, the platform
may automatically assign a badness score for each
piece of content depending on their estimated level
of severity. For example, a hate speech related post
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may be assigned a higher badness score in comparison
to a click bait post. The content with higher bad-
ness score may then be prioritized for human review,
which eventually leads to what we can consider as a
“ground-truth” evaluation of the severity of the con-
tent. The more accurate the badness score is in pre-
dicting the actual severity, the higher the chance that
harmful content is passed for human review and prop-
erly identified. In practice, the badness score may be
obtained by aggregating predictions returned by dif-
ferent automatic systems (e.g., rule-based, ML-based
systems). For instance, the platform could rely on
NLP-based classifiers for hostile speech detection, or
CV-based classifiers for graphic images. As such, it is
crucial to properly calibrate the predictions returned
by each of these classifiers to ensure that the scores
can be compared meaningfully and then return an ag-
gregate and reliable badness score that correctly pri-
oritizes the most harmful content for human review.

The problem sketched before1 can be seen as an in-
stance of the multi-armed bandit (MAB) framework,
where each piece of content is an arm and the objective
of the bandit algorithm is to select arms/content with
the higher reward (e.g., severity). The algorithm can
rely on the estimations returned by a set of evaluators
(e.g., a set of classifiers) to decide which arm to pull
at each step (e.g., content to pass to human review).
This setting can be formalized using a number of ex-
isting frameworks, such as MAB with expert advice,
contextual bandit, bandit with side observation, and
contextual bandit with noisy context. We postpone a
thorough discussion about these models to Sect. 3.

In this paper, we consider the case where evaluators
are noisy and possibly biased functions of the true
reward of each arm. In particular, we consider two
alternative settings, where evaluations are generated
according to: 1) a noisy generalized linear function
of the true reward; 2) a noisy linear function of the
true reward. In both cases, we first define an “oracle”
strategy that have prior knowledge of the evaluation

1Similar problems are patient prioritization in hospi-
tals (Déry et al., 2019), credit scoring (Provenzano et al.,
2020), and resume review (Li et al., 2020).
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function, including the noise distribution, and it is de-
signed to maximize the rewards of the arms chosen at
each round given the evaluations provided as input.
We then devise the most suitable MAB strategies to
approach the oracle’s performance over time. In the
first case, we show that one has to rely on an ϵ-greedy
strategy to avoid dependencies between the evalua-
tions observed over time and the decisions taken by the
algorithm. This eventually leads to a regret w.r.t. the
oracle of order Õ(T 2/3) over T rounds. On the other
hand, if the evaluation functions are linear and the
variance of the additive noise is known, we show that
a simple greedy strategy leveraging the specific struc-
ture of the problem is able to recover a Õ(

√
T ) regret.

We then validate these results in a number of exper-
iments. We first consider synthetic problems where
we carefully design the MAB instances to support our
theoretical findings and to compare to alternative ap-
proaches. Then we move to problems based on real
data, where our assumptions may not be verified, to
provide a more thorough evaluation of performance
and robustness of our approach. Notably, we study
a problem related to content review prioritization for
integrity in social media platforms.

2 PRELIMINARIES

We consider a multi-armed bandit problem where, at
each round t, the learner is provided with a set of
Kt > K ≥ 1 arms (e.g., the content to be reviewed
at time t) characterized by a reward ri,t ∈ R for each
i = 1, . . . , Kt (e.g., the badness score). While the true
reward is unknown to the learner, J evaluators return
noisy, possibly biased, evaluations fi,t,j for each arm
(e.g., different rule-based and/or ML-classifiers). At
the beginning of each round, the learner receives the
evaluations {fi,t,j}, it returns a set At ⊆ {1, . . . , Kt}
of K arms (i.e., |At| = K), and it observes their asso-
ciated rewards ri,t for i ∈ At.2 The learner’s objective
is to accumulate as much reward as possible over T
rounds by selecting the K arms with larger rewards.

Without any further assumption, this problem is not
tractable since the rewards may change arbitrarily over
time and the evaluations may not be predictive of the
true rewards, thus making it impossible for any learner
to achieve a satisfactory performance. Throughout the
paper, we make a series of assumptions to make the
problem solvable. We start from the rewards.
Assumption 1. The rewards ri,t of each arm i =
1, . . . , Kt at round t = 1, . . . , T are drawn i.i.d. from
a common distribution ν supported on [0, C] with C

2For the sake of simplicity, we consider that the learner
receives the exact reward ri,t, but all our results can be
adapted to the case of noisy feedback.

a positive constant. The number of arms Kt at each
round t is arbitrary and K < Kt ≤ Kmax < ∞.

While this assumption simplifies the treatment of
the problem, it does not affect the objective of the
learner, which is to select the top-K arms at each
round, i.e., for the specific realizations {ri,t}. For in-
stance, for K = 1, the objective is to return the arm
i⋆
t = arg maxi=1,...,Kt

ri,t. We do not assume that the
learner has any prior knowledge of the distribution ν.

In general, the evaluators may rely on some contextual
information xi,t associated to each arm i (e.g., texts,
images, meta-data related to the piece of content) to
return their evaluation fi,t,j and their accuracy in pre-
dicting the true reward ri,t may vary depending on the
evaluator and the specific context xi,t. Nonetheless, we
assume that the learner has no access to the context or
the actual mechanism that generates the evaluations
(e.g., the evaluators may be external services) and we
rather rely on the following model to describe how the
evaluations are generated

fi,t,j = fj(ri,t) + ϵi,t,j , j = 1, . . . , J, (1)

where fj : R → R is the evaluation function, and ϵi,t,j

is a stochastic error. This general formulation can be
seen as the inverse of a calibration function, as it de-
scribes the intrinsic bias of each evaluator j and the
noise associated to the evaluations of the true reward.
See Fig. 1 for a qualitative illustration of this model.
We assume the noise in the evaluations satisfy a rather
mild assumption.3

Assumption 2. Each error ϵi,t,j is generated i.i.d.
from a sub-Gaussian distribution with zero mean and
parameter σj, assumed to be known to the learner.

As far as the evaluation function is concerned, we dis-
tinguish two settings.
Assumption 3 (Generalized linear setting). We as-
sume that each evaluation function is a generalized lin-
ear model w.r.t. the true reward, i.e., fj(r) = g(αj ·r),
for all j ≤ J , where α ∈ R and g is a strictly increas-
ing function and twice- differentiable with ∥g′∥∞ ≤ Lg

and ∥g′′∥∞ ≤ Mg, and cg := infx,θ g′(x · θ) > 0. The
function g is known to the learner, while the evaluator-
specific parameters αj are unknown.
Assumption 4 (Linear setting). We assume that each
evaluation function is linear w.r.t. the true reward,
i.e., fj(r) = αjr, for all j ≤ J . While the shape of the
function is known to the learner, the evaluator-specific
parameters αj are unknown.

3A similar assumption is used in (Yun et al., 2017),
where the covariance matrix of the distribution generating
the noisy features is assumed to be known to the learning.
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Figure 1: As an illustrative example, consider the case
where at each round t each arm is associated to a con-
text xi,t drawn from a context distribution ρ and there
exists a function generating the true rewards as ri,t =
h⋆(xi,t). The distribution ν is then defined by the dis-
tribution on rewards r = h⋆(x) induced by x ∼ ρ. We
also denote by ρ|h⋆(x) = r the conditional distribution
over contexts associated with reward r. Consider then a
neural network h, trained on past context-reward pairs,
that returns an evaluation for arm i characterized by a
context xi,t as fi,t = h(xi,t). The black crosses in the
plot are the pairs (h⋆(xi,t), h(xi,t)). The evaluation func-
tion associated to the neural network h is then defined as
fh(r) = Ex∼ρ|h⋆(x)=r

[
h(x)

]
(green line) and the noise ϵ is

the deviation from h(x) and f(r) depending on the specific
realization of x, i.e., ϵi,t = h(xi,t) − fh(r) for r = h⋆(xi,t).
The blue line illustrates the perfectly calibrated case, where
h⋆ itself is used for prediction, in this case fh⋆ (r) = r.

In the following we use α = (α1, . . . , αJ) ∈ RJ and
σ = (σ1, . . . , σJ) ∈ RJ . We use the standard notation
∥ · ∥ and ∥ · ∥∞ for the ℓ2 and the maximum norm
respectively, while for any two vectors x, y ∈ RJ , x·y ∈
RJ denotes the component-wise product.

We consider a setting where the bandit algorithm has
only access to the predictors’ evaluations of the true
reward of an arm. This is a very generic scenario that
encompasses the case where evaluations are a func-
tion of a context characterizing an arm. The gener-
ality of our framework allows us to deal with prob-
lems where the context is not directly observable (e.g.,
because it is kept private) or where it differs across
evaluators. For example, similarly to bandits with ex-
pert advice, evaluators may use very different context
sources (e.g., visual information, text, meta data) to
build their predictions, but these are unknown to the
bandit algorithm (e.g., because evaluators are exter-
nal services). The resulting model in Eq. 1 is then a
calibration function which, in the case evaluations are
function of a context, can be understood as explaining
the connection between the true reward and the eval-
uations after averaging over the stochasticity in the
(non-observable) context information (Fig. 1). Notice
that if the context was available, the evaluations could
be disregarded as the bandit could directly rely on the
context to predict the rewards in the first place, as in
standard contextual bandit.

We conclude by noticing, despite these additional as-
sumptions, no learner can retrieve the best choice of
top-K arms at each round (i.e., maxi1,...,iK

∑K
l=1 ril,t),

since the only information available to the learner is
from biased and noisy evaluators (see Lemma 3 in
App. A). As a result, instead of targeting the top-K
arms, in the following we introduce oracle strategies
that leverage the full knowledge of the problem (i.e.,
the evaluation function and the noise distribution) and
use their performance as reference for the learner.

3 RELATED WORK
Before diving into how to solve the problem introduced
in the previous section, we review alternative models
that are related to our setting. Let consider the case
with K = 1 (i.e., the learner returns one arm at each
round). The most direct way to model our setting is
MAB with expert advice (Auer et al., 2003), where the
evaluators are experts and evaluations {fi,t,j} are the
experts feedback. In this case, it is possible to derive
algorithms with sublinear regret w.r.t. the best expert
in hindsight (Beygelzimer et al., 2011). While this is a
very general model, where no assumption is imposed
either on the rewards or on the experts feedback (they
could even be generated adversarially), algorithms de-
signed for this setting tend to be over conservative in
practice, as they have to be robust to any sort of data
process. Furthermore, none of the evaluators may be
very accurate (e.g., they all have very large variance)
and targeting the performance of the best among them
may not correspond to a satisfactory performance.

Alternatively, we can frame our problem as a contex-
tual MAB problem (Agrawal and Goyal, 2013; Agar-
wal et al., 2014). We could aggregate all J evaluations
for arm i into a context representation

ϕi,t = (fi,t,1, . . . , fi,t,j , . . . , fi,t,J) ∈ RJ . (2)

Unfortunately, there are two major issues using this
model: 1) in general, the reward ri,t may not be a
simple function (e.g., linear) of ϕi,t; 2) the contex-
tual features may be noisy realizations of some “true”
features (e.g., due to the noise factor ϵi,t,j in Eq. 1).
In order to deal with the first issue, we could rely on
Asm. 4, which would lead to a linear contextual prob-
lem. The second issue could be dealt by using the
approach proposed by Yun et al. (2017) for linear con-
textual bandit with noisy features. While the setting
in (Yun et al., 2017) bears some similarities (e.g., the
noise distribution is assumed to be known, they con-
sider a similar notion of relative regret and study a
greedy algorithm), there remain some crucial differ-
ences: 1) they consider unbiased features, which cor-
responds to a very specific instance of Asm. 4 with
αj = 1; 2) they provide guarantees only for Gaussian
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noise, while the algorithm designed to handle the gen-
eral case has no regret guarantee.

