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Abstract

Extragradient method (EG) (Korpelevich,
1976) is one of the most popular methods
for solving saddle point and variational in-
equalities problems (VIP). Despite its long
history and significant attention in the opti-
mization community, there remain important
open questions about convergence of EG. In
this paper, we resolve one of such questions
and derive the first last-iterate O(1/K) con-
vergence rate for EG for monotone and Lips-
chitz VIP without any additional assumptions
on the operator unlike the only known result
of this type (Golowich et al., 2020b) that re-
lies on the Lipschitzness of the Jacobian of
the operator. The rate is given in terms of
reducing the squared norm of the operator.
Moreover, we establish several results on the
(non-)cocoercivity of the update operators of
EG, Optimistic Gradient Method, and Hamil-
tonian Gradient Method, when the original
operator is monotone and Lipschitz.

1 INTRODUCTION

Saddle point problems receive a lot of attention dur-
ing recent years, especially in the machine learning
community. These problems appear in various appli-
cations such as robust optimization (Ben-Tal et al.,
2009) and control (Hast et al., 2013), adversarial train-
ing (Goodfellow et al., 2015; Madry et al., 2018) and
generative adversarial networks (GANs) (Goodfellow
et al., 2014). Saddle point problems are often studied
from the perspective of variational inequality problems
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(VIP) (Harker and Pang, 1990; Ryu and Yin, 2020;
Gidel et al., 2019). In the unconstrained case, VIP is
defined as follows:

find x∗ ∈ Rd such that F (x∗) = 0, (VIP)

where F : Rd → Rd is some operator.

Such problems are usually solved via first-order meth-
ods due to their practical efficiency. The simplest ex-
ample of such a method is Gradient Descent (GD):
xk+1 = xk − γF (xk). However, there exist ex-
amples of simple (monotone and L-Lipschitz) prob-
lems such that GD does not converge to the solu-
tion. To circumvent this issue Extragradient Method
(EG) xk+1 = xk − γF (xk − γF (xk)) (Korpelevich,
1976) and Optimistic Gradient Method (OG) xk+1 =
xk−2γF (xk)+γF (xk−1) (Popov, 1980) were proposed.
After their discovery, these methods were revisited and
extended in various ways, e.g., stochastic (Gidel et al.,
2019; Mishchenko et al., 2020; Hsieh et al., 2020; Li
et al., 2021), distributed (Liu et al., 2020; Beznosikov
et al., 2020, 2021), and non-Euclidean versions (Judit-
sky et al., 2011; Azizian et al., 2021) were proposed
and analyzed.

Surprisingly, despite the long history of and huge in-
terest in EG and OG, there exist significant gaps in
the theory of these methods. In particular, it is
well known that both methods converge in terms of
mink=0,1,...,K ‖F (xk)‖2 with rate O(1/K) for monotone
L-Lipschitz operator F (Solodov and Svaiter, 1999;
Ryu et al., 2019). Although such best-iterate guar-
antees provide valuable information about the rate of
convergence, they do not state anything about last-
iterate convergence rate. Recently, this limitation
was partially resolved in Golowich et al. (2020b,a)
where the authors proved last-iterate O(1/K) conver-
gence rate for EG and OG under the additional as-
sumption that the Jacobian ∇F (x) of operator F (x)
is Λ-Lipschitz. However, the obtained rates depend on
the Λ that can be much larger than L or even unde-
fined for some operators (see Appendix B). That is,
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the following important question remains open:

Q1: Is it possible to prove last-iterate O(1/K)

convergence rate for EG/OG when F is monotone

and L-Lipschitz without additional assumptions?

Next, there is a noticeable activity in the analysis of
various methods for solving (VIP) under the coco-
ercivity assumption on F during the last few years
(Chavdarova et al., 2019; Malinovskiy et al., 2020;
Loizou et al., 2021). Unfortunately, this assumption
is stronger than monotonicity and Lipschitzness of F :
it does not hold even for bilinear games. However, un-
der the cocoercivity of F the analysis of some meth-
ods becomes extremely simple. For example, if oper-
ator F is cocoercive, then one can easily prove last-
iterate O(1/K) convergence rate for GD (Brézis and
Lions, 1978; Diakonikolas and Wang, 2021).

Furthermore, it is known that Proximal Point oper-
ator FPP,γ(x) implicitly defined as FPP,γ(x) = F (y),
where y = x − γF (y), is cocoercive for any mono-
tone F (Corollary 23.10 from (Bauschke et al., 2011)).
Therefore, Proximal Point method (PP) xk+1 = xk −
γF (xk+1) (Martinet, 1970; Rockafellar, 1976) can be
seen as GD for operator FPP,γ and last-iterate O(1/K)
convergence rate follows from the analysis of GD un-
der the cocoercivity. Since EG and OG are often
considered as approximations of PP when F is L-
Lipschitz (Mokhtari et al., 2019), there is a hope that
EG and OG can be rewritten as GD for some coco-
ercive operator. In particular, for EG one can con-
sider FEG,γ(x) = F (x − γF (x)) and get that EG for
F is GD for FEG,γ . Using matrix notation and rewrit-
ing OG using zk = ((xk)>, (xk−1)>)>, one can also
construct FOG,γ(x) and consider OG as GD for this
operator. Keeping in mind the simplicity of getting
last-iterate O(1/K) convergence rate for GD under the
cocoercivity, the following question arises:

Q2: Are operators FEG,γ and FOG,γ cocoercive

when F is monotone and L-Lipschitz?

In this paper, we give a positive answer to the first
question (Q1) and negative answer to the second ques-
tion (Q2). Before we summarize our main contribu-
tions, we introduce necessary definitions.

1.1 Preliminaries

If the opposite is not specified, throughout the paper
we assume that operator F from (VIP) is monotone

〈F (x)− F (x′), x− x′〉 ≥ 0 ∀x, x′ ∈ Rd, (1)

and L-Lipschitz

‖F (x)− F (x′)‖ ≤ L‖x− x′‖ ∀x, x′ ∈ Rd. (2)

Next, we also rely on the definition of cocoercivity.

Definition 1.1 (Cocoercivity). Operator F : Rd →
Rd is called `-cocoercive if for all x, x′ ∈ Rd

‖F (x)− F (x′)‖2 ≤ `〈F (x)− F (x′), x− x′〉. (3)

Using Cauchy-Schwarz inequality, one can easily show
that L-cocoercivity of F implies its monotonicity and
L-Lipschitzness. The opposite is not true: it is suf-
ficient to take F corresponding to the bilinear game
(see (Carmon et al., 2019) and references therein).

Measures of convergence. In the literature on
VIP, the convergence of different methods is of-
ten measured via so-called merit or gap func-
tions, e.g., restricted gap function GapF (x) =
maxy∈Rd:‖y−x∗‖≤R〈F (y), x− y〉, where R ∼ ‖x0 − x∗‖
(Nesterov, 2007). When F is monotone, GapF (x) can
be seen as a natural extension of optimization error
for VIP. However, it is unclear how to tightly estimate
GapF (x) in practice and how to generalize it to non-
monotone case. From this perspective, the squared
norm of the operator is preferable as a measure of
convergence (see (Yoon and Ryu, 2021) and references
therein). Therefore, we focus on ‖F (xK)‖2. We no-
tice here that in the constrained case (squared) norm
of the operator is not a valid measure of convergence.

1.2 Contributions

Below we summarize our main contributions.

• We prove that ‖F (xK)‖2 = O (1/K) where xK

is generated after K iterations of Extragradient
Method (EG) applied to solve (VIP) with mono-
tone L-Lipschitz operator F (Theorem 3.3). That
is, we derive the first last-iterate O (1/K) con-
vergence rate for EG under monotonicity and L-
Lipschitzness assumptions and without additional
ones. The key part of our proof is obtained via
solving1 special Performance Estimation Problem
(Taylor et al., 2017; Ryu et al., 2020).

• When F (x) is additionally affine, we show that
FEG,γ is 2/γ-cocoercive (Lemma D.1) that gives
an alternative proof of last-iterate O (1/K) con-
vergence for EG based on the result for GD (The-
orem 2.2).

• Guided by the solution of a certain Performance
Estimation Problem we prove that for all γ ∈

1Our code is available at https://github.com/
eduardgorbunov/extragradient_last_iterate_
AISTATS_2022. In the MATLAB code, we use PESTO
(Taylor et al., 2017), SEDUMI (Sturm, 1999), YALMIP
(Lofberg, 2004) libraries, and in the part written in
Python, we use CVXPY (Diamond and Boyd, 2016).

https://github.com/eduardgorbunov/extragradient_last_iterate_AISTATS_2022
https://github.com/eduardgorbunov/extragradient_last_iterate_AISTATS_2022
https://github.com/eduardgorbunov/extragradient_last_iterate_AISTATS_2022
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(0, 1/L] there exists L-Lipschitz and monotone op-
erator F such that FEG,γ is not `-cocoercive for
any ` > 0 (Theorem 3.1). This fact emphasizes
the significant difference between EG and Proxi-
mal Point method.

• We show that FEG,γ is 2/γ-star-cocoercive, i.e.,
cocoercive towards the solution, when F is star-
monotone and L-Lipschitz (Lemma 3.1).

• For Optimistic Gradient method (OG) we consider
two popular representations – standard one and
extrapolation from the past (EFTP) – and corre-
sponding operators FOG,γ and FEFTP,γ . We prove
that these operators are even non-star-cocoercive
for any γ > 0 (Theorems 4.1). This fact empha-
size the difference between OG and EG.

• Finally, in the case when we additionally have
Lipschitzness of the Jacobian ∇F , we show that
operator FH(x) = ∇F (x)>F (x) of Hamiltonian
Gradient Method xk+1 = xk − γ∇F (xk)>F (xk)
(HGM) (Balduzzi et al., 2018) can be non-
cocoercive when F is non-affine (Theorem F.3).
Moreover, we derive best-iterate O (1/K) con-
vergence rate in terms of the squared norm
of the gradient of the Hamiltonian function
H(x) = 1

2‖F (x)‖2 when F and ∇F are Lipschitz-
continuous but F is not necessary monotone (The-
orem F.4). The details are given in Appendix F.

1.3 Related Work

As we mention earlier, when F is monotone and L-
Lipschitz both EG and OG are usually analyzed in
terms of the convergence for the best-iterate or the
averaged-iterate. In particular, guarantees of the form
GapF (xK) = O(1/K) with xK being the average of
the iterates are shown in Nemirovski (2004); Mokhtari
et al. (2019); Hsieh et al. (2019); Monteiro and Svaiter
(2010); Auslender and Teboulle (2005) and results like
mink=0,1,...,K ‖F (xk)‖2 = O(1/K) are given in Solodov
and Svaiter (1999); Ryu et al. (2019). Unfortunately,
these results do not provide convergence rates for
the last-iterate, i.e., for GapF (xK) and ‖F (xK)‖2. It
turns out that both EG and OG satisfy the following
lower bound: GapF (xK) = Ω(1/

√
K) (Golowich et al.,

2020b,a), i.e., in terms of the gap function EG and OG
have slower convergence for the last iterate than for
the averaged iterate.

However, as it is explained above, we focus on the
convergence rates for ‖F (xK)‖2. The mentioned neg-
ative results do not imply anything about the conver-
gence in terms of ‖F (xK)‖2. Moreover, for EG and OG
Golowich et al. (2020b,a) prove ‖F (xK)‖2 = O(1/K)
rate under the additional assumption that the Jaco-
bian ∇F (x) is Λ-Lipschitz. In particular, the derived

rate depends on the Λ, which can be much larger than
L for some operators, e.g., for the gradient of logistic
loss function (see Appendix B), or simply be unde-
fined when ∇F (x) does not exist on the whole space.
In contrast, we prove ‖F (xK)‖2 = O(1/K) rate for EG
without any additional assumptions.

Next, the state-of-the-art last-iterate convergence
rates are O(1/K2) (Kim, 2021; Yoon and Ryu, 2021).
Moreover, Yoon and Ryu (2021) derive the optimality
of O(1/K2) rate in the class of monotone and Lipschitz
VIP. Although this rate is better than what we derive
for EG, this is obtained for different methods (Acceler-
ated PP and Anchored EG). Since EG is one of the most
popular methods for solving (VIP), it is important to
resolve open questions about it like last-iterate conver-
gence rates. Moreover, in view of the lower bound from
Golowich et al. (2020b), our result for the last-iterate
convergence of EG is optimal for EG up to numerical
constants.

Finally, we emphasize that it is possible to obtain a
linear last-iterate convergence rate when F is addition-
ally strongly monotone. The corresponding results are
well-known both for EG (Tseng, 1995) and OG (Gidel
et al., 2019; Mokhtari et al., 2020). Moreover, one can
achieve a linear rate under slightly weaker assump-
tions like quasi-strong monotonicity (Loizou et al.,
2021), its local variant (with local guarantees) (Az-
izian et al., 2021), positive-definiteness of the Jacobian
around the solution (also with local guarantees) (Hsieh
et al., 2019), and error bound (see (Hsieh et al., 2020)
and references therein).

2 COCOERCIVITY AND
STAR-COCOERCIVITY

In this section, we introduce the main tools connected
with cocoercivity. First of all, it is known that coco-
ercivity is closely related to non-expansiveness in the
following sense.

Lemma 2.1 (Proposition 4.2 from Bauschke et al.
(2011)). For any operator F : Rd → Rd the following
are equivalent: (i) Id− 2

`F is non-expansive; (ii) F is
`-cocoercive.

We use this lemma to prove non-cocoercivity of FEG,γ .

Next, we also study a relaxation of cocoercivity called
star-cocoercivity, which turns out to be sufficient to
derive best- or random-iterate O(1/K) rate for GD.

