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Abstract

An important problem in machine learning
is the ability to learn tasks in a sequen-
tial manner. If trained with standard first-
order methods most models forget previ-
ously learned tasks when trained on a new
task, which is often referred to as catas-
trophic forgetting. A popular approach to
overcome forgetting is to regularize the loss
function by penalizing models that perform
poorly on previous tasks. For example, elas-
tic weight consolidation (EWC) regularizes
with a quadratic form involving a diagonal
matrix build based on past data. While
EWC works very well for some setups, we
show that, even under otherwise ideal condi-
tions, it can provably suffer catastrophic for-
getting if the diagonal matrix is a poor ap-
proximation of the Hessian matrix of previ-
ous tasks. We propose a simple approach to
overcome this: Regularizing training of a new
task with sketches of the Jacobian matrix of
past data. This provably enables overcoming
catastrophic forgetting for linear models and
for wide neural networks, at the cost of mem-
ory. The overarching goal of this paper is
to provided insights on when regularization-
based continual learning algorithms work and
under what memory costs.

1 Introduction

Consider the problem of learning a number of tasks
sequentially. Even if a neural network has the ability
to perform well on all tasks simultaneously, if trained
sequentially on different tasks, it tends to perform well
only on the task it has most recently been trained
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on (French, 1999; Robins, 1995; Goodfellow et al.,
2015). This is known as catastrophic forgetting.

Continual learning algorithms address forgetting and
aim to enable sequential learning of several tasks. Con-
tinual learning algorithms are often categorized into
replay methods, regularization based methods, and
approaches that modify a model directly by freez-
ing/masking parts of the model or adding new parts
to the model, see for example (Rusu et al., 2016).

Replay methods (Robins, 1995; Rebuffi et al., 2017;
Shin et al., 2017; Li and Hoiem, 2018) store past task
data, or a generative model, and reuse past task data
or pseudo-labels generated by the stored generative
model when training a new task.

Regularization based methods penalizes models with
parameters far from those found important for pre-
vious tasks when training a new task. Two widely
used regularization based methods are elastic weight
consolidation (EWC) (Kirkpatrick et al., 2017) and
synaptic intelligence (SI) (Zenke et al., 2017). Both
penalize the change of individual model coefficients
deemed important for previous tasks via a quadratic
penalty associated with each weight (or model param-
eter). This penalty ignores interactions between co-
efficients. Subsequent works incorporated quadratic
penalties on the weights that take interactions between
the weights into account, and/or provided generaliza-
tions of EWC (Ritter et al., 2018; Liu et al., 2018;
Chaudhry et al., 2018; Schwarz et al., 2018; Pan et al.,
2021). This generally tends to improve performance.
Versions of regularization-based methods are also re-
ferred to as online-Laplace algorithms, since they can
be understood as applying a Laplace-approximation to
the posterior.

Regularization based continual learning algorithms are
appealing for its simplicity, but—like continual learn-
ing algorithms in general—are not well understood
theoretically. It is important to study continual learn-
ing algorithms theoretically to understand when they
work and when they fail. For example, methods per-
form well on a given continual learning task, but fail
on another. Taking the EWC algorithm as an exam-
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ple, it performs almost optimally on the MNIST per-
mutation problem (see Fig. 3B in (Kirkpatrick et al.,
2017)), but fails for learning pairs of different digits
sequentially (see. Fig. 2a in (Kemker et al., 2018)).

Motivated this discrepancy, the goal of this paper is
to improve the understanding of regularization based
continual learning methods by studying a family of
algorithms that rely on approximating the loss func-
tions pertaining to different tasks with random projec-
tions. The intuition is, that the outer product of the
Jacobian is an approximation to the Hessian, and ap-
proximate Jacobians can efficiently approximate the
Hessian. The family of algorithms uses the Hessian
approximation in a quadratic penalty which approxi-
mates the loss function pertaining to past data. The
EWC algorithm and adding an L2-penalty penalizing
the move of coefficients are special cases.

Our contributions are as follows:

• Our main result is to show that a regularization
based continual learning algorithm trained with
`2-loss that works with sketched Jacobians prov-
ably enables continual learning, both for linear
models and for wide neural networks.

• We conduct experiments on the MNIST permu-
tation problem and the incremental MNIST task.
The results show that working with a coarse
sketch of the Jacobian gives significant improve-
ments over the EWC algorithm, albeit at the cost
of storing significantly more data.

• The EWC algorithm and even importance/L2-
regularization perform well for continual learning
on the MNIST permutation problem. This is sur-
prising, because the penalty used in the EWC al-
gorithm is not a good approximation of the loss
function of past data. To understand this, we
study a model of the permutation problem theo-
retically, and show that both EWC and constant
importance can work optimally on that task. We
complement this result with a statement showing
that EWC and importance/L2-regularization can
provably fail as well.

Those results contribute to an understanding of when
we expect particular regularization based continual
learning algorithms to work well and when not.

1.1 Related work

There are relatively few theoretical works on contin-
ual learning, compared to the vast literature on algo-
rithms for continual learning and corresponding em-
pirical results. Some recent theoretical developments

include (Yin et al., 2020; Bennani et al., 2020; Alquier
et al., 2017; Doan et al., 2021). Yin et al. (2020) stud-
ies optimization and generalization aspects of regular-
ization based algorithms involving the Hessian. Our
work differs in that we study a different family of algo-
rithms (including random projections to approximate
the Jacobian), and different models of data.

Our work builds on the popular idea of using (an ap-
proximation of) the second-order Taylor expansion to
approximate the loss of past data. This idea was pro-
posed as early as in (Ruvolo and Eaton, 2013), and
of course the regularization based methods mentioned
earlier can be viewed as being based on this idea. Fi-
nally, the very recent paper (Li et al., 2021) also pro-
posed to use random projections for sketching a reg-
ularizer involving the Jacobian, and provided exper-
iments showing that this approach works well. Our
works are very complementary, in that we provide ex-
plicit theoretical results showing that sketching the
Jacobian enables provably continual learning for both
linear models and for two-layer neural networks. In
addition, we also provide positive and negative results
for EWC.

2 Problem statement

We consider the problem of learning a series of re-
gression or classification tasks A,B, . . . sequentially.
For each task T , we are given a set of training exam-
ples {(xT,1, yT,1), . . . , (xT,n, yT,n)} ∈ Rd×Y drawn iid
from an unknown distribution PT pertaining to task T .
Here Y = R for a regression task, and Y = {1, . . . , Q}
for a classification task. Our goal is to train a single
model fθ : Rd → Y sequentially on the training sets of
tasks A,B, . . ., so that after training on task T , the
model performs well on all past tasks.

More specifically, after training on tasks A,B, . . . , T ,
the model should perform well in predicting the re-
sponse y based on the feature vector x, with the un-
seen example (x, y) drawn with equal probability from
one of the distributions of tasks A,B, . . . , T . Through-
out, we assume that the method does not know at test
time on which task it is evaluated. This is sometimes
called single-head evaluation, as opposed to multi-head
evaluation, where the task ID is known (Chaudhry
et al., 2018), and is considered the more challenging
and more practical evaluation mode or setup.

3 A family of regularization based
continual learning algorithms

We start with introducing a family of regularization-
based continual learning algorithms that rely on ap-
proximations of the loss functions pertaining to dif-
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ferent tasks. This family incorporates the EWC al-
gorithm and is closely related to other regularization-
based methods including (Ritter et al., 2018; Liu et al.,
2018; Chaudhry et al., 2018; Schwarz et al., 2018)
in that it approximates the loss associated with past
tasks.

The family of algorithms is parameterized by an ap-
proximation of the Jacobian of the model fθ : Rd → Y
with model parameter θ ∈ Rp applied to the data of
a task. Specifically, denote by KT ∈ Rs×p an approx-
imation of the Jacobian JT ∈ Rn×p of the predictions
of the data of task T :

fT (θ) = [fθ(xT,1), . . . , fθ(xT,n)]
T
.

Here, n is the number of training examples. The Jaco-
bian JT contains the gradients∇θfθ(xT,i), i = 1, . . . , n
as rows. The gradients have dimension p for a regres-
sion problem, and dimension (Q− 1)× p for a classi-
fication problem with Q classes.

We train a model fθ with a quadratic loss on the data
from tasks A,B, . . . , T as follows. First, we minimize
the training loss of task A:

LA(θ) =
1

2

n∑
i=1

(fθ(xA,i)− yA,i)2. (1)

Let θA be a minimizer of this loss function. Next, we
learn task B by minimizing the loss

LAB(θ) = LB(θ) +
λ

2
(θ − θA)

T
KT
AKA(θ − θA), (2)

where KA ∈ Rn×p is the approximation of the Jaco-
bian of the function fA(θ) = [fθ(xA,1), . . . , fθ(xA,n)]

T

at θ = θA, and λ ≥ 0 is a regularization parameter. In
order to learn a third task C we minimize the function

LABC(θ) = LC(θ)

+
λ

2
(θ − θAB)

T
(KT

AKA + KT
BKB)(θ − θAB),

where θAB is a minimum of LAB(θ) and
KB is the approximate Jacobian of fB(θ) =

[fθ(xB,1), . . . , fθ(xB,n)]
T

at θ = θAB . The algo-
rithm proceeds by learning further tasks D,E, . . .
analogously.

