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Abstract

We study the neural network (NN) compres-
sion problem, viewing the tension between
the compression ratio and NN performance
through the lens of rate-distortion theory. We
choose a distortion metric that reflects the
effect of NN compression on the model output
and derive the tradeoff between rate (compres-
sion) and distortion. In addition to charac-
terizing theoretical limits of NN compression,
this formulation shows that pruning, implic-
itly or explicitly, must be a part of a good com-
pression algorithm. This observation bridges
a gap between parts of the literature per-
taining to NN and data compression, respec-
tively, providing insight into the empirical
success of model pruning. Finally, we propose
a novel pruning strategy derived from our
information-theoretic formulation and show
that it outperforms the relevant baselines on
CIFAR-10 and ImageNet datasets.

1 Introduction

The recent success of NNs in various machine learning
applications has come with their over-parameterization.
Deployment of such over-parameterized models on edge
devices is challenging as these devices have limited stor-
age, computation, and power resources. Motivated by
this, there has been significant interest in NN compres-
sion by the research community. The most established
NN compression techniques can be broadly grouped
into five categories: quantization (Li et al., 2016; Ban-
ner et al., 2018; Jacob et al., 2018; Jung et al., 2019;
Wang et al., 2019b; Choi et al., 2020; Young et al., 2020;
Idelbayev et al., 2021) and coding (Wiedemann et al.,
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2020; Zhe et al., 2021) of NN parameters, pruning (Han
et al., 2016; Molchanov et al., 2016; Carreira-Perpinan
and Idelbayev, 2018; Liu et al., 2018; Yu et al., 2018; Lin
et al., 2019; Peng et al., 2019; Xiao et al., 2019; Zhao
et al., 2019; Blalock et al., 2020; Elsen et al., 2020; Park
et al., 2020; Renda et al., 2020), Bayesian compression
(Federici et al., 2017; Louizos et al., 2017a,b; Molchanov
et al., 2017; Dai et al., 2018), distillation (Hinton et al.,
2015; Polino et al., 2018; Wang et al., 2019a), and low-
rank matrix factorization (Sainath et al., 2013; Ioannou
et al., 2015; Idelbayev and Carreira-Perpinan, 2020).
The success of these techniques in compressing NN
models without a significant performance loss brings
a theoretical question: what is the fundamental limit
of NN compression while maintaining a target perfor-
mance?

A similar question arises in the classical data compress-
sion problem as well (Salomon, 2004). Shannon (1948)
introduced the mathematical formulation of the data
compression problem, where the goal is to describe
a source sequence with the minimum number of bits.
In an information-theoretic sense, entropy is the
limit of how much a source sequence can be losslessly
compressed. However, in practice, there are many
sources such as image, video, and audio, where lossless
compression cannot achieve a high enough compression
rate. In such cases, we need to compress the source
sequence in a lossy manner allowing some distortion
between the source and reconstruction. This is where
rate-distortion theory comes into the picture. For lossy
compression, rate-distortion theory gives the limit of
how much a source sequence can be compressed without
exceeding a target distortion level (Berger, 2003).

In this work, we connect these two lines of research and
study the theoretical limits of lossy NN compression
via rate-distortion theory. In particular, we consider
a classical lossy compression problem to compress NN
weights while minimizing the perturbation in the NN
output space. We first (1) define a distortion met-
ric that upper bounds the output perturbation due
to compression, then (2) find a probability distribu-
tion that fits NN parameters, and finally (3) derive the
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rate-distortion function for the chosen distortion metric
and distribution. This function describes the theoret-
ical tradeoff between rate (compression ratio) and NN
output perturbation, thus provides insight into how
compressible NN models are. Furthermore, our findings
indicate that the compressed model that reaches the
optimal achievable compression ratio must be sparse.
This suggests that a good NN compression algorithm
must, implicitly or explicitly, involve a pruning step,
complimenting the empirical success of pruning strate-
gies (Gale et al., 2019). Therefore, we provide theoret-
ical support for pruning as a rate-distortion theoretic
compression scheme that maintains the model output.

