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Abstract

Federated Averaging (FedAvg), also known
as Local SGD, is one of the most popular al-
gorithms in Federated Learning (FL). Despite
its simplicity and popularity, the convergence
rate of FedAvg has thus far been undeter-
mined. Even under the simplest assumptions
(convex, smooth, homogeneous, and bounded
covariance), the best known upper and lower
bounds do not match, and it is not clear
whether the existing analysis captures the
capacity of the algorithm. In this work, we
first resolve this question by providing a lower
bound for FedAvg that matches the existing
upper bound, which shows the existing Fe-
dAvg upper bound analysis is not improvable.
Additionally, we establish a lower bound in
a heterogeneous setting that nearly matches
the existing upper bound. While our lower
bounds show the limitations of FedAvg, un-
der an additional assumption of third-order
smoothness, we prove more optimistic state-
of-the-art convergence results in both convex
and non-convex settings. Our analysis stems
from a notion we call iterate bias, which is
defined by the deviation of the expectation of
the SGD trajectory from the noiseless gradi-
ent descent trajectory with the same initial-
ization. We prove novel sharp bounds on this
quantity, and show intuitively how to analyze
this quantity from a Stochastic Differential
Equation (SDE) perspective1.

1The first two authors contributed equally.
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1 INTRODUCTION

Federated Learning (FL) is an emerging distributed
learning paradigm in which a massive number of clients
collaboratively participate in the training process with-
out disclosing their private local data to the public
(Konecny et al., 2015). Typically, federated learning
is orchestrated by a central server who oversees the
clients, e.g. mobile devices or a group of organizations.
The training process combines local training of a model
at the clients with infrequent aggregation of the locally
trained models at the central server.

Reflecting the goal of minimizing a loss function ag-
gregated across clients, we consider the distributed
optimization problem minF (x) := 1

M

∑M
m=1 Fm(x),

where each client m ∈ [M ] holds a local objective
Fm realized by its local data distribution Dm, namely
Fm(x) := Eξ∼Dmf(x; ξ). Federated Learning is hetero-
geneous by design as Dm can vary across clients. In
the special case when Dm ≡ D for all clients m, the
problem is called homogeneous.

Federated Averaging (FedAvg, McMahan et al. 2017),
also known as Local SGD (Stich 2019), is one of the
most popular algorithms applied in Federated Learning.
In its simplest form,2 FedAvg proceeds in R commu-
nication rounds, where at the beginning of each round,
a central server sends the current iterate to each of the
M clients. Each client then locally takes K steps of
SGD, and then returns its final iterate to the central
server. The central server averages these iterates to
obtain the first iterate of the next round. We state the
FedAvg algorithm formally in Algorithm 1.

While the FedAvg algorithm is popular in practice, a
thorough theoretical understanding of FedAvg has not
been established. Even under the simplest setting (con-
vex, smooth, homogeneous and bounded covariance, see
Assumption 1), the state-of-the-art upper bounds for
FedAvg due to Khaled et al. (2020) and Woodworth
et al. (2020b) do not match the state-of-the-art lower
bound due to Woodworth et al. (2020b), see Table 1.

2We discuss other extensions of FedAvg in Section 1.1.
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Table 1: Convergence Rates of FedAvg. Some lower order terms as R → ∞ omitted. H: smoothness, R:
number of rounds, K: local iterations per round, M : number of clients, σ: noise, D : ‖x(0,0) − x?‖. The lower
and upper bound use a slightly different metric of heterogeneity (ζ and ζ∗), see Remark 3.2 for details. We bold
the terms where our analysis improves upon previous work.
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Algorithm 1 Federated Averaging (FedAvg)

1: procedure FedAvg (x(0,0), η)
2: for r = 0, . . . , R− 1 do
3: on client for m ∈ [M ] in parallel do

4: x
(r,0)
m ← x(r,0) B broadcast current iterate

5: for k = 0, . . . ,K − 1 do

6: ξ
(r,k)
m ∼ Dm

7: g
(r,k)
m ← ∇f(x

(r,k)
m ; ξ

(r,k)
m )

8: x
(r,k+1)
m ← x

(r,k)
m − η · g(r,k)

m B client update

x(r+1,0) ← 1
M

∑M
m=1 x

(r,K)
m B server averaging

This suggests that at least one side of the analysis is
not sharp. Therefore a fundamental question remains:

Does the current convergence analysis of FedAvg fully
capture the capacity of the algorithm?

Our first contribution is to answer this question defini-
tively under the standard smoothness and convexity
assumptions. We establish a sharp lower bound for
FedAvg that matches the existing upper bound (The-
orem 3.1), showing that the existing FedAvg analysis
is not improvable. Moreover, we establish a stronger
lower bound in the heterogeneous setting, Theorem 3.3,
which suggests the best known heterogeneous upper
bound analysis (Woodworth et al., 2020a) is also (al-
most)3 not improvable.

Our proofs highlight exactly what can go wrong in
FedAvg, yielding these slow convergence rates. Specif-
ically, our lower bound analysis stems from a notion we
call iterate bias, which is defined by the deviation of the
expectation of the SGD trajectory from the (noiseless)
gradient descent trajectory with the same initialization

3Up to a minor variation of the definition of heterogeneity
measure, see Table 1.

(see Definition 2.1 for details). We show that even for
convex and smooth objectives, the mean of SGD initial-
ized at the optimum can drift away from the optimum
at the rate of Θ(η2k

3
2 ) after k steps,4 for sufficiently

small learning rate η. We depict this phenomenon in
Fig. 1.5The iterate bias thus quantifies the fundamental
difficulty encountered by FedAvg:

Even with infinite number of homogeneous clients, Fe-
dAvg can drift away from the optimum even if initial-
ized at the optimum.

Indeed, we show in Section 3.2 that the sharp lower
bound of SGD iterate bias leads directly to our sharp
lower bound of FedAvg convergence rate.

The discouraging lower bound of FedAvg under a stan-
dard smoothness assumption does not conform well
with its empirical efficiency observed in practice (Lin
et al., 2020c). This motivates us to consider whether
additional modeling assumptions could better explain
the empirical performance of FedAvg. The aforemen-
tioned lower bound is attained by a special piece-wise
quadratic function with a sudden curvature change,
which is smooth (has bounded second-order deriva-
tives) but has unbounded third-order derivatives. A
natural assumption to exclude this corner case is third-
order smoothness, which has been considered before in
the context of federated learning (Yuan and Ma, 2020),
and may be representative of objectives in practice. For
instance, loss functions used to learn many generalized
linear models, such as logistic regression, often exhibit
third-order smoothness (Hastie et al., 2009).

With this third-order smoothness assumption, we show

4This rate is also sharp according to our matching upper
and lower bounds, see Theorems 2.2 and 2.3 for details.

5Code repository see https://github.com/hongliny/
Sharp-Bounds-for-FedAvg-and-Continuous-Perspective.

https://github.com/hongliny/Sharp-Bounds-for-FedAvg-and-Continuous-Perspective
https://github.com/hongliny/Sharp-Bounds-for-FedAvg-and-Continuous-Perspective
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(a) Function plot (b) Probability density function after various SGD steps

Figure 1: Illustration of the iterate bias of SGD. Consider the objective F (x) =

{
x2 x ≥ 0
1
10x

2 x < 0
as shown

in (a), and f(x; ξ) := ξx+ F (x) where ξ ∼ N (0, 0.01). We initialize the SGD at optimum x? = 0, and run 1024
steps of SGD with step size 10−2. We repeat this random process for 65536 times, and estimate the density
function after 128, 256, 512 and 1024 steps. Observe that the density function and the average gradually move to
the left (away from the optimum, where the curvature is smaller). This figure explains the intrinsic difficulty for
FedAvg to handle objective with drastic Hessian change.

that the iterate bias reduces to Θ(η3k2), one order
higher in η than the rate under only second-order
smoothness.6 While the proofs for bounding the it-
erate bias are quite technical, we show that it is easy
to analyze the bias via a continuous approach. More
specifically, by studying the stochastic differential equa-
tion (SDE) corresponding to the continuous limit of
SGD, one can derive the limit of the iterate bias of
generic objectives by using the Kolmogorov backward
equation of the SDE, see Section 2.3.

Leveraging this intuition from the bias, we prove state-
of-the-art rates for FedAvg under third-order smooth-
ness in both convex and non-convex settings (Theo-
rems 4.1 and 4.2). In non-convex settings, our conver-

gence rate scales with 1/R
4
5 , which improves upon the

best known rate of 1/R
2
3 (Yu et al., 2019b) if we do

not assume third-order smoothness.

1.1 Related Work

FedAvg Analysis. The understanding of local up-
dates algorithm such as FedAvg is one of the most
important topics in distributed optimization. The early
analysis of FedAvg preceded the proposal of Federated
Learning, typically under the name of Local SGD or
parallel SGD (Mcdonald et al., 2009; Zinkevich et al.,
2010; Shamir and Srebro, 2014; Rosenblatt and Nadler,
2016; Jain et al., 2018; Zhou and Cong, 2018). The
primary focus of this literature is the special case of
one-shot averaging, in which only one round of aver-
aging (communication) is conducted at the end of the

6This rate is sharp according to our matching upper and
lower bounds, see Theorems 2.4 and 2.5.

algorithm. The first upper bound of FedAvg (with
multiple averaging rounds) was established by Stich
(2019) in the convex homogeneous setting, which im-
poses uniform gradient bound assumption. The result
was further improved by Khaled et al. (2020); Wood-
worth et al. (2020b) with improved rates and relaxed
assumptions. Note that the result of Khaled et al.
(2020) preceded that of Woodworth et al. (2020b), but
the step-size was not properly optimized. In the con-
vex heterogeneous setting, the first upper bound of
FedAvg is due to Li et al. (2020c). This result was
improved by Khaled et al. (2020); Woodworth et al.
(2020a). For non-convex objectives, a series of recent
works (Zhou and Cong, 2018; Haddadpour et al., 2019;
Wang and Joshi, 2018; Yu and Jin, 2019; Yu et al.,
2019a) has established various upper bounds of Fe-
dAvg in homogeneous and heterogeneous settings. On
the lower bound side, the best known result for convex
FedAvg is established by Woodworth et al. (2020b)
(for homogeneous) and Woodworth et al. (2020a) (for
heterogeneous). To the best of our knowledge, we are
unaware of any lower bound for FedAvg in non-convex
settings.

The existence and effect of iterate bias has been
observed in various forms in the current literature
(Dieuleveut et al., 2020; Charles and Konečný, 2020;
Woodworth et al., 2020b), yet our paper is the first to
sharply characterize the rate of the bias, both in the
second-order smooth case and third-order smooth case.

Other Extensions of FedAvg. Throughout this
work, we study the simplest form of FedAvg (Algo-
rithm 1) to keep our efforts focused. There are many
other extensions of FedAvg applied in practice. For
example, instead of letting all the clients to participate
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in computation, one may randomly draw a subset of
clients to participate every round. Most of our results
(e.g., all of the homogeneous results) can be directly
extended to this sub-sampling variant. Other variants
of FedAvg include letting clients run different number
of steps per round, or average the client states non-
uniformly. We refer readers to Wang et al. (2021) for
a more comprehensive survey of these extensions.

One special extension of FedAvg introduces a “server
learning rate”, which we name FedAvg-SLR to distin-
guish it. Instead of taking the client averaging as the
initialization of the next round, FedAvg-SLR extrap-
olates (or interpolates) between the round initializa-
tion and the clients averaging (Charles and Konečný,
2020; Reddi et al., 2021), or formally x(r+1,0) ←
x(r,0) + ηs · 1

M

∑M
m=1

(
x
(r,K)
m − x(r,0)

)
. By definition,

FedAvg-SLR reduces to the classic FedAvg when
ηs = 1. Notably, FedAvg-SLR also reduces to mini-
batch SGD when the client learning rate goes to 0,
and the server learning rate goes to infinity. Therefore,
FedAvg-SLR can at least attain the best convergence
rate of the classic FedAvg and the mini-batch SGD.
However, to the best of our knowledge, it is not known
whether FedAvg-SLR can outperform the best of the
two, and there are no results that characterize FedAvg-
SLR beyond the two special regimes. While our lower
bounds do not apply to the generic form of FedAvg-
SLR, we anticipate that our techniques (e.g., iterate
bias) can be applicable to the study of FedAvg-SLR
in the future work.

Other Federated Learning Algorithms. Besides
the FedAvg framework, there are many other feder-
ated optimization algorithms that aims to improve com-
munication efficiency (Yuan and Ma, 2020; Reddi et al.,
2021) or tackle the heterogeneity in FL (Li et al., 2020b;
Karimireddy et al., 2020). We expect the techniques
developed in this work can shed light on the analysis
of broader existing federated algorithms and promote
the design of more efficient federated algorithms.

The past half decade has witnessed a booming interest
in various aspects of Federated Learning. Data het-
erogeneity is one of the most important patterns in
Federated Learning, and is known to cause performance
degradation in practice (Hsu et al., 2019). Numerous
existing works have aimed to understand and mitigate
the negative effect of heterogeneity in various ways
(Mohri et al., 2019; Liang et al., 2019; Chen et al., 2020;
Deng et al., 2020; Li et al., 2020a; Reisizadeh et al.,
2020; Wang et al., 2019; Pathak and Wainwright, 2020;
Zhang et al., 2020; Yuan et al., 2021b; Acar et al.,
2021a; Al-Shedivat et al., 2021; Yuan et al., 2021a). In
practice, the system heterogeneity will also affect the
performance of Federated Learning (Smith et al., 2017;

Diao et al., 2021). In deep learning context, a recent
array of works has studied the alternative approaches
of model ensembling beyond averaging in parameter
space (Bistritz et al., 2020; He et al., 2020; Lin et al.,
2020b; Chen and Chao, 2021; Yoon et al., 2021).

This paper mainly considers the classic FL settings in
which the same model is learned from and deployed
to all the clients. There is an alternative setup in
FL, known as the personalized setting, which aims
to learn a different (personalized) model for different
clients. Numerous recent papers have proposed Feder-
ated Learning models and algorithms to accommodate
personalization (Smith et al., 2017; Jiang et al., 2019;
Chen et al., 2019; Fallah et al., 2020; Hanzely et al.,
2020; London, 2020; T. Dinh et al., 2020; Hanzely and
Richtárik, 2020; Agarwal et al., 2020; Lin et al., 2020a;
Deng et al., 2020; Acar et al., 2021b). We anticipate
the techniques developed in this work can be applied
to personalized FL algorithms, especially the ones that
applied local updates approach.

We refer readers to (Kairouz et al., 2019; Wang et al.,
2021) for a more comprehensive survey on the recent
progress of Federated Learning.

Connection to Implicit Bias. It is possible to view
the iterate bias as an implicit bias of the FedAvg
algorithm, which pushes the iterate towards flatter re-
gions of the objective. This effect is similar to other
instances of implicit bias observed for stochastic gra-
dient descent, which has drawn connections between
noise in the gradients and flat minima (Hochreiter and
Schmidhuber, 1997; Jastrzkebski et al., 2017; Blanc
et al., 2020; Damian et al., 2021). While in many
instances, implicit bias has been linked to choosing fa-
vorable optima that generalize well (Neyshabur, 2017),
in our setting, the bias affects the convergence rate.

1.2 Organization and Notation

In Section 2, we formally define the iterate bias of
SGD, and state sharp bounds on its rate. In Section
3, we state our lower bounds for FedAvg, and show
how the iterate bias can be used to achieve our sharp
bounds. In Section 4, we state our convergence results
for FedAvg under third-order smoothness. All proofs
are deferred to the appendix.

We use bold lower case character to denote vectors (e.g.,
x). We use ‖ · ‖ to denote the `2-norm of a vector, [n]
to denote the set {1, . . . , n}. Throughout the paper, we
use O,Ω,Θ notation to hide absolute constants only.
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2 SETUP AND TECHNICAL
OVERVIEW: INTUITION
FROM ITERATE BIAS

The intuition from our lower bound comes from study-
ing the behaviour of FedAvg when the number of
clients, M , tends to infinity. In this case, the averaged
iterate x(r+1,0) is precisely the expected iterate after
K iterations of SGD starting from the last averaged
iterate, x(r,0). This motivates the following definition.

