
Stochastic Extragradient: General Analysis and Improved Rates

Eduard Gorbunov Hugo Berard Gauthier Gidel Nicolas Loizou

MIPT, Russia
Mila & UdeM, Canada

Mila & UdeM, Canada
Mila & UdeM, Canada

Canada CIFAR AI Chair
Johns Hopkins University

Baltimore, USA

Abstract

The Stochastic Extragradient (SEG) method
is one of the most popular algorithms for solv-
ing min-max optimization and variational in-
equalities problems (VIP) appearing in var-
ious machine learning tasks. However, sev-
eral important questions regarding the con-
vergence properties of SEG are still open,
including the sampling of stochastic gradi-
ents, mini-batching, convergence guarantees
for the monotone finite-sum variational in-
equalities with possibly non-monotone terms,
and others. To address these questions, in
this paper, we develop a novel theoretical
framework that allows us to analyze sev-
eral variants of SEG in a unified manner.
Besides standard setups, like Same-Sample
SEG under Lipschitzness and monotonicity or
Independent-Samples SEG under uniformly
bounded variance, our approach allows us to
analyze variants of SEG that were never ex-
plicitly considered in the literature before.
Notably, we analyze SEG with arbitrary sam-
pling which includes importance sampling
and various mini-batching strategies as spe-
cial cases. Our rates for the new variants of
SEG outperform the current state-of-the-art
convergence guarantees and rely on less re-
strictive assumptions.

1 INTRODUCTION

In the last few years, the machine learning commu-
nity has been increasingly interested in differentiable
game formulations where several parameterized mod-
els/players compete to minimize their respective ob-
jective functions. Notably, these formulations include
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generative adversarial networks (Goodfellow et al.,
2014), proximal gradient TD learning (Liu and Wright,
2016), actor-critic (Pfau and Vinyals, 2016), hier-
archical reinforcement learning (Wayne and Abbott,
2014; Vezhnevets et al., 2017), adversarial example
games (Bose et al., 2020), and minimax estimation of
conditional moment (Dikkala et al., 2020).

In that context, the optimization literature has con-
sidered a slightly more general setting, namely, vari-
ational inequality problems. Given a differentiable
game, its corresponding VIP designates the necessary
first-order stationary optimality conditions. Under the
assumption that the objectives functions of the differ-
entiable game are convex (with respect to their respec-
tive players’ variables), the solutions of the VIP are
also solutions of the original game formulation. In the
unconstrained case, given an operator1F : Rd → Rd,
the corresponding VIP is defined as follows:

find x∗ ∈ Rd such that F (x∗) = 0. (VIP)

When the operator F is monotone (a generalization
of convexity), it is known that the standard gradi-
ent method does not converge without strong mono-
tonicity (Noor, 2003; Gidel et al., 2019) or cocoer-
civity (Chen and Rockafellar, 1997; Loizou et al.,
2021). Because of their convergence guarantees, even
when the operator F is monotone, the extragradient
method (Korpelevich, 1976) and its variants (Popov,
1980) have been the optimization techniques of choice
to solve VIP. These techniques consist of two steps:
a) an extrapolation step that computes a gradient up-
date from the current iterate, and b) an update step
that updates the current iterate using the value of the
vector field at the extrapolated point.

Motivated by recent applications in machine learning,
in this work we are interested in cases where the ob-
jective, operator F , is naturally expressed as a finite
sum, F (x) = 1

n

∑n
i=1 Fi(x) or more generally as ex-

1In the context of a differentiable game, F corresponds
to the concatenation of the gradients of the players’ losses,
e.g., see the details in Gidel et al. (2019).
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pectation F (x) = Eξ[Fξ(x)]. In that setting, we only
assume to have access to a stochastic estimate of F .

Unfortunately, the additive value of extragradient-
based techniques in the stochastic VIP setting is less
apparent since the method is challenging to analyze in
that setting due to the two stochastic gradient com-
putations necessary for a single update. There are
several ways to deal with the stochasticity in the SEG
update. For example, one can use either independent
samples (Nemirovski et al., 2009; Juditsky et al., 2011)
or the same sample (Gidel et al., 2019) for the extrap-
olation and the update steps.

The selection of stepsizes in the update rule of SEG (for
the extrapolation step and update step) is also a chal-
lenging task. In Chavdarova et al. (2019) it is shown
that some same-stepsize variants of SEG diverge in the
unconstrained monotone case. At the same time, in
Hsieh et al. (2019) using a double stepsize rule, the au-
thors provide convergence guarantees under an error-
bound condition.

This discrepancy between the deterministic and
the stochastic case has motivated a whole line of
work (Gidel et al., 2019; Mishchenko et al., 2020;
Beznosikov et al., 2020; Hsieh et al., 2019) to under-
stand better the properties of SEG. However, several
important questions remain open. To bridge this gap,
in this work, we develop a novel theoretical framework
that allows us to analyze several variants of SEG in a
unified manner.

1.1 Preliminaries

Notation. We use standard notation for optimiza-
tion literature. We also often use [n] to denote
{1, . . . , n} and Eξ[·] for the expectation taken w.r.t.
the randomness coming from ξ only.

Main assumptions. In this work, we assume that
the operator F is L-Lipschitz and µ-quasi strongly
monotone.
Assumption 1.1. Operator F (x) is L-Lipschitz, i.e.,
for all x, y ∈ Rd

‖F (x)− F (y)‖ ≤ L‖x− y‖. (1)

Assumption 1.2. Operator F (x) is µ-quasi strongly
monotone, i.e., for µ ≥ 0 and for all x ∈ Rd

〈F (x), x− x∗〉 ≥ µ‖x− x∗‖2. (2)

We assume that x∗ is unique.

Assumption 1.1 is relatively standard and widely used
in the literature on VIP. Assumption 1.2 is a relax-
ation of µ-strong monotonicity as it includes some
non-monotone games as special cases. To the best

of our knowledge, the term quasi-strong monotonic-
ity was introduced in Loizou et al. (2021) and has its
roots in the quasi-strong convexity condition from the
optimization literature (Necoara et al., 2019; Gower
et al., 2019). In the literature of variational inequality
problems, quasi strongly monotone problems are also
known as strong coherent VIPs (Song et al., 2020) or
VIPs satisfying the strong stability condition (Mer-
tikopoulos and Zhou, 2019). If µ = 0, then Assump-
tion 1.2 is also known as variational stability condi-
tion (Hsieh et al., 2020; Loizou et al., 2021).

Variants of SEG. In the literature of variational in-
equality problems there are two main stochastic extra-
gradient variants.

The first is Same-sample SEG:

xk+1 = xk − γ2,ξkFξk
(
xk − γ1,ξkFξk(xk)

)
, (S-SEG)

where in each iteration, the same sample ξk is used for
the exploration (computation of xk−γ1,ξkFξk(xk)) and
update (computation of xk+1) steps. The selection of
step-sizes γ2,ξk and γ1,ξk that guarantee convergence
of the method in different settings varies across previ-
ous papers (Mishchenko et al., 2020; Beznosikov et al.,
2020; Hsieh et al., 2019). In this work, the proposed
stepsizes for S-SEG satisfy 0 < γ2,ξk = αγ1,ξk , where
0 < α < 1, and are allowed to depend on the sample
ξk. This specific stepsize selection is one of the main
contributions of this work and we discuss its benefits
in more detail in the subsequent sections.

The second variant is Independent-samples SEG

xk+1 = xk − γ2Fξk2

(
xk − γ1Fξk1 (xk)

)
, (I-SEG)

where ξk1 , ξ
k
2 are independent samples. Similarly to S-

SEG, we assume that 0 < γ2 = αγ1, with 0 < α <
1, but unlike S-SEG, for I-SEG we consider stepsizes
independent of samples ξk1 , ξ

k
2 .2

Typically, S-SEG is analyzed under Lipschitzness and
(strong) monotonicity of individual stochastic realiza-
tions Fξ (Mishchenko et al., 2020) that are stronger
than Assumptions 1.1 and 1.2. In contrast, I-SEG is
studied under Assumptions 1.1 and 1.2 but with ad-
ditional assumptions like uniformly bounded variance
or its relaxations (Beznosikov et al., 2020; Hsieh et al.,
2020). See Appendix F.1 for further clarifications.

1.2 Contributions

Our main contributions are summarized below.

2This is mainly motivated by the fact that the analysis
of I-SEG does not rely on the Lipshitzness of particular
stochastic realizations Fξ.
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� Unified analysis of SEG. We develop a new theo-
retical framework for the analysis of SEG. In particular,
we construct a unified assumption (Assumption 2.1)
on the stochastic estimator, stepsizes, and the prob-
lem itself (VIP), and we prove a general convergence
result under this assumption (Theorem 2.1). Next, we
show that both S-SEG and I-SEG fit our theoretical
framework and can be analyzed in different settings in
a unified manner. In previous works, these variants of
SEG have been only analyzed separately using different
proof techniques. Our proposed proof technique differs
significantly from those existing in the literature and,
therefore, is of independent interest.

� Sharp rates for the known methods. Despite
the generality of our framework, our convergence guar-
antees give tight rates for several well-known special
cases. That is, the proposed analysis either recovers
best-known (up to numerical factors) rates for some
special cases like the deterministic EG and the I-SEG
under uniformly bounded variance (UBV) assumption
(Assumption 4.1 with δ = 0), or improves the previ-
ous SOTA results for other well known special cases,
e.g., for S-SEG with uniform sampling and I-SEG un-
der the generalized UBV assumption (Assumption 4.1
with δ > 0).

� New methods with better rates. Through our
framework, we propose a general yet simple theorem
describing the convergence of S-SEG under the arbi-
trary sampling paradigm (Gower et al., 2019; Loizou
et al., 2021). Using the theoretical analysis of S-SEG
with arbitrary sampling, we can provide tight con-
vergence guarantees for several well-known methods
like the deterministic/full-batch EG and S-SEG with
uniform sampling (S-SEG-US) as well as some vari-
ants of S-SEG that were never explicitly considered
in the literature before. For example, we are first to
analyze S-SEG with mini-batch sampling without re-
placement (b-nice sampling; S-SEG-NICE) and show its
theoretical superiority to vanilla S-SEG-US. Moreover,
we propose a new method called S-SEG-IS that com-
bines S-SEG with importance sampling – the sampling
strategy, when the i-th operator from the sum is cho-
sen with probability proportional to its Lipschitz con-
stant. We prove the theoretical superiority of S-SEG-IS
in comparison to S-SEG-US.

� Novel stepsize selection. One of the key ingre-
dients of our approach is the use of sample-dependent
stepsizes. This choice of stepsizes is especially impor-
tant for the S-SEG-IS, as it allows us to obtain bet-
ter theoretical guarantees compared to the S-SEG-US.
Moreover, as in Hsieh et al. (2020), for the update step
we also use smaller stepsizes than for the exploration
step: γ2,ξk ≤ γ1,ξk (γ2 ≤ γ1). However, unlike the
results by Hsieh et al. (2020), our theory allows us-

ing γ2,ξk = αγ1,ξk with constant parameter α < 1 to
achieve any predefined accuracy of the solution.

� Convergence guarantees under weak condi-
tions. The flexibility of our approach helps us to de-
rive our main theoretical results under weak assump-
tions. In particular, in the analysis of S-SEG, we al-
low the stochastic realizations Fξ to be (µξ, x

∗)-quasi
strongly monotone with possibly negative µξ, meaning
that Fξ can be non-monotone (see Assumption 3.2).
In addition, in the analysis of S-SEG we do not require
any bounded variance assumption. To the best of our
knowledge, all previous works on the analysis of S-SEG
require monotonicity of Fξ. Finally, in the analysis
of I-SEG we obtain last-iterate convergence guarantees
by only assuming µ-quasi strong monotonicity of F ,
which, as we explained before, is satisfied for some
classes of non-monotone problems.

� Numerical evaluation. In Section 5, we corrobo-
rate our theoretical results with experimental testing.

1.3 Related Work

Non-monotone VIP with special structure.
Recent works of Daskalakis et al. (2021) and Di-
akonikolas et al. (2021) show that, for general non-
monotone VIP, the computation of approximate first-
order locally optimal solutions is intractable, motivat-
ing the identification of structural assumptions on the
objective function for which these intractability barri-
ers can be bypassed.

In this work, we focus on such settings (structured non-
monotone operators) for which we are able to provide
tight convergence guarantees and avoid the standard
issues (like cycling and divergence of the methods) ap-
pearing in the more general non-monotone regime. In
particular, we focus on quasi-strongly monotone VIPs
(2). Recently, similar conditions have been used in
several papers to provide convergence guarantees of
algorithms for solving such structured classes of non-
monotone problems. For example,Yang et al. (2020)
focuses on analyzing alternating gradient descent as-
cent under the Two-sided Polyak- Lojasiewicz inequal-
ity, while Hsieh et al. (2020) provides convergence
guarantees of double stepsize stochastic extragradi-
ent for problems satisfying the error bound condition.
Song et al. (2020) and Loizou et al. (2021) study
the optimistic dual extrapolation and the stochas-
tic gradient descent-ascent and stochastic consensus
optimization method, respectively, for solving quasi-
strongly monotone problems. Kannan and Shanbhag
(2019) provides an analysis for the stochastic extragra-
dient for the class of strongly pseudo-monotone VIPs.
The convergence of Hamiltonian methods for solving
(stochastic) sufficiently bilinear games (class of struc-
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Table 1: Summary of the state-of-the-art convergence result for S-SEG and I-SEG. Our results are highlighted in green. Columns with
convergence rates provide the upper bounds for E[‖xK − x∗‖2]. Numerical constants are omitted. Notation: µmin = mini∈[n] µi; µ =
1
n

∑
i∈[n]:µi≥0 µi + 4

n

∑
i∈[n]:µi<0 µi; Lmax = maxi∈[n] Li; L = 1

n

∑n
i=1 Li (can be much smaller than Lmax); R2

0 = ‖x0 − x∗‖2; σ2
US∗ =

1
n

∑n
i=1 ‖Fi(x∗)‖2; σ2

IS∗ = 1
n

∑n
i=1

L
Li
‖Fi(x∗)‖2 (can be much smaller than σ2

US∗); δ and σ2 = parameters from As. 4.1; b = batchsize.

Assumptions on constant stepsizes: Mishchenko et al. (2020) uses γ ≤ 1/2Lmax, Hsieh et al. (2019) uses γ2 ≤ γ1 ≤ c/L for some positive
c > 0, Beznosikov et al. (2020) uses γ ≤ 1/4L, and we use γ1,ξ = γ ≤ 1/6Lmax for S-SEG-US, γ1,ξ = γL/Lξ, γ ≤ 1/6L for S-SEG-IS,

γ1,ξ = γ ≤ min

{
µb
18δ ,

1

4µ+
√

6(L2+δ/b)

}
for I-SEG, and in all cases γ2,ξ = αγ1 with α < 1. Numerical factors in our theoretical estimates can

be tightened for S-SEG when µi ≥ 0 and for I-SEG when δ = 0.