Definition 2.1 (Star-cocoercivity). Operator F :
Rd → Rd is called `-star-cocoercive around x∗ if
F (x∗) = 0 and for all x ∈ Rd

‖F (x)‖2 ≤ `〈F (x), x− x∗〉. (4)
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Further discussion of cocoercivity and star-
cocoercivity is deferred to Appendix C.

2.1 Analysis of Gradient Descent Under
Cocoercivity

The simplest method for solving (VIP) is Gradient De-
scent (GD):

xk+1 = xk − γF (xk). (GD)

If operator F is star-cocoercive, then one can easily
show random-iterate convergence of GD.

Theorem 2.1 (Random-iterate convergence of GD).
Let F : Rd → Rd be `-star-cocoercive around x∗. Then
for all K ≥ 0 we have

E‖F (x̂K)‖2 ≤ `‖x0 − x∗‖2

γ(K + 1)
, (5)

where x̂K is chosen uniformly at random from the set
of iterates {x0, x1, . . . , xK} produced by GD with 0 <
γ ≤ 1/`.

The proof of this result requires a few lines of sim-
ple derivations. Next, to establish last-iterate conver-
gence we need to assume cocoercivity of F . In partic-
ular, when F is cocoercive it is possible to show that
{‖F (xk)‖2}k≥0 monotonically decreases. Using this
and previous results one can derive last-iterate con-
vergence (see also (Diakonikolas and Wang, 2021)).

Theorem 2.2 (Last-iterate convergence of GD). Let
F : Rd → Rd be `-cocoercive. Then for all K ≥ 0 we
have

‖F (xK)‖2 ≤ `‖x0 − x∗‖2

γ(K + 1)
, (6)

where xK is produced by GD with 0 < γ ≤ 1/`.

Overall, the analysis of GD under star-cocoercivity and
cocoercivity is straightforward and almost identical to
the analysis of GD for convex smooth minimization.

2.2 Proximal Point Method

Consider the following iterative process called Proxi-
mal Point method (PP):

xk+1 = xk − γF (xk+1). (PP)

That is, the next point xk+1 is defined implicitly for
given xk and γ > 0. Moreover, for given γ > 0 and
any point x we can define operator FPP,γ : Rd → Rd
such that ∀x ∈ Rd

FPP,γ(x) = F (y), where y = x− γF (y). (7)

Therefore, (PP) can be rewritten as GD for FPP,γ :

xk+1 = xk − γFPP,γ(xk).

It turns out that FPP,γ is 2/γ-cocoercive (Corollary
23.10 from Bauschke et al. (2011)). For completeness,
we provide the proof of this fact in the appendix.

Then, applying Theorem 2.2 to the method

xk+1 = xk − γFPP,2/`(x
k), (PP-γ-`)

we get the following result (see also (Gu and Yang,
2019)).

Theorem 2.3 (Last-iterate convergence of (PP-γ-`)).
Let F : Rd → Rd be monotone, ` > 0 and 0 < γ ≤ 1/`.
Then for all K ≥ 0 we have

E‖F (x̂K)‖2 ≤ `‖x0 − x∗‖2

γ(K + 1)
, (8)

where x̂K = xK−2/`F (x̂K) = xK−2/`FPP,2/`(x̂
K) and

xK is produced by (PP-γ-`).

3 EXTRAGRADIENT METHOD

Inspired by the result on cocoercivity of FPP,γ , we
study Extragradient method (EG) through the lens
of cocoercivity. Indeed, EG can be seen as a practi-
cal approximation of PP (Mokhtari et al., 2019, 2020).
Therefore, we consider operator FEG,γ = F (Id− γF )
defining the update of EG:

xk+1 = xk − γ F
(
xk − γF (xk)

)︸ ︷︷ ︸
FEG,γ(xk)

. (EG)

Affine case. We start with the case when F (x) is
affine, i.e., it can be written as F (x) = Ax+b for some
A ∈ Rd×d, b ∈ Rd. In Appendix D.1, we show that
FEG,γ = F (Id− γF ) is 2/γ-cocoercive for 0 < γ ≤ 1/L.
Therefore, applying Theorem 2.2 to the method

xk+1 = xk − γ2FEG,γ1(xk), (EG-γ1-γ2)

one can derive O(1/K) last-iterate convergence rate in
this case (see Appendix D.2).

Random-iterate guarantees for EG. Motivated
by the positive results on the cocoercivity of FEG,γ in
the affine case, below we make an attempt to general-
ize this approach to the general case. The first result
establishes star-cocoercivity of extragradient operator
FEG,γ for any star-monotone and Lipschitz operator F .

Lemma 3.1 (Star-cocoercivity of extragradient oper-
ator). Let F : Rd → Rd be star-monotone around x∗,
i.e., F (x∗) = 0 and

∀x ∈ Rd 〈F (x), x− x∗〉 ≥ 0, (9)

and L-Lipschitz. Then, operator FEG,γ = F (Id− γF )
with γ ≤ 1/L is 2/γ-star-cocoercive around x∗.
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Therefore, applying Theorem 2.1 to (EG-γ1-γ2) we get
the following result.

Theorem 3.1 (Random-iterate convergence of
(EG-γ1-γ2): non-linear case). Let F : Rd → Rd be
star-monotone around x∗ and L-Lipschitz, 0 < γ2 ≤
γ1/2, 0 < γ1 ≤ 1/L. Then for all K ≥ 0 we have

E‖F (x̂K)‖2 ≤ 2‖x0 − x∗‖2

γ1γ2(K + 1)
, (10)

where x̂K = x̃K−γ1F (x̃K) and x̃K is chosen uniformly
at random from the set of iterates {x0, x1, . . . , xK} pro-
duced by (EG-γ1-γ2).

We notice that the result is derived under star-
monotonicity of F that can hold even for non-
monotone F (Loizou et al., 2021).

Non-cocoercivity of EG operator. Taking into
account all positive results observed in the previous
sections, it is natural to expect that FEG,γ is cocoer-
cive when F is monotone and L-Lipschitz and γ is
sufficiently small. Surprisingly, this is not true in gen-
eral: FEG,γ can be non-cocoercive for monotone and
Lipschitz (and even cocoercive2) F !

In view of Lemma 2.1, it is sufficient to show that for
any ` > 0 and any γ1, γ2 > 0 there exists `-cocoercive
operator F such that operator Id−γ2FEG,γ1 is not non-
expansive. In other words, our goal is to show that for
all `, γ1, γ2 > 0 the quantity

ρEG(`, γ1, γ2) = max
‖x̂− ŷ‖2

‖x− y‖2
(11)

s.t. F is `-cocoercive,

x, y ∈ Rd, x 6= y,

x̂ = x− γ2F (x− γ1F (x)),

ŷ = y − γ2F (y − γ1F (y))

is bigger than 1, i.e., ρEG(`, γ1, γ2) > 1. In the above
problem, maximization is performed on the set of all
`-cocoercive operators and pairs of vectors x, y ∈ Rd,
i.e., one needs to solve infinitely dimensional problem.
In such form, it is computationally infeasible.

Fortunately, there exists an equivalent SDP that can
be solved efficiently. To construct such a problem, we
follow Performance Estimation Problem (PEP) tech-

2Cocoercivity of F implies its monotonicity and Lips-
chitzness.

Figure 1: Numerical estimation of ρEG(`, γ1, γ2) defined in
(11) for ` = 1 and different γ1, γ2.

nique from Ryu et al. (2020) and rewrite (11) as

max
‖x− γ2xF2

− y + γ2yF2
‖2

‖x− y‖2
(12)

s.t. x, y, xF1
, yF1

, xF2
, yF2

∈ Rd, x 6= y,

∃F is `-cocoercive :

xF2
= F (x− γ1xF1

), xF1
= F (x),

yF2
= F (y − γ1yF1

), yF1
= F (y).

Problem (12) is finite-dimensional and equivalent to
(11). Next, for all α > 0 the following equiva-
lence holds: F is `-cocoercive ⇐⇒

(
α−1Id

)
◦ F ◦

(αId) is `-cocoercive. Therefore, in problem (12) one
can apply the change of variables x := α−1x, y :=
α−1y, xF1

:= α−1xF1
, yF1

:= α−1yF1
, xF2

:=
α−1xF2

, yF2
:= α−1yF2

, F :=
(
α−1Id

)
◦ F ◦ (αId) ,

where α = ‖x−y‖ and get another equivalent problem:

max ‖x− γ2xF2
− y + γ2yF2

‖2 (13)

s.t. x, y, xF1
, yF1

, xF2
, yF2

∈ Rd, x 6= y,

‖x− y‖2 = 1 and ∃F is `-cocoercive :

xF2
= F (x− γ1xF1

), xF1
= F (x),

yF2
= F (y − γ1yF1

), yF1
= F (y).

However, the constraints are defined implicitly via the
existence of `-cocoercive operator F that interpolates
the introduced points. Therefore, the problem is still
hard to solve. It turns out (Proposition 2 from Ryu
et al. (2020)) that the constraints about the existence
of `-cocoercive operator are equivalent to the finite set
of inequalities. These inequalities are called interpo-
lation conditions and, essentially, it is inequality (3)
written for all pairs of points that F has to interpolate.
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That is, (13) is equivalent to the following problem:

max ‖x− γ2xF2 − y + γ2yF2‖2 (14)

s.t. x, y, xF1 , yF1 , xF2 , yF2 ∈ Rd, ‖x− y‖2 = 1,

`〈xF1 − xF2 , γ1xF1〉 ≥ ‖xF1 − xF2‖2,
`〈xF1 − yF1 , x− y〉 ≥ ‖xF1 − yF1‖2,
`〈xF1 − yF2 , x− y + γ1yF1〉 ≥ ‖xF1 − yF2‖2,
`〈xF2 − yF1 , x− γ1xF1 − y〉 ≥ ‖xF2 − yF1‖2,
`〈xF2 − yF2 , x− γ1xF1 − y + γ1yF1〉

≥ ‖xF2 − yF2‖2,
`〈yF1 − yF2 , γ1yF1〉 ≥ ‖yF1 − yF2‖2.

Although the above representation is much better for
numerical solving than (11), we do not stop here
and consider a Grammian representation of U =
(x, y, xF1

, yF1
, xF2

, yF2
)>: G = U>U. One can eas-

ily show that for all d ≥ 6 we have G ∈ S6
+ iff there

exist x, y, xF1 , yF1 , xF2 , yF2 ∈ Rd such that G is Gram
matrix for these vectors. Since the objective and con-
strainsts of (14) are linear in the entries of matrix G,
problem (14) is equivalent to the following SDP prob-
lem:

max Tr(M0G) (15)

s.t. G ∈ S6
+,

Tr(MiG) ≥ 0, i = 1, 2, . . . , 6,

Tr(M7G) = 1,

where M0, . . . ,M7 are some symmetric matrices (see
the details in Appendix D.5). For any given `, γ1, γ2 >
0 this problem can be easily solved numerically using
PESTO (Taylor et al., 2017). Therefore, to compute
the expansiveness parameter ρEG(`, γ1, γ2) of EG we
solved (15) for ` = 1 and different values of γ1, γ2.
The results are reported in Figure 1.

Although these numerical results show that FEG,γ1 can
be non-2/γ2-cocoercive for different values of γ1, γ2, and
` = 1, it is not a rigorous proof that for any ` and
γ1, γ2 ∈ (0, 1/`] there exists `-cocoercive operator F
such that FEG,γ1 is not 2/γ2-cocoercive. Nevertheless,
one can utilize numerical results to construct a rigor-
ous proof but it requires to change the problem (15).

The main difficulty is that the solution of (15) is at
least of rank 5 in our experiments. It means, that the
dimension of the space where the counter-example F
is defined is also at least 5 complicates the visualiza-
tion of the solution3. To overcome this issue, we con-
sider another problem with so-called Log-det heuristic

3We also tried to solve this problem symbolically, but
the problem turned out to be computationally infeasible
for standard symbolic solvers. Therefore, we focused on
the visualization of the solutions in the hope of finding
useful dependencies between the solution and parameters
`, γ1, γ2.

(Fazel et al., 2003):

min log det (G + δI) (16)

s.t. G ∈ S6
+,

Tr(M0G) ≥ 1.0005,

Tr(MiG) ≥ 0, i = 1, 2, . . . , 6,

Tr(M7G) = 1,

where δ > 0 is some small positive regularization pa-
rameter. For γ1, γ2, ` in some intervals, the solution
of the new problem also provides an example of x, y
and operator F that proves non-2/γ2-cocoercivity of
FEG,γ1 : we ensure this via the constraint Tr(M0G) ≥
a = 1.0005 > 1. In theory, any a > 1 can be used
but due to the inevitability of the numerical errors in
practice we used a = 1.0005. However, due to the
change of the objective the solution may have lower
rank since log det (G + δI) can be seen as an differen-
tiable approximation of the rank of G.

