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Abstract
We study asynchronous finite sum minimiza-
tion in a distributed-data setting with a cen-
tral parameter server. While asynchrony is
well understood in parallel settings where
the data is accessible by all machines—e.g.,
modifications of variance-reduced gradient
algorithms like SAGA work well—little is
known for the distributed-data setting. We
develop an algorithm ADSAGA based on
SAGA for the distributed-data setting, in
which the data is partitioned between many
machines. We show that with m machines,
under a natural stochastic delay model with
an mean delay of m, ADSAGA converges
in Õ ((n+

√
mκ) log(1/ε)) iterations, where

n is the number of component functions,
and κ is a condition number. This com-
plexity sits squarely between the complexity
Õ ((n+ κ) log(1/ε)) of SAGA without delays
and the complexity Õ ((n+mκ) log(1/ε)) of
parallel asynchronous algorithms where the
delays are arbitrary (but bounded by O(m)),
and the data is accessible by all. Exist-
ing asynchronous algorithms with distributed-
data setting and arbitrary delays have only
been shown to converge in Õ(n2κ log(1/ε))
iterations. We empirically compare the itera-
tion complexity and wallclock performance
of ADSAGA to existing parallel and dis-
tributed algorithms, including synchronous
minibatch algorithms. Our results demon-
strate the wallclock advantage of variance-
reduced asynchronous approaches over SGD
or synchronous approaches.

1 INTRODUCTION

In large scale machine learning problems, distributed
training has become increasingly important. In this
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work, we consider a distributed setting governed by a
central parameter server (PS), where the training data
is partitioned among a set of machines, such that each
machine can only access the data it stores locally. This
is common in federated learning, where the machines
may be personal devices or belong to different organi-
zations (McMahan et al., 2017). Data-partitioning can
also be used in data-centers to minimize stalls from
loading data from remote file systems (Mohan et al.,
2020).

Asynchronous algorithms — in which the machines do
not serialize after sending updates to the PS — are an
important tool in distributed training. Asynchrony can
mitigate the challenge of having to wait for the slowest
machine, which is especially important when compute
resources are heterogeneous (Li et al., 2018). Perhaps
surprisingly, there has been relatively little theoretical
study of asynchronous algorithms in a distributed-data
setting; most works have studied a shared-data setting
where all of the data is available to all of the machines.

In this paper, we focus on asynchronous algorithms
for the distributed-data setting, under a stochastic
delay model. We consider the finite sum minimization
problem common in many empirical risk minimization
(ERM) problems:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where each fi is convex and L-smooth, and f is Lf -
smooth and µ-strongly convex. In machine learning,
each fi represents a loss function evaluated at a data
point. A typical strategy for minimizing finite sums is
using variance-reduced stochastic gradient algorithms,
such as SAG (Roux et al., 2012), SVRG (Johnson
and Zhang, 2013) or SAGA (Defazio et al., 2014). To
converge to an ε-approximate minimizer x, (that is,
some x such that f(x) − minx′ f(x′) ≤ ε), variance-
reduced algorithms require Õ((n+ L/µ) log(1/ε)) iter-
ations. In contrast, the standard stochastic gradient
descent (SGD) algorithm yields a slower convergence
rate that scales with 1/ε.

Many of these algorithms can be distributed across
m machines who compute gradients updates asyn-
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(a) Shared Data, Central PS (b) Distributed Data, Central PS (c) Distributed Data, Decentralized

Figure 1: Settings for parallel optimization. (a) Shared-data setting, where ASAGA pertains (Leblond et al.,
2018). (b) Distributed-data setting, where our work (ADSAGA) pertains. (c) Decentralized setting, in which
there are a variety of algorithms with weaker guarantees.

chronously. In such implementations, a gradient step
is performed on the k’th central iterate xk as soon as
a single machine completes its computation. Hence,
the gradient updates performed at the PS may come
from delayed gradients computed at stale copies of the
parameter x. We denote this stale copy by xk−τ(k),
meaning that it is τ(k) iterations old. That is, at
iteration k, the PS performs the update

xk+1 = xk − ηU(ik, x
k−τ(k)),

where η is the learning rate, and U(ik, x
k−τ(k)) is an

update computed from the gradient ∇fik(xk−τ(k)). For
example, in SGD, we would have U(i, x) = ∇fi(x). In
the SAGA algorithm — which forms the backbone of
the algorithm we propose and analyze in this paper —
the update used is

U(i, x) := ∇fi(x)− αi + α, (2)

where αi is the prior gradient computed of fi, and α
denotes the average 1

n

∑
i αi.

1

There has been a great deal of work analyzing asyn-
chronous algorithms in settings where the data is shared
(or “i.i.d.”), where any machine can access any of the
data at any time, as in Figure 1(a). In particular, the
asynchronous implementation of SAGA with shared
data, called ASAGA (Leblond et al., 2018) is shown to
converge in Õ((n+ τmaxL/µ) log(1/ε)) iterations, un-
der arbitrary delays that are bounded by τmax. Other
variance-reduced algorithms obtain similar results (Ma-
nia et al., 2015; Zhao and Li, 2016; Reddi et al., 2015;
Zhou et al., 2018).

A key point in the analysis of asynchronous algorithms
in the shared-data setting is the independence of the
delay τ(k) at step k and the function fik that is chosen
at time k. This leads to an unbiased gradient condition,

1This update is variance-reduced because it is an unbi-
ased estimator of the gradient ∇f(x), and unlike the SGD
update, its variance tends to 0 as x approaches the optimum
of the objective (1).

namely that the expected update is proportional to
∇f(xk−τ(k)). This condition is central to the analyses
of these algorithms. However, in the distributed-data
(or “non-i.i.d.”) setting, where each machine only has
access to the partition of data is stores locally (Fig-
ure 1(b)), this condition does not naturally hold. For
example, if the only assumption on the delays is that
they are bounded, then using the standard SGD up-
date U(i, x) = ∇fi(x) may not even yield asymptotic
convergence to x∗.

Due to this difficulty, the asynchronous landscape is far
less understood when the data is distributed. Several
works (Gurbuzbalaban et al., 2017; Vanli et al., 2018;
Aytekin et al., 2016) analyze an asynchronous incre-
mental aggregation gradient (IAG) algorithm, which
can be applied to the distributed setting; those works
prove that with arbitrary delays, IAG converges deter-

ministically in Õ(n
2L
µ log(1/ε)) iterations, significantly

slower than the results available for the shared data
model. The work of Xie et al. (2019) studies an asyn-
chronous setting with distributed data and arbitrary
delays and achieves an iteration complexity scaling
polynomially with 1/ε. A line of work that considers
a completely decentralized architecture without a PS
(see Figure 1(c)) generalizes the distributed data PS
setting of Figure 1(b). In this regime, with stochastic
delays, Lian et al. (2018) established sublinear conver-
gence rates of Õ(L2/ε2) using an SGD update; however
variance-reduced algorithms, which could yield linear
convergence rates (scaling with log(1/ε)) for finite sums,
have not been studied in this setting.With arbitrary
but bounded delays and strongly convex objectives,
Tian et al. (2020) and Niwa et al. (2021) achieved a
linear rate of convergence gradient tracking techniques;
however their results depend exponentially on m.

We introduce the ADSAGA algorithm, a variant of
SAGA designed for the distributed data setting (Fig-
ure 1(b)). For our analysis, we adopt the stochastic
delay model from Lian et al. (2018) from the decen-
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tralized setting (Figure 1(c)), formalized below; this
model is well-motivated (see Section 1.1), and allows
us to prove strong convergence results despite the lack
of independence between the data and the delays.

In this model, we show that ADSAGA converges
in Õ

(
(n+ L/µ+

√
mLfL/µ) log(1/ε)

)
iterations. To

the best of our knowledge, this is the first provable
result for asynchronous algorithms in the distributed-
data setting — under any delay model — that scales
both logarithmically in 1/ε and linearly in n. Moreover,
our empirical results suggest that ADSAGA outper-
forms other distributed-data algorithms even when the
delay distribution differs from our model.

1.1 Our Model and Assumptions

Assumptions on the functions fi. We study the
finite-sum minimization problem (1). As is standard in
the literature on synchronous finite sum minimization
(e.g. (Defazio et al., 2014; Leblond et al., 2018; Gaza-
gnadou et al., 2019; Needell et al., 2014)), we assume
that the functions fi are convex and L-smooth:

|∇fi(x)−∇fi(y)|2 ≤ L|x− y|2 ∀x, y, i,

and we similarly assume that the objective f is Lf -
smooth. We further assume that f is µ-strongly convex:

〈∇f(x)−∇f(y), x− y〉 ≥ µ|x− y|22 ∀x, y.

Note that Lf ≤ L, as f is an average of the fi.

Distribution of the data. We assume the
distributed-data model in Figure 1(b). The functions
f1, . . . , fn are partitioned among the m machines into
sets {Sj}j∈[m], such that each machine j has access to
fi for i ∈ Sj .2

Communication and delay model. The m ma-
chines are governed by a centralized PS. At timestep
k, the PS holds an iterate xk. We consider the
following model for asynchronous interaction. Let
P = (p1, . . . , pm) denote a probability distribution on
the m machines. Each machine j holds a (possibly
stale) iterate xj . At timestep k, a random machine j
is chosen with probability pj . This machine j sends
an update hj to the PS, based on xj and the data it
holds (that is, the functions fi for i ∈ Sj). The PS
sends machine j the current iterate, and machine j
updates xj ← xk. Then the PS performs an update
based on hj to obtain xk+1, the iterate for step k + 1.
Then the process repeats, and a new machine is chosen
independently from the distribution (p1, . . . , pm).

2We assume that all sets Sj have the same size, though
if m does not divide n, we can reduce n until this is the case
by combining pairs of functions to become one function.

Remark 1.1 (Relationship to prior delay models).
Random delay models have been studied more gener-
ally in decentralized asynchronous settings (Lian et al.,
2018; Ram et al., 2010; Jin et al., 2016) where they
are often referred to as “random gossip”. In a random
gossip model, each machine has an exponentially dis-
tributed clock and wakes up to communicate an update
with its neighbors each time it ticks.

Our model is essentially the same as the random gossip
model, restricted to a centralized communication graph,
as in Jin et al. (2016). That is, our discrete delay
model arises from a continuous-time model where each
machine j takes Tj time to compute its update, where
Tj is a random variable distributed according to an
exponential distribution with parameter λj. After Tj
time, machine j sends its update to the PS and receives
an updated iterate xj ← xk. Then it draws a new
(independent) work time Tj and repeats. The machines
have independent work times but possibly different rates
λj. Due to the memorylessness of exponential random
variables, this continuous-time model is equivalent to
the discrete-time model described above.

Similarly, our model generalizes the geometric delay
model in (Mitliagkas et al., 2016) for centralized asyn-
chronous gradient descent, which is the special case
where the λj’s are all the same.

We note that in our model, the PS has knowledge of
the values pi, and we use this in our algorithm. In
practice, these rates can be estimated from the ratio
between the number of updates from the machine j and
the total number of iterations. Our empirical results
also show that our approach performs well even an a
vanilla implementation where the PS does not need to
know the pi.

Stochastic delays are well-motivated by applications.
In the data-center setting, stochasticity in machine
performance — and in particular, heavy tails in com-
pute times — is well-documented (Dean and Barroso,
2013). Because we allow for the pi’s to be distinct for
each machine, our model is well-suited to the exam-
ple of federated learning, where we expect machines
to have heterogeneous delays. Our particular model
for stochastic delays is natural because it fits into the
framework of randomized gossip and arises from inde-
pendent exponentially distributed work times; however,
we believe a more general model for stochastic delays
could be more practical and merits further study.

Remark 1.2 (Blocking data). In our model, a ma-
chine sends an update computed from a single fi in
each round. In a practical implementation, we could
block the data into blocks B` of size b, such that each
machine computes b gradients before communicating
with the PS. To apply our result, the set of functions
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Table 1: Comparison of related work for minimization of finite sums of n convex and L-smooth functions, whose
average is µ-strongly convex and Lf -smooth. Here m denotes the number of machines or the minibatch size. We
have substituted O(m) for the maximum overlap bound τ in Leblond et al. (2018); Zhou et al. (2018), which
is at least m, and O(n) for the delay bound in IAG, which is as least n. We note that, as per Remark 1.1, our
stochastic model is essentially a restriction of randomized gossip to a centralized communication graph.

