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Abstract

Machine learning models can automatically
learn complex relationships, such as non-
linear and interaction effects. Interpretable
machine learning methods such as partial de-
pendence plots visualize marginal feature ef-
fects but may lead to misleading interpreta-
tions when feature interactions are present.
Hence, employing additional methods that
can detect and measure the strength of in-
teractions is paramount to better under-
stand the inner workings of machine learn-
ing models. We demonstrate several draw-
backs of existing global interaction detection
approaches, characterize them theoretically,
and evaluate them empirically. Furthermore,
we introduce regional effect plots with im-
plicit interaction detection, a novel frame-
work to detect interactions between a feature
of interest and other features. The frame-
work also quantifies the strength of interac-
tions and provides interpretable and distinct
regions in which feature effects can be inter-
preted more reliably, as they are less con-
founded by interactions. We prove the theo-
retical eligibility of our method and show its
applicability on various simulation and real-
world examples.

1 INTRODUCTION

Many machine learning (ML) models are considered
black-boxes, as they do not provide insights into
how the model’s prediction function is composed and
which features or interactions1 are actually used by

1Interactions describe to what extent a feature’s effect
on the model prediction is influenced by other features.
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the model. This lack of transparency has been par-
tially addressed by recent developments in the field
of interpretable ML. In general, the literature distin-
guishes between local and global interpretation meth-
ods (Molnar et al., 2020). Global interpretation meth-
ods aim at explaining the overall behavior of an ML
model. Examples include the partial dependence (PD)
plot (Friedman, 2001), which visualizes the effect of
a feature on the model’s prediction, and the permu-
tation feature importance, which quantifies the rele-
vance of features (Fisher et al., 2019). However, many
of these global interpretation methods are confounded
by feature interactions, meaning that they can produce
misleading explanations when feature interactions are
present because they often aggregate over individual
effects of local interpretation methods and thereby ob-
fuscate heterogeneous effects induced by feature in-
teractions (Molnar et al., 2021b). This so-called ag-
gregation bias (Mehrabi et al., 2021) is responsible
for producing global explanations that are usually not
representative or not valid for many individuals. In-
stead of explaining the ML model on a global level,
local interpretation methods – such as individual con-
ditional expectation (ICE) curves (Goldstein et al.,
2015), LIME (Ribeiro et al., 2016), or Shapley val-
ues (Strumbelj and Kononenko, 2014) – can be used
to understand how a feature influences an individual
prediction. However, many local interpretation meth-
ods do not provide a global understanding of the ML
model due to their local view (i.e., their explanations
only refer to individual observations). Thus, it is of-
ten recommended to consider both local and global
interpretation methods. For example, in the case of
PD plots, looking additionally at ICE curves (Gold-
stein et al., 2015) can help to reveal interactions when
the ICE curves are heterogeneous (see Figure 1). Yet,
ICE curves are not able to quantify the strength of the
underlying feature interactions, nor can they tell ex-
actly which features interact with each other. On the
other hand, other methods that quantify the interac-
tion strength between features are available. However,
they do not provide any visual component of how these
interactions influence the effect of a feature of interest
(Friedman et al., 2008; Greenwell et al., 2018). The
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work in this paper is motivated by subgroup analy-
sis (Su et al., 2009) as a trade-off between local and
global explanations. We aim to uncover a possible ag-
gregation bias in the PD plot by finding interpretable
subgroups in the data with differing influences of a
feature on the predictions. Hence, for well-performing
ML models, this might also reveal a possible bias in
the data (e.g., when the influence of a feature on the
prediction strongly differs for certain subgroups, al-
though it should not) and thus might be helpful to
uncover possible negative societal impacts.

Contributions: We introduce regional effect plots
with implicit interaction detection (REPID), a model-
agnostic interpretation method that produces regional
effect plots (REPs) in which feature effects are less
confounded by interactions. Regions are obtained by
a decision tree and thus represent interpretable and
distinct subgroups in the feature space. We also pro-
pose a new measure to detect and quantify interac-
tions with a feature of interest, which can be used to
rank interactions according to their strength. To re-
ceive a broader and more competitive comparability,
we derive another global interaction index based on
SHAP interaction values (Lundberg et al., 2018). We
mathematically prove the theoretical meaningfulness
of our method and demonstrate its advantages com-
pared to not only the well-known H-statistic (Fried-
man et al., 2008), but also to Greenwell’s interaction
index (Greenwell et al., 2018) and our derived global
SHAP interaction index. Finally, we demonstrate the
usefulness of our method on real-world data.

Open Science: The implementation of the proposed
method and the fully reproducible code for all experi-
ments are provided in a public repository2.

2 BACKGROUND AND RELATED
WORK

Notation: Consider a p−dimensional feature space
X ∈ Rp and a target space Y (e.g., Y = R for regres-
sion). The corresponding random variables are X =
(X1, . . . , Xp) for the features and Y for the target. ML

algorithms learn a prediction model f̂ using training
data D = {(x(i), y(i))}ni=1 sampled i.i.d. from the un-
known joint distribution PX,Y . In our notation, the

i-th observation is denoted by x(i) =
(
x

(i)
1 , . . . , x

(i)
p

)T
,

and xj =
(
x

(1)
j , . . . , x

(n)
j

)T
denotes the realizations of

the j-th feature Xj .

PD Plot (Friedman, 2001): The marginal relation-
ship of features on model predictions can be visual-

2https://github.com/JuliaHerbinger/repid

ized by PD plots. Consider a set of feature indices
S ⊆ {1, . . . , p} and its complement C = S{. Each

observation x(i) can be partitioned into x
(i)
S and x

(i)
C

containing only features indexed by S and C, respec-
tively. XS and XC refer to the corresponding ran-
dom variables. The PD function of features indexed
by S marginalizes over features in C and is defined
as fPDS (xS) = EXC

[f̂(xS , XC)]. The PD function is
estimated by Monte-Carlo integration:

f̂PDS (xS) = 1
n

∑n
i=1 f̂(xS ,x

(i)
C ). (1)

Here, f̂(xS ,x
(i)
C ) can be read as the prediction of the

i-th observation where features in S were replaced by

xS . Plotting the pairs {(x(k)
S , f̂S(x

(k)
S ))}mk=1 using grid

points3 denoted by x
(1)
S , . . . ,x

(m)
S yields a PD curve.

The mean-centered PD function can be estimated by

f̂PD,cS (xS) = f̂PDS (xS)− 1
m

∑m
k=1 f̂

PD
S (x

(k)
S ).

If |S| = 2, we get a 2-dimensional PD plot showing the
joint marginal effect of the 2 features included in S.

ICE Plot (Goldstein et al., 2015): The averaging in
Eq. (1) can obfuscate complex relationships result-
ing from feature interactions. ICE plots address this
problem by directly visualizing individual curves for

each observation, i.e., {(x(k)
S , f̂(x

(k)
S ,x

(i)
C ))}mk=1 for all

i ∈ {1, . . . , n}. ICE curves will usually have differ-
ent shapes if interactions with other features in C are
present. To facilitate the visual identification of het-
erogeneous ICE curves and, consequently, the presence
of interactions, the authors propose the derivative-
ICE (d-ICE) plot. Assuming that there are no in-
teractions between features xS and xC , the predic-
tion function can be written as f̂(x) = f̂(xS ,xC) =
g(xS) + h(xC). Hence, the partial derivatives of all

ICE curves
δf̂(xS ,x

(i)
C )

δxS
= g′(xS) do not depend on x

(i)
C ,

which means that d-ICE curves have the same shape
if there are no interactions. The d-ICE plot visualizes
the partial derivatives of ICE curves along with their
standard deviation to highlight regions in xS where
the d-ICE curves are heterogeneous (see Figure 1).

Visual INteraction Effects (VINE) (Britton, 2019):
The principle of VINE is to cluster similar slopes of
ICE curves to obtain clusters where the curves are
less affected by interactions based on a three-step ap-
proach: (1) for a feature of interest, find clusters where
the ICE curves of that feature have similar slopes us-
ing, e.g., agglomerative clustering, (2) for each found
cluster, create a binary label containing the informa-
tion of whether an observation belongs to the con-
sidered cluster or any other cluster and apply a tree

3Common choices are randomly selected feature values,
quantiles, or equidistant values (Molnar et al., 2021b).

https://github.com/JuliaHerbinger/repid
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stump, (3) identify the split feature and its split point
and merge clusters that use the same feature and a
similar split point. Although VINE is based on a
similar strategy as our approach, its three-step ap-
proach has several disadvantages (see Section 3.1.1).
Approaches to group ICE curves to reduce feature de-
pendencies instead of feature interactions is introduced
in Molnar et al. (2021a) and Grömping (2020).

H-Statistic (Friedman et al., 2008): The H-Statistic is
based on the assumption that if two features do not
interact, the 2-dimensional mean-centered PD func-
tion of two features xj and xl is additively separable
and can be decomposed into the sum of their mean-
centered 1-dimensional PDs, i.e.,

fPD,cS (xS) = fPD,cj (xj) + fPD,cl (xl), with S = {j, l}.

The stronger an interaction effect, the more the
sum of fPD,cj (xj) and fPD,cl (xl) will deviate from

fPD,cS (xS). Hence, the H-statistic computes the in-
teraction strength between two features xj and xl by
quantifying the degree of this deviation using

Ĥ2
S =

∑n
i=1

(
f̂PD,c
S (x

(i)
S )−

∑
k∈S f̂

PD,c
k (x

(i)
k )
)2

∑n
i=1

(
f̂PD,c
S (x

(i)
S )
)2 . (2)

Greenwell’s interaction index (Greenwell et al., 2018):
The interaction strength between two features xj and
xl is quantified based on the variability of the PD func-
tion of xj conditioned on a fixed value of xl (see Ap-
pendix A.3.1).

However, the H-Statistic and the Greenwell’s interac-
tion index only quantify interaction effects and do not
visualize how interactions influence the marginal effect
of a feature. Moreover, both methods are sensitive to
varying main effects (see Section 3.2.1 and 4.1).