In the coming sections, we discuss four variants. All
variants require at most computation of the Jacobian.
The Jacobian is easy to compute for most popular ma-
chine learning models, because it simply requires com-
putation of the gradients on the training examples, and
first order methods for optimization already compute
those in each epoch. We state the memory require-
ment for K tasks.

i) Regularization with Original Jacobian:
Take the approximation of the Jacobian as the
Jacobian of the predictions fT (θ) at the appro-
priate θ, i.e., KT = JT . Memory requirement:
p(1 +Kn).

ii) Regularization with Sketched Jacobian
(RSJ): Take the approximation of the Jacobian
as a random sketch of the Jacobian of the predic-
tions fT (θ) at the appropriate θ, obtained by left-
multiplying the Jacobian with a Gaussian random
projection matrix ST ∈ Rs×n, with iid N (0, 1/s)
entries, i.e., KT = STJT ∈ Rs×p. Memory re-
quirement: p(1 + Ks). Note that this algorithm
is indexed by s, therefore we refer to it as RSJ-s
in the following (e.g., RSJ-50 is RSJ with s = 50).

iii) EWC: Take the approximation of the Jacobian
KT ∈ Rp×p as the square-root of the diago-
nal of the outer product of the Jacobians JTTJT .
This algorithm is a variant of the EWC algo-
rithm. Specifically, it corresponds to “online”
EWC where instead of the original Fisher matrix,
the empirical Fisher matrix is used (see (Kunstner
et al., 2019) on the relations of the original and
empirical Fisher matrices). Memory requirement:
2p.

iv) L2: Take the approximation of the Jacobian
KT ∈ Rp×p as the identity matrix. This amounts
to simple constant importance/L2-regularization
penalizing the movement of coefficients from one
task to the other. Memory requirement: p.

The intuition behind this family of algorithms is as
follows. First, consider the variant that takes the ex-
act Jacobian as the matrix KA. If the model fθ(x)
is linear in the model parameter θ then, as shown in
the next section, for λ = 1, the algorithm performs
optimal continual learning, since the model learned at
each step T is equivalent to the model learned when
training on all data A,B, . . . , T . The model is linear
in the model parameter for all kernel methods, and is
approximately linear for wide neural networks, as es-
tablished by the recent theory on the neural tangent
kernel (Jacot et al., 2018; Lee et al., 2018; Du et al.,
2018; Oymak and Soltanolkotabi, 2020). For this lin-
ear setup, the importance matrix JTAJA is equal to the
Hessian matrix.

While working with the original Jacobian gives a con-
tinual learning algorithm that provably succeeds for
linear models, the corresponding algorithm is imprac-
tical for large commonly used models. For small,
under-parameterized toy models working with the
original Jacobian is a viable approach, but for large,
over-parameterized models used in practice it is infea-
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sible and impractical to store all the Jacobians, be-
cause in that case the memory requirement would be
larger than that of storing the training data.

The intuition behind regularization with the sketched
Jacobian (RSJ algorithm) is that, if we manage to
obtain accurate approximation of the Jacobian outer
products JTTJT for all tasks, then we expect the cor-
responding algorithm to behave similar to the optimal
algorithm that works with the original Jacobian. In
Section 5 and 6 we show that the sketched Jacobians
can provably enable continual learning for linear mod-
els and wide neural networks. This comes at a price:
larger values of s give a better approximation at a
higher memory cost.

The third variant, the EWC algorithm, can be viewed
as taking an extreme approach to approximating the
Jacobian outer product JTTJT by simply taking its di-
agonal.

4 Empirical observations

We start by evaluating the methods introduced in
the previous section on two popular continual learning
problems: The MNIST permutation problem and the
incremental MNIST problem. We will make a num-
ber of empirical observations, and then explain those
empirical observations with theoretical results in the
remaining sections. All simulations were run on a sin-
gle RTX 5000 GPU and are reproducible with the code
in the supplement.

There are a variety of interesting new state-of-the-art
approaches for continual learning. We do not compare
to those, because our goal is not to establish a new
state-of-the-art method but rather to understand reg-
ularization based continual learning algorithms better.
However, we compare to “training on all data” as a ref-
erence point, which can be viewed as an upper bound
for any continual learning algorithm.

4.1 MNIST permutation Problem

The popular MNIST permutation problem (Goodfel-
low et al., 2015; Kirkpatrick et al., 2017) is as follows.
Task A is the original MNIST digit classification prob-
lem, and all remaining tasks are obtained by permut-
ing the pixels of each image with a random permuta-
tion that is fixed for each task B,C, . . .. This is often
called task-incremental learning. We apply the fam-
ily of algorithms introduced in the previous section to
continually learning 10 of such tasks with a two-layer
fully connected network with 500 hidden nodes and
relu-activation functions. Figure 1 shows the results,
including the baseline “all data”, which means the net-
work has been trained on all data from all tasks. This

baseline is an upper bound on the performance of any
continual learning algorithm.

We first observe that, perhaps surprisingly, EWC
performs extremely well on permuted MNIST:
Almost as well as training on all data from all tasks.
We find this surprising, because the EWC algorithm
works well here even though the Jacobian outer prod-
uct is not well approximated with its diagonal. To
see that the Jacobian outer product, JTTJT , cannot
be well-approximated by its diagonal, note that the
number of training examples is n = 60000, while the
number of model parameters is p = 397510, therefore
JTTJT has rank at most n while its diagonal has rank
p� b.

The experiment also shows that simple constant
importance/L2-regularization performs well, it is only
2%-less than optimal on 10 tasks. Note that for L2-
regularization to work well it is critical to scale the
penalty of each set of parameters (first layer weights,
first layer bias, second layer weights, second layer bias)
appropriately (through hyperparameter optimization),
which we have done here.

In Section 7 we explain theoretically why EWC (and
even constant importance/L2-regularization) can per-
form so well in some situations.

Also note that the random projection based algorithm
RSJ-100 performs similar to EWC for this setup, but
not better, because there is little room for improve-
ment to training on all data.

Next, we study the performance of the family of con-
tinual learning algorithms on a much smaller model,
specifically on a random feature model, with 6 · 784
Gaussian random relu features (i.e., we fit the model
fθ(x) = relu(Θx)θ, where Θ is a Gaussian random
matrix). This model has much fewer parameters than
the neural network considered earlier and is linear in
the model parameter θ (but not in x). Figure 1, bot-
tom panel, depicts the results.

The results show that for this smaller model, the EWC
and L2-regularization algorithms perform significantly
worse than the random-projection based RSJ algo-
rithm algorithm with a sufficiently large random pro-
jection dimension (s = 400). The RSJ-400 algorithm
performs almost on par with training on all data.

An important observation from this experiment is that
the the gap between learning on all data and the
RP based algorithm increases from task to task.
That is intuitively expected because the error due to
the approximate Jacobians accumulates from task to
task. We discuss this aspect in Section 5 theoretically.
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Figure 1: Top: Sequential learning on the MNIST
permutation problem for a two-layer fully connected
relu network. All data refers to training on all the
data of all the tasks. The experiment shows that on
this task, if correctly tuned, all algorithms perform
close to optimal, i.e., close to training sequentially on
all data. Bottom: Sequential learning on the MNIST
permutation problem for relu-random feature model
with 6 · 784 random features. For this model, which is
much smaller than the two-layer model from the past
experiment, EWC and L2 regularization do not work
well, but the RSJ algorithm which uses a much better
approximation of the Jacobian significantly improves
performance.

4.2 Incremental MNIST problem

Finally, we study the problem of incrementally learn-
ing to classify digits. This is called class incremental
learning by van de Ven and Tolias (2019); Hsu et al.
(2019)). Task A is to classify {0, 1}, task B to classify
{2, 3}, etc, until task E which is to classify {8, 9}. This
problem and variants thereof are a popular continual
learning baseline (Kemker et al., 2018; Zenke et al.,
2017). Figure 2 shows the performance of the family of
algorithms on the incremental learning task. Note that
after learning say tasks A = {0, 1} and B = {2, 3}, the
method is evaluated on both tasks simultaneously, i.e.,
on the test set containing all digits {0, 1, 2, 3}. This
assumes the task on which we test on is unknown, in
contrast to the so called multi-head evaluation mode
where the task is known. This evaluation mode is con-
sidered much harder, as mentioned earlier.