Inspired by this observation, we propose a practical
lossy compression algorithm for NN models. The
reconstruction of our algorithm is a sparse model,
which naturally induces a novel pruning strategy.
Our algorithm is based on successive refinability – a
property that often helps to reduce the complexity of
lossy compression algorithms (Equitz and Cover, 1991).
Our strategy differs from previous score-based pruning
methods as it relies solely on an information-theoretic
approach to a data compression problem with addi-
tional practical benefits that we cover in Section 6. We
also prove that the proposed algorithm is sound from a
rate-distortion theoretic perspective. We demonstrate
the efficacy of our pruning strategy on CIFAR-10 and
ImageNet datasets. Lastly, we show that our strategy
provides a tool for compressing NN gradients as well,
an important objective in communication-efficient
federated learning (FL) settings (Kairouz et al., 2019).
The contributions of our paper can be summarized as:

• We take a step in bridging the gap between NN
compression and data compression.

• We present the rate-distortion theoretical limit of
achievable NN compression given a target distor-
tion level and show that pruning is an essential
part of a good compression algorithm.

• We propose a novel pruning strategy derived from
our findings, which outperforms relevant baselines.

2 Related Work

This section is devoted to prior work on NN compres-
sion that has the same flavor as ours, in particular,
we touch on (a) data compression approaches to NN
compression and (b) pruning. We cover related works
in classical data compression as we go through the
methodology in Sections 3, 4, and 5.

From Data Compression to NN Compression.
To date, several works have proposed to minimize the

bit-rate (compressed size) of NNs with quantization
techniques (Wang et al., 2019b; Idelbayev et al., 2021;
Stock et al., 2021). Some recent work has shown promis-
ing results to go beyond quantization using tools from
data compression. For instance, Havasi et al. (2019)
and Oktay et al. (2019) have trained a model to jointly
optimize compression and performance of the model
using tools from minimum description length princi-
ple (Grünwald and Grunwald, 2007) and a recently
advanced image compression framework (Ballé et al.,
2016), respectively. While we share the same goal with
these papers, our focus is on compressing NN mod-
els post-training. With this distinction, our work is
most related to (Gao et al., 2019), where the authors
have put the first attempt to approach NN compression
from a rate-distortion theoretic perspective. Although
they have shown achievability results on one-layer net-
works, their results do not generalize to deeper networks
without first-order Taylor approximations. Moreover,
their formulation relies on the assumption that NN
weights follow Gaussian distribution, which currently
lacks empirical evidence. On the other hand, we show
achievable compression ratios generalized to multi-layer
networks without making linear approximations and
provide strong empirical evidence for our choice of
Laplacian distribution for NN weights.

Pruning. The overparameterized nature of NNs has
motivated researchers to explore ways to find and re-
move redundant parameters (Cun et al., 1990; Hassibi
et al., 1993). The idea of iterative magnitude pruning
was shown to be remarkably successful in deep NNs
first by Han et al. (2016), and since then, NN pruning
research has accelerated. To improve upon the itera-
tive magnitude pruning scheme of (Han et al., 2016),
researchers have looked for different ways to adjust the
pruning ratios across layers. For instance, Zhu and
Gupta (2017) have suggested pruning the parameters
uniformly across layers. Gale et al. (2019), on the other
hand, have shown better results when the first convolu-
tional layer is excluded from the pruning and the last
fully-connected layer is not pruned more than 80%. Lay-
erwise pruning ratio has also been investigated for NNs
pruned at initialization since the explosion of the Lot-
tery Ticket Hypothesis (Frankle and Carbin, 2019; Mor-
cos et al., 2019). Evci et al. (2020) have shown promis-
ing results on NNs pruned at initialization where the
pruning ratio across layers is adjusted by Erdős-Rényi
kernel method, as introduced by Mocanu et al. (2018).
More recently, Lee et al. (2021) have proposed adjust-
ing the pruning threshold for each layer based on the
norm of the weights at that layer. We follow a similar
methodology in (Lee et al., 2021) to normalize the pa-
rameters prior to applying our novel pruning algorithm.
Unlike other pruning strategies, our algorithm outputs
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a pruned (sparse) model, without an explicit score-
based pruning step. Instead, our reconstruction goes
from the coarsest (sparsest) to the finest representation
of the model. Parallel to our work, a recent study has
proposed a heuristic bottom-up approach as opposed to
the common top-down pruning approach and provided
promising empirical results (Chen et al., 2021). To the
best of our knowledge, our work is the first to provide
a rate-distortion theoretic justification for pruning.

3 Preliminaries

In this section, we present the problem setup and briefly
introduce the rate-distortion theory and the successive
refinement concept.