Setup Method Citation
Convergence Rate for

Constant Stepsize Diminishing Stepsize

F (x) = 1
n

n∑
i=1

Fi(x)

+ As. 3.1, 3.2

S-SEG-US
(Mishchenko et al., 2020)

(1) (1− γµmin)KR2
0 +

γσ2US∗
µmin

LmaxR
2
0

µmin
exp

(
−µminK

Lmax

)
+

σ2US∗
µ2
min

K

(2)

This paper (1− γµ)KR2
0 +

γσ2US∗
µ

LmaxR
2
0

µ exp
(
− µK
Lmax

)
+
σ2US∗
µ2K

S-SEG-IS This paper (1− γµ)KR2
0 +

γσ2IS∗
µ

LR2
0

µ exp
(
−µK

L

)
+

σ2IS∗
µ2K

F (x) = Eξ[Fξ(x)]
+ As. 1.1, 1.2, 4.1

I-SEG

(Hsieh et al., 2020)
(3) (1− γ1γ2µ2)KR2

0 + Cσ2

µ2b

C = γ1L(1 + γ1L) +
γ2
γ1

L2σ2

µ4bK1/3
(4)

(Beznosikov et al., 2020)
(5) (1− γµ)KR2

0 + γσ2

µb R2
0 exp

(
−µKL

)
+ σ2

µ2bK

(6)

This paper (1− γµ)KR2
0 + γσ2

µb

κR2
0 exp

(
−Kκ

)
+ σ2

µ2bK

κ = max

{
δ
µ2b

,
L+
√
δ/b

µ

}
(1) Mishchenko et al. (2020) consider a regularized version of (VIP) with µmin-strongly convex regularization, F (x) = Eξ[Fξ(x)] and Fξ(x)
being monotone and Lξ-Lipschitz. In this case, one can construct an equivalent problem with convex regularizer, F (x) = Eξ[Fξ(x)] and
Fξ(x) being µmin-strongly monotone and Lξ-Lipschitz. If regularization is zero in the obtained problem and Eξ[Fξ(x)] = 1

n

∑n
i=1 Fi(x),

the problem from (Mishchenko et al., 2020) fits the considered setup with µi > 0 for all i ∈ [n].
(2) Mishchenko et al. (2020) do not consider diminishing stepsizes, but this rate can be derived from their Theorem 2 using similar steps
as we use for our results.
(3) Hsieh et al. (2020) consider As. 4.1, but do not provide explicit rates when δ > 0. Moreover, instead of µ-quasi strong monotonicity
they use slightly different assumption: ‖F (x)‖ ≥ µ‖x− x∗‖.
(4) This bound holds only for large enough K and σ > 0. Factor L2/µ4 is not explicitly given in (Hsieh et al., 2020). We derive this rate
using γ1,k = γ1/(k+t)2/3, γ2,k = γ2/(k+t)1/3 with largest possible γ1 ∼ 1/µ, γ2 ∼ 1/µ and smallest possible t ∼ (L/µ)3 for given γ1 and γ2.
(5) Results are derived for the case δ = 0. Beznosikov et al. (2020) study a distributed version of I-SEG.
(6) This result is derived for the stepsize γ that explicitly depends on K and σ2, which makes it hard to use this stepsize in practice.

tured non-monotone games) was studied in Abernethy
et al. (2021) and Loizou et al. (2020).

On the analysis of stochastic extragradient. In
the context of VIP, SEG is also known as Stochastic
Mirror Prox Juditsky et al. (2011). Several novel vari-
ants of SEG have been proposed and analyzed in re-
cent papers, such as accelerated versions (Chen et al.,
2017), single-call variants (a.k.a. optimistic meth-
ods) Hsieh et al. (2019), and a version with player
sampling in the context of multi-player games (Jelassi
et al., 2020). Comparing our results with these vari-
ants is outside of the scope of this paper. In this work,
we focus on analyzing and better understanding the
properties of the standard version of SEG with inde-
pendent (I-SEG) or same sample (S-SEG).

Recent analysis of SEG by Mishchenko et al.
(2020), Hsieh et al. (2020) and Beznosikov et al. (2020)
have extended the seminal results of Juditsky et al.
(2011) in the unconstrained case. We compare their
results with our work in Table 1.

SEG has also been analyzed in settings that signifi-
cantly differ from ours such as in the constrained pseu-
domonotone case (Kannan and Shanbhag, 2019) and
the unconstrained bilinear case (Li et al., 2021).

Arbitrary sampling paradigm. The first analysis
of a stochastic optimization algorithm with an arbi-
trary sampling was performed by Richtárik and Takáč
(2016) in the context of randomized coordinate descent
method for strongly convex functions. This arbitrary
sampling paradigm was later extended in different
settings, including accelerated coordinate descent for
(strongly) convex functions (Hanzely and Richtárik,
2019; Qu and Richtárik, 2016), randomized iterative
methods for solving linear systems (Richtárik and
Takác, 2020; Loizou and Richtárik, 2020b,a), random-
ized gossip algorithms (Loizou and Richtárik, 2021),
variance-reduced methods with convex (Khaled et al.,
2020), and nonconvex (Horváth and Richtárik, 2019)
objectives. The first analysis of SGD under the arbi-
trary sampling was proposed in Gower et al. (2019) for
(quasi)-strongly convex problems and later extended
to the non-convex regime in Gower et al. (2021) and
Khaled and Richtárik (2020). In the area of smooth
games and variational inequality problems the first pa-
pers that provide an analysis of stochastic algorithms
under the arbitrary sampling paradigm are (Loizou
et al., 2020, 2021). In Loizou et al. (2020, 2021), the
authors focus on algorithms like the stochastic Hamil-
tonian method, the stochastic gradient descent ascent,
and the stochastic consensus optimization. To the
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best of our knowledge, our work is the first that pro-
vides an analysis of SEG under the arbitrary sampling
paradigm.

1.4 Paper Organization

Section 2 introduces our unified theoretical framework
that is applied for the analysis of S-SEG and I-SEG in
Sections 3 and 4 respectively. In section 5, we report
the result of our numerical experiments, and we make
the concluding remarks in Section 6. Proofs, techni-
cal details, and additional experiments are given in
Appendix. We defer the discussion of our results for
quasi monotone (µ = 0) problems to Appendix B.

2 GENERAL ANALYSIS OF SEG

To analyze the convergence of SEG, we consider a fam-
ily of methods

xk+1 = xk − γξkgξk(xk), (3)

where gξk(xk) is some stochastic operator evaluated at
point xk and ξk encodes the randomness/stochasticity
appearing at iteration k (e.g., it can be the sample used
at step k). Parameter γξk is the stepsize that is allowed
to depend on ξk. Inspired by Gorbunov et al. (2020),
let us introduce the following general assumption on
operator gξk(xk), stepsize γξk , and the problem (VIP).

Assumption 2.1. We assume that there exist non-
negative constants A,B,C,D1, D2 ≥ 0, ρ ∈ [0, 1],
and (possibly random) non-negative sequence {Gk}k≥0

such that

Eξk
[
γ2
ξk‖gξk(xk)‖2

]
≤ 2APk+C‖xk−x∗‖2 +D1, (4)

Pk ≥ ρ‖xk − x∗‖2 +BGk −D2, (5)

where Pk = Eξk
[
γξk〈gξk(xk), xk − x∗〉

]
.

Although inequalities (4) and (5) may seem unnatu-
ral, they are satisfied with certain parameters for sev-
eral variants of S-SEG and I-SEG under reasonable as-
sumptions on the problem and the stochastic noise.
Moreover, these inequalities have a simple intuition
behind them. That is, inequality (4) is a generaliza-
tion of the expected cocoercivity introduced in Loizou
et al. (2021), adjusted to the case of biased estimators
gξk(xk) of F (xk), as it is the case for SEG. The biased-
ness of gξk(xk) and the (possible) dependence of γξk
on ξk force us to introduce the expected inner prod-
uct Pk = Eξk

[
γξk〈gξk(xk), xk − x∗〉

]
instead of using

Pk ∼ 〈F (xk), xk−x∗〉 as in Loizou et al. (2021). More-
over, unlike the expected cocoercivity, our assumption
(4) does not imply (star-)cocoercivity of F . However,
when we derive (4) for S-SEG and I-SEG we rely in Lip-
schitzness of F or its stochastic realizations. The terms

C‖xk − x∗‖2 and D1 characterize the noise structure,
and A is typically some constant smaller than 1/2.

Next, inequality (5) can be seen as a modification of
µ-quasi strong monotonicity of F (2). Indeed, if we
had γξk = γ and Eξk [gξk(xk)] = F (xk), then we would
have Pk = γ〈F (xk), xk − x∗〉 and inequality (5) would
have been satisfied with ρ = γµ, B = 0, Gk = 0,
D2 = 0 for F being µ-quasi strongly monotone. How-
ever, because of the biasedness of gξk(xk) we have to
account to the noise encoded by D2. In inequality (5),
ρ also typically depends on some quantity related to
the quasi-strong monotonicity and the stepsize. More-
over, when gξk(xk) corresponds to SEG, we are able to
show that B > 0 with Gk being an upper bound for
‖F (xk)‖2 up to the factors depending on the stepsize
selection (see Sections 3 and 4).

Under this assumption, we derive the following result.

Theorem 2.1. Let Assumption 2.1 hold with A ≤ 1/2
and ρ > C ≥ 0. Then, the iterates of SEG given by
(3) satisfy

E
[
‖xK − x∗‖2

]
≤ (1 +C−ρ)K‖x0−x∗‖2 +

D1 +D2

ρ− C
.

In the case that Assumption 2.1 holds with ρ = C = 0,
B > 0, then for all K ≥ 0, the iterates of SEG given
by (3) satisfy

1

K + 1

K∑
k=0

E[Gk] ≤ ‖x
0 − x∗‖2

B(K + 1)
+
D1 +D2

B
.

This theorem establishes linear convergence rate when
ρ > C ≥ 0 and O(1/K) rate when ρ = C = 0, B > 0 to
a neighborhood of the solution with the size propor-
tional to the noise parameters D1, D2. In all special
cases that we consider, the first case corresponds to
the quasi-strongly monotone problems and the second
one – to quasi-monotone problems. All the rates from
this paper are derived via Theorem 2.1.

3 SAME-SAMPLE SEG (S-SEG)

Consider the situation when we have access to
Lipschitz-continuous stochastic realization Fξ(x) and
can compute Fξ at different points for the same ξ. For
such problems, we consider S-SEG.

3.1 Arbitrary Sampling

Below we introduce reasonable assumptions on the
stochastic trajectories that cover a wide range of sam-
pling strategies. Therefore, following Gower et al.
(2019); Loizou et al. (2021), we use the name arbi-
trary sampling to define this setup. First, we assume
Lischitzness of Fξ.
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Assumption 3.1. We assume that for all ξ there ex-
ists Lξ > 0 such that operator Fξ(x) is Lξ-Lipschitz,
i.e., for all x ∈ Rd

‖Fξ(x)− Fξ(y)‖ ≤ Lξ‖x− y‖. (6)

The next assumption can be considered as a relaxation
of standard strong monotonicity allowing Fξ(x) to be
non-monotone with a certain structure.

Assumption 3.2. We assume that for all ξ operator
Fξ(x) is (µξ, x

∗)-strongly monotone, i.e., there exists
(possibly negative) µξ ∈ R such that for all x ∈ Rd

〈Fξ(x)− Fξ(x∗), x− x∗〉 ≥ µξ‖x− x∗‖2. (7)

We emphasize that some µξ are allowed to be arbi-
trary heterogeneous and even negative, which allows
to have non-monotone Fξ. Moreover, if Fξ is Lξ-
Lipschitz, then in view of Cauchy-Schwarz inequality,
(7) holds with −Lξ ≤ µξ ≤ Lξ. Indeed, inequality (6)
implies −Lξ‖x−x∗‖2 ≤ −‖Fξ(x)−Fξ(x∗)‖·‖x−x∗‖ ≤
〈Fξ(x)−Fξ(x∗), x−x∗〉 ≤ ‖Fξ(x)−Fξ(x∗)‖·‖x−x∗‖ ≤
Lξ‖x − x∗‖2. However, µξ can be much larger than
−Lξ. When Fξ(x

∗) = 0 and µξ ≥ 0, inequality (7)
recovers quasi-strong monotonicity of Fξ, i.e., Fξ can
be non-monotone even when µξ ≥ 0.

Finally, we assume that the following two conditions
are satisfied:

Eξk [γ1,ξkFξk(x∗)] = 0, (8)

Eξk [γ1,ξkµξk(1{µ
ξk
≥0} + 4 · 1{µ

ξk
<0})] ≥ 0, (9)

where 1condition = 1 if condition holds, and
1condition = 0 otherwise. Here, (8) is a generaliza-
tion of unbiasedness at x∗, since F (x∗) = 0, and the
left-hand side of (9) is a generalization of the averaged
quasi-strong monotonicity constant multiplied by the
stepsize. Moreover, (9) holds when all µξ ≥ 0, which
is typically assumed in the analysis of S-SEG. The nu-
merical constant 4 in (9) appears mainly due to the
technical reasons coming from our proof technique.

To better illustrate the generality of conditions (8)-
(9), let us provide three different examples where
these conditions are satisfied. In all examples, we as-
sume that F (x) = 1

n

∑n
i=1 Fi(x) and Fi(x) is (µi, x

∗)-
strongly monotone and Li-Lipschitz.

Let us start by considering the standard single-element
uniform sampling strategy.

Example 3.1 (Uniform sampling). Let ξk be sampled
from the uniform distribution on [n], i.e., for all i ∈ [n]
we have P

[
ξk = i

]
= pi ≡ 1/n. If

µ =
1

n

∑
i:µi≥0

µi +
4

n

∑
i:µi<0

µi ≥ 0 (10)

and γ1,ξ ≡ γ > 0, then conditions (8)-(9) hold.

In the above example, the oracle is unbiased and, as
the result, we use constant stepsize γ1,ξ = γ. Next, we
note that µ satisfies: µ ≥ µ ≥ µmin, where µ is the pa-
rameter from (2), and µmin = mini∈[n] µi. Moreover,
we emphasize that to fulfill conditions (8)-(9) in Ex-
ample 3.1, and in the following examples we only need
to assume that parameter γ is positive. However, to be
able to derive convergence guarantees for S-SEG under
different sampling strategies we will later introduce an
additional upper bound for γ (see Section 3.2).

Next, we consider a uniform sampling strategy of mini-
batching without replacement.

Example 3.2 (b-nice sampling). Let ξ be a random
subset of size b ∈ [n] chosen from the uniform distri-
bution on the family of all b-elements subsets of [n].
Next, let Fξ(x) = 1

b

∑
i∈ξ Fi(x). If

µb−NICE =
1(
n
b

)
 ∑

S⊆[n],

|S|=b:µS≥0

µS + 4
∑
S⊆[n],

|S|=b:µS<0

µS

 ≥ 0,

where µS ≥ 1
b

∑
i∈S µi is such that the opera-

tor 1
b

∑
i∈S Fi(x) is (µS , x

∗)-strongly monotone, and
γ1,ξ ≡ γ > 0, then conditions (8)-(9) hold.

Finally, we provide an example of a non-uniform sam-
pling.

Example 3.3 (Importance sampling). Let ξk be sam-
pled from the following distribution: for i ∈ [n]

P
[
ξk = i

]
= pi =

Li
n∑
j=1

Lj

. (11)

If (10) is satisfied and γ1,ξ = γL/Lξ, where L =
1
n

∑n
i=1 Li, γ > 0, then conditions (8)-(9) hold.

We provide rigorous proofs that the above examples,
as well as additional ones, fit the conditions (8)-(9) in
Appendix E.1.

3.2 Convergence of S-SEG

Having explained the main sampling strategies of S-
SEG that we are focusing on this work, let us now
present our main convergence analysis results for this
method.

Let assumptions 3.1 and 3.2 hold, and let us select the
stepsize γ1,ξk such that conditions (8)-(9) are satisfied,
and

γ1,ξk ≤
1

4|µξk |+
√

2Lξk
. (12)

Then one is able to show that Assumption 2.1 is
satisfied (see Appendix E.2 for this derivation) for
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gξk(xk) = Fξk
(
xk − γ1,ξkFξk(xk)

)
and γξk = γ2,ξk .

In particular, under these conditions, Assumption 2.1
holds with A = 2α, C = 0, B = 1/2, D1 = 6α2σ2

AS,
D2 = 3ασ2

AS/2, and

σ2
AS = Eξ

[
γ2

1,ξ‖Fξ(x∗)‖2
]
, (13)

ρ =
α

2
Eξk [γ1,ξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})], (14)

Gk = αEξk
[
γ2

1,ξkB̂ξk‖Fξk(xk)‖2
]
, (15)

where B̂ξk = 1 − 4|µξk |γ1,ξk − 2L2
ξkγ

2
1,ξk . Here (12)

implies that B̂ξk ≥ 0. Therefore, applying our general
result (Theorem 2.1), we derive3 the following conver-
gence guarantees for S-SEG.