Functional ANOVA (fANOVA) (Hooker, 2004): The
fANOVA decomposes the prediction function as fol-
lows:

f̂(x) = g0 +
∑p
k=1

∑
W⊆{1,...,p},|W |=k gW (xW ) (3)

where EX [gW (xW )] = 0 for all feature index sets W
(zero-means property). While gW (XW ) with |W | = 1
refers to main (or first-order) effects, gW (XW ) with
|W | > 1 refers to interactions (or higher-order) effects.
Based on the decomposition in Eq. (3), the authors de-
tect interactions of any order by applying an efficient
search algorithm and visualize them in an interaction
network graph. However, the network only shows the
presence of feature interactions and does not quantify
the interaction strength or illustrate how they influ-
ence the prediction. A discussion on the assumptions
and application of the fANOVA decomposition in the
context of this paper is provided in Appendix A.1.

SHAP interaction values (Lundberg et al., 2018): The
method is based on Shapley values (Shapley, 1953)
and Shapley interaction indices (Fujimoto et al., 2006)
from game theory. In the ML context, SHAP interac-
tion values of two features quantify the pure interac-
tion effect after accounting for the individual feature
effects. The SHAP interaction values separate the in-
teraction effect from the main effects of two features
indexed by j and l (for j 6= l) for an observation x:

Φj,l(x) =
∑
S⊆{1,...p}\{j,l}

|S|!(p−|S|−2)!
2(p−1)! ∇j,l(xS),

where ∇j,l(xS) = fPDS∪{j,l}(xS∪{j,l})−f
PD
S∪{j}(xS∪{j})−

fPDS∪{l}(xS∪{l})+fPDS (xS). The SHAP interaction val-
ues have only been introduced on an observational
level, where the final plot over all observations shows
the influence of the interaction effect on the prediction.

3 THE REPID METHOD

REPID visualizes regional marginal effects of a cer-
tain feature of interest xS with |S| = 1 depending
on its interactions with other features and quanti-
fies the underlying interaction strength. The follow-
ing simulation example demonstrates the benefits of
our method compared to existing ones. We draw
n = 500 samples for 6 independent random variables,
which are distributed as follows: X1, X2 ∼ U(−1, 1),
X3, X5 ∼ B(n, 0.5), X4 ∼ B(n, 0.7) and X6 ∼ N (1, 5).
The true relationship is described by

f(x) = 0.2x1−8x2+8x21(x1>0)+16x21(x3=0)+ε (4)

with ε ∼ N (0, 1). We fit a random forest (RF) with
500 trees on the data. Due to the linear relationship,
we can assume that the interaction strength between
x2 and x3 is higher than the one between x2 and x1.

3.1 Regional Effect Plots

3.1.1 Motivation

PD plots are often shown together with their under-
lying ICE curves (see Figure 1). The heterogeneous
shapes of ICE curves imply the presence of feature
interactions. Although ICE or d-ICE plots indicate
interactions, they do not provide any information on
which other features are responsible for these interac-
tions and how the underlying interaction influences the
marginal effect of xS (see Figure 1). Grouping homo-
geneous ICE curves will reduce the presence of individ-
ual interaction effects within a group. This leads to re-
gional PD plots that actually reflect the pure marginal
effect of xS within this group. VINE (Britton, 2019)
implements this idea by clustering ICE curves with
similar slopes (see Section 2). However, VINE is only
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Figure 1: Left: ICE curves (black) and PD plot (blue)
for x2. Right: Smoothed d-ICE curves (upper plot) and
standard deviation of d-ICE curves (lower plot).

a visual tool and does not quantify or rank feature
interactions. Furthermore, VINE is an unsupervised
approach, and its solution depends on the number of
clusters k that must be chosen (which is not trivial).
Another drawback is that VINE “finds” feature inter-
actions in an inconvenient second step by fitting a sep-
arate tree stump for each cluster (see Section 2). Due
to the different tree stumps used in VINE, the derived
decision rules are often not distinct and therefore dif-
ficult to interpret. In a third step, VINE introduces
a post-hoc merging of clusters based on similar deci-
sion rules. In Figure 2, we show that this three-step
approach does not always lead to meaningful group-
ings. While in the left plot, the ICE curves are divided
meaningfully into 2 clusters based on the most inter-
acting feature x3 (according to Eq. (4)), the clusters in
the right plot do not divide the ICE curves into visu-
ally meaningful groups with homogeneous ICE curves.

Figure 2: ICE and regional PD (dashed) plot of x2 clus-
tered by VINE for k = 2 (left) and k = 5 (right). The
5 clusters are reduced to 3 by post-hoc merging. Cluster
numbers 0 and 3 still contain differing individual interac-
tion effects, which are averaged and hence not represented
well by the regional PD plot.

3.1.2 Methodology

Here, we derive a new tree-based approach to deter-
mine optimal REPs for any feature of interest xS .
REPs are regional PD plots that aggregate ICE curves

within automatically identified regions where feature
effects are less confounded by interactions. Our aim
is to recursively split the entire data referred to by in-
dex set N = {1, . . . , n} into interpretable regions to
obtain more homogeneous ICE curves for xS within
the split regions denoted by Ng (where g ∈ {1, . . . G}
indexes a certain node of the tree and G is the num-
ber of all tree nodes). Hence, we want to split N
in such a way that ICE curves within the obtained
regions have a similar shape, meaning that the dis-
tance of these ICE curves to the REP estimate (i.e.,

f̂PDS|Ng
(xS) := 1

|Ng|
∑
i∈Ng

f̂
(
xS ,x

(i)
C

)
) is small. To

that end, we propose a tree-based partitioning in Algo-
rithm 1, which refers only to a single binary split and
is inspired by the CART algorithm (Breiman et al.,
1984)4. The splitting is recursively repeated until the
split criterion (denoted by I(t̂, ĵ) in Algorithm 1) does
not improve anymore compared to the previous split
or until a pre-specified stop criterion is met. The split
criterion is based on a suitable risk function R that
operates on ICE curves (see also Eq. (6)).

Algorithm 1: Tree-based Partitioning

input: index set N , risk RL2 (see, e.g., Eq. (6))

output: child nodes N t̂,ĵ
l and N t̂,ĵ

r

for each feature indexed by j ∈ C do
for every split t on feature xj do

N t,j
l = {i ∈ N}

x
(i)
j ≤t

; N t,j
r = {i ∈ N}

x
(i)
j >t

I(t, j) = RL2(N t,j
l ) +RL2(N t,j

r )
end for

end for
Choose t̂, ĵ ∈ argmint,j I(t, j)

We first estimate the mean-centered ICE curves
by f̂ c(xS ,x

(i)
C ) = f̂(xS ,x

(i)
C ) − 1

m

∑m
k=1 f̂(x

(k)
S ,x

(i)
C ).

Since we want to minimize the shape differences be-
tween ICE curves in the regions, we then define the risk
function RL2 in Eq. (6)5 such that the variance (L2
loss) of the mean-centered ICE curves is minimized.
This can be estimated by calculating the L2 loss of
the mean-centered ICE curves at each grid point (see
Eq. (5)) and aggregating it over all grid points:

L (Ng, xS) =
∑
i∈Ng

(
f̂ c(xS ,x

(i)
C )− f̂PD,cS|Ng

(xS)
)2

(5)

RL2 (Ng) =
m∑
k=1

L
(
Ng, x(k)

S

)
(6)

4Algorithm 1 is defined for numerical features. For cat-
egorical features, we use an exhaustive search as seen in
CART. The computational feasibility of this procedure de-
pends on the number of categories.

5Multiplying with 1
m

to obtain the average loss can be
neglected for optimization.
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Theorem 1 If Eq. (3) holds, then f̂ c(xS ,x
(i)
C ) with

|S| = 1 can be decomposed into the mean-centered6

main effect of xS (i.e. gcSS (xS)) and the mean-centered
interaction effect of xS with xC for the i-th observation

(i.e., gcSCk∪{S}(xS ,x
(i)
Ck

)):

f̂ c(xS ,x
(i)
C ) = gcSS (xS) +

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{S}(xS ,x
(i)
Ck

).

Corollary 1.1 If Eq. (3) holds, then fPD,cS (xS) =

EXC
[f̂ c(xS , XC)] with |S| = 1 can be decomposed into

gcSS (xS) +
p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

EXC

[
gcSCk∪{S}(xS , XCk

)
]
.

The proof can be found in Appendix A.1.1.

Based on Theorem 1 and Corollary 1.1 – where we
show that the mean-centered ICE curves and PD func-
tion can be decomposed in first-order and higher-order
terms which depend on xS – we can prove in Theorem
2, that our risk function of Eq. (6) only depends on
the interaction effects between xS and features in xC .
Hence, by minimizing this risk function, we minimize
the individual interaction effects between the feature
of interest and all other features. Thus, we minimize
the shape differences between ICE curves in each re-
gion. Theorem 3 states that the theoretical minimum
of our split criterion leads to the optimal solution we
aim to achieve, meaning that for each final region, all
ICE curves are best represented by the REP.

Theorem 2 The distance minimized by the risk func-
tion RL2 of Eq. (6) only depends on the mean-centered
interaction effects between xS with |S| = 1 and all fea-
tures interacting with xS, i.e., for the i-th observation,
the distance results in

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{S}(xS ,x
(i)
Ck

)−EXC
[gcSCk∪{S}(xS , XCk

)].

The proof can be found in Appendix A.1.2.

Theorem 3 If I(t, j) = 0, i.e., the theoretical min-
imum of the split criterion is reached for a split,
then the ICE curves within each of the child nodes
Nl and Nr are identical to the respective REP (e.g.,

f̂ c(xS ,x
(i)
C ) = f̂PD,cS|Nl

(xS) ∀i ∈ Nl).

Proof 3 Since RL2(Ng) ≥ 0 ∀g ∈ {1, . . . , G},
I(t, j) = 0 implies f̂ c(xS ,x

(i)
C ) = f̂PD,cS|Ng

(xS),

6gcSW (XW ) = gW (XW ) − EXS [gW (XW )] is the mean-
centered counterpart of gW (XW ) of Eq. (3) regarding XS .