Algorithm Data Location Delay Model Convergence Guar-
antee

Iteration Complexity

This work
(ADSAGA,
Theorem B.1)

Distributed Stochastic, pj =
Θ( 1

m
) ∀j (See Sec-

tion 1.1)

E[f(xk)−f(x∗)] ≤ ε Õ

((
n+ L

µ
+

√
mLfL

µ

)
log(1/ε)

)

ASAGA, MiG Shared Arbitrary, bounded E[f(xk)−f(x∗)] ≤ ε O
(

(n+ mL
µ

) log(1/ε)
)

IAG Distributed Arbitrary, bounded f(xk)− f(x∗) ≤ ε O
(
n2L
µ

log(1/ε)
)

Decentralized
SGD (Lian
et al., 2018)

Distributed Random Gossip (see
Remark 1.1)

E[f(xk)−f(x∗)] ≤ ε Õ(L
2

ε2
)

FedAsync (Xie
et al., 2019)

Distributed Arbitrary, bounded E[f(xk)−f(x∗)] ≤ ε Õ(L
2

ε2
)

Minibatch
SAGA (see
supplemen-
tary material)

Shared or Dis-
tributed

Synchronous (No
Delays)

E|xk − x∗|22 ≤ ε Õ
((
n+ L

µ
+

mLf
µ

)
log(1/ε)

)

{fi}i is replaced with {
∑
i∈B` fi}`, yielding an iteration

complexity of Õ
(
n+ bL/µ+ b

√
mLfL/µ

)
.

1.2 Contributions

Our main technical contribution is the development
and analysis of a SAGA-like algorithm, which we call
ADSAGA, in the model described in Section 1.1. We
show that with m machines, for µ-strongly convex, Lf -
smooth functions f with minimizer x∗, when each fi
is convex and L-smooth, ADSAGA achieves E[f(xk)−
f(x∗)] ≤ ε in

k = Õ

(
1

mpmin

(
n+

L

µ
+

√
mLfL

µ

)
log(1/ε)

)
(3)

iterations, where pmin = min(pj) is the minimum
update rate parameter. Standard sequential SAGA

achieves the same convergence in O
(

(n+ L
µ ) log(1/ε)

)
iterations. This implies that when the machine update
rates vary by no more than a constant factor, if the
term n + L/µ in our iteration complexity (3) domi-
nates the final term

√
mLfL/µ, the ADSAGA with

stochastic delays achieves the same iteration complex-
ity as SAGA with no delays. On the other hand, when
the

√
mLfL/µ term dominates in (3), the convergence

rate of ADSAGA scales with the square root of the
number of machines, or average delay. We provide a
quantitative comparison to related works in Table 1.

Remarkably, due to this
√
m dependence, the conver-

gence rate in (3) is dramatically faster than the rates
proved for ASAGA (the analog in the shared-data set-
ting with arbitrary delays), which as discussed above
is at best O(n+ Lm

µ ),3 or even the rate of synchronous

minibatch SAGA, which is Õ(n+ L
µ +

mLf
µ ). This is

possible because of the stochastic delay model. Due
to the occasional occurrence of very short delays (e.g.,
a machine j is drawn twice in quick succession), after
the same number of iterations, the parallel depth of
ADSAGA in our model is far deeper than that of a
synchronous minibatch algorithm or than some instan-
tiations of ASAGA with bounded delays. As evidenced
by standard lower bounds in optimization, a high par-
allel depth is a prerequisite for convergence (Nesterov
et al., 2018). For instance, with arbitrary bounded
delays, the complexity would scale at least linearly
with m due to the lower-bound zero-chain techniques.
We believe this intuition and our result suggests opti-
mistic news for asynchronous algorithms under more
general stochastic delays: the iteration complexity may
improve if the delays vary greatly, and are occasionally
short.

The proof of our result uses a novel potential function
to track our progress towards the optimum. In addition
to including typical terms such as f(xk)− f(x∗) and
|xk − x∗|22, our potential function includes a quadratic
term that takes into account the dot product of xk−x∗
and the expected next stale gradient update. This

3Note that, in ASAGA, the convergence rate scales with
the maximum delay τmax, which is lower bounded by m.
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quadratic term is similar to the one that appears in
the potential analysis of SAG(Roux et al., 2012) and
in Assran and Rabbat (2020). Key to our analysis is
a new unbiased trajectory lemma, which states that in
expectation, the expected stale update moves towards
the true gradient.

We support our theoretical claims with numerical ex-
periments. In our first set of experiments, we simulate
ADSAGA as well as other algorithms in the model of
Section 1.1, and show that ADSAGA achieves better
iteration complexity than other algorithms that have
been analyzed in the distributed-data setting (IAG,
SGD). These observations extend to a broader and
more realistic shifted exponential delay model, pro-
posed in Lee et al. (2017b). In our second set of ex-
periments, we implement ADSAGA and other state-of-
the-art distributed algorithms in a distributed compute
cluster. We observe that in terms of wallclock time,
ADSAGA performs similarly to IAG, and both of these
asynchronous algorithms are over 60% faster with 30
machines than the synchronous alternatives (minibatch-
SAGA and minibatch-SGD) or asynchronous SGD.

We refer the reader to Appendix A for an extended
discussion of related work; see also the survey of Assran
et al. (2020).

Remark 1.3 (Extensions to non-strongly convex objec-
tives, and acceleration). We remark that the AdaptReg
reduction in Allen-Zhu and Hazan (2016) can be ap-
plied to ADSAGA to extend our result to non-strongly
convex objectives f . In this case, the convergence rate
becomes Õ(n + L/ε +

√
mLfL/ε). Further, applying

the black-box acceleration reduction in Lin et al. (2015)
or Frostig et al. (2015) yields a convergence rate of

Õ(n +
√
nL/µ +

√
n
√
mLfL/µ). Both of the reduc-

tions use an outer loop around ADSAGA which requires
breaking the asynchrony to serialize every Ω(n) iter-
ations. We expect that using the outer loops without
serializing would yield the same results.

2 THE ADSAGA ALGORITHM

In this section, we describe the algorithm ADSAGA,
a variant of SAGA designed for an the asynchronous,
distributed data setting. Each machine maintains a
local copy of the iterate x, which we denote xj , and
also stores a vector αi for each i ∈ Sj , which contains
the last gradient of fi computed at machine j and sent
to the PS. The PS stores the current iterate x and
maintains the average α of the αi. Additionally, to
handle the case of heterogeneous update rates, the PS
maintains a variable uj for each machine, which stores
a weighted history of updates from machine j.

We describe the algorithm formally in Algorithm 1.

At a high level, each machine j chooses a function fi
randomly in Sj , and computes the variance-reduced
stochastic gradient hj := ∇fi(xj) − αi, that is, the
gradient of fi at the current local iterate minus the prior
gradient this machine computed for fi. Meanwhile,
upon receiving this vector hj at the PS, the PS takes
a gradient step in roughly the direction hj + α.

If the machine update rates pj are equal, uj = hj
always, so our algorithm is precisely an asynchronous
implementation of the SAGA algorithm with delays.
In our experiments, we implement this as a “Vanilla”
version of ADSAGA. This is shown in Algorithm 2. The
reader may wish to look at Algorithm 2 first, before
looking at the more complicated Algorithm 1.

If the machine update rates pj are heterogeneous, our
algorithm differs in two ways from the vanilla algorithm.
First, we use machine-specific step sizes ηj which scale
inversely with the machine’s update rate, pj . Intu-
itively, this compensates for less frequent updates with
larger weights for those updates. Second, we use the
variables uj so that the trajectory of the expected up-
date to x tends towards the full gradient ∇f(x) (see
Lemma 3.3).

We provide a logical view of ADSAGA (in the delay
model described in Section 1.1) in Algorithm 3. We em-
phasize that Algorithm 1 is equivalent to Algorithm 3
given our stochastic delay model; we introduce Algo-
rithm 3 only to aid the analysis. In the logical view,
each logical iteration tracks the steps performed by
the PS when hj is sent to the PS from some machine
j, followed by the steps performed by the machine j
upon receiving the iterate x in return. We choose this
sequence for a logical iteration because it implies that
iterate xj used to compute the local gradient in step
M.2 equals the iterate x from the PS. Because the
variable uj is only modified in iterations which concern
machine j, we are able to move step PS.2 to later in
the logical iteration; this eases the analysis. For similar
reasons, we move the step M.3 which updates αi to the
start of the logical iteration.

To make notation clearer for the analysis, in Algo-
rithm 3, we index the central parameter with a su-
perscript of the iteration counter k. Note that in this
algorithm, we also introduce the auxiliary variables
gj , βj and ij to aid with the analysis. The variable ij
tracks the index of the function used to compute the
update hj at machine j, gj := ∇i(xj), and βj := αij .

3 CONVERGENCE RESULT AND
PROOF OVERVIEW

In this section, we state our main result and sketch the
proof. We use Õ-notation to hide logarithmic factors
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Algorithm 1 Asynchronous Distributed SAGA
(ADSAGA)

Process Parameter Server(η, {pj}, x(0), t):
uj = 0 for j ∈ [m] . Initialize update variables

α = 0 . Initialize last gradient averages

repeat
C.1) Receive hj from machine j
C.2) Send x to machine j

PS.1) uj ← uj

(
1− pmin

pj

)
+ hj . First update to

uj
PS.2) x← x− ηj (uj + α)

. Apply stale gradient update using step size

ηj = ηpmin
pj

PS.3) α← α+ 1
nhj . Update gradient averages

PS.4) uj ← uj − m
n hj . Second update to uj

until t iterations have passed
Return x

Process Worker Machine({fi}i∈Sj , xj):
hj = 0 for j ∈ [m] . Initialize updates

αi = 0 for i ∈ [n] . Initialize last gradients

repeat
C.1) Send hj to PS
C.2) Receive current iterate x from PS and set
xj ← x
M.1) i ∼ Uniform(Sj) . Choose a random function

M.2) gj ← ∇fi(xj) . Compute the gradient of fi
M.3) hj ← gj − αi

. Reduce variance by subtracting last time’s ∇fi
M.3) αi ← gj . Update last gradient locally

until terminated by PS

in n or in constants depending on the functions fi.
Logarithmic factors are standard for algorithms that
use a constant step size, though we expect they could
be removed by using a decreasing step size.

Theorem 3.1. Let f(x) = 1
n

∑n
i=1 fi(x) be an Lf -

smooth and µ-strongly convex function. Suppose
that each fi is L-smooth and convex. Let r :=

8

(
76+168

(
pmax
pmin

)2
m
n

)
3 . For any partition of the n func-

tions to m machines, after

k =
1

mpmin

(
4n+ 2r

L

µ
+ 2
√
r

√
mLfL

µ

)

× log


(

1 + 1
2mµη

) (
f(x0)− f(x∗)

)
+ nσ2

2L

ε


iterations of Algorithm 1 at the PS with η =

1

2rL+2
√
rmLfL

, we have E
[
f(xk)− f(x∗)

]
≤ ε, where

σ2 = 1
n

∑
i |∇fi(x∗)|22.

Algorithm 2 Vanilla ADSAGA (all pj equal)

Process Parameter Server(η, x(0), t):
α = 0 . Initialize last gradient averages

repeat
C.1) Receive hj from machine j
C.2) Send x to machine j
PS.1) x← x− η (hj + α)

. Apply stale gradient update

PS.2) α← α+ 1
nhj . Update gradient averages

until t iterations have passed
Return x

Process Worker Machine({fi}i∈Sj , xj):
. Identical to Worker Machine in Algorithm 1

Theorem 3.1 yields a convergence rate of

Õ

((
n+ L

µ +

√
mLfL

µ

)
log(1/ε)

)
when pj = Θ

(
1
m

)
for all j, that is, all machines perform updates with
the same frequency up to a constant factor.

The proof of Theorem 3.1 can be found in the supple-
mentary material. The key elements of our proof are a
new Unbiased Trajectory Lemma (Lemma 3.3) and a
novel potential function which captures progress both
in the iterate x and in the stale gradients.