Theorem 3.1. Let Assumptions 3.2 and 3.1 hold. If
γ2,ξk = αγ1,ξk , 0 < α ≤ 1/4, and γ1,ξk satisfies (8)-(9)
and (12) and ρ from (14) is positive, then the iterates
of S-SEG satisfy

E
[
‖xK − x∗‖2

]
≤(1−ρ)

K‖x0−x∗‖2 +
3α (4α+1)σ2

AS

2ρ
,

where σ2
AS is defined in (14).

The next corollary establishes the convergence rate
with diminishing stepsizes allowing to reduce the size
of the neighborhood.

Corollary 3.1. Let Assumptions 3.2 and 3.1 hold,
and let γ2,ξk = αγ1,ξk with α = 1/4, and γ1,ξk =
βk · γξk , where γξk satisfies (8), (9), (12), and ρ̃ =
1
8Eξk [γξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})]. Assume that

ρ̃ > 0. Then, for all K ≥ 0 and {βk}k≥0 such that

if K ≤ 1

ρ̃
, βk = 1,

if K >
1

ρ̃
and k < k0, βk = 1, (16)

if K >
1

ρ̃
and k ≥ k0, βk =

2

2 + ρ̃(k − k0)
,

where k0 = dK/2e, we have that the iterates of S-SEG
satisfy

E
[
‖xK − x∗‖2

]
≤ 32‖x0−x∗‖2

ρ̃
exp

(
− ρ̃K

2

)
+

27σ2
AS

ρ̃2K
.

We notice that the stepsize schedule from the above
corollary requires the knowledge of the total number
of iterations K.

Next, we provide the results for the special cases de-
scribed in Section 3.1. These results are direct corol-
laries of Theorem 3.1 and Corollary 3.1.

3For simplicity of exposition, in the main paper we focus
on the case ρ > 0. For our results for ρ = 0, we refer the
reader to Appendix B and E.2.

S-SEG-US: S-SEG with Uniform Sampling. Con-
sider the setup from Example 3.1. Then, Theorem 3.1
implies that for constant stepsizes γ1,ξk and γ2,ξk , the
iterates of S-SEG-US satisfy

E
[
‖xK − x∗‖2

]
≤

(
1− αγµ

2

)K
‖x0 − x∗‖2

+
3 (4α+ 1) γσ2

US∗
µ

,

where γ ≤ 1/6Lmax, Lmax = maxi∈[n] Li, and σ2
US∗ =

1
n

n∑
i=1

‖Fi(x∗)‖2. For diminishing stepsizes following

(16), Corollary 3.1 implies that for the iterates of S-
SEG-US E

[
‖xK − x∗‖2

]
is of the order

O
(
LmaxR

2
0

µ
exp

(
− µK

Lmax

)
+
σ2
US∗
µ2K

)
,

where R0 = ‖x0−x∗‖2. The previous SOTA rate for S-
SEG-US (Mishchenko et al., 2020) assumes that µi > 0
for all i ∈ [n] and depends on µmin = mini∈[n] µi which
can be much smaller than µ. That is, our results for
S-SEG-US are derived under weaker assumptions and
are tighter than the previous ones for this method.

S-SEG-NICE: S-SEG with b-Nice Sampling. Con-
sider the setup from Example 3.2. Then, Theorem 3.1
implies that for constant stepsizes γ1,ξk and γ2,ξk , the
iterates of S-SEG-NICE satisfy

E
[
‖xK − x∗‖2

]
≤

(
1−

αγµb−NICE
2

)K
‖x0 − x∗‖2

+
3 (4α+ 1) γσ2

b−NICE∗
µb−NICE

,

where γ ≤ 1/6Lb−NICE, Lb−NICE = maxS⊆[n],|S|=b LS , and

σ2
b−NICE∗ = n−b

b(n−1)σUS∗. For diminishing stepsizes fol-

lowing (16), Corollary 3.1 implies that for the iterates
of S-SEG-NICE E

[
‖xK − x∗‖2

]
is of the order

O
(
Lb−NICER2

0

µb−NICE
exp

(
−
µb−NICEK

Lb−NICE

)
+

σ2
b−NICE∗

µ2
b−NICEK

)
.

These rates show the benefits of mini-batching with-
out replacement: the linearly decaying term decreases
faster than the corresponding one for S-SEG-US since
Lb−NICE ≤ Lmax and µb−NICE ≥ µ, and the variance
σ2
b−NICE∗ is smaller than σ2

US∗, i.e., O(1/K) term for
S-SEG-NICE is more than b-times smaller than the cor-
responding term for S-SEG-US.

Moreover, we highlight that for n = b we recover
the rate of deterministic EG up to numerical fac-
tors. That is, for the deterministic EG we obtain
‖xK − x∗‖2 ≤ (1− αγµ/2)

K ‖x0 − x∗‖2 with γ ≤ 1/6L,
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since µb−NICE = µ and Lb−NICE = L in this case. This
fact highlights the tightness of our analysis, since in
the known special cases our general theorem either re-
covers the best-known results (as for EG) or improves
them (as for S-SEG-US).

S-SEG-IS: S-SEG with Importance Sampling. Fi-
nally, let us consider the third special case described in
Example 3.3. In this case, if γ ≤ 1/6L, L = 1

n

∑n
i=1 Li,

Theorem 3.1 implies that for constant stepsizes γ1,ξk

and γ2,ξk , the iterates of S-SEG-IS satisfy

E
[
‖xK − x∗‖2

]
≤

(
1− αγµ

2

)K
‖x0 − x∗‖2

+
3 (4α+ 1) γσ2

IS∗
µ

,

where σ2
IS∗ = 1

n

n∑
i=1

L
Li
‖Fi(x∗)‖2. For diminishing step-

sizes following (16), Corollary 3.1 implies that for the
iterates of S-SEG-IS E

[
‖xK − x∗‖2

]
is of the order

O
(
LR2

0

µ
exp

(
−µK

L

)
+
σ2
IS∗

µ2K

)
.

Note that, in contrast to the rate of S-SEG-US, the
above rate depends on the averaged Lipschitz con-
stant L that can be much smaller than the worst con-
stant Lmax. In such cases, exponentially decaying term
for S-SEG-IS is much better than the one for S-SEG-
US. Moreover, theory for S-SEG-IS allows to use much
larger γ. Next, typically, larger norm of Fi(x

∗) implies
larger Li, e.g., ‖Fi(x∗)‖2 ∼ L2

i . In such situations,

σ2
IS∗ ∼ (L)2 and σ2

US∗ ∼ L2 = 1
n

∑n
i=1 L

2
i ≥ (L)2.

4 INDEPENDENT-SAMPLES SEG
(I-SEG)

In this subsection, we consider I-SEG. We make the
following assumption used in Hsieh et al. (2020).4

Assumption 4.1. For all x ∈ Rd the unbiased esti-
mator Fξ(x) of F (x), i.e., Eξ[Fξ(x)] = F (x), satisfies

Eξ
[
‖Fξ(x)− F (x)‖2

]
≤ δ‖x− x∗‖2 + σ2, (17)

where δ ≥ 0, σ ≥ 0, and x∗ is the solution of VIP.

Note that when δ = 0, (17) recovers the classical
assumption of uniformly bounded variance (Juditsky
et al., 2011).

4Although the analysis of Hsieh et al. (2019) can be
conducted with δ > 0, the authors do not provide explicit
rates in their paper for the case δ > 0.

In I-SEG, we use mini-batched estimators:

Fξk1 (xk) =
1

b

b∑
i=1

Fξk1 (i)(x
k),

Fξk2 (xk) =
1

b

b∑
i=1

Fξk2 (i)(x
k − γ1Fξk1 (xk)),

where ξk1 (1), . . . , ξk1 (b), ξk2 (1), . . . , ξk2 (b) are i.i.d. sam-
ples satisfying Assumption 4.1.

In this setup (where Assumption 4.1 holds), if γ2 =
αγ1 with 0 < α < 1, and

γ1 = γ ≤ min

{
µb

18δ
,

1

4µ+
√

6(L2 + δ/b)

}
, (18)

then Assumption 2.1 is satisfied5 for gξk(xk) =

Fξk2

(
xk − γ1Fξk1 (xk)

)
and γξk = γ2. In particular,

in this setting, Assumption 2.1 holds with A = 2α,
C = 9δα2γ2

/b, B = 1/2, D1 = D2 = 6α2σ2
/b, ρ = αγµ/4,

Gk = Eξk1
[
‖Fξk1 (xk)‖2

]
, B = αγ2

/2. Therefore, apply-

ing our general result (Theorem 2.1), we obtain the
following convergence guarantees for I-SEG.

Theorem 4.1. Let Assumptions 1.1, 1.2 and 4.1 hold.
If µ > 0, γ2 = αγ1, 0 < α ≤ 1/4, and γ1 = γ satisfies
(18), then the iterates of I-SEG satisfy

E
[
‖xK − x∗‖2

]
≤
(

1− αγµ

8

)K
R2

0 +
48 (α+ 1) γσ2

µb
.

Similarly to S-SEG, we also consider the diminishing
stepsize policy (16) for the I-SEG.

Corollary 4.1. Let Assumptions 1.1, 1.2 and 4.1
hold. Assume that µ > 0, γ2,k = αγ1,k, 0 < α ≤ 1/4,
γ1,k = βkγ, 0 < βk ≤ 1, where γ equals the right-
hand side of (18). Then, for all K ≥ 0 and {βk}k≥0

satisfying (16) with ρ̃ = γµ/32, the iterates of I-SEG
satisfy

E
[
‖xK − x∗‖2

]
= O

(
κR2

0 exp

(
−K
κ

)
+

σ2

µ2bK

)
,

where R0 = ‖x0 − x∗‖2 and κ = max

{
δ
µ2b ,

L+
√
δ/b

µ

}
.

When δ = 0 our rate recovers the best-known one for
I-SEG under uniformly bounded variance assumption
(Beznosikov et al., 2020). Next, when δ > 0 the slow-
est term in our rate evolves as O(1/K), whereas the
previous SOTA result for I-SEG under Assumption 4.1
depends on K as O(1/K1/3) (Hsieh et al., 2020), which
is much slower than O(1/K). However, we emphasize
that unlike our stepsize schedule the one from Hsieh
et al. (2020) is independent of K.

5See Appendix F for the derivation.
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0 200 400 600 800 1000
Number of Iterations

10−4

10−3

10−2

10−1

100

D
is

ta
nc

e
to

op
tim

al
ity

S-SEG-US
S-SEG-IS

(c) Lmax = 10
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(d) Lmax = 20

Figure 1: Comparison of S-SEG-US vs S-SEG-IS for different values of Lmax. While the rate of convergence of
S-SEG-US becomes slower as Lmax increases, the rate of convergence of S-SEG-IS remains the same.
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Figure 2: Experiments on quadratic games illustrating the theoretical results of the paper. (a) Comparison
of different stepsize choices for S-SEG. (b) Convergence of S-SEG on quadratic games with negative µξ. (c)
Comparison of different stepsize choices for I-SEG.

5 NUMERICAL EXPERIMENTS

To illustrate the theoretical results, we conduct exper-
iments on quadratic games of the form:

min
x1∈Rd

max
x2∈Rp

1

n

n∑
i=1

1

2
x>1 Aix1 + x>1 Bix2 −

1

2
x>2 Cix2

+ a>i x1 − c>i x2.

By choosing the matrices such that µiI � Ai � LiI
and µiI � Ci � LiI we can ensure that the game
satisfies the assumptions for our theory, i.e., the game
is strongly monotone and smooth. In all the exper-
iments, we report the average over 5 different runs.
Further details about the experiments can be found in
Appendix A.

Experiment 1: S-SEG-US vs S-SEG-IS. To illustrate
the advantages of importance sampling compared to
uniform sampling, we construct quadratic games such
that L1 = Lmax and Li = 1 ∀i > 1. We show in
Fig. 1 that while the rate of convergence of S-SEG-US
becomes slower as Lmax increases, the rate of conver-
gence of S-SEG-IS remains almost the same, because
L does not change significantly.

Experiment 2: S-SEG with different stepsizes.
We compare S-SEG with different stepsize choices in
Fig. 2a. We compare the decreasing stepsize proposed
in Corollary 3.1 to the constant stepsize proposed in
Mishchenko et al. (2020) where γ1 = γ2 ≤ 1

2L , and to
the constant stepsize proposed in Theorem 3.1. S-SEG
with the proposed decreasing stepsize strategy con-

verges faster to a smaller neighborhood of the solution
compared to constant stepsize, see Fig. 2a.

Experiment 3: Convergence of S-SEG when
some µξ are negative. To illustrate the generality of
Assumption 3.2, we construct a quadratic game where
one of the µξ is negative. We illustrate the general-
ity of Theorem 3.1 in Fig. 2b by showing that S-SEG
converges to the solution in such games.

Experiment 4: I-SEG with different stepsizes.
In Fig. 2c we compare I-SEG under different step-
size choices. In particular, we show how the decreas-
ing stepsize strategy proposed in Corollary 4.1 con-
verges to a smaller neighborhood than existing step-
size choices and it has comparable performance to the
stepsize rule proposed in Hsieh et al. (2020). However,
let us note again that our theoretical rate is better
than the one from Hsieh et al. (2020) (see Table 1).

6 CONCLUSION

In this paper, we develop a novel theoretical frame-
work that allows us to analyze several variants of SEG
in a unified manner. We provide new convergence
analysis for well-known variants of SEG and derive
new variants (e.g., S-SEG-IS) that outperform previ-
ous SOTA results. However, several important ques-
tions remain still open, such as the analysis of SEG
for quasi-monotone problems (µ = 0) with unbounded
domains without using large batchsizes, the analysis of
S-SEG with arbitrary sampling, and the same stepsizes
γ1,ξk = γ2,ξk , and the improvement of the dependence
of µ on negative µi.
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Horváth, S. and Richtárik, P. (2019). Nonconvex variance
reduced optimization with arbitrary sampling. In Inter-
national Conference on Machine Learning, pages 2781–
2789. PMLR.

Hsieh, Y.-G., Iutzeler, F., Malick, J., and Mertikopoulos,
P. (2019). On the convergence of single-call stochastic
extra-gradient methods. In Wallach, H., Larochelle, H.,
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A ON EXPERIMENTS

A.1 Experimental Details

We describe here in more details the exact settings we use for evaluating the different algorithms. As mentioned
in Section 5, we evaluate the different algorithms on the class of quadratic games:

min
x1∈Rd

max
x2∈Rp

1

n

∑
i

1

2
x>1 Aix1 + x>1 Bix2 −

1

2
x>2 Cix2 + a>i x1 − c>i x2

In all our experiments, we choose d = p = 100 and n = 100. To sample the matrices Ai (resp. Ci) we
first generate a random orthogonal matrix Qi (resp. Q′i), we then sample a random diagonal matrix Di (resp.
D′i) where the elements on the diagonal are sampled uniformly in [µA, LA] (resp. [µC , LC ]), such that at
least one of the matrices has a minimum eigenvalue equal to µA (resp. µC) and one matrix has a maximum
eigenvalue equal to LA (resp. LB). Finally we construct the matrices by computing Ai = QiDiQ

>
i (resp.

Ci = Q′iD
′
iQ
′>
i ). This ensures that the matrices Ai and Ci for all i ∈ [n], are symmetric and positive definite.

We sample the matrices Bi in a similar fashion with the diagonal matrix Di to lie between [µB , LB ]6. The
bias terms ai, ci are sampled from a normal distribution. In all our experiments we choose µA = µC = 0.1,
LA = LC = 1, µB = 0 and LB = 1 unless stated otherwise. For further details please refer to the code:
https://github.com/hugobb/Stochastic-Extragradient.