∀i ∈ Ng,∀g ∈ {l, r}.

Applying our method to the simulation example
introduced at the beginning of Section 3.1 leads to
the REPs shown in Figure 3 after two splits. The
first binary split divides the ICE curves of x2 using
feature x3, which interacts most with x2 (according
to Eq.(4)). Each of the 2 resulting regions is then
split again into 2 groups by feature x1, which also
interacts with x2. Hence, after the second split, we
receive interpretable and distinct regions with REPs
that represent each sub-population well.

Figure 3: ICE curves for x2 grouped by REPID (black)
and REPs (blue).

3.2 Quantifying Interaction Strength

3.2.1 Motivation

Besides understanding how other features influence the
marginal effect of xS , users might be interested in how
strong these interactions are and how to rank these
features regarding their interaction strength with xS .
The H-Statistic defined in Section 2 is a global mea-
sure that quantifies the strength of interaction between
two features. However, its values are influenced by the
main effects of the two regarded features (see Theorem
4). Hence, the two-way interaction with the highest
H-Statistic value is not necessarily the strongest inter-
action, which we demonstrate in Section 4.1.

Theorem 4 The variance of the 2-dimensional
mean-centered PD plot of features xj and xl
(V ar(fPD,cS (xS)) with S = {j, l}) depends on the
mean-centered main effects (i.e., gcSj (xj) and gcSl (xl))
of the two features of interest xj and xl. Since

V ar(fPD,cS (xS)) is the denominator of the H-Statistic,
which is estimated as in Eq. (2), the H-Statistic itself
also depends on the main effects of features in S. The
proof can be found in Appendix A.1.3.
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The global interaction index proposed by Greenwell
et al. (2018) suffers from the same problem that we
illustrate in Section 4.1 (see also Appendix A.3.1). A
third method of quantifying the two-way interaction
strength between features is based on SHAP interac-
tion values (see Section 2). To the best of our knowl-
edge, SHAP interaction values have been only defined
on an observational level. Similar to the global feature
importance used in Lundberg et al. (2018) to rank fea-
tures according to their global impact in their SHAP
summary plots, we suggest summarizing the individ-
ual SHAP interaction values for two features xj and
xl into a global SHAP interaction index by

Irel
j,l =

Ij,l∑
l∈{1,...,p}\{j} Ij,l

where Ij,l =
∑n
i=1 |Φj,l(x(i))|.

Since the absolute values Ij,l are difficult to inter-
pret, we prefer a relative version Irel

j,l , which we call
the SHAP interaction index and can be interpreted
as the proportion of all two-way interactions with xj
to which the l-th feature contributes. By definition,
SHAP interaction values only contain the interaction
effect between xj and xl. Hence, in contrast to the
H-Statistic, varying main effects do not change the
ranking of our proposed global SHAP interaction in-
dex Irel

j,l . However, both SHAP interaction indices and
the H-Statistic are based on the joint distribution of
the two regarded features, and hence, correlations be-
tween xS and features in xC might bias the interaction
value calculated by these methods, as demonstrated in
Section 4.1.

3.2.2 Methodology

Here, We derive an interaction index based on the
split criterion minimized in Algorithm 1 and Eq. (6),
and we prove its advantages compared to alternatives
mentioned in Section 3.2.1. Since the risk function of
our split criterion is based on the variance of mean-
centered ICE curves – which measures the degree of
existing feature interactions with xS – we can use the
achieved risk reduction after a split to quantify the
interaction strength. For better interpretability and
comparability, we define the relative interaction im-
portance for each parent node NP by

intImp(NP ) = RL2(NP )−(RL2(Nl)+RL2(Nr))
RL2(N ) (7)

with l, r ∈ {1, . . . G} denoting the left and right child
node of a parent node NP and N representing the
root node. Hence, intImp(NP ) measures the relative
risk reduction after splitting NP compared to the risk
within the root node RL2(N ). Let BP ⊂ {1, . . . G}
denote the index set of all parent nodes (i.e., all nodes
that have child nodes), and let Bj ⊆ BP denote the
subset of these parent nodes that used the regarded

feature xj for splitting. To obtain the relative interac-
tion importance of feature xj , we sum up the relative
interaction importance over the parent nodes in Bj :

intImpj =
∑
P∈Bj

intImp(NP ). (8)

This principle of summing up the relative risk reduc-
tion of individual splits regarding a certain feature in
order to measure the interaction strength is related to
how a decision tree measures the Gini or mean de-
crease impurity (MDI) feature importance (Breiman
et al., 1984). We obtain a measure that reports how
important each of these features is for reducing interac-
tions and thus obtaining more representative REPs for
xS . Our proposed interaction importance in Eq. (8)
only depends on the interaction effects between xj and
xS and not on their main effects (see Theorem 2), as
opposed to the H-Statistic or the interaction index of
Greenwell et al. (2018). Furthermore, we show by The-
orem 5 that intImp – in contrast to the H-Statistic and
the SHAP interaction index Irel

j,l – is not influenced by
correlations between xS and xj .

Theorem 5 Correlations between XS and XC do not
influence the splitting procedure of REPID, since the
loss function L of Eq. (5) does not contain a covariance
term between XS and features in XC . The proof can
be found in Appendix A.1.4.

To determine how well the resulting REPs in the
terminal nodes represent the underlying ICE curves,
we derive an R2 measure, which is commonly used
in statistics. The R2 can be calculated by R2 =

1− SSE(complex model)
SSE(baseline model) where the baseline model is, e.g.,

a constant mean prediction and the SSE is the sum
of squared errors of the model. The measure (usually)
only takes values between 0 and 1 when applied on
training data. While a value of 1 indicates that the
complex model fits the data perfectly, a value of 0 im-
plies that the complex model does not outperform the
baseline model. Similar to this concept, we use the
global PD plot as our baseline model. Our complex
model is the additive combination of the REPs in the
terminal nodes of the final tree. Hence, each additive
functional component (REP) is only valid for the spec-
ified region. The SSE of each model is measured by the
variability of the underlying ICE curves. Let Bt = B{P
denote the subset of terminal nodes in a symmetric
tree. We derive an interaction-related R2 measure by
aggregating the interaction importance over all parent
nodes BP :

R2
int =

∑
P∈BP

intImp(NP ) = 1−
∑

t∈Bt
RL2(Nt)

RL2(N ) (9)

A detailed derivation can be found in Appendix A.2.

For our example, we obtain the relative interaction im-
portance values for x2, as stated in Table 1. Since
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both child nodes after the first split use x1 as the
splitting feature, the relative interaction importance
values of the two nodes can be aggregated to obtain
intImp1 = 0.14. It follows that REPID detects (only)
the feature interactions with x2 that have been speci-
fied in the underlying data-generating process and also
ranks them in the correct order. The total variance
after the second split is reduced by R2

int = 97.5%
compared to the root node, suggesting that resulting
REPs are now meaningful representatives for the av-
erage marginal effect, as shown in Figure 3.

Table 1: Relative interaction importance on a node level
(left) and on a feature level (right). Gray shadings indicate
how intImpj is calculated from intImp(NP ). The param-
eters d and P indicate the tree depth and the index of the
parent node, respectively.

d P xj intImp(NP )
0 1 x3 0.835
1 2 x1 0.074
1 3 x1 0.066

xj intImpj
x3 0.835
x1 0.14

Stop Criteria A possible stop criterion for the tree
is to limit the maximum depth of the tree or to define a
minimum number of observations for each node. Fur-
thermore, we can apply a stop criterion based on the
interaction importance intImp. Let Ng be the node
we want to split and let NP be its parent node. Then,
we only split deeper if intImp(Ng) ≥ γ · intImp(NP ),
with γ ∈ [0, 1]. In other words, we only split deeper
if the improvement of the current split is at least as
large as a pre-specified proportion of the improvement
of the previous split. The suggested criteria can also
be combined and the hyperparameters must be cho-
sen by the user and usually depend on the underlying
setting.

4 SIMULATION EXAMPLES

For many model-agnostic interpretation techniques
– including interaction detection methods – ground
truth information is usually not available on real-world
data. Therefore, well-constructed simulation experi-
ments with a known ground truth are often used for
empirical evaluations and comparisons, while only one
or few real-world datasets are used to demonstrate
practical applicability (e.g., see Friedman et al. (2008),
Fisher et al. (2019), Goldstein et al. (2015), Greenwell
et al. (2018), or Aas et al. (2021)). Hence, we follow
this commonly used approach to evaluate our method
using various simulation settings.

4.1 Weaknesses of other Methods

In Section 3.2.1, we described disadvantages of sev-
eral interaction measures from a theoretical perspec-
tive. In the following simulation example, we provide
further empirical evidence. To be able to modify the
degree of the feature dependencies later on, we use
a Gaussian copula to simulate the data in all set-
tings. In the initial setting, we draw 1000 samples
of four approximately i.i.d. random variables, which
are marginally X1, . . . , X4 ∼ U(−1, 1), and assume the
true underlying function of f(x) = r(x) + ε, where
ε ∼ N (0, (σ(r(x)) · 0.1)2). We define the remainder by