Finally, alternative models of contextual bandit with
non-deterministic features considered the case where
the full distribution of the features is known (Yang
et al., 2020) or part of the features are corrupted (Ga-
jane et al., 2016; Bouneffouf, 2021). These settings do
not match the use cases studied in this paper.

4 GENERALIZED LINEAR CASE

We consider the case where the evaluator functions
satisfy the generalized linear model in Asm. 3.

4.1 The Oracle Strategy

We first define an oracle strategy that, beside σj and
g, has prior knowledge about the parameters αj . At
each round, the oracle receives as input the evaluations
{fi,t,j} and has to select K arms. We focus on oracle
strategies O of the following form

1. The oracle O first aggregates the evaluations into
a reward estimation r̂Oi,t for each arm i using a
weighted average scheme. Let ϕi,t ∈ RJ the vector
collecting all evaluations as in Eq. 2 and w ∈ RJ a
weight vector, then we define4

r̂Oi,t = ⟨w, g−1(ϕi,t)⟩, (3)

where g−1 is the inverse of the link function applied
component-wise to ϕi,t. The choice of the weights is
fixed and independent from the actual evaluations,
but it may depend on the evaluation function and
the noise distribution.

2. The oracle O then returns the top-K arms according
to the estimates r̂Oi,t, i.e.,

AO
t := arg Kmax

i
⟨w, g−1(ϕi,t)⟩ (4)

The crucial aspect is then to find the weighting scheme
w that guarantees the best performance for the or-
acle. Let i⋆

1, . . . , i⋆
K be the true top-K arms and

AO
t = {iO1 , . . . , iOK} be the estimated top-K arms ac-

cording to the estimated rewards r̂Oi,t. Ideally, at each
round t, we would like to find the oracle weights that
minimize the suboptimality gap

∆O
t =

K∑
l=1

ri⋆
l

,t −
K∑

l=1
riO

l
,t. (5)

4In the linear case for αj = 1 (i.e., the link function g
is the identity function) and Gaussian noise, (Yun et al.,
2017) showed the exact posterior over ri,t given the evalu-
ations {fi,t,j} takes a weighted average form as in Eq. 3.

Since the rewards ri,t as well as the evaluations {fi,t,j}
are random, it is not possible to minimize the previous
expression for any possible realization using a fixed set
of weights. Thus, we rather focus on minimizing a
high-probability upper-bound of Eq. 5.
Lemma 1. Under Asm. 2 and 3, with αj being the pa-
rameter of the generalized linear model for each eval-
uator j = 1, . . . , J and σj being the sub-Gaussian pa-
rameter of the noise ϵi,t,j, let δ ∈ (0, 1) be a desired
confidence level, then the oracle strategy designed to
minimize a (1 − δ)-upper bound of Eq. 5 is character-
ized by the weights solving the optimization problem

min
w∈RJ

2

√√√√K3
J∑

j=1
(wjσj)2ℓδ + K

√√√√J

J∑
j=1

(wjσj)2

s.t.
J∑

j=1
wjαj = 1

, (6)

where ℓδ = ln
(

Kmax
δ

)
. The previous problem has a

closed-form solution w+ ∈ RJ such that

w+
j = αj

σ2
j ∥α · σ−1∥

. (7)

The resulting oracle has suboptimality gap w.p. 1 − δ

∆+
t ≤

2K
√

ln
(

Kmaxe
δ

)
+ K

√
J

∥α · σ−1∥
. (8)

We first remark that the previous lemma does not use
Asm. 1 and it holds for any realization of the rewards,
where the probability (1 − δ) is w.r.t. to noise in the
evaluations. We notice that the optimal weight w+

j

is proportional to the ratio αj/σ2
j , which describes the

amount of “signal” with respect to the noise for evalua-
tor j. Indeed, the oracle gives less weight to evaluators
that are noisy (large σj), while relying more on eval-
uators with strong “signal” (large αj). Indeed, as αj

increases w.r.t. σj , the evaluations tend to be near de-
terministic and thus more reliable. Interestingly, the
suboptimal gap in Eq. 8 shows that the oracle im-
proves as the number of evaluators increases (the term
∥α · σ−1∥ grows as

√
J) but ∆O

t does not tend to zero
even when J → ∞. While this might be counterintu-
itive (the learner is provided with an infinite number
of independent evaluations), the residual gap is due to
the nonlinear nature of the generalized linear model,
where the zero-mean noise added to the evaluations
may be amplified or decreased through g−1 while re-
constructing the unknown parameters αj .

Based on the previous lemma, the oracle strategy for
the generalized linear case is defined by the weights w+

and we denote by r̂+
i,t and A+

t the associated reward
estimates and top-K arm selection rule.
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Algorithm 1: GLM-ε-greedy algorithm
Input: Noise parameters {σj}j≤J , confidence level δ
Parameters: exploration level ε; number of arms to
pull K; regularization λ

Set H0 = ∅, α̂ = 0 and w0 = 0
for t = 1, . . . , T do

Sample Zt ∼ Ber (ε)
Observe evaluations for each arm (ϕi,t)i≤Kt

if Zt = 1 then
Pull arms in At obtained by sampling K arms
uniformly in {1, . . . , Kt}

Observe rewards ri,t for all i ∈ At

Add sample to dataset
Ht = Ht−1 ∪

(
∪i∈At {(ϕi,t, ri,t)}

)
Update estimators α̂j,t by solving∑

ϕ,r∈Ht

r(g(α̂t,j · r) − ϕj) − λα̂t,j = 0 (9)

Update weights wt,j = α̂t,j/∥α̂t · σ−1∥
else

Select At = arg maxK
i ⟨wt, ϕi,t⟩

4.2 The GLM-ε-greedy Algorithm

Building on the oracle strategy defined in the pre-
vious section, we now consider the learning problem
when the link function g and the noise distribution
are known, but the learner has no knowledge of the
parameters αj . As customary in MAB problems, at
each round t, the learner observes only the rewards
of the selected arms in At. The main challenge in
this setting is that a learner leveraging the evaluations
{fi,t,j} is directly affected in its choices (i.e., the set
At) by the noise ϵi,t,j generated at the beginning of
round t. This is radically different from the standard
MAB setting, where the noise (in the reward) follows
the arms played by the learner, which are then inde-
pendent from any noise conditionally on the past (see
App. B). A way to circumvent this dependency is to
rely on an ε-greedy strategy, where only the samples
obtained in exploratory steps are actually used to build
an estimator of the unknown parameters αj .5 The re-
sulting algorithm is detailed in Alg. 1. The core of
Alg. 1 is a maximum likelihood estimation step where
the algorithm learn the parameter α. Coherently with
the evaluation model in Eq. 1, the true rewards (ri,t)i,t

serves as the input for the function fj (in this case the
GLM model), while the evaluations (ϕi,t)i,t work as
the values we need to fit.

We now compare the performance of Alg. 1 to the or-

5While we study an ε-greedy type of algorithm, any
type of exploration method decorrelating the estimation
procedure and the exploration, like an Explore-Then-
Commit strategy, would achieve a similar regret.

acle strategy and define the notion of relative regret

RT =
T∑

t=1

( ∑
i∈A+

t

r̂+
i,t −

∑
i∈At

r̂+
i,t

)
, (10)

where w+ ∈ RJ is the oracle weight vector, r̂+
i,t are

the associated reward estimates, and A+
t is the oracle

set of top-K arms. This notion of regret, first intro-
duced by Yun et al. (2017) in noisy contextual bandit,
is comparing the quality of the arms returned by the
algorithm and the oracle according to the estimated re-
wards, for which the oracle is optimal (see App. E for
further discussion). The following theorem shows that
if ε is properly tuned, ε-greedy has sublinear regret.
Theorem 1. For any δ ∈ (0, 1), T ≥ 8, λ = J−1 and
set ε = T −1/3, let η2

ν,j = Er∼ν(g(αjr)2) and ην,min =
minj ην,j. Then under Asm. 1, 2, and 3 we have that
with probability at least 1 − δ the regret of Alg. 1 is
bounded as

RT ≤ Õ

(
T 2/3

(
(1 +

√
J−1∥α∥)ΦS∥σ∥∞√

Kην,min
+ ∥g∥3

∞

K2η2
ν,min

))

where ∥g∥∞ = maxj,x∈[0,C] g(αjx) and

Φ = 2K∥σ∥∞

(
2
√

J +
√

K ln
(

eKmax

Kδ

))
+ K∥g∥∞

S =
(
∥α · σ−2∥2 + ∥σ−2∥2

) ∥σ−2 · α∥2

∥σ−1 · α∥4
2

+
(

∥σ−1∥4

∥σ−1 · α∥2

)2

.

As expected, the regret of GLM-ε-greedy increases
as Õ(T 2/3). While this shows that the algorithm is
able to approach the performance of the oracle, it
also illustrates the difficulty of this setting, where the
strict decoupling between explorative and exploitative
steps used to guarantee a consistent estimation pro-
cess translates into a higher regret. Interestingly, this
result matches the regret of Yun et al. (2017) for con-
textual bandit with noisy features.

In order to investigate the main terms appearing in
the previous bound, we consider the case where all
evaluators share the same parameters αj = α0 and
σj = σ0 for some (α0, σ0) ∈ R2

+ (with α0 ≥ 1). In this
case, the regret bound of Thm. 1 reduces to

RT ≤ Õ

(
T 2/3

√
K

(
1 +

√
K

J

)
σ2

0
α0

)

We first notice that the bound scales as
max{

√
K, K

√
J−1}. Similar to the suboptimal-

ity gap for the oracle (see Lemma 1), when J → ∞,
the bound improves but does not decrease down to 0
and rather converges to

√
K. The dependency on K

may be surprising, since for K = Kmax the regret is
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trivially 0 at each round (i.e., the algorithm returns
all arms and it cannot make any error in the ranking).
However, this dependency comes from the fact that
in the regret analysis we bound the norm of the
evaluations for the selected jobs, which scales linearly
with K. We believe a more refined analysis could
alleviate this dependency. Last, the regret depends
inversely on the ”signal-to-noise” ratio α0

σ2
0
.

5 LINEAR CASE

We consider the special case of linear evaluations and
show how this relatively minor change to the problem
has a major impact on how to approach the learning
problem and the regret.

5.1 The Linear Oracle Strategy

Similar to the GLM case, we define the oracle strat-
egy that defines an estimated reward r̂Oi,t = ⟨w, ϕi,t⟩.
Then the oracle ranks arms according to r̂Oi,t and se-
lects the set of top-K AO

t accordingly. We then op-
timize weights to minimize a high-probability upper
bound to the suboptimality gap ∆O

t .
Lemma 2. Under Asm. 2 and 4, with αj, being the
parameter for each evaluator j = 1, . . . , J , σj being the
sub-Gaussian parameter of the noise ϵi,t,j, let δ ∈ (0, 1)
be a desired confidence level, then the oracle strategy
designed to minimize a (1 − δ)-upper bound of Eq. 5
is characterized by the weights obtained as the solution
of the optimization problem

min
w∈RJ

2

√√√√K3
J∑

j=1

(wjσj)2ℓδ s.t.
J∑

j=1

wjαj = 1 , (11)

where ℓδ = ln
(

Kmax
δ

)
. The previous problem has a

closed-form solution w+ ∈ RJ such that

w+
j = αj

σ2
j ∥α · σ−1∥2 . (12)

The resulting oracle has suboptimality gap w.p. 1 − δ

∆+
t ≤

2K
√

ln
(

Kmaxe
δ

)
∥α · σ−1∥

(13)

The weights of the oracle have the same expression in
the GLM case in Lemma 1. Nonetheless, the subop-
timality gap is smaller than in Lemma 1 as the linear
structure allows to concentrate the noise of the evalu-
ations, unlike in the GLM setting where the potential
non linearity of g forces us to study the worst-case
scenario. Notably, in the linear case, we see that as J
tends to infinity the suboptimality gap tends to zero.