The results, depicted in Figure 2, show that while
EWC fails dramatically for this task (which is well
known, cf. Fig. 2a in (Kemker et al., 2018), the RSJ
algorithm works almost as well as training on all the
data, already for a projection dimension of s = 100.
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Figure 2: Sequentially learning to classify the dig-
its {0, 1}, {2, 3}, . . . , {8, 9} with a relu-random feature
model with 6 · 784 random features. For this problem,
EWC does not work at all, but the RSJ algorithm with
a sufficiently large random projection (i.e., value of s)
works almost as well as training on all data.

5 Guarantees for linear models

We start by providing guarantees for the Jacobian reg-
ularization based learning algorithms (based on the
full and sketched Jacobian) for linear models. We con-
sider models fθ(x) that are linear in θ, i.e., there exists
a feature map ψ : Rd → Rp, so that fθ(x) = 〈ψ(x),θ〉.
All kernel methods can be written in this form (al-
though for some kernels this feature map is infinite
dimensional).

We start with an illustrative result that guarantees
that if we work with the original Jacobian, then regu-
larization based continual learning is provably correct:

Proposition 1. Suppose that the model fθ is linear in
θ, and consider the continual learning algorithm with
the original Jacobian and with regularization parame-
ter λ = 1 trained with `2-loss. Then the model learned
with Jacobian regularization gives exactly the same re-
sult as training on the original data.

We hasten to add that it might be obvious to experts in
continual learning that regularization based continual
learning with the exact Jacobian provably succeeds for
linear models; we nevertheless state this formally to
put the results to come into context.

As mentioned before, for small, under-parameterized
toy models working with the original Jacobian is a vi-
able approach, but for large, over-parameterized mod-
els used in practice it is infeasible and impractical, be-
cause the memory requirement of storing the Jacobian
is larger than that of storing the entire training data.

We next discuss the RSJ algorithm that works with
the sketched Jacobian, and for simplicity we focus on
learning two tasks A and B. Learning of task A is
straightforward and amounts to minimizing the least-
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squares loss on task A (i.e., LA(θ)). Learning task
B after having learned task A amounts to solving the
partially sketched least-squares problem:

LAB(θ) = LB(θ) +
1

2
(θ − θA)

T
JTASTSJA(θ − θA).

This can be viewed as a perturbed version of the least-
squares problem

L̃AB(θ) = LA(θ) + LB(θ) =
1

2
‖Jθ − y‖22, (3)

corresponding to training on the entire data. To see
this, note that if the random projection dimension
is sufficiently large then the matrix JTASTSJA is a
good approximation of the matrix JTAJA, which in turn
means that the loss LAB is a good approximation of
the loss L̃AB . Here, we defined

J =

[
JA
JB

]
, y =

[
JAθA
yB

]
.

Note that the sketch of the Jacobian induces a pertur-
bation, and therefore the solution obtained by min-
imizing the loss LAB(θ) is in general different than
minimizing the loss of the entire data. However, if
the Jacobian of JA is well approximated by a matrix
of rank r, then we expect that a sketch of dimension
s = O(r) approximates the Jacobian well, and the
estimate obtained by minimizing the sketched least-
squares problem is expected to be close to the solu-
tion obtained by minimizing the original least-squares
problem.

The following result, proven in the supplement, for-
malizes this intuition by bounding the difference of the
gradient descent iterates θt and θ̃t on the least squares
loss LAB(θ) and the un-perturbed least-squares loss
in (3).

Theorem 1. Let J = UΣVT be the singular value
decomposition of J, σmax and σmin are the largest
and smallest singular values, and Ur and Un are the
left-singular vectors corresponding to the largest r and
the remaining singular values. Let θt and θ̃t be the
gradient descent iterates with stepsize η starting at
θ0 = θ̃0 = 0 on the aforementioned least-squares prob-
lems.

i) Suppose that t is sufficiently small so that

(1− ησ2
min)t ≥ 1− σ2

min

σ2
r

‖UT
r y‖

2

‖UT
ny‖

2
. Then, with prob-

ability at least 1− 4t exp
(
− ‖JA‖

2
F

2‖JA‖2

)
,

∥∥∥θt − θ̃t

∥∥∥
2
≤ 8
‖JA‖F√
sσr

1

σr

∥∥UT
r y
∥∥
2
.

ii) Suppose that J has rank r. Then, with probability

at least 1− 2e−r
2

, for all t,

∥∥∥θt − θ̃t
∥∥∥
2
≤ σmax

σr

√
c
r

s

1

σr
‖r̃0‖2.

The theorem consists of two parts, both guarantee-
ing closeness of the iterates under slightly different as-
sumptions.

The first part guarantees that if the sketch dimen-
sion is sufficiently large relative to the effective rank
of the matrix JA, measured by ‖JA‖F /σr, then the
solution obtained by applying gradient descent to the
original and un-perturbed least-squares problems are
very close. If the singular values decay quickly, then
the statement ensures that after a certain number of
iterations, sufficient to fitting the singular vectors cor-
responding to large singular values, the iterates are
close.

The second part guarantees that the solution obtained
by applying gradient descent to the original and un-
perturbed least-squares problems are very close, pro-
vided that the sketch dimension is sufficiently large
relative to σmax

√
r/σr ≥ ‖JA‖F /σr. This is a slightly

stronger requirement on the sketch dimension, but the
closeness holds for all iterations t.

There is a large body of literature which ensures that
the solution of a randomly sketched least-squares prob-
lem behaves similarly to the solution obtained for the
un-perturbed problem (Sarlos, 2006; Agarwal et al.,
2012; Pilanci and Wainwright, 2015). The proof of
Theorem 1 is conceptually similar to those of prior
works, but differs as in our setup only part of the least-
squares problem is sketched, and more importantly,
our results also applies to over-parameterized models,
unlike many previous results.

5.1 Continual learning on a sequence of two
regression tasks

We next apply Theorem 1 to obtain guarantees for
continual learning of a regression task with the RSJ
algorithm. We show that a sufficiently large sketch
dimension provably enables continual learning.

Suppose the data of task T , for T ∈ {A,B} is gener-
ated by a Gaussian linear model

y = 〈x,θT 〉+ z,

where x ∼ N (0, I) and z ∼ N (0, σ2). Consider learn-
ing a linear model fθ(x) = 〈θ,x〉 with a quadratic loss.
The risk if we draw a problem instance from one of the
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two tasks with equal probability is

R(θ) =
1

2
E(x,y)∼PA

[
(〈θ,x〉 − y)2

]
+

1

2
E(x,y)∼PB

[
(〈θ,x〉 − y)2

]
= ‖θ − θA‖22 + ‖θ − θB‖22 + σ2. (4)

Thus, the optimal linear model is θ∗ = 1
2 (θA + θB).

Suppose we obtain n � d training examples from
each of the two tasks and apply gradient descent until
convergence on all of the data (i.e., the loss function
in (3)). Then, after t = O(log(n)/ log(n/d)) many
gradient descent iterations (see supplement), the cor-
responding estimate θ̃t obeys, with high probability,

∥∥∥θ̃t − θ∗
∥∥∥
2
≤ O

(√
d

n
(‖θA‖2 + ‖θB‖2 + σ)

)
. (5)

If we learn both task sequentially with the RSJ al-
gorithm, we get, by applying Theorem 1, that (see
supplement for the details), with high probability,

‖θt − θ∗‖2 ≤ O

((√
d

n
+

√
d

s

)
(‖θA‖2 + ‖θB‖2 + σ)

)
.

(6)

Thus, as long as we choose the dimension of the ran-
dom projection on the order of d (up to log-factors),
the continual learning algorithm probably enables ob-
taining an estimator that has near-optimal risk, since
this ensure that the RHS of (6) is less than a small con-
stant times ‖θA‖2 + ‖θB‖2 + σ, which applied to (4)
implies a near-optimal risk (since R(θt) ≤ R(θ∗) +
2‖θt − θ∗‖2 (‖θt − θ∗‖2 + ‖θt − θA‖2 + ‖θt − θB‖2)).

5.2 Continual learning on more than two
regression tasks

The analysis from the previous section shows that if
we learn two regression tasks sequentially, we obtain
an estimate that is accurate up to two error terms
(cf. (6)): The first one is the statistical error due to
learning on finite data. The second term is because
we are not learning based on the original data of the
first task A. If we move from two tasks to three and
more the effect of those approximations compounds
which makes it difficult to learn a large number of
tasks sequentially. This explains why in the simu-
lations shown previously for a linear random feature
model (see Fig. 2) the gap between training on all
of the data and the RSJ algorithm increases in the
number of tasks, and this gap becomes smaller if the
approximation becomes better.

6 Guarantees for two-layer neural
networks in the NTK regime

We now provide guarantees for wide neural net-
works in the so called neural-tangent-kernel (NTK)
regime, in which the networks behave approximately
linearly, as established by recent results (Jacot et al.,
2018; Lee et al., 2018; Du et al., 2018; Oymak and
Soltanolkotabi, 2020).