3.1 Problem Statement

We study a NN compression problem where the net-
work y = f(x;w) characterizes a prediction from the
input space X to the output space Y, parameterized
by weights w. Our goal is to minimize the differ-
ence between y = f(x;w) and ŷ = f(x; ŵ), where
ŵ is a compressed version of the trained parameters
w. In Section 4.1, we define an appropriate distortion
function d(w, ŵ) that reflects the perturbation in the
output space ∥f(x;w) − f(x; ŵ)∥1. This is a lossy
compression problem where the distortion is a mea-
sure of the distance between the original model and
the compressed model, and the rate is the number of
bits required to represent one weight. In information-
theoretic term, rate distortion theory characterizes the
minimum achievable rate given the target distortion.

3.2 Notation

Throughout the paper, w ∈ Rn is the weights of a
trained model. Logarithms are natural logarithms.
Rate is defined as nats (the unit of information obtained
from natural logarithm) per symbol (weight in our
case). We use lower case u to denote the realization of
a scalar random variable U and u = un = (u1, . . . , un)
to denote the realization of a random vector U =
Un = (U1, . . . , Un). We use the term “perturbation”
for the change in the model output due to compression,
whereas “distortion” d(w, ŵ) refers to the change in the
parameter space. Lastly, d(un, ûn) = 1

n

∑n
i=1 d(ui, ûi)

is the regular extension of the distortion function for
an n dimensional vector.

3.3 Rate-Distortion Theory

Let U1, . . . , Un ∈ U be a source sequence generated by
i.i.d. ∼ p(u) where p(u) is a probability density func-
tion and U = R. The encoder fe : Un → {0, 1}nR

describes this sequence in nR bits, where this bi-
nary representation is called a “message” m. The de-
coder fd : {0, 1}nR → Ûn reconstructs an estimate
û = ûn ∈ Ûn based on m ∈ {0, 1}nR where Û = R
as well. This process, summarized in Figure 1(a), is
called lossy source coding. The number of bits per
source symbol (nRn = R in this case) and the “distance”
d(u, û) = d(un, ûn) = 1

n

∑n
i=1 d(ui, ûi) between u and

û are named as rate and distortion, respectively. Ide-
ally, we would like to keep both rate and distortion low,
but there is a tradeoff between these two quantities,
which is characterized by the rate-distortion function
(Shannon, 1948; Berger, 2003; Cover and Thomas, 2006)
as:

R(D) = min
p(û|u):E[d(u,û)]≤D

I(U ; Û) (1)

where I(U ; Û) is the mutual information between U
and Û , and d(·, ·) is a predefined distortion metric, e.g.
ℓ2 distance. The rate-distortion function R(D) in Eq. 1
is the minimum achievable rate at distortion D, and the
conditional distribution p(û|u) that achieves I(U ; Û) =
R(D) explains how an optimal encoder-decoder pair
should operate for the source p(u). We can also define
the inverse, namely the distortion-rate function D(R),
which is the minimum achievable distortion at rate
R. Clearly, source distribution has a critical role in
the solution of the rate distortion problem. We discuss
possible assumptions for the distribution of NN weights
in Section 4.2.

(a) Lossy Source Coding.

(b) Successive Refinement.

Figure 1: (a) Source Coding, (b) Successive Refinement
with 2 Decoders.

3.4 Successive Refinement

In the successive refinement problem, summarized in
Figure 1(b), the encoder wants to describe the source
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to two decoders, where each decoder has its own tar-
get distortion, D1 and D2. Instead of having separate
encoding schemes for each decoder, the successive re-
finement encoder encodes a message m1 for Decoder
1 (with higher target distortion, D1), and encodes an
extra message m2 where the second decoder gets both
m1 and m2. Receiving both m1 and m2, Decoder 2
reconstructs Û2 with distortion D2. Since the message
m1 is re-used, the performance of successive refinement
encoder is sub-optimal in general. However, in some
cases, the successive refinement encoder achieves the
optimum rate-distortion tradeoff as if dedicated en-
coders were used separately. In such a case, we call
the source (distribution) and the distortion pair suc-
cessively refinable (Koshelev, 1980; Equitz and Cover,
1991). In Section 5.1, we discuss how to achieve low
complexity via successive refinement.