r(x) =
∑4
j=1 xj + x1x2 + x2x3 + x1x3 + x1x2x3. To

avoid undefined interaction effects, we fit a correctly
specified linear model on the data. We repeat the ex-
periment 30 times, and each time, we measure the
interaction strength between x2 and the other three
features using REPID as well as the three alternatives
(the H-statistic, the Greenwell’s interaction index, and
the SHAP interaction index). On three adjusted set-
tings, we then illustrate that already small modifica-
tions of main effect sizes or feature dependencies may
produce misleading results for some of the alternatives
when used as a measure to rank interactions, while
REPID provides correct and stable results. For the
computations, we used an equidistant grid of size 20
for REPID and Greenwell’s interaction index. For bet-
ter comparability, we used a sample size of 20 for the
H-Statistic. We calculated the SHAP interaction in-
dex by aggregating the individual interaction indices
for 100 randomly sampled observations, which are ap-
proximated by using 20 random permutations for all
possible feature coalitions. For REPID, we combine
the stop criteria described in Section 3.2.2 as follows:
We use a maximum depth of 6, a minimum number of
10 observations per node, and an improvement factor
of γ = 0.15.
(1) Initial Setting: The plot on the top left of Figure 4
shows that, for the initial setting, all methods on aver-
age correctly assign the same interaction importance
to x1 as to x3, while x4 does not interact with x2.
(2) Small main effects: If we reduce the main effect
of x1 to 0.1, we observe in the top right plot of Fig-
ure 4 that its interaction strength with x2 increases
on average when the H-Statistic is used. This effect
can be explained by Theorem 4. Hence, when main
effects decrease, the proportion of the variance that
explains the interaction between x1 and x2 increases
compared to the proportion of the variance that ex-
plains the respective main effects. Also the method of
Greenwell’s interaction index depends on the main ef-
fect sizes. However, since Greenwell’s interaction index
includes the main effects in the nominator, the effect
on the resulting interaction index is opposite to the
one of the H-Statistic which includes the main effects
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in the denominator. On the other hand, the SHAP
interaction index as well as REPID are only based on
interaction effects, and hence, varying main effects do
not change the ranking. The plot on the bottom right
of Figure 4 illustrates how problematic small main ef-
fects can be when the H-Statistic is applied. The H-
Statistic leads to average interaction values close to 1
for x1 and x3, although the actual interaction effect of
x1 with x2 is twice as high as that of x3 with x2.
(3) Dependencies between the feature of interest and
other features: In the lower left plot of Figure 4,
the correlation between x1 and x2 has been set to
ρ12 ≈ 0.9. Since we face a positive linear interac-
tion effect between x1 and x2, a positive linear cor-
relation between these features leads to an increasing
denominator of the H-Statistic. Hence, the respective
H-Statistic value decreases compared to features that
are independent of x2 (here, x3). The SHAP interac-
tion index for x1 is higher than for x3, since in this
case, it can be shown that the interaction strength is
an additive combination of the interaction effect and
the covariance of the interacting features. Conversely,
Greenwell’s interaction index is based on the variance
of conditional marginal effects, and hence, the interac-
tion index is not influenced by dependencies between
the feature of interest and other features. The same
holds for REPID, as proven with Theorem 5.

A summary of the simulation settings and key results is
provided in Appendix B.1. Detailed theoretical deriva-
tions and explanations can be found in Appendix A.3.

4.2 Comparison on More Complex Settings

The aim in this simulation is to show that REPID de-
tects existing interactions correctly in a more complex
non-linear setting and to compare the results to the H-
Statistic. Analogous to Hu et al. (2020), we draw 2000
samples of 10 independently and uniformly distributed
random variables X1, . . . , X10 ∼ U(−1, 1) and assume
the following true underlying function:

f(x) = 6x1 + x2
2 − πx3 + exp−2x2

4 +(2 + |x5|)−1

+ x6 log |x6|+ 2x31(x1>0)1(x2>0) + 2x21(x4>0)

+ 4(x21(x2>0))
|x6| + |x2 + x8|+ ε

with ε ∼ N (0, 0.25). Hence, x2 interacts with five
other features in a more complex and non-linear way.
To avoid undefined interaction effects in a fitted model,
we fit a correctly specified generalized additive model
(GAM) and a tree-based extreme gradient boosting
model (XGBOOST) with correctly specified interac-
tion constraints7, a learning rate of 0.1, a maximum

7The “xgboost” library (Chen and Guestrin, 2016) en-
ables definition of which features are allowed to interact
with each other.

number of iterations of 1000, and a maximum tree
depth of 6 on the simulated data. The performance
of each model is measured by a separately simulated
test set with the same distributional assumptions of
size 100,000 and is reported in Figure 5. We repeat
the experiment 30 times, and each time, we measure
the interaction strength between x2 and the other nine
features using REPID and the H-Statistic. For both
methods, we again use a grid size of 20. For REPID,
we apply the same stop criteria as in Section 4.1 but
with a maximum tree depth of 7 due to a more com-
plex setting. The results are illustrated in Figure 5.
REPID correctly identifies only the true interactions
for both models. In most of the repetitions, the H-
Statistic does not find an interaction between x1 and
x2 for the GAM. A possible reason for this behavior is
the rather high main effect of x1 compared to the in-
teraction effect (Theorem 4). More experiments of dif-
ferent models and settings – including varying values
of λ to obtain shallower or deeper trees – can be found
in Appendix B.2. The experiments show that shallow
trees produce fewer regions and are therefore easier to
interpret. However, they might only detect the most
important interactions. Deeper trees are more likely
to also identify less important interactions but are less
interpretable.
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Figure 4: Comparison of REPID, the H-Statistic, Green-
well’s, and SHAP interaction indices for interactions be-
tween x2 and all other features for 30 repetitions. The up-
per left plot shows the initial setting (1). The upper and
lower right plots adjust effect sizes (2), while the bottom
left plot adjusts the correlation (3).

5 REAL-WORLD EXAMPLE

We now demonstrate the usefulness of REPID on the
titanic data (Dawson, 1995). The labeled part of the
dataset consists of 11 characteristics of 891 passengers
of the ocean liner Titanic and a binary label if they
survived. After some pre-processing steps that are de-
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Figure 5: Comparison of the interaction strength between
x2 and all other features measured by REPID (top) and the
H-Statistic (bottom) on 30 repetitions. The mean (stan-
dard deviation) of the models’ test performance (measured
by the mean squared error) is: GAM: 0.36 (0.01), XG-
BOOST: 0.57 (0.11).

scribed in more detail in Appendix B.4, we train a RF
with 500 trees on the dataset. Therefore, we obtain a
balanced accuracy of 0.8 under 5-fold cross-validation.
We are interested in how the age of the passengers af-
fects the probability of survival. The left plot in Figure
6 shows that, from 0 to 20 years, the PD plot for pas-
sengers continuously decreases and then flattens above
20 years. The ICE curves indicate that age might
influence the predicted survival probability for differ-
ent passengers in different ways, and thus, interactions
with other features might be present. The REPs after
applying REPID by using a grid size of 20, a maximum
depth of 3, a minimum number of 30 observations, and
γ = 0.2 are shown in the right plot of Figure 6. The
3 most interacting features are Sex, Pclass (passenger
class), and Fare. The green REPs show that the pre-
dicted survival probability of female passengers is on
average higher compared to their male counterparts
independent of their age. However, it is also visible
that the probability strongly depends on the passen-
ger’s class and the fare they payed. While female pas-
sengers who payed a high fare or who belong to an
upper or middle class show an overall high survival
probability independent of their age (even slightly in-
creasing until 30), the survival probability of women
with a low fare and Pclass drops with age. For men
from middle and lower classes, the predicted survival
probability drops dramatically from 0 until 20 to 30,
meaning that for the sub-population of male passen-
gers, the chances of survival are several factors higher
for children than for adults.

More real-world examples for the California housing
(Pace and Barry, 1997) and the diabetes (Smith et al.,
1988) datasets are provided in Appendix B.4.
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Figure 6: Global PD plot (blue) including ICE curves (left)
and the REPs after applying REPID (right) for the feature
of interest Age of the titanic dataset. The interaction im-
portance intImpj between Age and the interacting features
is 0.28 (Sex), 0.17 (Pclass), 0.13 (Fare), 0.06 (Embarked)
and R2

int = 0.64.

6 DISCUSSION

We have introduced the interaction detection method
REPID, which provides more representative PD plots
on interpretable regions and enables quantification of
feature interactions. We have proven its theoretical
and empirical advantages and demonstrated how it
out-performs alternatives presented in Section 3 and
4. Unlike the H-Statistic or SHAP interaction index,
REPID is not influenced by correlations between the
feature of interest xS and other features xC . How-
ever, like the other methods, it might be affected if
features within xC are correlated. Furthermore, the
method might be limited if the feature of interest is,
e.g., highly skewed, especially if an equidistant grid
is used for computations. Possible solutions might be
feature transformations or to use a sample or quantile-
based grid. As our method is based on a tree-based
partitioning algorithm that is known to be unstable
(Breiman, 1996), the question arises whether the split-
ting procedure in Algorithm 1 is a potential limitation.
However, with regards to the interaction quantifica-
tion, we demonstrated in Section 4 that we obtain sta-
ble results when repeating the experiments multiple
times. A more detailed analysis on the robustness of
the method can be found in Appendix B.3.
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A THEORETICAL EVIDENCE

A.1 Proofs

Here, we provide the proofs of the Theorems defined in Section 3. For each Theorem, we first provide a textual
description in a proof sketch followed by the formal proof.
Note: For our proofs, we apply the concept of functional decomposition. One concept of functional decomposition
has been introduced in Section 2. The so-called functional ANOVA (fANOVA) decomposition is a well-known
approach to decompose a function in main and interaction effects. The fANOVA decomposition defined in Section
2 is based on Hooker (2004), and according to this definition, covariates must be independent to obtain a unique
decomposition. However, we argue that this is not a relevant issue for our methods, since: (1) We do not try to
estimate or calculate the decomposed mean-zero function terms gW ; we only use the (valid) assumption that a
function can be decomposed as in Eq. (3) to prove our theorems. Hence, we are not directly interested in a unique
solution of the decomposition. (2) Still, it is possible to relax this assumption by using the generalized fANOVA
(Hooker, 2007), which is a weighted version of the “normal” fANOVA to address the extrapolation problem when
strong correlations are present. However, it is also possible to use another functional decomposition (e.g., as
done in Apley and Zhu (2020)) for these proofs.

A.1.1 Proof of Theorem 1 and Corollary 1.1

Proof Sketch Since EXC

[
f̂(xS ,x

(i)
C )
]

= f̂(xS ,x
(i)
C ) and if Eq. (3) holds, the fANOVA decomposition can also be

applied to the i-th ICE curve. Since x
(i)
C is constant in i, all fANOVA components that do not depend on xS can

be summarized to an individual intercept shift of observation i and, thus, cancelled out by mean-centering an ICE
curve. The remaining term is then defined by the mean-centered main and mean-centered individual interaction
effect of xS for observation i. Taking the expected value w.r.t. XC results in an analogous decomposition of the
PD function and mean-centered PD function, respectively.