Consider a two-layer neural network with ReLU acti-
vation functions and k neurons in the hidden layer:

fθ(x) =
1√
k

relu(xTΘ)v. (7)

Here, x ∈ Rd is the input of the network, Θ ∈ Rd×k
are the trainable weights of the first layer and v ∈ Rk
are fixed second-layer weights with the first half equal
to 1 and the second half equal to −1. The trainable
parameters are the weight-matrix Θ, and we denote
with θ the vectorized version of this matrix.

The training data for task T , for T ∈ {A,B}, consists
of n points drawn iid from an (unknown) joint distri-
bution (xi, yi) ∼ PT , and we assume for convenience
that the data points are normalized (‖x‖2 = 1) and
that the labels are bounded (|yi| ≤ 1).

Similarly as in the previous section, we consider the
composite risk

R(θ) =
1

2
RA(θ) +

1

2
RB(θ) (8)

where

RT (θ) = E(x,y)∼PT [`(fθ(x), y)] .

Here, ` : R × R → [0, 1] is a loss function that is 1-
Lipschitz in its first argument and obeys `(y, y) = 0;
an example of such a function is `(z, y) = |z − y|. For
the composite risk to be small, both the risks of task
A and B have to be small.

The following theorem quantifies the risk of the RSJ al-
gorithm with the loss minimized via t-many iterations
of gradient descent. Specifically, we first run gradient
descent on the loss of task A, defined in equation (1)
until convergence, and then run t iterations on the
RSJ-loss (2).

Our risk bound depends on the Gram matrix K ∈
R2n×2n with entries defined as

[K]ij =
1

2

(
1− cos−1 (〈xi,xj〉)

π

)
〈xi,xj〉 ,

where (i, j) are the pairs of training data points from
the two tasks.
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Theorem 2. Let α > 0 be the smallest singular value
of the Gram matrix K, and consider the network in
the NTK regime where k →∞. Let fθt be the network
trained with t iterations of gradient descent applied to
the loss of the RSJ algorithm. Then with probability

at least 1 − 4t exp(− ‖JA‖
2
F

2‖JA‖2
), the risk of the network

trained with at least t ≥ log(1−ηα)
log(1/n) gradient iterations

is bounded by

R(θt) ≤ 2

√
1

n
yTK−1y

+
3√
n

+
1√
sα2

(
10‖JA‖F +

‖K‖F√
n

)
, (9)

where y = [yA,yB ] ∈ R2n contains the labels of the
training data of the two tasks.

The theorem establishes that the risk is bounded
by a complexity measure of the data defined as√

1
nyTK−1y, plus two perturbation terms, one of

which depends on the quality of the random projec-
tion. The complexity measure of the data has been
studied by Arora et al. (2019), and measures whether
the training set of tasks A and B can be well rep-
resented with the kernel associated with the relu-
network. If those training sets can be well represented

with this kernel, the complexity measure
√

1
nyTK−1y

is small. See (Arora et al., 2019) for a detailed discus-
sion on the interpretation of this complexity measure.

For our purpose, it is important to note that if we were
to train the neural network on the data from task A
and B simultaneously, we would obtain the same risk
bound as above but without the perturbation term
in equation (9) starting with 1√

sα2 . The perturbation

term is small if the dimension of the random projection
is on the order of the effective rank of the Jacobian JA;
this term can be computed from the data and thus
we can verify whether we are choosing the random
projection dimension s sufficiently large.

7 Negative results for learning
Gaussian mixture models
sequentially with EWC

In this section we study the popular data permutation
experiment theoretically, and show why EWC and L2-
regularization can perform well even in a setup where
the diagonal of the Jacobian outer product is a poor
approximation of the original Jacobian outer product
(recall the experiment in Figure 1).

Consider a binary version of the MNIST permutation
experiment. Task A is to classify the digits {0, 1} from
the original feature vectors (i.e., the vectorized 28 ×

Figure 3: A visualization of the permutation task: The
first axis shows task A of distinguishing ones and zeros.
The second axis shows task B of distinguishing shuffled
ones and zeros (each image is shuffled with the same
random permutation). Due to the random shuffling,
the two axis are approximately orthogonal. We there-
fore model this with a Gaussian mixture model where
the two tasks are orthogonal to each other.

28 pixel images), task B to classify the digits {0, 1}
from the vectorized images permuted with a random
perturbation, fixed for task B, and task C is generated
in the same way, with a new permutation.

A simple mathematical abstraction for this is a Gaus-
sian mixture model where the class means of the two
classes point in different directions. In the MNIST
permutation experiment, task B is obtained by simply
shuffling each of the feature vectors (the pixels) with
a random permutation.

This can be modeled with a new task B of the Gaus-
sian mixture model with class means that are near-
orthogonal to the means of task A. This is illustrated
in Figure 3. Motivated by this observation, we study
the following Gaussian mixture model for continual
learning.

Gaussian mixture model for continual learn-
ing: Consider the standard binary classification set-
ting, where the data for each task is distributed as a
mixture of two Gaussians. For task T = A,B, . . ., the
response y ∈ {−1, 1} is uniformly distributed, and the
feature vector x given the class label y is distributed
as x|y ∼ N (yµT , σ

2I). Here, µT ∈ Rd is a fixed class
mean vector with unit norm, and σ2 > 0 is the within-
class variance. The Bayes optimal classifier for a given
task is ŷ(x) = sign(〈µT ,x〉).
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Consider the linear classifier ŷθ(x) = sign(〈θ,x〉). The
corresponding Bayes risk on task T is

RT (θ) = P(x,y)∼PT [1{ŷ(x) 6= y}] = Φ

(
〈θ,µT 〉
‖θ‖2σ

)
,

where Φ(x) = (2π)−1/2
∫ x
−∞ e−t

2/2dt is the cumulative
distribution function of the standard normal distribu-
tion. Our goal is to learn the tasks sequentially so
that the risk of a task chosen with equal probability is
small. Specifically, we wish the risk

RA:T (θ) =
1

T
(RA(θ) +RB(θ) + . . .+RT (θ))

to be small. For simplicity, we consider two tasks A
and B. The optimal θ that minimizes the risk of tasks
A and B, i.e., RAB is is a linear combination of the two
optimal points for the individual tasks θ∗AB = µA+µB .

We next identify a setup in which the EWC algo-
rithm and L2 regularization provably succeed in learn-
ing tasks A and B sequentially. The EWC algorithm in
our formulation is trained with the quadratic loss, and
not with another suitable loss such as cross-entropy,
and we consider the infinite-data case, i.e., we study
EWC and L2 applied to the population risk, so that
we do not have to take finite-data effects into account.

Theorem 3. Suppose that the class means µA,µB ∈
Rd lie on a hypercube, i.e., each entry has equal mag-
nitude 1/d and that the inner product between the class
means is non-negative (〈µA,µB〉 ≥ 0). Then:

i) There is a choice of regularization parameter λ,
such that EWC is optimal (i.e., its solution min-
imizes the Bayes risk).

ii) There is a choice of regularization parameter λ,
such that L2 is optimal.

This result allows the diagonal of the Jacobian outer
product (i.e., the Hessian for this setup) to be a poor
approximation of the Jacobian outer product. Thus,
perhaps surprisingly, there are setups where EWC
(and L2-regularization) provably succeeds even when
the penalty of EWC (or L2-regularization) is a poor
approximation of the loss on past data.

The MNIST permutation problem approximately cor-
responds to a setup where the class mean are on a
hypercube (because most pixels are one or zero) and
therefore the theorem gives a potential justification
why EWC works so well on this problem.

At the same time, there exist, as expected, problem
instances where EWC and L2 regularization provably
fail at continual learning, even if given infinitely many
training examples:

Theorem 4. There are problem instance of the Gaus-
sian mixture model in Rd, d ≥ 3 (i.e., a choice of
µA,µB, and σ2) such that:

i) The risk of EWC for all values of the regulariza-
tion parameter λ is at least 3/2-times the optimal
risk: RAB(θEWC) ≥ 3/2RAB(θ∗AB).

ii) The risk of L2-regularization for all values of the
regularization parameter λ is 3/2-times the opti-
mal risk: RAB(θL2) ≥ 3/2RAB(θ∗AB).

8 Conclusion

In this paper we studied a family of algorithms in order
to understand regularization based continual learning
algorithms. We showed that popular regularization-
based learning algorithms, in particular EWC, can
provably fail if the regularization does not approxi-
mate the loss for past data well. We also showed that
this can be fixed by working with better approxima-
tions of the Jacobian. However, while the resulting
algorithm provably succeeds, it might comes at a high
memory cost. Our results indicate that regularization-
based continual learning algorithms that provably suc-
ceed for a variety of setups might need to have a large
memory footprint in return.
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A Proof of Proposition 1

For a linear model, the Jacobian JT ∈ Rn×p contains the feature maps ψ(xi) as rows. With this notation, the
loss function of task A becomes

LA(θ) =
1

2
‖JAθ − yA‖22,

where yA ∈ Rn are the responses of task A. The minimizer θA obeys

JTAJAθA = JTAyA.