Solving problem (16) for ` = 1, and γ1 = γ2, we
obtained the solutions of rank 2, i.e., we obtained
x, y, xF1 , yF1 , xF2 , yF2 in R2. We observed that x =
−y for all tested values of γ1. However, numeri-
cal solutions were not consistent enough to guess the
right dependencies. To overcome this issue, we ro-
tated x, y, xF1

, yF1
, xF2

, yF2
in such a way that x =

(−1/2, 0)>, y = (1/2, 0)>, and plotted the components
of xF1 , yF1 , xF2 , yF2 for different γ1. Although the re-
sulting dependencies were not perfect, the obtained
plots helped us to sequentially construct the needed
example:

x = −y =

(
− 1

2
0

)
, xF1

=

(− 1
2γ1
1

2γ1

)
, yF1

=

(
− 1−γ1`

2γ1
1+γ1`

2γ1

)
,

xF2
=

(
− 1−γ1`

2γ1
1

2γ1

)
, yF2

=

(
− 1−γ1`

2γ1
1−γ2

1`
2

2γ1

)
. (17)

That is, via plotting the components of
x, y, xF1

, yF1
, xF2

, yF2
we observed 4 interesting

dependencies, see Figure 2. Mimicking these depen-
dencies, we assumed that

xF2 [1] = yF2 [1],

yF1 [1] = xF2 [1] and xF1 [1] < yF1 [1] < 0,

0 < xF1 [2] < yF1 [2], xF1 [2] = xF2 [2],

plugged these relations in the interpolation conditions
from (14), and obtained the following inequalities:

yF1 [1] ≤ (1− γ1)xF1 [1], yF1 [2] ≤ yF2
[2]

1− γ1
,

yF1
[2] ≤ (1 + γ1)xF2

[2], xF2
[2] ≤ yF2 [2]

1− γ2
1
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Figure 2: Observations that we made after plotting the components of x, y, xF1 , yF1 , xF2 , yF2 for ` = 1 and different
values of γ1 (we used γ2 = γ1).

To fulfill these constraints, we simply assumed that
they hold as equalities and got:

xF2 [2] = xF1 [2] =
yF2 [2]

1− γ2
1

, yF1 [2] =
yF2 [2]

1− γ1
,

yF1 [1] = xF2 [1] = yF2 [1] = (1− γ1)xF1 [1].

Using these dependencies in the remaining interpo-
lation conditions, we derived xF1

[1] + γ1(xF1
[1])2 +

γ1(yF2
[2])2

(1−γ2
1)2

≤ 0. After that, we assumed that yF2
[2] =

−xF1
[1](1 − γ2

1). Together with previous inequality
it gives xF1 [1] + 2γ1(xF1 [1])2 ≤ 0. Next, we chose
xF1 = −1/2γ1 and put it in all previously derived de-
pendencies. Finally, we generalized the example to
the case of non-unit ` using “physical-dimension” ar-
guments and got (17).

These derivations lead to the following result that we
rigorously prove in Appendix D.5.

Theorem 3.2. For all ` > 0 and γ1 ∈ (0, 1/`]
there exists `-cocoercive operator F such that F (x) =
xF1

, F (y) = yF1
, F (x − γ1xF1

) = xF2
, F (y − γ1yF1

) =
yF2 for x, y, xF1 , yF1 , xF2 , yF2 defined in (17) and

‖x−γ2F (x−γ1F (x))−y+γ2F (y−γ1F (y))‖ > 1 (18)

for all γ2 > 0, i.e., FEG,γ1 = F (Id − γ1F ) is non-
cocoercive.

First of all, this result emphasizes the difference be-
tween PP and EG, Moreover, it also means that
one cannot apply the technique from Section 2.1 to
prove last-iterate O(1/K) convergence for EG applied
to (VIP) with monotone and L-Lipschitz operator F .
However, it does not imply that one cannot prove this
fact in general.

Last-iterate guarantees for EG. Inspired by the
proof of non-cocoercivity of the operator FEG,γ ob-
tained via PEP, we apply PEP technique to find the
rate of convergence in terms of ‖F (xK)‖2 for F be-
ing monotone and Lipschitz-continuous. That is, we
consider the problem

max ‖F (xK)‖2 (19)

s.t. F is mon. and L-Lip., x0 ∈ Rd,
‖x0 − x∗‖2 ≤ 1,

xk+1 = xk − γ2F
(
xk − γ1F (xk)

)
,

k = 0, 1, . . . ,K − 1

and following similar steps to what we do for show-
ing non-cocoercivity of EG operator, we construct a
special SDP using the definitions of monotonicity (1)
and (2) as interpolation conditions. However, the re-
sulting SDP gives just an upper bound for the value
of (19) since the resulting SDP might produce such
solutions that cannot be interpolated by any mono-
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Figure 3: Comparison of the worst-case rate of EG ob-
tained via solving PEP and the guessed upper-bound
16L2‖x0−x∗‖2/k. The vertical axis is shown in logarithmic
scale and after iteration k = 20 the curves are almost par-
allel, i.e., PEP answer and 16L2‖x0−x∗‖2/k differ almost by
a constant factor. In view of Proposition 3 from Ryu et al.
(2020), PEP may give the answer that is not tight for the
class of monotone and Lipschitz operators. However, in
this particular case, it turns out to be quite tight.

tone and L-Lipschitz operator F (see Proposition 3
from Ryu et al. (2020)). Nevertheless, we solved the
resulting SDP using PESTO (Taylor et al., 2017) for
L = 1, γ1 = γ2 = 1/2L, and various values of K. We
observed that the PEP answer behaves as O (1/K) (see
Figure 3). Moreover, using standard duality theory
for SDP (De Klerk, 2006) one can show that the so-
lution of the dual problem to the SDP obtained from
(19) gives the proof of convergence: it is needed just
to sum up the constraints with weights corresponding
to the solution of the dual problem (De Klerk et al.,
2017). The only thing that remains to do is to guess
analytical form of the dual solution.

However, it is not always an easy task: the depen-
dencies on the parameters of the problem like L, γ1, γ2

might be quite tricky. In particular, this might happen
due to inaccuracy of the obtained numerical solution
and large number of constraints. Therefore, we con-
sider a simpler problem:

∆EG(L, γ1, γ2) = max ‖F (x1)‖2 − ‖F (x0)‖2 (20)

s.t. F is mon. and L-Lip.,

x0 ∈ Rd, ‖x0 − x∗‖2 ≤ 1,

x1 =x0−γ2F
(
x0 − γ1F (x0)

)
with γ1 = γ2 = γ. As for (19), we construct a
corresponding SDP and solve it for different values
of L and γ. In these numerical tests, we observed
that ∆EG(L, γ1, γ2) ≈ 0 for all tested pairs of L and
γ and the dual variables λ1, λ2, λ3 that correspond
to 3 particular constraints – monotonicity (1) for
(xk, xk+1) and (xk − γF (xk), xk+1) and Lipschitzness
for (xk − γF (xk), xk+1) – are always very close to 2/γ,

1/2γ, and 3/2, while other dual variables are negligible.
Although λ2 and λ3 were sometimes slightly smaller,
e.g., sometimes we had λ2 ≈ 3/5γ and λ3 ≈ 13/20, we
simplified these dependencies and simply summed up
the corresponding inequalities with weights λ1 = 2/γ,
λ2 = 1/2γ, and λ3 = 3/2 respectively. After that, it was
just needed to rearrange the terms and apply Young’s
inequality to some inner products. This is how we
obtained the following result (see the details in Ap-
pendix D.6).

Lemma 3.2. Let F : Rd → Rd be monotone and L-
Lipschitz, 0 < γ ≤ 1/

√
2L. Then for all k ≥ 0 the iter-

ates produced by (EG) satisfy ‖F (xk+1)‖ ≤ ‖F (xk)‖.

This result on its own is novel and plays the central
part in deriving last-iterate O(1/K) rate for EG in our
analysis. We emphasize that Golowich et al. (2020b)
do not derive ‖F (xk+1)‖ ≤ ‖F (xk)‖ to show last-
iterate O(1/K) convergence of EG and use completely
different arguments based on the Lipschitzness of the
Jacobian of F . Moreover, the assumption on γ can
be relaxed to γ ≤ 1/L, but the proof would be slightly
different in this case (though it can be obtained from
the same PEP).

Next, one might ask a question: is it true that
‖FEG,γ1(xk+1)‖ ≤ ‖FEG,γ1(xk)‖ for a reasonable choice
of γ1 and γ2? Indeed, this is a good question, since
the last-iterate O(1/K) convergence would directly fol-
low from the random-iterate guarantee (Theorem 3.1),
if the inequality ‖FEG,γ1(xk+1)‖ ≤ ‖FEG,γ1(xk)‖ held.
Perhaps, surprisingly, but this is not true even for L-
cocoercive F : we observed this phenomenon via solv-
ing the SDP constructed for

max ‖FEG,γ1(x1)‖2 − ‖FEG,γ1(x0)‖2 (21)

s.t. F is L-cocoercive, x0 ∈ Rd,
‖x0 − x∗‖2 ≤ 1,

x1 = x0 − γ2F
(
x0 − γ1F (x0)

)
with L = 1 and γ1 ∈ [1/4L, 1/L], γ2 ∈ [γ1/4, γ1]. In our
numerical tests, we observed that the optimal value
in the above problem is significantly larger than 0 for
given values of L, γ1, γ2. Since it cannot be caused by
the inaccuracy of the numerical solution, we conclude
that inequality ‖FEG,γ1(xk+1)‖ ≤ ‖FEG,γ1(xk)‖ is vio-
lated in some cases.

Moreover, when γ2 < γ1 we noticed a similar phe-
nomenon for the norms of F . In particular, we solved
the SDP constructed for

max ‖F (x1)‖2 − ‖F (x0)‖2 (22)

s.t. F is L-cocoercive, x0 ∈ Rd,
‖x0 − x∗‖2 ≤ 1,

x1 = x0 − γ2F
(
x0 − γ1F (x0)

)
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with L = 1, γ1 ∈ [1/4L, 1/L], γ2 ∈ [γ1/4, γ1/2] and ob-
served that the optimal value in the above problem
is significantly larger than 0 in this case. Therefore,
we conclude that using the same stepsizes γ1 = γ2 for
extrapolation and for the update is crucial for EG to
have ‖F (xk+1)‖ ≤ ‖F (xk)‖.

To derive the desired last-iterate O(1/K) convergence
of EG it remains to combine Lemma 3.2 with standard
arguments for EG.

Theorem 3.3 (Last-iterate convergence of (EG):
non-linear case). Let F : Rd → Rd be monotone and
L-Lipschitz. Then for all K ≥ 0 and 0 < γ ≤ 1/

√
2L

‖F (xK)‖2 ≤ ‖x0 − x∗‖2

γ2(1− L2γ2)(K + 1)
, (23)

where xK is produced by (EG) with stepsize γ, and

GapF (xK) ≤ 2‖x0 − x∗‖2

γ
√

1− L2γ2
√
K + 1

. (24)

This is the first result establishing last-iterate rates
‖F (xK)‖2 = O(1/K) and GapF (xK) = O(1/

√
K) for

EG that relies on monotonicity and Lipschitzness of F
only. Moreover, it matches the lower bounds for EG
from Golowich et al. (2020b).

4 OPTIMISTIC GRADIENT
METHOD

As EG, Optimistic Gradient method (OG) is also often
treated as an approximation of PP. Therefore, similar
questions to those that we study for EG arise for OG.
OG can be written in the following way:

xk+1 = xk − 2γF (xk) + γF (xk−1). (OG)

For the iterates zk = ((xk)>, (xk−1)>)> (OG) is

zk+1 =zk−γFOG,γ(zk), FOG,γ =

(
2F −F
− 1
γ Id 1

γ Id

)
. (25)

There exists another popular form of (OG) called Ex-
trapolation from the past (EFTP): x0 = x̃0 and

x̃k+1 = xk−γF (x̃k), xk+1 = xk−γF (x̃k+1). (EFTP)

One can show that (EFTP) and (OG) are equivalent:

x̃k+1 = xk − γF (x̃k) = xk−1 − 2γF (x̃k)

= x̃k − 2γF (x̃k) + γF (x̃k−1). (26)

However, update rule (EFTP) hints the following
matrix representation of the method: for zk =
((xk)>, (x̃k)>)> (EFTP) is equivalent to

zk+1 = zk − γFEFTP,γ(zk),

FEFTP,γ =

(
F 0
0 Id

)(
Id −γF
− 1
γ Id 1

γ Id + F

)
. (27)

It turns out that for any γ > 0 operators FOG,γ ,
FEFTP,γ can be non-star-cocoercive even for F being
linear, monotone, and Lipschitz.

Theorem 4.1. Let the linear operator F (x) =
Ax be monotone and L-Lipschitz. Assume that
Sp(∇F (x)) = Sp(A) contains at least one eigenvalue

λ̂ such that Re(λ̂) = 0 and Im(λ̂) 6= 0. Then, for
any ` > 0 and γ > 0 operators FOG,γ , FEFTP,γ are not
`-star-cocoercive.

Therefore, for the particular representations (25) and
(27) of (OG) one cannot apply the results from Sec-
tion 2.1 to derive even random-iterate convergence
guarantees.

However, this negative result does not imply that it
is impossible to show random-iterate or best-iterate
O(1/K) convergence rate for OG or EFTP. In fact, such
convergence guarantees can be derived using similar
steps as in the proof of the corresponding result for EG,
see Lemma 11 from Golowich et al. (2020a). Although
this result is derived for monotone and Lipschitz op-
erator F , the proof uses only star-monotonicity of F .
For completeness, we provide the complete statement
of this result and the full proof in Appendix E.2.

Moreover, Golowich et al. (2020a) derive O(1/K) last-
iterate convergence rate for OG/EFTP when F is linear
or has Lipschitz Jacobian. Establishing O(1/K) last-
iterate convergence rate for OG or EFTP for mono-
tone and L-Lipschitz operator F without additional
assumptions is still an open problem.

5 CONCLUSION

In this paper, we close an important gap in the conver-
gence theory for EG by showing ‖F (xK)‖2 = O(1/K).
Our proof is computer-assisted and is based on the
PEP technique (Taylor et al., 2017; Ryu et al., 2020).
Moreover, the ideas of reducing the proof to solv-
ing SDP problems helped Kim (2021); Yoon and Ryu
(2021) to derive last-iterate O(1/K2) rates for Acceler-
ated PP and Anchored EG. We believe that this ap-
proach of deriving new proofs is very prominent.