Definition 2.1 (Iterate Bias of SGD). Let {x(k)
SGD}∞k=0

and {z(k)GD }∞k=0 be the trajectories of SGD and GD ini-
tialized at the same point x, formally

x
(k+1)
SGD ← x

(k)
SGD − η∇f(x

(k)
SGD ; ξ

(k)), x
(0)
SGD = x;

z
(k+1)
GD ← z

(k)
GD − η∇F (zGD), z

(0)
GD = x.

The iterate bias (or in short “bias”) from x at the
k-th step is defined as

Ex
(k)
SGD − z

(k)
GD ,

the difference between the mean of SGD trajectory
and the (deterministic) GD trajectory.

One important special case of Definition 2.1 is the iter-
ate bias from a stationary point x?. In this case, the

gradient descent trajectory z
(k)
GD will stay at the opti-

mum since ∇F (z
(k)
SGD) ≡ ∇F (x?) = 0. The iterate bias

then reduces to E[x
(k)
SGD]− x?. Notably, even for convex

smooth objectives f , the expected iterate E[x
(k)
SGD] may

drift away from the optimum x?, even if initialized at
the x?. This occurs because of a difference between the
gradient of the expectation of an iterate, ∇f(E[·]), and
the expectation of the gradient of the iterate, E[∇f(·)].

In Fig. 1, we illustrate this phenomenon via a one-
dimensional objective. This figure, and our formal
results below, illustrate that for sufficiently small step
sizes, the bias increases in k. For this reason, doing
more than one local step can sometimes be counterpro-
ductive (when k = 1, the bias is always zero). This
phenomenon is key to the poor dependence on K in
the convergence rate we prove for FedAvg.

2.1 The Bias Under Second-Order
Smoothness

In this subsection, we provide sharp bounds on the
iterate bias under standard assumptions, formally given
below.

Assumption 1. Assume f(x; ξ) is second-order dif-
ferentiable w.r.t. x, and

(a) Convexity: f(x; ξ) is convex with respect to x for
any ξ.

(b) Smoothness: f(x; ξ) is H-smooth with respect to
x. That is, for any ξ, for any x,y, we have
‖∇f(x; ξ)−∇f(y; ξ)‖2 ≤ H‖x− y‖2.

(c) Bounded covariance: for any x, Eξ∼D ‖∇f(x, ξ)−
∇F (x)‖22 ≤ σ2.

We establish the following upper bound on the bias.7

Theorem 2.2 (Simplified from Theorem A.1). Under
Assumption 1, there exists an absolute constant c̄ such
that for any initialization x, for any η ≤ 1

H , the iterate

bias satisfies
∥∥∥Ex

(k)
SGD − z

(k)
GD

∥∥∥
2
≤ c̄ · η2k 3

2Hσ.

In fact, we show in the following theorem that this
upper bound of iterate bias is sharp.

Theorem 2.3 (Simplified from Theorem A.2). There
exists an absolute constant c such that for any H,σ,
there exists an objective f(x; ξ) and distribution ξ ∼ D
satisfying Assumption 1 such that for any integer K,
for any η ≤ 1

2KH , and integer k ∈ [2,K], the iterate
bias from the optimum x? of F is lower bounded as∥∥∥Ex

(k)
SGD − z

(k)
GD

∥∥∥
2
≥ c · η2k 3

2Hσ.

Theorem 2.3 shows that the SGD trajectory can in-
deed drift away (in expectation) from the optimum
x? despite being initialized at x?. Our lower bound
improves over the best known lower bound Ω(η2kHσ)
due to Woodworth et al. (2020b). The lower bound is
attained by running SGD with Gaussian noise on the

piecewise quadratic function f(x) :=

{
1
2Hx

2 x ≥ 0,
1
4Hx

2 x < 0.
,

first analyzed in Woodworth et al. (2020b).

Recall that the bias originates from the difference be-

tween ∇f(E[x
(k)
SGD]) and E[∇f(x

(k)
SGD)]. This piecewise

quadratic function has an unbounded third order deriva-
tive at 0, which causes this difference to be large when-

ever the distribution of x
(k)
SGD spans both sides of 0. This

worst case construction motivates our further study of
the bias under a third-order derivative bound.

2.2 The Bias Under Third-Order
Smoothness

We formally state our third-order smoothness condition
in the following assumption.

7Throughout this section, we mainly focus on the iterate
bias bound in the regime of sufficiently small η for simplicity
and easy comparison. Our complete theorem in appendix
covers the case of general η choice.
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Assumption 2. Assume f(x; ξ) is third-order differ-
entiable w.r.t. x for any ξ, and

(a) f(x; ξ) is Q-3rd-order-smooth, i.e. for any ξ, for
any x,y, ‖∇2f(x; ξ)−∇2f(y; ξ)‖2 ≤ Q‖x− y‖2.

(b) ∇f(x, ξ) has σ4-bounded 4th order central moment,

i.e. for all x, Eξ
[
‖∇f(x, ξ)−∇F (x)]‖4

]
≤ σ4.

We show that under this additional assumption, the
iterate bias reduces to O(η3k2Qσ2), which scales on
the order of η3 (rather than η2) as η goes to 0.

Theorem 2.4 (Simplified from Theorem A.3). Under
Assumptions 1 and 2, there exists an absolute constant
c̄ such that for any initialization x, for any η ≤ 1

2H ,

the iterate bias satisfies
∥∥∥Ex

(k)
SGD − z

(k)
GD

∥∥∥
2
≤ c̄ ·η3k2Qσ2.

Theorem 2.4 also reveals the dependency on the third-
order smoothness Q. In the extreme case where Q = 0
(f is quadratic), the iterate bias will disappear. It is
worth noting that since Assumption 1 is still required
in Theorem 2.4, the original upper bound O(η2k

3
2Hσ)

from Theorem 2.2 still applies, and one can formulate
the upper bound as the minimum of the two.

The following lower bound shows that the upper bound
in Theorem 2.4 is sharp.

Theorem 2.5 (Simplified from Theorem A.4). There
exists an absolute constant c such that for any H,σ,K,
for any sufficiently small Q (polynomially dependent
on H,σ,K), there exists an objective f(x; ξ) and dis-
tribution ξ ∼ D satisfying Assumptions 1 and 2 such
that for any η ≤ 1

2HK and integer k ∈ [2,K], the it-
erate bias from the optimum x? is lower bounded as∥∥∥Ex

(k)
SGD − z

(k)
GD

∥∥∥
2
≥ c · η3k2Qσ2.

2.3 Revealing Iterate Bias Via Contin-
uous Perspective

While the proofs of the results above are quite tech-
nical, the intuition for these bounds is much easier to
see in a continuous view of SGD. As an example, we
demonstrate how the Θ(η3k2Qσ2) term shows up in
Theorems 2.4 and 2.5.

Consider a one-dimensional instance of SGD with Gaus-
sian noise, where f(x; ξ) = F (x)−ξx, and ξ ∼ N (0, σ2).
The SGD then follows

x
(k+1)
SGD = x

(k)
SGD−η∇F (x

(k)
SGD)+ηξ(k), where ξ(k) ∼ N (0, σ2).

(2.1)
The continuous limit of (2.1) corresponds to the

following SDE, with the scaling t = ηk:

dX(t) = −F ′(X(t))dt+
√
ησdBt, (2.2)

where Bt denotes the Brownian motion (also known
as the Wiener process).8

To get a handle of the iterate bias, our goal is to
study E[X(t)|X(0) = x], the expectation of the SDE
solution X(t) initialized at x. We view this quantity
as a multivariate function u(t, x) of t and x, with the
objective to Taylor expand u(t, x) around u(0, x) in
t:

u(t, x) = u(0, x) + ut(0, x)t+
1

2
utt(0, x)t2 + o(t2).

For brevity, we use subscript notation to denote

partial derivatives, e.g, ux denotes ∂u(t,x)
∂x . The rela-

tionship of u(t, x) and the SDE (2.2) is established by
the Kolmogorov backward equation as follows.

Claim 2.6 (Kolmogorov backward equation (Øksendal,
2003)). Let u(t, x) = E[X(t)|X(0) = x], then u(t, x)
satisfies the following partial differential equation:

ut = −Fxux + ησ2uxx, with u(0, x) = x. (2.3)

Using this claim, we can compute the first two deriva-
tives of u(t, x) in t, as follows:

Lemma 2.7. Suppose u(t, x) satisfies the PDE (2.3),
then ut(0, x) = −Fx, utt(0, x) = FxFxx − ησ2Fxxx.

Proof sketch of Lemma 2.7. The first equation follows
from equation (2.3) and the fact that ux(0, x) ≡ 1 and
uxx(0, x) ≡ 0 since u(0, x) = x. To see the second
equation, we take ∂t on both sides of (2.3), which gives

utt = −Fxuxt + ησ2uxxt. (2.4)

Since uxt = utx = (ut)x, one has (by Eq. (2.3))

uxt = (−Fxux+ησ2uxx)x = −Fxxux+−Fxuxx+ησ2uxxx.

For t = 0 we have uxt(0, x) = −Fxx since uxx(0, x) ≡
uxxx(0, x) ≡ 0. Taking another ∂x yields uxxt(0, x) =
−Fxxx. Plugging back to Eq. (2.4) yields the second
equation of the lemma 2.7.

With Lemma 2.7 we can expand u(t, x) around (0, x):

u(t, x) = x− Fxt+
1

2

(
FxFxx − ησ2Fxxx

)
t2 + o(t2).

Ignoring higher order terms in t, the term − 1
2ησ

2Fxxx
reflects the difference between the noiseless GD tra-
jectory from x and E[X(t)|X(0) = x], that is, the
iterate bias. Converting back to the discrete trajectory
(Eq. (2.1)) via the scaling t = ηk, we obtain

E[x
(k)
SGD ]− z

(k)
GD ≈ −

1

2
η3k2σ2Fxxx(x).

8To justify the relation of Eq. (2.1) and Eq. (2.2), note
that Eq. (2.1) can be viewed as a numerical discretiza-
tion (Euler-Maruyama discretization (Kloeden and Platen,
1992)) of the SDE (2.2) with time step-size η.
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When the third derivative of F is bounded by Q,
this recovers the upper bound of O(η3k2Qσ2) in Theo-
rem 2.4. The lower bound of Theorem 2.5 follows by
choosing a function with third derivative Q at x?.

While it is possible to derive these results via more-
involved discrete approaches, we believe the SDE ap-
proach may be promising for understanding more gen-
eral objectives and algorithms. For instance, for multi-
dimensional objectives, one can apply the same tech-
niques to derive the direction of the iterate bias via a
multi-dimensional SDE, which is difficult to derive in
the discrete setting.

3 LOWER BOUND RESULTS

In this section, we present our lower bounds for Fe-
dAvg in both convex homogeneous and heterogeneous
settings, and discuss its implications. We then show
how use the lower bound on the bias of SGD from Sec-
tion 2 to establish a lower bound on the convergence
of FedAvg.

Our main result for the homogeneous setting is the
following theorem.

Theorem 3.1 (Lower bound for homogeneous Fe-
dAvg (see Theorem B.1)). For any K ≥ 2, R, M ,
σ, and D, there exists f(x; ξ) and distribution ξ ∼ D
satisfying Assumption 1 with optimum x?, such that for
some initialization x(0,0) with ‖x(0,0) − x?‖2 < D, the
final iterate of FedAvg with any step size satisfies:

E
[
F (x(R,0))

]
− F (x?) ≥

Ω

(
HD2

KR
+

σD√
MKR

+ min

{
σD√
KR

,
H

1
3 σ

2
3D

4
3

K
1
3R

2
3

})
.

This lower bound matches the best known upper bound
given by the theorem 2 of (Woodworth et al., 2020b).

We extend our results to FedAvg in the heterogeneous
setting. Recall that in this setting, we allow each
client m to draw ξ from its own distribution Dm. We
prove our results under the following assumption on
heterogeneity of the gradient at the optimum.

Assumption 3 (Bounded gradient heterogeneity at

optimum). 1
M

∑M
m=1 ‖∇Fm(x?)‖22 ≤ ζ2∗ .

Remark 3.2. While the right measure of heterogene-
ity is a subject of significant debate in the FL commu-
nity, the most popular are either a bound on gradient
heterogeneity at x? (Assumption 3), or a stronger as-
sumption of uniform gradient heterogeneity: for any x,
1
M

∑M
m=1 ‖∇Fm(x)−∇F (x)‖22 ≤ ζ2. The best-known

lower bound, due to Woodworth et al. (2020a), consid-
ers the weaker Assumption 3. We remark however that

the strongest upper bounds use the stronger uniform
assumption (e.g., (Woodworth et al., 2020b) 9).

Theorem 3.3 (Lower bound for heterogeneous Fe-
dAvg (see Theorem B.1)). For any K ≥ 2, R,M ,
H, D, σ, and ζ∗, there exist f(x; ξ) and distributions
{Dm}, each satisfying Assumption 1, and together sat-
isfying Assumption 3, such that for some initialization
x(0,0) with ‖x(0,0) − x?‖2 < D, the final iterate of Fe-
dAvg with any step size satisfies:

E
[
F (x(R,0))

]
− F (x?) ≥ Ω

(
HD2

KR
+

σD√
MKR

+ min

{
σD√
KR

,
H

1
3 σ

2
3D

4
3

K
1
3R

2
3

}
+ min

{
ζ2∗
H
,
H

1
3 ζ

2
3
∗ D

4
3

R
2
3

})

Theorem 3.3 is nearly tight, up to a difference in the
definitions of heterogeneity (See Remark 3.2). We
compare our result to existing lower bounds and upper
bounds in Table 1.

3.1 Interpretation of Theorem 3.3

To better understand the convergence rates in the The-
orems above, first observe that the first two terms in

both rates, HD
2

KR + σD√
MKR

is familiar from the standard

SGD convergence rate. The term HD2

KR corresponds
to the deterministic convergence, which appears even
when there is no noise. The term σD√

MKR
is a standard

statistical noise term that applies to any algorithm
which accesses MKR total stochastic gradients.

The third term in both theorems, H
1
3 σ

2
3D

4
3

K
1
3R

2
3

depends

on the variance of the noise, and arises due to the
iterate bias of SGD. This term appears even in the
homogeneous setting where all clients access the same
distribution. Our main contribution is proving the ap-
pearance of this term in the lower bound. The previous
best lower bound, due to Woodworth et al. (2020b),

achieved in comparison the term H
1
3 σ

2
3D

4
3

K
2
3R

2
3

, which is a

factor of K
1
3 weaker. We expand on how we achieve

this term in subsection 3.2.

The last term of Theorem 3.3, H
1
3 ζ

2
3
∗ D

4
3

R
2
3

is due to an-

other bias that scales with the heterogeneity of the
data among the clients. In comparison, the best known

9While Khaled et al. (2020) studies a relaxed assump-
tion (optimum-heterogeneity like Assumption 3 instead
of uniform-heterogeneity), these results only hold with a
much smaller step-size range η . 1

KH
(in our notation,

c.f. Theorem 3, 4 and 5 in their work), instead of η . 1
H

as in the uniform setting. Under this restricted step-size
range, one cannot recover the same upper bounds as in
uniform-heterogeneity by optimizing η.
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lower bound on the dependence on the heterogeneity is

min

(
HD2

R , H
1
3 ζ

2
3
∗ D

4
3

R
2
3

)
. Note that as R becomes large,

the minimum is achieved by HD2

R , yielding a signifi-
cantly weaker lower bound which doesn’t depend at all
on the heterogeneity.