Next, consider learning B after A and note that

min
θ
LAB(θ) = min

θ

1

2
(JBθ − yB)

T
(JBθ − yB) +

λ

2
(θ − θA)

T
JTAJA(θ − θA).

= min
θ

1

2
‖JBθ − yB‖22 +

λ

2
θTJTAJAθ − λθTJTAJAθ

T
A

= min
θ

1

2
‖JBθ − yB‖22 +

λ

2
θTJTAJAθ − λθTJTAyA

= min
θ

1

2
‖JBθ − yB‖22 +

λ

2
‖JAθ − yA‖22.

The analogous argument shows that the minimizer of LABC(θ) is equal to the minimizer of LA(θ) + LB(θ) +
LC(θ), and likewise for more tasks.

B Proof of Theorem 1: Analysis for sketched least-squares

In this section we prove Theorem 1 by showing that under certain conditions, the solution to a sketched least
squares is close to that of an associated non-sketched one.

B.1 Proof of Theorem 1, part i

We consider the least-squares objective

LAB(θ) = LB(θ) +
1

2
(θ − θA)

T
JTASTSJA(θ − θA)

=
1

2
θTJTBJBθ − θTJTByB +

1

2
θTJTASTSJAθ − θTJTASTSJAθA + c

=
1

2
θT
[
JTAST ,JB

T
] [SJA

JB

]
θ − θT

[
JTAST ,JB

T
] [SJAθA

yB

]
+ c

=
1

2
θTJTPJθ − θTJTPy + c.

Here, c is a numerical constant, independent of the optimization parameter θ, and we defined

J =

[
JA
JB

]
, P =

[
STS 0

0 I

]
, y =

[
JAθA
yB

]
, (10)

for notational convenience.

The gradient descent iterates with stepsize η for minimizing the loss LAB(θ) are

θt+1 = θt − η(JTPJθt − JTPy).

We bound the difference to the gradient iterates for minimizing the least squares objective without the random
projection matrix

L̃AB(θ) =
1

2
θTJTJθ + θTJTy.
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The gradients descent iterates for minimizing the loss L̃AB(θ) are

θ̃t+1 = θ̃t − η(JTJθ̃t − JTy).

The following lemma bounds the deviation of the two versions of gradient descent.

Lemma 1. Let J = UΣVT be the singular value decomposition of J, let σmax and σmin the largest and smallest
singular values, and let Ur and Un be the left-singular vectors corresponding to the r-largest and the remaining
singular values. Let θt and θ̃t be the gradient descent iterates after t iterations starting at θ0 = θ̃0 = 0. With

probability at least 1 − 4t exp(− ‖JA‖
2
F

2‖JA‖2
) over the random sketch S ∈ Rs×n, the difference of the iterates of the

original and the sketched problem is bounded by∥∥∥θt − θ̃t
∥∥∥
2
≤ 5
‖JA‖F√

s

(
1− (1− ησ2

r)t

σ2
r

∥∥UT
r y
∥∥
2

+
1− (1− ησ2

min)t

σ2
min

∥∥UT
ny
∥∥
2

)
.

Theorem 1 follows from the lemma, by using the assumption (1− ησ2
min)t ≥ 1− σ2

min

σ2
r

‖UT
r y‖

2

‖UT
ny‖

2
to conclude

∥∥∥θt − θ̃t
∥∥∥
2
≤ 5
‖J‖F√

s

(
1

σ2
r

∥∥UT
r r0
∥∥
2

+
1

σ2
min

∥∥UT
nr0
∥∥
2

σ2
min

σ2
r

∥∥UT
r y
∥∥
2

‖UT
ny‖2

)

= 5
‖J‖F√

s

1

σ2
r

∥∥UT
r r0
∥∥
2
.

In the reminder of this section we prove Lemma 1.

B.2 Proof of Lemma 1

The difference between the two iterates is bounded by∥∥∥θt+1 − θ̃t+1
∥∥∥
2

=
∥∥∥θt − η(JTPJθt − JTPy)−

(
θ̃t − η(JTJθ̃t − JTy)

)∥∥∥
2

=
∥∥∥(I− ηJTPJ)θt − (I− ηJTJ)θ̃t − η(JTy − JTPy)

∥∥∥
2

=
∥∥∥(I− ηJTPJ)θt − (I− ηJTPJ)θ̃t + (I− ηJTPJ)θ̃t − (I− ηJTJ)θ̃t − η(JTy − JTPy)

∥∥∥
2

=
∥∥∥(I− ηJTPJ)(θt − θ̃t) + η(JTJ− JTPJ)θ̃t − η(JTy − JTPy)

∥∥∥
2

≤
∥∥I− ηJTPJ

∥∥∥∥∥θt − θ̃t
∥∥∥
2

+ η
∥∥∥JT (I−P)(Jθ̃t − y)

∥∥∥
2

(i)

≤
∥∥∥θt − θ̃t

∥∥∥
2

+ η
∥∥∥JT (I−P)(Jθ̃t − y)

∥∥∥
2
, (11)

where inequality (i) holds for a sufficiently small stepsize, specifically for a stepsize smaller than η ≤ 1
σmax(JTPJ)

.

Note that a sufficiently small stepsize is required for gradient descent to converge. We next bound the term on
the RHS. Using that

I−P =

[
I− STS 0

0 0

]
,

and the definition of J and y in equation (10), we get∥∥∥JT (I−P)(Jθ̃t − y)
∥∥∥
2

=
∥∥∥JTA(I− STS)JA(θ̃t − θA)

∥∥∥
2

(i)

≤ 8
‖J‖F√

s

∥∥∥JA(θ̃t − θA)
∥∥∥
2

(ii)

≤ 8
‖JA‖F√

s
‖r̃t‖2. (12)
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Here, inequality (i) holds with probability at least 1−4e
− ‖

JA‖2F
2‖JA‖2 , as established by the lemma below. The lemma

below applies to a setup where the vector z = JA(θ̃t − θA) is independent of the random matrix S. The vector
z is independent of the random matrix S since θ̃t are the non-sketched gradient iterations. Moreover, inequality

(ii) follows by using that
∥∥∥JA(θ̃t − θA)

∥∥∥
2
≤
∥∥∥Jθ̃t − y

∥∥∥
2

= ‖r̃t‖2, where we defined the residual r̃t = Jθ̃t − y.

Lemma 2. For any J and any z ∈ Rn, and for S ∈ Rs×n a random projection matrix with iid N (0, 1/s) entries,
we have that

P

[∥∥JT (I− STS)z
∥∥
2
≤ 8‖J‖F ‖z‖2

1√
s

]
≥ 1− 4e

− ‖J‖
2
F

2‖J‖2

Application of the bound (12) to inequality (11), establishes that∥∥∥θt+1 − θ̃t+1
∥∥∥
2
≤
∥∥∥θt − θ̃t

∥∥∥
2

+ 8
‖JA‖F√

s
η‖r̃t‖2,

with probability at least 1 − 4e
− ‖

JA‖2F
2‖JA‖2 . Applying the union bound over t iterations, it follows that, with

probability at least 1− 4te
− ‖

JA‖2F
2‖JA‖2 , ∥∥∥θt − θ̃t

∥∥∥
2
≤ 8
‖JA‖F√

s
η

t−1∑
τ=0

‖r̃τ‖2. (13)

We next bound the sum of the residuals above. Let J = UΣVT be the singular value decomposition of J, and
note that

r̃t = Jθt − y

= (I− ηJTJ)tr̃0

= U(I− ηΣ2)tUT r̃0.

Let Ur and Un be the singular vectors corresponding to the r-leading and the other singular values. With this
notation, we have that

‖r̃τ‖2 ≤ (1− ησ2
r)2
∥∥UT

r r̃0
∥∥
2

+ (1− ησ2
min)2

∥∥UT
n r̃0
∥∥
2

We therefore can proceed with bounding the RHS of (13) as∥∥∥θt − θ̃t
∥∥∥
2
≤ 8
‖JA‖F√

s
η

t−1∑
τ=0

(1− ησ2
r)τ
∥∥UT

r r̃0
∥∥
2

+ (1− ησ2
min)2

∥∥UT
n r̃0
∥∥
2

= 8
‖JA‖F√

s
η

(
1− (1− ησ2

r)t

ησ2
r

∥∥UT
r r̃0
∥∥
2

+
1− (1− ησ2

min)t

ησ2
min

∥∥UT
n r̃0
∥∥
2

)
,

where the last inequality follows from the formula of a geometric series. This concludes the proof of Lemma 1.