A.2 Additional Experiment: S-SEG with b-Nice Sampling (S-SEG-NICE)

To illustrate Remark E.1 about the advantages of S-SEG-NICE compared to S-SEG-US with i.i.d. batching, we
construct a quadratic game such that L1 = Lmax and Li = 1, ∀i > 1. We use the constant stepsize specified
in Section 3.2. We show in Fig. 3 that the rate of convergence of S-SEG-NICE is faster than S-SEG-US with i.i.d.
batching when using the same batch size. However S-SEG-NICE converges to a slightly larger neighborhood of
the solution.
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Figure 3: Convergence of S-SEG-NICE for different batchsizes. In this experiment Lmax = 10.

6We highlight that matrices Bi are not necessarily symmetric.

https://github.com/hugobb/Stochastic-Extragradient
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B DISCUSSION OF THE RESULTS UNDER QUASI MONOTONICITY

Table 2: Summary of the state-of-the-art results for S-SEG and I-SEG for quasi monotone VIPs, i.e., for S-SEG it
means that µ = 1

n

∑
i∈[n]:µi≥0 µi + 4

n

∑
i∈[n]:µi<0 µi = 0 and for I-SEG – µ = 0. Moreover, for I-SEG we assume that δ = 0

(see Assumption 4.1). Our results are highlighted in green. Columns: “Norm?” indicates whether the rate is given for
the expected squared norm of the operator, “Gap?” indicates whether the rate is given for the expected gap function
E [GapC(z)] = E [maxu∈C〈F (u), z − u〉] (here C is a compact set containing the solution set), “Unbounded Set?” indicates
whether the analysis works for the case of unbounded sets, “b = O(1)?” indicates whether the analysis works with the
batchsize independent of the target accuracy of the solution.

Setup Method Citation Norm? Gap? Unbounded Set? b = O(1)?

F (x) = 1
n

n∑
i=1

Fi(x)

+ As. 3.1, 3.2

S-SEG-US
(Mishchenko et al., 2020)(1) 7 3(2) 3 3(3)

This paper 3 7 3 73(4)

S-SEG-IS This paper 3 7 3 73(4)

F (x) = Eξ[Fξ(x)]
+ As. 1.1, 1.2, 4.1

I-SEG
(Beznosikov et al., 2020)(5) 7 3 7 3

This paper 3 7 3 7
(1) Mishchenko et al. (2020) consider a regularized version of (VIP) with convex regularization, F (x) = Eξ[Fξ(x)] and Fξ(x) being
monotone and Lξ-Lipschitz. If regularization is zero in the obtained problem and Eξ[Fξ(x)] = 1

n

∑n
i=1 Fi(x), the problem from

Mishchenko et al. (2020) fits the considered setup with µi = 0 for all i ∈ [n].
(2) The rate is derived for maxu∈C E

[
〈F (u), x̂K − u〉+ R(x̂K)− R(u)

]
, where R(x) is the regularization term (in our settings, R(x) ≡ 0)

and x̂K is the average of the iterates produced by the method. This guarantee is weaker than the one for E
[
GapC(x̂K)

]
.

(3) Mishchenko et al. (2020) use uniformly bounded variance assumption on a compact set that defines the gap function (Assumption 4.1
with δ = 0 on a compact).
(4) In general, our results in this case require using batchsize dependent on the target accuracy. However, when Fi(x

∗) = 0 for all
i ∈ [n], i.e., when interpolation conditions are satisfied, batchsizes can be chosen arbitrarily, e.g., b = 1, to achieve the convergence to
any predefined accuracy.
(5) Beznosikov et al. (2020) study a distributed version of I-SEG.

Results under (quasi) monotonicity. The state-of-the-art results for the convergence of S-SEG and I-
SEG for (quasi) monotone VIP are summarized in Table 2. For S-SEG by quasi-monotonicity we mean that
Assumption 3.2 holds and Eξk [γ1,ξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})] = 0. In the context of finite-sum problems, it

means that µ = 1
n

∑
i∈[n]:µi≥0 µi + 4

n

∑
i∈[n]:µi<0 µi = 0 both for S-SEG-US and S-SEG-IS. For I-SEG we use the

term quasi-monotonicity to describe the problems satisfying Assumption 1.2 with µ = 0. The resulting inequality
〈F (x), x− x∗〉 ≥ 0 is also known as variational stability condition (Hsieh et al., 2020; Loizou et al., 2021).

The best-known results (Mishchenko et al., 2020; Beznosikov et al., 2020) provide convergence guarantees in terms
of the gap function (Nesterov, 2007): GapC(z) = maxu∈C〈F (u), z − u〉, where C is a compact set containing the
solution set of (VIP). In particular, Beznosikov et al. (2020) derive a convergence guarantee for E[GapC(x̂

k)],
where x̂K is the average of the iterates produced by the method and the problem is assumed to be defined
on a compact set. The last requirement is quite restrictive, since many practically important problems are
naturally unconstrained. Mishchenko et al. (2020) do not make such an assumption and consider VIPs with
regularization, but derive convergence guarantees for maxu∈C E

[
〈F (u), x̂K − u〉+R(x̂K)−R(u)

]
, where R(x)

is the regularization term (in our settings, R(x) ≡ 0). That is, when R(x) ≡ 0 Mishchenko et al. (2020) obtain
upper bounds for GapC(E[x̂k]) that is a weaker measure of convergence than E[GapC(x̂

k)].

However, Mishchenko et al. (2020); Beznosikov et al. (2020) analyze SEG without using large batchsizes. In
contrast, our convergence results for S-SEG and I-SEG are given for the expected squared norm of the operator
and hold in the unconstrained case, but, in general, require using target accuracy dependent batchsizes. However,
when Fξ(x

∗) = 0 for all ξ, i.e., interpolation conditions are satisfied, our results for S-SEG provide convergence
guarantees to any predefined accuracy of the solution even with unit batchsizes (b = 1).

Last-iterate convergence rates without (quasi) strong monotonicity. All the results from Table 2
are derived either for the best-iterate or for the averaged-iterate. However, last-iterate convergence results are
much more valuable, since the last-iterate is usually used as an output of a method in practical applications.
Unfortunately, without additional assumptions a little is known about convergence of SEG in this settings. In
fact, even for deterministic EG tight O(1/K) last-iterate convergence results were obtained (Golowich et al., 2020)
under the additional assumption that the Jacobian of F is Lipschitz-continuous, and only recently Gorbunov
et al. (2021) derive O(1/K) last-iterate convergence rate without using this additional assumption. There are also
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several linear last-iterate convergence results under the assumption that the operator F is affine and satisfies
‖F (x)‖ ≥ µ‖x − x∗‖ (x∗ is the closest solution to x) (Hsieh et al., 2020) and under the assumption that F
corresponds to the bilinear game (Mishchenko et al., 2020).
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C BASIC INEQUALITIES AND AUXILIARY RESULTS

C.1 Basic Inequalities

For all a, b, a1, a2, . . . , an ∈ Rd, n ≥ 1 the following inequalities hold:∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥
2

≤ n

n∑
i=1

‖ai‖2, (19)

‖a+ b‖2 ≥ 1

2
‖a‖2 − ‖b‖2, (20)

2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2. (21)

C.2 Auxiliary Results

We use the following lemma from Stich (2019) to derive the final convergence rates from our results on linear
convergence to the neighborhood.

Lemma C.1 (Simplified version of Lemma 3 from Stich (2019)). Let the non-negative sequence {rk}k≥0 satisfy
the relation

rk+1 ≤ (1− aγk)rk + cγ2
k

for all k ≥ 0, parameters a, c ≥ 0, and any non-negative sequence {γk}k≥0 such that γk ≤ 1/h for some h ≥ a,
h > 0. Then, for any K ≥ 0 one can choose {γk}k≥0 as follows:

if K ≤ h

a
, γk =

1

h
,

if K >
h

a
and k < k0, γk =

1

h
,

if K >
h

a
and k ≥ k0, γk =

2

a(κ+ k − k0)
,

where κ = 2h/a and k0 = dK/2e. For this choice of γk the following inequality holds:

rK ≤
32hr0

a
exp

(
−aK

2h

)
+

36c

a2K
.
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D GENERAL ANALYSIS OF SEG: MISSING PROOFS

Theorem D.1 (Theorem 2.1). Consider the method (3). Let Assumption 2.1 hold and A ≤ 1/2. Then for all
K ≥ 0

E
[
‖xK+1 − x∗‖2

]
≤ (1 + C − ρ)E

[
‖xK − x∗‖2

]
+D1 +D2, (22)

E
[
‖xK − x∗‖2

]
≤ (1 + C − ρ)K‖x0 − x∗‖2 +

D1 +D2

ρ− C
, (23)

when ρ > C ≥ 0, and

1

K + 1

K∑
k=0

E[Gk] ≤ ‖x
0 − x∗‖2

B(K + 1)
+
D1 +D2

B
, (24)

when ρ = C = 0 and B > 0.

Proof. Since xk+1 = xk − γξkgξk(xk), we have

‖xk+1 − x∗‖2 = ‖xk − γξkgξk(xk)− x∗‖2

= ‖xk − x∗‖2 − 2γξk〈gξk(xk), xk − x∗〉+ γ2
ξk‖gξk(xk)‖2.

Taking the expectation, conditioned on ξk, using our Assumption 2.1 and the definition of Pk =
Eξk

[
γξk〈gξk(xk), xk − x∗〉

]
, we continue our derivation:

Eξk
[
‖xk+1 − x∗‖2

]
= ‖xk − x∗‖2 − 2Pk + Eξk [γ2

ξk‖gξk(xk)‖2]

(4)

≤ ‖xk − x∗‖2 − 2Pk + 2APk + C‖xk − x∗‖2 +D1

A≤1/2

≤ (1 + C)‖xk − x∗‖2 − Pk +D1

(5)

≤ (1 + C − ρ)‖xk − x∗‖2 −BGk +D1 +D2.

Next, we take the full expectation from the both sides

E
[
‖xk+1 − x∗‖2

]
≤ (1 + C − ρ)E

[
‖xk − x∗‖2

]
−BE[Gk] +D1 +D2. (25)

If ρ > C ≥ 0, then in the above inequality we can get rid of the non-positive term (−BE[Gk])

E
[
‖xk+1 − x∗‖2

]
≤ (1 + C − ρ)E

[
‖xk − x∗‖2

]
+D1 +D2

and get (22). Unrolling the recurrence, we derive (23):

E
[
‖xK − x∗‖2

]
≤ (1 + C − ρ)K‖x0 − x∗‖2 + (D1 +D2)

K−1∑
k=0

(1 + C − ρ)k

≤ (1 + C − ρ)K‖x0 − x∗‖2 + (D1 +D2)

∞∑
k=0

(1 + C − ρ)k

= (1 + C − ρ)K‖x0 − x∗‖2 +
D1 +D2

ρ− C
.

If ρ = C = 0 and B > 0, then (25) is equivalent to

BE[Gk] ≤ E
[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

]
+D1 +D2.

Summing up these inequalities for k = 0, 1, . . . ,K and dividing the result by B(K + 1), we get (24):

1

K + 1

K∑
k=0

E[Gk] ≤ 1

B(K + 1)

K∑
k=0

(
E
[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

])
+

D1 +D2

B(K + 1)

=
1

B(K + 1)

(
‖x0 − x∗‖2 − E

[
‖xK+1 − x∗‖2

])
+

D1 +D2

B(K + 1)

≤ ‖x0 − x∗‖2

B(K + 1)
+

D1 +D2

B(K + 1)
.
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E SAME-SAMPLE SEG (S-SEG): MISSING PROOFS AND ADDITIONAL
DETAILS

In this section, we provide full proofs and missing details from Section 3 on S-SEG. Recall that our analysis of
S-SEG based on the three following assumptions:

• Fξ(x) is Lξ-Lipschitz: ‖Fξ(x)− Fξ(y)‖ ≤ Lξ‖x− y‖ for all x, y ∈ Rd (Assumption 3.1),

• Fξ(x) is (µξ, x
∗)-strongly monotone (with possibly negative µξ): 〈Fξ(x)−Fξ(x∗), x− x∗〉 ≥ µξ‖x− x∗‖2 for

all x ∈ Rd (Assumption 3.2),

• the following conditions (inequalities (8)-(9)) hold:

Eξk [γ1,ξkFξk(x∗)] = 0, Eξk [γ1,ξkµξk(1{µ
ξk
≥0} + 4 · 1{µ

ξk
<0})] ≥ 0.

E.1 Details on the Examples of Arbitrary Sampling

In Section 3, we provide several examples when the assumptions above are satisfied. In all examples, we assume
that F (x) has a finite-sum form

F (x) =
1

n

n∑
i=1

Fi(x) (26)

and Fi is Li-Lipschitz and (µi, x
∗)-strongly monotone. First, we consider S-SEG with independent sampling with

replacement, which covers uniform sampling (Example 3.1) and importance sampling (Example 3.3).

Example E.1 (Independent sampling with replacement). Let random indices j1, . . . , jb are sampled indepen-
dently from the the distribution D such that for j ∼ D we have P [j = i] = pi > 0 for i = 1, . . . , n,

∑n
i=1 pi = 1.

Let ξ = (j1, . . . , jb) and Fξ(x) = 1
b

∑b
l=1 Fjl(x). Moreover, assume that∑

j1,...,jb:µ(j1,...,jb)
≥0

µ(j1,...,jb) + 4
∑

j1,...,jb:µ(j1,...,jb)
<0

µ(j1,...,jb) ≥ 0,

where µ(j1,...,jb) ≥ 1
b

∑b
i=1 µjl is such that the operator 1

b

∑b
l=1 Fjl(x) is (µ(j1,...,jb), x

∗)-strongly monotone. For
example, the above inequality is satisfied when all µi ≥ 0. Then, Assumptions 3.1 and 3.2 hold with Lξ ≤
1
b

∑b
l=1 Ljl , µξ ≥

1
b

∑b
i=1 µjl , and for the stepsize

γ1,ξ =
γb

nbpξ
, γ > 0, pξ = P [ξ = (j1, . . . , jb)] = pj1 . . . pjb

we have

Eξk [γ1,ξkFξk(x∗)] =
γ

nb

n∑
j1,...,jb=1

b∑
l=1

Fjl(x
∗) =

γ

n

n∑
i=1

Fi(x
∗) = γF (x∗) = 0

and

Eξk [γ1,ξkµξk1{µξk≥0} + 4γ1,ξkµξk1{µξk<0}] =
γb

nb

∑
j1,...,jb:µ(j1,...,jb)

≥0

µ(j1,...,jb)

+
4γb

nb

∑
j1,...,jb:µ(j1,...,jb)

<0

µ(j1,...,jb)

≥ 0,

i.e., conditions from (8)-(9) are satisfied.
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Taking b = 1 and p1 = . . . = pn = 1/n in the previous example we recover single-batch uniform sampling
(Example 3.1) as as special case. If pi = Li/

∑n
j=1 Lj, then we get single-batch importance sampling (Example 3.3)

as a special case of the previous example.

Finally, we consider two without-replacement sampling strategies. The first one called b-nice sampling is described
in Section 3 (Example 3.2). Below we prove that conditions (8)-(9) hold for this example. For the reader’s
convenience, we also provide a complete description of this sampling.