4 Rate-Distortion Theory for Neural
Network Parameters

In this section, we first derive the distortion metric
to be used in the rate-distortion function, then we
estimate the source distribution (probability density of
NN weights), and finally, we present the rate-distortion
function associated with the chosen distortion metric
and the source distribution.

4.1 Distortion Metric

Our objective is to minimize the difference between the
output of the original NN model and the compressed
model. Formally, we would like to keep the output
perturbation ∥f(x;w) − f(x; ŵ)∥1 small. Since the
effect of a weight distortion on the output space
f(x;w) is intractable for deep NNs, we seek to find
a distortion function on parameter space that upper
bounds ∥f(x;w)− f(x; ŵ)∥1.

Prior work has derived an upper bound for the ℓ2 norm
of the output perturbation as the Frobenius norm of
the difference between w and ŵ when only a single
layer is compressed (Lee et al., 2021). More precisely,
consider a fully connected NN model with d layers and
ReLU activation. Let w be the weights of the original
trained model and ŵ be a compressed version of w
where ŵ is the same with w except in the l-th layer. In
such a case, i.e., when only a single layer is compressed,
the output perturbation is bounded by

sup
∥x∥2≤1

∥f(x;w)− f(x; ŵ)∥2

≤ ∥w
(l) − ŵ(l)∥F
∥w(l)∥F

·

(
d∏

k=1

∥w(k)∥F

) (2)

where w(l) indicates the weights of the l-th layer. In-

spired by Eq. 2, Lee et al. (2021) have introduced Layer-
Adaptive Magnitude-based Pruning (LAMP) score
(w

(l)
i )2/

(∑
j(w

(l)
j )2

)
to measure the importance of

the weight w
(l)
i for pruning. Notice that Eq. 2 holds

only when a single layer is pruned.

In this work, we follow a similar strategy to relate the
“ℓ1 norm of perturbation on the output space” to “ℓ1
norm of the weight distortion after compression”, but
not limited to single-layer compression.

Theorem 1. Suppose f(·;w) is a fully-connected NN
model with d layers and 1-Lipschitz activations σ(·)
such that σ(0) = 0, e.g., ReLU. Let ŵ be the recon-
structed weights (after compression) where all layers
are subject to compression. If ∥w(l)∥1 ≥ ∥ŵ(l)∥1 for
all 1 ≤ l ≤ d 1, then, we have the following bound on
the output perturbation:

sup
∥x∥1≤1

∥f(x,w)− f(x, ŵ)∥1

≤

(
d∑

l=1

∥w(l) − ŵ(l)∥1
∥w(l)∥1

)(
d∏

k=1

∥w(k)∥1

) (3)

i.e., the output perturbation is bounded by the ℓ1 dis-
tortion of the normalized weights.

The matrix norm ∥ · ∥1 is an induced norm by ℓ1 vector
norm. The proof is given in Appendix A. In Section 5.2
(Remark 2), we show that the proposed compression
algorithm satisfies the additional assumption ∥w(l)∥1 ≥
∥ŵ(l)∥1 for all 1 ≤ l ≤ d. Since the last term in Eq. 3,(∏d

k=1 ∥w(k)∥1
)
, is independent of the compression,

we do not include this term in our weight distortion
function. Then, one distortion function that naturally
arises from Theorem 1 is d(w, ŵ) =

∑d
l=1

∥w(l)−ŵ(l)∥1

∥w(l)∥1
.

By changing the notation slightly, we would like to
minimize the following distortion function

d(u, û) =
1

n

n∑
i=1

|ui − ûi| (4)

where u is the normalized weights arisen from the nor-
malization in Eq. 3, i.e., u(l) = w(l)

∥w(l)∥1
for l = 1, . . . , d.

In the next section, we derive the rate-distortion func-
tion with the distortion metric in Eq. 4, which approx-
imates the perturbation (ℓ1 loss) on the output space
due to compression.

1We provide a symmetric version of Theorem 1 in Ap-
pendix B, which essentially implies the same upper bound
on the output perturbation without requiring the additional
condition of ∥w∥1 ≥ ∥ŵ∥1
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4.2 Rate-Distortion Function for Neural
Network Parameters

Since we define our distortion function as the ℓ1 distor-
tion between u and û as in Eq. 4, where u is the nor-
malized NN weights, we can formulate the compression
problem as a lossy compression of the normalized NN
weights. Before deriving the rate-distortion function,
we need a source distribution that fits the normalized
weights u. Figure 2 shows that Laplacian distribution
is a good fit for pretrained NN weights after normaliza-
tion as opposed to the common Gaussian assumption in
the prior work (Gao et al., 2019). For Figure 2, we use
PyTorch’s pretrained models with no further training.