We begin by introducing some notation which will be
used in defining the potential function. We use Id to
denote the identity matrix in Rd×d, and 1 to denote the
all-ones vector. Let H, G, and U be the matrices whose
jth columns contain the vectors hj = gj − βj , gj , and
uj respectively. We use the superscript k to denote the
value of any variable from Algorithm 1 at the beginning
of iteration k (at the PS). When the iteration k is clear
from context, we will eliminate the superscripts k. To
further simplify, we will use the following definitions:
α∗i := αi − ∇fi(x∗), β∗j := βj − ∇fij (x∗), and g∗j :=
gj − ∇fij (x∗), where ij is the index of the function
used by machine j to compute gj and βj , as above.

We will analyze the expectation of the following poten-
tial function φ(x,G,H,U, α, β):

φ(x,G,H,U, α, β) :=
∑
`

φ`(x,G,H,U, α, β),
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Algorithm 3 Asynchronous Distributed SAGA
(ADSAGA): Logical View, in the model in Section 1.1

Input: x0, η, {fi}, {Sj},P, t
gj , hj , uj , βj = 0 for j ∈ [m] . Initialize variables to 0

ij ∼ Uniform(Sj) for j ∈ [m]
. Initialize last gradient indicators

αi = 0 for i ∈ [n] . Initialize last gradients

α = 0 . Initialize last gradient averages at PS

for k = 0 to t do
j ∼ P; . Choose machine j with probability pj
M.3) αij ← gj . Update last gradient locally

PS.2) xk+1 ← xk − ηj (uj + α)
. Take gradient step using ηj = ηpmin

pj

PS.3) α← α+ 1
nhj . Update gradient averages at

PS

PS.4) uj ← uj − m
n hj . First update to uj

M.1) i ∼ Uniform(Sj)
. Choose uniformly a random function at machine j

gj ← ∇fi(xk) . Update auxiliary variable gj
βj ← αi . Update auxiliary variable βj
M.2) hj ← ∇fi(xj)− αi

. Prepare next update to be sent to PS

PS.1) uj ← uj

(
1− pmin

pj

)
+ pmin

pj
hj

. Second update of uj at PS; this could also be done

locally

ij ← i . Update auxiliary variable ij
end for
Return xt

where φi = φi(x,G,H,U, α, β) are given by

φ1 := 4mη (f(x)− f(x∗)) ,

φ2 :=

(
x− x∗

η(U1 +mα)

)T (
Id −Id
−Id 2Id

)(
x− x∗

η(U1 +mα)

)
,

φ3 := η2c3
∑
j

pmin

pj
|g∗j |22,

φ4 := η2c4

2
∑
i

pmin

pj
|α∗i |22 −

∑
j

pmin

pj
|β∗j |22

 ,

φ5 := η2c5
∑
j

|uj |22,

The exact values of the constants c3, c4 and c5 are
given in the supplementary material.

This potential function captures not only progress in
f(xk) − f(x∗) and |xk − x∗|22, but also the extent to
which the expected stale update, 1

mU1+α, is oriented
in the direction of xk − x∗. While some steps of asyn-
chronous gradient descent may take us in expectation
further from the optimum, those steps will position us
for later progress by better orienting 1

mU1 + α. The
exact coefficients in the potential function are chosen
to cancel extraneous quantities that arise when eval-

uating the expected difference in potential between
steps. In the rest of the text, we abbreviate the poten-
tial φ(xk, Gk, Hk, Uk, αk, βk), given by the variables
at the start of the kth iteration, by φ(k). Below, in
the expectations we implicitly condition on the history
{xk, Gk, Hk, Uk, αk, βk}.

The following is our main technical proposition.

Proposition 3.2. In ADSAGA, for any step size
η ≤ 1

2rL+2
√
rmLfL

, Ei,j [φ(k+1)] ≤ (1− γ)φ(k), where

γ = mpmin min
(

1
4n , µη

)
, and r is a constant defined

in Theorem 3.1 dependent only on pmax

pmin
.

We sketch the proof of this proposition. For ease of
presentation only, we assume that pj = Θ

(
1
m

)
for all j.

The formal proof, which contains precise constants and
the dependence on pmin, is given in the supplementary
material. We begin by stating the Unbiased Trajectory
lemma, which shows that the expected update to x
moves in expectation towards the gradient ∇f(x).

Lemma 3.3 (Unbiased Trajectory). At iteration k of
ADSAGA at the PS,

Ei,j [xk+1] = xk − ηpmin

(
Uk1 +mαk

)
,

and

Ei,j
[
Uk+11 +mαk+1

]
= pmin

(
1− 1

n

)(
Uk1 +mαk

)
+mpmin∇f(xk).

Essentially, the Unbiased Trajectory lemma states that,
in expectation, the update approaches the “desired”
update, which is proportional to ∇f(x). Using this
condition, we can control the expected change in φ1+φ2.
It turns out that the first-order terms of this contri-
bution yield a significant decrease in the potential φ.
However, there are some second order terms, involv-
ing |α∗i |2, |uj |2, |g∗j |2, and |β∗j |2, which go in the wrong
direction and complicate matters. This is the reason
for the terms φ3, φ4, and φ5 in the potential function.
We are able to choose the constants in those terms so
that they exactly cancel the problematic second-order
terms from φ1 + φ2. Combining all of this eventually
yields Proposition 3.2.

4 EXPERIMENTS

We conduct experiments to compare the convergence
rates of ADSAGA to other state-of-the-art algorithms:
SGD, IAG, ASAGA, and minibatch SAGA. In our first
set of experiments, we simulate the stochastic delay
model of Section 1.1. In our second set, we implement
these algorithms in a distributed compute cluster. The
main takeaways of our experiments are the following:
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Figure 2: (a) Comparison of ADSAGA (this work), ASAGA (Leblond et al., 2018), minibatch SAGA (Gazagnadou
et al., 2019), SGD (Lian et al., 2018), and IAG (Gurbuzbalaban et al., 2017): Iteration complexity to achieve
|xk − x∗|22 ≤ 0.1, averaged over 8 runs. (b) Comparison of IAG and ADSAGA with shifted-exponential delays for
60 machines. (c) The exponential update rates are resampled uniformly at random from [1, 10] with varying
frequencies (given on x-axis). x = 0 corresponds to no heterogeneity. Results shown for 60 nodes.

(a) (b)

Figure 3: (a) Convergence accuracy after 100 epochs on 20 machines. (b) Wallclock time to achieve |xk − x∗|22 ≤
10−10, averaged over 8 runs.

1. In experiments on a cluster, ADSAGA is compara-
ble to IAG and outperforms all other algorithms
in wall-clock time.

2. In experiments with simulated (shifted) exponen-
tial delays, ADSAGA outperforms IAG in iteration
complexity.

3. ADSAGA performs well even without knowledge
of the update rates {pj}, even with significant
machine heterogeneity.

Data. For all experiments, we simulate these algo-
rithms on a randomly-generated least squares problem
minx̂ |Ax̂ − b|22. Here A ∈ Rn×d is chosen randomly
with i.i.d. rows from N (0, 1dId), and x ∼ N (0, Id).
The observations b are noisy observations of the form
b = Ax+ Z, where Z ∼ N (0, σ2In). In the first set of
experiments with simulated delays, we choose n = 120,

d = 60, and σ = 1. For the the second set of exper-
iments on the distributed cluster, we choose a larger
10GB least squares problem with n = 600000 and
d = 200000, and σ = 100.

Remark 4.1. We chose to perform our experiments on
least squares problem to better understand how different
algorithms were affected by the distributed-data setting,
without introducing complexity that would be hard to
interpret. Since performing asynchronous algorithm on
a distributed cluster can already produce results that
are difficult to reproduce, we choose a simple dataset
to allow our experiments to be more consistent and
interpretable.

Simulated Delays. In our first set of experiments,
we empirically validate our results by simulating the
stochastic delay model described in Section 1.1, and in a
more general delay model. First we simulate ADSAGA,
SGD, IAG in the distributed data setting in the delay
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model of Section 1.1 with all pi equal; we simulate
ASAGA in this model in the shared-data setting; and
we also compare to minibatch SAGA assuming a syn-
chronous implementation with a minibatch size m equal
to the number of machines. We run all five algorithms
on x̂ with m machines for m ∈ {10, 20, 40, 60, 120}. To
be fair to all algorithms, we use a grid search to find
the best step size in {0.05 × i}i∈[40], observing that
none of the best step sizes were at the boundary of
this set.

In Figure 2, we plot expected iteration complexity to
achieve |x̂−x∗|22 ≤ 0.1, where x∗ := minx̂ |Ax̂−b|22. Fig-
ure 2(a) demonstrates that, in the model in Section 1.1,
ADSAGA outperforms the other algorithms for dis-
tributed data, SGD and IAG, especially as the number
of machines m grows. In a more practical setting with
shifted-exponential delays (no longer memoryless, but
still heavy-tailed), with 60 machines, ADSAGA still
outperforms IAG (Figure 2(b)). Shifted exponential or
heavy-tailed work-time distributions are observed in
practice (Dean and Barroso (2013); Lee et al. (2017b)).
In Figure 2(c), we simulate with time-varying delays.
Here, the update rates are chosen to be exponentially
distributed with heterogeneous parameters, chosen uni-
formly at random from [1, 10]. These parameters are
resampled during training with varying frequencies.

Distributed Experiments. In our second set of
experiments, we run the five data-distributed algo-
rithms (ADSAGA, SGD, IAG, minibatch-SAGA, and
minibatch-SGD) in a distributed compute cluster and
compare their wallclock times to convergence.4 In the
three asynchronous algorithms, the PS waits to receive
a gradient update from a node; sends the current param-
eter back to that node; and performs the appropriate
update. In synchronous minibatch-SGD, the PS waits
until updates have been received by all nodes before
performing an update and sending the new parameter
to all nodes. We run all algorithms with m worker
nodes for m ∈ {5, 10, 15, 20, 30}. The supplementary
material has more details about our implementation.

We implemented the vanilla version of ADSAGA, Al-
gorithm 2, which does not require knowing the update
rates pj . While we measured substantial heterogeneity
in the update rates of each machine — some machines
made to twice as many updates as others — we observed
that the vanilla ADSAGA implementation worked as
well as the full implementation of Algorithm 1. For all
algorithms, we use a block size of 200 (Remark 1.2),
and we perform a hyperparameter grid search over
step sizes to find the hyperparameters which yield the

4We do not simulate the shared-data ASAGA because
the full dataset is too large to fit in RAM, and loading the
data from memory is very slow.

smallest distance x̂ − x∗ after 100 epochs. Note the
vanilla implementation of ADSAGA is the same as the
implementation of ASAGA; the difference is that data
is distributed in our our experiments.

In Figure 3, we compare performance in terms of
both iteration complexity and wallclock time. Fig-
ure 3(a) plots the accuracy |x̂− x∗|22 after 100 epochs,
where x∗ := minx̂ |Ax̂ − b|22. We observe that the
algorithms that do not use variance reduction (asyn-
chronous SGD and minibatch-SGD) do substantially
worse. ADSAGA and IAG perform similarly, while
(synchronous) minibatch-SAGA performs slightly bet-
ter in terms of iteration complexity. In Figure 3(b), we
plot the expected wallclock time to achieve to achieve
|x̂ − x∗|22 ≤ 10−10. We only include the variance-
reduced algorithms in this plot, as SGD did not con-
verge in a reasonable amount of time. Figure 3(b)
demonstrates that while synchronous minibatch-SAGA
may have better iteration complexity, due to the cost of
waiting for all workers to synchronize at each iteration,
the asynchronous algorithms (IAG and ADSAGA) per-
form better in terms of wallclock time. Both IAG and
ADSAGA perform similarly. The advantage of asyn-
chrony increases with the number of machines: while
with 5 machines the asynchronous algorithms are only
20% faster, with 30 machines, they are 60% faster.

5 Conclusion and Open Questions

In this paper, we introduced and analyzed ADSAGA, a
SAGA-like algorithm in an asynchronous, distributed-
data setting. We showed that in a particular stochas-
tic delay model, ADSAGA achieves convergence in

Õ

((
n+ L

µ +

√
mLfL

µ

)
log(1/ε)

)
iterations. To the

best of our knowledge, this is the first provable result
for asynchronous algorithms in the distributed-data
setting — under any delay model — that scales both
logarithmically in 1/ε and linearly in n.