Example E.2 (b-nice sampling). Let ξ be a random subset of size b ∈ [n] chosen from the uniform distribution
on the family of all subsets of [n] of size b. Then, for each S ⊆ [n], |S| = b we have

pS = P [ξ = S] =
1(
n
b

) .
Next, let Fξ(x) = 1

b

∑
i∈ξ Fi(x) and γ1,ξ = γ. Moreover, assume that

µb−NICE =
1(
n
b

)
 ∑
S⊆[n],|S|=b:µS≥0

µS + 4
∑

S⊆[n],|S|=b:µS<0

µS

 ≥ 0,

where µS ≥ 1
b

∑
i∈S µi is such that the operator 1

b

∑
i∈S Fi(x) is (µS , x

∗)-strongly monotone. For example,
the above inequality is satisfied when all µi ≥ 0. Then, Assumptions 3.1 and 3.2 hold with Lξ ≤ 1

b

∑
i∈ξ Li,

µξ ≥ 1
b

∑
i∈ξ µi, and we have

Eξk [γ1,ξkFξk(x∗)] =
γ

b
(
n
b

) ∑
S⊆[n],|S|=b

∑
i∈S

Fi(x
∗) =

γ
(
n−1
b−1

)(
n
b

)
b

n∑
i=1

Fi(x
∗) = γF (x∗) = 0

and

Eξk [γ1,ξkµξk1{µξk≥0} + 4γ1,ξkµξk1{µξk<0}] =
γ(
n
b

) ∑
S⊆[n],|S|=b:µS≥0

µS

+
4γ(
n
b

) ∑
S⊆[n],|S|=b:µS<0

µS

= γµb−NICE ≥ 0,

i.e., conditions from (8)-(9) are satisfied.

The second without-sampling strategy, which we consider, is independent sampling without replacement.

Example E.3 (Independent sampling without replacement). Let ξ be a random subset of [n] such that each i
is picked with probability pi independently from other elements. It means that the size of ξ is a random variable
as well and E[|ξ|] =

∑n
i=1 pi. Next, we define

Fξ(x) =
1

|ξ|
∑
i∈ξ

Fi(x)

and

γ1,ξ =
γ|ξ|

pξ2n−1n
, pξ = P [ξ = S] =

∏
i∈S

pi ·
∏
i6∈S

(1− pi)

for any S ⊆ [n]. Moreover, assume that∑
S⊆[n]:µS≥0

|S|µS + 4
∑

S⊆[n]:µS<0

|S|µS ≥ 0,

where µS ≥ 1
|S|
∑
i∈S µi is such that the operator 1

|S|
∑
i∈S Fi(x) is (µS , x

∗)-strongly monotone. For example,

the above inequality is satisfied when all µi ≥ 0. Then, Assumptions 3.1 and 3.2 hold with Lξ ≤ 1
|ξ|
∑
i∈ξ Li,
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µξ ≥ 1
|ξ|
∑
i∈ξ µi, and we have

Eξk [γ1,ξkFξk(x∗)] =
γ

2n−1n

∑
S⊆[n]

∑
i∈S

Fi(x
∗) =

γ

n

n∑
i=1

Fi(x
∗) = γF (x∗) = 0

and

Eξk [γ1,ξkµξk1{µξk≥0} + 4γ1,ξkµξk1{µξk<0}] =
γ

2n−1n

∑
S⊆[n]:µS≥0

|S|µS

+
4γ

2n−1n

∑
S⊆[n]:µS<0

|S|µS

≥ 0,

i.e., conditions from (8)-(9) are satisfied.

E.2 Proof of the Main Result

The proof is based on two lemmas showing that Assumption 2.1 is satisfied.

Lemma E.1. Let Assumptions 3.1 and 3.2 hold. If γ1,ξk satisfies (8)-(9) and

γ1,ξk ≤
1

4|µξk |+
√

2Lξk
(27)

then gk = Fξk
(
xk − γ1,ξkFξk(xk)

)
satisfies the following inequality

Eξk
[
γ2

1,ξk‖g
k‖2
]
≤ 4P̂k + 6Eξk

[
γ2

1,ξk‖Fξk(x∗)‖2
]
, (28)

where P̂k = Eξk
[
γ1,ξk〈gk, xk − x∗〉

]
.

Proof. Using the auxiliary iterate7 x̂k+1 = xk − γ1,ξkg
k, we get

‖x̂k+1 − x∗‖2 = ‖xk − x∗‖2 − 2γ1,ξk〈xk − x∗, gk〉+ γ2
1,ξk‖g

k‖2 (29)

= ‖xk − x∗‖2 − 2γ1,ξk
〈
xk − γ1,ξkFξk(xk)− x∗, gk

〉
−2γ2

1,ξk〈Fξk(xk), gk〉+ γ2
1,ξk‖g

k‖2

= ‖xk − x∗‖2 − 2γ1,ξk
〈
xk − γ1,ξkFξk(xk)− x∗, gk − Fξk(x∗)

〉
−2γ2

1,ξk〈Fξk(xk), gk − Fξk(x∗)〉 − 2γ1,ξk〈xk − x∗, Fξk(x∗)〉+ γ2
1,ξk‖g

k‖2.

Taking the expectation w.r.t. ξk from the above identity, using Eξk [γ1,ξk〈xk − x∗, Fξk(x∗)〉] = 〈xk −

7We use x̂k+1 as a tool in the proof. There is no need to compute x̂k+1 during the run of the method.
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x∗,Eξk [γ1,ξkFξk(x∗)]〉 (8)
= 0, gk = Fξk

(
xk − γ1,ξkFξk(xk)

)
and (µξ, x

∗)-strong monotonicity of Fξ(x), we derive

Eξk
[
‖x̂k+1 − x∗‖2

]
≤ ‖xk − x∗‖2 − 2Eξk

[
γ1,ξk

〈
xk − γ1,ξkF (xk, ξk)− x∗, gk − F (x∗, ξk)

〉]
−2Eξk

[
γ2

1,ξk〈F (xk, ξk), gk − F (x∗, ξk)〉
]

+ Eξk
[
γ2

1,ξk‖g
k‖2
]

(7)

≤ ‖xk − x∗‖2 − 2Eξk
[
γ1,ξkµξk‖xk − x∗ − γ1,ξkF (xk, ξk)‖2

]
−2Eξk

[
γ2

1,ξk〈Fξk(xk), gk − Fξk(x∗)〉
]

+ Eξk
[
γ2

1,ξk‖g
k‖2
]

= ‖xk − x∗‖2 − 2Eξk
[
γ1,ξkµξk1{µξk≥0}‖xk − x∗ − γ1,ξkF (xk, ξk)‖2

]
−2Eξk

[
γ1,ξkµξk1{µξk<0}‖xk − x∗ − γ1,ξkF (xk, ξk)‖2

]
−2Eξk

[
γ2

1,ξk〈Fξk(xk), gk − Fξk(x∗)〉
]

+ Eξk
[
γ2

1,ξk‖g
k‖2
]

(20)

≤ ‖xk − x∗‖2 − Eξk [γ1,ξkµξk1{µξk≥0}]‖xk − x∗‖2

+2Eξk [γ3
1,ξkµξk1{µξk≥0}‖Fξk(xk)‖2]

−2Eξk
[
γ1,ξkµξk1{µξk<0}‖xk − x∗ − γ1,ξkF (xk, ξk)‖2

]
−2Eξk

[
γ2

1,ξk〈Fξk(xk), gk − Fξk(x∗)〉
]

+ Eξk
[
γ2

1,ξk‖g
k‖2
]

(19)

≤ ‖xk − x∗‖2 − Eξk [γ1,ξkµξk1{µξk≥0} + 4γ1,ξkµξk1{µξk<0}]‖xk − x∗‖2

+Eξk
[
γ2

1,ξk‖g
k‖2
]

+2Eξk
[
γ3

1,ξk(µξk1{µξk≥0} − 2µξk1{µξk<0}))‖Fξk(xk)‖2
]

−Eξk
[
γ2

1,ξk‖g
k − Fξk(x∗)‖2

]
+Eξk

[
γ2

1,ξk‖Fξk(xk)− gk + Fξk(x∗)‖2
]

(21)

≤ ‖xk − x∗‖2 − Eξk [γ1,ξkµξk1{µξk≥0} + 4γ1,ξkµξk1{µξk<0}]‖xk − x∗‖2

+Eξk
[
γ2

1,ξk‖g
k‖2
]

−Eξk
[
γ2

1,ξk(1− 2γ1,ξk(µξk1{µξk≥0} − 2µξk1{µξk<0}))‖Fξk(xk)‖2
]

−Eξk
[
γ2

1,ξk‖g
k − Fξk(x∗)‖2

]
+Eξk

[
γ2

1,ξk‖Fξk(xk)− gk + Fξk(x∗)‖2
]

(9)

≤ ‖xk − x∗‖2 + Eξk
[
γ2

1,ξk‖g
k‖2
]

−Eξk
[
γ2

1,ξk(1− 4γ1,ξk |µξk |)‖Fξk(xk)‖2
]

−Eξk
[
γ2

1,ξk‖g
k − Fξk(x∗)‖2

]
+Eξk

[
γ2

1,ξk‖Fξk(xk)− gk + Fξk(x∗)‖2
]
,

where in the last inequality we use8 µξk1{µξk≥0} − 2µξk1{µξk<0} ≤ 2|µξk |. To upper bound the last two terms

8When all µξ ≥ 0, which is often assumed in the analysis of S-SEG, numerical constants in our proof

can be tightened. Indeed, in the last step, we can get −Eξk
[
γ2
1,ξk (1− 2γ1,ξkµξk )‖Fξk (xk)‖2

]
instead of

−Eξk
[
γ2
1,ξk (1− 4γ1,ξk |µξk |)‖Fξk (xk)‖2

]
.
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we use simple inequalities (20) and (19), and apply Lξk -Lipschitzness of Fξk(x):

E
[
‖x̂k+1 − x∗‖2 | xk

] (20),(19)

≤ ‖xk − x∗‖2 + Eξk
[
γ2

1,ξk‖g
k‖2
]

−Eξk
[
γ2

1,ξk(1− 4γ1,ξk |µξk |)‖Fξk(xk)‖2
]

−1

2
Eξk

[
γ2

1,ξk‖g
k‖2
]

+ Eξk
[
γ2

1,ξk‖Fξk(x∗)‖2
]

+2Eξk
[
γ2

1,ξk‖Fξk(xk)− gk‖2
]

+ 2Eξk
[
γ2

1,ξk‖Fξk(x∗)‖2
]

= ‖xk − x∗‖2 +
1

2
Eξk

[
γ2

1,ξk‖g
k‖2
]

−Eξk
[
γ2

1,ξk(1− 4γ1,ξk |µξk |)‖Fξk(xk)‖2
]

+3Eξk
[
γ2

1,ξk‖Fξk(x∗)‖2
]

+2Eξk
[
γ2

1,ξk‖Fξk(xk)− Fξk(xk − γ1,ξkFξk(xk))‖2
]

(6)

≤ ‖xk − x∗‖2 +
1

2
Eξk

[
γ2

1,ξk‖g
k‖2
]

+ 3Eξk
[
γ2

1,ξk‖Fξk(x∗)‖2
]

−Eξk
[
γ2

1,ξk

(
1− 4γ1,ξk |µξk | − 2L2

ξkγ
2
1,ξk

)
‖Fξk(xk)‖2

]
(27)

≤ ‖xk − x∗‖2 +
1

2
Eξk

[
γ2

1,ξk‖g
k‖2
]

+ 3Eξk
[
γ2

1,ξk‖F (x∗, ξk)‖2
]
,

Finally, we use the above inequality together with (29):

‖xk − x∗‖2 − 2P̂k + Eξk
[
γ2

1,ξk‖g
k‖2
]
≤ ‖xk − x∗‖2 +

1

2
Eξk

[
γ2

1,ξk‖g
k‖2
]

+ 3Eξk
[
γ2

1,ξk‖Fξk(x∗)‖2
]
,

where P̂k = Eξk
[
γ1,ξk〈gk, xk − x∗〉

]
. Rearranging the terms, we obtain (28).

Lemma E.2. Let Assumptions 3.1 and 3.2 hold. If γ1,ξk satisfies (8),(9), and (27), then gk =
Fξk

(
xk − γ1,ξkFξk(xk)

)
satisfies the following inequality

P̂k ≥ ρ̂‖xk − x∗‖2 +
1

2
Ĝk −

3

2
Eξk

[
γ2

1,ξk‖F
k
ξ (x∗)‖2

]
(30)

where P̂k = Eξk
[
γ1,ξk〈gk, xk − x∗〉

]
and

ρ̂ =
1

2
Eξk [γ1,ξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})],

Ĝk = Eξk
[
γ2

1,ξk

(
1− 4|µξk |γ1,ξk − 2L2

ξkγ
2
1,ξk

)
‖Fξk(xk)‖2

]
.

Proof. We start with rewriting P̂k:

−P̂k = −Eξk
[
γ1,ξk〈gk, xk − x∗〉

] (8)
= −Eξk

[
γ1,ξk〈gk − Fξk(x∗), xk − x∗〉

]
= −Eξk

[
γ1,ξk〈gk − Fξk(x∗), xk − γ1,ξkFξk(xk)− x∗〉

]
−Eξk

[
γ2

1,ξk〈g
k − Fξk(x∗), Fξk(xk)〉

]
(21)
= −Eξk

[
γ1,ξk

〈
Fξk(xk − γ1,ξkFξk(xk))− Fξk(x∗), xk − γ1,ξkFξk(xk)− x∗

〉]︸ ︷︷ ︸
T1

−1

2
Eξk

[
γ2

1,ξk‖g
k − Fξk(x∗)‖2

]
+

1

2
Eξk

[
γ2

1,ξk‖g
k − Fξk(xk)− Fξk(x∗)‖2

]
︸ ︷︷ ︸

T2

−1

2
Eξk

[
γ2

1,ξk‖Fξk(xk)‖2
]
. (31)
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Next, we upper bound terms T1 and T2. From (µξk , x
∗)-strong monotonicity of Fξk we have9

T1

(7)

≤ −Eξk
[
µξkγ1,ξk

∥∥xk − x∗ − γ1,ξkFξk(xK)
∥∥2
]

= −Eξk
[
1{µ

ξk
≥0}µξkγ1,ξk

∥∥xk − x∗ − γ1,ξkFξk(xK)
∥∥2
]

−Eξk
[
1{µ

ξk
<0}µξkγ1,ξk

∥∥xk − x∗ − γ1,ξkFξk(xK)
∥∥2
]

(20),(19)

≤ −1

2
Eξk

[
1{µ

ξk
≥0}µξkγ1,ξk

]
‖xk − x∗‖2 + Eξk

[
1{µ

ξk
≥0}µξkγ

3
1,ξk‖Fξk(xk)‖2

]
−2Eξk

[
1{µ

ξk
<0}µξkγ1,ξk

]
‖xk − x∗‖2 − 2Eξk

[
1{µ

ξk
<0}µξkγ

3
1,ξk‖Fξk(xk)‖2

]
≤ −1

2
Eξk

[(
1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0}
)
µξkγ1,ξk

]
‖xk − x∗‖2 + 2Eξk

[
|µξk |γ3

1,ξk‖Fξk(xk)‖2
]
.

Using simple inequalities (20) and (19) and applying Lξk -Lipschitzness of Fξk(x), we upper bound T2:

T2

(20),(19)

≤ −1

4
Eξk

[
γ2

1,ξk‖g
k‖2
]

+
1

2
E
[
γ2

1,ξk‖Fξk(x∗)‖2
]

+Eξk
[
γ2

1,ξk‖g
k − Fξk(xk)‖2

]
+ Eξk

[
γ2

1,ξk‖Fξk(x∗)‖2
]

≤ Eξk
[
γ2

1,ξk‖g
k − Fξk(xk)‖2

]
+

3

2
Eξk

[
γ2

1,ξk‖Fξk(x∗)‖2
]

= Eξk
[
γ2

1,ξk‖Fξk(xk − γ1,ξkFξk(xk))− Fξk(xk)‖2
]

+
3

2
Eξk

[
γ2

1,ξk‖Fξk(x∗)‖2
]

(6)

≤ Eξk
[
L2
ξkγ

4
1,ξk‖Fξk(xk)‖2

]
+

3

2
Eξk

[
γ2

1,ξk‖Fξk(x∗)‖2
]
.