Our lower bound shows that under only and assump-
tion of second order smoothness and convexity (As-
sumptions 1), FedAvg may achieve a rate as slow as

K−
1
3R−

2
3 . Prior work has pointed out that this rate

can be beat by alternative algorithms that use the
same (or less) communication and gradient computa-
tion. One such algorithm is minibatch SGD , which
replaces the K iterations of local SGD at each client
with a single iteration. This results in the same out-
come as R iterations of SGD with minibatch size M . A
second such algorithm, single-machine SGD ignores all
but one client, and results the same outcome as KR it-
erations of SGD. Under Assumption 1, the best of these
two algorithms (minibatch SGD and single-machine
SGD) achieves a rate of

HD2

KR
+

σD√
MKR

+ min

(
HD2

R
,
σD√
KR

)
.

It turns out that this rate always dominates the the
sharp rate we have shown for FedAvg. Further, when

σ and K are large, this rate is dominated by HD2

R , while

the rate of FedAvg is dominated by H
1
3 σ

2
3D

4
3

K
1
3R

2
3

. In this

regime, the rate of this “naive” algorithm may improve

on the rate of FedAvg by a factor of
(
Rσ2H2

K

)1/3
.

3.2 Constructing Lower Bound from It-
erate Bias

In this subsection, we theoretically establish the rela-
tionship between the iterate bias (Definition 2.1) and
the lower bound on the function error of FedAvg.

Recall that in Theorem 2.3, we proved a lower bound
on bias from the optimum x?, which came from ana-
lyzing SGD with Gaussian noise on the the piecewise
quadratic function, which we abbreviate “ψ(x)”:

f(x; ξ) = ψ(x) + xξ, ψ(x) =

{
1
2
Hx2 x ≥ 0,

1
4
Hx2 x < 0.

(3.1)

where ξ ∼ N (0, 1).

To construct our lower bound, we show when we run Fe-
dAvg on the function above, this same bias, η2k

3
2Hσ,

persists more generally from any x which is not too far
from the optimum x? = 0. Loosely speaking, we can
achieve this same bias whenever a constant fraction
of the mass of the iterate x

(k)
SGD lies on each side of x?.

Since the variance of x
(k)
SGD is on the order of η2kσ2, we

can prove that the bias from x will continue at the rate

given in Theorem 2.3 from any x with |x| ≤ Θ(η
√
kσ).

In fact, we can extend this observation to the case when

the initial iterate x
(0)
SGD is a random variable, and its

expectation is bounded, yielding the following lemma:

Lemma 3.4 (Simplified from Lemma B.3). Let f(x, ξ)
be as in 3.1. If η ≤ 1

2kH ,10 then there exist constants
c1 and c2 > 0 such that for any random variable x with
E[x]2 ≤ c1kη2σ2 and E[x] ≤ 0, we have

ExESGD[x
(k)
SGD |x

(0)
SGD = x] ≤ Ex[z

(k)
GD |z

(0)
GD = x]− c2η2k

3
2Hσ.

Directly applying Lemma 3.4, we can show that the
expectation of the FedAvg iterate x(r,0) moves in the
negative direction each round:

E[x(r+1,0)|x(r,0)] ≤ (1− ηH/2)KE[x(r,0)]− c2η2K3/2Hσ,
(3.2)

so long as η ≤ 1
2KH and −

√
c1Kησ ≤ E[x(r,0)] ≤ 0.

Of course, when E[x(r,0)] becomes too negative, the
force of the gradient in the positive direction exceeds
the negative bias. Once this occurs, we are in the
mixing regime. One can check from Eq. (3.2) that this
occurs roughly when E[x(r,0)] ≈ −ηK1/2σ. Combining
these observations, we obtain the following lemma,
stated to include the more general case when η > 1

2kH .

Lemma 3.5. Let f(x, ξ) be as in 3.1. There exists a
universal constant c such that for η ≤ 1

6H , if x(0,0) = 0,

then E[F (x(R,0))] ≥ c2

4 ησ
2 min

(
R(ηHK)3, 1, ηHK

)
.

With this bound on the function error of the step
function, proving our lower bound for the homogeneous
case follows by considering the function on R3 used
in the lower bound construction of Woodworth et al.
(2020b). We state this function fully in the appendix.

Our lower bound for the heterogeneous setting is simi-
lar, but involves the following additional ingredient:

Lemma 3.6. Consider FedAvg with M clients with

f (3)(x; (ξ1, ξ2)) =

{
Hx2 − xξ2 ξ1 = 1
H
2
x2 − xξ2 ξ1 = 2

,

and for all the odd m ∈ [M ], we have (ξ1, ξ2) =
(1, ζ∗) always, while for all the even m ∈ [M ] we have
(ξ1, ξ2) = (2,−ζ∗). There exists a universal constant
ch such that for η ≤ 1

H , if x(0,0) ≤ 0, then FedAvg
with R rounds and K steps per round results in

x(R,0) ≤ − ch
H

min(1, ηHK, (ηHK)2R)ζ∗.

10For simplicity, in this section we focus on the regime
where η ≤ 1

2kH
, though our proofs in the Appendix we

consider any η ≤ O( 1
H

).
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The functions studied in this lemma appear in the
heterogeneous lower bound construction in Woodworth
et al. (2020a), but the analysis we give in this lemma
is much tighter than theirs.

4 FEDAVG UPPER BOUNDS
UNDER THIRD-ORDER
SMOOTHNESS

In light of the limitations of FedAvg discussed in
Section 3, it is natural to ask if there are additional
assumptions under which FedAvg may perform better.
Several classes of additional assumptions have been
suggested for studying the performance of FedAvg.
Perhaps the most common, and the one supported from
our intuition on the bias, is an assumption of third-
order smoothness, stated formally in Assumption 2.
Previously it has been shown that under such an as-
sumption, FedAvg may converge faster. We present
several state-of-the-art bounds for FedAvg under As-
sumption 2, including for the non-convex case.

Theorem 4.1 (Upper bound for FedAvg under 3rd
order smoothness (see Theorem C.1)). Suppose f(x, ξ)
satisfies Assumptions 1 and Assumptions 2. Then for
some step size, FedAvg satisfies

E
[
‖∇f(x̂)‖2

]
≤ O

(
HB

KR
+

σ
√
BH√

MKR
+
B

4
5 σ

4
5Q

2
5

K
2
5R

4
5

)

where x̂ := 1
M

∑
m x

(r,k)
m for a random choice of

k ∈ [K], and r ∈ [R], and B := F (x(0,0))− infx F (x).

In the non-convex setting, akin to some other work
in FL literature (Yu et al., 2019b; Reddi et al., 2021),
we require an assumption bounding moments of the
stochastic gradients. Note that this is stronger that As-
sumption 1 which bounds the variance of the stochastic
gradients. We remark that several other works impose
weaker assumptions, though the algorithms they con-
sider are different, or their results are weaker. (Stich,
2019; Koloskova et al., 2020; Wang and Joshi, 2018).

Assumption 4 (Bounded gradients). For any x, we
have Eξ

[
‖∇f(x, ξ)‖4

]
≤ G4.

Theorem 4.2 (Upper bound for FedAvg with non–
Convex objectives under third-order smoothness, see
Theorem C.2). Suppose F (x) is H-smooth and f(x, ξ)
satisfies Assumptions 2 and 4. Then for some step size,
we have

E
[
‖∇f(x̂)‖2

]
≤ O

(
HB

KR
+
G
√
BH√

MKR
+
B

4
5G

4
5Q

2
5

R
4
5

)
,

where x̂ := 1
M

∑
m x

(r,k)
m for a random choice of

k ∈ [K], and r ∈ [R], and B := F (x(0,0))− infx F (x).

Remark 4.3. In Theorem C.2, we weaken Assump-
tion 4 to a uniform bound on ‖∇F (x)‖.

This theorem shows that the convergence rate of Fe-
dAvg improves substantially under third order smooth-
ness. In comparison, the best known rate for Fe-
dAvg with non-convex objectives (under second-order

smoothness alone) is HB
KR + G

√
BH√

MKR
+ B

2
3G

2
3H

2
3

R
2
3

,11 due

to Yu et al. (2019b).12 Observe that we improve the

dependence from R
2
3 in the third term to R

4
5 .

5 CONCLUSION

In this work we provided sharp lower bounds for homo-
geneous and heterogeneous FedAvg that matches the
existing upper bound. By solving this open problem,
we highlight the obstacles to FedAvg, and show how
a third-order smoothness assumption can lead to faster
convergence. We expect the proposed techniques can
shed light on the analysis of other federated algorithms
and aid design of more efficient federated algorithms.
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A FORMAL THEOREMS AND PROOFS ON THE BOUNDS OF ITERATE
BIAS

In this section, we list and prove the complete theorems on the lower and upper bounds of iterate bias discussed
in Section 2.

A.1 Formal Theorems Statement

Theorem A.1 (Upper bound of iterate bias under second-order smoothness, complete version of Theorem 2.2).

Assume F (x) := Eξ f(x; ξ) satisfies Assumption 1. Let {x(k)
SGD}∞k=0 be the trajectory of SGD initialized at x

(0)
SGD = x,

and {z(k)GD }∞k=0 be the trajectory of GD initialized at z
(0)
GD = x, namely namely

x
(k+1)
SGD := x

(k)
SGD − η∇f(x

(k)
SGD; ξ

(k)), z
(k+1)
GD := z

(k)
GD − η∇F (z

(k)
GD ), for k = 0, 1, . . .

Then for any η ≤ 1
H , the following inequality holds∥∥∥Ex

(k)
SGD − z

(k)
GD

∥∥∥
2
≤ min{4η2k 3

2Hσ, ηk
1
2σ}. (A.1)

The proof of Theorem A.1 is provided in Section A.2.
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Theorem A.2 (Lower bound of iterate bias under second-order smoothness, complete version of Theorem 2.3).
For any H,σ,K, there exists a function f(x; ξ) and a distribution D satisfying Assumption 1 such that for any
η ≤ 1

2H , for any k ≤ K the following iterate bias inequality holds for SGD and GD initialized at the optimum∥∥∥E[x
(k)
SGD]− z

(k)
GD

∥∥∥ ≥ 0.002 min
{
η2k

3
2Hσ, η

1
2H−

1
2σ
}
.

Theorem A.2 is proved in Section B.2 as a special case of Lemma B.8, by taking x(0) = 0 to be the optimum.

Theorem A.3 (Upper bound of iterate bias under third-order smoothness, complete version of Theorem 2.4).

Assume F (x) := Eξ f(x; ξ) satisfies Assumptions 1 and 2. Let {x(k)
SGD}∞k=0 be the trajectory of SGD initialized at

x
(0)
SGD = x, and {z(k)GD }∞k=0 be the trajectory of GD initialized at z

(0)
GD = x, namely namely

x
(k+1)
SGD := x

(k)
SGD − η∇f(x

(k)
SGD; ξ

(k)), z
(k+1)
GD := z

(k)
GD − η∇F (z

(k)
GD ), for k = 0, 1, . . .

Then for any η ≤ 1
H , the following inequality holds∥∥∥Ex

(k)
SGD − z

(k)
GD

∥∥∥
2
≤ min

{
1

4
η3k2Qσ2, 4η2k

3
2Hσ, ηk

1
2σ

}
.

The proof of Theorem A.3 is provided in Section A.3.

Theorem A.4 (Lower bound of iterate bias under third-order smoothness, complete version of Theorem 2.5).

For any H,σ,K, for any Q ≤ H2

12Kσ , there exists a function f(x; ξ) and a distribution D satisfying Assumptions 1
and 2 such that for any η ≤ 1

2H , for any k < K, the following iterate bias inequality holds for SGD and GD
initialized at the optimum ∥∥∥E[x

(k)
SGD]− z

(k)
GD

∥∥∥ ≥ 0.005η3σ2Qmin

{
k − 1

ηH
, k(k − 1)

}
. (A.2)

The proof of Theorem A.4 is provided in Section A.4.

A.2 Proof of Theorem A.1: Upper Bound of Iterate Bias Under 2nd-Order
Smoothness

The proof of Theorem A.1 is based on the following two lemmas: Lemmas A.5 and A.6.

Lemma A.5. Under the same settings of Theorem A.1, for any η ≤ 1
H , the following inequality holds∥∥∥Ex

(k)
SGD − z

(k)
GD

∥∥∥
2
≤ (1 + ηH)k − 1

ηH
· 2η2Hk 1

2σ.

Proof of Lemma A.5. By definition of x
(k+1)
SGD and z

(k+1)
GD we obtain∥∥∥Ex

(k+1)
SGD − z

(k+1)
GD

∥∥∥
2

=
∥∥∥(Ex

(k)
SGD − z

(k)
GD

)
− η

(
E∇F (x

(k)
SGD)−∇F (z

(k)
GD )
)∥∥∥

2

≤
∥∥∥Ex

(k)
SGD − z

(k)
GD

∥∥∥
2

+ η
∥∥∥E∇F (x

(k)
SGD)−∇F (z

(k)
GD )
∥∥∥
2
.

Now we seek an upper bound for
∥∥∥E∇F (x

(k)
SGD)−∇F (z

(k)
GD )
∥∥∥
2
. Observe that∥∥∥E∇F (x

(k)
SGD)−∇F (z

(k)
GD )
∥∥∥
2

≤E
∥∥∥∇F (x

(k)
SGD)−∇F (z

(k)
GD )
∥∥∥
2

(Jensen’s inequality)

≤ηH E
∥∥∥x(k)

SGD − z
(k)
GD

∥∥∥
2

(by H-smoothness of F )

≤ηH
(∥∥∥Ex

(k)
SGD − z

(k)
GD

∥∥∥
2

+ E
∥∥∥x(k)

SGD − Ex
(k)
SGD

∥∥∥
2

)
(by triangle inequality)

≤ηH

(∥∥∥Ex
(k)
SGD − z

(k)
GD

∥∥∥
2

+

√
E
∥∥∥x(k)

SGD − Ex
(k)
SGD

∥∥∥2
2

)
. (by Holder’s inequality)
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By standard convex stochastic analysis (e.g. (Khaled et al., 2020)) one can show that E
∥∥∥x(k)

SGD − Ex
(k)
SGD

∥∥∥2
2
≤ 2η2kσ2.

Consequently ∥∥∥Ex
(k+1)
SGD − z

(k+1)
GD

∥∥∥
2
≤ (1 + ηH)

(∥∥∥Ex
(k)
SGD − z

(k)
GD

∥∥∥
2

)
+ 2η2Hk

1
2σ. (A.3)

Telescoping Eq. (A.3) completes the proof.

Lemma A.6. Under the same settings of Theorem A.1, or any η ≤ 1
H , the following inequality holds∥∥∥Ex

(k)
SGD − z

(k)
GD

∥∥∥
2
≤ ηk 1

2σ.

Proof of Lemma A.6. By definition of x
(k+1)
SGD and z

(k+1)
GD we obtain

E
∥∥∥x(k+1)

SGD − z
(k+1)
GD

∥∥∥2
2

= E
∥∥∥(x

(k)
SGD − z

(k)
GD

)
− η

(
∇f(x

(k)
SGD; ξ

(k))−∇F (z
(k)
GD )
)∥∥∥2

2

≤E
∥∥∥(x(k)

SGD − z
(k)
GD

)
− η

(
∇F (x

(k)
SGD)−∇F (z

(k)
GD )
)∥∥∥2

2
+ η2σ2. (by independence and σ2-bounded covariance)

Note that ∥∥∥(x
(k)
SGD − z

(k)
GD

)
− η

(
∇F (x

(k)
SGD)−∇F (z

(k)
GD )
)∥∥∥2

2

=
∥∥∥x(k)

SGD − z
(k)
GD

∥∥∥2
2
− 2η

〈
∇F (x

(k)
SGD)−∇F (z

(k)
GD ),x

(k)
SGD − z

(k)
GD

〉
+ η2

∥∥∥∇F (x
(k)
SGD)−∇F (z

(k)
GD )
∥∥∥2
2

≤
∥∥∥x(k)

SGD − z
(k)
GD

∥∥∥2
2
−
(

2η

H
− η2

)∥∥∥∇F (x
(k)
SGD)−∇F (z

(k)
GD )
∥∥∥2
2

(by convexity and H-smoothness)

≤
∥∥∥x(k)

SGD − z
(k)
GD

∥∥∥2
2
. (since η ≤ 2

H )

Therefore

E
∥∥∥x(k+1)

SGD − z
(k+1)
GD

∥∥∥2
2
≤ E

∥∥∥x(k)
SGD − z

(k)
GD

∥∥∥2
2

+ η2σ2.