Proof 1 We first derive the fANOVA decomposition of the i-th ICE curve f̂(xS ,x
(i)
C ) using Eq. (3) and use this

decomposition to derive the mean-centered version f̂ c(xS ,x
(i)
C ) for |S| = 1. Therefore, we first decompose the

function into main and interaction effects depending on xS . Note: The term g0 represents a constant intercept
shift. This term is necessary to receive zero-mean functional components, i.e., e.g., EX [gS(XS)] = 0.

f̂(xS ,x
(i)
C ) = EXC |XC

[
f̂(xS , XC)|XC = x

(i)
C

]
= g0︸︷︷︸

constant term

+ gS(xS)︸ ︷︷ ︸
main effect of xS

+
∑
j∈C

gj(x
(i)
j )︸ ︷︷ ︸

main effect of all other
features xj for observation i

+

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS ,x
(i)
Ck

)

︸ ︷︷ ︸
(k + 1)-order interaction between
xS and xCk

for observation i

+

p−1∑
k=2

∑
Ck⊆C,
|Ck|=k

gCk
(x

(i)
Ck

)

︸ ︷︷ ︸
k-order interaction between

features within Ck for observation i
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f̂ c(xS ,x
(i)
C ) = f̂(xS ,x

(i)
C )− EXS

[
f̂(XS ,x

(i)
C )
]

= g0 + gS(xS) +
∑
j∈C

gj(x
(i)
j ) +

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS ,x
(i)
Ck

) +

p−1∑
k=2

∑
Ck⊆C,
|Ck|=k

gCk
(x

(i)
Ck

)

− g0 − EXS
[gS(XS)]︸ ︷︷ ︸
=0

−
∑
j∈C

gj(x
(i)
j )− EXS

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(XS ,x
(i)
Ck

)

− p−1∑
k=2

∑
Ck⊆C,
|Ck|=k

gCk
(x

(i)
Ck

)

= gcSS (xS)︸ ︷︷ ︸
mean-centered

main effect of xS

+

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS ,x
(i)
Ck

)− EXS

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(XS ,x
(i)
Ck

)


︸ ︷︷ ︸

mean-centered interaction effect of xS with x
(i)
C for observation i

= gcSS (xS)︸ ︷︷ ︸
mean-centered

main effect of xS

+

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{S}(xS ,x
(i)
Ck

)

︸ ︷︷ ︸
mean-centered interaction effect of

xS with x
(i)
C for observation i

Proof 1.1 We first derive the fANOVA decomposition of the PD function f̂PDS (xS) using Eq. (3) and use this

decomposition to derive its mean-centered version fPD,cS (xS) for |S| = 1.

fPDS (xS) = EXC

[
f̂(xS , XC)

]

= EXC

g0 + gS(xS) +
∑
j∈C

gj(x
(i)
j ) +

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS , XCk
) +

p−1∑
k=2

∑
Ck⊆C,
|Ck|=k

gCk
(XCk

)



= g0 + gS(xS) + EXC

∑
j∈C

gj(x
(i)
j )


︸ ︷︷ ︸

expected main effect
of features in xC (=0)

+EXC

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS , XCk
)

+ EXC

p−1∑
k=2

∑
Ck⊆C,
|Ck|=k

gCk
(XCk

)


︸ ︷︷ ︸

expected interaction effect
of features in xC (=0)

= g0 + gS(xS)︸ ︷︷ ︸
main effect of xS

+EXC

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS , XCk
)


︸ ︷︷ ︸

expected interaction effect
of xS with xC w.r.t. xC

If the expected value of each decomposed term g(x) exists and if the integral of the absolute value is finite, then
Fubini’s theorem can be applied, and the mean-centered PD function of xS for |S| = 1 can be derived by:

fPD,cS (xS) = fPDS (xS)− EXS

[
fPDS (XS)

]
= EXC

[
f̂(xS , XC)

]
− EXS

g0 + gS(XS) + EXC

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(XS , XCk
)
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= g0 + gS(xS) + EXC

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(xS , XCk
)



− g0 − EXS
[gS(XS)]︸ ︷︷ ︸
=0

−EXS

EXC

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{S}(XS , XCk
)




︸ ︷︷ ︸
expected interaction effect
between xS and xC (=0)

= gcSS (xS)︸ ︷︷ ︸
mean-centered

main effect of xS

+EXC

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{S}(xS , XCk
)


︸ ︷︷ ︸

expected mean-centered interaction effect
of xS with xC w.r.t. xC

A.1.2 Proof of Theorem 2

Proof Sketch If the function f̂(x) can be decomposed as in Eq. (3), then Theorem 1 and Corollary 1.1 hold, and
the main effect of xS is cancelled out when calculating RL2 (Ng). The remaining term is given by the distance
between the i-th centered interaction effect and the average centered interaction effect between xS and xC .

Proof 2 In the risk function of Eq. (6), the squared distance between the i-th mean-centered ICE curve

f̂ c(xS ,x
(i)
C ) and the respective PD function fPD,cS (xS) is calculated. The distance can be reduced to the following

term:

f̂ c(xS ,x
(i)
C )− fPD,cS (xS) = gcSS (xS) +

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{S}(xS ,x
(i)
Ck

)− gcSS (xS)−
p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

EXC

[
gcSCk∪{S}(xS , XCk

)
]

=

p−1∑
k=1

∑
Ck⊆C,
|Ck|=k

(gcSCk∪{S}(xS ,x
(i)
Ck

)− EXC
[gcSCk∪{S}(xS , XCk

)]

The first term is the mean-centered interaction effect of the i-th ICE curve, while the second term represents
the mean-centered expected interaction effect over the joint distribution of xC (which is included in the mean-

centered PD function, see also the decomposition of the mean-centered PD function fPD,cS (xS) in the proof in
Appendix A.1.1). The intuition behind our split criterion is that we search for the optimal split value of a feature
in xC that reduces the aggregated variance over all curves the most if we split according to this optimal split
value. Thus, we try to find regions in the feature space xC where the distance between the individual centered
ICE curves in this region and the respective mean-centered PD plot is as small as possible. Hence, we want
to minimize the deviation of the individual interaction effect of the ICE curves in a region from the average
interaction effect in the considered region.

A.1.3 Proof of Theorem 4

Proof Sketch The two-way interaction index of the H-Statistic is calculated by dividing the variance of the
difference between the centered 2-dimensional PD plot and the 1-dimensional PD plots of the two features of
interest (nominator) by the variance of the centered 2-dimensional PD plot (denominator, see Eq. (2)). If Eq. (3)
holds, we can apply Theorem 1 and Corollary 1.1, and it can be shown that the main effects of the two features
of interest are cancelled out in the nominator, but are still present in the denominator (scaling factor) of the
interaction index.



Julia Herbinger, Bernd Bischl, Giuseppe Casalicchio

Proof 4 Let S = {j, l} and C = S{ its complement, then the 2-dimensional PD function fPDS (xS) of xj and
xl is given by

fPDS (xS) = EXC
[f(xS , XC)]

= g0 + gj(xj) + gl(xl) + gjl(xj ,xl) + EXC

p−2∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk
(XCk

)


︸ ︷︷ ︸

expected interaction effect
of features in xC (=0)

+ EXC

p−2∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{j}(xj , XCk
) + gCk∪{l}(xl, XCk

) + gCk∪{S}(xS , XCk
)



If the expected value of each decomposed term g(x) exists, and if the integral of the absolute value is finite, then

Fubini’s theorem can be applied, and the mean-centred 2-dimensional PD function fPD,cS (xS) of features xj and
xl can then be derived by

fPD,cS (xS) = fPDS (xS)− EXS

[
fPD,cS (XS)

]
= g0 + gj(xj) + gl(xl) + gjl(xj ,xl)

+ EXC

p−2∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{j}(xj , XCk
) + gCk∪{l}(xl, XCk

) + gCk∪{S}(xS , XCk
)


− g0 − EXS

[gj(Xj) + gl(Xl) + gjl(Xj , Xl)]︸ ︷︷ ︸
=0

− EXS

EXC

p−2∑
k=1

∑
Ck⊆C,
|Ck|=k

gCk∪{j}(Xj , XCk
) + gCk∪{l}(Xl, XCk

) + gCk∪{S}(XS , XCk
)




︸ ︷︷ ︸
expected interaction effect between xS and xC (=0)

= gcSj (xj) + gcSl (xl)︸ ︷︷ ︸
mean-centered

main effects of xS

+ gcSjl (xj ,xl)︸ ︷︷ ︸
mean-centered interaction effect

between xj and xl

+ EXC

p−2∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{j}(xj , XCk
) + gcSCk∪{l}(xl, XCk

) + gcSCk∪{S}(xS , XCk
)


︸ ︷︷ ︸

expected mean-centered interaction effects
between features in xS and features in xC w.r.t. xC

It follows that the H-Statistic still depends on the mean-centered main effects gcSj (xj) and gcSl (xl) of xj and xl
in the denominator.

To calculate the nominator of the H-Statistic, we must subtract the 1-dimensional mean-centered PD functions
of xj and xl as follows:

fPD,cS (xS)− fPD,cj (xj)− fPD,cl (xl) = gcSj (xj) + gcSl (xl) + gcSjl (xj ,xl)
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+ EXC

p−2∑
k=1

∑
Ck⊆C,
|Ck|=k

gcSCk∪{j}(xj , XCk
) + gcSCk∪{l}(xl, XCk

) + gcSCk∪{S}(xS , XCk
)


− gcSj (xj)−

p−1∑
k=1

∑
Ck⊆C∪{l},
|Ck|=k

EXC∪{l}

[
gcSCk∪{j}(xj , XCk

)
]

− gcSl (xl)−
p−1∑
k=1

∑
Ck⊆C∪{j},
|Ck|=k

EXC∪{j}

[
gcSCk∪{l}(xl, XCk

)
]

Thus, in the nominator of the H-Statistic, the variance of the calculated term is determined. This term only
depends on interactions with features xj and xl, while the main effects gcSj (xj) and gcSl (xl) that are present in
the denominator are cancelled out.