B.3 Proof of Lemma 2

It remains to prove Lemma 2. Towards this goal, let P ∈ Rn×n be a orthonormal projection onto z, and let
P⊥ ∈ Rn×n be a orthonormal projection on the orthogonal complement. With this notation, we have∥∥JT (I− STS)z

∥∥
2

=
∥∥JT (P + P⊥)(I− STS)z

∥∥
2

(i)

≤
∥∥JTP(I− STS)z

∥∥
2

+
∥∥JTP⊥STSz

∥∥
2
, (14)

≤ ‖z‖2ε‖J‖ + 4‖J‖F
‖z‖2√
s

(15)

≤ 8‖z‖2‖J‖F
1√
s
, (16)
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where inequality (i) follows by the triangle inequality, and inequality (ii) holds with probability at least 1 −

4e
− ‖J‖

2
F

2‖J‖2 using that

P
[∥∥JTP(I− STS)z

∥∥
2
≤ ‖J‖‖z‖2ε

]
≥ 1− 2e−s

ε2

12 (17)

with the choice of ε = 4 1√
s

‖J‖F
‖J‖ , and using that

P

[∥∥JTP⊥STSz
∥∥
2
≤ 4‖J‖F

‖z‖2√
s

]
≥ 1− 2e

− ‖J‖
2
F

2‖J‖2 . (18)

It remains to prove the bounds (17) and (18). We start with inequality (17). We have that∥∥JTP(I− STS)z
∥∥
2
≤ ‖J‖

∥∥P(I− STS)z
∥∥
2

= ‖J‖
∥∥∥∥ z

‖z‖2
zT

‖z‖2
(I− STS)z

∥∥∥∥
2

= ‖J‖ 1

‖z‖2

∣∣∣‖z‖22 − ‖Sz‖22
∣∣∣

≤ ‖J‖‖z‖2ε,

where the last inequality holds with probability at least 1− 2e−s
ε2

12 for ε ∈ (0, 1), with a standard concentration
inequality for Gaussian matrices. This concludes the proof of the bound (17).

We next prove the bound (18). We need to bound the norm of JTP⊥STSz. Note that the terms JTP⊥ST and

Sz are independent. Moreover, Sz is a Gaussian random vector with iid N (0, ‖z‖22/s) entries. We therefore have
that ∥∥JTP⊥STSz

∥∥
2

=
‖z‖2√
s
‖Ag‖2, (19)

where g is a Gaussian vector with iid standard Gaussian entries, independent of S, and A = JTP⊥ST , for
notational convenience.

Recall that for a Gaussian vector g with iid standard Gaussian entries and a L-Lipschitz function, we have

P [f(g)− E [f(g)] ≥ t] ≤ e−
t2

2L2 .

Using that f(g) = ‖Ag‖2 is ‖A‖-Lipschitz, we get that

P [‖Ag‖2 ≥ 2‖A‖F ] = P

[
‖Ag‖2 ≥

√
E
[
‖Ag‖22

]
+ ‖A‖F

]
(i)

≤ P [‖Ag‖2 ≥ E [‖Ag‖2] + ‖A‖F ]

(ii)

≤ e
− ‖A‖

2
F

2‖A‖2 .

where inequality (i) is by Jensen’s inequality (which implies (E [‖Ag‖2])2 ≤ E
[
‖Ag‖22

]
) and inequality (ii)

follows by the Gaussian concentration inequality stated above. Similarly, we obtain

P [‖BS‖F ≥ 2‖B‖F ] ≤ e−
‖B‖2F
2‖B‖2 .

Combining those two inequalities, we get that∥∥JTP⊥STSz
∥∥
2

=
∥∥JTP⊥STg

∥∥
2

‖z‖2√
s
≤ 2
∥∥JTP⊥ST

∥∥
F

‖z‖2√
s
≤ 4‖JP⊥‖F

‖z‖2√
s
,≤ 4‖J‖F

‖z‖2√
s
,

where the first inequality holds with probability at least 1 − e−
‖J‖2F
2‖J‖2 , and the second as well, therefore by the

union bound the entire inequality holds with probability at least 1 − 2e
− ‖J‖

2
F

2‖J‖2 . This concludes the proof of
bound (18).
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B.4 Proof of Theorem 1, part ii

Equation (11) state that ∥∥∥θt+1 − θ̃t+1
∥∥∥
2
≤
∥∥∥θt − θ̃t

∥∥∥
2

+ η
∥∥∥JT (I−P)(Jθ̃t − y)

∥∥∥
2
. (20)

Since the matrix J has rank r, the residual (Jθ̃t−y) lies in a (r+ 1)-dimensional subspace, for any θt. It follows

that, with probability at least 1− 2e−r
2

,∥∥∥JT (I−P)(Jθ̃t − y)
∥∥∥
2
≤ σmax

√
c
r

d

∥∥∥Jθ̃t − y
∥∥∥
2
. (21)

This probability bound holds for all t simultaneously. Proceeding analogously as in the proof of Lemma 1, we
get ∥∥∥θt − θ̃t

∥∥∥
2
≤ σmax

√
c
r

d
η

t−1∑
τ=0

(1− ησ2
r)2‖r̃0‖2

= σmax

√
c
r

d
η

1− (1− ησ2
r)t

ησ2
r

‖r̃0‖2,

where the last inequality follows from the formula of a geometric series. This concludes the proof of Theorem 1,
part ii.

C Proof of the results in Section 5.1

In this section, we prove the two claims we made in Section 5.1, specifically that equations (5) and (6) hold with
high probability.

Claim 1: We first show that if we apply gradient descent for O(log(n)/ log(n/d)) iterations to the loss in (3),
i.e., to

L̃AB(θ) = LA(θ) + LB(θ) =
1

2
‖Jθ − y‖22,

then the corresponding estimate θ̃t obeys, with high probability,∥∥∥θ̃t − θ∗
∥∥∥
2
≤ O

(√
d

n
(‖θA‖2 + ‖θB‖2 + σ)

)
.

To establish this claim, we first note that the extreme singular values of a Gaussian matrix satisfy, for t >
0, (Rudelson and Vershynin, 2010, Equation 2.3)

P
[√

n−
√
d− t ≤ σmin ≤ σmax ≤

√
n+
√
d+ t

]
≥ 1− 2e−t

2/2. (22)

With t =
√
d, we get

P
[√

n− 2
√
d ≤ σmin ≤ σmax ≤

√
n+ 2

√
d
]
≥ 1− 2e−d

2/2, (23)

which we use below to establish the result.

Next, note that the minimizer of L̃AB(θ) is given by

θ̂ = (JTJ)
−1

JT
[
JA(JTAJA)

−1
JTAyA

yB

]
= (JTJ)

−1
(JTAJA(JTAJA)

−1
JTAyA + JTByB)

= (JTJ)
−1

(JTAyA + JTByB).
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It follows that∥∥∥θ̂ − θ∗
∥∥∥
2

=
∥∥∥θ̂ − θA − θB

∥∥∥
2

=
∥∥∥(JTJ)

−1
(JTAJAθA + zA) + JTB(JBθB + zB)− θA − θB

∥∥∥
2

≤
∥∥∥(JTJ)

−1
(JTAJAθA + zA)− θA

∥∥∥
2

+
∥∥∥(JTJ)

−1
JTB(JBθB + zB)− θB

∥∥∥
2

≤ c
√
d

n
(‖θA‖2 + ‖θB‖2 + σ) , (24)

where the last inequality holds with probability at least 1− 8e−d
2/2, and follows from∥∥∥(JTJ)

−1
JTA(JAθA + zA)− θA

∥∥∥
2
≤
∥∥∥I− (JTJ)

−1
(JTAJA)

∥∥∥‖θA‖2 +
∥∥∥(JTJ)

−1
∥∥∥∥∥JTAz

∥∥
2

≤ c
√
d

n
‖θA‖2 + c

√
d

n
σ,

where we used inequality (23), and where c is a numerical constant. Specifically, here we used that, with

probability at least 1− 8e−d
2/2,∥∥∥I− (JTJ)
−1

(JTAJA)
∥∥∥ ≤ ∣∣∣∣∣1− (

√
n+ 2

√
d)2

(
√
n− 2

√
d)2

∣∣∣∣∣ =

∣∣∣∣∣ 4
√
n
√
d

n+ 2d− 2
√
n
√
d

∣∣∣∣∣ ≤ 4
√
d√
n
,

and that ∥∥∥(JTJ)
−1
∥∥∥∥∥JTAz

∥∥
2
≤ 1

(
√
n− 2

√
d)2

c
√
ndσ ≤ c

√
d√
n
,

again with high probability. Here, we used that the entries of JAz ∈ Rd, conditioned on z, are iid Gaussian with
norm ‖z‖2, and that ‖z‖2 concentrates around σ

√
n.