Telescoping yields

E ‖x(k)
SGD − z

(k)
GD ‖22 ≤ η2kσ2.

and thus by Jensen’s inequality and Holder’s inequality

∥∥∥Ex
(k)
SGD − z

(k)
GD

∥∥∥
2
≤ E

∥∥∥x(k)
SGD − z

(k)
GD

∥∥∥
2
≤
√
E
∥∥∥x(k)

SGD − z
(k)
GD

∥∥∥2
2
≤ ηk 1

2σ.

With Lemmas A.5 and A.6 at hands we are ready to prove Theorem A.1.

Proof of Theorem A.1. We consider the case of η ≤ 1
Hk and η > 1

Hk separately. In either case we have∥∥∥Ex
(k)
SGD − z

(k)
GD

∥∥∥
2
≤ ηk 1

2σ by Lemma A.6.

If η ≤ 1
Hk , by Lemma A.5, we have

∥∥∥Ex
(k)
SGD − z

(k)
GD

∥∥∥
2
≤ (1 + ηH)k − 1

ηH
2η2Hk

1
2σ ≤ eηHK − 1

ηH
2η2Hk

1
2σ ≤ 4η2Hk

3
2σ,

where the last inequality is due to eηHk − 1 ≤ 2ηHk since ηHk ≤ 1. Therefore Eq. (A.1) is satisfied.

If η > 1
Hk , then ηk

1
2σ < η2Hk

3
2σ. Hence Eq. (A.1) is also satisfied.
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A.3 Proof of Theorem A.3: Upper Bound of Iterate Bias Under 3rd-order Smooth-
ness

The proof of Theorem A.3 is based on the following lemma.

Lemma A.7. Consider the same settings of Theorem A.3. For any k, define vector-valued function

u(k)(x) = E
[
x
(k)
SGD | x(0) = x

]
.

Then the following results hold.

(a) For any k, u(k+1)(x) = Eξ
[
u(k)(x− η∇f(x; ξ))

]
.

(b) For any k, Du(k+1)(x) = Eξ
[
Du(k)(x− η∇f(x; ξ))

(
I− η∇2f(x; ξ)

)]
. Here D denotes the Jacobian operator.

(c) For any k, supx ‖Du(k)(x)‖ ≤ 1.

(d) For any k, supx ‖D2u(k)(x)‖ ≤ ηkQ.

(e) For any k,
∥∥u(k+1)(x)− u(k)(x− η∇F (x))

∥∥
2
≤ 1

2η
3kQσ2.

Proof of Lemma A.7. (a) Holds by time-homogeneity of the SGD sequence as

u(k+1)(x) = E
[
x
(k+1)
SGD

∣∣∣x(0)
SGD = x

]
= Eξ E

[
x
(k+1)
SGD

∣∣∣x(1)
SGD = x− η∇f(x; ξ)

]
= Eξ E

[
x
(k)
SGD

∣∣∣x(0)
SGD = x− η∇f(x; ξ)

]
= Eξ

[
u(k)(x− η∇f(x; ξ))

]
.

(b) Holds by taking derivative on both sides of (a). Indeed, for any i ∈ [d], one has

∇u(k+1)
i (x)> = Eξ

[
∇u(k)i (x− η∇f(x; ξ))>

(
I− η∇2f(x; ξ)

)]
,

where u
(k)
i denotes the i-th coordinate of the vector-valued function u(k).

(c) By (b) one has ∥∥∥Du(k+1)(x)
∥∥∥ ≤ Eξ

[∥∥∥Du(k)(x− η∇f(x; ξ))
∥∥∥∥∥I− η∇2f(x; ξ)

∥∥] .
Since f(x; ξ) is convex and H-smooth w.r.t. x, and η ≤ 1

H , one has supx,ξ

∥∥I− η∇2f(x; ξ)
∥∥ ≤ 1. Therefore

sup
x

∥∥∥Du(k+1)(x)
∥∥∥ ≤ sup

x

∥∥∥Du(k)(x)
∥∥∥ .

By definition of u(0)(x) = Du(0)(x) = I. Telescoping the above inequality yields (c).

(d) Taking twice derivatives w.r.t. x on both sides of (a) gives (for any i)

∇2u
(k+1)
i (x) = Eξ

[
(I− η∇2f(x; ξ))∇2u

(k)
i (x− η∇f(x; ξ))(I− η∇2f(x; ξ))− η∇3f(x; ξ)[∇u(k)

i (x− η∇f(x; ξ))]
]

Therefore

sup
x
‖D2u(k+1)(x)‖2 ≤ sup

x
‖D2u(k)(x)‖2 sup

x,ξ
‖I−η∇2f(x; ξ)‖22+η ·

(
sup
x,ξ
‖∇3f(x; ξ)‖2

)
·
(

sup
x
‖Du(k)(x)‖2

)
.

Since f(x; ξ) is convex and H-smooth w.r.t. x and η ≤ 1
H , one has supx,ξ

∥∥I− η∇2f(x; ξ)
∥∥ ≤ 1. Also by (c),

we arrive at
sup
x
‖D2u(k+1)(x)‖2 ≤ sup

x
‖D2u(k)(x)‖2 + ηQ

Telescoping from 0 to k yields (d).
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(e) By (a) ∥∥∥u(k+1)(x)− u(k)(x− η∇F (x))
∥∥∥
2

=
∥∥∥Eξ [u(k)(x− η∇f(x; ξ))

]
− u(k)(x− η∇F (x))

∥∥∥
2

(by (a))

=
∥∥∥Eξ [u(k)(x− η∇f(x; ξ))− u(k)(x− η∇F (x))−Du(k)(x− η∇F (x)) (η∇f(x; ξ)− η∇F (x))

]∥∥∥
2

(Since Eξ∇f(x; ξ) = ∇F (x))

≤Eξ
∥∥∥u(k)(x− η∇f(x; ξ))− u(k)(x− η∇F (x))−Du(k)(x− η∇F (x)) (η∇f(x; ξ)− η∇F (x))

∥∥∥
2

(By Jensen’s inequality)

≤1

2
sup
x
‖D2u(k)(x)‖2 Eξ ‖η∇F (x)− η∇f(x; ξ)‖22 (By Taylor’s expansion)

≤1

2
ηkQη2 · σ2 =

1

2
η3kQσ2.

We are now ready to finish the proof of Theorem A.3.

Proof of Theorem A.3. By Lemma A.7(e), for any j ∈ {0, 1, . . . , k}∥∥∥u(k−j)(z
(j)
GD )− u(k−j−1)(z

(j+1)
GD )

∥∥∥
2
≤ 1

2
η3(k − j − 1)Qσ2

Consequently

∥∥∥Ex
(k)
SGD − z

(k)
GD

∥∥∥ =
∥∥∥u(k)(z

(0)
GD )− u(0)(z

(k)
GD )
∥∥∥ ≤ k−1∑

j=0

∥∥∥u(k−j)(z
(j)
GD )− u(k−j−1)(z

(j+1)
GD )

∥∥∥
2
≤ 1

4
η3k2Qσ2.

A.4 Proof of Theorem A.4: Lower Bound of Iterate Bias Under 3rd-order Smooth-
ness

Before we state the proof of Theorem A.4, let us first describe the following helper function used to construct the
lower bound instance. Define

ϕ(x) =

∫ x

0

log(cosh(x))dx. (A.4)

In the following lemma, we show that this ϕ(x) satisfies the following properties

Lemma A.8. The following properties hold for the ϕ(x) defined in Eq. (A.4).

(a) ϕ′(x) = log(cosh(x)). Therefore ϕ′(x) ≤ |x|. In particular ϕ(0) = 0.

(b) ϕ′′(x) = tanh(x). In particular ϕ′′(0) = 0, limx→+∞ ϕ′′(x) = 1, limx→−∞ ϕ′′(x) = −1, and ϕ′′(x) ∈ [−1, 1]
for any x ∈ R.

(c) ϕ′′′(x) = sech2(x). In particular ϕ′′′(0) = 1, limx→+∞ ϕ′′′(x) = 0, limx→−∞ ϕ′′′(x) = 0, and ϕ′′′(x) ∈ [0, 1]
for any x ∈ R. Also ϕ′′′(x) ≥ 1

2 for any x ∈ [− 1
2 ,+

1
2 ]

(d) ϕ′′′′(x) = −2 sech2(x) tanh(x). In particular ϕ′′′′(x) ∈ (−1, 1) for any x ∈ R.

Proof of Lemma A.8. All results follow by standard trigonometry analysis.

Next we establish the following lemma
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Lemma A.9. Consider

f(x; ξ) =
3

8
Hx2 +

H3

64Q2
ϕ

(
4Q

H
x

)
+ ξ, F (x) := Eξ∼U [−σ,σ] f(x; ξ). (A.5)

where ϕ is defined in Eq. (A.4). Then

(a) f ′′(x; ξ) = F ′′(x) = 3
4H + 1

4Hϕ
′′
(

4Q
H x
)

. Therefore F ′′(x) ∈ [ 12H,H] for any x ∈ R.

(b) f ′′′(x; ξ) = F ′′′(x) = Qϕ′′′( 4Q
H x). Therefore F ′′′(x) ∈ [0, Q] for any x ∈ R. In particular F ′′′(0) = Q, and

F ′′′(x) ≥ 1
2Q for any x ∈ [− H

8Q ,+
H
8Q ].

(c) f(x; ξ) satisfies Assumptions 1 and 2.

Proof of Lemma A.9. (a,b) follow from Lemma A.8. (c) follows by (a, b) and the fact that the variance of
U [−σ,+σ] ≤ σ2.

The following lemma studies the SGD trajectory on f defined in Eq. (A.5).

Lemma A.10. Let {x(k)
SGD}∞k=0 be the SGD trajectory on the function f defined in Eq. (A.5), with learning rate η,

that is
x
(k+1)
SGD ← x

(k)
SGD − η · f ′(x

(k)
SGD; ξ

(k)), ξ(k) ∼ U [−σ,+σ].

Define

uk(x) := E[x
(k)
SGD|x

(0)
SGD = x].

Then the following results hold

(a) uk+1(x) = Eξ [uk(x− ηf ′(x; ξ))]

(b) u′k+1(x) = Eξ [(1− ηF ′′(x)) · u′k(x− ηf ′(x; ξ))].

(c) u′′k+1(x) = Eξ
[
(1− ηF ′′(x))2u′′k(x− ηf ′(x; ξ))− ηF ′′′(x)u′k(x− ηf ′(x; ξ))

]
.

(d) For any k, infx{u′k(x)} ≥ (1− ηH)k holds.

(e) For any k, supx{u′′k(x)} ≤ 0.

(f) For any x ∈ R and k, it is the case that u′′k+1(x) ≤ (1− ηH)2 Eξ[u′′k(x− ηf ′(x; ξ))]− η(1− ηH)F ′′′(x).

Proof of Lemma A.10. (a) Proved in Lemma A.7(a).

(b) Proved in Lemma A.7(b).

(c) Holds by taking derivative with respect to x on both sides of (b).

(d) Since F ′′(x) ∈ [ 12H,H], by (b), we have

inf
x
{u′k+1(x)} ≤ (1− ηH) inf

x
{u′k(x)}.

By definition of u0 we have u0(x) ≡ x and thus u′0(x) ≡ 1. Telescoping the above inequality gives (d).

(e) We prove by induction. For k = 0 we have u′′0(x) ≡ 0 which clearly satisfies (e). Now assume (e) holds for
the case of k, and we study the case of k + 1.

Since F ′′(x) ∈ [ 12H,H] and F ′′′(x) ≥ 0, by (c) and (d), we have

sup
x
{u′′k+1(x)} ≤ (1− ηH)2 sup

x
{u′′k(x)} − η inf

x
{F ′′′(x)}(1− ηH)k ≤ 0,

completing the induction.
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(f) Holds by (c-e).

We further have the following lemma.

Lemma A.11. Under the same setting of Lemma A.10, the following results hold.

(a) For any x ∈ [− H
8Q ,

H
8Q ] and k,

u′′k+1(x) ≤ (1− ηH)2 sup
z∈[x−ησ,x+ησ]

{u′′k(z)} − η(1− ηH)
Q

2
.

(b) Assuming Q ≤ H
24ηKσ , then for any k < K, the following inequality holds

sup
x∈[− H

12Q ,+
H

12Q ]

u′′k(x) ≤ −
k−1∑
j=0

(1− ηH)2j+1 · ηQ
2
.

(c) Assuming η ≤ 1
2H and Q ≤ H

24ηKσ , then for any k < K, for any x ∈ [− H
24Q ,+

H
24Q ], one has

uk+1(x) ≤ uk(x− ηF ′(x))− 1

12
η3σ2Q

k−1∑
j=0

(1− ηH)2j+1.

Proof of Lemma A.11. (a) Holds by (f) and the fact that |f ′(x; ξ)− F ′(x)| ≤ ησ and infx∈[− H
8Q ,

H
8Q ] F

′′′(x) ≥ Q
2 .

(b) Since H
12Q + ησK ≤ H

8Q (due to the assumption that Q ≤ H
24ηKσ ), we can repeatedly apply (a) for K times.

Therefore

sup
x∈[− H

12Q ,+
H

12Q ]

{u′′k(x)}

≤(1− ηH)2 sup
x∈[− H

12Q−ησ,
H

12Q+ησ]

{u′′k−1(x)} − η(1− ηH)
Q

2

≤(1− ηH)2k sup
x∈[− H

12Q−ηkσ,
H

12Q+ηkσ]

{u′′0(x)} − η
k−1∑
j=0

(1− ηH)2j(1− ηH)
Q

2
.

Plugging in u′′0(x) ≡ 0 gives (b).

(c) By Lemma A.10(a),

uk+1(x)− uk(x− ηF ′(x)) = Eξ [uk(x− ηf ′(x; ξ))− uk(x− ηF ′(x))]

≤Eξ

[
−η · u′k(x− ηF ′(x)) · (f ′(x; ξ)− F ′(x)) +

1

2
sup

z∈[x−ηF ′(x)−ησ,x−ηF ′(x)+ησ]
u′′(z) · η2(f ′(x; ξ)− F ′(x))2

]

≤1

6
η2σ2 sup

z∈[x−ηF ′(x)−ησ,x−ηF ′(x)+ησ]
u′′(z)

Since x ∈ [− H
24Q ,

H
24Q ], we know that x− ηF ′(x) ∈ [− H

24Q ,
H

24Q ] by construction of F . Since Q ≤ H
24ηKσ we know

that [x− ηF ′(x)− ησ, x− ηF ′(x) + ησ] ⊂ [− H
12Q ,

H
12Q ]. Therefore (b) is applicable, which suggets

uk+1(x)− uk(x− ηF ′(x)) ≤ − 1

12
η3σ2Q

k−1∑
j=0

(1− ηH)2j+1.
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We are ready to finish the proof of Theorem A.4 now.

Proof of Theorem A.4. For k = 1 the bound trivially holds. From now on assume k ≥ 2.

Consider the one-dimensional instance f defined in Eq. (A.5). The optimum of F = Eξ f(x; ξ) is clearly 0. We
will actually show a stronger result that Eq. (A.2) holds for any x ∈ [− H

24Q ,+
H

24Q ], in addition to 0.

Since η ≤ 1
2H , for any x ∈ [− H

24Q ,+
H

24Q ], one has x− ηF ′(x) ∈ [− H
24Q ,+

H
24Q ]. Therefore one can repeatedly apply

Lemma A.11(c), which yields

E[x
(k)
SGD]− z

(k)
GD ≤ −

1

12
η3σ2Q

k−1∑
j=0

j−1∑
i=0

(1− ηH)2i+1.

If k ≤ 1
ηH then

k−1∑
j=1

j−1∑
i=0

(1− ηH)2i+1 ≥ k(k − 1)(1− ηH)2k−3 ≥ k(k − 1)

(
1− 1

k

)2k−3

≥ 1

e2
k(k − 1) ≥ k(k − 1)

16
.