A.1.4 Proof of Theorem 5

Proof Sketch The loss function in Eq. (5), which is used for the splitting in Algorithm 1, is calculated grid-wise.

This means that we calculate the variation measured by the estimated variance (L2 loss) for each grid point x
(k)
S

with k ∈ {1, . . . ,m}. Hence, xS is not treated as a random variable but as a constant. It follows that when

calculating the variance over all ICE curves on a specific grid point x
(k)
S , no covariance terms between XS and

features in XC are considered.

Proof 5 L(Ng, xS) of Eq. (5) is estimated by taking the variance over all mean-centered ICE curves within a
region Ng for a fixed grid point of xS . Hence, for each grid point k ∈ {1, . . . ,m}, we calculate:

L(x
(k)
S ,Ng) = V arX|Ng

(f̂ c(X)|XS = x
(k)
S ) = V arX|Ng

[f̂ c(x
(k)
S , XC)].

Since x
(k)
S is constant, it follows V arX|Ng

[f̂ c(x
(k)
S , XC)] = V arXC |Ng

[f̂ c(x
(k)
S , XC)], and hence, the calculated

variance only depends on features in C while there are no covariance terms between XS and features in XC

included.

A.2 Derivation of R Squared Measure

Let d = 0, . . . , D be the depth of the tree, where d = 0 is the depth of the root node and d = D of the leaf nodes
of a symmetric tree, and k defines the index of the node at each depth from left to right (starting from 0). With
a slight abuse of notation, we denote Rdk as the risk of the k-th node at depth d. For example, R0

0 is the risk of

the root node (R(N )). Let Bt = B{P denote the subset of terminal nodes in a symmetric tree. We can derive an
interaction-related R2 measure by aggregating the interaction importance over all parent nodes BP :

R2
int =

∑
P∈BP

intImp(NP )

=
1

R0
0

·
D−1∑
d=0

d∑
k=0

(Rdk −Rd+1
2k −R

d+1
2k+1)

=
1

R0
0

· (R0
0 −

D−1∑
k=0

(RD2k +RD2k+1))

= 1−

D−1∑
k=0

(RD2k +RD2k+1)

R0
0

= 1−
∑
t∈Bt
R(Nt)

R(N )
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Explanation: According to Eq. (7), intImp(NP) is defined by intImp(NP ) = R(NP )−(R(Nl)+R(Nr))
R(N ) which is,

e.g., for the first split (using the new notation defined in this section) the same as intImp(N ) =
R0

0−(R1
0+R1

1)

R0
0

and

for the split of the first left and right child nodes (which we denote here by Nl and Nr, respectively), we obtain

intImp(Nl) =
R1

0−(R2
0+R2

1)

R0
0

and intImp(Nr) =
R1

1−(R2
2+R2

3)

R0
0

. It follows that, after the second split (D = 2), R2
int

can be calculated by

R2
int = intImp(N ) + intImp(Nl) + intImp(Nr)

=
1

R0
0

(R0
0 − (R1

0 +R1
1) +R1

0 − (R2
0 +R2

1) +R1
1 − (R2

2 +R2
3)

=
1

R0
0

·
1∑
d=0

d∑
k=0

(Rdk −Rd+1
2k −R

d+1
2k+1)

=
1

R0
0

(R0
0 − (R2

0 +R2
1))− (R2

2 +R2
3)

=
1

R0
0

· (R0
0 −

1∑
k=0

(RD=2
2k +RD=2

2k+1))

= 1−

D−1∑
k=0

(RD2k +RD2k+1)

R0
0

= 1−
∑
t∈Bt
R(Nt)

R(N )

From the second to the fourth line of the equation, we can see that the parent nodes (besides the root node)
are cancelled out when aggregating the interaction importance over all nodes. It follows that only the deviation
between the root node risk and the sum over all terminal node risks remains in the nominator. The denominator
is always the root node (baseline) risk.

A.3 Explanations for Weaknesses of other Methods

A.3.1 Small Main Effects

For REPID, we proved with Theorem 2 that the split criterion only depends on interaction effects with the
feature of interest xS and is independent of main effects. On the other hand, according to Theorem 4, the
H-Statistic depends on main effects in the denominator of the H-Statistic. Since the main effect of feature x1

is reduced from 1 to 0.1 in the adjusted example of Section 4.1, the denominator of H-Statistic decreases, and
hence, the overall H-Statistic value increases for feature x1.

Since we provided proofs for REPID and for the H-Statistic, we will not go into more detail here, but instead
derive explanations for the SHAP and Greenwell’s interaction indices with regards to varying main effects.

SHAP interaction index By definition, SHAP interaction values only contain the interaction effect between
the two features of interest and do not contain their main effects. Since we only sum up the absolute interaction
values and divide them by the total amount of two-way interaction values between the feature of interest and
all other features, there are also no main effects included in the global SHAP interaction index. Hence, varying
main effects does not change the interaction strength / ranking calculated by the SHAP interaction index.

Example: Due to the complexity of an increasing number of feature permutations, we show this relationship on
the following simple model: f̂(x) = β̂1x1 + β̂2x2 + β̂12x1x2 with E(X1) = E(X2) = 0.
In this case, we can straightforwardly calculate the individual components of the SHAP interaction value with
S = ∅:

fPDS∪{1,2}(xS∪{1,2}) = β̂1x1 + β̂2x2 + β̂12x1x2

Since E(X1) = E(X2) = 0, it follows:

fPDS∪{1}(xS∪{1}) = β̂1x1 and fPDS∪{2}(xS∪{2}) = β̂2x2 and fPDS (xS) = EX

[
f̂(X)

]
= β̂12EX [X1X2]
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and hence, the SHAP interaction value between x1 and x2 is given by

Φ1,2(x) =
1

2
(fPDS∪{1,2} − f

PD
S∪{1}(xS∪{1})− f

PD
S∪{2}(xS∪{2}) + fPDS (xS))

=
1

2
(β̂1x1 + β̂2x2 + β̂12x1x2 − β̂1x1 − β̂1x2 + β̂12EX [X1X2])

=
1

2
(β̂12x1x2 + β̂12EX [X1X2])

Greenwell’s interaction index Greenwell et al. (2018) defines feature importance i(xj) as the standard
deviation over the PD function of a feature xj with mj unique values as follows:

i(xj)
2 =

1

mj − 1

mj∑
k=1

(
f̂PDj (x

(k)
j )− 1

mj

mj∑
k=1

f̂PDj (x
(k)
j )

)2

To calculate the interaction between xj and xl, they define the conditional importance i(xj |xl = x
(i)
l ) of a feature

xj given the t-th unique value of xl as follows:

i(xj |xl = x
(t)
l )2 =

1

mj − 1

mj∑
k=1

(
f̂PDj (x

(k)
j |xl = x

(t)
l )− 1

mj

mj∑
k=1

f̂PDj (x
(k)
1 |xl = x

(t)
l )

)2

With mj and ml being the number of unique values of xj and xl, respectively, the interaction measure i(xj ,xl)
between these two features is then defined by:

i(xj ,xl) =
1

2

√√√√ 1

ml − 1

ml∑
t=1

[
i(xj |xl = x

(t)
l )− 1

ml

ml∑
t=1

i(xj |xl = x
(t)
l )

]2

+
1

2

√√√√ 1

mj − 1

mj∑
k=1

[
i(xl|xj = x

(k)
j )− 1

mj

mj∑
k=1

i(xl|xj = x
(k)
j )

]2

Instead of conditioning on all features in C as done for ICE curves, Greenwell et al. (2018) conditions only on
the second feature of interest (e.g., xl) to calculate the variation of PD curves for the first feature of interest
(e.g., xj). Hence, they first take the variation of each conditioned curve and then calculate the variation over all
these curves. Since they calculate the squared distance of each conditioned PD curve to its mean, the distance
still contains the main effects of the two features of interest (see Theorem 1).

A.3.2 Dependencies between the Feature of Interest and other Features

For REPID, we proved with Theorem 5 that the loss function of Eq. (5) (which is used for splitting) is not
affected by dependencies between the feature of interest xS and features in xC .

Hence, we will now derive explanations for the H-Statistic, the SHAP, and the Greenwell’s interaction indices
with regards to dependencies between the feature of interest and other features.

The H-Statistic The H-Statistic (which is estimated as in Eq. (2)) divides the variance of the difference
between the mean-centered 2-dimensional PD plot and the two mean-centered 1-dimensional PD plots by the
variance of the mean-centered 2-dimensional PD plot. Both the nominator and the denominator depend on the
joint distribution of the two features of interest and, hence, also on the dependency between the two features.

Example Considering our simulation example in Section 4.1 with E(X1) = E(X2) = E(X3) = E(X4) = 0, the
mean-centered 2-dimensional PD function between x1 and x2 with S = {1, 2} is given by:

f̂PD,cS (x1,x2) = β̂1x1 + β̂2x2 + β̂3E(X3) + β̂12x1x2 + β̂23E(X3)x2 + β̂13x1E(X3) + β̂123x1E(X3)x2
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− β̂1E(X1)− β̂2E(X2)− β̂3E(X3)− β̂12EXS
[X1X2]− β̂23E(X3)E(X2)− β̂13E(X1)E(X3)

− β̂123EXS
[X1X2]E(X3)

= β̂1x1 + β̂2x2 + β̂12(x1x2 − EXS
[X1X2])

Calculating the denominator by taking the variance

V ar(f̂PD,cS (x1,x2)) = E
[
(β̂1X1 + β̂2X2 + β̂12(X1X2 − EXS

[X1X2]))2
]

− E
[
β̂1X1 + β̂2X2 + β̂12(X1X2 − EXS

[X1X2])
]2

= E
[
β̂2

1X
2
1 + 2β̂1β̂2X1X2 + β̂2

2X
2
2 + 2β̂1β̂12X

2
1X2 + 2β̂2β̂12X1X

2
2

]
+ E

[
−2β̂1β̂12X1EXS

[X1X2]− 2β̂2β̂12X2EXS
[X1X2] + β̂2

12X
2
1X

2
2

]
+ E

[
−2β̂2

12X1X2EXS
[X1X2] + β̂2

12EXS
[X1X2]

2
]

= β̂2
1V ar(X1) + β̂2

2V ar(X2) + β̂2
12V ar(X1X2)

+ 2β̂1β̂2Cov(X1, X2) + 2β̂1β̂12Cov(X2
1 , X2) + 2β̂2β̂12Cov(X1, X

2
2 )

in the nominator, we subtract the mean-centered 1-dimensional PD functions (i.e., f̂PD,c1 (x1) = β̂1x1 and

f̂PD,c2 (x2) = β̂2x2) and take the variance, which results in

EX

[
β̂2

12(X1X2 − EXS
[X1X2]))2

]
− EX

[
β̂12(X1X2 − EXS

[X1X2])
]2

= EX

[
β̂2

12X
2
1X

2
2 − 2β̂2

12X1X2EXS
[X1X2] + β̂2

12EXS
[X1X2]

2
]

= β̂2
12V ar(X1X2)

= β̂2
12(V ar(X1)V (X2))− Cov(X1, X2)2 + Cov(X2

1 , X
2
2 ))

It follows that by increasing the correlation between x1 and x2 to ρ12 = 0.9, the denominator of the H-Statistic
increases compared to the nominator for the given example, and hence, the H-Statistic value between x1 and x2

decreases compared to the H-Statistic value between x2 and x3.