5.2 Evaluation-Structure-Aware Greedy

Similarly to Sec. 4.2, the learner has no knowledge
of the parameters αj but only knows the noise dis-
tribution and the linear structure of the evaluations.
The main estimation difficulty of the general case still
applies to this setting, i.e., using samples obtained by
selecting arms based on the evaluations may introduce
a bias in the estimation process.

Instead of introducing explicit exploration steps to
gather “unbiased” samples, as done in the GLM case,
we exploit a more subtle property for this case. We
notice for any evaluator j, the expected evaluation is

E
[
fi,t,j

]
= E

[
αjri,t + ϵi,t,j

]
= αjr, (14)

where r = E[ri,t] is the expectation of the reward dis-
tribution ν in Asm. 1. Consider an oracle strategy
that is fed with the parameters αjr, then the opti-
mal weights in Eq. 16 become w̃+ = w+/r. While
this leads to estimates r̃+

i,t that are biased w.r.t. the
oracle estimates r̂+

i,t, the factor 1/r is evaluator- and
arm-independent and it does not impact the ranking
returned by this biased oracle, i.e., Ãt = A+

t . This in
striking contrast with the GLM where it is not possible
to easily evaluate a vector proportional to α because
of the potential non-linear behavior of g.

Building on this evidence, we define an algorithm,
the Evaluation-Structure-Aware Greedy (ESAG) in
Alg. 2, that avoids the use of the observed rewards
altogether, thus removing the statistical dependency
between noise and decisions, and rather tries to esti-
mate the expected evaluations in Eq. 14 (see Eq. 15
in Alg. 2) and use them to build estimates, as in the
biased oracle. Since ESAG only relies on the evalu-
ations available at round t, it does not need any ex-
plicit exploration strategy to collect useful informa-
tion, and it executes greedy actions according to the
current weights wt at each round. We can derive the
following regret guarantees.6
Theorem 2. Under Asm. 1, 2, and 4 for any δ ∈
(0, 1), T ≥ 1 with probability at least 1 − δ the regret
of Alg. 2 is bounded by:

RT ≤ Er∼ν(r)Φ′K

[(
Φ′

Er∼ν(r)∥α∥∞
√

K

)2

+ 8
√

T Φ′S√
K̄T

]

where K̄T = T∑T

t=1
t−1∑t−1
l=1

Kl

≥ K is the harmonic av-

erage of the number of arms over T steps, S is the
same as in Thm. 1 and

Φ′ = 2∥α∥C ln
(4

δ

)
+ 2∥σ∥∞

(
2
√

J +
√

K ln
(

Kmax

Kδ

))
6While we derive Thm. 2 for a greedy algorithm, similar

results hold for an optimistic exploration strategy.
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Algorithm 2: The Evaluation-Structure-Aware
Greedy (ESAG) algorithm for the linear case.
Input: Noise parameters {σj}j≤J , confidence level δ
Parameters: number of arms to pull K
Set α̂ = 0, w0 = 0 and Nt = 0
for t = 1, . . . , T do

Observe evaluations for each arm (ϕi,t)i≤Kt

Select At = arg maxK
i ⟨wt, ϕi,t⟩

Observe rewards ri,t for all i ∈ At

Update α̂t as:

α̂t+1 = α̂t
Nt + Kt − NtKt

(Nt + Kt)Nt
+
∑Kt

i=1 ϕi,t

Kt
(15)

Update Nt+1 = Nt + Kt and wt as

wt+1,j = α̂t+1,j

σ2
j ∥α̂t+1,j · σ−1∥2 (16)

The most interesting aspect of the previous theorem is
that the regret is of order Õ(

√
T ), since ESAG does

not pay for the sharp separation between exploration
and exploitation steps as for GLM-ε-greedy.

6 EMPIRICAL VALIDATION

In order to study different aspects of the settings and
algorithms introduced in the previous sections, we fo-
cus on both synthetic and real data experiments. We
report further results in the supplementary material.

6.1 Synthetic Data

We first validate our algorithms on synthetic data. We
consider Kt = Kmax = 20 arms where for each arm
we get J = 10 evaluations. The reward distribution
ν is a Gaussian distribution centered at 0 and trun-
cated between [0, 20]. We consider both the logistic
case with g(x) = (1 + exp(−x))−1 and the linear case
where for all evaluators fj(x) = αjx. At the begin-
ning of each experiment, we draw the coefficients αj

and the parameters σj from uniform distributions in
[α0/2; 3α0/2] and [σ0/2; 3σ0/2] respectively. As dis-
cussed in Sect. 4, a critical term characterizing the
problem structure is the ratio αj/σj . We then set
α0 = 1 and consider three different values for σ0 such
that α0/σ0 ∈ {0.1, 1, 10}. Finally, the noise in the
evaluations are generated as ϵi,t,j ∼ N (0, σ2

j ) in the
linear case whereas in the GLM case ϵi,t,j is drawn
from a truncated centered gaussian distribution with
variance 2σ2

j . We average all results over 80 runs and
we report 95% confidence intervals. Additional details
are reported in the supplement.

Oracle performance. Before investigating the per-

formance of the learning algorithms, we compare the
performance of the oracle strategy to a simple average
strategy that defines r̂avg

i,t = 1/J
∑J

j=1 fi,t,j and ranks
arms accordingly. We also study how the suboptimal-
ity gap of the oracle changes as J increases for both the
GLM and linear case. As shown in Fig. 2a, in both set-
tings that oracle strategies outperform the simple av-
erage. Furthermore, as predicted by Lemma 1 and 2,
the oracle suboptimality gap decreases as J increases,
but it plateaus to a fixed value for GLM, while it tends
to zero for the linear case.

6.1.1 The GLM Case

We consider different types of algorithms: GLM-ε-
greedy (Alg. 1); GLM-ε-greedy-all, it has same
structure as Alg. 1 but uses samples from both explo-
rative and exploitative steps to build the estimator α̂;
GLM-EvalBasedUCB, it uses all samples to build
an estimator α̂ and leverages a high-probability con-
fidence interval on α̂ to derive optimistic weights w
and rank and select arms accordingly; GLM-LinUCB,
the algorithm of Abbasi-Yadkori et al. (2011) using
g−1(ϕi,t) as features; GLM-ESAG, Alg. 2 adapted
for the GLM case; Rand, the fully random strategy;
GLM-Greedy, the greedy strategy using the MLE
estimator α̂; Exp4.P, the bandit with expert advice
algorithm in Beygelzimer et al. (2011).

Estimation Bias. As discussed in Sect. 4.2, one of
the critical aspects that motivated the use of an ε-
greedy approach and led to the Õ(T 2/3) is the fact
that whenever the set of arms is chosen according to
the noisy evaluations {fi,t,j}, the dependency between
ϵi,t,j and At may create a bias when estimating the
parameters αj using the samples ri,t observed after
selecting At. We illustrate this effect in Fig. 2b, where
we report the error of the estimates α̂t computed by
GLM-ε-greedy and GLM-ε-greedy-all w.r.t. the
true parameters α. While the error of the estimator
computed by GLM-ε-greedy decreases over time, the
error for GLM-ε-greedy-all has a residual bias due
to the estimation procedure. Similar results can be
shown for all the algorithms (e.g., GLM-ESAG) that
rely on samples generated by selecting At based on the
evaluations {fi,t,j} and they can be reproduced in the
linear setting as well.

Regret Performance. We compare the performance
of different learning algorithms in terms of relative
regret w.r.t. the oracle defined in Sec. 4.We remove
from Fig. 2c all algorithms (i.e., RAND, Greedy,
EXP4.P) that suffer large linear regret to avoid loos-
ing resolution on the other algorithms. While GLM-
ESAG and GLM-LinUCB have better regret, they
both have a linear regret that keeps increasing over
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Table 1: Cumulative badness over T = 2000 steps

Alg. Badness
Rand 30076.18

GLM-ε-greedy 53403.6
GLM-ε-greedy-all 53419

GLM-EvalBasedUCB 53328.3
GLM-LinUCB 30910.5
GLM-ESAG 53393.9

GLM-Greedy 53371.9
Exp4.P 47766.7

EvalBasedUCB 90768.2
LinUCB 90332.2
ESAG 90790.5

Greedy 69956.3

time, while GLM-ε-greedy has a sublinear regret.7

6.1.2 The Linear Case

We also study the linear case and compare the lin-
ear versions of the algorithms described above. As
illustrated in Fig. 2d, the crucial difference w.r.t. the
GLM case is that now ESAG has sublinear regret,
whereas other algorithms have linear regret. Interest-
ingly, EvalBasedUCB, despite the bias introduced
by using samples obtained by selecting actions based
on the noisy observation, is able to learn a good strat-
egy and it outperforms LinUCB, but still suffers linear
regret.

6.2 Content Review Prioritization

We now move to a real-world problem to investigate
the performance of our algorithms when their assump-
tions are no longer verified.

Data description. We consider a small dataset of
content shared on a large social media firm that has
been reported for violating the platforms’ community
standards. In order to ensure that the most harm-
ful content is prioritized for reviewing, the platform
assigns badness score for each piece of content which
increases with the severity of the content. We consider
four different classifiers that provide badness estimates
for the sampled content. Each of these classifiers are
trained on the real data and follow different modeling
architectures to predict the badness score. Our objec-
tive is to leverage scores from these four classifiers to
identify the most harmful subset of content and flag
them for the platform to review and action them.

Performance. We evaluate the cumulative badness
of the content selected by the algorithms. The higher

7Notice that we have not actively tried to find problem
parameters that would make the linear regret of GLM-
ESAG and GLM-LinUCB larger than GLM-ε-greedy in
a shorter time. The linear regret of GLM-ESAG is due to
the residual estimation bias illustrated in Fig. 2b.

the score the better. The results are reported in Tab. 2.
We first notice that all learning algorithms perform sig-
nificantly better than the random strategy, thus indi-
cating that the GLM and linear assumptions are accu-
rate enough to return meaningful rankings. Nonethe-
less, we notice that GLM-based algorithms do not per-
form as well as linear ones, probably due to the choice
of the logistic function, which, in this case, does not
fit data accurately. On the other hand, ESAG is the
algorithm that performs best, followed by EvalBase-
dUCB and LinUCB. Notice that in the case of real
data, we may even expect LinUCB to perform better,
since it relies on somewhat less restrictive assumptions
(no assumption is made on how the features are gener-
ated) and it relies on the true rewards to estimate pa-
rameters (this is also the case for EvalBasedUCB).
This is in contrast with ESAG that exclusively builds
on the evaluations, which clearly do not respect an ex-
act linear model, to estimate the unknown parameters.
This shows that, even in problems where the assump-
tions do not hold, ESAG is robust enough and it is
competitive w.r.t. a large variety of algorithms.

7 DISCUSSION

We studied a MAB problem where the learner is pro-
vided with noisy and biased evaluations of the true
reward for each arm. We showed that under specific
assumptions it is possible to design learning algorithms
that are able to compete to oracle strategies both in
theory and in practice. The empirical validation on
real data also shows that this model and the associ-
ated algorithms are promising for solving challenging
real-world problems.

Extensions. There is a number of directions that
could be pursued to extend our current results.

• Evaluation functions. The GLM and linear assump-
tions are relatively strong. A natural venue of im-
provement is to generalize our results to richer func-
tion spaces, such as Gaussian processes.

• Persistent arms. While we assume that the set of
arms is “refreshed” at each round, we can easily
extend our setting to the case where all the arms
that are not selected in At remain in the pool of
arms available at the next round (e.g., content that
has not been reviewed). All our results naturally
extend to this case, except for ESAG, which would
not be able to use Kt samples at each round, but
would rather get K new samples corresponding to
the arms replaced at each round.