Next, let J = UΣVT be the singular value decomposition of J. The gradient descent iterations with stepsize η
starting at θ̃ = 0 are

θ̃t = VDtUTy,

where Dt is a diagonal matrix with i-th entry given by
1−(1−ησ2

i )
t

σi
. With sufficiently small stepsize, gradient

descent converges to the minimizer of the loss, i.e., θ̂ = θ̃∞. Thus,∥∥∥θ̃t − θ̂
∥∥∥
2

=

∥∥∥∥∥
d∑
i=1

vi(1− ησ2
i )t 〈ui,y〉

∥∥∥∥∥
2

≤ ‖y‖2(1− ησ2
min)t

≤ c
√
n(‖θA‖2 + ‖θB‖2 + σ)

(
8
√
d√
n

)t
,

where again the last inequality holds with high probability. Choosing the stepsize as 1/σ2
max, we get with

1− σ2
min

σ2
max

≤ 1− (
√
n+ 2

√
d)2

(
√
n− 2

√
d)2

=
8
√
n
√
d

n+ d− 8
√
n
√
d
≤ 8
√
d√
n

that ∥∥∥θ̃t − θ̂
∥∥∥
2
≤ c(‖θA‖2 + ‖θB‖2 + σ)

(
8
√
d√
n

)t

≤ c(‖θA‖2 + ‖θB‖2 + σ)

√
d√
n
, (25)
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provided that t ≥ 2 log(n)
log(n)−log(64d) . It follows that for t ≥ O(log(n)/ log(n/d))∥∥∥θ̃t − θ∗

∥∥∥
2
≤
∥∥∥θ̃t − θ̂

∥∥∥
2

+
∥∥∥θ̂ − θ∗

∥∥∥
2
≤ c(‖θA‖2 + ‖θB‖2 + σ)

√
d√
n
,

where we used the previously established inequalities (24) and (25). This establishes equation (5) as claimed.

Claim 2: The second claim we made in Section 5.1 is that (cf. equation 6):

‖θt − θ∗‖2 ≤ O

((√
d

n
+

√
d

s

)
(‖θA‖2 + ‖θB‖2 + σ)

)
. (26)

This claim follows directly from combining equation (5) with Theorem 1. Specifically, note that for the setup in
Section 5.1, Theorem 1 gives, with r = d, that∥∥∥θt − θ̃t

∥∥∥
2
≤ 8
‖JA‖F√
sσmin

1

σmin
‖y‖2

≤
√
dn√
s
√
n

1√
n

√
n(‖θA‖2 + ‖θB‖2 + σ)

=

√
d√
s

(‖θA‖2 + ‖θB‖2 + σ)

holds with high probability, provided that n ≥ O(d). Specifically, we used, ‖JA‖F ≤ O(
√
nd), σmin ≥ c

√
n

(which holds for n ≥ O(d)), and as established before, ‖y‖2 ≤ c
√
n(‖θA‖2 + ‖θB‖2 + σ). All three inequalities

hold with high probability. Application of this inequality to ‖θt − θ∗‖2 ≤
∥∥∥θt − θ̃t

∥∥∥
2

+
∥∥∥θ̃t − θ∗

∥∥∥
2

establishes

the bound (26).

D Proof of Theorem 2: Guarantees for two-layer neural networks

Let JA,JB ∈ Rn×dk be the Jacobians of the network’s predictions for the training sets of task A and task B
at initialization. At initialization, each entry of the the weight matrix Θ is initialized by drawing a zero-mean
Gaussian with variance ω2.

The Jacobians depend on the network’s parameter, but if the network is sufficiently wide, the Jacobians change
very little during gradient descent iterations, and if the network is in the NTK regime (and thus is infinitely wide),
the Jacobians are constant and do not change across gradient descent iterations. To simplify exposition, we work
in the NTK regime where the Jacobians are constant throughout gradient descent iterations. We comment on
changes that can be made to establish a result where the network is wide, but not infinitely wide, and thus the
Jacobians vary little.

We provide a bound on the composite risk in equation (8) by decomposing the risk into the empirical risk and
generalization errors of the two tasks

R(f) =
1

2
RA(f) +

1

2
RB(f)

=
1

2
R̂A(f) +

1

2
R̂B(f) +

1

2
(RA(f)− R̂A(f)) +

1

2
(RB(f)− R̂B(f)), (27)

and by bounding the empirical risks and generalization errors separately. Here, the empirical risk of task T is
R̂T (θ) =

∑n
i=1 `(fθ(xT,i), yT,i), where the (xT,i, yT,i)’s are the training data pertaining to task T = {A,B}.

Bounding the empirical risk: For bounding the empirical risk, we rely on the following lemma which ensures
that the norm of the residual of the sketched problem, which is square-root of the empirical risk, is close to the
residual of the norm of the original, non-sketched problem. We use the same notation as in the previous section,
specifically we define:

J =

[
JA
JB

]
∈ R2n×dk, P =

[
STS 0

0 I

]
, y =

[
JAθA
yB

]
.
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Lemma 3. Let rt = P1/2Jθt − y be the residual associated with the sketched least-squares problem and let
r̃t = Jθt − y be the residual associated with the original least-squares problem. With probability at least 1 −
4t exp(− ‖JA‖

2
F

2‖JA‖2
) over the random sketch S ∈ Rs×n the residuals are close:

∥∥rt − r̃t
∥∥
2
≤
∥∥JJT

∥∥
F√

s

1

α2
. (28)

With this lemma in place, we note that, after t iterations of gradient descent, we have√√√√ n∑
i=1

(fθt(xA,i)− yA,i)2 +

n∑
i=1

(fθt(xB,i)− yB,i)2
(i)
=

1√
n
‖Jθt − y‖2 =

1√
n
‖rt‖2

≤ 1√
n
‖r̃t‖2 +

1√
n
‖rt − r̃t‖2

(ii)

≤

√√√√ 1

n

2n∑
i=1

〈ui,y〉2 (1− ησ2
i )2t +

1√
n

‖K‖F√
s

1

α2
. (29)

Here, equation (i) holds if we are in the NTK regime and thus the predictions of the network are its Jacobian at
initialization times the model parameter. For finite-width networks the equality holds up to an error that goes to

zero as the network’s width tends to infinity. Inequality (ii) holds with probability at least 1− 4t exp(− ‖JA‖
2
F

2‖JA‖2
)

by Lemma 3, and by using that JTJ = K. With this bound, we obtain

R̂A(θt) =
1

n

n∑
i=1

`(fθt(xA,i), yA,i)

(i)

≤ 1

n

n∑
i=1

|fθt(xA,i)− yA,i|

≤

√√√√ 1

n

n∑
i=1

(fθt(xA,i)− yA,i)2

(ii)

≤

√√√√ 1

n

2n∑
i=1

〈ui,y〉2 (1− ησ2
i )2t +

1√
n

‖K‖F√
s

1

α2
.

Here the sum in the first three equations is over trainings examples from task A, and equation (i) follows from
`(z, y) = `(z, y)− `(y, y) ≤ |z− y| because the loss is 1-Lipschitz. Equation (ii) follows from equation (29) above.

The same bound holds for the risk of task B, R̂B(θt).

Bonding the generalization error: We bound the generalization error for task A and task B separately. The
derivations for each bound is the same, so we detail the derivations for task A only. We bound the generalization
error of task A by bounding the Rademacher complexity of the class of functions that gradient descent can reach
with t iterations. This is a common proof technique, see for example the papers (Mohri et al., 2012; Arora et al.,
2019; Heckel and Yilmaz, 2021).

Let F be a set of functions mapping a d-dimensional feature vector to a real number, and let ε1, . . . , εn be iid
Rademacher random variables. A Rademacher random variable is chosen uniformly from {−1, 1}. The empirical
Rademacher complexity of the function class F is defined as

RD(F) =
1

n
Eε

[
sup
f∈F

n∑
i=1

εif(xi)

]
,

where D = {(x1, y1), . . . , (xn, yn)} is a training set containing n examples drawn iid from the distribution
pertaining to task A. The following theorem bounds the generalization error uniformly over all functions in the
class F with the empirical Radermacher complexity of the function class F .
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Theorem 5 ( (Mohri et al., 2012, Thm. 3.1) ). Assume the loss `(·, ·) is bounded in [0, 1] and 1-Lipschitz in its
first argument. With probability at least 1−δ over the set D consisting of n-many iid examples the generalization
error is bounded by

sup
f∈F

R(f)− R̂(f) ≤ 2RD(F) + 3

√
log(2/δ)

2n
.

We consider the class of two-layer neural networks of the form as in equation (7) with weights close to the random
initialization Θ0, defined as:

FQ,M =
{
fΘ : ‖Θ−Θ0‖F ≤ Q, ‖θr − θ0,r‖2 ≤ ωM

}
, (30)

where θr is the r-th column of the weight matrix Θ ∈ Rd×k.

The Rademacher complexity of this class of functions is bounded in the following lemma, which is a version of
Lemma 5.4 in the paper (Arora et al., 2019) and a version of Lemma 4 in the paper (Heckel and Yilmaz, 2021).