Next, the established connections between EG, OG,
HGM and cocoercivity emphasize the differences be-
tween these methods and PP. This is especially im-
portant for EG and OG that are often treated as sim-
ilar methods for solving (VIP) and as approximations
PP. Moreover, establishing the result like ‖F (xK)‖2 =
O(1/K) for OG without additional assumptions on F
(e.g., without assuming Lipschitzness of Jacobian) re-
mains an open problem.
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A BASIC FACTS AND AN AUXILIARY LEMMA

In our proofs, we often use the following simple inequalities: for all a, b ∈ Rd and α > 0

〈a, b〉 ≤ α

2
‖a‖2 +

1

2α
‖b‖2, (28)

‖a+ b‖2 ≤ (1 + α)‖a‖2 + (1 + α−1)‖b‖2. (29)

Moreover, the following lemma plays a key role in the proof of random-iterate convergence of (EFTP) for star-
monotone and Lipschitz continuous (VIP).

Lemma A.1 (Lemma 5 from Gidel et al. (2019)). Let operator F : Rd → Rd be L-Lipschitz. Then, for any
x ∈ Rd the iterates of (EFTP) satisfy

2γ〈F (x̃k+1), x̃k+1 − x〉 ≤ ‖xk − x‖2 − ‖xk+1 − x‖2 − ‖x̃k+1 − xk‖2 + γ2L2‖x̃k − x̃k+1‖2. (30)
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B ON THE CONVERGENCE RATES UNDER LIPSCHITZNESS OF
JACOBIAN

As we mention in the main part of the paper, Golowich et al. (2020b,a) obtain ‖F (xK)‖2 = O(1/K) for EG and
OG when F is monotone and L-Lipschitz under additional assumption that ∇F is Λ-Lipschitz. Therefore, the
result is not applicable to the general case of monotone and L-Lipschitz F , which can have discontinuous ∇F .
Moreover, even in the case of Λ-Lipschitz Jacobian, the rates from Golowich et al. (2020b,a) depend on Λ that
can be much larger than L. Indeed, neglecting numerical factors only, Golowich et al. (2020b,a) obtain

‖F (xK)‖2 = O
(
L2‖x0 − x∗‖2

K
+

Λ2‖x0 − x∗‖4

K

)
. (31)

Consider the logistic loss with a tiny `2-regularization:

f(x) = ln (1 + eax) +
δ

2
‖x‖2, a, x ∈ R, |a| � δ.

This function is smooth and strongly convex, therefore, its gradient F (x) = ∇f(x) is (strongly) monotone and
Lipschitz-continuous. Moreover,

F (x) =
aeax

1 + eax
+ δx,

∇F (x) =
a2eax

1 + eax
− a2e2ax

(1 + eax)2
+ δ =

a2eax

(1 + eax)2
+ δ =

a2

(e−ax/2 + eax/2)2
+ δ,

∇2F (x) =
a3eax

(1 + eax)2
− 2a3e2ax

(1 + eax)3
=
a3eax(1− eax)

(1 + eax)3
=

a3

(e−ax/2 + eax/2)2
· 1− eax

1 + eax
,

and since α+ α−1 ≥ 2 for all α > 0 we also have

|∇F (x)| =
a2

(e−ax/2 + eax/2)2
+ δ ≤ a2

4
+ δ,

|∇2F (x)| =
a3

(e−ax/2 + eax/2)2
·
∣∣∣∣1− eax1 + eax

∣∣∣∣ ≤ |a|34
.

Since these upper bounds are not too loose, we have that L ∼ a2 and Λ ∼ |a|3. If additionally ‖x0 − x∗‖ ∼ a,
then the second term in the rate from (31) is ∼ a6 larger than the first one. For example, if a = 10, then
Λ2‖x0 − x∗‖4 is larger than L2‖x0 − x∗‖2 by ∼ 6 orders of magnitude. In contrast, our result for last-iterate
convergence of EG (Theorem 3.3)

‖F (xK)‖2 = O
(
L2‖x0 − x∗‖2

K

)
is obtained without assuming Lipschitzness of the Jacobian, and, thus, does not suffer from the issues mentioned
above.
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C MISSING PROOFS AND DETAILS FROM SECTION 2

C.1 Proof of Lemma 2.1

Lemma C.1 (Lemma 2.1; Proposition 4.2 from Bauschke et al. (2011)). For any operator F : Rd → Rd the
following are equivalent

(i) Id− 2
`F is non-expansive.

(ii) F is `-cocoercive.

Proof. In fact, Proposition 4.2 from Bauschke et al. (2011) establishes equivalence of the following statements:

(i) Id− 2F is non-expansive.

(ii) F is 1-cocoercive.

Therefore, it remains to check how scaling of the operator affect the result. Consider the operator F1 = 1
`F .

This operator has the same solution of (VIP) as F and it is 1-cocoercive:

‖F1(x)− F1(x′)‖2 =
1

`2
‖F (x)− F (x′)‖2

(3)

≤ 1

`
〈x− x′, F (x)− F (x′)〉

= 〈x− x′, F1(x)− F1(x′)〉.

Moreover, via similar derivation one can show stronger result:

F is `-cocoercive ⇐⇒ 1

`
F is 1-cocoercive.

Applying Proposition 4.2 from Bauschke et al. (2011), we obtain

F is `-cocoercive ⇐⇒ 1

`
F is 1-cocoercive ⇐⇒ Id− 2

`
F is non-expansive.

C.2 Proof of Theorem 2.1

Lemma C.2 (Descent lemma for GD). Let F : Rd → Rd be `-star-cocoercive around x∗. Then for all k ≥ 0
iterates produced by GD with γ > 0 satisfy

γ

(
2

`
− γ
)
‖F (xk)‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2. (32)

Proof. Using the update rule of (GD) we derive

‖xk+1 − x∗‖2 = ‖xk − γF (xk)− x∗‖2

= ‖xk − x∗‖2 − 2γ〈xk − x∗, F (xk)〉+ γ2‖F (xk)‖2
(4)

≤ ‖xk − x∗‖2 − γ
(

2

`
− γ
)
‖F (xk)‖2.

Rearranging the terms we get (32).

Averaging this inequality, one can easily show random-iterate convergence of GD.
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Theorem C.1 (Theorem 2.1; Random-iterate convergence of GD). Let F : Rd → Rd be `-star-cocoercive around
x∗. Then for all K ≥ 0 we have

E‖F (x̂K)‖2 ≤ `‖x0 − x∗‖2

γ(K + 1)
, (33)

where x̂K is chosen uniformly at random from the set of iterates {x0, x1, . . . , xK} produced by GD with 0 < γ ≤ 1/`.

Proof. Summing up inequalities (32) for k = 0, 1, . . . ,K and dividing both sides of the result by K + 1 we get

γ

K + 1

(
2

`
− γ
) K∑
k=0

‖F (xk)‖2 ≤ 1

K + 1

K∑
k=0

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
=
‖x0 − x∗‖2 − ‖xK+1 − x∗‖2

K + 1

≤ ‖x0 − x∗‖2

K + 1
.

Next, we use γ ≤ 1/` to lower bound 2/`− γ by 1/` and obtain

1

K + 1

K∑
k=0

‖F (xk)‖2 ≤ `‖x0 − x∗‖2

γ(K + 1)
. (34)

Finally, since x̂K is chosen uniformly at random from the set {x0, x1, . . . , xK} we derive

E‖F (x̂K)‖2 =
1

K + 1

K∑
k=0

‖F (xk)‖2 ≤ `‖x0 − x∗‖2

γ(K + 1)
.

C.3 Proof of Theorem 2.2

As we mention in the main part of the paper, Theorem 2.2 is a well-known result (Brézis and Lions, 1978;
Diakonikolas and Wang, 2021). Moreover, it can derived from the analysis of Krasnoselski-Mann method (Kras-
nosel’skiı, 1955; Mann, 1953):

xk+1 = αxk + (1− α)T (xk), α ∈ (0, 1).

Classical results on the convergence of the above method imply that ‖xk+1 − T (xk+1)‖ ≤ ‖xk − T (xk)‖ for
any non-expansive operator T (Groetsch, 1972; Hicks and Kubicek, 1977; Borwein et al., 1992). In view of
Lemma 2.1, operator T = Id − 2

`F is non-expansive for any `-cocoercive F . Moreover, Krasnoselski-Mann
method with such operator T is equivalent to (GD) with γ = 2α/` and xk − T (xk) = 2

`F (xk). Therefore,
‖xk+1 − T (xk+1)‖ ≤ ‖xk − T (xk)‖ implies that ‖F (xk+1)‖ ≤ ‖F (xk)‖.

We give an alternative proof of this fact below.

Lemma C.3. Let F : Rd → Rd be `-cocoercive. Then for all k ≥ 0 iterates produced by GD with 0 < γ ≤ 2/`
satisfy ‖F (xk+1)‖ ≤ ‖F (xk)‖.

Proof. From cocoercivity we have

‖F (xk+1)− F (xk)‖2
(3)

≤ `〈F (xk+1)− F (xk), xk+1 − xk〉
= −γ`〈F (xk+1), F (xk)〉+ γ`‖F (xk)‖2.

Expanding the square in the left-hand side of the inequality and rearranging the terms we get

‖F (xk+1)‖2 ≤ (2− γ`)〈F (xk+1), F (xk)〉 − (1− γ`)‖F (xk)‖2

= ‖F (xk)‖2 − (2− γ`)〈F (xk)− F (xk+1), F (xk)〉
(GD)
= ‖F (xk)‖2 − 2− γ`

γ
〈F (xk)− F (xk+1), xk − xk+1〉. (35)
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Since 0 < γ ≤ 2/` and F is cocoercive we have

2− γ`
γ
〈F (xk)− F (xk+1), xk − xk+1〉 ≥ 2− γ`

`γ
‖F (xk)− F (xk+1)‖2 ≥ 0.

Plugging this into (35) gives ‖F (xk+1)‖ ≤ ‖F (xk)‖.

Theorem C.2 (Theorem 2.2; Last-iterate convergence of GD). Let F : Rd → Rd be `-cocoercive. Then for all
K ≥ 0 we have

‖F (xK)‖2 ≤ `‖x0 − x∗‖2

γ(K + 1)
, (36)

where xK is produced by GD with 0 < γ ≤ 1/`.

Proof. Since cocoercivity implies star-cocoercivity we have

1

K + 1

K∑
k=0

‖F (xk)‖2
(34)

≤ `‖x0 − x∗‖2

γ(K + 1)
.

From Lemma C.3 we have that ‖F (xk+1)‖ ≤ ‖F (xk)‖. Putting all together we get (6).

C.4 Proof of Theorem 2.3

Lemma C.4 (Corollary 23.10 from Bauschke et al. (2011); Cocoercivity of Proximal Point operator). Let
F : Rd → Rd be monotone and γ > 0. Then operator FPP,γ defined in (7) is 2/γ-cocoercive.

Proof. In view of Lemma 2.1, it is enough to prove that Id− γFPP,γ is non-expansive. To show this we consider
arbitrary x, y ∈ Rd and define x̂ and ŷ as follows:

x̂ = x− γF (x̂) = x− γFPP,γ(x), ŷ = y − γF (ŷ) = y − γFPP,γ(y).

Using this notation, we derive

‖x̂− ŷ‖2 = ‖x− y‖2 − 2γ〈x− y, F (x̂)− F (ŷ)〉+ γ2‖F (x̂)− F (ŷ)‖2

= ‖x− y‖2 − 2γ〈x̂+ γF (x̂)− ŷ − γF (ŷ), F (x̂)− F (ŷ)〉+ γ2‖F (x̂)− F (ŷ)‖2

= ‖x− y‖2 − 2γ〈x̂− ŷ, F (x̂)− F (ŷ)〉 − γ2‖F (x̂)− F (ŷ)‖2
(1)

≤ ‖x− y‖2 − γ2‖F (x̂)− F (ŷ)‖2

≤ ‖x− y‖2.

That is, Id− γFPP,γ is non-expansive, and, as a result, FPP,γ is 2/γ-cocoercive.

Theorem C.3 (Theorem 2.3; Last-iterate convergence of (PP-γ-`)). Let F : Rd → Rd be monotone, ` > 0 and
0 < γ ≤ 1/`. Then for all K ≥ 0 we have

E‖F (x̂K)‖2 ≤ `‖x0 − x∗‖2

γ(K + 1)
, (37)

where x̂K = xK − 2/`F (x̂K) = xK − 2/`FPP,2/`(x̂
K) and xK is produced by (PP-γ-`).

Proof. Theorem 2.2 implies

‖FPP,2/`(x
K)‖2 ≤ `‖x0 − x∗‖2

γ(K + 1)
.

Since by definition of FPP,2/` we have FPP,2/`(x
K) = F (x̂K), (8) holds.
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C.5 Further Details on Cocoercivity and Star-Cocoercivity

In Section 2, we give the main definitions and results about cocoercivity and star-cocoercivity that we use in the
paper. Here we continue this discussion and provide extra details on these properties of the operator.

As for cocoercivity, there is a certain relation between star-cocoercivity and non-expansiveness around x∗.

Definition C.1 (Non-expansiveness around x∗). Let x∗ ∈ Rd be some point. Then operator U : Rd → Rd is
called non-expansive around x∗ if for all x ∈ Rd

‖U(x)− U(x∗)‖ ≤ ‖x− x∗‖. (38)

Lemma C.5. For any operator F : Rd → Rd and x∗ such that F (x∗) = 0 the following are equivalent:

(i) Id− 2F is non-expansive around x∗.

(ii) F is 1-star-cocoercive around x∗.