• Heteroschedastic noise. In the model illustrated in
Fig. 1, the noise ϵi,t,j is heteroschedastic, where
the variance may depend on the reward value r.
While our model leverages an upper-bound σj on



Evrard Garcelon, Vashist Avadhanula, Alessandro Lazaric, Matteo Pirotta

10 20 30 40 50
0

2

4

6

8

10

J

Su
bo

pt
im

al
ty

G
ap

a) Oracle Performance

Linear Oracle
Average of φi,t

GLM Oracle
Average of g−1(φi,t)

0 0.2 0.4 0.6 0.8 1

·105

0.5

1

1.5

2

b) Estimation Bias

GLM-ESAG
GLM-ε-greedy, ε = 0.02

GLM-ε-greedy AS, ε = 0.02

0 0.2 0.4 0.6 0.8 1

·105

0

0.5

1

·106
c) GLM Experiment

GLM-ESAG
GLM-LinUCB
GLM-ε-greedy, ε = 0.02

GLM-ε-greedy, ε = 0.003

0 400 800 1200 1600 2000
0

0.2

0.4

0.6

0.8

1
·104

d) Linear Experiment

EvalBasedUCB
ESAG
LinUCB

Figure 2: a) Average suboptimality gap ∆O
t for the oracle strategy in the GLM and linear cases as a function of the

number of evaluators J . b) Estimation error ∥α̂t − α∥. c) Regret w.r.t. to the oracle as defined in Sect. 4 for the GLM
case. d) Regret w.r.t. to the oracle as defined in Sect. 4 for the linear case in the high noise regime (i.e., αj = 0.1σj).

the actual variance, better adapting to the reward-
dependent variance may improve the performance.
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Supplementary Material:
Top K Ranking for Multi-Armed Bandit with Noisy Evaluations

A LOWER BOUND

In this appendix, we prove why no algorithm can compute the top K arms at every time step. More, precisely
we prove the following Lemma.
Lemma 3. Let consider the linear case in Asm. 4 and parameters Kt = Kmax, K = 1, αj = 1 for all j = 1, . . . , J
and a noise distributed as N (0, σj) with σj = σ0 for all j = 1, . . . , J . The learner A receives as input the
evaluations fi,t,j = ri,t + ϵi,t,j and we denote by A({fi,t,j}) the arm returned by A. For all arms i ≤ Kt the
reward ri,t is sampled from a Bernoulli distribution Ber(1/2). At every step, let’s define I⋆

t = {i ≤ Kt | ri,t = 1}
the set of optimal arms. Then any learner A has a fixed non-zero probability to return the wrong ranking at each
step, i.e.,

∀t, ∀A, ∃δ > 0,PBer,{ϵi,t,j}

[
A({fi,t,j})̸∈ I⋆

t

]
≥ δ. (17)

Proof. We reason by contradiction and assume that there exists a deterministic algorithm A and a time step t
such that

∀δ > 0, PBer,{ϵi,t,j}

[
A({fi,t,j}) ̸∈ I⋆

t

]
≤ δ. (18)

Now given the rewards (ri,t)i≤Kt the distribution of the evaluations (fi,t,j)j is distributed as N ((ri,t)j≤J , σ0IJ)
for each i. Now, let’s consider the set of sub optimal arms, I−

t := {i ≤ Kt | ri,t = 0} because the rewards are
independent then with probability at least 1

4 the set I+
t and I−

t are both non-empty. For an index i0 ≤ Kt, let
X0,1 ∈ RKt×J and X1,0 ∈ RKt×J be two random variables distributed sampled from the same distributions as
the (fi,t,j)i,j | I⋆

t = {i0}, I−
t = {i−0} and (fi,t,j)i,j | I−

t = {i0}, I⋆
t = {i−0} respectively. We then have that:

P
(
X0,1 = X1,0) > 0 (19)

This is a direct consequence of the independence of the noise and rewards. Indeed,

P
(
X0,1 = X1,0) = P

(
∀(i, j) ∈ {1, · · · , Kt} × {1, . . . , J} X0,1

i,j = X1,0
i,j

)
(20)

=
∏
i,j

P(X0,1
i,j = X1,0

i,j ) (21)

But for a given couple (i, j) ∈ {1, . . . , Kt} × {1, . . . , J}, X0,1
i,j ∼ N (1{i=i0}, σ2

0), X1,0
i,j ∼ N (1{i ̸=i0}, σ2

0) and are
independent. Therefore, the probability of those random variables being equal is:

P
(

X0,1
i,j = X1,0

i,j

)
= 1

2πσ2
0

∫ +∞

−∞
exp

−

[(
x − 1{i=i0}

)2 +
(
x − 1{i ̸=i0}

)2
]

2σ2
0

 dx > 0 (22)

Let’s note γ > 0 such that γ ≤ P
(

X0,1
i,j = X1,0

i,j

)
for all i then we have that: P

(
X0,1 = X1,0) ≥ γKtJ > 0. This

implies that there exists a δ0 such that PBer,{ϵi,t,j}

[
A(X0,1) ∈ I⋆

t , X0,1 = X1,0, I⋆
t = {i0}, I−

t = i−0

]
≥ δ0 > 0,

thanks to Eq. (18) but then on this event we have that:

δ0 ≤ PBer,{ϵi,t,j}

[
A(X0,1) ∈ I⋆

t , X0,1 = X1,0, I⋆
t = {i0}, I−

t = i−0

]
= PBer,{ϵi,t,j}

[
A(X1,0) = i0, I⋆

t = {i0}, I−
t = i−0

]
(23)

≤ PBer,{ϵi,t,j}

[
A(X1,0) = i0

]
(24)

≤ PBer,{ϵi,t,j}

[
A(X1,0) ̸∈ I⋆

t

]
≤ δ0

2 (25)
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thanks to Eq. 18. This is not possible therefore by contradiction we have the result.

Lem. 3 shows that there exists a instance of the problem studied in this paper where it is not possible to retrieve
systematically the K actions maximiziing the reward (ri,t)i≤Kt

). Therefore defining the regret with respect to
the true top K actions.

B NOISE CORRELATION ISSUE

The standard result on GLM are based theorems with the same structure as the following proposition (Filippi
et al., 2010):
Proposition 1. Let (Fk)k≥0 be a filtration, (mk)k≥0 be an Rd-valued stochastic process adapted to (Fk)k, (ηk)k

be a real-valued martingale difference process adapted to (Fk)k. Assume that ηk is conditionnally sub-Gaussian
in the sense that there exists some R > 0 such that for any γ ≥ 0, k ≥ 1,

E(exp(γηk) | Fk−1) ≤ exp
(

γ2R2

2

)
a.s (26)

Consider the martingale ξt =
∑t

k=1 mk−1ηk and the process Mt =
∑t

k=1 mk−1m⊺
k−1. Assume that with probability

one the smallest of Md is lower bounded by some positive constant λ0 and that ∥mk∥2 ≤ cm holds a.s. for any
k ≥ 0. The following hold true: Let

κ =
√

3 + 2 log(1 + 2c2
m/λ0)

For any x ∈ Rd, 0 < δ ≤ e−1, t ≥ max(d, 2), with probability at least 1 − δ,

|⟨x, ξt⟩ ≤ κR
√

2 log(t) log(1/δ)∥x∥Mt (27)

Further, for any 0 < δ < min{1, d/e}, t ≥ max{ d, 2}, with probability at least 1 − δ,

∥ξt∥M−1
t

≤ κR
√

2d log(t) log(d/δ) (28)

In our setting, we can not use the type of results presented above because estimators like ridge regression or
maximum likelihood estimation rely on the assumption that the noise associated to the data is zero-mean.
However, in our setting the learner8 takes a decision At based on the noisy evaluations (ϕi,t)i and this introduces
a statistical dependence that biases the distribution of the noise affecting the evaluations. For simplicity, assume
K = 1 then the action at is a function of the noise in the observations (ϕi,t) and, in general, we have that
E (ϵat,t,j) ̸= 0 for all evaluators j ≤ J (where (ϵi,t,j) is the noise in the evaluation fi,t,j) although for any fixed
non random action a ≤ Kt, E(ϵa,t,j) = 0.

More formally, let consider the GLM setting of Sec. 4 assuming K = 1 and a MLE estimator using all the
data Ht := {(fat,t,j)j , rat,t } to estimate the parameter α. Let also assume that the action at is chosen as
at = arg maxi⟨wt, ϕi,t⟩ where for any t, wt is a vector adapted to the σ-algebra σ(Ht−1). For each evaluator j
we compute the MLE, α̂j as the solution to

t−1∑
l=1

(fat,t,j − g(α̂jrit,t))rit,t = 0 (29)

with at is the arm selected by the algorithm and rat,t is the associated reward observed at the end of the round.
In order to evaluate the accuracy of this estimator α̂j , following the proof of Filippi et al. (2010) or (Li et al.,
2017), we eventually need to control the term ∣∣∣∑t

l=1 ral,lϵal,l,j

∣∣∣√∑t
l=1 r2

al,l

, (30)

8Notice that the following discussion holds also for any non-learning algorithm, e.g., an oracle algorithm.
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where ϵal,l,j is the noise associated with the evaluation j for arm al at round l. One may be tempted to apply
Prop. 1 with mt−1 = rat,t and ηt = ϵat,t,j . The issue is that at = arg maxi⟨wt−1, g−1(ϕi,t)⟩ where wt is a
measurable function for of the past (in addition, note that this action selection process is used in most optimistic
algorithms for GLM). As a result,

E (ϵat,t,j | Ht−1, (ri,t)i≤Kt) ̸= 0, (31)

Equation 31 can be further simplified when g is the identity function, J = 1, αj = 0, σj = σ and wt ̸= 0 then
Equation 31 reduces to

E (ϵat,t,j | Ht−1, (ri,t)i≤Kt
) = E

(
ϵi,t1{i=arg max wtϵi,t} | Ht−1

)
≈ σ, (32)

thus showing that ϵat,t is no longer a zero-mean variable. A way to address this issue would be to take a union
bound over all the arms chosen over time a1, . . . , at, . . . , aT . Unfortunately, this would lead to take a union
bound over KT elements, which would eventually lead to an additional

√
T factor in Prop 1 and ultimately a

linear regret bound. We further confirm this effect in several empirical validations, where algorithms relying on
data generated based on the evaluations introduce a bias in the estimation of the parameters α.

C GENERALIZED LINEAR MODEL

In this section, we present how to defined the oracle and the analysis of the regret in the case of a GLM model.

C.1 Oracle in the GLM Model (Proof of Lemma 1)

We consider an oracle O with access to the link function g, the parameters (αj)j≤J of the evaluation function,
and the parameters (σj)j≤J of the noise distribution. Given the vector ϕi,t ∈ RJ obtained by aggregating all the
evaluations (fi,t,.)j for each arm i ≤ Kt, we recall that an oracle defines a set of weights (wj)j≤J and predicts
the reward of arm i as

rOi,t = ⟨w, g−1(ϕi,t)⟩ (33)

We aim at minimizing the gap between reward of the true top-K arms i⋆
1, . . . , i⋆

K and the reward of the estimated
top-K arms iO1 , . . . , iOK according to the estimated rewards rOi,t

(a) =
K∑

l=1
ri⋆

l
,t −

K∑
l=1

riO
l

,t. (34)

By leveraging the definition of estimated top-K arms, we can rewrite the previous expression as

(a) =
K∑

l=1
ri⋆

l
,t −

K∑
l=1

r̂Oi⋆
l

,t +
K∑

l=1
r̂Oi⋆

l
,t −

K∑
l=1

r̂OiO
l

,t +
K∑

l=1
r̂OiO

l
,t −

K∑
l=1

riO
l

,t

≤
K∑

l=1
ri⋆

l
,t −

K∑
l=1

r̂Oi⋆
l

,t +
K∑

l=1
r̂OiO

l
,t −

K∑
l=1

riO
l

,t

=
K∑

l=1

(
ri⋆

l
,t − r̂Oi⋆

l
,t

)
+

K∑
l=1

(
r̂OiO

l
,t − riO

l
,t

)
≤ 2 max

i1,...,iK

K∑
l=1

∣∣∣r̂Oil,t − ril,t

∣∣∣︸ ︷︷ ︸
(b)

.