If k > 1
ηH then

k−1∑
j=1

j−1∑
i=0

(1− ηH)2i+1 =
(1− ηH)((1− ηH)2k + ηH(2− ηH)k − 1)

η2H2(2− ηH)2
≥

3
2ηHk − 1

8η2H2
≥ ηHk

16η2H2
≥ k − 1

16ηH
,

where in the second from the last inequality we used the asssumption that ηH ≤ 1
2 . In either case we have

k−1∑
j=1

j−1∑
i=0

(1− ηH)2i+1 ≥ min

{
k − 1

16ηH
,

1

16
k(k − 1)

}
,

and hence

E[x
(k)
SGD]− z

(k)
GD ≤ −0.005η3σ2Q(k − 1) min

{
1

ηH
, k

}
.

B PROOF OF THEOREMS 3.1 AND 3.3: LOWER BOUNDS OF FedAvg UN-
DER 2ND-ORDER SMOOTHNESS

The main objective of this section is to prove the following Theorem, which implies both Theorems 3.1 and 3.3.

Theorem B.1. For any K ≥ 2, R,M , H, D, σ, and ζ∗, there exist f(x; ξ) and distributions {Dm}, each
satisfying Assumption 1, and together satisfying Assumption 3, such that for some initialization x(0,0) with
‖x(0,0) − x?‖2 < D, the final iterate of FedAvg with any step size satisfies:

E
[
F (x(R,0))

]
− F (x?) ≥ Ω

(
HD2

KR
+

σD√
MKR

+ min

{
σD√
KR

,
H

1
3σ

2
3D

4
3

K
1
3R

2
3

}
+ min

{
ζ2∗
H
,
H

1
3 ζ

2
3
∗ D

4
3

R
2
3

})
.

In particular, if ζ∗ = 0, then it is possible to choose all distributions Dm to be the same distribution D.

Remark B.2. Note that ζ∗ = 0 does not necessarily imply that the distributions are homogeneous. Hence for
this theorem to imply Theorem 3.1, we ensure that in the case when ζ∗ = 0, all of the distributions Dm are equal.

In Section B.1, we provide a high level overview of the proof techniques of this theorem in the homogeneous
case. The main technical lemmas from this overview are proved in Sections B.2 and B.3. In Section B.4, we
provide the additional technical lemmas for the heterogeneous case. Finally, we finish the proof of Theorem B.1
in Section B.5.
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(a) (b) (c)

Figure 2: The piecewise quadratic function and its first two derivatives.

B.1 Proof Overview of Theorem B.1 in Homogeneous Case

To prove the lower bound in Theorem B.1 for the homogenous case, we construct the following function.

f(x; ξ) = f1(x1; ξ) + f2(x2) + f3(x3), (B.1)

where

f1(x; ξ) =
L

2
ψ(x) + ξx, f2(x) = µx2, f3(x) = Hx2,

and where

ψ(x) :=

{
1
2x

2 x < 0

x2 x ≥ 0
,

ξ ∼ N (0, σ2), L = H/6, and µ is some function of K,R,D,H, and σ.

We will analyze the convergence of FedAvg starting at x(0,0) = (0, D/2, D/2) such that the initial distance to
optimum ‖x(0,0) − x?‖2 < D. Observe that the only noise is Gaussian noise in the gradient of the first coordinate.

The sole objective of including f3 is to ensure that we can limit our analysis to cases with small step size, η.
Indeed, by standard arguments, if η ≥ 1

H , then the third coordinate of x would diverge.

The role of the function f2 is to provide a direction (the x2-axis) in which f is only slightly convex. Indeed, this
term requires that η is sufficiently large for convergence, which we formalize in Lemma B.16.

The novelty in our analysis stems from our sharp analysis of the bias E[x
(R,0)
1 ] from running SGD on the piecewise

quadratic function, pictured in Figure 2.

Our main technique is comparing the iterates x(0), x(1), · · · from running SGD on the piecewise quadratic function
f1(x; ξ) to the iterates {y(k)} and {z(k)} obtained from running SGD on the quadratic functions

f`(x; ξ) :=
L

4
x2 + ξx, and fu(x; ξ) :=

L

2
x2 + ξx,

respectively. We will show in Lemma B.7 that if x(0) = y(0) = z(0), then the iterate x(k) is first-order stochastically
dominated by both y(k) and z(k) (see Definition B.6 for the formal definition of first-order stochastic dominance).
Fortunately, the iterates y(k) and z(k) are easy to analyze. A straightforward calculation in Lemma B.5 yields the
closed form solutions

y(k) ∼ αkyy(0) +N (0, σ2
y), and z(k) ∼ αkzz(0) +N (0, σ2

z),

where

αy := 1− ηL/2, αz := 1− ηL, σ2
y :=

η2σ2(1− αky)

1− αy
, σ2

z :=
η2σ2(1− αkz)

1− αz
. (B.2)
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We can then bound the expectation of x(k) in the following way:

E[x(k)] = −
∫ 0

c=−∞
Pr[x(k) ≤ c] +

∫ ∞
c=0

Pr[x(k) ≥ c] ≤ −
∫ 0

c=−∞
Pr[y(k) ≤ c] +

∫ ∞
c=0

Pr[z(k) ≥ c].

This decomposition means that the higher variance of y(k) to contributes to the negative term, while the relatively
lower variance of z(k) contributes to the positive term.

To give some intuition, consider the case where x(0) = y(0) = z(0) = 0, and ηLk � 1. Here we have y(k) ∼ N (0, σ2
y)

and z(k) ∼ N (0, σ2
z). Plugging in the cdf of a Gaussian, we obtain

−
∫ 0

c=−∞
Pr[y(k) ≤ c] +

∫ ∞
c=0

Pr[z(k) ≥ c] = − σy√
2π

+
σz√
2π
.

Using the fact that ηLk � 1, we can approximate

σ2
y ≈

η2σ2(ηLk/2 + (ηLk)2/8)

ηL/2
= η2σ2k(1− ηLk/4),

and

σ2
z ≈

η2σ2(ηLk/2 + (ηLk)2/2)

ηL
= η2σ2k(1− ηLk/2),

such that

E[x(k)] ≤ − σy√
2π

+
σz√
2π
≈ ησ

√
k√

2π

(
ηLk

8

)
.

When x(0) is non-zero but sufficiently small, we can prove that this same negative iterate bias occurs in the
expectation E[x(k)] − x(0). With slightly more effort, we can show that so long as the expectation E[x(0)] is
sufficiently small, there is a negative drift in E[x(k)]− E[x(0)].

We formalize these observations in the following lemma. Note that this lemma also captures the case when
ηLk ≥ 1, where σy − σz = Θ

(
ση1/2L−1/2

)
.

Lemma B.3. There exist universal constants c1 and c2 such that the following holds. Suppose we run SGD with
step size η on the function f(x; ξ) = L

2ψ(x) + ξx for ξ ∼ N (0, σ2) with step size η ≤ 1
6L , starting at a possibly

random iterate x(0). If

−
√
c1
σy
αky
≤ E[x(0)] ≤ 0,

then for any k,

E[x(k)] ≤ (1− ηL/2)
k E[x(0)]− 1

2
c2ση

1/2L−1/2 min(1, ηLk)3/2,

where σy and αy are defined in Eq. (B.2). In particular, we can choose c1 = 0.0005 and c2 = 0.002.

The proof of Lemma B.3 is relegated to Section B.2.

Using Lemma B.3 inductively, we can show that the bias accumulates over many rounds of FedAvg. Loosely
speaking, the bias grows linearly with the number of rounds R until the force of the gradient exceeds the drift
from the difference σy − σz.
Lemma B.4. Suppose we run FedAvg for R rounds with K local steps and step size η on the 1-dimensional
function f(x; ξ) = L

2ψ(x) + ξx for ξ ∼ N (0, σ2). There exists a universal constant c such that for η ≤ 1
6L , if

x(0,0) = 0, then

E[x(R,0)] ≤ −c
√
ησ
√
L

min
{
R(ηLK)3/2, 1, (ηLK)1/2

}
In particular, we can choose c = 0.0005.

The proof of Lemma B.4 is relegated to Section B.3.

Now consider the FedAvg procedure on the 3-dimensional objective f defined in Eq. (B.1). Since the trajectories
of coordinates of x = (x1, x2, x3) are completely decoupled, we prove Theorem B.1 by combining Lemma B.4 with
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bounds that relate the choice of η to the suboptimality in the coordinates x2 and x3. This yields the first term,

O
(

min
(

σD√
KR

, σ
2/3H1/3D4/3

K1/3R2/3

))
, in Theorem B.1. To obtain the final term, we recall that any first order method

which uses at most MKR stochastic gradients has a lower bound of O(σD/
√
MKR) in expected function error.

It follows immediately that the function error of FedAvg is at least the maximum these two terms, which is on
the same order as their sum. The details of the proof of Theorem B.1 are provided in Section B.5.

B.2 Proof of Lemma B.3

As outlined in the proof overview, we will compare the iterates of SGD on the piecewise quadratic function to
the iterates of SGD on quadratic functions. The following lemma gives a closed form for the SGD iterates of a
quadratic function.

Lemma B.5 (Distribution of SGD on Quadratic objectives). Let x(0) · · ·x(t) be the iterates of SGD on the
stochastic function f(x; ξ) = L

2 x
2 + ξx with step size η and ξ ∼ N (0, σ2). Then x(t) ∼ (1 − ηL)tx(0) +

N
(

0, (1−(1−ηL)
t)η2σ2

ηL

)
.

Proof of Lemma B.5. Let ξ(i) ∼ N (0, σ2), such that

x(i+1) = x(i) − η(Lx(i) + ξ(i)) = (1− ηL)x(i) − ηξ(i).

Recursing, we have

x(t) = (1− ηL)tx(0) +

t∑
i=1

[
(1− ηL)t−iη2ξ(i)

]
∼ (1− ηL)tx(0) +N

(
0,

t∑
i=1

(1− ηL)t−iη2σ2

)

∼ (1− ηL)tx(0) +N
(

0,
(1− (1− ηL)t)η2σ2

ηL

)
.

We introduce the following definition to facilitate the proof.

Definition B.6. A random variable Y first-order stochastically dominates a random variable X if for all
values c ∈ R,

Pr[Y ≥ c] ≥ Pr[X ≥ c].

We will use the following lemma.

Lemma B.7 (Markov Chain Stochastic Dominance). Let Xt and Yt be time-homogeneous discrete-time Markov
chains on R such that for any z, the random variable Y1|Y0 = z first-order stochastically dominates X1|X0 = z.
Then for any c and any t > 0, Yt|Y0 = c first-order stochastically dominates Xt|X0 = c.

Proof of Lemma B.7. We prove this by induction on t. Note that it holds trivially for t = 0.

Let px be the distribution of Xt−1|X0 = c and py be the distribution of Yt−1|Y0 = c, such that by our inductive
hypothesis, py stochastically dominates px.

Then for any c, we have

Pr[Yt ≥ c|Yt−1 ∼ py] = Pr[Y1 ≥ c|Y0 ∼ py]

≥ Pr[X1 ≥ c|X0 ∼ py]

≥ Pr[X1 ≥ c|X0 ∼ px]

= Pr[Xt ≥ c|Xt−1 ∼ px].



Sharp Bounds for Federated Averaging (Local SGD) and Continuous Perspective

Here the equalities follow from the fact that Xt and Yt are Markov chains. The first inequality follows from our
assumption that for any z, Y1|Y0 = z first-order stochastically dominates X1|X0 = z. The second inequality
follows from the fact that the function f(z) := Pr[X1 ≤ c|X0 = z] is increasing in z, so its expectation is at least
as large under z ∼ py as under z ∼ px.

Lemma B.3, the more general form of Lemma 3.4, gives the bias of SGD on the piecewise quadratic function if
the expectation of the starting iterate is bounded. The most important part of its proof is the following weaker
lemma, which gives the bias is SGD if the first iterate is deterministic and bounded.

Recall the variables introduced in the proof overview Eq. (B.2), which we restate here for ease of reference:

αy := 1− ηL/2, αz := 1− ηL, σ2
y :=

η2σ2(1− αky)

1− αy
, σ2

z :=
η2σ2(1− αkz)

1− αz
.

Lemma B.8. If ηL ≤ 1/6 and

−
√
c1
σy
αky
≤ x(0) ≤

√
c1
σy
αky
,

then

E[x(k)|x(0)] ≤ max
{

(1− ηL)
k
x(0), (1− ηL/2)

k
x(0)

}
− c2

σ
√
η

√
L

min (ηLk, 1)
3/2

,

where c1 = 0.0005 and c2 = 0.002.

The proof of Lemma B.8 is deferred to Section B.2.1.

The following lemma covers the edge cases when |x(0)| is large.

Lemma B.9. For all x(0) ∈ R,

E[x(k)|x(0)] ≤ (1− ηL)
k
x(0),

and

E[x(k)|x(0)] ≤
(

1− ηL

2

)k
x(0).

We begin by proving Lemma B.9.

Proof of Lemma B.9. This follows immediately from Lemma B.7, since x(k) is stochastically dominated by k
steps the SGD processes y(k) and z(k) on the functions f`(x, ξ) := L

4 x
2 + ξx and fu(x; ξ) := L

2 x
2 + ξx respectively,

with y(0) = z(0) = x(0). Indeed by Lemma B.5,

E[x(k)] ≤ E[z(k)] = (1− ηL)
k
x(0),

and

E[x(k)] ≤ E[y(k)] =

(
1− ηL

2

)k
x(0).

We now prove Lemma B.3 from Lemmas B.8 and B.9.

Proof of Lemma B.3. We divide the proof into two cases. Let B :=
√
c1
σy
αky

and let δ :=

c2ση
1/2L−1/2 min(1, ηLk)3/2.
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Case 1: Pr[−B ≤ x(0) ≤ B] ≥ 1
2 . In this case, using the second statement of Lemma B.9 in the first inequality

and Lemma B.8 in the second inequality, we achieve

E[x(k)] = Pr[|x(0)| ≥ B]E[x(k) | |x(0)| ≥ B] + Pr[|x(0)| ≤ B]E
[
x(k)

∣∣∣|x(0)| ≤ B]
≤ Pr[|x(0)| ≥ B]E[(1− ηL/2)

k
x(0) | |x(0)| ≥ B] + Pr[|x(0)| ≤ B]E

[
x(k)

∣∣∣|x(0)| ≤ B]
≤ Pr[|x(0)| ≥ B]E[(1− ηL/2)

k
x(0) | |x(0)| ≥ B] + Pr[|x(0)| ≤ B]E[(1− ηL)

k
x(0) − δ | |x(0)| ≤ B]

= (1− ηL/2)
k E[x(0)]− δ Pr[|x(0)| ≤ B]

≤ (1− ηL/2)
k E[x(0)]− δ

2
.

This gives the desired result.

Case 2: Pr[−B ≤ x(0) ≤ B] ≤ 1
2 . In this case, using the first statement of Lemmas B.9 in the first inequality,

and the second statement of Lemma B.9 in the second inequality, we have

E[x(k)] = Pr[x(0) ≤ B]E[x(k) | x(0) ≤ B] + Pr[x(0) > B]E[x(k) | x(0) > B]

≤ Pr[x(0) ≤ B]E

[(
1− ηL

2

)k
x(0) | x(0) ≤ B

]
+ Pr[x(0) > B]E

[
x(k) | x(0) > B

]
≤ Pr[x(0) ≤ B]E

[(
1− ηL

2

)k
x(0) | x(0) ≤ B

]
+ Pr[x(0) > B]E

[
(1− ηL)

k
x(0) | x(0) > B

]
=

(
1− ηL

2

)k
E[x(0)] + Pr[x(0) > B]E

[(
(1− ηL)

k −
(

1− ηL

2

)k)
x(0) | x(0) > B

]
.

Now

(1− ηL/2)k − (1− ηL)k ≥

{
1− ηLk/2− (1− ηLk + (ηLk)2/2) ηLk ≤ 1/2;

αky
(
1− (1− ηL/2)k

)
ηLk ≥ 1/2,

≥

{
ηLk/4 ηLk ≤ 1/2;

αky(1− e−ηLk/2) ηLk ≥ 1/2.