This work leaves open several interesting questions:

1. For arbitrary but bounded delays in the distributed
setting (studied in Gurbuzbalaban et al. (2017);
Aytekin et al. (2016); Vanli et al. (2018)), is the
dependence on n2 in the iteration complexity op-
timal?

2. In the decentralized random gossip setting of Fig-
ure 1(c), what rates does a SAGA-like algorithm
achieve?

3. How would the local-SGD or local minibatching ap-
proaches, which are popular in federated learning,
perform in the presence of stochastic delays?
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A Extended Related Work

We survey the most related gradient-based asynchronous algorithms for strongly convex optimization, focusing on
results for the setting of finite sums. For completeness, we state some results that apply to the more general
setting of optimization over (possibly non-finite) data distributions. See Table 1 for a quantitative summary of
the most relevant other works.

Synchronous Parallel Stochastic Algorithms. Synchronous parallel stochastic gradient descent algorithms
can be thought of as minibatch variants of their non-parallel counterparts. Minibatch SGD is analyzed in Zinkevich
et al. (2010); Dekel et al. (2012). For finite sum minimization, minibatch SAGA is analyzed in Gazagnadou
et al. (2019); Bibi et al. (2018); Gower et al. (2018); Nitanda et al. (2019), achieving a convergence rate of

O
((
n+ L

µ +
mLf
µ

)
log(1/ε)

)
for a minibatch size of m with distributed data.5 Distributed SVRG is analyzed in

Lee et al. (2017a). Katyusha (Allen-Zhu, 2017) presents an accelerated, variance reduced parallelizable algorithm

for finite sums with convergence rate O
((
n+

√
nL
µ +m

√
Lf
µ

)
log(1/ε)

)
; this rate is proved to be near-optimal

in Nitanda et al. (2019). Woodworth et al. (2020) compares local mini-batching and local-SGD for the more
general setting of non-i.i.d data.

Asynchronous Centralized Algorithms with Shared Data (Figure 1(a)) Centralized asynchronous
algorithms often arise in shared-memory architectures or in compute systems with a central parameter server.
The textbook (Bertsekas and Tsitsiklis, 1989) shows asymptotic convergence for stochastic optimization in totally
asynchronous settings which may have unbounded delays. In the partially asynchronous setting, where delays are
arbitrary but bounded by some value τ , sublinear convergence rates of O( 1ε ) matching those of SGD were achieved
for strongly convex stochastic optimization in Recht et al. (2011) (under sparsity assumptions) and Chaturapruek
et al. (2015). For finite sum minimization, linear convergence is proved for asynchronous variance-reduced
algorithms in Mania et al. (2015); Zhao and Li (2016); Reddi et al. (2015); Leblond et al. (2018); Zhou et al.

(2018); Zhuo et al. (2020); the best known rate of O
((
n+ τL

µ

)
log(1/ε)

)
is achieved by ASAGA (Leblond et al.,

2018) and MiG (Zhou et al., 2018), though these works provide stronger guarantees under sparsity assumptions.
Note that most of these works can be applied to lock-free shared-memory architectures as they do not assume
consistent reads of the central parameter. Arjevani et al. (2020) and Stich and Karimireddy (2020) consider the
setting where all delays are exactly equal to τ .

Asynchronous Centralized Algorithms with Distributed Data (Figure 1(b)) Several works (Gurbuzbal-
aban et al., 2017; Aytekin et al., 2016; Vanli et al., 2018) consider incremental aggregated gradient (IAG)
algorithms, which use the update U(i, x) = ∇fi(x) +

∑
i′ 6=i αi, and can be applied to the distributed data setting.

All of these works yield convergence rates that are quadratic in the maximum delay between computations of ∇fi.
Note that this delay is lower bounded by n if a single new gradient is computed at each iteration. The bounds in
these works are deterministic, and hence cannot leverage any stochasticity in the gradient computed locally at
each machine, which is natural when n > m and each machine holds many functions fi. Xie et al. (2019) studies
asynchronous federated optimization with arbitrary (bounded) delays; this work achieves a convergence rate that
scales with 1

ε .

Asynchronous Decentralized Algorithms with Distributed Data (Figure 1(c)) In the decentralized
setting, the network of machines is represented as a graph G, and machines communicate (“gossip”) with their
neighbors. Many works (Ram et al., 2010; Jin et al., 2016; Lian et al., 2018) have considered the setting of
randomized gossip, where each machine has an exponentially distributed clock and wakes up to communicate with
its neighbors each time it ticks. In Lian et al. (2018), a convergence rate of O(1/ε2) is achieved for non-convex
objectives f , matching the rate of SGD. We remark that by choosing the graph G to be the complete graph, this
result extends to our model. Tian et al. (2020); Niwa et al. (2021); Assran and Rabbat (2020); Zhang and You
(2019) study a decentralized setting with arbitrary but bounded delays. For strongly convex objectives f , Tian
et al. (2020) achieves a linear rate of convergence gradient tracking techniques. However, the dependence on the
number of nodes in this work is exponential.

We refer the reader to Assran et al. (2020) for a recent survey on asynchronous parallel optimization algorithms
for a more complete discussion of compute architectures and asynchronous algorithms such as coordinate decent

5We prove this result in Proposition E.1 of the appendix, as the cited works (Gazagnadou et al., 2019; Bibi et al., 2018;
Gower et al., 2018) prove slightly weaker bounds for minibatch SAGA using different condition numbers.
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methods that are beyond the scope of this section.

B Restatement of Convergence Result and Detailed Proof Overview

In this section, we state and sketch the proof of our main result, which yields a convergence rate of

Õ

((
n+ L

µ +

√
mLfL

µ

)
log(1/ε)

)
when pj = Θ

(
1
m

)
for all j, that is, all machines perform updates with the

same frequecy up to a constant factor.

Theorem B.1. Let f(x) = 1
n

∑n
i=1 fi(x) be an Lf -smooth and µ-strongly convex function. Suppose that each fi

is L-smooth and convex. Let r :=
8

(
76+168

(
pmax
pmin

)2
m
n

)
3 . For any partition of the n functions to m machines, after

k = mpmin

(
4n+ 2r

L

µ
+ 2
√
r

√
mLfL

µ

)
log


(

1 + 1
2mµη

) (
f(x0)− f(x∗)

)
+ nσ2

2L

ε


iterations of Algorithm 3 with η = 1

2rL+2
√
rmLfL

, we have E
[
f(xk)− f(x∗)

]
≤ ε, where σ2 = 1

n

∑
i |∇fi(x∗)|22.

We prove this theorem in Section C. The key elements of our proof are the Unbiased Trajectory Lemma
(Lemma B.3) and a novel potential function which captures progress both in the iterate xk and in the stale
gradients. Throughout, all expectations are over the choice of j ∼ P and i ∼ Uniform(Sj) in each iteration of the
logical algorithm.

We begin by introducing some notation which will be used in defining the potential function. Let H, G, and U be
the matrices whose jth columns contain the vectors hj = gj − βj , gj , and uj respectively. We use the superscript
k to denote the value of any variable from Algorithm 3 at the beginning of iteration k. When the iteration k is
clear from context, we will eliminate the superscripts k. To further simplify, we will use the following definitions:
α∗i := αi −∇fi(x∗), β∗j := βj −∇fij (x∗), and g∗j := gj −∇fij (x∗), where ij is the index of the function used by
machine j to compute gj and βj , as indicated in Algorithm 3.

We will analyze the expectation of the following potential function φ(x,G,H,U, α, β):

φ(x,G,H,U, α, β) :=
∑
`

φ`(x,G,H,U, α, β),

where

φ1(x,G,H,U, α, β) := 4mη (f(x)− f(x∗)) ,

φ2(x,G,H,U, α, β) :=

(
x− x∗

η(U1 +mα)

)T (
Id −Id
−Id 2Id

)(
x− x∗

η(U1 +mα)

)
,

φ3(x,G,H,U, α, β) := η2c3
∑
j

pmin

pj
|g∗j |22,

φ4(x,G,H,U, α, β) := η2c4

2
∑
i

pmin

pj
|α∗i |22 −

∑
j

pmin

pj
|β∗j |22

 ,

φ5(x,G,H,U, α, β) := η2c5
∑
j

|uj |22,

and

c5 :=
16

3
(mLfη + 1),

c3, c4 = Θ

(
1 +

m

n

(
pmax

pmin

)2
)
c5.

The exact values of c3 and c4 are given in the Appendix.
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It is easy to check that the potential function is non-negative. In particular, φ1 and φ3, φ5 are clearly non-negative,
and φ2 is non-negative because

(
1 −1
−1 2

)
is positive definite. Finally, φ4 is non-negative because the terms in the

sum over j are a subset of the terms in the sum over i.

This potential function captures not only progress in f(xk)− f(x∗) and |xk − x∗|22, but also the extent to which
the expected stale update, 1

mU1 + α, is oriented in the direction of xk − x∗. While some steps of asynchronous
gradient descent may take us in expectation further from the optimum, those steps will position us for later
progress by better orienting 1

mU1 + α. The exact coefficients in the potential function are chosen to cancel
extraneous quantities that arise when evaluating the expected difference in potential between steps. In the rest
of the text, we abbreviate the potential φ(xk, Gk, Hk, Uk, αk, βk), given by the variables at the start of the kth
iteration, by φ(k). All expectations below are over the random choices of j ∼ P and i ∼ Uniform(Sj) in the kth
iteration of Algorithm 3, and we implicitly condition on the history {xk, Gk, Hk, Uk, αk, βk} in such expectations.

The following proposition is our main technical proposition.

Proposition B.2. In Algorithm 3, for any step size η ≤ 1

2rL+2
√
rmLfL

,

Ei,j [φ(k + 1)] ≤ (1− γ)φ(k)

where γ = mpmin min
(

1
4n , µη

)
, and r is a constant defined in Theorem B.1 dependent only on pmax

pmin
.

We sketch the proof of this proposition. For ease of presentation, we assume in this section that pj = Θ
(

1
m

)
for

all j. The formal proof, which contains precise constants and the dependence on pmin, is given in Section C. We
begin by stating the Unbiased Trajectory lemma, which shows that the expected update to x moves in expectation
towards the gradient ∇f(x).

Lemma B.3 (Unbiased Trajectory). At any iteration k, we have

Ei,j [xk+1] = xk − ηpmin

(
Uk1 +mαk

)
,

and

Ei,j
[
Uk+11 +mαk+1

]
= pmin

(
1− 1

n

)(
Uk1 +mαk

)
+mpmin∇f(xk).

Using this condition, we can control the expected change in φ1 + φ2, yielding the following lemma, stated with
precise constants in Section C. Let q := 1 +mLfη.

Lemma B.4. (Informal)

Ei,j [φ1(k + 1) + φ2(k + 1)]− φ1(k)− φ2(k)

≤ −2pmin

(
x− x∗

η(U1 +mα)

)T (
0 0
0 Id

)(
x− x∗

η(U1 +mα)

)
− 2mpminη(x− x∗)T∇f(x)

+ Θ
(
η2
) q

n

∑
i

|α∗i |22 +
q

n

∑
j

|uj |22 +
1

n

∑
j

(
|g∗j |22 + |β∗j |22

)
+O(η2)

1

n

∑
i

|∇fi(x)−∇fi(x∗)|22.

The first two terms of this lemma yield a significant decrease in the potential. However, the potential may increase
from the remaining second order terms, which come from the variance of the update. We can cancel the second
order term involving the |α∗i |2, |uj |2,|g∗j |2, and |β∗j |2 terms by considering the expected change in potential in φ3,
φ4 and φ5, captured in the next lemma, formally stated in Section C. While we use big-O notation here, as one
can see in the formal lemma in Section C, the exact constants in φ3, φ4 and φ5 are chosen to cancel the second
order terms in Lemma B.4.
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Lemma B.5. (Informal)

E[φ3(k + 1) + φ4(k + 1) + φ5(k + 1)]− (φ3(k) + φ4(k) + φ5(k)) ≤
(
−mpmin

4n

)
(φ3(k) + φ4(k) + φ5(k))

−Θ
(
η2
) q

n

∑
i

|α∗i |22 +
q

n

∑
j

|uj |22 +
1

n

∑
j

(
|g∗j |22 + |β∗j |22

)
+O

(
η2q
) 1

n

∑
i

|∇fi(x)−∇fi(x∗)|22.