Using the GLM model of Asm. 3, we have that for any i = 1, . . . , Kt, the estimated reward can be written as

r̂Oi,t =
J∑

j=1
wjg−1 (g(αj · ri,t) + ϵi,t,j) . (35)



Evrard Garcelon, Vashist Avadhanula, Alessandro Lazaric, Matteo Pirotta

We can then measure the deviation between true reward and estimated reward as

(b) =
J∑

j=1
wj

[
g−1 (g(αj · ri,t) + ϵi,t,j) − g−1(g(αjri,t))

]
+
( J∑

j=1
wjαj − 1

)
ri,t (36)

≤ c−1
g

J∑
j=1

|wj | · |ϵi,t,j | +
( J∑

j=1
wjαj − 1

)
ri,t, (37)

where in the first equality we introduce the term
∑K

j=1 wjαj =
∑K

j=1 wjg−1(g(αjri,t)) and in the second step
we leverage the fact that g−1 is c−1

g -Lipschitz. The last expression above contains two random realizations,
i.e., ϵi,t,j and ri,t, thus preventing from computing a fixed set of weights to minimize the performance gap (a).
Furthermore, while we assume the oracle to have prior knowledge about the parameters, we would like to avoid
leveraging any knowledge on the true rewards (ri,t). In order to remove any dependency on the rewards, we
impose a constrain on the weights, such that

∑J
j=1 wjαj = 1, thus removing the last term, and thus the rewards,

in the previous expression. We can then focus on minimizing a high-probability upper bound of (a)

(a) ≤ 2c−1
g max

i1,...,iK

K∑
l=1

J∑
j=1

|wj | · |ϵi,t,j | (38)

where we leverage the fact that the noise ϵi,t,j are sub-Gaussian then |ϵi,t,j | −E(|ϵi,t,j |) is also sub-Gaussian with
the same parameter and by Jansen inequality its mean is E(|ϵi,t,j |) ≤

√
E(ϵ2

i,t,j) = σj . Therefore for any time t

and any set U ⊂ {1, · · · , Kt} of size K , we have by Chernoff inequality, for any x > 0

P

∣∣∣∣∣∣
∑
u∈U

J∑
j=1

|wjϵu,t,j | − E(|wjϵu,t,j |)

∣∣∣∣∣∣ ≥ x

 ≤ 2 exp
(

− x2

2K
∑J

j=1(wjσj)2

)
(39)

Therefore we have taking a union over all the set of size K,

P

 max
i1,··· ,iK

K∑
l=1

J∑
j=1

|wjϵil,t,j | − E(|wjϵil,t,j |) ≥ x

 ≤
∑

U,|U |=K

P

∑
u∈U

J∑
j=1

|wjϵu,t,j | − E(|wjϵu,t,j |) ≥ x

 (40)

≤
∑

U,|U |=K

2 exp
(

− x2

2
∑J

j=1(wjσj)2

)
(41)

= 2
(

Kt

K

)
exp

(
− x2

2K2∑J
j=1(wjσj)2

)
(42)

Therefore for any δ ∈ (0, 1) we have that with probability at least 1 − δ:

max
i1,...,iK

K∑
l=1

J∑
j=1

|wj | · |ϵi,t,j | − E(|wj | · |ϵi,t,j |) ≤ K

√√√√2
J∑

j=1

(wjσj)2 ln

(
2
(

Kt
K

)
δ

)
≤ K

√√√√2K

J∑
j=1

(wjσj)2 ln
(2eKmax

Kδ

)
(43)

using the standard inequality
(

Kt

K

)
≤
(

eKt

K

)K and Kt ≤ Kmax. Therefore,

(a) ≤ 2K

cg

√√√√K

J∑
j=1

w2
j σ2

j ln
(

Kte

δ

)
+ K

cg

J∑
j=1

|wj |σj ≤ 2K

cg

√√√√K

J∑
j=1

w2
j σ2

j ln
(

Kmaxe

δ

)
+ K

cg

√√√√J

J∑
j=1

(wjσj)2, (44)

Finally, this leads to the optimization problem in Eq. 12. By plugging the optimal solution back into the
optimization problem, we also obtain the stated upper bound on the suboptimality gap.
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C.2 Regret of ϵ-greedy Algorithm for GLM Model (Proof of Thm. 1)

We now move on proving the regret upper bound of Thm. 1. The first step is to bound the norm of the noisy
evaluations at every step. That is the object of the following lemma.
Lemma 4. Let ϕi,t = (fi,t,1, . . . , fi,t,j , . . . , fi,t,J) ∈ RJ the vector summarizing all the evaluations observed at
round t. Then for any δ ∈ (0, 1) with probability 1 − δ for any t ≤ T , for any set At of K arms chosen in
{1, . . . , Kmax} possibly adaptive to the evaluations, it holds that

∥∥ ∑
i∈At

ϕi,t

∥∥
2 ≤ Φ := 2K∥σ∥∞

(
2
√

J +

√
K ln

(
2eKmaxT

Kδ

))
+ 2KJ∥g∥∞

where ∥σ∥∞ = maxj≤J σj and ∥g∥∞ = maxj≤J,x∈[0,C] |g(αjx)|

Proof. For a time t ≤ T and set of size K At ⊂ {1, · · · , Kt} and an evaluator j ≤ J the sum of features can be
decomposed as,(∑

i∈At

ϕi,t,j

)2

=
(∑

i∈At

g(αjri,t) +
∑
i∈At

ϵi,t,j

)2

≤ 2
(∑

i∈At

g(αjri,t)
)2

+ 2
(∑

i∈At

ϵi,t,j

)2

(45)

≤ 2K2∥g∥2
∞ + 2

(∑
i∈At

ϵi,t,j

)2

(46)

Therefore, we just need to bound
∥∥∑

i∈At
ϵi,t

∥∥
2 to finish the proof. But thanks to the subGaussian assumption

on the noise ϵ, we have that: ∥∥∥∥∥∑
i∈At

ϵi,t

∥∥∥∥∥
2

≤ 4K
√

J max
j≤J

σ2
j + 2K max

j≤J
σj

√
log
(

1
δ

)
(47)

because the vector
∑

i∈At
ϵi,t is K maxj σj sub-Gaussian. The last step is to take a union bound over steps t ≤ T

and subset of size K.

The first step to analyze the regret of Alg. 1 is to decompose the regret according to the steps where the algorithm
selected a totally random set of arms or when it played greedy. Noting, as in Alg. 1, Zt the Bernoulli random
variable used by the algorithm to distinguish between exploratory and exploitative steps, the regret is

RT =
T∑

t=1
Zt⟨w+,

∑
i∈A+

t

ϕt,i −
∑
i∈At

ϕi,t⟩

︸ ︷︷ ︸
:=RT,1

+
T∑

t=1
(1 − Zt)⟨w+,

∑
i∈A+

t

ϕi,t −
∑
i∈At

ϕi,t⟩

︸ ︷︷ ︸
:=RT,2

(48)

In the following, we bound each term RT,1 and RT,2.

Bounding RT,1. The term we analyze is the regret due to the random steps in the algorithm. Centering the
variable Zt we get that RT,1 scales as:

RT,1 =
T∑

t=1
(Zt − ϵ)⟨w+,

∑
i∈A+

t

ϕt,i −
∑
i∈At

ϕi,t⟩ + ϵ

T∑
t=1

⟨w+,
∑

i∈A+
t

ϕt,i −
∑
i∈At

ϕi,t⟩

≤
T∑

t=1
(Zt − ϵ)⟨w+,

∑
i∈A+

t

ϕt,i −
∑
i∈At

ϕi,t⟩ + ϵT∥w+∥

∥∥ ∑
i∈A+

t

ϕi,t

∥∥
2 +

∥∥ ∑
i∈At

ϕi,t

∥∥
2


≤

T∑
t=1

(Zt − ϵ)⟨w+,
∑

i∈A+
t

ϕt,i −
∑
i∈At

ϕi,t⟩ + 2ΦϵT∥w+∥

(49)
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thanks to Lemma 4. Now, the first term can be bounded thanks to a standard Azuma-Hoeffding inequality as
for every time t ≤ T , Zt is independent from the evaluations (ϕi,t)i and the set of arms At hence considering the
filtration (Ft)t being the history up until time t, we have,

∀t ≤ T,

∣∣∣∣∣∣
T∑

t=1
(Zt − ϵ)⟨w+,

∑
i∈A+

t

ϕt,i −
∑
i∈At

ϕi,t⟩

∣∣∣∣∣∣ ≤ 4Φ∥w+∥

√
2T ln

(
4T

δ

)
w.p at least 1 − δ/2 (50)

Putting everything toghether we have that for any δ ∈ (0, 1),

RT,1 ≤ 4Φ∥w+∥

(√
2T ln

(
4T

δ

)
+ ϵT

)
(51)

with probability at least 1 − δ/2.

Bounding RT,2. Next, we bound the regret coming due to the estimation error in the exploitative steps, that
is to say when Zt = 0. We begin by using the greedy behavior of the algorithm to enough to study the error
∥wt − w+∥ to bound RT,2,

RT,2 ≤
T∑

t=1
(1 − Zt)

⟨w+ − wt,
∑

i∈A+
t

ϕi,t⟩ + ⟨wt,
∑

i∈A+
t

ϕi,t −
∑
i∈At

ϕi,t⟩ + ⟨wt − w+,
∑
i∈At

ϕi,t⟩

 (52)

But because At is the maximizer of the estimated reward with respect to wt we have that

(1 − Zt)
〈

wt,
∑

i∈A+
t

ϕi,t −
∑
i∈At

ϕi,t

〉
≤ 0. (53)

Furthermore, using Lemma 4 we have that with probability at least 1 − δ/4

max


〈

w+ − wt,
∑

i∈A+
t

ϕi,t

〉
,

〈
wt − w+,

∑
i∈At

ϕi,t

〉 ≤ Φ∥w+ − wt∥2. (54)

As a result, the remaining step to obtain a bound on the regret is to build a concentration inequality for the
weights wt w.r.t. w+ and properly tune the exploration factor ϵ.