≥

{
ηLk/4 ηLk ≤ 1/2;
αky
5 ηLk ≥ 1/2.

Plugging this in to the previous equation, it follows that

E[x(k)] ≤
(

1− ηL

2

)k
E[x(0)] +

{
Pr[x(0) > B]E[x(0)|x(0) ≥ B]ηLk4 ηLk ≤ 1/2;

Pr[x(0) > B]E[x(0)|x(0) ≥ B]
αky
5 ηLk ≥ 1/2.

(B.3)

Now we can bound

Pr[x(0) > B]E
[
x(0) | x(0) > B

]
= E[x(0)]− Pr[|x(0)| ≤ B]E

[
x(0) | |x(0)| ≤ B

]
− Pr[x(0) < −B]E

[
x(0) | x(0) < −B

]
≥ E[x(0)]− 1

2
(B)− 0 ≥ B − B

2
≥ B

2
.
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Plugging this calculation into the result of Equation B.3 yields

E[x(k)] ≤ (1− ηL/2)
k E[x(0)]−


√
c1
2

σy
αky

ηLk
4 ηLk ≤ 1/2

√
c1
2

σy
αky

αky
5 ηLk ≥ 1/2

≤ (1− ηL/2)
k E[x(0)]−

{√
c1
2

ησ
√
k

2
ηLk
4 ηLk ≤ 1/2

√
c1
2 σy

1
5 ηLk ≥ 1/2

≤ (1− ηL/2)
k E[x(0)]−

{√
c1
2

ησ
√
k

2
ηLk
4 ηLk ≤ 1/2

√
c1
2

2
√
ησ√
L

1
5 ηLk ≥ 1/2

≤ (1− ηL/2)
k E[x(0)]−

{√
c1

16c2
δ ηLk ≤ 1/2

√
c1

5c2
δ ηLk ≥ 1/2

≤ (1− ηL/2)
k E[x(0)]− δ

2
.

This proves the lemma.

B.2.1 Deferred proof of Lemma B.8

Proof of Lemma B.8. Let f`(x, ξ) := L
4 x

2 + ξx and fu(x, ξ) := L
2 x

2 + ξx. Let y(k) be the iterates of SGD on f`
and let z(k) be the iterates of SGD on fu, both initialized at y(0) = z(0) = x(0), with ξ ∼ N (0, σ2).

Then by Lemma B.7,

E[x(k)] = −
∫ 0

c=−∞
Pr[x(k) ≤ c] +

∫ ∞
c=0

Pr[x(k) ≥ c] ≤ −
∫ 0

c=−∞
Pr[y(k) ≤ c] +

∫ ∞
c=0

Pr[z(k) ≥ c]

By Lemma B.5, we have

y(k) ∼ αkyx(0) +N

(
0,

(1− αky)η2σ2

1− αy

)
, and z(k) ∼ αkzx(0) +N

(
0,

(1− αkz)η2σ2

1− αz

)
.

Now with Y ∼ N
(
0, σ2

y

)
for σ2

y =
(1−αky)η

2σ2

1−αy , we have

Pr[y(k) ≤ c] = Pr
[
Y ≤ c− αkyx(0)

]
,

so ∫ 0

c=−∞
Pr
[
Y ≤ c− αkyx(0)

]
= E

[
−αkyx(0) − Y |Y ≤ −αkyx(0)

]
Pr
[
Y ≤ −αkyx(0)

]
=
(
−αkyx(0) − E

[
Y |Y ≤ −αkyx(0)

])
Pr
[
Y ≤ −αkyx(0)

]
.

Now for any a,

E[Y |Y ≤ a] Pr[Y ≤ a] =
1

σy
√

2π

∫ a

t=−∞
te
− t2

2σ2y dt = −
σ2
y

σy
√

2π
e
− t2

2σ2y

∣∣∣∣∣
t=a

t=−∞

= −σy
e
− a2

2σ2y

√
2π

.

Hence we have ∫ 0

c=−∞
Pr[y(k) ≤ c] = −αkyx(0) Pr

[
N (0, σ2

y) ≤ −akyx(0)
]

+ σy
e
−

(αkyx
(0))2

2σy

√
2π

.
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Similarly, with Z ∼ N
(
0, σ2

z

)
with σ2

z =
(1−αkz)η

2σ2

1−αz , we have∫ ∞
c=0

Pr[z(k) ≥ c] = E
[
Z + αkzx

(0)|Z ≥ −αkzx(0)
]

Pr
[
Z ≥ −αkzx(0)

]
=
(
αkzx

(0) + E
[
Z|Z ≥ −αkzx(0)

])
Pr
[
Z ≥ −αkzx(0)

]
= αkzx

(0) Pr
[
N (0, σ2

z) ≥ −αkzx(0)
]

+ σz
e−

(αkzx
(0))2

2σz

√
2π

.

Summing, we have

E[x(k)] = x(0)
(
αkz Pr

[
N (0, σ2

z) ≥ −αkzx(0)
]

+ αky Pr
[
N (0, σ2

y) ≤ −αkyx(0)
])

+ σz
e
− (αkzx

(0))2

2σ2z

√
2π

− σy
e
−

(αkyx
(0))2

2σ2y

√
2π

(B.4)

We bound the terms in Equation B.4 with the following three claims. The proofs of Claims B.10, B.11 and B.12
are deferred to the end of the present subsubsection.

Claim B.10.

σz
e
− (αkzx

(0))2

2σ2z

√
2π

− σy
e
−

(αkyx
(0))2

2σ2y

√
2π

≤ σz − σy√
2π

(
e−c1

)
+

{
c1η

2σLk3/2 ηLk ≤ 1/2;
η1/2σc1
L1/2

√
2π

ηLk ≥ 1/2.

Claim B.11.

x(0)
(
αkz Pr

[
N (0, σ2

z) ≥ −αkzx(0)
]

+ αky Pr
[
N (0, σ2

y) ≤ −αkyx(0)
])

≤ x(0)αky + c1 (σy − σx) +

{√
c1η

2σLk3/2 ηLk ≤ 1/2;
√
c1
2

√
ησ√
L

ηLk ≥ 1/2.

(B.5)

Claim B.12.

σy − σz ≥

{
1
24η

2Lσk3/2 ηLk ≤ 1/2;
0.12ησ√
ηL

ηLk ≥ 1/2.

Combining the results of Claims B.10 and B.11 with Equation B.4, we obtain

E[x(k)] ≤ x(0)αky + (σz − σy)

(
e−c1√

2π
− c1

)
+

{
(c1 +

√
c1/2)η2σLk3/2 ηLk ≤ 1/2;

√
ησ√
L

(
c1√
2π

+ 2
√
c1

)
ηLk ≥ 1/2.

Plugging in Claim B.12, we obtain for c1 ≤ 0.0005,

E[x(k)] ≤ x(0)αky +

−
(
e−c1√

2π
− c1

) (
1
24η

2Lσk3/2
)

+ (c1 +
√
c1/2)η2σLk3/2 ηLk ≤ 1/2;

−
(
e−c1√

2π
− c1

)(
0.12
√
ησ√
L

)
+
√
ησ√
L

(
c1√
2π

+ 2
√
c1

)
ηLk ≥ 1/2.

= x(0)αky +

−
(
e−c1√

2π
− c1 − 24c1 − 12

√
c1

) (
1
24η

2Lσk3/2
)

ηLk ≤ 1/2;

−
(
e−c1√

2π
− c1 − c1

0.12
√
2π
− 2
√
c1

0.12

)(
0.12
√
ησ√
L

)
ηLk ≥ 1/2.

≤ x(0)αky +

{
−0.117

(
1
24η

2Lσk3/2
)

ηLk ≤ 1/2;

−0.023
(

0.12
√
ησ√
L

)
ηLk ≥ 1/2.

≤ x(0)αky −
0.002

√
ησmin(ηLk, 1)3/2
√
L

.

This concludes the proof of the lemma aside from the proof of the three claims. To prove these, observe that
αz ≤ αy, and σz ≤ σy.
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Deferred Proof of Claim B.10.

σz
e
− (αkzx

(0))2

2σ2z

√
2π

− σy
e
−

(αkyx
(0))2

2σ2y

√
2π

=
σz − σy√

2π

(
e
− (αkzx

(0))2

2σ2z

)
+

σy√
2π

(
e
− (αkzx

(0))2

2σ2z − e
−

(αkyx
(0))2

2σ2y

)

≤ σz − σy√
2π

(
e−c1/2

)
+

σy√
2π

(
e
− (αkzx

(0))2

2σ2z − e
−

(αkyx
(0))2

2σ2y

)

≤ σz − σy√
2π

(
e−c1/2

)
+

σy√
2π

∣∣∣∣∣ (αkzx(0))22σ2
z

−
(αkyx

(0))2

2σ2
y

∣∣∣∣∣max

(
e
− (αkzx

(0))2

2σ2z , e
−

(αkyx
(0))2

2σ2y

)

≤ σz − σy√
2π

(
e−c1/2

)
+

σy√
2π

∣∣∣∣∣ (αkzx(0))22σ2
z

−
(αkyx

(0))2

2σ2
y

∣∣∣∣∣
=
σz − σy√

2π

(
e−c1/2

)
+
σy(x(0))2

2
√

2π

∣∣∣∣∣α2k
z

σ2
z

−
α2k
y

σ2
y

∣∣∣∣∣
≤ σz − σy√

2π

(
e−c1/2

)
+
σy(x(0))2

2
√

2π

∣∣∣∣∣α2k
z − α2k

y

σ2
y

∣∣∣∣∣ .

By the assumption on (x(0))2 in the lemma, we have

σy(x(0))2

2
√

2π

∣∣∣∣∣α2k
z − α2k

y

σ2
y

∣∣∣∣∣ ≤ σy(x(0))2

2
√

2π

α2k
y

σ2
y

≤ σyc1

2
√

2π
≤
√
ησc1√
L
√

2π
. (B.6)

Now if ηLk ≤ 1/2,

σy(x(0))2

2
√

2π

∣∣∣∣∣α2k
z − α2k

y

σ2
y

∣∣∣∣∣ =
(x(0))2α2k

y

2σy
√

2π

∣∣∣∣∣
(

(1− ηL)

(1− ηL/2)

)2k

− 1

∣∣∣∣∣
=

(x(0))2α2k
y

2σy
√

2π

∣∣∣(1− ηL)
2k − 1

∣∣∣
≤

(x(0))2α2k
y

2σy
√

2π
(2ηLk)

≤ σyc1ηLk,

=

(√
(1− (1− ηL/2)k)η2σ2

ηL/2

)
c1ηLk

≤
(
ησ

1− (1− ηLk/2)

ηL/2

)
c1ηLk

= c1η
2σLk3/2.

(B.7)

Here in the second inequality we used the condition on (x(0))2. This proves the claim.

Deferred Proof of Claim B.11. Observe that

x(0) Pr
[
N (0, σ2

z) ≥ −αkzx(0)
]
≤ x(0) Pr

[
N (0, σ2

z) ≥ −αkyx(0)
]

and

αkyx
(0) Pr

[
N (0, σ2

y) ≤ −αkyx(0)
]

= αkyx
(0) Pr

[
N (0, σ2

z) ≤ −αkyx(0)
]
− αkyx(0)

∫ 0

c=−αkyx(0)

µσz (c)− µσy (c)dc

≤ αkyx(0) Pr
[
N (0, σ2

z) ≤ −αkyx(0)
]

+ α2k
y (x(0))2 max

−∞≤c≤∞

∣∣µσz (c)− µσy (c)
∣∣ ,

(B.8)
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Figure 3: Comparison of CDFs. (a) and (b): the regions in the first line of Equation B.4 for positive (a.i) or
negative x(0) (a.ii). (b) The inequality used in Equation B.8 for both positive (b.i) or negative x(0) (b.ii). In each
of (b.i) and (b.ii), the shaded region on the right is larger than the shaded region on the left.

as shown in Figure 3.

Now

max
−∞≤c≤∞

∣∣∣∣∣∣ 1√
2πσ2

z

e−c
2/(2σ2

z) − 1√
2πσ2

y

e−c
2/(2σ2

y)

∣∣∣∣∣∣ =

 1√
2πσ2

z

− 1√
2πσ2

y


=

 1√
2πσ2

z

1− 1√
1 + (σ2

y − σ2
z)/σ2

z


≤

(
1√

2πσ2
z

σ2
y − σ2

z

2σ2
z

)

=

(
(σy − σz)σy
2σ2

z

√
2πσ2

z

)
(B.9)

To bound this term, observe that

σ2
y

σ2
z

=
(1− αky)(1− αz)
(1− αkz)(1− αy)

= 2
(1− αky)

(1− αkz)
≤ 2,

so

α2k
y (x(0))2

σy(σy − σz)
2σ2

z

√
2πσ2

z

≤
αky(x(0))2

σ2
y

σy(σy − σz)√
2πσ2

z

(σ2
y ≤ 2σ2

z)

≤ c1
σy(σy − σz)√

2πσ2
z

((x(0))2 ≤ σ2
y

α2k
y

)

≤ c1 (σy − σz) . (σ2
y ≤ 2σ2

z)
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Plugging Equation B.9 into Equation B.8, and then plugging in this last equation, we obtain

αkyx
(0) Pr

[
N (0, σ2

y) ≤ −αkyx(0)
]
≤ αkyx(0) Pr

[
N (0, σ2

z) ≤ −αkyx(0)
]

+ c1 (σy − σx) . (B.10)

We combine Equations B.5 with B.10 to yield

x(0)
(
αkz Pr

[
N (0, σ2

z) ≥ −αkzx(0)
]

+ αky Pr
[
N (0, σ2

y) ≤ −αkyx(0)
])

≤ x(0)
(
αkz Pr

[
N (0, σ2

z) ≥ −αkyx(0)
]

+ αky Pr
[
N (0, σ2

z) ≤ −αkyx(0)
])

+ c1 (σy − σx)

≤ max(x(0)αky , x
(0)αkz) + c1 (σy − σx) .

Now by similar calculations as in Equation B.6 and B.7, we have

max(x(0)αky , x
(0)αkz) ≤ x(0)αky + (αky − αkz)|x(0)|

≤ x(0)αky +

{√
c1σy

ηLk
2 ηLk ≤ 1/2;

√
c1σy ηLk ≥ 1/2.

≤ x(0)αky +

{√
c1
2 η2σLk3/2 ηLk ≤ 1/2;
√
c1

2
√
ησ√
L

ηLk ≥ 1/2.

Plugging this in to the previous equation concludes the proof of the claim.

Deferred Proof of Claim B.12. If ηLk ≤ 1/2, we have the following:

σy − σz = ησ

√1− αky
1− αy

−

√
1− αkz
1− αz


= ησ

√1− (1− ηL/2)k

ηL/2
−

√
1− (1− ηL)k

ηL


≥ ησ

√ηLk/2− (ηL)2k(k − 1)/8

ηL/2
−

√
ηLk − (ηL)2k(k − 1)/2 + (ηL)3

(
k
3

)
ηL



because for any integer r ≥ 2 and 0 ≤ x ≤ 1,

1− rx+

(
r

2

)
x2 −

(
r

3

)
x3 ≤ (1− x)r ≤ 1− rx+

(
r

2

)
x2.

Continuing, we have

= ησ

√ηLk/2− (ηL)2k(k − 1)/8

ηL/2
−

√
ηLk − (ηL)2k(k − 1)/2 + (ηL)3

(
k
3

)
ηL


= ησ

√
k
(√

1− ηL(k − 1)/4−
√

1− ηL(k − 1)/2 + (ηL)2(k − 1)(k − 2)/6
)

≥ ησ
√
k

2

(
ηL(k − 1)/4− (ηL)2(k − 1)(k − 2)/6

)
≥ ησ

√
k

2
(ηL(k − 1)(1/4− 1/12)) (ηLk ≤ 1/2)

≥ η2Lσk3/2

24
. (k ≥ 2)
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Here the first inequality follows from the fact that the derivative of
√
x is at least 1

2 for 0 ≤ x ≤ 1.