Some general rules that were applied here:

1 Rearrangement of variance formula for functions: V ar(g(X)) = E
[
g(X)2

]
− (E [g(X)]

2

2 Expected value of a product of two random variables: E [X1X2] = E [X1]E [X2] + Cov(X1, X2) which
reduces for E(X1) = E(X2) = 0 to E [X1X2] = Cov(X1, X2)

3 Variance of a product of two random variables: V (XY ) = E
[
X2Y 2

]
− (E [XY ]

2
= Cov(X2, Y 2) + (V (X) +

(E [X]
2
)(V (Y ) + (E [Y ]

2
)− (Cov(X,Y ) + E [X]E [Y ])2 which reduces for E [X] = E [Y ] = 0 to V (XY ) =

Cov(X2, Y 2) + V (X)V (Y )− Cov(X,Y )2

SHAP interaction index SHAP interaction values – and with that, also the (global) SHAP Interaction index
– depend on the correlation between the two features of interest, since we consider the joint distribution of the
features as we do for the H-Statistic.

Example In Appendix A.3.1, we derived the SHAP interaction value for a simple linear model of two features
with a positive linear interaction between these features, which resulted in

Φ1,2(x) = 1
2 (β̂12x1x2 + β̂12EX [X1X2])

Hence, if x1 and x2 are positively correlated as in our example in Section 4.1, then EX [X1X2] > 0, while this
term is 0 if the two features are independent. This is why x1 shows a higher interaction value than x3 in the
referred simulation study.



REPID: Regional Effect Plots with implicit Interaction Detection

Greenwell’s interaction index Similarly to our approach, the Greenwell’s interaction index conditions on
one of the two features of interest. They calculate the variance w.r.t. the other feature of interest, and vice versa.
Hence, the dependency between the two regarded features does not influence the resulting interaction index.

B EMPIRICAL EVIDENCE

In this section, we provide more empirical evidence for the usefulness of REPID. We will further analyze the
nonlinear simulation setting described in Section 4.2 and will also look at a linear example where interactions
can clearly be ranked. Furthermore, we analyze the influence of the improvement parameter γ used as stop
criterion and provide some evidence for the robustness of our method in Section B.3. In Section B.4, we clarify
the pre-processing steps of the real-world example that was analyzed in Section 5.

Infrastructure All experiments only require CPUs (and no GPUs) and were computed on a Linux cluster
(see Table 2).

Table 2: Description of the infrastructure used for the experiments in this paper.

Computing Infrastructure

Type Linux CPU Cluster
Architecture 28-way Haswell-EP nodes
Cores per Node 1
Memory limit (per core) 2.2 GB

B.1 Overview on Weaknesses of other Methods

In Table 3, we provide a brief overview of the simulation setting, including a sensitivity analysis that we performed
in Section 4.1. The table shows that only REPID provides on average correct ranks for all settings, while the
other state-of-the-art methods provide for at least one of the settings a wrong ranking (on average).

Table 3: Summary table of settings and key results of the simulation study in Section 4.1. The column “Setting” refers
to the setting number in Section 4.1. The second column refers to the adjustments made in the setting compared to the
initial setting. The other four columns show if the average ranks (r) of the feature interactions with the feature of interest
(x2) are correct (meaning that the ranks are the same as the ranks of the underlying data-generating process and fitted
linear model) or if they are wrong (different from the ranks in the data-generating process and fitted linear model).

Setting Adjustment REPID H-Statistic Greenwell Shapley
(2) β1 = 0.1 (initial: 1) correct

r(x1) = r(x3)
wrong
r(x1) > r(x3)

wrong
r(x1) < r(x3)

correct

(2) β1 = β2 = β3 = β4 = 0.1
and β12 = 2 (initial: 1)

correct
r(x1) > r(x3)

wrong
r(x1) = r(x3)

correct correct

(3) ρ12 = 0.9 (initial: 0) correct
r(x1) = r(x3)

wrong
r(x1) < r(x3)

correct wrong
r(x1) > r(x3)

B.2 Further experiments

Nonlinear example In Section 4.2, we compared REPID and the H-Statistic for the interactions between the
most interacting feature x2 and the other nine features of the simulation setting described in the referred section.
In addition to the correctly specified GAM and XGBOOST model from Section 4.2, we now also compare the
results to two other ML models: an RF with 500 trees – the mean and standard deviation of the models’ test
performance (measured by the mean squared error) is 1.01 and 0.16 – and a support vector machine (SVM) using
epsilon support vector regression with a Gauss kernel, C = 1 and ε = 0.1 – the mean and standard deviation
of the models’ test performance (measured by the mean squared error) is 0.76 and 0.07. The left plot in Figure
7 shows the same illustration as in Figure 5 for the interactions between the non-influential feature x10 and all
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other features. For the correctly specified GAM and XGBOOST model, both methods do – as expected – on
average not find any interactions. While REPID on average also recognizes that there are no interactions present
between x10 and all other features for the SVM and RF models, the H-Statistic finds some higher interactions,
especially for the SVM. A possible explanation is that x10 does also not influence the target by a main effect in
the underlying function, and hence, possible small found interaction effects might lead to high H-Statistic values.
The outliers for some features when REPID is applied are possibly because the total variation of mean-centered
ICE curves for non-influential features are rather small, and hence, relative loss reduction values might be high,
although the absolute values are small. A potential solution to prevent these outliers is to extend the stop
criterion by, e.g., a minimum absolute loss reduction constraint.

In the left plot in Figure 8, we analyzed the influence of the improvement parameter γ on the interaction strength.
The difference between the threshold γ = 0.15, which we chose in Section 4.2, and γ = 0.1 is rather small, while it
becomes more difficult to detect the smaller interactions with γ = 0.2. The smaller we choose γ to be, the deeper
we split, and the less interaction variance remains in the final terminal nodes. Therefore, the obtained interaction
strengths are more precise, and hence, our results seem to be more robust for different repetitions8. However, the
deeper we split, the more final regions we obtain, which makes it more difficult to visually analyze the influence
of the interactions on the marginal effect of the feature of interest. Hence, how to set the improvement parameter
γ depends on the question the user would like to answer.
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Figure 7: Left (right): The figure compares the interaction strength between x10 (x2) and all other features measured by
REPID and the H-Statistic for 4 different models on 30 repetitions of the described nonlinear (linear) simulation setting.

Linear example We now look at a further simulation example with only linear interaction effects between
numeric features, which makes it possible to clearly rank the interactions between the feature of interest and all
other features. Therefore, we draw 2000 samples of seven independent random variables, which are distributed
as follows: X1, . . . , X5 ∼ U(−1, 1), X6 ∼ N (0, 4) and X7 ∼ N (2, 9). The true underlying relationship is defined
by f(x) = r(x) + ε, where the remainder r(x) is given by

r(x) = x1 + 4x2 + 3x2x3 + 5x2x4 + 7x2x5

and ε ∼ N (0, (σ(r(x)) · 0.1)2). Hence, x5 interacts most with x2, followed by x4 and then x3. We fitted a linear
model (LM) and an XGBOOST model with interaction constraints as well as an SVM and RF using the same
configurations as for the nonlinear example on the simulated data. We repeated the experiment 30 times to
quantify the interaction strength between x2 and all other features using REPID and the H-Statistic.9 We use
the same specifications for the models’ and interaction detection methods’ hyperparameters as used in Section
4.2. The right plot in Figure 7 illustrates that both methods on average find the correct ranking of the feature
interactions. However, REPID shows almost no variation over all repetitions and hence leads to more stable
and clearer ranking results than the H-Statistic. In the right plot of Figure 8, the impact of the improvement
parameter γ is shown. However, for this example, we barely see a difference between the different choices of γ,
which might be due to the simplicity of the setting and hence that no deep trees are necessary to receive stable
results for the interaction strength.

8The more robust results are shown by smaller interquartile ranges of boxplots in Figure 8.
9The mean (standard deviation) of the models’ test performance (measured by the mean squared error) is for the LM:

0.15 (0.002), XGBOOST: 0.6 (0.22), SVM: 0.31 (0.069) and RF: 1.43 (0.34).



REPID: Regional Effect Plots with implicit Interaction Detection

0.1
0.15

0.2

x1 x3 x4 x5 x6 x7 x8 x9 x10

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

Feature

In
te

ra
ct

io
n 

S
tr

en
gt

h
GAM XGBOOST SVM RF

0.1
0.15

0.2

x1 x3 x4 x5 x6 x7

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Feature

In
te

ra
ct

io
n 

S
tr

en
gt

h

LM XGBOOST SVM RF

Figure 8: Left (right): The figure compares the interaction strength between x2 and all other features measured by REPID
for 3 different improvement parameter values: γ = 0.1 (top), γ = 0.15 (middle), and γ = 0.2 (bottom) for 4 different
models on 30 repetitions of the described nonlinear (linear) simulation setting.