Proof. Non-expansiveness of Id− 2F around x∗ is equivalent to

‖x− x∗ − 2(F (x)− F (x∗))‖2 ≤ ‖x− x∗‖2

that is equivalent to
‖x− x∗‖2 − 4〈x− x∗, F (x)〉+ 4‖F (x)‖2 ≤ ‖x− x∗‖2.

Rearranging the terms, we get that the last inequality coincides with (4) for ` = 1.

Lemma C.6. For any operator F : Rd → Rd and x∗ such that F (x∗) = 0 the following are equivalent:

(i) Id− 2
`F is non-expansive around x∗.

(ii) F is `-star-cocoercive around x∗.

Proof. The proof is identical to the proof of Lemma 2.1 up to the replacement of x′ by x∗.

Finally, we provide a connection between cocoercivity and star-cocoercivity. It is clear that the former implies
the latter. Here the natural question arises: when the opposite implication is true? To answer this question we
consider the class of linear operators.

Definition C.2 (Linear operator). We say that operator F : Rd → Rd is linear if for any α, β ∈ R and x, y ∈ Rd
the operator satisfies F (αx+ βy) = αF (x) + βF (y).

It turns out that for linear operators cocoercivity and star-cocoercivity are equivalent.

Lemma C.7. For any linear operator F : Rd → Rd the following are equivalent:

(i) F is `-cocoercive.

(ii) F is `-star-cocoercive around x∗.

Proof. Implication (i) =⇒ (ii) holds always. Therefore, we need to prove that (ii) implies (i). Let F be `-star-
cocoercive around x∗, i.e., F (x∗) = 0 and the following inequality holds for all x ∈ Rd:

‖F (x)‖2 ≤ `〈F (x), x− x∗〉.

Next, due to linearity of F we have F (x) = F (x)− F (x∗) = F (x− x∗) for all x ∈ Rd. Therefore, for all x ∈ Rd

‖F (x− x∗)‖2 ≤ `〈F (x− x∗), x− x∗〉.

For any y ∈ Rd one can take x = y + x∗ in the above inequality and get

‖F (y)‖2 ≤ `〈F (y), y〉.
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Finally, consider arbitrary x, x′ ∈ Rd. Replacing y with x− x′ and using linearity of F , we derive

‖F (x)− F (x′)‖2 = ‖F (x− x′)‖2

≤ `〈F (x− x′), x− x′〉
= `〈F (x)− F (x′), x− x′〉,

i.e., F is `-cocoercive.

We rely on this fact when deriving non-star-cocoercivity of two naturally arising operators corresponding to OG.

C.6 Spectral Viewpoint on Cocoercivity

The following result establishes the connection between cocoercivity and the spectrum of the Jacobian. This
result is a corollary of Proposition 1 from Ryu et al. (2021). For completeness, we provide our proof in the
appendix.

Lemma C.8 (Spectrum in a disk). Let F : Rd → Rd be a continuously differentiable operator. Then the following
statements are equivalent:

F (x) is `-cocoercive ⇐⇒ Re(1/λ) ≥ 1/` , ∀λ ∈ Sp(∇F (x)) , ∀x ∈ Rd . (39)

As Figure 4 shows, such a constraint corresponds to a disk centered in /̀2 and of radius /̀2.

Proof. We start with proving (⇒) part of (39). Let us consider x, u ∈ Rd, by `-cocoercivity we have,

‖F (x)− F (x+ tu)‖2 ≤ `t〈F (x)− F (x+ tu), u〉 , ∀t > 0 .

Divinding both side by t2 and letting t goes to 0 gives

‖∇F (x)u‖2 ≤ `〈∇F (x)u, u〉 .

Now let us consider u = a+ ib where a, b ∈ Rd an eigenvector of ∇F (x), we get

|λ|2‖u‖2 = ‖∇F (x)u‖2 = ‖∇F (x)a‖2 + ‖∇F (x)b‖2 ≤ `(〈∇F (x)a, a〉+ 〈∇F (x)b, b〉) ,

where the last inequality comes from the co-coercivity applied twice. Now let us notice that since u is an
eigenvector, we have {

∇F (x)a = Re(λ)a− Im(λ)b,

∇F (x)b = Im(λ)a+ Re(λ)b.

Thus we get
〈∇F (x)a, a〉+ 〈∇F (x)b, b〉 = Re(λ)(‖a‖2 + ‖b‖2)

which leads to,
|λ|2

Re(λ)
≤ ` ⇐⇒ Re(1/λ) ≥ 1/`.

We notice that Re(1/λ) ≥ 1/` is equivalent to λ ∈ D /̀2( /̀2) = {λ ∈ C | |λ− /̀2| ≤ /̀2}.

Next, we establish (⇐) part of (39). Let Sp(∇F (x)) ⊆ D /̀2( /̀2) for all x ∈ Rd. In view of Lemma 2.1, it is

sufficient to show that Id− 2/`F is non-expansive that is equivalent to Sp(I− 2/`∇F (x)) ⊆ D1(0) for all x ∈ Rd.
Moreover, we have

Sp

(
I− 2

`
∇F (x)

)
=

{
1− 2

`
λ | λ ∈ Sp(∇F (x))

}
⊆
{

1− 2

`
λ | λ ∈ D /̀2( /̀2)

}
.

Finally, for any λ ∈ D /̀2( /̀2) we have∣∣∣∣1− 2

`
λ

∣∣∣∣ =
2

`

∣∣∣∣ `2 − λ
∣∣∣∣ ≤ 2

`
· `

2
= 1,

i.e., 1− 2
`λ ∈ D1(0). This finishes the proof.
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We use this lemma to show cocoercivity of FEG,γ when F is affine.

0 5 10

−5i

0i

5i

0 `

`-cocoercive

Monotone
& `-Lipschitz

Figure 4: Illustration of the constraint on the spectrum of the Jacobian of a `-cocoercive operator. In yellow, the
constraint for the eigenvalues of the Jacobian Sp(∇F (x)) of a monotone and `-Lipschitz operator are shown. Red region
Re(1/λ) ≥ 1/` corresponds to the constraints for the eigenvalues λ of the Jacobian of a `-cocoercive operator (Lemma C.8).
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D MISSING PROOFS AND DETAILS FROM SECTION 3

D.1 Cocoercivity of EG Operator in the Affine Case

Lemma D.1. Let F : Rd → Rd be affine, monotone and L-Lipschitz operator. Then, for all λ ∈ Sp(∇FEG,γ)
we have Re(1/λ) ≥ γ/2 for all 0 < γ ≤ 1/L. In view of Lemma C.8, this implies that FEG,γ = F (Id− γF ) is
2/γ-cocoercive for all 0 < γ ≤ 1/L.

Proof. Since F = Ax+ b is monotone and L-Lipschitz, we have

Sp(∇F ) = Sp(A) ⊆ {λ ∈ C | Re(λ) ≥ 0 & |λ| ≤ L}.

Next, FEG,γ(x) = A (x− γAx− γb) + b = A (I− γA)x− γAb+ b and

Sp(∇FEG,γ) = Sp (A (I− γA)) = {λ(1− γλ) | λ ∈ Sp(A)}.

Therefore, it is sufficient to prove

{λ(1− γλ) | Re(λ) ≥ 0 & |λ| ≤ L} ⊆ D1/γ (1/γ) := {λ ∈ C | |λ− 1/γ| ≤ 1/γ} ,

since Re(1/λ) ≥ γ/2 is equivalent to λ ∈ D1/γ (1/γ). In the remaining part of the proof, we will show even stronger
result:

{λ(1− γλ) | Re(λ), Im(λ) ∈ [0, L]} ⊆ D1/γ (1/γ) . (40)

Consider arbitrary λ = λ0 + iλ1 such that λ0, λ1 ∈ [0, L]. Then,

λ(1− γλ) = (λ0 + iλ1) (1− γλ0 − iγλ1)

= λ0(1− γλ0) + γλ2
1 + i (λ1(1− γλ0)− γλ0λ1)

= λ0(1− γλ0) + γλ2
1 + iλ1 (1− 2γλ0) ,

implying that

|λ(1− γλ)− 1/γ|2 =

(
γλ0(1− γλ0) + γ2λ2

1 − 1

γ

)2

+ λ2
1(1− 2γλ0)2

x:=λ0, y:=λ2
1=

(
γx(1− γx) + γ2y − 1

γ

)2

+ y(1− 2γx)2.

One can notice that the expression above is a convex function of y. Since 0 ≤ y ≤ L2, we have

|λ(1− γλ)− 1/γ|2 ≤ max

{(
γx(1− γx)− 1

γ

)2

,

(
γx(1− γx) + γ2L2 − 1

γ

)2

+ L2(1− 2γx)2

}
.

Since x ∈ [0, L] and γ ≤ 1/L we have 0 ≤ x(1− γx) ≤ x ≤ L ≤ 1
γ implying(

γx(1− γx)− 1

γ

)2

≤ 1

γ2
.

Next, we consider the second term in the maximum as a function of x:

f(x) =

(
γx(1− γx) + γ2L2 − 1

γ

)2

+ L2(1− 2γx)2

=

(
−γx2 + x+ γL2 − 1

γ

)2

+ L2(1− 4γx+ 4γ2x2)

= γ2x4 + x2 + γ2

(
L2 − 1

γ2

)2

− 2γx3 − 2γ2x2

(
L2 − 1

γ2

)
+ 2γx

(
L2 − 1

γ2

)
+L2 − 4γL2x+ 4γ2L2x2

= γ2x4 − 2γx3 + x2

(
1 + 2γ2

(
L2 +

1

γ2

))
− 2γx

(
L2 +

1

γ2

)
+ L2 + γ2

(
L2 − 1

γ2

)2

.
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Since for all x ∈ [0, L]

f ′′(x) = 12γ2x2 − 12γx+ 2 + 4γ2

(
L2 +

1

γ2

)
= 12γ2

(
x2 − x

γ
+

1

6γ2
+
L2

3
+

1

3γ2

)
= 12γ2

((
x− 1

2γ

)2

+
L2

3
+

1

4γ2

)
> 0,

function f(x) is convex. Therefore,

f(x) ≤ max {f(0), f(L)}

= max

{(
γL2 − 1

γ

)2

+ L2,

(
γL(1− γL) + γ2L2 − 1

γ

)2

+ L2(1− 2γL)2

}

= max

{(
γL2 − 1

γ

)2

+ L2,

(
L− 1

γ

)2

+ L2(1− 2γL)2

}
.

Since γ ≤ 1/L, we have (
γL2 − 1

γ

)2

+ L2 = γ2L4 − 2L2 +
1

γ2
+ L2

=
1

γ2
+ L2

(
γ2L2 − 1

)
≤ 1

γ2
,

and (
L− 1

γ

)2

+ L2(1− 2γL)2 = L2 − 2L

γ
+

1

γ2
+ L2 − 4γL3 + 4γ2L4

=
1

γ2
+

2L

γ
(γL− 1) + 4γL3(γL− 1) ≤ 1

γ2
.

Putting all together, we get f(x) ≤ 1/γ2 and, as a result, |λ(1 − γλ) − 1/γ|2 ≤ 1/γ2. Therefore, (40) holds. This
finishes the proof.

D.2 Last-Iterate Convergence of EG in the Affine Case

Theorem D.1 (Last-iterate convergence of (EG-γ1-γ2): affine case). Let F : Rd → Rd be affine, monotone and
L-Lipschitz, 0 < γ2 ≤ γ1/2, 0 < γ1 ≤ 1/L. Then for all K ≥ 0 we have

E‖F (x̂K)‖2 ≤ 2‖x0 − x∗‖2

γ1γ2(K + 1)
, (41)

where x̂K = xK − γ1F (xK) and xK is produced by (EG-γ1-γ2).

Proof. Lemma D.1 and Theorem 2.2 imply

‖FEG,γ1(xK)‖2 ≤ 2‖x0 − x∗‖2

γ1γ2(K + 1)
.

Since by definition of FEG,γ1 we have FEG,γ1(xK) = F (xk − γ1F (xK)) = F (x̂K), (41) holds.

D.3 Linear Case: Non-Spectral Analysis of Extragradient Method

In this subsection, we give an alternative proof of cocoercivity of extragradient operator when F is linear,
monotone and L-Lipschitz.
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Lemma D.2. Let F : Rd → Rd be linear, monotone and L-Lipschitz operator. Then, for all γ ≤ 1/L extragradient
operator FEG,γ = F (Id− γF ) is 2/γ-cocoercive.

Proof. Lemma 2.1 implies that it is sufficient to prove non-expansiveness of Id − γFEG,γ . Consider arbitrary
x, y ∈ Rd and define

x̃ = x− γF (x), ỹ = y − γF (y), x̂ = x− γF (x̃), ŷ = y − γF (ỹ).

Our goal is to show that ‖x̂− ŷ‖ ≤ ‖x− y‖. Using the monotonicity of F and

2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖b− a‖2 (42)

that holds for all a, b ∈ Rd, we derive

‖x̂− ŷ‖2 = ‖x− y‖2 − 2γ〈x− y, F (x̃)− F (ỹ)〉+ γ2‖F (x̃)− F (ỹ)‖2

= ‖x− y‖2 − 2γ〈x̃+ γF (x)− ỹ − γF (y), F (x̃)− F (ỹ)〉+ γ2‖F (x̃)− F (ỹ)‖2

= ‖x− y‖2 − 2γ〈x̃− ỹ, F (x̃)− F (ỹ)〉
−γ2

(
2〈F (x)− F (y), F (x̃)− F (ỹ)〉 − ‖F (x̃)− F (ỹ)‖2

)
(1),(42)

≤ ‖x− y‖2 + γ2
(
‖F (x̃)− F (ỹ)− F (x) + F (y)‖2 − ‖F (x)− F (y)‖2

)
. (43)

Next, since F is linear and L-Lipschitz, we have

‖F (x̃)− F (ỹ)− F (x) + F (y)‖2 − ‖F (x)− F (y)‖2 = ‖F (x̃− x)− F (ỹ − y)‖2 − ‖F (x)− F (y)‖2

= ‖F (γF (x))− F (γF (y))‖2 − ‖F (x)− F (y)‖2
(2)

≤
(
L2γ2 − 1

)
‖F (x)− F (y)‖2

≤ 0,

where in the final step we apply γ ≤ 1/L. Putting this inequality in (43) we obtain ‖x̂ − ŷ‖2 ≤ ‖x − y‖2 that
finishes the proof.