If ηLk ≥ 1/2, we have

σy − σz = ησ

√1− αky
1− αy

−

√
1− αkz
1− αz


= ησ

√1− (1− ηL/2)k

ηL/2
−

√
1− (1− ηL)k

ηL


≥ ησ

√1− e−ηLk/2
ηL/2

−

√
1− e−1.1ηLk/2

ηL

 (ηL ≤ 1/6)

For q ≥ 1/2,
1− e−q/2 ≥ 0.52(1− e−1.1q),

so letting q = ηLk, we have

σy − σz ≥ ησ

√2(0.52)− 1

√
1− e−ηLk

ηL

 ≥ 0.12ησ√
ηL

.

B.3 Proof of Lemma B.4

We now use Lemma B.3 to prove Lemma B.4, which we restate for the reader’s convenience. Recall that we use

the notation x
(r,k)
m to denote the k iterate of FedAvg at the client m in the rth round. Recall that we use the

notation x(r,0) to denote the starting iterate at all clients in round r.

Lemma B.13 (Same as Lemma B.4). Suppose we run FedAvg for R rounds with K local steps per round and
step size η on the function f(x; ξ) = L

2ψ(x) + ξx for ξ ∼ N (0, σ2). There exists a universal constant c such that

for η ≤ 1
6L , if x(0,0) = 0, then

E[x(R,0)] ≤ −c
√
ησ
√
L

min
(
R(ηLK)3/2, 1, (ηLK)1/2

)
.

In particular, we can choose c = 0.0005.

Proof of Lemma B.13. Let c1 and c2 be the constants in Lemma B.3. For simplicity, let q := min(1, ηLK). By
Lemma B.3, for all r ≤ R, if

−
√
c1
σy
αKy
≤ E[x(r,0)m ] ≤ 0,

then for any client m ∈ [M ],

E[x(r+1,0)] = E[x(r,K)
m ] ≤ (1− ηL/2)KE[x(r,0)m ]−

c2
√
ησq3/2

2
√
L

= (1− ηL/2)KE[x(r,0)]−
c2
√
ησq3/2

2
√
L

.

If E[x(r,0)] ≤ −√c1 σyαKy , then by Lemma B.7 and comparison to SGD on the quadratic L
4 x

2, we have

E[x(r+1,0)] ≤ (1− ηL/2)KE[x(r,0)] ≤ −
√
c1σy ≤ −

√
c1q

1/2

√
ησ
√
L
.

We will prove the lemma by induction on r. Notice that it holds for r = 0. Then for all r ≥ 1, assuming it holds
for r, we have
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E[x(r+1,0)] ≤

−
√
c1q

1/2
√
ησ√
L

E[x(r,0)] ≤ −√c1 σyαKy
−(1− ηL/2)Kcmin

(
rη2K3/2σ,

√
ησq1/2√
L

)
− c2

√
ησq3/2

2
√
L

−√c1 σyαKy ≤ E[x(r,0)] ≤ 0
(B.11)

Now for c = c2
4 = 0.0005, we have

−(1− ηL/2)Kcmin

(
rη2K3/2σ,

√
ησq1/2
√
L

σ

)
−
c2
√
ησq3/2

2
√
L

≤ −(1− q)cmin

(
rη2K3/2σ,

√
ησq1/2
√
L

σ

)
−
c2
√
ησq3/2

2
√
L

≤ −cmin

((
(1− q)r +

c2
2c

) √ησq3/2
√
L

,

√
ησq1/2
√
L

+
( c2

2c
− 1
) √ησq3/2
√
L

)

= −cmin

(
((1− q)r + 2)

√
ησq3/2
√
L

,

√
ησq1/2
√
L

)

≤ −cmin

(
(r + 1)

√
ησq3/2
√
L

,

√
ησq1/2
√
L

)
.

The last inequality follows from the fact that ((1− q)r + 2)q ≥ min((r + 1)q, 1), for any 0 ≤ q ≤ 1.

Hence returning to Eq. (B.11), we have

E[x(r+1,0)] ≤

−
√
c1q

1/2
√
ησ√
L

E[x(r,0)] ≤ −√c1 σyαKy
−cmin

(
(r + 1)

√
ησq3/2√
L

,
√
ησq1/2√
L

)
0 ≥ E[x(r,0)] ≥ −√c1 σyαKy

≤ −cmin

(
(r + 1)

√
ησq3/2
√
L

,

√
ησq1/2
√
L

)
since

√
c1 ≥ c2

4 . This proves the lemma.

B.4 Proof of Lemma 3.6: Lower Bound on Bias of FedAvg with Heterogeneous
Distribution

We restate Lemma 3.6 for the reader’s convenience.

Lemma B.14 (Same as Lemma 3.6). Consider FedAvg with M clients with

f (3)(x; (ξ1, ξ2)) =

{
Hx2 − xξ2 ξ1 = 1
H
2 x

2 − xξ2 ξ1 = 2
,

and for all the odd m ∈ [M ], we have (ξ1, ξ2) = (1, ζ∗) always, while for all the even m ∈ [M ] we have
(ξ1, ξ2) = (2,−ζ∗). There exists a universal constant ch such that for η ≤ 1

H , if x(0,0) ≤ 0, then FedAvg with R
rounds and K steps per round results in

x(R,0) ≤ −ch
H

min(1, ηHK, (ηHK)2R)ζ∗.

In particular, we can choose ch = 0.07.

Proof of Lemma B.14. As derived in Woodworth et al. (2020a), we have the following SGD dynamics, where
µ := H/2: For 0 ≤ k < K, we have

x
(r,k+1)
1 = x

(r,k)
1 (1− ηH) + ηζ∗ = (1− ηH)

(
x
(r,0)
1 − ζ∗/H

)
+ ζ∗/H,
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and
x
(r,k+1)
2 = x

(r,k)
2 (1− ηµ)− ηζ∗ = (1− ηµ)

(
x
(r,0)
2 − ζ∗/µ

)
− ζ∗/µ.

Recursing, we have

x
(r,K)
1 = (1− ηH)K

(
x
(r,0)
1 − ζ∗/H

)
+ ζ∗/H, x

(r,K)
2 = (1− ηµ)K

(
x
(r,0)
2 − ζ∗/H

)
− ζ∗/µ.

Since x
(r+1,0)
1 = x

(r+1,0)
2 = 1

2

(
x
(r,K)
1 + x

(r,K)
2

)
, we have for i ∈ {1, 2},

x
(r+1,0)
i = ax

(r,0)
i + bζ∗,

where

a =
1

2

(
(1− ηH)K + (1− ηµ)K

)
, b =

1

2

(
1/H − (1− ηH)K − 1/µ+ (1− ηµ)K

)
.

We defer the proof of the following claim to the end of the present subsection.

Claim B.15.

b ≤ −

{
−0.4η2K2H ηHK ≤ 1/2;

−0.015/H ηHK > 1/2.

Recursing, we have for x(0,0) ≤ 0 and µ ≤ H,

x(R,0) = aRx(0,0) +

R−1∑
j=0

ajbζ∗ = aRx(0,0) +
1− aR

1− a
bζ∗ ≤

1− aR

1− a
bζ∗ ≤

1− aR

1− (1− ηµ)K
bζ∗,

where we have used the fact that b ≤ 0 from the Claim.

Now if ηHK ≤ 1/2, we have
1− (1− ηH)K ≤ 1− (1− ηHK) = ηHK.

Trivially,
1− (1− ηH)K ≤ 1.

Finally
a ≤ (1− ηµ)K ≤ e−ηµK ,

so
1− aR ≥ 1− e−ηµKR ≥ min(1/2, ηµKR/2).

Putting together these approximations, we have

x(R,0) ≤ 1− aR

1− (1− ηH)K
bζ∗ ≤ −

c

H
min(1, ηHK, (ηHK)2R)ζ∗,

for c = 0.07.

B.4.1 Deferred Proof of Claim B.15

Proof of Claim B.15. We follow the same steps as the proof of Claim B.12.

If ηHK ≤ 1/2, we have the following:

b = 1/H − (1− ηH)K − 1/µ+ (1− ηµ)K

≤
ηHK − (ηH)2K(K − 1)/2 + (ηH)3

(
K
3

)
H

− ηµK − (ηµ)2K(K − 1)/2

µ

= η
(
K − ηHK(K − 1)/2 + (ηH)2K(K − 1)(K − 2)/6

)
− η (K − ηµK(K − 1)/2)

= −η2(H − µ)K(K − 1)/2 + (ηH)2K(K − 1)(K − 2)/6

= −η2K(K − 1)
(
H − µ− ηH2(K − 2)/6

)
,
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where we used the fact that for any integer r ≥ 2 and 0 ≤ x ≤ 1,

1− rx+

(
r

2

)
x2 −

(
r

3

)
x3 ≤ (1− x)r ≤ 1− rx+

(
r

2

)
x2.

Continuing, we have

b ≤ −η2K(K − 1) (H − µ−H/12) ≤ −η2K2 (H − µ−H/12) ,

if ηHK ≤ 1/2 and H(11/12) ≥ µ.

If ηHK ≥ 1/2, then

b = 1/H − (1− ηH)K − 1/µ+ (1− ηµ)K ≤ 1− e−1.1ηHK/2

H
− 1− e−ηHK/2

H/2
.

For q ≥ 1/2,
1− e−q/2 ≥ 0.52(1− e−1.1q),

so letting q = ηHk, we have

b ≤
(

(1− 2(0.52))
1− e−ηHk

H

)
≤ −0.04(1− e−1/2)

H
≤ −0.015/H.

B.5 Proof of Theorem B.1: Lower bound of FedAvg convergence

In this section, we prove our main Theorem B.1. We use the following lemma.

Lemma B.16. Let f(x) = µx2, where

µ =
1

D2
max

(
min

(
σD√
K
√
R
,
σ2/3H1/3D4/3

K1/3R2/3

)
,
ζ
2/3
∗ H1/3D4/3

R2/3
,
HD2

KR

)
.

Suppose we run gradient descent starting at x0 = D/2 with step size η. Then if η ≤ 1
µKR , after KR iterations,

we have

f(x(KR)) >
1

30
max

(
min

(
σD√
K
√
R
,
σ2/3H1/3D4/3

K1/3R2/3

)
,
ζ
2/3
∗ H1/3D4/3

R2/3
,
HD2

KR

)
.

Proof of Lemma B.16. For any iteration t, we have

x(t) = (1− 2ηµ)
t
x(0),

such that

f(x(KR)) = (1− 2ηµ)
2KR

f(x0)

= (1− 2ηµ)
2KR D

2µ

4

≥ e−2ηµKRD
2µ

4

>
D2

30

1

D2
max

(
min

(
σD√
K
√
R
,
σ2/3H1/3D4/3

K1/3R2/3

)
,
ζ
2/3
∗ H1/3D4/3

R2/3
,
HD2

KR

)

=
1

30
max

(
min

(
σD√
K
√
R
,
σ2/3H1/3D4/3

K1/3R2/3

)
,
ζ
2/3
∗ H1/3D4/3

R2/3
,
HD2

KR

)
.
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Proof of Theorem B.1. We will use the following stochastic functions for our lower bound. Note that in the
homogeneous case this reduces to the functions introduced in equation B.1.

f(x; (ξ1, ξ2, ξ3)) = f (1)(x1; ξ1) + f (2)(x2) + f (3)(x3; (ξ2, ξ3)),

where

f (1)(x; ξ) =
L

2
ψ(x) + xξ, f (2)(x) = µx2, f (3)(x; (ξ2, ξ3)) =

{
Hx2 − xξ3 ξ2 = 1
H
2 x

2 − xξ3 ξ2 = 2
,

and

ξ1 ∼ N (0, σ2), (ξ2, ξ3) =


(1, 0) homogeneous case,

(1, ζ∗) for odd m,

(2,−ζ∗) for even m.

with L := H
12 , and

µ :=
1

D2
max

(
min

(
σD√
K
√
R
,
σ2/3H1/3D4/3

K1/3R2/3

)
,
ζ
2/3
∗ H1/3D4/3

R2/3
,
HD2

KR

)
.

Suppose we run FedAvg starting at (0, D/2, D/2, 0). Suppose the number of machines M is even. We make the
following three observations.

1. If η > 1
H , then x3 diverges, and hence it suffices to consider the case when η ≤ 2

H .

2. By Lemma B.16, if η ≤ 1
µKR , we have

f (2)(x) >
1

30
max

(
min

(
σD√
K
√
R
,
σ2/3H1/3D4/3

K1/3R2/3

)
,
ζ
2/3
∗ H1/3D4/3

R2/3
,
HD2

KR

)
.

Furthermore, if HD2

KR ≥ max
(

min
(

σD√
K
√
R
, σ

2/3H1/3D4/3

K1/3R2/3

)
,
ζ2/3∗ H1/3D4/3

R2/3

)
, then 1

µKR ≥
1
H , and so η ≤ 1

H

implies that

f (2)(x) ≥ 1

30
max

(
min

(
σD√
K
√
R
,
σ2/3H1/3D4/3

K1/3R2/3

)
,
ζ
2/3
∗ H1/3D4/3

R2/3
,
HD2

KR

)
.

3. By Lemma B.4, for some constant c, for η ≤ 1
6L = 2

H , we have

E[f (1)(x
(R,0)
1 ; ξ1)] ≥ L

4
E[(x

(R,0)
1 )2]

≥ L

4

(
E[x

(R,0)
1 ]

)2
≥ L

4

(
c

√
ησ
√
L

min
(
R(ηLK)3/2, 1, (ηLK)1/2

))2

=
c2ησ2

4
min

(
R2(ηLK)3, 1, ηLK

)
.

4. By Lemma B.14, if η < 1/H, for some constant ch, we have

EmEξ2∼Dm [f (3)(x
(R,0)
3 ; ξ2)] ≥ 3H

4
E[(x

(R,0)
3 )2] ≥ 3H

4

(
E[x

(R,0)
3 ]

)2
≥ 3ch

4H
min(1, (ηHK)2, (ηHK)4R2)ζ2∗ .

By items (1) and (2), its suffices to consider the case when η > 1
µKR and when

HD2

KR
< max

(
min

(
σD√
K
√
R
,
σ2/3H1/3D4/3

K1/3R2/3

)
,
ζ
2/3
∗ H1/3D4/3

R2/3

)
.
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Otherwise, we immediately recover the theorem.

We consider two cases depending of the relative order of min
(

σD√
K
√
R
, σ

2/3H1/3D4/3

K1/3R2/3

)
and

ζ2/3∗ H1/3D4/3

R2/3 .

Case 1: min
(

σD√
K
√
R
, σ

2/3H1/3D4/3

K1/3R2/3

)
≥ ζ2/3∗ H1/3D4/3

R2/3 .

For

η ≥ 1

µKR
=

D2

KRmin
(

σD√
K
√
R
, σ

2/3H1/3D2/3

K1/3R2/3

) ,
by the third item above, we have for some universal constant C:

E
[
f (1)(x

(R,0)
1 ; ξ1)

]
≥ c2D2σ2

4KRmin
(

σD√
K
√
R
, σ

2/3H1/3D4/3

K1/3R2/3

) min
(
R2 (ηLK)

3
, 1, ηLK

)

≥ c2D2σ2

4KRmin
(

σD√
K
√
R
, σ

2/3H1/3D4/3

K1/3R2/3

) min

1,
D2L

Rmin
(

σD√
K
√
R
, σ

2/3H1/3D4/3

K1/3R2/3

)


= min

(
max

(
c2Dσ

4
√
KR

,
c2D2/3σ4/3H1/3

4K2/3R1/3

)
,max

(
c2D2L

4R
,
c2D4/3σ2/3L

4K1/3R2/3H2/3

))
≥ C min

(
max

(
Dσ√
KR

,
D4/3σ4/3H1/3

K2/3R1/3

)
,max

(
D2L

R
,
D4/3σ2/3H1/3

K1/3R2/3

))
≥ C min

(
Dσ√
KR

,
D4/3σ2/3H1/3

K1/3R2/3

)
,

where we have used the fact that
RηLK ≥ RηµK ≥ 1

to get rid of the first of the three terms in the minimum.