Lemma 4. Let Θ0 be drawn from a Gaussian distribution with N (0, ω2) entries, and suppose half of the entries
of v0 are 1 and the other half is −1. Assume the examples (xi, yi) are drawn iid from some distribution with
‖xi‖2 = 1 and |yi| ≤ 1. With probability at least 1 − δ over the random training set, the empirical Rademacher
complexity of FQ,M is, simultaneously for all Q, bounded by

RD(FQ,M ) ≤ Q√
n

+ 4ωM
(√

kM +
√

log(2/δ)/2
)
. (31)

We set M = O( ξαk
−1/4), where ξ is an error tolerance parameter that goes to zero . With this choice, the term

on the right hand side above is bounded by

ω(4M2
√
k + 4M

√
log(2/δ)/2) ≤ O(ξ/α),

where we used ω ≤ 1 and

√
log(2/δ)/2

k1/4
≤ 1 by the network being sufficiently wide. Recall that we consider the

regime where k →∞, so this condition is satisfied.

Let Qi = i for i = 1, 2, . . .. Simultaneously for all i, by the lemma above, for this choice of M , the function class
FQi,M has Rademacher complexity bounded by

RD(FQi,M ) ≤ Qi√
n

+O(ξ/α). (32)

We next choose the radius Q as Q =

√∑2n
i=1

(
〈ui,y〉

1−(1−ησ2
i )
t

σi

)2
+ 5
‖JA‖F√

s
1
α2

√
n+ ξ

α

√
n, where ξ is an approx-

imation parameter that we can choose arbitrarily small for k →∞.

This choice is motivated as follows. We have that

‖θt − θ0‖2 ≤
∥∥∥θ̃t − θ0

∥∥∥
2

+
∥∥∥θt − θ̃t

∥∥∥
2

≤

√√√√ 2n∑
i=1

(
〈ui,y〉

1− (1− ησ2
i )t

σi

)2

+ 5
‖JA‖F√

s

1

α2
‖y‖2,

where the last inequality holds by Lemma 1 with probability at least 1− 4t exp(− ‖JA‖
2
F

2‖JA‖2
). The extra term ξ

α

√
n

is due to the error of the Jacobian varying slightly over iterations, and goes to zero as the width k →∞.

Let i∗ be the smallest integer such that Q ≤ Qi∗ , so that Qi∗ ≤ Q+ 1. We have that i∗ ≤ O(
√
n/α) and

RD(FQi∗ ,M ) ≤ (Q+ 1)√
n

+O(ξ/α)

≤

√√√√ 1

n

2n∑
i=1

(
〈ui,y〉

1− (1− ησ2
i )t

σi

)2

+
1√
n

+ 5
‖JA‖F√

s

1

α2
+O(ξ/α). (33)
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Next, from a union bound over the finite set of integers i = 1, . . . , i∗, we obtain

max
i=1,...,i∗

sup
f∈FQi,M

RA(f)− R̂A(f) ≤

√√√√ 1

n

2n∑
i=1

(
〈ui,y〉

1− (1− ησ2
i )t

σi

)2

+
1√
n

+ 5
‖JA‖F√

s

1

α2
+O(ξ/α)

≤
√

1

n
yT (JTJ)

−1
y + 5

‖JA‖F√
s

1

α2
+

1√
n

+O(ξ/α).

Assembling the bounds: Combining the bounds on the empirical risk and on the generalization errors by
inserting them in the right-hand-side of equation (27) yields

R(fθt) ≤

√√√√ 1

n

2n∑
i=1

〈ui,y〉2 (1− ησ2
i )2t +

1√
n

‖K‖F√
s

1

α2

+ 2

√
1

n
yTK−1y + 10

‖JA‖F√
s

1

α2
+

2√
n

+O(ξ/α)

≤ 2

√
1

n
yTK−1y +

3√
n

+
1√
sα2

(
10‖JA‖F +

‖K‖F√
n

)
,

where we upper-bounded the first term by using the assumption t ≥ log(1−ηα)
log(1/n) , and where we also again used the

assumption that the network is infinitely wide and thus ξ → 0. This concludes the proof of the theorem.

D.1 Proof of Lemma 3

With similar steps as in equation (11) we get∥∥rt+1 − r̃t+1
∥∥
2

=
∥∥(I− ηJJTP)(rt − r̃t)

∥∥
2

+ η
∥∥JJT (I−P)r̃t

∥∥
2

≤
∥∥rt − r̃t

∥∥
2

+ η
∥∥JJT (I−P)r̃t

∥∥
2

≤
∥∥rt − r̃t

∥∥
2

+ η

∥∥JJT
∥∥
F√

s

∥∥r̃t∥∥
2
,

where the last inequality holds with probability at least 1 − 4e
− ‖

JA‖2F
2‖JA‖2 as established by Lemma 2. Applying

this inequality recursively, we obtain, by the union bound, that with probability at least 1− 4te
− ‖

JA‖2F
2‖JA‖2

∥∥rt − r̃t
∥∥
2
≤ η

∥∥JJT
∥∥
F√

s

n−1∑
i=0

∥∥r̃t∥∥
2

≤
∥∥JJT

∥∥
F√

s

1

α2
.

This concludes the proof.

E Proof of the results in Section 7

E.1 Proof of Theorem 3

The population loss for task T is

LT (θ) = E(x,y)∼PT
[
(〈x,θ〉 − y)2

]
= (〈θ,µT 〉 − 1)2 + σ2‖θ‖22.

Thus training on task A yields

θA = (σ2I + µAµ
T
A)
−1

µA =
1

1 + σ2
µA,
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where the second equality follows from the Sherman-Morrison-Woodbury formula.

Now consider the loss associated with EWC, given by

LAB(θ) = EB
[
(〈x,θ〉 − y)2

]
+ λ(θ − θA)

T
DA(θ − θA),

where DA is the diagonal of the Hessian (or Jacobian outer product) of the loss associated with task A, i.e.,
DA = diag(σ2I + µAµ

T
A). The minimizer of LAB(θ) denoted θEWC

AB , is, again by using the Sherman-Morrison
formula

θEWC
AB = (σ2I + µBµ

T
B + λDA)

−1
(µB + λDAµA)

= (D + µBµ
T
B)
−1

(µB + λDAµA)

=

(
D−1 − 1

1 + µTBD−1µB
D−1µBµ

T
BD−1

)
(µB + λDAµA)

=
1

1 + µTBD−1µB
D−1µB + λ

(
I− 1

1 + µTBD−1µB
D−1µBµ

T
B

)
D−1DAµA,

where we defined D = λDA+σ2I for notational convenience. Next, we use the assumption that all entries of µT
have absolute value

√
1/d. This assumption implies that DA = (σ2+1/d)I and D = qI with q = σ2+λ(σ2+1/d),

and yields

θEWC
AB =

1

1 + q
µB +

λ(σ2 + 1
d )

q
µA −

λ(σ2 + 1
d )

(1 + q)q
µB 〈µA,µB〉

= µB
1

1 + q

(
1− λ(σ2 + 1/d)

q
〈µA,µB〉

)
+ µA

λ(σ2 + 1
d )

λ(σ2 + 1
d + σ2

Next, note that the term associated with µA is increasing from 0 to 1 in λ. Contrary, the term associated with
µB is decreasing in λ. Thus, λ interpolates between linear combinations of µA and µB and therefore there
exists a regularization parameter λ such that θEWC

AB points in the same direction as the optimal parameter
θ∗AB = µA + µB , and is therefore Bayes optimal. This concludes the first part of the theorem. The proof of the
second part, given below, is analogous.

E.2 Proof of Theorem 3, part two

The proof is analogous to the proof of part one of the theorem. The loss associated with L2 regularization is
given by

LAB(θ) = EB
[
(〈x,θ〉 − y)2

]
+ λ(θ − θA)

T
(θ − θA).

Application of the Sherman-Morrison formula yields

θL2AB = (σ2I + µBµ
T
B + λI)

−1
(µB + λµA)

=

(
1

σ2 + λ
I− 1

1 + 1/(σ2 + λ)

1

(σ2 + λ)2
µBµ

T
B

)
(µB + λµA)

=
1

σ2 + λ

(
I− 1

1 + σ2 + λ
µBµ

T
B

)
(µB + λµA)

=
1

σ2 + λ

(
σ2 + λ

1 + σ2 + λ
µB + λµA −

λ 〈µA,µB〉
1 + σ2 + λ

µB

)
=

1

σ2 + λ

(
σ2 + λ− λ 〈µA,µB〉

1 + σ2 + λ
µB + λµA

)
.

The term in front of µB is decreasing in λ and varies from σ2

1+σ2 to 0 as λ increases. The term associated with
µA varies from 0 to 1. Thus, again, there is a parameter λ such the solution is optimal.



Reinhard Heckel

E.3 Proof of Theorem 4

To prove this statement, it is sufficient to construct a problem instance consisting of task means mA and µB and
a variance σ2 for which the risk of θEWC

AB (λ) is large for all λ. Such an problem instance is µA = [1,−0.8, 0.8],
µB = [−1, 0.5,−0.8], and σ sufficiently small, as illustrated in the code supplement. The proof of the second
part is analogous, by constructing a similar problem instance for L2.