B.3 Robustness analysis

An oft-stated limitation of the usage of decision trees is that they do not provide robust results. In Section
4 and B.2, we already showed that REPID provides robust results with regards to quantifying the interaction
strength for different simulation settings. To investigate the robustness itself of the fitted trees, we extract and
analyze the splits of the first three levels (depths) of the tree for the nonlinear example of Section 4.2, which
is the most complex analyzed example of all examples in this paper. The frequencies of the features used at
each split for the 30 repetitions is shown in Table 4 for each of the fitted models. For all repetitions and for all
models, x4 was always chosen as the first splitting feature, with an average split value very close to 0, which
shows only small variations (sd values). Furthermore, all models chose most often x8 for all nodes in the second
level and x3 for all nodes in the third level of the tree. For the GAM that was correctly specified according to
the true underlying function, the splits for the first three levels of the fitted decision tree barely differ. On the
other hand, the SVM and the RF show higher variations. However, these models might have learned different
interaction effects for different repetitions, and hence, it might be reasonable to receive different splits and REPs.
The XGBOOST model also varies more than the GAM, which might be due to the fact that the GAM has a
better and less variable model performance compared to the XBGOOST model, and hence, effect sizes might
also vary less (see Figure 5). However, for all models, the feature chosen most often in each node is the same.
It follows that REPID seems to provide robust results with regards to the interaction strength and the upper
levels of the fitted tree if the same interactions have been learned by the ML models we want to explain.

B.4 Real-World Examples

Titanic dataset In Section 5, we applied REPID on the titanic dataset (Dawson, 1995). The labeled part
of the dataset consists of 11 features and the binary survival target variable of 891 passengers. The features of
the raw dataset include: PassengerId , Name, Pclass, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, a
detailed definition of each feature can be found at https://www.kaggle.com/c/titanic/data. To fit the RF
model and analyze the predictions, we first pre-processed the data according to the following kaggle notebook
https://www.kaggle.com/nitinar1/titanic-solution-using-random-forest-tool-r. The pre-processing
steps can be summarized as follows:

1 We extract a title from the feature Name and categorize them into 5 categories (Master, Miss, Mr, Mrs and
Rare Title).

2 We create a family size feature FsizeD from the features Sibsp as the number of siblings and Parch as the
number of parents and children, and we categorize it into singleton, small and large family size.

3 We impute missing values of feature Embarked based on the fare price they paid.

https://www.kaggle.com/c/titanic/data
https://www.kaggle.com/nitinar1/titanic-solution-using-random-forest-tool-r
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4 We impute missing values of feature Fare by its median value of the respective Pclass and Embarked
categories.

5 We impute the feature Age using a random forest imputation via multivariate imputation by chained equa-
tions.

6 We exclude the features PassengerId, Name, Ticket, Cabin from the dataset, which leaves us with nine
features: Pclass, Sex, Age, SibSp, Parch, Fare, Embarked, Title, FsizeD.

California housing dataset As a second example, we applied REPID on the California housing dataset
(Pace and Barry, 1997). The dataset contains information from the 1990 U.S. Census in California. Each of the
20640 observations provides information of a block group (small geographical unit), with an average population
of around 1425 on the median house value (target), eight numeric features, and one categorical feature describing
the ocean proximity. The features of the dataset include: Longitude, Latitude, Housing median age, Total rooms,
Total Bedrooms, Population, Households, Median Income and Ocean proximity. A detailed definition of each
feature can be found at https://www.kaggle.com/camnugent/california-housing-prices. Only the feature
Total bedroom contains 207 missing values, which we imputed by the median value of Total bedroom of all other
observations. Before applying the neural network on the data, we log transformed the target variable with a base
of 10 and log transformed the features Total rooms, Total Bedrooms, Population, Households, Median Income
using the natural logarithm. After pre-processing the data, we fit a neural net with one hidden layer of size
20, a weight decay of 0.1, and a maximum number of iterations of 1000. Thus, we obtain a mean absolute
error (R-squared) of 0.08 (0.78) under 5-fold cross-validation. The left plot in Figure 9 shows that the median
house value on average decreases the farther west a house is. The effect of individual observations seems to
vary. However, visualizing ICE curves for such a high number of observations is not very insightful. In the
right plot, we illustrate the resulting REPs after applying REPID with the same configurations as used for the
titanic example in Section 5 but with γ = 0.25. The REPs show that the marginal effect of Longitude on the
predicted median house value highly depends on how far north a house is (Latitude: the higher the value the
farther north) and how close the house is to the ocean (Ocean proximity). For example, median values of houses
that are farther north decrease with Longitude (light orange), while median values of houses farther south and
not in the inland increase with Longitude (red).
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Figure 9: The figure shows the global PD plot (blue), including ICE curves (left) and the REPs after applying REPID
(right) for the feature of interest Longitude of the California housing dataset. The interaction importance intImpj
between Longitude and the interacting features is 0.49 (Latitude), 0.18 (Ocean proximity), and R2

int = 0.67.

Diabetes dataset As a third real-world example, we apply REPID on the Diabetes dataset, which analyzes
diabetes in Pima Indian women and is available in the MASS package in R. The dataset consists of seven numeric
features and the binary target variable type, which indicates if a woman is diabetic. The features for the 332
women contained in the dataset include: Npreg (number of pregnancies), Glu (plasma glucose concentration),
Bp (diastolic blood pressure in mm Hg), Skin (triceps skin fold thickness in mm), Bmi (body mass index, ped
(diabetes pedigree function), Age. We trained an SVM using epsilon support vector regression with a Gauss

https://www.kaggle.com/camnugent/california-housing-prices
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kernel, C = 1 and ε = 0.1. Subsequently, we obtained a balanced accuracy of 0.72 using a 5-fold cross-validation.
We are interested in how the feature Skin influences the predicted probability for diabetes. When looking at the
global PDP in Figure 10, one would assume that the skin fold thickness does not effect the predicted probability
for diabetes, however, the ICE curves in the left plot indicate heterogeneous effects and, hence, interactions. We
apply REPID with the same configurations as used in the titanic example in Section 5 and obtain the REPs
shown in the right plot of Figure 10. While the risk of diabetes is in general higher for women with a glucose
concentration higher than 133 than for women with a lower glucose concentration, the REPs also show that the
risk for women with high glucose concentration values first increases with skin fold thickness and then decreases
(green and light green curves), while the risk of diabetes for women with lower glucose concentration values
and a maximum of five pregnancies first slightly decreases until a thickness of approximately 20 mm and then
increases with skin fold thickness (orange and red curve).
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Figure 10: The figure shows the global PD plot (blue), including ICE curves (left), and the REPs after applying REPID
(right) for the feature of interest Skin of the diabetes dataset. The interaction importance intImpj between Skin and the
interacting features is 0.29 (Glu), 0.09 (Age), 0.08 (Npreg), 0.03 (Bmi) and R2

int = 0.49.
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Table 4: Summary of the split information of the first three levels (depths) of the trees fitted by applying REPID to
the simulation example stated in Section 4.2 for the 30 repetitions of the 4 models (GAM, XGBOOST, SVM, RF). The
column “Depth” indicates the tree depth while the column “Node ID” indicates the respective node of this depth from
left to right. The columns “Feature” and “Share” provide information of how often which feature was chosen for splitting
in the respective node. The last two columns contain the mean and standard deviation of the respective split value. The
coloring indicates the feature that was chosen most often for each node, where the different colors belong to the different
tree depths.

Model Depth Node ID Feature Share Split value mean Split value sd

GAM

1 1 x4 1.00 0.01 0.02
2 1 x8 1.00 0.02 0.10
2 2 x8 1.00 -0.00 0.10
3 1 x3 1.00 -0.04 0.14
3 2 x8 0.03 0.31
3 2 x3 0.97 0.03 0.16
3 3 x8 0.03 -0.37
3 3 x3 0.97 -0.05 0.16
3 4 x8 0.07 0.38 0.07
3 4 x3 0.93 -0.01 0.14

XGBOOST

1 1 x4 1.00 0.00 0.01
2 1 x8 0.63 -0.06 0.11
2 1 x3 0.37 -0.02 0.25
2 2 x8 0.77 -0.05 0.11
2 2 x3 0.23 0.01 0.11
3 1 x8 0.17 -0.06 0.16
3 1 x3 0.63 0.03 0.14
3 1 x1 0.20 -0.01 0.10
3 2 x8 0.07 -0.19 0.01
3 2 x3 0.63 0.03 0.21
3 2 x1 0.30 0.01 0.06
3 3 x8 0.10 0.13 0.22
3 3 x3 0.77 -0.04 0.19
3 3 x1 0.13 -0.02 0.06
3 4 x8 0.03 0.00
3 4 x3 0.77 0.08 0.20
3 4 x1 0.20 0.06 0.07

SVM

1 1 x4 1.00 -0.03 0.07
2 1 x8 1.00 -0.02 0.10
2 2 x8 1.00 -0.11 0.10
3 1 x4 0.23 -0.45 0.06
3 1 x8 0.03 -0.55
3 1 x3 0.73 -0.02 0.15
3 2 x4 0.37 -0.50 0.09
3 2 x3 0.63 -0.15 0.13
3 3 x4 0.20 0.35 0.07
3 3 x8 0.07 -0.61 0.00
3 3 x3 0.73 -0.18 0.16
3 4 x4 0.07 0.24 0.05
3 4 x3 0.93 -0.21 0.15

RF

1 1 x4 1.00 0.00 0.02
2 1 x8 0.70 -0.12 0.09
2 1 x3 0.30 0.21 0.18
2 2 x8 1.00 -0.11 0.15
3 1 x8 0.23 -0.08 0.13
3 1 x3 0.70 0.17 0.18
3 1 x1 0.07 0.04 0.17
3 2 x8 0.30 -0.18 0.17
3 2 x3 0.70 0.20 0.18
3 3 x8 0.03 -0.48
3 3 x3 0.97 0.10 0.18
3 4 x3 0.97 0.08 0.23
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