D.4 Proof of Lemma 3.1

Lemma D.3 (Lemma 3.1; Star-cocoercivity of extragradient operator). Let F : Rd → Rd be star-monotone
around x∗, i.e., F (x∗) = 0 and

∀x ∈ Rd 〈F (x), x− x∗〉 ≥ 0, (44)

and L-Lipschitz. Then, extragradient operator FEG,γ = F (Id− γF ) with γ ≤ 1/L is 2/γ-star-cocoercive around
x∗.

Proof. Lemma C.6 implies that

FEG,γ is
2

γ
-star-cocoercive around x∗ ⇐⇒ Id− γFEG,γ is non-expansive around x∗.

Consider arbitrary x ∈ Rd and define

x̃ = x− γF (x), x̂ = x− γF (x̃).

Since FEG,γ(x∗) = 0, our goal is to show that ‖x̂ − x∗‖ ≤ ‖x − x∗‖. Using star-monotonicity of F and (42), we
derive

‖x̂− x∗‖2 = ‖x− x∗‖2 − 2γ〈x− x∗, F (x̃)〉+ γ2‖F (x̃)‖2

= ‖x− x∗‖2 − 2γ〈x̃+ γF (x)− x∗, F (x̃)〉+ γ2‖F (x̃)‖2

= ‖x− x∗‖2 − 2γ〈x̃− x∗, F (x̃))〉 − γ2
(
2〈F (x), F (x̃)〉 − ‖F (x̃)‖2

)
(9),(42)

≤ ‖x− x∗‖2 + γ2
(
‖F (x̃)− F (x)‖2 − ‖F (x)‖2

)
. (45)
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Next, since F is L-Lipschitz, we have

‖F (x̃)− F (x)‖2 − ‖F (x)‖2
(2)

≤ L2‖x̃− x‖2 − ‖F (x)‖2

=
(
L2γ2 − 1

)
‖F (x)‖2

≤ 0,

where in the final step we apply γ ≤ 1/L. Putting this inequality in (45) we obtain ‖x̂− x∗‖2 ≤ ‖x− x∗‖2 that
finishes the proof.

D.5 Details on Performance Estimation Problem for Showing Non-Cocoercivity of
Extragradient Operator

First of all, we provide the formulas for the matrices M0, . . . ,M7 defining problem (15):

M0 =


1 −1 0 0 −γ2 γ2

−1 1 0 0 γ2 −γ2

0 0 0 0 0 0
0 0 0 0 0 0
−γ2 γ2 0 0 γ2

2 −γ2
2

γ2 −γ2 0 0 −γ2
2 γ2

2

 , M1 =



0 0 0 0 0 0
0 0 0 0 0 0

0 0 `γ1 − 1 0 1− `γ1
2 0

0 0 0 0 0 0

0 0 1− `γ1
2 0 −1 0

0 0 0 0 0 0

 ,

M2 =


0 0 `

2 − `
2 0 0

0 0 − `
2

`
2 0 0

`
2 − `

2 −1 1 0 0
− `

2
`
2 1 −1 0 0

0 0 0 0 0 0
0 0 0 0 0 0

 , M3 =



0 0 `
2 0 0 − `

2

0 0 − `
2 0 0 `

2
`
2 − `

2 −1 `γ1
2 0 1

0 0 `γ1
2 0 0 − `γ12

0 0 0 0 0 0

− `
2

`
2 1 − `γ12 0 −1

 ,

M4 =



0 0 0 − `
2

`
2 0

0 0 0 `
2 − `

2 0

0 0 0 `γ1
2 − `γ12 0

− `
2

`
2

`γ1
2 −1 1 0

`
2 − `

2 − `γ12 1 −1 0
0 0 0 0 0 0

 , M5 =



0 0 0 0 `
2 − `

2

0 0 0 0 − `
2

`
2

0 0 0 0 − `γ12
`γ1
2

0 0 0 0 `γ1
2 − `γ12

`
2 − `

2 − `γ12
`γ1
2 −1 1

− `
2

`
2

`γ1
2 − `γ12 1 −1

 ,

M6 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 `γ1 − 1 0 1− `γ1
2

0 0 0 0 0 0

0 0 0 1− `γ1
2 0 −1

 , M7 =


1 −1 0 0 0 0
−1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Next, we provide a rigorous proof that the example (17) is valid, i.e., we prove Theorem 3.2.

Theorem D.2 (Theorem 3.2). For all ` > 0 and γ1 ∈ (0, 1/`] there exists `-cocoercive operator F such that
F (x) = xF1 , F (y) = yF1 , F (x− γ1xF1) = xF2 , F (y − γ1yF1) = yF2 for x, y, xF1 , yF1 , xF2 , yF2 defined in (17) and

‖x− γ2F (x− γ1F (x))− y + γ2F (y − γ1F (y))‖ > 1 = ‖x− y‖ (46)

for all γ2 > 0, i.e., FEG,γ1 = F (Id− γ1F ) is non-cocoercive.

Proof. Proposition 2 from Ryu et al. (2020) implies that it is sufficient to show that

`〈xF1
− xF2

, γ1xF1
〉 ≥ ‖xF1

− xF2
‖2, (47)

`〈xF1
− yF1

, x− y〉 ≥ ‖xF1
− yF1

‖2, (48)

`〈xF1
− yF2

, x− y + γ1yF1
〉 ≥ ‖xF1

− yF2
‖2, (49)

`〈xF2
− yF1

, x− γ1xF1
− y〉 ≥ ‖xF2

− yF1
‖2, (50)

`〈xF2
− yF2

, x− γ1xF1
− y + γ1yF1

〉 ≥ ‖xF2
− yF2

‖2, (51)

`〈yF1
− yF2

, γ1yF1
〉 ≥ ‖yF1

− yF2
‖2 (52)
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in order to prove that there exists `-cocoercive F such that F (x) = xF1 , F (y) = yF1 , F (x− γ1xF1) = xF2 , F (y −
γ1yF1) = yF2 . Below we derive these inequalities for x, y, xF1 , yF1 , xF2 , yF2 defined in (17).

Proof of (47). We have

`〈xF1
− xF2

, γ1xF1
〉 − ‖xF1

− xF2
‖2 = `

(
− 1

2γ1
+

1− γ1`

2γ1

)
· −γ1

2γ1
−
(
− 1

2γ1
+

1− γ1`

2γ1

)2

=
`2

4
− `2

4
= 0.

Proof of (48). We have

`〈xF1
− yF1

, x− y〉 − ‖xF1
− yF1

‖2 = −`
(
− 1

2γ1
+

1− γ1`

2γ1

)
−
(
− 1

2γ1
+

1− γ1`

2γ1

)2

−
(

1

2γ1
− 1 + γ1`

2γ1

)2

=
`2

2
− `2

4
− `2

4
= 0.

Proof of (49). We have

`〈xF1
− yF2

, x− y + γ1yF1
〉 − ‖xF1

− yF2
‖2 = `

(
− 1

2γ1
+

1− γ1`

2γ1

)(
−1 +

1− γ1`

2

)
+`

(
1

2γ1
− 1− γ2

1`
2

2γ1

)
· 1 + γ1`

2

−
(
− 1

2γ1
+

1− γ1`

2γ1

)2

−
(

1

2γ1
− 1− γ2

1`
2

2γ1

)2

=
`2(1 + γ1`)

4
+
γ1`

3(1 + γ1`)

4
− `2

4
− γ2

1`
4

4

=
γ1`

2
> 0.

Proof of (50). We have

`〈xF2
− yF1

, x− γ1xF1
− y〉 − ‖xF2

− yF1
‖2 = `

(
1

2γ1
− 1 + γ1`

2γ1

)
· −γ1

2γ1
−
(

1

2γ1
− 1 + γ1`

2γ1

)2

=
`2

4
− `2

4
= 0.

Proof of (51). We have

`〈xF2
− yF2

, x− γ1xF1
− y + γ1yF1

〉 − ‖xF2
− yF2

‖2 = `

(
1

2γ1
− 1− γ2

1`
2

2γ1

)(
−1

2
+

1 + γ1`

2

)
−
(

1

2γ1
− 1− γ2

1`
2

2γ1

)2

=
γ2

1`
4

4
− γ2

1`
4

4
= 0.

Proof of (52). We have

`〈yF1
− yF2

, γ1yF1
〉 − ‖yF1

− yF2
‖2 = `

(
1 + γ1`

2γ1
− 1− γ2

1`
2

2γ1

)
1 + γ1`

2
−
(

1 + γ1`

2γ1
− 1− γ2

1`
2

2γ1

)2

=
`2(1 + γ1`)

2

4
− `2(1 + γ1`)

2

4
= 0.
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That is, inequalities (47)-(52) hold and, as a result, there exists `-cocoercive operator F such that F (x) =
xF1 , F (y) = yF1 , F (x− γ1xF1) = xF2 , F (y − γ1yF1) = yF2 . Finally, for any γ2 > 0 we have

‖x− γ2F (x− γ1F (x))− y + γ2F (y − γ1F (y))‖2 = 1 + γ2
2

(
1

2γ1
− 1− γ2

1`
2

2γ1

)2

= 1 +
γ2

1γ
2
2`

4

4
> 1 = ‖x− y‖2.

In view of Lemma 2.1, it means that operator FEG,γ1 = F (Id− γ1F ) is non-cocoercive.

We emphasize that in the example (17) one can multiply all points by arbitrary α > 0 and get ‖x − y‖ = α:
the proof will remain almost unchanged. That is, the points x, y can be arbitrary close/far to each other in the
example showing non-cocoercivity of EG operator.

D.6 Proof of Lemma 3.2

As we explain in Section 3, we obtain the proof of Lemma 3.2 via solving the following problem:

∆EG(L, γ1, γ2) = max ‖F (x1)‖2 − ‖F (x0)‖2

s.t. F is monotone and L-Lipschitz, x0 ∈ Rd,
‖x0 − x∗‖2 ≤ 1,

x1 = x0 − γ2F
(
x0 − γ1F (x0)

)
with γ1 = γ2 = γ. As for (19), we construct a corresponding SDP and solve it for different values of L and γ. In
these numerical tests, we observed that ∆EG(L, γ1, γ2) ≈ 0 for all tested pairs of L and γ and the dual variables
λ1, λ2, λ3 that correspond to the constraints

0 ≤ 1

γ
〈F (xk)− F (xk+1), xk − xk+1〉,

0 ≤ 1

γ
〈F (xk − γF (xk))− F (xk+1), xk − γF (xk)− xk+1〉,

‖F (xk − γF (xk))− F (xk+1)‖2 ≤ L2‖xk − γF (xk)− xk+1‖2

are always close to the constants 2, 1/2, and 3/2, while other dual variables are negligible. Although λ2 and λ3

were sometimes slightly smaller, e.g., sometimes we had λ2 ≈ 3/5 and λ3 ≈ 13/20, we simplified these dependencies
and simply summed up the corresponding inequalities with weights λ1 = 2, λ2 = 1/2 and λ3 = 3/2 respectively.
After that it was just needed to rearrange the terms and apply Young’s inequality to some inner products.

The rigorous proof is provided below.

Lemma D.4 (Lemma 3.2). Let F : Rd → Rd be monotone and L-Lipschitz, 0 < γ ≤ 1/
√

2L. Then for all k ≥ 0
the iterates produced by (EG) satisfy ‖F (xk+1)‖ ≤ ‖F (xk)‖.

Proof. Since F is monotone and L-Lipschitz we have

0 ≤ 〈F (xk)− F (xk+1), xk − xk+1〉,
0 ≤ 〈F (xk − γF (xk))− F (xk+1), xk − γF (xk)− xk+1〉,

‖F (xk − γF (xk))− F (xk+1)‖2 ≤ L2‖xk − γF (xk)− xk+1‖2.

Using the update rule of (EG) and introducing new notation x̃k = xk − γF (xk), we get

0 ≤ 〈F (xk)− F (xk+1), F (x̃k)〉,
0 ≤ 〈F (x̃k)− F (xk+1), F (x̃k)− F (xk)〉,

‖F (x̃k)− F (xk+1)‖2 ≤ L2γ2‖F (x̃k)− F (xk)‖2.



Extragradient Method: O (1/K) Last-Iterate Convergence for Monotone Variational Inequalities

Summing up these inequalities with weights λ1 = 2, λ2 = 1/2 and λ3 = 3/2 respectively, we derive

3

2
‖F (x̃k)− F (xk+1)‖2 ≤ 2〈F (xk)− F (xk+1), F (x̃k)〉+

1

2
〈F (x̃k)− F (xk+1), F (x̃k)− F (xk)〉

+
3L2γ2

2
‖F (x̃k)− F (xk)‖2.