Intuitively, the
(
1−Θ

(
mpmin

n

))
contraction in this lemma is possible because in each iteration, with probality at

least mpmin

n , any one of the n variables αij is replaced by the variable gj , which is in turn replaced by a fresh
gradient ∇fi(x).

Finally, we use the smoothness of each fi to bound 1
n

∑
i |∇fi(x)−∇fi(x∗)|22 by L(x− x∗)T∇f(x) (Lemma C.9).

This allows us to cancel all of the 1
n

∑
|∇fi(x) − ∇fi(x∗)|22 terms with the negative η(x − x∗)∇f(x) term in

Lemma B.4. We show that if η ≤ Θ

(
1

L+
√
mLfL

)
, the negative 2mpminη(x − x∗)T∇f(x) term in Lemma B.4

dominates the positive O
(
η2q
)

1
n

∑
i |∇fi(x) − ∇fi(x∗)|22 term (Claim C.10). Using the µ-strong convexity

of f , we show that the remaining fraction of the negative 2mpminη(x − x∗)T∇f(x) term leads to a negative

2mpminµ|x− x∗|22 and m2pminη
n (f(x)− f(x∗)) term.

Combining Lemma B.4 and Lemma B.5 with the observations above, we obtain the following lemma:

Lemma B.6. For η ≤ Θ

(
1

L+
√
mLfL

)
,

E[φ(k + 1)]− φ(k) ≤ −2pmin

(
y

η(U1 +mα)

)T (µmη
2 0
0 1

)(
y

η(U1 +mα)

)
− mpmin

4n
(φ1(k) + φ3(k) + φ4(k) + φ5(k))

Some linear-algebraic manipulations (Lemma C.12) yield Proposition B.2.

C Proof of ADSAGA Convergence

In this section we prove Theorem B.1, restated as Theorem A.1.

Theorem C.1. Let f(x) = 1
n

∑n
i=1 fi(x) be an Lf -smooth and µ-strongly convex function. Suppose that each fi

is L-smooth and convex. Let r :=
8

(
76+168

(
pmax
pmin

)2
m
n

)
3 . For any partition of the n functions to m machines, after

k = mpmin

(
4n+ 2r

L

µ
+ 2
√
r

√
mLfL

µ

)
log


(

1 + 1
2mµη

) (
f(x0)− f(x∗)

)
+ nσ2

2L

ε


iterations of Algorithm 3 with η = 1

2rL+2
√
rmLfL

, we have E
[
f(xk)− f(x∗)

]
≤ ε, where σ2 = 1

n

∑
i |∇fi(x∗)|22.

Remark C.2. Due to the strong convexity, we have |x− x∗|22 ≤
µ
2 (f(x)− f(x∗)), so this theorem also implies

that |xk − x∗|22 ≤ ε after Õ

((
n+ L

µ +

√
mLfL

µ

)
log(1/ε)

)
iterations.

We begin by establishing notation and reviewing the update performed at each step of Algorithm 3.

Recall that x is the value held at the PS, and let y denote x−x∗. Let G and H be the matrices whose jth column
contains the vector gj and hj respectively. For all the variables in Algorithm 3 and discussed above, we use a
superscript k to denote their value at the beginning of iteration k. When the iteration k is clear from context, we
will eliminate the superscripts k. To further simplify, we will use the following definitions: α∗i := αi −∇fi(x∗),
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β∗j := βj −∇fij (x∗), and g∗j := gj −∇fij (x∗), where ij is the index of the function used by machine j to compute
gj and βj , as indicated in Algorithm 3.

Recall that we analyze the expectation of the following potential function φ(x,G,H,U, α, β):

φ(x,G,H,U, α, β) :=

5∑
`=1

φ`(x,G,H,U, α, β),

where

φ1(x,G,H,U, α, β) := c1 (f(x)− f(x∗)) ,

φ2(x,G,H,U, α, β) :=

(
x− x∗

η(U1 +mα)

)T (
1 −1
−1 2

)(
x− x∗

η(U1 +mα)

)
,

φ3(x,G,H,U, α, β) := η2c3
∑
j

pmin

pj
|g∗j |22,

φ4(x,G,H,U, α, β) := η2c4

2
∑
i

pmin

pj
|α∗i |22 −

∑
j

pmin

pj
|β∗j |22

 ,

φ5(x,G,H,U, α, β) := η2c5
∑
j

|uj |22.

Above, we abbreviate the 2d× 2d matrix

(
Id −Id
−Id 2Id

)
as

(
1 −1
−1 2

)
. Later, we will choose the c` as follows:

c1 = 4mη,

c3 =

(
64 + 168

m

n

(
pmax

pmin

)2
)
c5

c4 =

(
22 +

76m

n

(
pmax

pmin

)2
)
c5,

c5 =
4

3
(4mLfη + 4) .

The following proposition is our main technical proposition.

Proposition B.2. In Algorithm 3, for any step size η ≤ 1

2rL+2
√
rmLfL

,

Ei,j [φ(k + 1)] ≤ (1− γ)φ(k)

where γ = mpmin min
(

1
4n , µη

)
, and r is a constant defined in Theorem B.1 dependent only on pmax

pmin
.

Before we prove this proposition, we prove Theorem B.1, which follows from Proposition B.2.

Proof. (Theorem B.1) Upon initialization, the expected potential E[φ(0)] (over the random choices of ij) equals

E[φ(0)] = 4mη(f(x0)− f(x∗)) + |x0 − x∗|22 + η2 (m(c3 − c4) + 2nc4)
1

n

∑
i

|∇fi(x∗)|22

≤
(

4mη +
2

µ

)(
f(x0)− f(x∗)

)
+ η2 (c3 + c4)

∑
i

|∇fi(x∗)|22

≤
(

4mη +
2

µ

)(
f(x0)− f(x∗)

)
+ η2n(c3 + c4)σ2,
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where the second line uses µ-strong convexity, the fact that c3 > c4 and that m ≤ n. For η = 1

2rL+2
√
rmLfL

, we

use the fact that η ≤ 1
2rL since c3+c4

2r ≤ mLfη + 1 ≤ m; thus

E[φ(0)] ≤
(

4mη +
2

µ

)(
f(x0)− f(x∗)

)
+

(
ηn(c3 + c4)

2rL

)
σ2

≤
(

4mη +
2

µ

)(
f(x0)− f(x∗)

)
+

(
2ηmn

L

)
σ2,

where we have plugged in the definition of r.

With γ = mpmin min
(

1
4n , ηµ

)
as in Proposition B.2 and η and k as in Theorem B.1, we have

kγ ≥ log


(

1 + 1
2mµη

) (
f(x0)− f(x∗)

)
+ nσ2

2L

ε

 ,

and so

(1− γ)
k ≤ exp (−γk) ≤ exp

− log


(

1 + 1
2mµη

) (
f(x0)− f(x∗)

)
+ nσ2

2L

ε


≤ 4mηε(

4mη + 2
µ

)
(f(x0)− f(x∗)) + 2ηmnσ2

L

≤ 4mηε

E[φ(0)]
.

It follows from Proposition B.2 that

E[φ(k)] ≤ 4mηε

Since φ(k) ≥ 4mη(f(xk)− f(x∗)), we have E[f(xk)− f(x∗)] ≤ ε as desired.

Proof. (Proposition B.2) To abbreviate, let M =

(
1 −1
−1 2

)
. We also abbreviate ∇i := ∇fi(xk), and let ∇ be

the matrix whose ith column is ∇i. All expectations are over the random choice of j ∼ P and i ∼ Uniform(Sj)
in Algorithm 3. Because, each function i only belongs to a single machine j(i), we will sometime abbreviate the
choice of i, j in each iteration as just a choice of i; when we do so, any otherwise unspecified use of j should be
interpreted as the machine j(i) where fi is stored.

Recall that in each iteration, given the random choice of j and i in that iteration, the following updates to the
variables in Algorithm 3 are made, with ηj = η pmin

pj
:

xk+1 ← xk − ηj(ukj + αk);

αk+1 ← αk +
1

n
hkj ;

αk+1
ij
← gkj ;

gk+1
j ← ∇fi(xk);

βk+1
j ←

{
αki i 6= ij ;

gkj i = ij ;

hk+1
j ← gk+1

j − βk+1
j =

{
∇fi(xk)− αki i 6= ij ;

∇fi(xk)− gkj i = ij .

uk+1
j ← ukj

(
1− pmin

pj

)
+
pmin

pj
hk+1
j − m

n

(
1− pmin

pj

)
hkj

ik+1
j ← i.

(?)
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Note that the update to uj contains a reference to both hk+1
j and hkj . At the end of each iteration, we maintain

the invariant αk+1
ij

= βk+1
j , and αk+1 = 1

n

∑
i α

k+1
i because

hkj = gkj − βkj = αk+1
ij
− αkij .

Dropping the superscripts of k, let

∆i :=

(
xk+1 − x

η(Uk+11 +mαk+1)− η(U1 +mα)

)

be the change to the vector

(
x

U1 +mα

)
if function i is chosen at iteration k. We begin by computing ∆i.

Claim C.3.

∆i = ηj

(
−uj − α

−uj +∇i − αi +
(
−I(i = ij + m

n )
)
hj

)
.

Proof. If i 6= ij , then we have

Uk+11 = U1 +
pmin

pj
(−uj +∇fi(x)− αi)−

m

n

(
1− pmin

pj

)
hj .

Otherwise if i = ij , then

Uk+11 = U1 +
pmin

pj
(−uj +∇fi(x)− gj)−

m

n

(
1− pmin

pj

)
hj

= U1 +
pmin

pj
(−uj +∇fi(x)− αi − gj + βj)−

m

n

(
1− pmin

pj

)
hj

= U1 +
pmin

pj
(−uj +∇fi(x)− αi − hj)−

m

n

(
1− pmin

pj

)
hj

where the second line follows because αi = βj in this case. In both cases, we have

mαk+1 = mα+
m

n
hj .

Putting this all together with the update to x and the fact that ηj = η pmin

pj
yields the claim:

∆i =

(
−ηj(uj + α)

η
(
pmin

pj
(−uj +∇i − αi) +

(
−mn

(
1− pmin

pj

)
− pmin

pj
I(i = ij) + m

n

)
hj

))

=

(
−ηj(uj + α)

η pmin

pj

(
−uj +∇i − αi +

(
−I(i = ij) + m

n

)
hj
))

=

(
−ηj(uj + α)

ηj
(
−uj +∇i − αi +

(
−I(i = ij) + m

n

)
hj
))

Computing the expectation of ∆i and plugging in ηj = η pmin

pj
yields the Unbiased Trajectory lemma:

Lemma B.3 (Unbiased Trajectory).

Ei,j [∆i] = −pminη

(
U1 +mα

U1 +mα− m
n∇1

)
.
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Proof. First note that I(i = ij) is independent from j, and occurs with probability 1
|Sj | = m

n . Hence, from

Claim C.3, we have

Ei,j [∆i] = Ei,jηj
(

−uj − α
−uj +∇i − αi +

(
−I(i = ij + m

n )
)
hj

)
=
∑
j,i∈Sj

m

n
pjηj

(
−uj − α

−uj +∇i − αi +
(
−I(i = ij + m

n )
)
hj

)

= pminη

(
−U1−mα

−U1 + m
n∇1−mα

)
.

Now

φ2(k + 1) =

((
y

η(U1 +mα)

)
+ ∆i

)T (
1 −1
−1 2

)((
y

η(U1 +mα)

)
+ ∆i

)
,

so we can compute the difference

E[φ2(k + 1)]− φ2(k) = 2

(
y

η(U1 +mα)

)T (
1 −1
−1 2

)
Ei,j [∆i] + Ei,j

[
∆T
i M∆i

]
= −2ηpmin

(
y

η(U1 +mα)

)T (
1 −1
−1 2

)(
U1 +mα

U1 +mα− m
n∇1

)
+ Ei,j

[
∆T
i M∆i

]
= −2pmin

(
y

η(U1 +mα)

)T (
0 0
0 1

)(
y

η(U1 +mα)

)
+ Ei,j

[
∆T
i M∆i

]
− 2ηmpmin

n
yT∇1 +

4η2mpmin

n
(U1 +mα)

T ∇1.