Putting all together in (31), we derive

−P̂k ≤ −1

2
Eξk

[(
1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0}
)
µξkγ1,ξk

]
‖xk − x∗‖2 +

3

2
Eξk

[
γ2

1,ξk‖Fξk(x∗)‖2
]

−1

2
Eξk

[
γ2

1,ξk

(
1− 4|µξk |γ1,ξk − 2L2

ξkγ
2
1,ξk

)
‖Fξk(xk)‖2

]
,

where the last term is non-negative due to (27). This finishes the proof.

Combining two previous lemmas with Theorem 2.1, we derive the following result.

Theorem E.1 (Theorem 3.1). Let Assumptions 3.1 and 3.2 hold. If γ2,ξk = αγ1,ξk , α > 0, and γ1,ξk satisfies
(8), (9), and (27), then gk = Fξk

(
xk − γ1,ξkFξk(xk)

)
from (S-SEG) satisfies Assumption 2.1 with the following

parameters:

A = 2α, C = 0, D1 = 6α2σ2
AS = 6α2Eξ

[
γ2

1,ξ‖Fξ(x∗)‖2
]
,

ρ =
α

2
Eξk [γ1,ξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})],

Gk = αEξk
[
γ2

1,ξk

(
1− 4|µξk |γ1,ξk − 2L2

ξkγ
2
1,ξk

)
‖Fξk(xk)‖2

]
, B =

1

2
, D2 =

3α

2
σ2
AS.

If additionally α ≤ 1/4, then for all K ≥ 0 we have for the case ρ > 0

E
[
‖xK+1 − x∗‖2

]
≤ (1− ρ)E

[
‖xK − x∗‖2

]
+

3α

2
(4α+ 1)σ2

AS,

E
[
‖xK − x∗‖2

]
≤ (1− ρ)

K ‖x0 − x∗‖2 +
3α (4α+ 1)σ2

AS

2ρ
,

9When all µξ ≥ 0, which is often assumed in the analysis of S-SEG, numerical constants in our proof can

be tightened. Indeed, in the last step of the derivation below, we can get Eξk
[
µξkγ

3
1,ξk‖Fξk (xk)‖2

]
instead of

2Eξk
[
|µξk |γ3

1,ξk‖Fξk (xk)‖2
]
.
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and for the case ρ = 0

1

K + 1

K∑
k=0

E
[
γ2

1,ξk

(
1− 4|µξk |γ1,ξk − 2L2

ξkγ
2
1,ξk

)
‖Fξk(xk)‖2

]
≤ 2‖x0 − x∗‖2

α(K + 1)
+ 3(4α+ 1)σ2

AS.

Proof. S-SEG fits the unified update rule (3) with γξk = γ2,ξk and gk = Fξk
(
xk − γ1,ξkFξk(xk)

)
. Moreover,

Lemmas E.1 and E.2 imply

Eξk
[
γ2

1,ξk‖g
k‖2
]
≤ 4P̂k + 6Eξk

[
γ2

1,ξk‖Fξk(x∗)‖2
]
, (32)

P̂k ≥ ρ̂‖xk − x∗‖2 +
1

2
Ĝk −

3

2
Eξk

[
γ2

1,ξk‖F
k
ξ (x∗)‖2

]
, (33)

where P̂k = Eξk
[
γ1,ξk〈gk, xk − x∗〉

]
and

ρ̂ =
1

2
Eξk [γ1,ξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})],

Ĝk = Eξk
[
γ2

1,ξk

(
1− 4|µξk |γ1,ξk − 2L2

ξkγ
2
1,ξk

)
‖Fξk(xk)‖2

]
.

Since γξk = γ2,ξk = αγ1,ξk , we multiply (32) by α2 and (33) by α and get that Assumption 2.1 holds with the
parameters given in the statement of the theorem. Applying Theorem 2.1 we get the result.

The next corollary establishes the convergence rate with diminishing stepsizes allowing to reduce the size of the
neighborhood, when ρ > 0.

Corollary E.1 (ρ > 0; Corollary 3.1). Let Assumptions 3.1 and 3.2 hold, γ2,ξk = αγ1,ξk , α = 1/4, γ1,ξk = βk ·γξk ,
and γξk satisfies (8), (9), and (27). Assume that

ρ̃ =
1

8
Eξk [γξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})] > 0.

Then, for all K ≥ 0 and {βk}k≥0 such that

if K ≤ 1

ρ̃
, βk = 1,

if K >
1

ρ̃
and k < k0, βk = 1,

if K >
1

ρ̃
and k ≥ k0, βk =

2

2 + ρ̃(k − k0)
,

for k0 = dK/2e we have

E
[
‖xK − x∗‖2

]
≤ 32‖x0 − x∗‖2

ρ̃
exp

(
− ρ̃K

2

)
+

27σ2
AS

ρ̃2K
,

where σ2
AS = Eξ

[
γ2
ξ‖Fξ(x∗)‖2

]
Proof. In Theorem E.1, we establish the following recurrence:

E
[
‖xk+1 − x∗‖2

]
≤ (1− βkρ̃)E

[
‖xk − x∗‖2

]
+

3α

2
(4α+ 1)β2

kσ
2
AS

α=1/4
= (1− βkρ̃)E

[
‖xk − x∗‖2

]
+ β2

k

3σ2
AS

4
,

where we redefined ρ and σ2
AS to better handle decreasing stepsizes. Applying Lemma C.1 for rk = E

[
‖xk − x∗‖2

]
,

γk = βk, a = ρ̃, c = 3σ2
AS/4, h = 1, we get the result.

When ρ = 0, we use large batchiszes to reduce the size of the neighborhood.
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Corollary E.2 (ρ = 0). Let Assumptions 3.1 and 3.2 hold, γ2,ξk = αγ1,ξk , α = 1/4, and γ1,ξk satisfies (8)-(9),
and

0 < γ1,ξk ≤
1

8|µξk |+ 2
√

2Lξk
.

Assume that

ρ =
1

8
Eξk [γ1,ξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})] = 0,

Eξk
[
γ1,ξkFξk(xk)

]
= γF (xk)

for some γ > 0 and Fξk(xk) is computed via O(b) stochastic oracle calls and10

Eξk∼D
[
γ2

1,ξk‖Fξk(x∗)‖2
]
≤ 1

b
Eξk∼D̂

[
γ2

1,ξk‖Fξk(x∗)‖2
]

=
σ2
AS

b
,

where D̂ satisfies Assumptions 3.1 and 3.2. Then, for all K ≥ 0 we have

1

K + 1

K∑
k=0

E
[
‖F (xk)‖2

]
≤ 16‖x0 − x∗‖2

γ2(K + 1)
+

12σ2
AS

γ2b
,

and each iteration requires O(b) stochastic oracle calls.

Proof. Theorem E.1 implies that

1

K + 1

K∑
k=0

E
[
γ2

1,ξk

(
1− 4|µξk |γ1,ξk − 2L2

ξkγ
2
1,ξk

)
‖Fξk(xk)‖2

]
≤ 2‖x0−x∗‖2

α(K+1) + 3(4α+ 1)Eξk∼D
[
γ2

1,ξk‖Fξk(x∗)‖2
]

α=1/4

≤ 8‖x0−x∗‖2
K+1 +

6σ2
AS

b .

Since

0 < γ1,ξk ≤
1

8|µξk |+ 2
√

2Lξk
,

we have

1

2(K + 1)

K∑
k=0

E
[
γ2

1,ξk‖Fξk(xk)‖2
]
≤ 8‖x0 − x∗‖2

K + 1
+

6σ2
AS

b
.

Finally, we use Jensen’s inequality and Eξk
[
γ1,ξkFξk(xk)

]
= γF (xk):

γ2

2(K + 1)

K∑
k=0

E
[
‖F (xk)‖2

]
=

1

2(K + 1)

K∑
k=0

E
[∥∥Eξk [γ1,ξkFξk(xk)

]∥∥2
]

≤ 1

2(K + 1)

K∑
k=0

E
[
Eξk

[∥∥γ1,ξkFξk(xk)
∥∥2
]]

=
1

2(K + 1)

K∑
k=0

E
[
γ2

1,ξk‖Fξk(xk)‖2
]

≤ 8‖x0 − x∗‖2

K + 1
+

6σ2
AS

b
.

Multiplying the inequality by 2/γ2, we get the result.

10This can be achieved with i.i.d. batching from the distribution D̂, satisfying Assumptions 3.2 and 3.1.
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E.3 S-SEG with Uniform Sampling (S-SEG-US)

Theorem E.2. Consider the setup from Example 3.1. If γ2,ξk = αγ1,ξk , α > 0, and γ1,ξk = γ ≤ 1/6Lmax, where
Lmax = maxi∈[n] Li, then gk = Fξk

(
xk − γ1,ξkFξk(xk)

)
from (S-SEG) satisfies Assumption 2.1 with the following

parameters:

A = 2α, C = 0, D1 = 6α2γ2σ2
US∗ =

6α2γ2

n

n∑
i=1

‖Fi(x∗)‖2, ρ =
αγµ

2
,

Gk =
αγ2

n

n∑
i=1

(
1− 4|µi|γ − 2L2

i γ
2
)
‖Fi(xk)‖2, B =

1

2
, D2 =

3αγ2

2
σ2
US∗.

If additionally α ≤ 1/4, then for all K ≥ 0 we have for the case µ > 0

E
[
‖xK+1 − x∗‖2

]
≤
(

1− αγµ

2

)
E
[
‖xK − x∗‖2

]
+

3α

2
(4α+ 1) γ2σ2

US∗,

E
[
‖xK − x∗‖2

]
≤
(

1− αγµ

2

)K
‖x0 − x∗‖2 +

3 (4α+ 1) γσ2
US∗

µ
,

and for the case µ = 0

1

K + 1

K∑
k=0

E

[
1

n

n∑
i=1

(
1− 4|µi|γ − 2L2

i γ
2
)
‖Fi(xk)‖2

]
≤ 2‖x0 − x∗‖2

αγ2(K + 1)
+ 3(4α+ 1)σ2

US∗.

Proof. Since γ ≤ 1/6Lmax and |µi| ≤ Li, condition (27) is satisfied. In Example E.1, we show that conditions (8)
and (9) hold as well. Therefore, Theorem E.1 implies the desired result with

σ2
AS = Eξ

[
γ2

1,ξ‖Fξ(x∗)‖2
]

=
γ2

n

n∑
i=1

‖Fi(x∗)‖2 = γ2σ2
US∗,

ρ =
α

2
Eξk [γ1,ξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})] =

αγ

2n

 ∑
i:µi≥0

µi + 4
∑
i:µi<0

µi

 =
αγµ

2
,

Gk = αEξk
[
γ2

1,ξk

(
1− 4|µξk |γ1,ξk − 2L2

ξkγ
2
1,ξk

)
‖Fξk(xk)‖2

]
=

αγ2

n

n∑
i=1

(
1− 4|µi|γ − 2L2

i γ
2
)
‖Fi(xk)‖2.

Corollary E.3 (µ > 0). Consider the setup from Example 3.1. Let µ > 0, γ2,ξk = αγ1,ξk , α = 1/4, and
γ1,ξk = βkγ = βk/6Lmax, where Lmax = maxi∈[n] Li and 0 < βk ≤ 1. Then, for all K ≥ 0 and {βk}k≥0 such that

if K ≤ 48Lmax

µ
, βk = 1,

if K >
48Lmax

µ
and k < k0, βk = 1,

if K >
48Lmax

µ
and k ≥ k0, βk =

96Lmax

96Lmax + µ(k − k0)
,

for k0 = dK/2e we have

E
[
‖xK − x∗‖2

]
≤ 1536Lmax‖x0 − x∗‖2

µ
exp

(
− µK

96Lmax

)
+

1728σ2
US∗

µ2K
.
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Proof. Corollary E.1 implies the needed result with

ρ̃ =
1

8
Eξk [γξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})] =

γ

8n

 ∑
i:µi≥0

µi + 4
∑
i:µi<0

µi

 =
µ

48Lmax
,

σ2
AS = Eξ

[
γ2
ξ‖Fξ(x∗)‖2

]
=
γ2

n

n∑
i=1

‖Fi(x∗)‖2 = γ2σ2
US∗.

Corollary E.4 (µ = 0). Consider the setup from Example 3.1. Let µ = 0, γ2,ξk = αγ1,ξk , α = 1/4, and
γ1,ξk = γ ≤ 1/6Lmax, where Lmax = maxi∈[n] Li. Assume that

Fξk(xk) =
1

b

b∑
i=1

Fξki (x),

where ξk1 , . . . , ξ
k
b are i.i.d. samples from the uniform distribution on [n]. Then, for all K ≥ 0 we have

1

K + 1

K∑
k=0

E
[
‖F (xk)‖2

]
≤ 16‖x0 − x∗‖2

γ2(K + 1)
+

12σ2
US∗
b

,

and each iteration requires O(b) stochastic oracle calls.

Proof. Since

Eξk
[
γ1,ξkFξk(xk)

]
=

γ

n

n∑
i=1

Fi(x
k) = γF (xk),

Corollary E.2 implies the needed result with

σ2
AS = Eξ

[
γ2
ξ‖Fξ(x∗)‖2

]
=
γ2

n

n∑
i=1

‖Fi(x∗)‖2 = γ2σ2
US∗.

E.4 S-SEG with b-Nice Sampling (S-SEG-NICE)

Theorem E.3. Consider the setup from Example 3.2. If γ2,ξk = αγ1,ξk , α > 0, and γ1,ξk = γ ≤ 1/6Lb−NICE,
where Lb−NICE = maxS⊆[n],|S|=b LS and LS is the Lipschitz constant of FS(x) = 1

|S|
∑n
i=1 Fi(x), then gk =

Fξk
(
xk − γ1,ξkFξk(xk)

)
from (S-SEG) satisfies Assumption 2.1 with the following parameters:

A = 2α, C = 0, D1 = 6α2γ2σ2
b−NICE∗ =

6α2γ2(
n
b

) ∑
S⊆[n],|S|=b

‖FS(x∗)‖2, ρ =
αγµb−NICE

2
,

Gk =
αγ2(
n
b

) ∑
S⊆[n],|S|=b

(
1− 4|µS |γ − 2L2

Sγ
2
)
‖FS(xk)‖2, B =

1

2
, D2 =

3αγ2

2
σ2
b−NICE∗.

If additionally α ≤ 1/4, then for all K ≥ 0 we have for the case µb−NICE > 0

E
[
‖xK+1 − x∗‖2

]
≤
(

1−
αγµb−NICE

2

)
E
[
‖xK − x∗‖2

]
+

3α

2
(4α+ 1) γ2σ2

b−NICE∗,

E
[
‖xK − x∗‖2

]
≤
(

1−
αγµb−NICE

2

)K
‖x0 − x∗‖2 +

3 (4α+ 1) γσ2
b−NICE∗

µ
,

and for the case µb−NICE = 0

1

K + 1

K∑
k=0

E

 1(
n
b

) ∑
S⊆[n],|S|=b

(
1− 4|µS |γ − 2L2

Sγ
2
)
‖FS(xk)‖2

 ≤ 2‖x0 − x∗‖2

αγ2(K + 1)
+ 3(4α+ 1)σ2

b−NICE∗.
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Proof. Since γ ≤ 1/6Lb−NICE and |µS | ≤ LS for all S ⊆ [n], condition (27) is satisfied. In Example E.2, we show
that conditions (8) and (9) hold as well. Therefore, Theorem E.1 implies the desired result with

σ2
AS = Eξ

[
γ2

1,ξ‖Fξ(x∗)‖2
]

=
γ2(
n
b

) ∑
S⊆[n]

‖FS(x∗)‖2 = γ2σ2
b−NICE∗,

ρ =
α

2
Eξk [γ1,ξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})] =

αγ

2
(
n
b

)
 ∑

S⊆[n],

|S|=b:µS≥0

µS + 4
∑
S⊆[n],

|S|=b:µS<0

µS


=

αγµb−NICE
2

,

Gk = αEξk
[
γ2

1,ξk

(
1− 4|µξk |γ1,ξk − 2L2

ξkγ
2
1,ξk

)
‖Fξk(xk)‖2

]
=

αγ2(
n
b

) ∑
S⊆[n],|S|=b

(
1− 4|µS |γ − 2L2

Sγ
2
)
‖FS(xk)‖2.