Next, we expand the squared norms and rearrange the terms:

3

2
‖F (xk+1)‖2 ≤

(
2− 1

2
− 3L2γ2

)
〈F (xk), F (x̃k)〉+

(
−2− 1

2
+ 3

)
〈F (xk+1), F (x̃k)〉

+
1

2
〈F (xk+1), F (xk)〉+

(
1

2
− 3

2
+

3L2γ2

2

)
‖F (x̃k)‖2 +

3L2γ2

2
‖F (xk)‖2

=

(
3

2
− 3L2γ2

)
〈F (xk), F (x̃k)〉+

1

2
〈F (xk+1), F (x̃k)〉+

1

2
〈F (xk+1), F (xk)〉

+

(
3L2γ2

2
− 1

)
‖F (x̃k)‖2 +

3L2γ2

2
‖F (xk)‖2.

We notice that 3
2 − 3L2γ2 ≥ 0 since γ ≤ 1√

2L
. Therefore, applying Young’s inequality (28) to upper bound the

inner products, we derive

3

2
‖F (xk+1)‖2 ≤

(
3

4
− 3L2γ2

2

)(
‖F (xk)‖2 + ‖F (x̃k)‖2

)
+

1

4

(
‖F (xk+1)‖2 + ‖F (x̃k)‖2

)
+

1

4

(
‖F (xk+1)‖2 + ‖F (xk)‖2

)
+

(
3L2γ2

2
− 1

)
‖F (x̃k)‖2 +

3L2γ2

2
‖F (xk)‖2

= ‖F (xk)‖2 +
1

2
‖F (xk+1)‖2.

Rearranging the terms, we get the result.

D.7 Proof of Theorem 3.3

Theorem D.3 (Theorem 3.3; Last-iterate convergence of (EG): non-linear case). Let F : Rd → Rd be monotone
and L-Lipschitz. Then for all K ≥ 0

‖F (xK)‖2 ≤ ‖x0 − x∗‖2

γ2(1− L2γ2)(K + 1)
, (53)

where xK is produced by (EG) with stepsize 0 < γ ≤ 1/
√

2L. Moreover,

GapF (xK) = max
y∈Rd:‖y−x∗‖≤‖x0−x∗‖

〈F (y), xK − y〉 ≤ 2‖x0 − x∗‖2

γ
√

1− L2γ2
√
K + 1

. (54)

Proof. We notice that in the proof of Lemma D.2 we get

‖x̂− ŷ‖2
(43)

≤ ‖x− y‖2 + γ2
(
‖F (x̃)− F (ỹ)− F (x) + F (y)‖2 − ‖F (x)− F (y)‖2

)
without using linearity of F . Here, x and y are arbitrary points in Rd and

x̃ = x− γF (x), ỹ = y − γF (y), x̂ = x− γF (x̃), ŷ = y − γF (ỹ).

Taking y = x∗ and x = xk we get ỹ = ŷ = x∗, x̂ = xk+1, and

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + γ2‖F (xk − γF (xk))− F (xk)‖ − γ2‖F (xk)‖2
(2)

≤ ‖xk − x∗‖2 + L2γ4‖F (xk)‖2 − γ2‖F (xk)‖2
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implying
γ2(1− L2γ2)‖F (xk)‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2. (55)

Summing up these inequalities for k = 0, 1, . . . ,K and dividing the result by γ2(1− L2γ2)(K + 1), we obtain

1

K + 1

K∑
k=0

‖F (xk)‖2 ≤ 1

γ2(1− L2γ2)(K + 1)

K∑
k=0

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
=
‖x0 − x∗‖2 − ‖xK+1 − x∗‖2

γ2(1− L2γ2)(K + 1)

≤ ‖x0 − x∗‖2

γ2(1− L2γ2)(K + 1)
.

Next, applying Lemma 3.2, we conclude

‖F (xK)‖2 ≤ 1

K + 1

K∑
k=0

‖F (xk)‖2 ≤ ‖x0 − x∗‖2

γ2(1− L2γ2)(K + 1)
,

which gives (53). Finally, we notice that ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖, which can be seen from (55). Therefore,
using monotonicity of F and Cauchy-Schwarz inequality, we derive

GapF (xK) = max
y∈Rd:‖y−x∗‖≤‖x0−x∗‖

〈F (y), xK − y〉

(1)

≤ max
y∈Rd:‖y−x∗‖≤‖x0−x∗‖

〈F (xK), xK − y〉

≤ ‖F (xK)‖ · max
y∈Rd:‖y−x∗‖≤‖x0−x∗‖

‖xK − y‖

(55)

≤ 2‖F (xK)‖ · ‖x0 − x∗‖
(53)

≤ 2‖x0 − x∗‖2

γ
√

1− L2γ2
√
K + 1

,

which finishes the proof.
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E MISSING PROOFS FROM SECTION 4

E.1 Proof of Theorem 4.1

For convenience, we derive non-cocoercivity of FOG,γ and FEFTP,γ separately.

E.1.1 Non-Cocoercivity of FOG,γ

Before we provide the proof, we state the following technical lemma.

Lemma E.1. Let operator F : Rd → Rd be linear, x∗ be such that F (x∗) = 0, and γ > 0. Then, operator FOG,γ

is linear and FOG,γ(z∗) = 0 for z∗ = ((x∗)>, (x∗)>)>.

Proof. We start with proving linearity. Consider arbitrary

α, β ∈ R, x, y, x′, y′ ∈ Rd, z =

(
x
y

)
, z′ =

(
x′

y′

)
∈ R2d.

Then

FOG,γ(αz + βz′) =

(
2F −F
− 1
γ Id 1

γ Id

)(
αx+ βx′

αy + βy′

)
=

(
2F (αx+ βx′)− F (αy + βy′)
− 1
γ (αx+ βx′) + 1

γ (αy + βy′)

)
= α

(
2F (x)− F (y)
− 1
γx+ 1

γ y

)
+ β

(
2F (x′)− F (y′)
− 1
γx
′ + 1

γ y
′

)
= α

(
2F −F
− 1
γ Id 1

γ Id

)(
x
y

)
+ β

(
2F −F
− 1
γ Id 1

γ Id

)(
x′

y′

)
= αFOG,γ(z) + βFOG,γ(z′),

i.e., FOG,γ is linear. Next, let F (x∗) = 0 for some x∗. For

z∗ =

(
x∗

x∗

)
we derive that FOG,γ(z∗) = 0:

FOG,γ(z∗) =

(
2F −F
− 1
γ Id 1

γ Id

)(
x∗

x∗

)
=

(
2F (x∗)− F (x∗)
− 1
γx
∗ + 1

γx
∗

)
=

(
0
0

)
= 0.

Using this lemma, we establish the following result.

Theorem E.1 (Non-cocoercivity of FOG,γ). Let the linear operator F (x) = Ax be monotone and L-Lipschitz.

Assume that Sp(∇F (x)) = Sp(A) contains at least one eigenvalue λ̂ such that Re(λ̂) = 0 and Im(λ̂) 6= 0. Then,
for any ` > 0 and γ > 0 operator FOG,γ is not `-star-cocoercive around x∗.

Proof. In view of Lemma C.7, it is sufficient to show that FOG,γ is not `-cocoercive for any positive `, γ > 0.

Since Sp(A) contains λ̂ with Re(λ̂) = 0 and Im(λ̂) 6= 0, Sp(A) is not contained in any disk centered in /̀2 and
of radius /̀2. Therefore, due to Lemma C.8 operator F is not `-cocoercive for any `. Let us fix arbitrary ` > 0
and γ > 0. There exist points x, x′ such that

‖F (x)− F (x′)‖2 > `

2
〈x− x′, F (x)− F (x′)〉 (56)

Let us show that FOG,γ is not `-cocoercive. In view of Lemma 2.1, it is sufficient to show that Id− 2
`FOG,γ is not

non-expansive. Consider the following points:

z =

(
x
x∗

)
, ẑ = z − 2

`
FOG,γ(z), z′ =

(
x′

x∗

)
, ẑ′ = z′ − 2

`
FOG,γ(z′).
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Then

‖ẑ − ẑ′‖2 =

∥∥∥∥z − 2

`
FOG,γ(z)− z′ + 2

`
FOG,γ(z′)

∥∥∥∥2

=

∥∥∥∥( xx∗
)
− 2

`

(
2F −F
− 1
γ Id 1

γ Id

)(
x
x∗

)
−
(
x′

x∗

)
+

2

`

(
2F −F
− 1
γ Id 1

γ Id

)(
x′

x∗

)∥∥∥∥2

=

∥∥∥∥( x− 4
`F (x)− x′ + 4

`F (x′)
x∗ + 2

`γx−
2
`γx
∗ − x∗ − 2

`γx
′ + 2

`γx
∗

)∥∥∥∥2

=

∥∥∥∥x− x′ − 4

`
(F (x)− F (x′))

∥∥∥∥2

+
4

`2γ2
‖x− x′‖2

=

(
1 +

4

`2γ2

)
‖x− x′‖2 +

16

`2

(
‖F (x)− F (x′)‖2 − `

2
〈x− x′, F (x)− F (x′)〉

)
(56)
>

(
1 +

4

`2γ2

)
‖x− x′‖2 > ‖x− x′‖2 = ‖z − z′‖2,

i.e., Id− 2
`FOG,γ is not non-expansive.

E.1.2 Non-Cocoercivity of FEFTP,γ

First of all, for any

z =

(
x
y

)
one can rewrite FEFTP,γ(z) as

FEFTP,γ(z) =

(
F (x− γF (y))

1
γ (y − x) + F (y)

)
.

Using this, we derive the following technical result.

Lemma E.2. Let operator F : Rd → Rd be linear, x∗ be such that F (x∗) = 0, and γ > 0. Then, operator
FEFTP,γ is linear and FEFTP,γ(z∗) = 0 for z∗ = ((x∗)>, (x∗)>)>.

Proof. We start with proving linearity. Consider arbitrary

α, β ∈ R, x, y, x′, y′ ∈ Rd, z =

(
x
y

)
, z′ =

(
x′

y′

)
∈ R2d.

Then

FEFTP,γ(αz + βz′) =

(
F (αx+ βx′ − γF (αy + βy′))

1
γ (αy + βy′ − αx− βx′) + F (αy + βy′)

)
=

(
F (αx− γαF (y) + βx′ − γβF (y′))

1
γ (αy − αx) + αF (y) + 1

γ (βy′ − βx′) + βF (y′)

)
= α

(
F (x− γF (y))

1
γ (y − x) + F (y)

)
+ β

(
F (x′ − γF (y′))

1
γ (y′ − x′) + F (y′)

)
= αFEFTP,γ(z) + βFEFTP,γ(z′),

i.e., FEFTP,γ is linear. Next, let F (x∗) = 0 for some x∗. For

z∗ =

(
x∗

x∗

)
we derive that FEFTP,γ(z∗) = 0:

FOG,γ(z∗) =

(
F (x∗ − γF (x∗))

1
γ (x∗ − x∗) + F (y∗)

)
=

(
F (x∗)

0

)
=

(
0
0

)
= 0.
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Using this lemma, we establish the following result.

Theorem E.2 (Non-cocoercivity of FEFTP,γ). Let the linear operator F (x) = Ax be monotone and L-Lipschitz.

Assume that Sp(∇F (x)) = Sp(A) contains at least one eigenvalue λ̂ such that Re(λ̂) = 0 and Im(λ̂) 6= 0. Then,
for any ` > 0 and γ > 0 operator FEFTP,γ is not `-star-cocoercive around x∗.

Proof. In view of Lemma C.7, it is sufficient to show that FEFTP,γ is not `-cocoercive for any positive `, γ > 0.

Since Sp(A) contains λ̂ with Re(λ̂) = 0 and Im(λ̂) 6= 0, Sp(A) is not contained in any disk centered in /̀2 and
of radius /̀2. Therefore, due to Lemma C.8 operator F is not `-cocoercive for any `. Let us fix arbitrary ` > 0
and γ > 0. There exist points x, x′ such that

‖F (x)− F (x′)‖2 > `〈x− x′, F (x)− F (x′)〉 (57)

Let us show that FEFTP,γ is not `-cocoercive. In view of Lemma 2.1, it is sufficient to show that Id − 2
`FEFTP,γ

is not non-expansive. Consider the following points:

z =

(
x
x∗

)
, ẑ = z − 2

`
FEFTP,γ(z), z′ =

(
x′

x∗

)
, ẑ′ = z′ − 2

`
FEFTP,γ(z′).

Then

‖ẑ − ẑ′‖2 =

∥∥∥∥z − 2

`
FEFTP,γ(z)− z′ + 2

`
FEFTP,γ(z′)

∥∥∥∥2

=

∥∥∥∥( xx∗
)
− 2

`

(
F (x)

− 1
γ (x∗ − x)

)
−
(
x′

x∗

)
+

2

`

(
F (x′)

− 1
γ (x∗ − x′)

)∥∥∥∥2

=

∥∥∥∥( x− 2
`F (x)− x′ + 2

`F (x′)
x∗ − 2

`γx+ 2
`γx
∗ − x∗ + 2

`γx
′ − 2

`γx
∗

)∥∥∥∥2

=

∥∥∥∥x− x′ − 2

`
(F (x)− F (x′))

∥∥∥∥2

+
4

`2γ2
‖x− x′‖2

=

(
1 +

4

`2γ2

)
‖x− x′‖2 +

4

`2
(
‖F (x)− F (x′)‖2 − `〈x− x′, F (x)− F (x′)〉

)
(57)
>

(
1 +

4

`2γ2

)
‖x− x′‖2 > ‖x− x′‖2 = ‖z − z′‖2,

i.e., Id− 2
`FEFTP,γ is not non-expansive.