Now that we have a distortion metric and a source dis-
tribution, suitable for NN compression problem, we can
finally derive the rate-distortion function. We consider
i.i.d. Laplacian source sequence u1, . . . , un distributed
according to fL(u;λ) =

λ
2 e

−λ|u| with zero-mean and
scale factor of λ, reconstructed sequence v1, . . . , vn,
and ℓ1 distortion given in Eq. 4 with û = v. The rate-
distortion function, which is the minimum achievable
rate given the target distortion D follows by:

Lemma 1 (Berger (2003)). The rate-distortion func-
tion for a Laplacian source with ℓ1 distortion is given
by

R(D) =

{
− log(λD), 0 ≤ D ≤ 1

λ

0, D > 1
λ

(5)

with the following optimal conditional probability dis-
tribution that achieves the minimum rate:

fU|V(u|v) = 1

2D
e−|u−v|/D. (6)

Moreover, the marginal distribution of V for the opti-
mal reconstruction is

fV(v) = λ2D2 · δ(v) + (1− λ2D2) · λ
2
e−λ|v|, (7)

where δ(v) is a Dirac measure.

The proof of Lemma 1 is given in Appendix D. The
rate-distortion function in Eq. 5 describes the tradeoff
between NN compression ratio and weight distortion D –
which upper bounds the output perturbation. Lemma 1
further indicates that:

(1) The rate-distortion theoretic optimal encoder-
decoder pair makes the reconstruction sparse as
the optimal marginal distribution in Lemma 1 is a
sparse Laplacian distribution with sparsity λ2D2.
Therefore, unless a compression scheme involves
an implicit or explicit pruning step (to make the re-
construction sparse), the reconstruction does not

follow the optimal marginal distribution. This
would leave a sub-optimal compression scheme
since the mutual information I(U ; Û) between the
source and reconstruction would be strictly larger
than the rate-distortion function.

(2) Once V is reconstructed at the decoder, the error
term on the encoder side, U−V, follows a Lapla-
cian distribution with parameter 1/D (see the
conditional distribution in Lemma 1). This allows
for a practical coding scheme with low complexity
based on successive refinement. That is, we can
iteratively 2 describe NN weights with reasonable
complexity.

In Theorem 1, we add another constraint that the norm
of the reconstructed weights at each layer is smaller
than the norm of the original weights at the same
layer (∥w(l)∥1 ≥ ∥ŵ(l)∥1). This is mainly because (1)
sign change in the NN weights can significantly affect
the NN output, hence sign bits must be protected
to maintain the performance (Isik et al., 2021); and
(2) this inequality (∥w(l)∥1 ≥ ∥ŵ(l)∥1) is necessary to
apply the iterative compression algorithm based on
successive refinement (to be discussed in Section 5).

In the next section, we develop a NN compression algo-
rithm merging (i) our theoretical findings in Lemma 1
for optimality and (ii) successive refinement property
for practicality.

5 Successive Refinement for Pruning

Rate-distortion theory, although, gives the limit of lossy
compression and suggests that pruning must be a part
of a good compression algorithm, does not explicitly
give the optimal compression algorithm. In theory, a
compression algorithm could be designed by letting the
encoder pick the closest codeword from a random code-
book generated according to the marginal distribution
of V in Lemma 1, as suggested by Shannon (1948).
However, such a compressor would not be practical
due to the size of the randomly generated codebook
|C| = 2nR(D) (exponential in n – number of weights
in our case). While designing practical compression
algorithms without sacrificing the optimality is a fun-
damental dilemma in data compression, recent studies
have shown that it is possible to design theoretically
optimal schemes with low complexity for certain source
distributions. In particular, for a successively refinable
source, an optimal compression algorithm can also be
practical (No et al., 2016). We exploit this idea for
the Laplacian source and develop a practical iterative

2The term “iterative” in our proposed algorithm is dif-
ferent from the “iterative” magnitude pruning concept.
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(a) ResNet-18. (b) ResNet-50. (c) ResNet-152. (d) Wide ResNet-50.