Remark E.1. We notice that

Lb−NICE = max
S⊆[n],|S|=b

LS ≤ max
S⊆[n],|S|=b

1

b

∑
i∈S

Li ≤ max
i∈[n]

Li = Lmax,

µb−NICE =
1(
n
b

)
 ∑

S⊆[n],

|S|=b:µS≥0

µS + 4
∑
S⊆[n],

|S|=b:µS<0

µS

 ≥ 1(
n
b

)
 ∑

S⊆[n],

|S|=b:µS≥0

1

b

∑
i∈S

µi + 4
∑
S⊆[n],

|S|=b:µS<0

1

b

∑
i∈S

µi


=

1(
n
b

) ∑
S⊆[n],

|S|=b:µS≥0

1

b

 ∑
i∈S:µi≥0

µi +
∑

i∈S:µi<0

µi

+
4(
n
b

) ∑
S⊆[n],

|S|=b:µS<0

1

b

 ∑
i∈S:µi≥0

µi +
∑

i∈S:µi<0

µi



≥ 1(
n
b

) ∑
S⊆[n],

|S|=b:µS≥0

1

b

 ∑
i∈S:µi≥0

µi +
∑

i∈S:µi<0

4µi



+
1(
n
b

) ∑
S⊆[n],

|S|=b:µS<0

1

b

 ∑
i∈S:µi≥0

µi +
∑

i∈S:µi<0

4µi



=
1(
n
b

) ∑
S⊆[n],|S|=b

1

b

 ∑
i∈S:µi≥0

µi +
∑

i∈S:µi<0

4µi

 =

(
n−1
b−1

)
b ·
(
n
b

)
 ∑
i:µi≥0

µi +
∑
i:µi<0

4µi


=

1

n

∑
i:µi≥0

µi +
4

n

∑
i:µi<0

µi = µ,

σ2
b−NICE∗ =

1(
n
b

) ∑
S⊆[n]

‖FS(x∗)‖2 =
1(
n
b

) ∑
S⊆[n]

∥∥∥∥∥1

b

∑
i∈S

Fi(x
∗)

∥∥∥∥∥
2

=
1

b2 ·
(
n
b

) ∑
S⊆[n]

(∑
i∈S

‖Fi(x∗)‖2 + 2
∑

i,j∈S,i<j

〈Fi(x∗), Fj(x∗)〉
)

=
1

b2 ·
(
n
b

)
(n− 1

b− 1

)
n∑
i=1

‖Fi(x∗)‖2 + 2

(
n− 2

b− 2

) ∑
1≤i<j≤n

〈Fi(x∗), Fj(x∗)〉


=

(
n−1
b−1

)
−
(
n−2
b−2

)
b2 ·

(
n
b

) n∑
i=1

‖Fi(x∗)‖2 +

(
n−2
b−2

)
b2 ·

(
n
b

) ∥∥∥∥∥
n∑
i=1

Fi(x
∗)

∥∥∥∥∥
2

=
n− b

bn(n− 1)

n∑
i=1

‖Fi(x∗)‖2

=
n− b
b(n− 1)

σ2
US∗. (34)



Eduard Gorbunov, Hugo Berard, Gauthier Gidel, Nicolas Loizou

Therefore, S-SEG-NICE converges faster to the smaller neighborhood than S-SEG-US. Moreover, the size of the neighborhood

σ2
b−NICE∗ is smaller than σ2

US∗/b, which corresponds to the variance in the case of i.i.d. sampling (Example E.1).

Corollary E.5 (µb−NICE > 0). Consider the setup from Example 3.2. If γ2,ξk = αγ1,ξk , α = 1/4, and γ1,ξk =
βkγ = βk/6Lb−NICE, where Lb−NICE = maxS⊆[n],|S|=b LS, LS is the Lipschitz constant of FS(x) = 1

|S|
∑n
i=1 Fi(x),

and 0 < βk ≤ 1. Then, for all K ≥ 0 and {βk}k≥0 such that

if K ≤ 48Lb−NICE
µb−NICE

, βk = 1,

if K >
48Lb−NICE
µb−NICE

and k < k0, βk = 1,

if K >
48Lb−NICE
µb−NICE

and k ≥ k0, βk =
96Lb−NICE

96Lb−NICE + µb−NICE(k − k0)
,

for k0 = dK/2e we have

E
[
‖xK − x∗‖2

]
≤ 1536Lb−NICE‖x0 − x∗‖2

µb−NICE
exp

(
−
µb−NICEK

96Lb−NICE

)
+

1728(n− b)σ2
US∗

µ2
b−NICEK

.

Proof. Corollary E.1 implies the needed result with

ρ̃ =
1

8
Eξk [γξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})] =

γ

8
(
n
b

)
 ∑

S⊆[n],

|S|=b:µS≥0

µS + 4
∑
S⊆[n],

|S|=b:µS<0

µS


=

µb−NICE
48Lb−NICE

,

σ2
AS = Eξ

[
γ2
ξ‖Fξ(x∗)‖2

]
=

γ2(
n
b

) ∑
S⊆[n]

‖FS(x∗)‖2 = γ2σ2
b−NICE∗

(34)
=

n− b
b(n− 1)

σ2
US∗.

E.5 S-SEG with Importance Sampling (S-SEG-IS)

Theorem E.4. Consider the setup from Example 3.3. If γ2,ξk = αγ1,ξk , α > 0, and γ1,ξk = γL/L
ξk

, γ ≤
1/6L, where L = 1

n

∑n
i=1 Li, then gk = Fξk

(
xk − γ1,ξkFξk(xk)

)
from (S-SEG) satisfies Assumption 2.1 with the

following parameters:

A = 2α, C = 0, D1 = 6α2γ2σ2
IS∗ =

6α2γ2

n

n∑
i=1

L

Li
‖Fi(x∗)‖2, ρ =

αγµ

2
,

Gk =
αγ2

n

n∑
i=1

L

Li

(
1− 4

|µi|
Li

Lγ − 2L
2
γ2

)
‖Fi(xk)‖2, B =

1

2
, D2 =

3αγ2

2
σ2
IS∗.

If additionally α ≤ 1/4, then for all K ≥ 0 we have for the case µ > 0

E
[
‖xK+1 − x∗‖2

]
≤
(

1− αγµ

2

)
E
[
‖xK − x∗‖2

]
+

3α

2
(4α+ 1) γ2σ2

IS∗,

E
[
‖xK − x∗‖2

]
≤
(

1− αγµ

2

)K
‖x0 − x∗‖2 +

3 (4α+ 1) γσ2
IS∗

µ
,

and for the case µ = 0

1

K + 1

K∑
k=0

E

[
1

n

n∑
i=1

L

Li

(
1− 4

|µi|
Li

Lγ − 2L
2
γ2

)
‖Fi(xk)‖2

]
≤ 2‖x0 − x∗‖2

αγ2(K + 1)
+ 3(4α+ 1)σ2

IS∗.
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Proof. Since γ ≤ 1/6L and |µi| ≤ Li, condition (27) is satisfied. In Example E.1, we show that conditions (8)
and (9) hold as well. Therefore, Theorem E.1 implies the desired result with

σ2
AS = Eξ

[
γ2

1,ξ‖Fξ(x∗)‖2
]

=
γ2

n

n∑
i=1

L

Li
‖Fi(x∗)‖2 = γ2σ2

IS∗,

ρ =
α

2
Eξk [γ1,ξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})] =

α

2

n∑
i=1

γL

Li
µi(1{µi≥0} + 4 · 1{µi<0}) ·

Li

nL

=
αγ

2n

 ∑
i:µi≥0

µi + 4
∑
i:µi<0

µi

 =
αγµ

2
,

Gk = αEξk
[
γ2

1,ξk

(
1− 4|µξk |γ1,ξk − 2L2

ξkγ
2
1,ξk

)
‖Fξk(xk)‖2

]
=

αγ2

n

n∑
i=1

L

Li

(
1− 4

|µi|
Li

Lγ − 2L
2
γ2

)
‖Fi(xk)‖2.

Corollary E.6 (µ > 0). Consider the setup from Example 3.3. Let µ > 0, γ2,ξk = αγ1,ξk , α = 1/4, and

γ1,ξk = βkγL/L
ξk

= βk/6L
ξk

, where L = 1
n

∑n
i=1 Li and 0 < βk ≤ 1. Then, for all K ≥ 0 and {βk}k≥0 such that

if K ≤ 48L

µ
, βk = 1,

if K >
48L

µ
and k < k0, βk = 1,

if K >
48L

µ
and k ≥ k0, βk =

96L

96L+ µ(k − k0)
,

for k0 = dK/2e we have

E
[
‖xK − x∗‖2

]
≤ 1536L‖x0 − x∗‖2

µ
exp

(
− µK

96L

)
+

1728σ2
IS∗

µ2K
.

Proof. Corollary E.1 implies the needed result with

ρ̃ =
1

8
Eξk [γξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})] =

γ

8n

 ∑
i:µi≥0

µi + 4
∑
i:µi<0

µi

 =
µ

48L
,

σ2
AS = Eξ

[
γ2
ξ‖Fξ(x∗)‖2

]
=
γ2

n

n∑
i=1

L

Li
‖Fi(x∗)‖2 = γ2σ2

IS∗.

Corollary E.7 (µ = 0). Consider the setup from Example 3.3. Let µ = 0, γ2,ξk = αγ1,ξk , α = 1/4, and

γ1,ξk = γL/L
ξk

, γ ≤ 1/6L, where L = 1
n

∑n
i=1 Li. Assume that

Fξk(xk) =
1

b

b∑
i=1

Fξki (x),

where ξk1 , . . . , ξ
k
b are i.i.d. samples from the distribution on [n] from Example 3.3. Then, for all K ≥ 0 we have

1

K + 1

K∑
k=0

E
[
‖F (xk)‖2

]
≤ 16‖x0 − x∗‖2

γ2(K + 1)
+

12σ2
IS∗
b

,

and each iteration requires O(b) stochastic oracle calls.
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Proof. Since

Eξk
[
γ1,ξkFξk(xk)

]
=

γ

n

n∑
i=1

Fi(x
k) = γF (xk),

Corollary E.2 implies the needed result with

σ2
AS = Eξ

[
γ2
ξ‖Fξ(x∗)‖2

]
=
γ2

n

n∑
i=1

L

Li
‖Fi(x∗)‖2 = γ2σ2

IS∗.

E.6 S-SEG with Independent Sampling Without Replacement (S-SEG-ISWOR)

Theorem E.5. Consider the setup from Example E.3. If γ2,ξk = αγ1,ξk , α > 0, and γ1,ξk = γ|ξ|/pξ2n−1n,
γ ≤ 1/6LISWOR, where LISWOR = maxS⊆[n](|S|LS/pS2n−1n), then

gk = Fξk
(
xk − γ1,ξkFξk(xk)

)
from (S-SEG) satisfies Assumption 2.1 with the following parameters:

A = 2α, C = 0, D1 = 6α2γ2σ2
ISWOR∗ =

6α2γ2

22n−2n2

∑
S⊆[n]

|S|2

pS
‖FS(x∗)‖2, ρ =

αγµISWOR

2
,

Gk =
αγ2

22n−2n2

∑
S⊆[n]

|S|2

pS

(
1− 4

|µS | · |S|
pS2n−1n

γ − 2
L2
S |S|2

p2
S22n−2n2

γ2

)
‖FS(xk)‖2,

B =
1

2
, D2 =

3αγ2

2
σ2
ISWOR∗,

where

µISWOR =
1

2n−1n

 ∑
S⊆[n]:µS≥0

|S|µS + 4
∑

S⊆[n]:µS<0

|S|µS

 .

If additionally α ≤ 1/4, then for all K ≥ 0 we have for the case µISWOR∗ > 0

E
[
‖xK+1 − x∗‖2

]
≤
(

1− αγµISWOR

2

)
E
[
‖xK − x∗‖2

]
+

3α

2
(4α+ 1) γ2σ2

ISWOR∗,

E
[
‖xK − x∗‖2

]
≤
(

1− αγµISWOR

2

)K
‖x0 − x∗‖2 +

3 (4α+ 1) γσ2
ISWOR∗

µ
,

and for the case µISWOR∗ = 0

1

K + 1

K∑
k=0

E

 1

22n−2n2

∑
S⊆[n]

|S|2

pS

(
1− 4

|µS | · |S|
pS2n−1n

γ − 2
L2
S |S|2

p2
S22n−2n2

γ2

)
‖FS(xk)‖2


≤ 2‖x0−x∗‖2

αγ2(K+1) + 3(4α+ 1)σ2
ISWOR∗

Proof. Since γ ≤ 1/6LISWOR and |µS | ≤ LS for all S ⊆ [n], condition (27) is satisfied. In Example E.3, we show
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that conditions (8) and (9) hold as well. Therefore, Theorem E.1 implies the desired result with

σ2
AS = Eξ

[
γ2

1,ξ‖Fξ(x∗)‖2
]

=
γ2

22n−2n2

∑
S⊆[n]

|S|2

pS
‖FS(x∗)‖2 = γ2σ2

ISWOR∗,

ρ =
α

2
Eξk [γ1,ξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})] =

αγ

2nn

∑
S⊆[n]:

µS≥0

|S|µS + 4
∑
S⊆[n]:

µS<0

|S|µS


=

αγµISWOR

2
,

Gk = αEξk
[
γ2

1,ξk

(
1− 4|µξk |γ1,ξk − 2L2

ξkγ
2
1,ξk

)
‖Fξk(xk)‖2

]
=

αγ2

22n−2n2

∑
S⊆[n]

|S|2

pS

(
1− 4

|µS | · |S|
pS2n−1n

γ − 2
L2
S |S|2

p2
S22n−2n2

γ2

)
‖FS(xk)‖2.

Corollary E.8 (µISWOR∗ > 0). Consider the setup from Example E.3. Let µISWOR∗ > 0, γ2,ξk = αγ1,ξk , α = 1/4,
and γ1,ξk = βkγ|ξ|/pξ2n−1n, γ = 1/6LISWOR, where LISWOR = maxS⊆[n](|S|LS/pS2n−1n) and 0 < βk ≤ 1. Then, for all
K ≥ 0 and {βk}k≥0 such that

if K ≤ 48LISWOR

µISWOR

, βk = 1,

if K >
48LISWOR

µISWOR

and k < k0, βk = 1,

if K >
48LISWOR

µISWOR

and k ≥ k0, βk =
96LISWOR

96LISWOR + µISWOR(k − k0)
,

for k0 = dK/2e we have

E
[
‖xK − x∗‖2

]
≤ 1536LISWOR‖x0 − x∗‖2

µISWOR

exp

(
− µISWORK

96LISWOR

)
+

1728σ2
ISWOR∗

µ2
ISWORK

.