Case 2: min
(

σD√
K
√
R
, σ

2/3H1/3D4/3

K1/3R2/3

)
<

ζ2/3∗ H1/3D4/3

R2/3 .

For

η ≥ 1

µKR
=

D2

KRH1/3ζ
2/3
∗ D4/3

R2/3

,

by the fourth item above, we have

EmEξ2∼Dm [f (3)(x
(R,0)
3 ; ξ2)] ≥ 3ch

4H
min(1, (ηHK)2, (ηHK)4R2)ζ2∗

=
3chζ

2
∗

4H
min(1, (ηHK)2)

≥ 3chζ
2
∗

4H
min

1,

 D2HK

KR ζ
2/3
∗ H1/3D4/3

R2/3

2


=
3chζ

2
∗

4H
min

(
1,
D4/3H4/3

R2/3ζ
4/3
∗

)

=
3ch
4

min

(
ζ2∗
H
,
ζ
2/3
∗ H1/3D4/3

R2/3

)
.

where we have used in the first equality the fact that

RηHK ≥ RηµK ≥ 1
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to get rid of the last of the three terms in the minimum.

Combining these two cases proves Theorem B.1.

C PROOF OF THEOREMS 4.1 AND 4.2: UPPER BOUNDS OF
FEDAVG UNDER 3RD-ORDER SMOOTHNESS

In this section, we state and prove the formal theorems on the upper bounds of FedAvg under third-order
smoothness, including both convex and non-convex cases.

Theorem C.1 (Upper bound for FedAvg under third-order smoothness, complete version of Theorem 4.1).

Suppose f(x; ξ) satisfies Assumptions 1 and 2. Then for step size η = min
{

1
H ,

√
BM

σ
√
HRK

, B1/5

K3/5R1/5Q2/5σ4/5

}
,

FedAvg satisfies

E
[
‖∇F (x̂)‖2

]
≤ O

(
HB

KR
+

σ
√
BH√

MKR
+
B

4
5σ

4
5Q

2
5

K
2
5R

4
5

)
.

where x̂ := 1
M

∑
m x(r,k) for a uniformly random choice of k ∈ [K], and r ∈ [R], and B = F (x(0,0))−minx F (x).

In the non-convex case, we prove our results under the following assumption, which is slightly weaker than
Assumption 4 in the main body.

Assumption 5 (Universal gradient bound of expected objective F ). For any x,

‖∇F (x)‖ ≤ G.

Theorem C.2 (Upper bound for FedAvg for non-convex objectives under third-order smoothness, complete
version of Theorem 4.2). Suppose F (x) is H-smooth and f(x; ξ) satisfies Assumptions 2 and 5. Then for step

size min
{

1
H ,

√
BM

σ
√
HKR

, B1/5

KR1/5Q2/5(σ+G)4/5

}
, we have

E
[
‖∇F (x̂)‖2

]
≤ O

(
HB

KR
+

σ
√
BH√

MKR
+
B

4
5 (G+ σ)

4
5Q

2
5

R
4
5

)
,

where x̂ := 1
M

∑
m x

(r,k)
m for a random choice of k ∈ [K], and r ∈ [R], and B := F (x(0,0))− infx F (x).

Remark C.3. Assumption 4 implies Assumption 5. Note also that we must have G ≥ σ in Assumption 4, since
the second moment always exceeds the variance. It follows that the this Theorem C.2 implies Theorem 4.2 in the
main body.

We prove both theorems using the following lemma. Define the shadow iterate x(r,k) := 1
M

∑M
i=1 x

(r,k)
m . The

following claim bounds the expected difference F (x(r,k+1)) − F (x(r,k)). In what follows, all expectations are
conditional on x(r,0).

Lemma C.4. For η ≤ 1
2H ,

E
[
F (x(r,k+1))

]
≤ E

[
F (x(r,k))

]
− η

2
E
[∥∥∥∇F (x(r,k))

∥∥∥2]+
ηQ2

4
E

( 1

M

∑
m

∥∥∥x(r,k)
m − x(r,k)

∥∥∥2)2
+

Hη2σ2

M
.

Proof of Lemma C.4. By H-smoothness, we have (recall g
(r,k)
m stands for the stochastic gradient of the m-th
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client taken at the k-th local step of the r-th round)

E
[
F (x(r,k+1))

]
= E

[
F

(
x(r,k) − η 1

M

∑
m

g(r,k)
m

)]

≤ E
[
F (x(r,k))

]
− ηE

[
〈∇F (x(r,k)),

1

M

∑
m

g(r,k))
m 〉

]
+
Hη2

M2
E

∥∥∥∥∥∑
m

g(r,k))
m

∥∥∥∥∥
2


≤ E
[
F (x(r,k))

]
− ηE

[
〈∇F (x(r,k)),

1

M

∑
m

∇F (x(r,k)
m )〉

]
+
Hη2

M2
E

∥∥∥∥∥∑
m

∇F (x(r,k)
m )

∥∥∥∥∥
2
+

Hη2σ2

M
.

Observe that for any real vectors, a and b, we have 〈a,b〉 ≥ 1
2‖a‖

2 + 1
2‖b‖

2 − ‖a− b‖2. Letting a := ∇F (x(r,k)),

and b := 1
M

∑
m∇F (x

(r,k)
m ), we obtain

E
[
F (x(r,k+1))

]
≤ E

[
F (x(r,k))

]
− η

2
E
[∥∥∥∇F (x(r,k))

∥∥∥2]− η

2
E

∥∥∥∥∥ 1

M

∑
m

∇F (x(r,k)
m )

∥∥∥∥∥
2


+ ηE

∥∥∥∥∥∇F (x(r,k))− 1

M

∑
m

∇F (x(r,k)
m )

∥∥∥∥∥
2
+

Hη2

M2
E

∥∥∥∥∥∑
m

∇F (x(r,k)
m )

∥∥∥∥∥
2
+

Hη2σ2

M

≤ E
[
F (x(r,k))

]
− η

2
E
[∥∥∥∇F (x(r,k))

∥∥∥2]+ ηE

∥∥∥∥∥∇F (x(r,k))− 1

M

∑
m

∇F (x(r,k)
m )

∥∥∥∥∥
2
+

Hη2σ2

M
,

(C.1)

where the last inequality follows because η ≤ 1
H .

We will use third order smoothness to bound E
[∥∥∥∇F (x(r,k))− 1

M

∑
m∇F (x

(r,k)
m )

∥∥∥2]. By definition of Q-third

order smoothness, we have

∇F (x(r,k)
m ) = ∇F (x(r,k)) +∇2F (x(r,k))(x(r,k)

m − x(r,k)) + em,

where ‖em‖2 ≤ Q
2

∥∥∥x(r,k)
m − x(r,k)

∥∥∥2. It follows that

∥∥∥∥∥∇F (x(r,k))− 1

M

∑
m

∇F (x(r,k)
m )

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

M

∑
m

em

∥∥∥∥∥
2

≤

(
1

M

∑
m

‖em‖2

)2

≤ Q2

4

(
1

M

∑
m

∥∥∥x(r,k)
m − x(r,k)

∥∥∥2)2

.

Plugging this into equation C.1, we obtain the claim:

E
[
F (x(r,k+1))

]
≤ E

[
F (x(r,k))

]
− η

2
E
[∥∥∥∇F (x(r,k))

∥∥∥2]+
ηQ2

4
E

( 1

M

∑
m

∥∥∥x(r,k)
m − x(r,k)

∥∥∥2)2
+

Hη2σ2

M
.

The following lemma bounds the term E

[(
1
M

∑
m

∥∥∥x(r,k)
m − x(r,k)

∥∥∥2)2
]

when f is convex.

Lemma C.5. With y := E[x
(r,k)
m ], we have

E

( 1

M

∑
m

∥∥∥x(r,k)
m − x(r,k)

∥∥∥2)2
 ≤ E[‖x(r,k)

m − y‖4].
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Proof of Lemma C.5. By definition of the mean, we have

1

M

∑
m

∥∥∥x(r,k)
m − x(r,k)

∥∥∥2 ≤ 1

M

∑
m

∥∥∥x(r,k)
m − y

∥∥∥2
By the independence of the x

(r,k)
m , we have

E

( 1

M

∑
m

∥∥∥x(r,k)
m − x(r,k)

∥∥∥2)2
 =

1

M
E
[
‖x(r,k)

m − y‖4
]

+
M(M − 1)

M2

(
E
[
‖x(r,k)

m − y‖2
])2

.

By Jensen’s inequality, we can move the square in the second term inside the expectation, so this is less than

E[‖x(r,k)
m − y‖4].

In the convex case, we bound this term using a result from Yuan and Ma (2020).

Lemma C.6 (Proposition D.6 in Yuan and Ma (2020)). Under Assumptions 1 and 2,

E
[∥∥∥x(r,k)

m − y
∥∥∥4] ≤ 200k2η4σ4,

In the non-convex, we bound the term in Lemma C.5 in the following lemma.

Lemma C.7. Under Assumptions 2 and 5, with y := E[x
(r,k)
m ], we have

E[‖x(r,k)
m − y‖4] ≤ 8η4(G+ σ)4k4.

Proof of Lemma C.7. First note that E[‖x(r,k)
m − z‖4] is minimized over all z by the expectation y, hence we have

E[‖x(r,k)
m − y‖4] ≤ E[‖x(r,k)

m − x(r,0)
m ‖4]

We prove this by induction on k with the following inductive hypothesis:

E[‖x(r,k)
m − x(r,0)

m ‖4] ≤ 8η4(G+ σ)4k4.

Clearly this holds in the base case for k = 0. Suppose it holds for k and we want to prove it for k = 1. Then we
can expand

E[‖x(r,k+1)
m − x(r,0)

m ‖4] = E[‖x(r,k)
m − ηg(r,k)

m − x(r,0)
m ‖4]

≤
(
k + 1

k

)3

E[‖x(r,k)
m − x(r,0)

m ‖4] + (k + 1)3E[‖ηg(r,k)
m ‖4]

=

(
k + 1

k

)3

E[‖x(r,k)
m − x(r,0)

m ‖4] + (k + 1)3E[‖η∇F (x(r,k)) + η(g(r,k)
m −∇F (x(r,k))‖4]

≤
(
k + 1

k

)3

E[‖x(r,k)
m − x(r,0)

m ‖4] + 8(k + 1)3
(
η4‖∇F (x(r,k))‖4 + η4E[g(r,k)

m −∇F (x(r,k))]
)

≤
(
k + 1

k

)3

E[‖x(r,k)
m − x(r,0)

m ‖4] + 8(k + 1)3
(
η4G4 + η4σ4

)
≤
(
k + 1

k

)3

E[‖x(r,k)
m − x(r,0)

m ‖4] + 8(k + 1)3η4(G+ σ)4

≤ 8

(
k + 1

k

)3

η4(G+ σ)4k4 + 8(k + 1)3η4(G+ σ)4

= 8η4(G+ σ)4(k + 1)4.

where the first inequality following from Jenson’s inequality applied to the random variable X, where

X =

{
k+1
k (x

(r,k)
m − x

(r,0)
m ) with probability k

k+1

(k + 1)ηg
(r,k)
m with probability 1

k+1 .
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Finishing the Proof of Theorem C.1. For the convex case, we now put Lemma C.4 together with the moment
bounds in Lemmas C.5 and C.6. Telescoping, we achieve the following for the convex case:

Lemma C.8. Under Assumptions 1 and 2, for η ≤ 1
H , we have

1

KR

R∑
r=1

K∑
k=1

E
[∥∥∥∇F (x(r,k))

∥∥∥2] ≤ 2(F (x(0,0))− F (x?))

ηKR
+ 50Q2η4σ4K2 +

Hησ2

M
.

Choosing

η = min

{
1

H
,

√
BM

σ
√
HKR

,
B1/5

K3/5R1/5Q2/5σ4/5

}
,

we achieve from this lemma the convergence bound in Theorem C.1.

Finishing the Proof of Theorem C.2. For the non-convex case, we now put Lemma C.4 together with the
moment bounds in Lemmas C.5 and C.7. Telescoping, we achieve the following for the non-convex case:

Lemma C.9. Under Assumptions 2 and 5, for η ≤ 1
H , we have

1

KR

R∑
r=1

K∑
k=1

E
[∥∥∥∇F (x(r,k))

∥∥∥2] ≤ 2(F (x(0,0))− F (x?))

ηKR
+ 8Q2η4(G+ σ)4K4 +

Hησ2

M
.

Choosing

η = min

{
1

H
,

√
BM

σ
√
HKR

,
B1/5

KR1/5Q2/5(σ +G)4/5

}
,

we achieve from this lemma the convergence bound in Theorem C.2.

C.1 Upper Bounds of FedAvg Under Second-Order Smoothness

For completeness, we also prove the following theorem, which can be obtained from Yu et al. (2019b).

Theorem C.10 (Upper bound for FedAvg for non-convex objectives under second-order smoothness). Suppose
F (x) is H-smooth and f(x; ξ) satisfies Assumption 5, and the variance of the gradients is bounded σ2. Then for

step size η = min

{
1
H ,

√
BM

σ
√
HKR

, B
1
3

KR
1
3H

2
3 (G+σ)

2
3

}
,, we have

E
[
‖∇F (x̂)‖2

]
≤ O

(
HB

KR
+

σ
√
BH√

MKR
+
B

2
3 (G+ σ)

2
3H

2
3

R
2
3

)
,

where x̂ := 1
M

∑
m x

(r,k)
m for a random choice of k ∈ [K], and r ∈ [R], and B := F (x(0,0))− infx F (x).

Proof of Section C.1. The proof is similar to the Q-third order smooth case. Following the proof of Lemma C.4
up to Eq. (C.1), we obtain from H-smoothness:

E
[
F (x(r,k+1))

]
≤ E

[
F (x(r,k))

]
− η

2
E
[∥∥∥∇F (x(r,k))

∥∥∥2]+ ηE

∥∥∥∥∥∇F (x(r,k))− 1

M

∑
m

∇F (x(r,k)
m )

∥∥∥∥∥
2
+

Hη2σ2

M
,

Now by Jensen’s inequality and H-smoothness, we have

E

∥∥∥∥∥∇F (x(r,k))− 1

M

∑
m

∇F (x(r,k)
m )

∥∥∥∥∥
2
 ≤ 1

M

∑
m

E
[∥∥∥∇F (x(r,k))−∇F (x(r,k)

m )
∥∥∥2]

≤ H2

M

∑
m

E
[∥∥∥x(r,k) − x(r,k)

m

∥∥∥2]
≤ H2E

[∥∥∥x(r,0) − x
(r,k)
1

∥∥∥2] .
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The following claim shows bounds this expectation.

Claim C.11. For any k,

E[‖x(r,k)
1 − x(r,0)‖2] ≤ 2η2(G+ σ)2k2.

The proof of this claim is by induction, and it is nearly identical to the proof of Lemma C.7.

Plugging in this claim, we have

E
[
F (x(r,k+1))

]
≤ E

[
F (x(r,k))

]
− η

2
E
[∥∥∥∇F (x(r,k))

∥∥∥2]+ 2η3(G+ σ)2k2 +
Hη2σ2

M
,

Telescoping, we obtain

1

KR

R∑
r=1

K∑
k=1

E
[∥∥∥∇F (x(r,k))

∥∥∥2] ≤ 2(F (x(0,0))− F (x?))

ηKR
+ 2H2η2(G+ σ)2K2 +

Hησ2

M
.

Choosing η = min

{
1
H ,

√
BM

σ
√
HKR

, B
1
3

KR
1
3H

2
3 (G+σ)

2
3

}
, we obtain

1

KR

R∑
r=1

K∑
k=1

E
[∥∥∥∇F (x(r,k))

∥∥∥2] ≤ O

(
HB

KR
+

σ
√
BH√

MKR
+
B

2
3 (G+ σ)

2
3H

2
3

R
2
3

)
.

This proves the theorem.
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