(4)

We bound the quadratic term in the difference E[φ2(k)]− φ2(k) in (4) in the following claim.

Claim C.4.

Ei,j
[
∆T
i M∆i

]
≤ 4mpminη

2

n

4
∑
j

|g∗j |22 + 4
∑
j

|β∗j |22 +
n

m

∑
j

|uj |22 + 2
∑
i

|α∗i |22 + 2
∑
i

|∇i −∇i(x∗)|22

 .
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Proof.

1

η2
Ei,j

[
∆T
i M∆i

]
= Ei,j

[
η2j
η2

(
uj + α

uj −∇i + αi +
(
−mn + I(i = ij)

)
hj

)T
M

(
uj + α

uj −∇i + αi +
(
−mn + I(i = ij)

)
hj

)]

≤ mpmin

n

∑
i

(
uj + α

uj −∇i + αi +
(
−mn + I(i = ij)

)
hj

)T
M

(
uj + α

uj −∇i + αi +
(
−mn + I(i = ij)

)
hj

)

≤ 4mpmin

n

(
1− m

n

)∑
i

[(
0

−mn hj

)T
M

(
0

−mn hj

)]
+

4mpmin

n

m

n

∑
i

[(
0(

1− m
n

)
hj

)T
M

(
0(

1− m
n

)
hj

)]

+
4mpmin

n

∑
i

[(
uj
uj

)T
M

(
uj
uj

)]

+
4mpmin

n

∑
i

[(
α

αi −∇i(x∗)

)T
M

(
α

αi −∇i(x∗)

)]

+
4mpmin

n

∑
i

[(
0

∇i −∇i(x∗)

)T
M

(
0

∇i −∇i(x∗)

)]
.

.

(5)

Here the first inequality is by the fact the definition ηj = ηpmin

pj
≤ η, and the second is by Jensen’s inequality and

the fact that the distribution of j conditioned on the indicator I(i = ij) is equivalent to the distribution of j
when i is chosen uniformly at random.

We can bound each of these terms by plugging in M =

(
1 −1
−1 2

)
.

For the first two terms involving hj , we have,(
1− m

n

)∑
i

[(
0

−mn hj

)T
M

(
0

−mn hj

)]
+
m

n

∑
i

[(
0(

1− m
n

)
hj

)T
M

(
0(

1− m
n

)
hj

)]

= 2

(
m

n
− m2

n2

)∑
i

|hj |22

= 2
(

1− m

n

)∑
j

|hj |22

≤ 4
∑
j

|g∗j |22 + 4
∑
j

|β∗j |22.

(6)

Similarly, ∑
i

[(
uj
uj

)T
M

(
uj
uj

)]
=
∑
i

|uj |22 =
n

m

∑
j

|uj |22. (7)

For the final two terms, we have∑
i

[(
α

αi −∇i(x∗)

)T
M

(
α

αi −∇i(x∗)

)]
+
∑
i

[(
0

∇i −∇i(x∗)

)T
M

(
0

∇i −∇i(x∗)

)]

≤
∑
i

[(
α

αi −∇i(x∗)

)T
M

(
α

αi −∇i(x∗)

)]
+
∑
i

[(
0

∇i −∇i(x∗)

)T
M

(
0

∇i −∇i(x∗)

)]
= 2

∑
i

|α∗i |22 −
∑
i

|α|22 + 2
∑
i

|∇i −∇i(x∗)|22

≤ n

m

∑
j

|uj |22 + 2
∑
i

|α∗i |22 + 2
∑
i

|∇i −∇i(x∗)|22.

(8)
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Plugging these three equations into Equation 5 yields the claim.

Next we bound the expected change in φ1.

Claim C.5.

E[φ1(k + 1)]− φ1(k) ≤ −c1ηpmin

n
(U1 +mα)

T ∇1

+ c1Lfη
2mpmin

 1

m

∑
j

|uj |22 +
1

n

∑
i

|α∗i |22


Proof. Using convexity and Lf -smoothness,

E[φ1(k + 1)]− φ(k) = c1Ei,j [f(x− ηj(uj + α)]− c1f(x)

≤ c1E[−ηj(uj + α)T ]
∇1
n

+
c1Lf

2
E[|ηj(uj + α)|22]

= −c1ηpmin

n
(U1 +mα)

T ∇1 +
c1Lf

2

∑
j

pjη
2
j |uj + α|22

≤ −c1ηpmin

n
(U1 +mα)

T ∇1 + c1Lf
∑
j

pjη
2
j |uj |22 + c1Lfη

2mpmin|α|2

≤ −c1ηpmin

n
(U1 +mα)

T ∇1 + c1Lfη
2pmin

∑
j

|uj |22 +
c1Lfη

2mpmin

n

∑
i

|α∗i |2.

Here we used Jensen’s in the second inequality, and the fact that α = 1
n

∑
i[α
∗
i +∇i(x∗)], so because 1

n

∑
i∇i(x∗) =

0, we have |α|2 ≤ 1
n

∑
i |α∗i |22 in the third inequality.

We now combine (4), Claim C.4, and Claim C.5, plugging in our choice of c1 = 4mη, which was chosen so that
the (U1 +mα)T∇1 terms cancel. This yields the following lemma.

Lemma B.4. (Formal)

E[φ1(k + 1) + φ2(k + 1)]− (φ1(k) + φ2(k)) ≤

− 2pmin

(
y

η(U1 +mα)

)T (
0 0
0 1

)(
y

η(U1 +mα)

)
−
(

2ηmpmin

n

)(
yT∇1

)
+
∑
j

|uj |22η2pmin (4mLfη + 4)

+
∑
j

|g∗j |22
(

16mpminη
2

n

)

+
∑
j

|β∗j |22
(

16mpminη
2

n

)

+
∑
i

|α∗i |22
η2mpmin

n
(4mηLf + 16)

+
∑
i

|∇i −∇i(x∗)|22
(

8mpminη
2

n

)
.

We proceed in the following claims to bound the differences in expectation of φ3 and φ4.

Claim C.6.

E[φ3(k + 1)]− φ3(k) ≤ −η2c3pmin

∑
j

[
|g∗j |22

]
+ η2c3pmin

m

n

∑
i

|∇i −∇i(x∗)|22.
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Proof. If function i is chosen in iteration k, then gj becomes ∇i, so

φ3(k + 1) = η2c3

∑
j′ 6=j

pmin

pj′
|g∗j′ |22 +

pmin

pj
|∇i −∇i(x∗)|22

 .

Taking the expectation over i yields the claim.

Claim C.7.

Ei,j [φ4(k + 1)]− φ4(k) ≤ −pminm

4n
φ4(k)− η2mpminc4

2n

∑
i

|α∗i |22

− η2 pminc4
4

∑
j

|β∗j |22

+ η22pminc4
∑
j

|g∗j |22.

Proof. If function i is chosen in the kth iteration, then

φ4(k + 1)− φ4(k) = η22c4
pmin

pj

(
|g∗j |22 − |α∗ij |

2
2

)
+ η2c4

pmin

pj

(
|β∗j |22 − |α∗i |22 + I(i = ij)(|α∗i |22 − |g∗j |22)

)
= −η2c4

pmin

pj

(
|α∗i |22 + |β∗j |22

)
+ η22c4

pmin

pj
|g∗j |22

+ η2c4
pmin

pj
I(i = ij)

(
|β∗j |22 − |g∗j |22

)
,

where we have plugged in α∗ij = β∗j , and in the case when i = ij , the equality αi = β∗j . Taking the expectation
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over i yields

Ei,j [φ4(k + 1)]− φ4(k) = −η2c4pmin

m
n

∑
i

[
|α∗i |22

]
+
∑
j

[
|β∗j |22

]
+ η22c4pmin

∑
j

|g∗j |22

+ η2c4pmin
m

n

∑
j

|β∗j |22 −
∑
j

|g∗j |22


= −η2c4pmin

m

n

∑
i

|α∗i |22

− η2c4pmin

(
1− m

n

)∑
j

|β∗j |22

+ η2c4pmin

(
2− m

n

)∑
j

|g∗j |22

= −η
2c4pminm

4n

2
∑
i

|α∗i |22 −
∑
j

|βj |22


− η2c4

mpmin

n

(
1− 2

4

)∑
i

|α∗i |22

− η2c4
(

1− 3m

4n

)∑
j

|β∗j |22

+ η2c4pmin

(
2− m

n

)∑
j

|g∗j |22

≤ −pminm

4n
φ4(k)

− η2c4
mpmin

2n

∑
i

|α∗i |22

− η2c4pmin

(
1− 3m

4n

)∑
j

|β∗j |22

+ η2c4pmin

(
2− m

n

)∑
j

|g∗j |22

≤ −pminm

4n
φ4(k)− η2c4

mpmin

2n

∑
i

|α∗i |22

− η2 c4pmin

4

∑
j

|β∗j |22

+ η22pminc4
∑
j

|g∗j |22,

,

where the first inequality follows from the fact that pmin

pj
≤ pj for all j, and the second inequality follows from

bounding 0 ≤ m
n ≤ 1.

Claim C.8.

E[φ5(k+1)]−φ5(k) ≤ c5η2
−pmin

∑
j

|uj |2 +
4mpmin

n

∑
i

(
|∇i −∇i(x∗)|22 + |α∗i |22

)
+

16m

npmin

∑
j

p2j
(
|g∗j |22 + |β∗j |22

) .
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Proof. If function i is chosen in iteration k, then uj becomes

uj

(
1− pmin

pj

)
+
pmin

pj
(∇i − αi)−

(
m

n
+
pmin

pj

(
I(i = ij)−

m

n

))
hj .

Hence in this case, by applying Jensen’s inequality, we have

φ5(k + 1)− φ5(k) = c5η
2

∣∣∣∣uj (1− pmin

pj

)
+
pmin

pj
(∇i − αi)−

(
m

n
+
pmin

pj

(
I(i = ij)−

m

n

))
hj

∣∣∣∣2 − c5η2|uj |2
≤ c5η2

[
1

1− pmin

pj

∣∣∣∣uj (1− pmin

pj

)∣∣∣∣2 +
1

pmin

pj

∣∣∣∣pmin

pj
(∇i − αi)−

(
m

n
+
pmin

pj

(
I(i = ij)−

m

n

))
hj

∣∣∣∣2 − |uj |2
]

= c5η
2

[
−pmin

pj
|uj |2 +

pj
pmin

∣∣∣∣pmin

pj
(∇i − αi)−

(
m

n
+
pmin

pj

(
I(i = ij)−

m

n

))
hj

∣∣∣∣2
]
.

Now we use Jensen’s inequality and the fact that pmin

pj
≤ 1 to break up the second squared term:∣∣∣∣pmin

pj
(∇i − αi)−

(
m

n
+
pmin

pj

(
I(i = ij)−

m

n

))
hj

∣∣∣∣2
≤ 4

p2min

p2j

(
|∇i −∇i(x∗)|22 + |α∗i |22

)
+ 2

(
m

n
+
pmin

pj

(
I(i = ij)−

m

n

))2

|hj |2

≤ 4
p2min

p2j

(
|∇i −∇i(x∗)|22 + |α∗i |22

)
+ 2

(
m

n
+
pmin

pj
I(i = ij)

)2

|hj |2

≤ 4
p2min

p2j

(
|∇i −∇i(x∗)|22 + |α∗i |22

)
+ 4

(
m

n
+
pmin

pj
I(i = ij)

)2

|g∗j |22 + 4

(
m

n
+
pmin

pj
I(i = ij)

)2

|β∗j |22.

(9)

Observe that for a fixed j,

∑
i:j(i)=j

(
m

n
+
pmin

pj
I(i = ij)

)2

≤
∑

i:j(i)=j

(m
n

+ I(i = ij)
)2

=
(m
n

+ 1
)2

+
( n
m
− 1
)(m

n

)2
≤ 4.

Finally, taking the expectation over i, we have

E[φ5(k + 1)]− φ5(k)

≤ c5η2
−pmin

∑
j

|uj |2 +
4mpmin

n

∑
i

(
|∇i −∇i(x∗)|22 + |α∗i |22

)
+
∑
j

16mp2j
npmin

(
|g∗j |22 + |β∗j |22

) (10)

Combining Claim C.6, Claim C.7, and Claim C.8 yields the following lemma.