Proof. Corollary E.1 implies the needed result with

ρ̃ =
1

8
Eξk [γξkµξk(1{µ

ξk
≥0} + 4 · 1{µ

ξk
<0})] =

αγ

2n+2n

∑
S⊆[n]:

µS≥0

|S|µS + 4
∑
S⊆[n]:

µS<0

|S|µS


=

µISWOR

48LISWOR
,

σ2
AS = Eξ

[
γ2
ξ‖Fξ(x∗)‖2

]
=

γ2

22n−2n2

∑
S⊆[n]

|S|2

pS
‖FS(x∗)‖2 = γ2σ2

ISWOR∗.
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F INDEPENDENT-SAMPLES SEG (I-SEG): MISSING PROOFS AND
ADDITIONAL DETAILS

In this section, we provide full proofs and missing details from Section 4 on I-SEG. Recall that our analysis of
I-SEG based on the three following assumptions:

• F (x) is L-Lipschitz: ‖F (x)− F (y)‖ ≤ L‖x− y‖ for all x, y ∈ Rd (Assumption 1.1),

• F (x) is µ-quasi strongly monotone: 〈F (x), x− x∗〉 ≥ µ‖x− x∗‖2 for all x ∈ Rd (Assumption 1.2),

• Fξ(x) satisfies the following conditions (Assumption 4.1): Eξ[Fξ(x)] = F (x) and

Eξ
[
‖Fξ(x)− F (x)‖2

]
≤ δ‖x− x∗‖2 + σ2.

Moreover, we assume that

Fξk1 (xk) =
1

b

b∑
i=1

Fξk1 (i)(x
k), Fξk2 (xk) =

1

b

b∑
i=1

Fξk2 (i)(x
k − γ1Fξk1 (xk)),

where ξk1 (1), . . . , ξk1 (b), ξk2 (1), . . . , ξk2 (b) are i.i.d. samples satisfying Assumption 4.1. Due to independence of
ξk1 (1), . . . , ξk1 (b), ξk2 (1), . . . , ξk2 (b) we have

Eξk1
[
‖Fξk1 (xk)− F (xk)‖2

]
≤ δ

b
‖xk − x∗‖2 +

σ2

b
, (35)

Eξk2
[
‖Fξk2 (xk − γ1Fξk1 (xk))− F (xk − γ1Fξk1 (xk))‖2

]
≤ δ

b
‖xk − γ1Fξk1 (xk)− x∗‖2 +

σ2

b
. (36)

It turns out that under these assumptions gk satisfies Assumption 2.1.

Lemma F.1. Let Assumptions 1.1, 1.2 and 4.1 hold. If

γ1 ≤
1√

3(L2 + 2δ/b)
(37)

then gk = Fξk2

(
xk − γ1Fξk1 (xk)

)
satisfies the following inequality

γ2
1E
[
‖gk‖2 | xk

]
≤ 2P̂k +

9δγ2
1

b
‖xk − x∗‖2 +

6γ2
1σ

2

b
, (38)

where P̂k = γ1Eξk1 ,ξk2
[
〈gk, xk − x∗〉

]
.

Proof. Using the auxiliary iterate x̂k+1 = xk − γ1g
k, we get

‖x̂k+1 − x∗‖2 = ‖xk − x∗‖2 − 2γ1〈xk − x∗, gk〉+ γ2
1‖gk‖2 (39)

= ‖xk − x∗‖2 − 2γ1

〈
xk − γFξk1 (xk)− x∗, gk

〉
− 2γ2

1〈Fξk1 (xk), gk〉+ γ2
1‖gk‖2.

Taking the expectation Eξk1 ,ξk2 [·] = E
[
· | xk

]
conditioned on xk from the above identity, using tower property

Eξk1 ,ξk2 [·] = Eξk1 [Eξk2 [·]], and µ-quasi strong monotonicity of F (x), we derive

Eξk1 ,ξk2
[
‖x̂k+1 − x∗‖2

]
= ‖xk − x∗‖2 − 2γ1Eξk1 ,ξk2

[〈
xk − γ1Fξk1 (xk)− x∗, gk

〉]
−2γ2

1Eξk1 ,ξk2
[
〈Fξk1 (xk), gk〉

]
+ γ2

1Eξk1 ,ξk2
[
‖gk‖2

]
= ‖xk − x∗‖2

−2γ1Eξk1
[〈
xk − γ1Fξk1 (xk)− x∗, F

(
xk − γ1Fξk1 (xk)

)〉]
−2γ2

1Eξk1
[
〈Fξk1 (xk), gk〉

]
+ γ2

1Eξk1 ,ξk2
[
‖gk‖2

]
(2),(21)

≤ ‖xk − x∗‖2 − γ2
1Eξk1 ,ξk2

[
‖Fξk1 (xk)‖2

]
+ γ2

1Eξk1 ,ξk2
[
‖Fξk1 (xk)− gk‖2

]
.
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To upper bound the last term we use simple inequality (19), and apply L-Lipschitzness of F (x):

Eξk1 ,ξk2
[
‖x̂k+1 − x∗‖2

] (19)

≤ ‖xk − x∗‖2 − γ2
1Eξk1

[
‖Fξk1 (xk)‖2

]
+3γ2

1Eξk1

[∥∥∥F (xk)− F
(
xk − γ1Fξk1 (xk)

)∥∥∥2
]

+3γ2
1Eξk1

[∥∥∥Fξk1 (xk)− F (xk)
∥∥∥2
]

+3γ2
1Eξk1 ,ξk2

[∥∥∥Fξk2(xk−γ1Fξk1 (xk)
)
− F

(
xk−γ1Fξk1 (xk)

)∥∥∥2
]

(1),(35),(36)

≤ ‖xk − x∗‖2 − γ2
1

(
1− 3L2γ2

1

)
Eξk1

[
‖Fξk1 (xk)‖2

]
+

3γ2
1δ

b
‖xk − x∗‖2 +

3γ2
1σ

2

b

+
3γ2

1δ

b
Eξk1

[
‖xk − x∗ − γ1Fξk1 (xk)‖2

]
+

3γ2
1σ

2

b
(19)

≤
(

1 +
9γ2

1δ

b

)
‖xk − x∗‖2

−γ2
1

(
1− 3γ2

1

(
L2 +

2δ

b

))
Eξk1

[
‖Fξk1 (xk)‖2

]
+

6γ2
1σ

2

b
(37)

≤
(

1 +
9γ2

1δ

b

)
‖xk − x∗‖2 +

6γ2
1σ

2

b
.

Finally, we use the above inequality together with (39):

‖xk − x∗‖2 − 2P̂k + γ2
1E
[
‖gk‖2 | xk

]
≤

(
1 +

9γ2
1δ

b

)
‖xk − x∗‖2 +

6γ2
1σ

2

b
,

where P̂k = γ1Eξk1 ,ξk2
[
〈gk, xk − x∗〉

]
. Rearranging the terms, we obtain (38).

Lemma F.2. Let Assumptions 1.1, 1.2 and 4.1 hold. If

γ1 ≤ min

{
µb

18δ
,

1

4µ+
√

6(L2 + 2δ/b)

}
, (40)

then gk = Fξk2

(
xk − γ1Fξk1 (xk)

)
satisfies the following inequality

P̂k ≥ µγ1

4
‖xk − x∗‖2 +

γ2
1

4
Eξk1

[
‖Fξk1 (xk)‖2

]
− 6γ2

1σ
2

b
, (41)

where P̂k = γ1Eξk1 ,ξk2
[
〈gk, xk − x∗〉

]
.
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Proof. Since Eξk1 ,ξk2 [·] = E[· | xk] and gk = Fξk2

(
xk − γ1Fξk1 (xk)

)
, we have

−P̂k = −γ1Eξk1 ,ξk2
[
〈gk, xk − x∗〉

]
= −γ1Eξk1

[
〈Eξk2 [gk], xk − γ1Fξk1 (xk)− x∗〉

]
− γ2

1E
[
〈gk, Fξk1 (xk)〉

]
(21)
= −γ1Eξk1

[
〈F (xk − γ1Fξk1 (xk)), xk − γ1Fξk1 (xk)− x∗〉

]
−γ

2
1

2
Eξk1 ,ξk2

[
‖gk‖2

]
− γ2

1

2
Eξk1

[
‖Fξk1 (xk)‖2

]
+
γ2

1

2
Eξk1 ,ξk2

[
‖gk − Fξk1 (xk)‖2

]
(2),(19)

≤ −µγ1Eξk1 ,ξk2
[
‖xk − x∗ − γ1Fξk1 (xk)‖2

]
− γ2

1

2
Eξk1

[
‖Fξk1 (xk)‖2

]
+

3γ2
1

2
Eξk1

[∥∥∥F (xk)− F
(
xk − γ1Fξk1 (xk)

)∥∥∥2
]

+
3γ2

1

2
Eξk1

[∥∥∥Fξk1 (xk)− F (xk)
∥∥∥2
]

+
3γ2

1

2
Eξk1 ,ξk2

[∥∥∥Fξk2 (xk − γ1Fξk1 (xk)
)
− F

(
xk − γ1Fξk1 (xk)

)∥∥∥2
]

(20),(1),(17)

≤ −µγ1

2
‖xk − x∗‖2 − γ2

1

2
(1− 2γ1µ− 3γ2

1L
2)Eξk1

[
‖Fξk1 (xk)‖2

]
+

3γ2
1δ

2b
‖xk − x∗‖2 +

3γ2
1σ

2

2b

+
3γ2

1δ

2b
Eξk1

[
‖xk − x∗ − γ1Fξk1 (xk)‖2

]
+

3γ2
1σ

2

2b
(19)

≤ −µγ1

2

(
1− 9γ1δ

µb

)
‖xk − x∗‖2

−γ
2
1

2

(
1− 2γ1µ− 3γ2

1

(
L2 +

2δ

b

))
Eξk1

[
‖Fξk1 (xk)‖2

]
+

6γ2
1σ

2

2b

(40)

≤ −µγ1

4
‖xk − x∗‖2 − γ2

1

4
Eξk1

[
‖Fξk1 (xk)‖2

]
+

6γ2
1σ

2

b

that concludes the proof11.

Combining Lemmas F.1 and F.2 and applying Theorem 2.1, we get the following result.

Theorem F.1 (Theorem 4.1). Let Assumptions 1.1, 1.2, and 4.1 hold. If γ2 = αγ1, α > 0, and γ1 = γ, where12

γ ≤ min

{
µb

18δ
,

1

4µ+
√

6(L2 + 2δ/b)

}

then gk = Fξk2

(
xk − γ1Fξk1 (xk)

)
from (I-SEG) satisfies Assumption 2.1 with the following parameters:

A = 2α, C =
9δα2γ2

b
, D1 =

6α2γ2σ2

b
, ρ =

αγµ

4
,

Gk = Eξk1
[
‖Fξk1 (xk)‖2

]
, B =

αγ2

4
, D2 =

6αγ2σ2

b
.

If additionally α ≤ 1/4, then for all K ≥ 0 we have for the case µ > 0

E
[
‖xK+1 − x∗‖2

]
≤
(

1− αγµ

8

)
E
[
‖xK − x∗‖2

]
+ 6α (α+ 1) γ2σ

2

b
,

11When δ = 0, i.e., when we are in the classical setup of uniformly bounded variance, numerical constants in our proof

can be tightened. Indeed, in the last step, we can get −µγ1
2
‖xk − x∗‖2 − γ21

4
Eξk1

[
‖Fξk1 (xk)‖2

]
+

6γ21σ
2

b
. Moreover, if we

are interested in the case when µ > 0, then assuming that γ1 ≤ 1

2µ+
√
3L

, can get −µγ1
2
‖xk − x∗‖2 +

6γ21σ
2

b
.

12When µ = δ = 0, the first term can be ignored.
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E
[
‖xK − x∗‖2

]
≤
(

1− αγµ

8

)K
‖x0 − x∗‖2 +

48 (α+ 1) γσ2

µb
,

and for the case µ = 0 and δ = 0

1

K + 1

K∑
k=0

E
[
‖Fξk1 (xk)‖2

]
≤ 4‖x0 − x∗‖2

αγ2(K + 1)
+

24(α+ 1)σ2

b
.

Proof. I-SEG fits the unified update rule (3) with γξk = γ2 and gk = Fξk2

(
xk − γ1Fξk1 (xk)

)
. Moreover, Lem-

mas F.1 and F.2 imply

γ2
1E
[
‖gk‖2 | xk

]
≤ 2P̂k +

9δγ2
1

b
‖xk − x∗‖2 +

6γ2
1σ

2

b
, (42)

P̂k ≥ µγ1

4
‖xk − x∗‖2 +

γ2
1

4
Eξk1

[
‖Fξk1 (xk)‖2

]
− 6γ2

1σ
2

b
, (43)

where P̂k = γ1Eξk1 ,ξk2
[
〈gk, xk − x∗〉

]
. Since γξk = γ2 = αγ1, we multiply (42) by α2 and (43) by α and get that

Assumption 2.1 holds with the parameters given in the statement of the theorem. Applying Theorem 2.1 we get
the result.

Corollary F.1 (µ > 0; Corollary 4.1). Let Assumptions 1.1, 1.2, and 4.1 hold. Let µ > 0, γ2,k = αγ1,k, α = 1/4,
and γ1,k = βkγ, where

γ = min

{
µb

18δ
,

1

4µ+
√

6(L2 + 2δ/b)

}
and 0 < βk ≤ 1. Then, for all K ≥ 0 and {βk}k≥0 such that

if K ≤ 32

γµ
, βk = 1,

if K >
32

γµ
and k < k0, βk = 1,

if K >
32

γµ
and k ≥ k0, βk =

64

64 + γµ(k − k0)
,

for k0 = dK/2e we have

E
[
‖xK − x∗‖2

]
≤ 1024‖x0 − x∗‖2

γµ
exp

(
−γµK

64

)
+

69120σ2

µ2bK

= O

max

{
δ

µ2b
,
L+

√
δ/b

µ

}
‖x0−x∗‖2 exp

− K

max

{
δ
µ2b ,

L+
√
δ/b

µ

}
+

σ2

µ2bK

 .

Proof. In Theorem F.1, we establish the following recurrence:

E
[
‖xk+1 − x∗‖2

]
≤

(
1− βk

αγµ

8

)
E
[
‖xk − x∗‖2

]
+ 6α (α+ 1)β2

kγ
2σ

2

b
α=1/4

=
(

1− βk
γµ

32

)
E
[
‖xk − x∗‖2

]
+ β2

k

15σ2

8b
.

Applying Lemma C.1 for rk = E
[
‖xk − x∗‖2

]
, γk = βk, a = γµ/32, c = 15σ2

/8b, h = 1, we get the result.

Corollary F.2 (µ = 0). Let Assumptions 1.1, 1.2, and 4.1 hold. Let µ = 0, δ = 0, γ2 = αγ1, α = 1/4, and
γ1 = γ = 1/

√
6L. Then, for all K ≥ 0 we have

1

K + 1

K∑
k=0

E
[
‖F (xk)‖2

]
≤ 16

√
6L‖x0 − x∗‖2

K + 1
+

30σ2

b
,

and each iteration requires O(b) stochastic oracle calls.

Proof. Given the result of Theorem F.1, it remains to plug in α = 1/4.
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F.1 On the Assumptions in the Analysis of S-SEG and I-SEG

In this subsection, we provide clarifications on why we use different assumptions to analyze S-SEG and I-SEG.
In particular, our analysis of S-SEG requires Lipschitzness and quasi-strong monotonicity of F (x, ξ) for all ξ
(Assumptions 3.1, 3.2) and no assumptions on the variance of F (x, ξ), while for I-SEG we use bounded variance
assumption (Assumption 4.1).

First of all, it is known that deterministic EG can be viewed as an approximation of the Proximal Point method
(Martinet, 1970; Rockafellar, 1976) when F is L-Lipschitz, e.g., see Theorem 1 from (Mishchenko et al., 2020).
In some sense, Lipschitzness of F is a crucial property for the convergence of EG. One iteration of S-SEG can be
seen as a step of deterministic EG for the stochastic operator F (x, ξ). Therefore, it is natural that Lipschitzness
of F (x, ξ) is important for the analysis of S-SEG. On the other side, I-SEG uses different samples for extrapolation
and update steps. Therefore, Lipschitzness of individual F (x, ξ) does not help here and we need to use something
like Assumption 4.1 to handle the stochasticity of the method.
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