We start by studying the concentration of the MLE estimator α̂t ∈ RJ to the true parameter α ∈ RJ . Thanks
to the random choice of At in the explorative steps, all the data in Ht are i.i.d. and we can directly apply the
standard concentration inequality for MLE in GLM (Li et al., 2017).
Lemma 5. For any δ ∈ (0, 1) with probability at least 1 − δ/8 for all j ≤ J and t ≤ T :

|α̂t,j − αj | ≤ βt,j :=

√
λ∥α∥ + σj

√
1
2 log

(
1 + 2T

λ

)
+ log

( 8JT
δ

)
cg

√∑
l,Zl=1

∑
i∈At

rl,i

. (55)

In other words,

∥α̂t − αr∥∞ ≤ βt := max
j

βt,j =

√
λ∥α∥ + ∥σ∥∞

√
1
2 log

(
1 + 2T

λ

)
+ log

( 8JT
δ

)
cg

√∑
l,Zl=1

∑
i∈At

rl,i

(56)

We leverage Lem. 5 to concentrate ∥w⋆ − wt ∥. But first, recall that wt is given by:

wt = σ−1 · α̂t

∥σ−1 · α̂t∥2
2

and w+ = σ−1 · α

∥σ−1 · α∥2
2
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where Σ = diag(σ1, · · · , σJ). Therefore, the error between w+ and wt can be written as:

∥wt − w+∥2 =
∥∥∥∥σ−2 · (α̂t − α)

∥σ−1 · α̂t∥2 + σ−2 · α

(
1

∥σ−1 · α̂t∥2 − 1
∥σ−1 · α∥2

)∥∥∥∥ (57)

≤
∥∥∥∥σ−2 · α

(
1

∥σ−1 · α̂t∥2 − 1
∥σ−1 · α∥2

)∥∥∥∥
2

+
∥∥∥∥σ−2 · (α̂t − α)

∥σ−1 · α̂t∥2

∥∥∥∥
2

(58)

Proposition 2. For any time t ≤ T , assuming that ∥α̂t − α∥∞ ≤ βt and ∥α∥∞ ≥ 8βt then:

∥σ−2 · (α̂t − α) ∥2

⟨α̂t, σ−2 · α̂t⟩
≤

4βt

√∑J
j=1

1
σ4

j∑J
j=1

α2
j
1{|αj |≥8βt}

σ2
j

= 4βt

(
∥σ−1∥4

∥σ−1 · α1{|α|≥8βt}∥2

)2

(59)

Proof. Using the definition of σ−2· we have,

∥σ−2 · (α̂t − α) ∥2

⟨α̂t, σ−2 · α̂t⟩
=

√∑J
j=1

(α̂t,j−αj)2

σ4
j∑J

r=1
α̂2

t,j

σ2
j

(60)

However, we have that for any j ≤ J :

α̂2
t,j = α2

j + (α̂t,j − αj)2 + 2 (α̂t,j − αj) αj ≥ α2
j + 2 (α̂t,j − αj) αj

≥ α2
j − 2βt|αj |

≥
α2

j

2 when |αj | ≥ 8βt

using that ∥α̂t − α∥∞ ≤ βt. In addition, using again that ∥α̂t − α∥∞ ≤ βt,
J∑

j=1

(α̂t,j − αj)2

σ4
j

≤
J∑

j=1

β2
t

σ4
j

(61)

Using the same reasonning as in Prop. 2, we can show the following which bound the second term in Equation 57.

Proposition 3. For any time t ≤ T , assuming that ∥α̂t − α∥∞ ≤ βt and ∥α∥∞ ≥ 8βt then:∥∥∥∥∥
(

∥σ−1 · α∥2 − ∥σ−1 · α̂t∥2

∥σ−1 · α̂t∥2

)
σ−2 · α

∥σ−1 · α∥2

∥∥∥∥∥ ≤
4βt

(
∥σ−2 · α∥2 + βt∥σ−2∥

)
∥σ−2 · α∥

∥σ−1 · α1{|α∥≥8βt}∥2∥σ−1 · α∥2 (62)

Therefore, using Prop. 2 and Prop. 3 on the event that the confidence intervals in Lem. 5 holds then with
probability at least 1 − δ/4:

∥wt − w+∥2 ≤
4βt

(
∥σ−2 · α∥2 + βt∥σ−2∥

)
∥σ−2 · α∥

∥σ−1 · α1{|α|≥8βt}∥2∥σ−1 · α∥2 + 4βt

(
∥σ−1∥4

∥σ−1 · α1{|α|≥8βt}∥2

)2

(63)

In order to complete the proof of the regret upper bound, we need to control how fast the confidence intervals
width βt decreases with t.
Lemma 6. For any δ ∈ (0, 1) and λ > 0 we have with probability at least 1 − δ/4,

∀t ∈

{
2C4 ln

( 8T
δ

)
ϵ2K2η4

ν

, . . . , T

}
, βt ≤

∥σ∥∞

√
ln
(
1 + 2T

λ

)
+ ln

( 8T J
δ

)
+

√
λ∥α∥

cg

√
ϵtKη2

ν − C2
√

2t ln
( 8T

δ

) (64)

where for all j ≤ J , η2
ν = Er∼ν(r2)
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Proof. First, thanks to a standard Hoeffding inequality we have that with probability at least 1 − δ/4,

∀t ≤ T,

∣∣∣∣∣∣
∑

l≤t,Zl=1

∑
i∈At

r2
l,i − E

 ∑
l≤t,Zl=1

∑
i∈At

r2
l,i

∣∣∣∣∣∣ ≤ C2

√
2t ln

(
8T

δ

)

And E
(∑

l≤t,Zl=1
∑

i∈At
r2

l,i

)
= ϵtKη2

ν where η2
ν := Er∼ν(r2). Therefore, using the definition of βt

βt ≤
∥σ∥∞

√
ln
(
1 + 2T

λ

)
+ ln

( 8T J
δ

)
+

√
λ∥α∥

cg

√
ϵtKη2

ν − C2
√

2t ln
( 8T

δ

) (65)

As a consequence, for t ≥ τ0 := 8 ln( 8T
δ )C4(

ϵKη2
ν

)2 , βt ≤ O
(

1√
ϵt

)
. Therefore, using Lem. 6 with probability at least

1 − δ/4:
T∑

t=τ0+1
βt ≤

T∑
t=τ0+1

√
2∥σ∥∞

√
ln
(
1 + 2T

λ

)
+ ln

( 8T J
δ

)
+

√
λ∥α∥

cg

√
ϵtKη2

ν

≤ 3
√

2T∥σ∥∞

cg

√
ϵKη2

ν

(√
ln
(

1 + 2T

λ

)
+ ln

(
8TJ

δ

)
+

√
λ∥α∥

) (66)

We can finally bound RT,1 with probability at least 1 − δ/2 by:

RT,1 ≤ τ + 24Φ
√

2T∥σ∥∞

cg

√
ϵKη2

ν

(√
ln
(

1 + 2T

λ

)
+ ln

(
8TJ

δ

)
+

√
λ∥α∥

)((
∥σ−2 · α∥2 + ∥σ−2∥

)
∥σ−2 · α∥

∥σ−1 · α1{|α|≥8βt}∥2∥σ−1 · α∥2

+
(

∥σ−1∥4

∥σ−1 · α1{|α|≥8βt}∥2

)2) (67)

where τ := max
{

128∥σ∥∞(ln(1+ 2T
λ )+ln( 8T J

δ ))+λ∥α∥2

minj |αr|2ϵKη2
ν

,
8 ln( 8T

δ )C4(
ϵKη2

ν

)2

}
Finally, the regret is bounded with probability at least 1 − δ by:

RT ≤ 4Φ
∥σ−1 · α∥

(√
2T ln

(4T

δ

)
+ ϵT

)
+ max

{
128∥σ∥∞

(
ln
(
1 + 2T

λ

)
+ ln

(
8T J

δ

))
+ λ∥α∥2

minj,αj ̸=0 |αj |2ϵKη2
ν

,
8 ln
(

8T
δ

)
C4(

ϵKη2
ν

)2

}

+24Φ
√

2T ∥σ∥∞

cg

√
ϵKη2

ν

(√
ln
(

1 + 2T

λ

)
+ ln

(8T J

δ

)
+

√
λ∥α∥

)((
∥σ−2 · α∥2 + ∥σ−2∥

)
∥σ−2 · α∥

∥σ−1 · α∥2∥σ−1 · α∥2 +
(

∥σ−1∥4

∥σ−1 · α∥2

)2
) (68)

Remark. Compared to the bound reported in Thm. 1, we corrected an error in the analysis which removed the
dependency on the norm ∥g∥∞ and replaceed it with the upper bound on the distribution of the reward C. In
addition, here we report a bound depends on minj≤J,αj ̸=0 |αj |2 however because of the condition 1{|αj |≥8βt} it
is possible to present a regret upper bound that scales inversly with maxj |αj | but at the cost of a much bigger
problem-dependent quantity S. Fortunately, the difference between the bound report in Thm 1 and the one in
Equation 68 has no impact on the discussion around the depency on J . Simplifying the bound in Equation 68,
we get that the regret is bounded with high probability by,

RT ≤ Õ

(
T 2/3

(
(1 +

√
J−1∥α∥)ΦS∥σ∥∞

cg

√
Kην

+ max
{

∥σ∥∞

minj,αj ̸=0 |αj |2Kη2
ν

,
C4(

Kη2
ν

)2

})
(69)

when choosing ϵ = 1
T 1/3 , λ = J−1 and setting S := (∥σ−2·α∥2+∥σ−2∥)∥σ−2·α∥

∥σ−1·α∥2∥σ−1·α∥2 +
(

∥σ−1∥4
∥σ−1·α∥2

)2
.
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D LINEAR MODEL

In this section, we show how the definition of the oracle changes with the linear setting and the proof of Thm. 2,
that is to the regret of Alg. 2

D.1 Oracle in the Linear Model (Proof of Lem. 2)

Just as in Section C.1, we consider an oracle that has access to the parameters (αj)j≤J but also knows the noise
(σj)j≤J for each evaluation functions. Given a vector of evalutations ϕi,t for some t ≤ T and i ≤ Kt, an orcale
is defined through a set of weights (wj)j≤J and predicts the reward, rOi,t = ⟨w, ϕi,t⟩. Following the reasonning
in Section C.1, the difference between the true top-K arms, i+

1 , · · · , i+
K , and the top K according to the oracle,

iO1 , · · · , iOK is bounbed by
K∑

l=1
ri+

l
,t − riO

l
,t ≤ 2 max

i1,··· ,iK

K∑
l=1

∣∣r̂Oil,t − ril,t

∣∣ (70)

Again following the same reasonning as in App. C.1, the difference between the estimated reward and the actual
reward for any arm i ≤ Kt is bounded by

∣∣ri,t − r̂Oi,t
∣∣ ≤

∣∣∣∣∣∣ri,t

 J∑
j=1

wjαj − 1

∣∣∣∣∣∣+

∣∣∣∣∣∣
J∑

j=1
wjϵi,t,j

∣∣∣∣∣∣ ≤ C

∣∣∣∣∣∣
 J∑

j=1
wjαj − 1

∣∣∣∣∣∣+

∣∣∣∣∣∣
J∑

j=1
wjϵi,t,j

∣∣∣∣∣∣ (71)

The main difference compared to the proof of Lem. 1 is that thanks to the linear strucutre contorlling the noise
can be done direclty without usingany Lipschitz property. Therefore, in order to remove the dependency on the
reward, we focus on weights w such that ⟨w, α⟩ = 1. Hence using Chernoff inequality the error is bounded for
any δ ∈ (0, 1) by

∣∣ri,t − rOi,t
∣∣ ≤ 2K

√√√√K

J∑
j=1

w2
j σ2

j ln
(

Kmaxe

δ

)
(72)

with probability at least 1 − δ. This conlcudes the proof of Lem. 1

D.2 Regret of ESAG (Proof of Thm. 2)

The first step to analyze the regret of Alg. 2 is to compute an upper bound on the deviation of the estimator α̂t.
Lemma 7. For any δ ∈ (0, 1) and t ≤ T , the error between α̂t and Er∼ν(r)α is bounded with probability at least
1 − δ/4 by,

∥α̂t − Er∼ν(r)α∥ ≤ βL
t :=

C
√

2 ln
( 16JT

δ

)√∑t−1
l=1 Kl

+ 4∥σ∥∞
√

J√∑t−1
l=1 Kl

+
2∥σ∥∞

√
ln
( 8T J

δ

)√∑t−1
l=1 Kl

(73)

Proof. For any t ≤ T , α̂t =
∑t−1

l=1

∑Kl

i=1
ϕi,l∑t−1

l=1
Kl

but using the strucuture of the evaluations ϕi,t for every j ≤ J ,

α̂t,j = 1∑t−1
l=1 Kl

(
t−1∑
l=1

Kl∑
i=1

αjri,l +
t−1∑
l=1

Kl∑
i=1

ϵi,t,j

)
(74)