Lemma B.5. (Formal)

E[φ3(k + 1) + φ4(k + 1) + φ5(k + 1)]− φ3(k)− φ4(k)− φ5(k)

≤ −pminm

4n
(φ3(k) + φ4(k) + φ5(k)) + η2

mpmin

n
(c3 + 4c5)

∑
i

|∇i −∇i(x∗)|22

− η2m
n

∑
i

(pmin(4mLfη + 16)) |α∗i |22 − η2
∑
j

(4mLfη + 4) |uj |22

− η2
∑
j

(
16mpmin

n

)(
|g∗j |22 + |β∗j |22

)
.
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Proof.

E[φ3(k + 1) + φ4(k + 1) + φ5(k + 1)]− φ3(k + 1)− φ4(k + 1)− φ5(k + 1)

≤ −η2c3pmin

∑
j

|g∗j |22 + η2c3
mpmin

n

∑
i

|∇i −∇i(x∗)|22

− pminm

4n
φ4(k)− η2mpminc4

2n

∑
i

|α∗i |22 − η2
pminc4

4

∑
j

|β∗j |22 + η22pminc4
∑
j

|g∗j |22

+ c5η
2

−pmin

∑
j

|uj |2 +
4mpminc5

n

∑
i

(
|∇i −∇i(x∗)|22 + |α∗i |22

)
+
∑
j

16mp2j
npmin

(
|g∗j |22 + |β∗j |22

)
= −pminm

4n
φ4(k)

+ η2
m

n

∑
i

(
−pminc4

2
+ 4pminc5

)
|α∗i |22

+ η2
∑
j

(
−pminc3 + 2pminc4 +

16mp2jc5

npmin

)
|g∗j |22

+ η2
∑
j

(
−pminc4

4
+

16mp2jc5

npmin

)
|β∗j |22

+ η2
∑
j

(−c5pmin) |uj |22

+ η2
(
mpmin

n
c3 +

4mpmin

n
c5

)∑
i

|∇i −∇i(x∗)|22

= −pminm

4n
(φ3(k) + φ4(k) + φ5(k))

+ η2
m

n

∑
i

(
−pminc4

2
+ 4pminc5

)
|α∗i |22

+ η2
∑
j

(
−pminc3 + 2pminc4 +

16mp2jc5

npmin
+
p2minmc3

4npj

)
|g∗j |22

+ η2
∑
j

(
−pminc4

4
+

16mp2jc5

npmin

)
|β∗j |22

+ η2
∑
j

(
−c5pmin +

pminmc5
4n

)
|uj |22

+ η2
(
mpmin

n
c3 +

4mpmin

n
c5

)∑
i

|∇i −∇i(x∗)|22

≤ −pminm

4n
(φ3(k) + φ4(k) + φ5(k))

− η2m
n

∑
i

(pmin(4mLfη + 16)) |α∗i |22

− η2
∑
j

(
16mpmin

n

)
|g∗j |22

− η2
∑
j

(
16mpmin

n

)
|β∗j |22

− η2
∑
j

mpmin (4mLfη + 4) |uj |22

+ η2
mpmin

n
(c3 + 4c5)

∑
i

|∇i −∇i(x∗)|22.
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Here the first inequality follows from Claims C.6, C.7, C.8, and the last inequality follows from plugging in our

choice of constants: c5 = 4
3 (4mLfη + 4), c4 =

(
22 + 76m

n

(
pmax

pmin

)2)
c5, and c3 =

(
64 + 168mn

(
pmax

pmin

)2)
c5.

We use the following lemma to bound the
∑
i |∇i −∇i(x∗)|22 terms, which appear in Lemmas B.4 and B.5.

Lemma C.9. ∑
i

|∇i −∇i(x∗)|22 ≤ LyT∇1.

Proof. By the convexity of each fi and their L-smoothness,∑
i

|∇i −∇i(x∗)|22 ≤
∑
i

LyT (∇i −∇i(x∗)) = LyT∇1.

Above, we used the fact that
∑
i∇i(x∗) = 0.

We now combine Lemma B.4 and Lemma B.5 to find the total expected difference in potential.

E[φ(k + 1)]− φ(k) = (E[(φ1(k + 1) + φ2(k + 1))]− (φ1(k) + φ2(k)))

+ (E[(φ3(k + 1) + φ4(k + 1) + φ5(k + 1))]− (φ3(k) + φ4(k) + φ5(k)))

≤ −2pmin

(
y

η(U1 +mα)

)T (
0 0
0 1

)(
y

η(U1 +mα)

)
−
(

2ηmpmin

n

)(
yT∇1

)
+

(
8mpminη

2

n

)∑
i

|∇i −∇i(x∗)|22

− mpmin

4n
(φ3(k) + φ4(k) + φ5(k)) + η2

mpmin

n
(c3 + 4c5)

∑
i

|∇i −∇i(x∗)|22

≤ −2pmin

(
y

η(U1 +mα)

)T (
0 0
0 1

)(
y

η(U1 +mα)

)
− mpmin

4n
(φ3(k) + φ4(k) + φ5(k))− mpminCy

T∇1
n

,

where
C = 2η − η2L (8 + c3 + 4c5) ,

and in the last inequality, we have used Lemma C.9.

Now because f is convex, f(x)− f(x∗) ≤ yT∇1
n , and so rearranging terms and plugging in the value of c1, we have

E[φ(k + 1)]− φ(k) ≤ −2pmin

(
y

η(U1 +mα)

)T (
0 0
0 1

)(
y

η(U1 +mα)

)
− mpmin

4n
(φ3(k) + φ4(k) + φ5(k))

− c1mpmin

4n
(f(x)− f(x∗))−mpmin

(
C − c1

4n

) yT∇1
n

= −2pmin

(
y

η(U1 +mα)

)T (
0 0
0 1

)(
y

η(U1 +mα)

)
− mpmin

4n
(φ1(k) + φ3(k) + φ4(k) + φ5(k))

−mpmin

(
C − c1

4n

) yT∇1
n

.

(11)

The next claim shows that for small enough η, the final term in this equation is large.

Claim C.10. For η ≤ 1

2rL+2
√
rmLfL

,

C − c1
4n
≥ η,
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where r =
8

(
76+168

(
pmax
pmin

)2
m
n

)
3 as in Theorem B.1.

Proof. First observe that

r ≥
8 +

(
68 + 168

(
pmax

pmin

)2
m
n

)
4
3 (4mLfη + 4)

2(mLfη + 1)
=
L(8 + c3 + 4c5)

2L (mLfη + 1)
.

Thus

C − c1
4n
≥ 2η − 2η2r(mLfη + 1)

= 2η(1− ηrL− η2rmLfL)

≥ η.

for η ≤ 1

2rL+2
√
rmLfL

. Here in the last line we have used the fact that (1− ηrL− η2rmLfL) is increasing in η,

and for any a, b > 0, 1− a
2(a+b) −

b2

(2(a+b))2 ≥
1
2 (we plugged in a = rL and b2 = rmLfL).

Using the strong convexity of f , we have yT∇1 ≥ nµ|y|22. Hence plugging Claim C.10 into (11) yields the following
lemma.

Lemma B.6. For η < 1

2rL+2
√
rmLfL

,

E[φ(k + 1)]− φ(k) ≤ −2pmin

(
y

η(U1 +mα)

)T (µmη
2 0
0 1

)(
y

η(U1 +mα)

)
− mpmin

4n
(φ1(k) + φ3(k) + φ4(k) + φ5(k))

Recall that our goal is to find some γ ≤ mpmin

4n such that

E[φ(k + 1)] ≤ (1− γ)φ(k).

We will do this by finding some γ that satisfies for all y, U and α:(
y

η(U1 +mα)

)T (µmη
2 0
0 1

)(
y

η(U1 +mα)

)
(

y
η(U1 +mα)

)T (
1 −1
−1 2

)(
y

η(U1 +mα)

) ≥ γ

2pmin
, (12)

or equivalently

Q � γ

pmin
I,

where

Q :=

(
1 −1
−1 2

)−1/2(
µmη 0

0 2

)(
1 −1
−1 2

)−1/2
. (13)

Indeed, establishing (12) will imply that E[φ(k + 1)]− φ(k) ≤ −γφ2(k)− mpmin

4 (φ1(k) + φ3(k) + φ4(k) + φ5(k)),
so if γ ≤ mpmin

4n , then E[φ(k)] ≤ (1− γ)φ(k).

We bound the smallest eigenvalue of Q by evaluating the trace and determinant of the product of 2× 2 matrices
that underlie the block matrices above in the matrix product forming Q.

Lemma C.11. For any symmetric 2× 2 matrix A, λmin(A) ≥ Det(A)
Tr(A) .
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Figure 4: Comparison of ADSAGA (this work), ASAGA (Leblond et al., 2018), minibatch SAGA (Gazagnadou
et al., 2019), SGD (Lian et al., 2018), and IAG (Gurbuzbalaban et al., 2017): Iteration complexity to achieve
|xk − x∗|22 ≤ 0.1, averaged over 8 runs. (b) Comparison of IAG and ADSAGA with shifted-exponential delays for
60 machines.

Proof. Let d := Det(A), and t := Tr(A). By the characteristic equation, putting

λmin(A) =
t−
√
t2 − 4d

2
=
t

2

(
1−

√
1− 4d

t2

)
≥ t

2

(
1−

(
1− 2d

t2

))
=
d

t
,

where the inequality follows from the fact that
√

1 + x ≤ 1 + x
2 for x ≥ −1.

Claim C.12. For η ≤ 1

2rL+2
√
rmLfL

,

λmin(Q) ≥ min (1, µmη) .

Proof. We compute the determinant and trace of Q. Note that det

((
1 −1
−1 2

))
= 1.

D := Det(Q) = 2µmη

Using the circular law of trace, and computing the inverse

(
1 −1
−1 2

)−1
=

(
2 1
1 1

)
, we have

Tr(Q) = 2µnη + 2 = D + 2.

Now by Lemma C.11

λmin(Q) ≥ D

D + 2
≥ min

(
1,
D

2

)
= min (1, µmη) ,

where the second inequality holds for any D > 0.

Recalling our bound that γ ≤ mpmin

4n , this claim shows that we can choose γ = mpmin min
(

1
4n , µη

)
as desired.

D Extended Experiments

We conduct experiments to compare the convergence rates of ADSAGA to other state-of-the-art algorithms: SGD,
IAG, ASAGA, and minibatch SAGA. In our first set of experiments, we simulate the stochastic delay model
of Section 1.1. In our second set, we implement these algorithms in a distributed compute cluster. The main
takeaways of our experiments are the following:
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(a) (b)

Figure 5: (a) Convergence accuracy after 100 epochs. (b) Wallclock time to achieve |xk − x∗|22 ≤ 10−10, averaged
over 8 runs.

1. In experiments on a cluster, ADSAGA is comparable to IAG and outperforms all other algorithms in
wall-clock time.

2. In experiments with simulated (shifted) exponential delays, ADSAGA outperforms IAG in iteration complexity.

3. ADSAGA performs well even without knowledge of the update rates {pj}, even with significant machine
heterogeneity.

Data. For all experiments, we simulate these algorithms on a randomly-generated least squares problem
minx̂ |Ax̂ − b|22. Here A ∈ Rn×d is chosen randomly with i.i.d. rows from N (0, 1dId), and x ∼ N (0, Id). The
observations b are noisy observations of the form b = Ax+Z, where Z ∼ N (0, σ2In). In the first set of experiments
with simulated delays, we choose n = 120, d = 60, and σ = 1. For the the second set of experiments on the
distributed cluster, we choose a larger 10GB least squares problem with n = 600000 and d = 200000, and σ = 100.