E.2 Random-Iterate Convergence of (EFTP) for Star-Monotone Operators

Theorem E.3 (Random-iterate convergence of (EFTP)). Let F : Rd → Rd be star-monotone around x∗, i.e.,
F (x∗) = 0 and

∀x ∈ Rd 〈F (x), x− x∗〉 ≥ 0,

and L-Lipschitz. Then for all K ≥ 0 we have

E‖F (x̂K)‖2 ≤ ‖x0 − x∗‖2

γ2(1− 10γ2L2)(K + 1)
, (58)

where x̂K is chosen uniformly at random from the set of iterates {x̃0, x̃1, . . . , x̃K} produced by (EFTP) with
0 < γ < 1/

√
10L.

Proof. Lemma A.1 with x = x∗ implies

2γ〈F (x̃k+1), x̃k+1 − x∗〉 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 − ‖x̃k+1 − xk‖2 + γ2L2‖x̃k − x̃k+1‖2.
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Since F is star monotone and x̃k+1 − xk = −γF (x̃k), we have

γ2‖F (x̃k)‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + γ2L2‖x̃k − x̃k+1‖2
(26)
= ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + γ4L2‖2F (x̃k)− F (x̃k−1)‖2

(29)

≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + γ4L2

(
1 +

1

4

)
‖2F (x̃k)‖2

+γ4L2(1 + 4)‖F (x̃k−1)‖2

= ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 5γ4L2‖F (x̃k)‖2 + 5γ4L2‖F (x̃k−1)‖2

for k ≥ 1, and

γ2‖F (x̃0)‖2 ≤ ‖x0 − x∗‖2 − ‖x1 − x∗‖2 + γ2L2‖x̃0 − x̃1‖2

x0=x̃0

= ‖x0 − x∗‖2 − ‖x1 − x∗‖2 + γ4L2‖F (x̃0)‖2

≤ ‖x0 − x∗‖2 − ‖x1 − x∗‖2 + 5γ4L2‖F (x̃0)‖2.

Rearranging the terms, we derive for all k ≥ 1 that

γ2(1− 5γ2L2)‖F (x̃k)‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 5γ4L2‖F (x̃k−1)‖2, (59)

γ2(1− 5γ2L2)‖F (x̃0)‖2 ≤ ‖x0 − x∗‖2 − ‖x1 − x∗‖2. (60)

Next, we sum up inequalities (59) for k = 1, . . . ,K and (60):

γ2(1− 5γ2L2)

K∑
k=0

‖F (x̃k)‖2 ≤
K∑
k=1

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
+ 5γ4L2

K−1∑
k=0

‖F (x̃k)‖2

≤ ‖x0 − x∗‖2 + 5γ4L2
K∑
k=0

‖F (x̃k)‖2.

Rearranging the terms and dividing the result by γ2(1− 10γ2L2)(K + 1), we get

1

K + 1

K∑
k=0

‖F (x̃k)‖2 ≤ ‖x0 − x∗‖2

γ2(1− 10γ2L2)(K + 1)
.

Finally, since x̂K is chosen uniformly at random from the set {x̃0, x̃1, . . . , x̃K} we derive

E‖F (x̂K)‖2 =
1

K + 1

K∑
k=0

‖F (x̃k)‖2 ≤ ‖x0 − x∗‖2

γ2(1− 10γ2L2)(K + 1)
.
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F HAMILTONIAN GRADIENT METHOD

Although Hamiltonian Gradient Method (HGM) is not considered as an approximation of PP, it attracted a
lot of attention during the recent few years. Therefore, it is worth to study whether the operator of HGM is
cocoercive. First of all, HGM

xk+1 = xk − γ∇F (xk)>F (xk), (HGM)

can be seen as GD applied to minimize function H(x) = ‖F (x)‖2/2. The corresponding operator is FH(x) =
∇F (x)>F (x).

F.1 Affine Case

Let us start with the affine case.

Lemma F.1. Let F (x) = Ax + b be L-Lipschitz. Then, Hamiltonian operator FH(x) = ∇F (x)>F (x) is L-
cocoercive.

Proof. We have

H(x) =
1

2
‖F (x)‖2

=
1

2
‖Ax+ b‖2

=
1

2
x>A>Ax+ b>Ax+

1

2
‖b‖2.

Since ∇2H(x) = A>A � 0 function H(x) is convex. Next, L-Lipschitzness of A implies that ‖A‖2 =√
λmax(A>A) ≤ L, i.e., ∇2H(x) = A>A � LI. Therefore, H(x) is L-smooth function. It is well known (Nes-

terov et al., 2018) that the gradient of convex L-smooth function is L-cocoercive, i.e., ∇H(x) = ∇F (x)>F (x) =
FH(x) is L-cocoercive operator.

As a direct application of Theorem 2.2 we get the following result.

Theorem F.1 (Last-iterate convergence of (HGM): affine case). Let F (x) = Ax + b be L-Lipschitz. Then for
all K ≥ 0 we have ∥∥∇F (xK)>F (xk)

∥∥2 ≤ L‖x0 − x∗‖2

γ(K + 1)
, (61)

where xK is produced by (HGM) with 0 < γ ≤ 1/L.

However, this theorem completely ignores the fact that ∇F (x)>F (x) corresponds to the gradient of function
H(x). Taking into account that H(x) = 1

2‖Ax+ b‖2, one can prove that H(x) is quasi-strongly convex (Necoara
et al., 2019) and get the following result for Gradient Descent applied to minimize function H(x).

Theorem F.2 (See Theorem 11 from Necoara et al. (2019)). Let F (x) = Ax+ b. Then for all K ≥ 0 we have

‖xK − x∗‖2 ≤
(

1− κ(A)

1 + κ(A)

)
‖x0 − x∗‖2, (62)

where κ(A) = σ2
min(A)/σ2

max(A), σ2
min(A) and σ2

max(A) are the smallest non-zero and the largest singular values of
A respectively, and xK is produced by (HGM) with γ = 1/σ2

max(A).

Similar results are also derived in Abernethy et al. (2019); Loizou et al. (2020).

F.2 General Case

Next, we consider the setup when F is monotone, L-Lipschitz, but not necessarily affine. In this case, it turns
out that Hamiltonian operator FH can be non-cocoercive and function H can be non-convex. To prove this, we
provide an example of convex smooth function f(x) such that ‖∇f(x)‖2 is non-convex.
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Theorem F.3 (Non-cocoercivity of the Hamiltonian operator). Consider strongly convex smooth function f(x) =

ln(1+ex)+ x2

200 of a scalar argument x ∈ R. Then, Hamiltonian operator H(x) = ∇F (x)>F (x) is non-cocoercive
for monotone Lipschitz F (x) = ∇f(x).

Proof. Function f(x) = ln(1 + ex) + x2

200 is logistic loss with `2-regularization. Therefore, it is strongly convex
smooth function and its gradient

F (x) = ∇f(x) =
ex

1 + ex
+

x

100

is (strongly) monotone and Lipschitz operator. Below we prove that Hamiltonian function H(x) = 1
2‖F (x)‖2 is

non-convex. To show that we compute its second derivative:

2H(x) =

(
ex

1 + ex
+

x

100

)2

=
e2x

(1 + ex)2
+

xex

50(1 + ex)
+

x2

10000
,

2∇H(x) =
2e2x

(1 + ex)2
− 2e3x

(1 + ex)3
+

(x+ 1)ex

50(1 + ex)
− xe2x

50(1 + ex)2
+

x

5000

=
2e2x

(1 + ex)3
+
e2x + ex(x+ 1)

50(1 + ex)2
+

x

5000

2∇2H(x) =
4e2x

(1 + ex)3
− 6e3x

(1 + ex)4
+

2e2x + ex(x+ 2)

50(1 + ex)2
− 2e3x + 2e2x(x+ 1)

50(1 + ex)3
+

1

5000

=
2e2x(2− ex)

(1 + ex)4
+
ex (x+ 2 + ex(2− x))

50(1 + ex)3
+

1

5000
.

Using simple computations one can check H′′(x) is negative for some x ∈ R, e.g., one can check that H′′(3) < 0.
Therefore, function H(x) is non-convex. Since convexity and smoothness of function H(x) is equivalent to
the cocoercivity of its gradient ∇H(x) (Nesterov et al., 2018), we conclude that Hamiltonian operator is non-
cocoercive.

Finally, one can use the optimization viewpoint of the Hamiltonian method and derive O(1/K) random-iterate
convergence guarantees in terms of ‖∇F (xK)>F (xK)‖2 when the Jacobian of F is Lipschitz-continuous but F
is not necessary monotone. To show this the following lemma.

Lemma F.2 (Point-dependent smoothness of Hamiltonian function). Let operator F : Rd → Rd be L-Lipschitz,
its Jacobian ∇F (x) be Λ-Lipschitz, and H(x) = 1

2‖F (x)‖2. Then for any x, y ∈ Rd the following inequality holds:

H(y) ≤ H(x) + 〈∇H(x), y − x〉+
L2 + Λ‖F (x)‖

2
‖y − x‖2. (63)

Proof. Since F is L-Lipschitz its Jacobian has bounded norm: ‖∇F (x)‖ = ‖∇F (x)>‖ ≤ L for all x ∈ Rd. Using
this and Λ-Lipschitzness of the Jacobian, we derive for any x, y ∈ Rd

‖∇H(y)−∇H(x)‖ = ‖∇F (y)>F (y)−∇F (x)>F (x)‖
≤ ‖∇F (y)>F (y)−∇F (y)>F (x)‖+ ‖∇F (y)>F (x)−∇F (x)>F (x)‖
≤ ‖∇F (y)>‖ · ‖F (y)− F (x)‖+ ‖∇F (y)> −∇F (x)>‖ · ‖F (x)‖
≤ ‖∇F (y)‖ · L‖x− y‖+ ‖∇F (y)−∇F (x)‖ · ‖F (x)‖
≤ L2‖x− y‖+ Λ‖F (x)‖ · ‖x− y‖. (64)
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Next, following standard arguments (Nesterov et al., 2018), we get

H(y) = H(x) +

1∫
0

〈∇H(x+ t(y − x)), y − x〉dt

= H(x) + 〈∇H(x), y − x〉+

1∫
0

〈∇H(x+ t(y − x))−∇H(x), y − x〉dt

≤ H(x) + 〈∇H(x), y − x〉+

1∫
0

‖∇H(x+ t(y − x))−∇H(x)‖ · ‖y − x‖dt

(64)

≤ H(x) + 〈∇H(x), y − x〉+

1∫
0

(L2 + Λ‖F (x)‖)t‖y − x‖2dt

= H(x) + 〈∇H(x), y − x〉+
L2 + Λ‖F (x)‖

2
‖y − x‖2.

Theorem F.4 (Best-iterate convergence of (HGM)). Let operator F : Rd → Rd be L-Lipschitz, its Jacobian
∇F (x) be Λ-Lipschitz. Then for any K ≥ 0 we have

min
k=0,1,...,K

‖∇F (xk)>F (xk)‖2 ≤ ‖F (x0)‖2

γ (2− γ(L2 + Λ‖F (x0)‖)) (K + 1)
, (65)

where the sequence x0, x1, . . . , xK is generated by (HGM) with stepsize

γ ≤ 2

L2 + Λ‖F (x0)‖
.

Moreover, for all k ≥ 0 we have
‖F (xk+1)‖ ≤ ‖F (xk)‖. (66)

Proof. We start with applying Lemma F.2: taking y = xk+1 = xk − γ∇H(xk) and x = xk in (63), we get

H(xk+1)
(63)

≤ H(xk) + 〈H(xk), xk+1 − xk〉+
L2 + Λ‖F (xk)‖

2
‖xk+1 − xk‖2

= H(xk)− γ

2

(
2− γ(L2 + Λ‖F (xk)‖)

)
‖∇H(xk)‖2. (67)

Using this inequality we will derive (66) by induction. For k = 0 we use our assumption on γ and get that
2 − γ(L2 + Λ‖F (xk)‖ ≥ 0. Therefore, the second term in the right-hand side of (67) for k = 0 is non-positive.
This implies that H(x1) ≤ H(x0), which is equivalent to ‖F (x1)‖ ≤ ‖F (x0)‖. Next, assume that for some K > 0
inequality (66) holds for k = 0, 1, . . . ,K − 1. Let us derive that (66) holds for k = K as well. Using (67) and
our inductive assumption, we derive

H(xK+1) ≤ H(xK)− γ

2

(
2− γ(L2 + Λ‖F (xK)‖)

)
‖∇H(xK)‖2

(66)

≤ H(xK)− γ

2

(
2− γ(L2 + Λ‖F (x0)‖)

)
‖∇H(xK)‖2 ≤ H(xK),

where in the last inequality we use our assumption on γ. Therefore, ‖F (xK+1)‖ ≤ ‖F (xK)‖, i.e., (66) holds for
all k ≥ 0. Using this, we continue our derivation from (67):

H(xk+1) ≤ H(xk)− γ

2

(
2− γ(L2 + Λ‖F (xk)‖)

)
‖∇H(xk)‖2

(66)

≤ H(xk)− γ

2

(
2− γ(L2 + Λ‖F (x0)‖)

)
‖∇H(xk)‖2.
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Summing up the above inequality for k = 0, 1, . . . ,K and rearranging the terms, we obtain

1

K + 1

K∑
k=0

‖∇H(xk)‖2 ≤ 2

γ (2− γ(L2 + Λ‖F (x0)‖)) (K + 1)

K∑
k=0

(
H(xk)−H(xk+1)

)
≤ 2H(x0)

γ (2− γ(L2 + Λ‖F (x0)‖)) (K + 1)
.

Finally, using the definition of H and

min
k=0,1,...,K

‖∇F (xk)>F (xk)‖ ≤ 1

K + 1

K∑
k=0

‖∇H(xk)‖2,

we get (65).
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