But the first term converges toward αjEr∼ν(r) because at every time step the reward are independtly sampled
from the distribution ν (see Assumption 1). More precisely, with probability at least 1 − δ/8, for any t ≤ T and
j ≤ J ∣∣∣∣∣ 1∑t−1

l=1 Kl

t−1∑
l=1

Kl∑
i=1

ri,l − Er∼ν(r)
∣∣∣∣∣ ≤

C
√

2 ln
( 16JT

δ

)√∑t−1
l=1 Kl

(75)
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In addition, the second term in Eq. (74) can be bounded with probability at least 1 − δ/8 by∥∥∥∥∥ 1∑t−1
l=1 Kl

t−1∑
l=1

Kl∑
i=1

ϵi,l

∥∥∥∥∥ ≤
4
√

J maxj σ2
j

∑t−1
l=1 Kl + 2

√
maxj σ2

j

∑t−1
l=1 Kl ln

( 8T J
δ

)
∑t−1

l=1 Kl

= 4∥σ∥∞
√

J√∑t−1
l=1 Kl

+
2∥σ∥∞

√
ln
( 8T J

δ

)√∑t−1
l=1 Kl

(76)

Finally, to finish the proof, we simply need to note that

∥α̂t − Er∼ν(r)α∥ ≤

∥∥∥∥∥ α∑t−1
l=1 Kl

t−1∑
l=1

Kl∑
i=1

ri,l − αEr∼ν(r)
∥∥∥∥∥+

∥∥∥∥∥ 1∑t−1
l=1 Kl

t−1∑
l=1

Kl∑
i=1

ϵi,l

∥∥∥∥∥ (77)

≤ ∥α∥

∣∣∣∣∣ 1∑t−1
l=1 Kl

t−1∑
l=1

Kl∑
i=1

ri,l − Er∼ν(r)
∣∣∣∣∣+ 4∥σ∥∞

√
J√∑t−1

l=1 Kl

+
2∥σ∥∞

√
ln
( 8T J

δ

)√∑t−1
l=1 Kl

(78)

Once ESAG has computed the weigths α̂t it then computes a set of weights thanks to this estimator and based
on the shape of the optimal weigths of the oracle. That is to say the weights w used by the algorithm are:

wt = σ−2 · α̂t

∥σ−1 · α̂t∥2
2

(79)

The optimal weights for the parameter Er∼ν(r)α is w+

Er∼ν (r) . Therefore, in the following we bound the error
between the weights wt and the rescaled optimal weights w+

Er∼ν (r) . Following the same reasonning as in Prop. 2
and Prop. 3, we can show the following proposition
Proposition 4. For any t ≤ T let’s assume Er∼ν(r)∥α∥∞ ≥ 8βL

t with βL
t defined in Eq. (74). Then for any

δ ∈ (0, 1) with probability at least 1 − δ/4∥∥∥∥wt − w+

Er∼ν(r)

∥∥∥∥
2

≤
4βL

t

(
Er∼ν(r)∥σ−2 · α∥2 + βL

t ∥σ−2∥
)

∥σ−2 · α∥
Er∼ν(r)3∥σ−1 · α1{Er∼ν (r)|α|≥8βL

t
}∥2∥σ−1 · α∥2 + 4βL

t

Er∼ν(r)2

(
∥σ−1∥4

∥σ−1 · α1{Er∼ν (r)|α|≥8βL
t

}∥2

)2

(80)

Thanks to Lemma 7 and Prop. 4, we can now analyze the regret of ESAG. Recall the regret is defined as follows,

RT =
T∑

t=1

∑
i∈A+

t

⟨w+, ϕi,t⟩ −
∑
i∈At

⟨w+, ϕi,t⟩ (81)

where A+
t := arg maxK

i ⟨w+, ϕi,t⟩ and At is the set of jobs selected by the learner at time t.

However, the set A+
t is only defined as the arg max of some values, it is invariant by multiplicating the weights

w+ by some constant independent of the arms. In particular, we have that for any time t ≤ T

A+
t = arg Kmax

i
⟨w+, ϕi,t⟩ = arg Kmax

i

〈
w+

Er∼ν(r) , ϕi,t

〉
(82)

Hence the regret can rewritten as,

RT =
T∑

t=1

Er∼ν(r)

∑
i∈A+

t

〈
w+

Er∼ν(r) , ϕi,t

〉
−
∑
i∈At

〈
w+

Er∼ν(r) , ϕi,t

〉
=

T∑
t=1

Er∼ν(r)

∑
i∈A+

t

〈
w+

Er∼ν(r) − wt, ϕi,t

〉
+
∑

i∈A+
t

⟨wt, ϕi,t⟩ −
∑
i∈At

⟨wt, ϕi,t⟩ +
∑
i∈At

〈
wt − w+

Er∼ν(r) , ϕi,t

〉
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But for any t ≤ T , because of the greedy arm selection process of ESAG:∑
i∈A+

t

⟨wt, ϕi,t⟩ −
∑
i∈At

⟨wt, ϕi,t⟩ ≤ 0 (83)

But using Lem. 4 with probability at least 1 − δ/4

max


〈

w+

Er∼ν(r) − wt,
∑

i∈A+
t

ϕi,t

〉
,

〈
wt − w+

Er∼ν(r) ,
∑
i∈At

ϕi,t

〉 ≤ Φ∥ w+

Er∼ν(r) − wt∥2. (84)

Thanks to Lem.7 and that for all t ≤ T , Kt ≥ K therefore for t ≥ t0 := 1 +
4K−1 (C2 ln

( 16JT
δ

)
+ 2∥σ∥∞

(
4J + ln

( 8JT
δ

)))
max

{
64

Er∼ν (r)2 minj,αj ̸=0 α2
j
, 1
}

,∥∥∥∥ w+

Er∼ν(r) − wt

∥∥∥∥ ≤
4βL

t

(
Er∼ν(r)∥σ−2 · α∥2 + ∥σ−2∥

)
∥σ−2 · α∥

Er∼ν(r)3∥σ−1 · α∥2∥σ−1 · α∥2 + 4βL
t

Er∼ν(r)2

(
∥σ−1∥4

∥σ−1 · α∥2

)2

(85)

But using the definition of βL
t :

T∑
t=t0+1

βL
t ≤

(
C

√
2 ln

(
16JT

δ

)
+ 4∥σ∥∞

√
J + 2∥σ∥∞

√
ln
(

8TJ

δ

)) T∑
t=t0+1

1√∑t−1
l=1 Kl

≤

(
C

√
2 ln

(
16JT

δ

)
+ 4∥σ∥∞

√
J + 2∥σ∥∞

√
ln
(

8TJ

δ

))√
T
∑T −1

t=1
1
t

K̄T

≤

(
C

√
2 ln

(
16JT

δ

)
+ 4∥σ∥∞

√
J + 2∥σ∥∞

√
ln
(

8TJ

δ

))√
T ln(T )

K̄T

(86)

where K̄T := T∑T −1
t=t0

t−1∑t−1
l=1

Kl

is the average number of arms presented over the T steps, KT ≥ K. Therefore the

regret is bounded with probability at least 1 − δ

RT ≤ 2
∥σ−1 · α∥

(
1 + 2L2

K
max

{
64

Er∼ν(r)2 minj,αj ̸=0 α2
j

, 1
})

+ 16LSΦ
Er∼ν(r) max

{
1,

1
Er∼ν(r)

}√
T ln(T )

K̄T

(87)

where S =
(
∥α · σ−2∥2 + ∥σ−2∥2

) ∥σ−2·α∥2
∥σ−1·α∥4

2
+
(

∥σ−1∥4
∥σ−1·α∥2

)2
and L = C

√
2 ln

( 16JT
δ

)
+8∥σ∥∞

√
J+4∥σ∥∞

√
ln
( 8T J

δ

)
E REGRET ANALYSIS

In Section 2, the regret has been defined as the difference between the top-K arms according to the oracle and
the K arms selected by a learner, see Equation 10. However one may argue that a more interesting notion of
regret is to compare the actions of the oracle to the action of the learner with respect to the true reward of each
arm. That is to say, to define the notion of absolute regret,

Rabs
T =

T∑
t=1

∑
i∈A+

t

ri,t −
∑
i∈At

ri,t (88)

The two notions of regret, that is to say the relative and absolute regret are related,

RT − Rabs
T =

T∑
t=1

∑
i∈A+

t

⟨w+, g−1(ϕi,t) − g−1(g(α · ri,t))⟩ −
∑
i∈At

⟨w+, g−1(ϕi,t) − g−1(g(α · ri,t))⟩ (89)

However controlling the deviation here is not possible through standard concentration inequalities. Indeed the
set of arms, A+

t is computed by taking the argmax over the noise therefore (ϵi,t)i∈A+
t

are not centered anymore,
see App. B. Nonetheless, one can still provide some guarantees on the regret R̃abs

T .
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Theorem 3. For every t ≤ T let (ϕ(i),t)i≤Kt be the ordered set of arms with respect to the oracle Ô, that is
to say ⟨w⋆, g−1(ϕt,(1))⟩ ≥ ⟨w⋆, g−1(ϕt,(2))⟩ ≥ . . . ≥ ⟨w⋆, g−1(ϕt,(Kt))⟩ let’s now define the gap between the top-K
according the oracle and the rest of the arms, ∆t,K := ⟨w+, g−1(ϕ(K),t)−g−1(ϕ(K+1),t)⟩. For any weights w ∈ RJ

such that:
∀i ≤ Kt,

∣∣⟨w+ − w, g−1(ϕi,t)⟩
∣∣ ≤ ∆t,K

4 (90)

Then the top-K arms, A := arg maxK
i ⟨w, ϕi,t⟩ is exactly the ranking of the oracle, that is to say A = A+

t .

Proof. For an arm i ∈ A+
t ,

⟨wt, g−1(ϕi,t)⟩ ≥ ⟨w⋆, g−1(ϕi,t)⟩ − ∆t,K

4 ≥ ⟨w⋆, g−1(ϕ(K),t)⟩ − ∆t,K

4

≥ ⟨w⋆, g−1(ϕ(K+1),t))⟩ + 3∆t,K

4

≥ ⟨wt, g−1(ϕ(K+1),t))⟩ + ∆t,K

2 > ⟨wt, g−1(ϕ(K+1),t))⟩

Therefore A+
t ⊂ A. On the other hand for any i ̸∈ A+

t , we have that:

⟨wt, g−1(ϕi,t)⟩ ≤ ⟨w⋆, g−1(ϕ(K+1),t))⟩ + ∆t,K

4 ≤ ⟨w⋆, g−1(ϕ(K),t)⟩ − 3∆t,K

4

≤ ⟨wt, g−1(ϕ(K),t)⟩ − ∆t,K

2 < ⟨wt, g−1(ϕ(K),t)⟩

Therefore, the set A+
t ⊂ A but because both are of size K, we have that A = A+

t .

The main implication of Thm. 3 is that we can now provide a bound on the abso-
lute regret of GLM-ε-greedy. Indeed, thanks to the bound of Lem. 5, for t ≥

max


(

2C2
√

2 ln( 8T
δ )

εKη2
ν

)2

,
32
(√

λ∥α∥+∥σ∥∞

(√
ln(1+ 2T

λ )+ln( 8JT
δ )
))2

εKη2
ν mint≤T ∆2

t,K

, the error between the estimated weights wt

and the optimal oracle weights w+ is bounded by ∆t,K/4, therefore the absolute regret of Alg. 1 is bounded by

Rabs
T ≤ C max


2C2

√
2 ln

( 8T
δ

)
εKη2

ν

2

,
32
(√

λ∥α∥ + ∥σ∥∞

(√
ln
(
1 + 2T

λ

)
+ ln

( 8JT
δ

)))2

εKη2
ν mint≤T ∆2

t,K

 (91)

+ 4Φ
∥α · σ−1∥

(√
2T ln

(
4T

δ

)
+ εT

)
(92)

Choosing ε = min
{

T −1/3, mint≤T ∆2
t,K , 1√

T mint≤T ∆t,K

}
yields an absolute regret of Rabs

T =

Õ
(

T 2/3,
√

T
mint≤T ∆t,K

, 1
mint≤T ∆4

t,K

)
. Therefore, when mint≤T ∆t,K ≥ T −1/6 the absolute regret and relative

regret of Alg. 1 scales similarly with a relative and absolute regret of order Õ(T 2/3).