Simulated Delays. In our first set of experiments, we empirically validate our theoretical results by comparing
the iteration complexity of these algorithms in the stochastic delay model described in Section 1.1, and in a
more general delay model. First we simulate ADSAGA, SGD, IAG in the distributed data setting in the delay
model of Section 1.1 with all pi equal; we simulate ASAGA in this model in the shared-data setting; and we
also compare to minibatch SAGA assuming a synchronous implementation with a minibatch size m equal to the
number of machines. We run ADSAGA, minibatch SAGA, ASAGA, SGD, and IAG on x̂ with m machines for
m ∈ {10, 20, 40, 60, 120}. To be fair to all algorithms, for all experiments, we use a grid search to find the best
step size in {0.05× i}i∈[40], ensuring that none of the best step sizes were at the boundary of this set. Second,
we simulate ADSAGA and SGD in a more general delay model where the update time is a shifted exponential
random variable. In this model, each machine takes T time to compute its update, where T is a random variable
distributed according to an exponential distribution with some shift s:

T ∼ s+ Exp(1).

See Remark 1.1 for why this model reduces to the delay model of Section 1.1 when the shift is zero. Shifted
exponential or heavy-tailed work-time distributions are observed in practice (Dean and Barroso (2013); Lee et al.
(2017b)).

In Figure 4, we plot the expected iteration complexity to achieve |x̂− x∗|22 ≤ 0.1, where x∗ := minx̂ |Ax̂− b|22 is
the empirical risk minimizer. Figure 4 demonstrates that, in the model in Section 1.1, ADSAGA outperforms the
two alternative state-of-the-art algorithms for the distributed setting: SGD and IAG, especially as the number of
machines m grows. SGD converges significantly more slowly, even for a small number of machines, due to the
variance in gradient steps. In a more practical delay setting with shifted-exponential update times (no longer
memoryless, but still heavy-tailed), with 60 machines, ADSAGA still outperforms IAG (Figure 4(b)).



Asynchronous Distributed Optimization with Stochastic Delays

Distributed Experiments. In our second set of experiments, we run the five data-distributed algorithms
(ADSAGA, SGD, IAG, minibatch-SAGA, and minibatch-SGD) in the distributed compute cluster and compare
their wallclock times to convergence. We do not simulate the shared-data algorithm ASAGA because the full
dataset is too large to fit in RAM, and loading the data from memory is very slow. The nodes used contained
any of the following four processors: Intel E5-2640v4, Intel 5118, AMD 7502, or AMD 7742. We implement the
algorithms in Python using MPI4py, an open-source MPI implementation. For ADSAGA, IAG, asynchronous
SGD, and minibatch SAGA, each node stores its partition of the data in RAM. In each of the three asynchronous
algorithms, at each iteration, the PS waits to receive a gradient update from any node (using MPI.ANY SOURCE).
The PS then sends the current parameter back to that node and performs the parameter update specified by the
algorithm. In the synchronous minibatch algorithm, the PS waits until updates have been received by all nodes
before performing an update and sending the new parameter to all nodes. To avoid bottlenecks at the PS, the PS
node checks the convergence criterion and logs progress only once per epoch in all algorithms.

We run ADSAGA, SGD, IAG, and minibatch-SAGA on x̂ with one PS and m worker nodes for m ∈
{5, 10, 15, 20, 30}. We implement the vanilla version of ADSAGA, which does not require the variables uj
designed for heterogeneous update rates. In practice, while we measured substantial heterogeneity in the update
rates of each machine — with some machines making up to twice as many updates as others — we observed that
the vanilla ADSAGA implementation worked just as well as the full implementation with the uj variables. For all
algorithms, we use a block size of 200 (as per Remark 1.2), and we perform a hyperparameter grid search over
step sizes to find the hyperparameters which yield the smallest distance x̂− x∗ after 100 epochs.

In Figure 5, we compare the performance of these algorithms in terms of iteration complexity and wallclock time.
In Figure 5(a), we plot the accuracy |x̂− x∗|22 of each algorithm after 100 epochs, where x∗ := minx̂ |Ax̂− b|22 is
the empirical risk minimizer. We observe that the algorithms that do not use variance reduction (asynchronous
SGD and minibatch-SGD) are not able to converge nearly as well as the variance-reduced algorithms. ADSAGA
and IAG perform similarly, while minibatch-SAGA performs slightly better in terms of iteration complexity.
In Figure 5(b), we plot the expected wallclock time to achieve to achieve |x̂ − x∗|22 ≤ 10−10. We only include
the variance-reduced algorithms in this plot, as we were not able to get SGD to converge to this accuracy in a
reasonable amount of time. Figure 5(b) demonstrates that while the synchronous minibatch-SAGA algorithm may
be advantageous in terms of iteration complexity alone, due to the cost of waiting for all workers to synchronize
at each iteration, the asynchronous algorithms (IAG and ADSAGA) converge in less wallclock time. Both IAG
and ADSAGA perform similarly. This advantage of asynchrony increases as the number of machines increases:
while with 5 machines the asynchronous algorithms are only 20% faster, with 30 machines, they are 60% faster.
Our experiments confirm that ADSAGA, the natural adaptation of SAGA to the distributed setting, is both
amenable to theoretical analysis and performs well practically.

E Minibatch Rates

We prove minibatch rates for SAGA in this appendix for both the shared and distributed data setting. In the
shared data setting, minibatch SAGA is an instantiation Algorithm 4 with Sj = [n] for all j ∈ [m]. In the
distributed data setting, Sj is the set of functions held at machine j.

Proposition E.1. Let f(x) = 1
n

∑
i fi(x) be µ-strongly convex and Lf -smooth. Suppose each fi is convex and

L-smooth. Let σ2 := Ei,j |∇fi(x∗)|22.

Consider the minibatch SAGA algorithm (Algorithm 4) with a minibatch size of m for either the shared data or
distributed data setting with m machines. Then with a step size of η = 1

2mLf+3L , after

(
3n

m
+

12L

mµ
+

4Lf
µ

)
log

 |x0 − x∗|22 + 4nσ2

(2mLf+3L)2

ε


iterations, ie. Õ

(
n+ L

µ +
mLf
µ log(1/ε)

)
total gradient computations, we have

|xk − x∗| ≤ ε.

Proof. For convenience, we define yk := xk − x∗, and ∇i := ∇fi(x). When the iteration k is clear from context,
we omit the superscript k.
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Algorithm 4 Minibatch SAGA

MinibatchSAGA x, η, {fi}, {Sj}, t
αi = 0 for i ∈ [n] . Initialize last gradients to 0 at each machine

α = 0 . Initialize last gradient averages at PS

for k = 0 to t do
for j = 1 to m do
ij ∼ Uniform(Sj) . Randomly choose a function

g ←
∑
j ∇fij (x) . Compute the minibatch gradient

β ←
∑
j αij (x) . Compute the variance reduction term

end for
for j = 1 to m do
αij ← ∇fij (x) . Update the relevant αi variables

x← x− η(g − β +mα) . Take a gradient step

α← Ei[αi] . Update α

end for
end for
Return x

Consider the following potential function

φ(x, α) := φ1(x, α) + φ2(x, α),

where

φ1(x, α) := |x− x∗|22;

φ2(x, α) := 4nη2Ei,j
[
|αi −∇i(x∗)|22

]
.

For convenience we denote φ(k) := φ(xk, αk).

Let B := {ij}j∈[m] be the minibatch chosen at iteration k. Let 1B ∈ Nn be the indicator vector for the multi-set B.
Let S(B) be the set containing all elements of B and 1S(B) the corresponding indicator vector. Let 1Sj ∈ {0, 1}n
be the indicator vector of Sj , the data points at machine j.

Lemma E.2.

EB [φ1(k + 1)]− φ1(k) ≤ −2mηyT∇f(x) + η2m2|∇f(x)|22 + 2η2mLyT∇f(x) + 2η2mEi,j
[
|αi −∇i(x∗)|22

]
.

Proof. Let α denote the matrix whose ith column is αi. We abuse notation by using α to also mean the matrix
1nα

T . We have

φ1(k + 1)− φ1(k) = −2mηyT (∇− α+ α)1B + η21TB(∇− α+ α)T (∇− α+ α)1B ,

so

EB [φ1(k + 1)]− φ1(k) = −2m

n
ηyT∇f(x) + η2EB

[
1TB(∇− α+ α)T (∇− α+ α)1B

]
= −2m

n
ηyT∇f(x) + η2 Tr

(
EB
[
1B1

T
B

]
(∇− α+ α)T (∇− α+ α)

)
,

(14)

where the second line follows from the circular law of trace.

Consider first the shared data case. Here we have

EB
[
1B1

T
B

]
=
m(m− 1)

n(n− 1)
11T +

(
m

n
− m(m− 1)

n(n− 1)

)
In.

In the distributed data case, we have

EB
[
1B1

T
B

]
=
m2

n2
11T − m2

n2

∑
j

1Sj1
T
Sj +

m

n
In �

m2

n2
11T +

m

n
In.
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Hence by linearity of the trace operator, in both cases,

Tr
(
EB
[
1B1

T
B

]
(∇− α+ α)T (∇− α+ α)

)
≤ m2

n2
Tr
(
11T (∇− α+ α)T (∇− α+ α)

)
+
m

n
Tr
(
(∇− α+ α)T (∇− α+ α)

)
=
m2

n2
1T (∇− α+ α)T (∇− α+ α)1 +

m

n

∑
i

|∇i − αi + α|22

≤ m2|∇f(x)|22 + 2mEi,j [∇i −∇i(x∗)] + 2mEi,j [αi −∇i(x∗) + α]

≤ m2|∇f(x)|22 + 2mEi,j [∇i −∇i(x∗)] + 2mEi,j [αi −∇i(x∗)] ,

where the third line follows from the circular law of trace, the fourth line from Jensen’s inequality, and the fifth
line from the positivity of variance, that is Ei,j [αi −∇i(x∗) + α] = Ei,j [αi −∇i(x∗)] + |α|22.

Plugging in Lemma C.9 and combining with (14) yields the lemma.

Lemma E.3.
EB [φ2(k + 1)]− φ2(k) ≤ −

(
1− exp

(
−m
n

))
φ2(k) + 4mη2LyT∇f(x)

Proof.

φ3(k + 1)− φ3(k) = 4nη2

 ∑
i∈S(B)

(
|∇i −∇i(x∗)|22 − |αi −∇i(x∗)|22

) (15)

In the shared data setting, EB [1S(B)] =
(
1−

(
1− 1

n

)m)
1. In the distributed data setting, EB [1S(B)] = m

n 1.

Now (
1− exp

(
−m
n

))
≤
(

1−
(

1− 1

n

)m)
≤ m

n
.

Plugging these bounds into (15) with Lemma C.9 directly yields the lemma.

Combining these two lemmas, we get

E[φ(k + 1)]− φ(k) ≤ (−2ηm+ 6mη2L)yT∇f(x) + η2m2|∇f(x)|22 −
(

1− m

2n
− exp

(
−m
n

))
φ2(k).

Now for η < 1
6L , we have

(−2mη + 6mη2L)yT∇f(x) + η2m2|∇f(x)|22 ≤ −ηmyT∇f(x) + η2m2|∇f(x)|22.

Further, if η < 1
2mLf

, by the Lf -smoothness of f , we have

−ηmyT∇f(x) + η2m2|∇f(x)|22 ≤ −
ηm

2
yT∇f(x).

By the µ-strong convexity of f , we have

−ηm
2
yT∇f(x) ≤ −µηm

2
|y|22 =

µηm

2
φ1(k).

Further,
(
1− m

2n − exp
(
−mn

))
≥ m

3n . It follows that for η ≤ 1
2mLf+6L ,

E[φ(k + 1)]− φ(k) ≤ ηµm

2
φ1(k)− m

3n
φ2(k). (16)

Choosing η = 1
2mLf+6L , it follows that

EB [φ(k + 1)|φ(k)] ≤ (1− γ)φ(k),
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where γ = min
(

µm
4mLf+12L ,

m
3n

)
.

Hence after k = 1
γ log

(
φ(0)
ε

)
iterations, we have

E[φ(k)] ≤ (1− γ)
k
φ(0) ≤ exp(−γk)φ(0) = ε.

Now φ(0) = |x0 − x∗|22 + 4nσ2

(2m2Lf+3mL)2
, and φ(k) ≥ |xk − x∗|22,

so after k =
(

3n
m + 12L

mµ +
4Lf
µ

)
log

 |x0−x∗|22+ 4nσ2

(2mLf+3L)
2

ε

 iterations, we have

E[|xk − x∗|] ≤ ε.