F ADDITIONAL EXPERIMENTS

In this section, we present in details the algorithms used in Sec. 6, the experimental protocol and additionnal
experimental results.

F.1 Baseline Algorithms

In Sec. 6, we compare our algorithms, GLM-ε-greedy (Alg. 1) and ESAG (Alg. 2), to different baselines.
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Algorithm 3: GLM-ε-greedy-ALL SAMPLES algorithm
Input: Noise parameters {σj}j≤J , confidence level δ
Parameters: exploration level ε; number of arms to pull K; regularization λ
Set H0 = ∅, α̂ = 0 and w0 = 0
for t = 1, . . . , T do

Sample Zt ∼ Ber (ε)
Observe evaluations for each arm (ϕi,t)i≤Kt

if Zt = 1 then
Pull arms in At obtained by sampling K arms uniformly in {1, . . . , Kt}
Observe rewards ri,t for all i ∈ At

else
Select At = arg maxK

i ⟨wt, g−1(ϕi,t)⟩
Add sample to dataset Ht = Ht−1 ∪

(
∪i∈At {(ϕi,t, ri,t)}

)
Update estimators α̂j,t by solving ∑

ϕ,r∈Ht

r(g(α̂t,j · r) − ϕj) − λα̂t,j = 0 (93)

Update weights wt,j = α̂t,j/(σ2
j )∥α̂t · σ−1∥2

Algorithm 4: GLM-EvalBasedUCB algorithm
Input: Noise parameters {σj}j≤J , confidence level δ
Set H0 = ∅, α̂ = 0 and w0 = 0
for t = 1, . . . , T do

Observe evaluations for each arm (ϕi,t)i≤Kt

Compute α̂t =
∑t−1

l=1

∑
i∈Al

g−1(ϕi,l)∑t−1
l=1

∑
i∈Al

ri,l

and

βE
t =

2
√

2J ln(2/δ)
3 +

√
(t − 1)K

∑J

j=1 σ2
j ln(2/δ)∑t−1

l=1

∑
i∈At

ri,l

(94)

if ∥α̂t∥2 ≤ βE
t then

Compute weights wt = σ−2α̂t

∥σ−1α̂t∥2

else

Compute λt > 0 solving
∑J

j=1,σj >0

(
α̂t,j

λtσ2
j

+(βE
t

)2

)2

= 1
β2

t

Compute α̃t =
(

IJ − β2
t

(
λtIJ + (βE

t )2σ−2)−1
σ−2
)

α̂t and wt = σ−2α̃t

∥σ−1α̃t∥2

Select At = arg maxK
i ⟨wt, g−1(ϕi,t)⟩ and observe rewards ri,t for all i ∈ At

GLM-ε-greedy-ALL (Alg. 3). This algorithm is the s Alg. 1 and illustrate the problem with the noise
correlation of App. B. This algorithm thus updates its own MLE estimator at every time step instead of step
with a random exploration.

GLM-EvalBasedUCB (Alg. 4). This algorithm does not rely on an ε-greedy type of exploration but on an
optimistic approach. Similar to other algorithms, it first computes an MLE estimator of α using all samples
collected over time. Then it build a “confidence” set around the estimated α̂ and it computes weights wt as those
resulting from a worst-case choice of a parameter α̃ in terms of error. Notice that the confidence sets are not
theoretically justified because they are designed by ignoring the correlation between decisions and evaluations.
As such, this algorithm has not theoretical guarantee and it should be considered as a heuristic. We provide
further details in Sect. F.2.

RAND (Alg. 5). This baseline algorithm is simply selecting one random evaluators every step and computing
a ranking of the arms based on this random evaluators.

GLM-Greedy. This algorithm is a variant of GLM-ε-Greedy-ALL with ε = 0.
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Algorithm 5: Rand algorithm
Parameters: number of arms to pull K
for t = 1, . . . , T do

Randomly select j ≤ J
Observe evaluations for each arm (ϕi,t)i≤Kt

Select At = arg maxK
i g−1(ϕi,t,j)

F.2 Derivation of GLM-EvalBasedUCB

Here, we breifly present how we derive the GLM-EvalBasedUCB algorithm. This algorithm takes a optimistic
approach w.r.t. the set of plausible α values and compute a set of weights wt as the set of oracle weights but for
a different value of α. The first step is to compute an estimator α̃t such that:

α̃t = arg max
z∈RJ :∥α̂t−z∥≤βE

t

min
w∈RJ ,⟨w,z⟩=1

J∑
j=1

w2
j σ2

j (95)

where βE
t is the width of the confidence intervals defined in Eq. (73) Solving the minimization problem in the

previous equation implies that α̃t is solution to the following equivalent optimization problem,

min
∥z−α̂t∥2≤βE

t

∥σ−1 · z∥2
2 = min

∥u∥≤1
∥σ−1 · (α̂t + βE

t u)∥2
2 (96)

with α̂t =
∑t−1

l=1

∑
i∈Al

g−1(ϕi,l)∑t−1
l=1

∑
i∈Al

ri,l

the average features observed until time t. Eq. (96) is a convex problem and

using KKT conditions, we distinguish two different situations:

1. If ∥α̂t∥ ≤ βE
t then min∥z−α̂t∥2≤βE

t
∥σ−1 · z∥2

2 = 0 thus the problem is ill-defined and the weights are also not
defined (A necessary condition for this condition to be fulfilled is that ∥α∥ ≤ βE

t (1 +
√

1 + (βE
t )2))

2. If ∥α̂t∥ > βE
t then the solution is such that u = −βE

t

(
λtIJ + (βE

t )2Diag(σ−2)
)−1

σ−2 · α̂t where λt > 0 is
solution to9:

J∑
j=1,σj>0

(
α̂t,j

λtσ2
j + (βE

t )2

)2

= 1
(βE

t )2 (97)

Overall, α̃t is defined as:

α̃t =
(

IJ − (βE
t )2 (λtIJ + (βE

t )2Diag(σ−2)
)−1

σ−2
)

α̂t, (98)

that is to say the weights used by the algorithm is wt = Σ−2α̃t

∥Σ−1α̃t∥2
2

F.3 Additional Synthetic Experiments

We report here the regret and estimation bias for the in the logisitic and linear setting for the three different
regimes of α0

σ0
∈ {0.1, 1, 10} as reported in Section 6. For both the linear and logistic case we choose K = 10

and Kt = 60. For GLM-ε-Greedy and GLM-ε-greedy-ALL SAMPLES, we use different values of ε ∈
{0.1T −1/3, 0.1T −1/2}. The rewards are sampled from a centered unit variance normal distribution truncated
between [0, 20].

Logistic and Linear Experiments. As highlighted in Section 6, for a small ratio α0
σ0

, the algorithms GLM-ε-
greedy-ALL SAMPLES or GLM-EvalBasedUCB that use all samples suffer from a linear regret compared
to our algorithm Alg. 1 for ε = O(T −1/3). In addition, we observe that as the ratio α0

σ0
increases the correlation

effect highlighted in App. B becomes less and less relevant and GLM-EvalBasedUCB performs particularly
well.

9A solution λt always exist when there is at least one evaluator j such that σj > 0 because the function f : λ 7→∑
j=1,σj >0

(
α̂t,j

λσ2
j

+(βE
t

)2

)2
is strictly non-increasing over R+ and for λ = 0, we have f(0) = ∥α̂t∥2/(βE

t )4 > (βE
t )−2 and

limλ→+∞ f(λ) = 0 so by continuity there exists a unique solution λt > 0.
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Figure 6: Regret (Left) and zoomed in regret (Right, removing RAND and EXP4.P algorithms) wrt to the
oracle O in Section 4 for different values of α0

σ0
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Figure 12: Estimation Bias in the linear case. For ESAG, we compute the error ∥α̃t − Er∼ν(r)α∥

F.4 Second Content Review Prioritization Dataset.

In order to validate our observations of Section 6 on the content review proritization dataset, we consider a
second small dataset (D2) of content similar to the one used in Section 6. Table ?? sums up the cumulative
reward of each algorithms at T = 2000 steps selecting K = 10 out of Kt = 200 arms. Similarly to Table 2 linear
algorithms performs best compared to the logistic algorithms with the same three algorithms getting the best
performance.

F.5 Jester Experiments.

We consider the Jester dataset (Goldberg et al., 2001), which consists of joke ratings in a continuous range from
−10 to 10 for a total of 100 jokes and 73421 users. We consider the same set of users and jokes as in (Riquelme

Table 2: Cumulative badness on D2 for T = 2000 steps

Alg. Badness
Rand 60025.8

GLM-ε-greedy 105965.8
GLM-ε-greedy-all 105499.1

GLM-EvalBasedUCB 105545.4
GLM-LinUCB 60347.4
GLM-ESAG 106237.5

GLM-Greedy 105264.3
Exp4.P 88979.4

EvalBasedUCB 138230.1
LinUCB 144009.4
ESAG 141172.1

Greedy 106195.4
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Table 3: Statistics about the evaluators. We re-
port the R2 score of the evaluators w.r.t. the true
ratings. The column σ̂ is the maximum estimate
standard deviation.

algo R2 σ̂

rf5-s18 0.864 0.115
dt-s50 0.448 0.174
linear 0.348 0.167
adaboost 0.440 0.048
mlp 0.917 0.110
rf 0.936 0.064
adaboost20-s60 0.309 0.086

Table 4: Average reward after T = 6000 steps in
the Jester experiment averaged over 50 runs.

Algorithm
Average Reward

1
T

∑T

i=1
ri

EvalBasedUCB 0.87
ESAG 0.86
LinUCB 0.85
GLM-EvalBasedUCB 0.69
GLM-Greedy 0.69
GLM-ESAGesaglogistic 0.69
GLM-ε-greedy 0.69
RAND 0.57
GLM-LinUCB 0.51

et al., 2018). For a subset of 40 jokes and 19181 users rating all these 40 jokes, we build evaluators as follows.
We fit 7 contextual models to predict the ratings from features –obtained as concatenation of user and joke
features– extracted via a low-rank factorization of the full matrix (of dimension 36). Ratings are normalized and
transformed through the logarithmic function. We trained the following models:10

• rf5-s18: a random forest with 5 trees trained over 5 randomly selected features;

• dt-s50: a decision tree with max depth 10 trained over 50 randomly selected features;

• linear: a linear model with intercept;

• adaboost: an implementation of AdaBoost.R2 with 20 trees;

• mlp: a neural network with two hidden layers ([512, 128]) and ReLu activation;

• adaboost20-s60: AdaBoost.R2 with 20 trees trained over 60 randomly selected features.

We use the predictions of each model as inputs for our algorithms. As rewards, we use the real ratings and we
add to them zero-mean Gaussian noise (standard deviation is 0.5). The resulting problem is thus misspecified
since the evaluators are not perfect, as shown in Tab. 3.

We estimate the parameters of the algorithms by computing statistics about the relationship between true
ratings and predicted ones. For ε-greedy, we use the value T 1/3. From Tab. 4, we can see that linear algorithms
outperform the logistic algorithms. EvalBasedUCB and ESAG behave similarly and perform better than
LinUCB.

10We used the implementations provided by scikit-learn (Pedregosa et al., 2011).
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Figure 13: We report the predictions of the evaluators as a function of the true ratings (for clarity we reported
only 10% of the samples). We also report the average value over a discretization of the ratings into 40 bins.
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