Figure 2: Density of normalized weights. (a) ResNet-18, (b) ResNet-50, (c) ResNet-152, and (d) Wide ResNet-50.
Gaus: Gaussian, Lap.: Laplacian, Wt.: Normalized NN weights. We use PyTorch’s pretrained models with no
further training.

compression algorithm that is rate-distortion theoret-
ically optimal. We call it Successive Refinement for
Pruning (SuRP) since it also outputs a sparse model,
which can be viewed as a pruned model (although we
do not explicitly prune the model). We first present
the successive refinement scheme for Laplacian source
that shows the core idea to achieve lower complexity,
but still impractical. We then push further to provide
the practical algorithm and prove the optimality in a
rate-distortion theoretic sense.

5.1 Successive Refinement with Randomly
Generated Codebooks

Instead of a successive refinement scheme with two de-
coders as described in Section 3, we consider successive
refinement with L decoders. Let λ = λ1 < · · · < λL

where Dt = 1/λt+1 is the target distortion at the
t-th decoder. This is because the error term at iter-
ation t has a Laplacian distribution with parameter
λt+1 = 1/Dt in an optimal compression scheme (see
Lemma 1). We begin by setting U(1) = un. At the
t-th iteration, the encoder finds V(t) that minimizes
the distance d(U(t),V(t)) from a codebook C(t), then
computes the residual U(t+1) = U(t) −V(t). The t-th
codebook C(t) consists of 2nR/L codewords generated
by the marginal distribution in Lemma 1:

fV(t)(v) =
λ2
t

λ2
t+1

· δ(v) +
(
1− λ2

t

λ2
t+1

)
· λt

2
e−λt|v|

Since U(t+1) is again an i.i.d. Laplacian random se-
quence with parameter λt+1 = 1/Dt (from the con-
ditional probability in Lemma 1), the encoder can
keep applying the same steps for Laplacian sources
at each iteration. In summary, for 1 ≤ t ≤ L − 1,
the information-theoretic successive refinement en-
coder performs the following steps iteratively: (1) find
V(t) ∈ C(t) that minimizes d(U(t),V(t)); and (2) up-
date U as U(t+1) = U(t) − V(t). The decoder, on
the other hand, reconstructs Û(t) =

∑t
τ=1 V

(τ) at it-
eration t. This scheme has a complexity of L · 2nR/L

(the total size of the codebooks in L iterations), which
is lower than the naive random coding strategy (2nR
at once). At the same time, it still achieves the rate-
distortion limit, i.e., does not sacrifice the optimality,
thanks to successive refinability of Laplacian source.
However, the complexity is still exponential in n, which
is impractical. We fix this in the next section.

5.2 SuRP Algorithm

The algorithm in Section 5.1 is rate-distortion theoretic
optimal with lower complexity thanks to successive
refinability, but still impractical due to the exponential
size of the codebooks. In this section, we develop
a new algorithm SuRP, that enjoys both practicality
and optimality. Concretely, SuRP does not require a
random codebook or a search for the nearest codeword
V(t) from U(t) at each iteration, yet still rate-distortion
theoretic optimal. With the same initialization U(1) =
un and λ1 = λ, new iterative coding scheme for 1 ≤
t ≤ L− 1 is as follows:

(1) Find indices (i, j) such that U
(t)
i ≥ 1

λt
log n

2β and

U
(t)
j ≤ − 1

λt
log n

2β . If there are more than one
such indices, pick (i, j) randomly. Encode (i, j) as
mt.

(2) Let V(t) be an n-dimensional all-zero vector except
V

(t)
i = 1

λt
log n

2β and V
(t)
j = − 1

λt
log n

2β .

(3) Let U(t+1) = U(t) −V(t).

(4) Set λt+1 = n
n−2 log n

2β
· λt.

Here, β > 1 is a tunable parameter. Similar to the
algorithm in Section 5.1, the reconstruction at t-th
iteration would be Û(t) =

∑t
τ=1 V

(τ). We note that
the encoder still communicates a sparse vector V(t)

with two nonzero entries by sending mt = (i, j). We
give the pseudocode for SuRP in Appendix E.
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This coding scheme is equivalent to the original scheme
in Section 5.1, where λt

λt+1
=

n−2 log n
2β

n for 1 ≤ t ≤ L−1
except the fact that the encoder does not do a search
over a randomly generated codebook with exponential
size, i.e., SuRP is practical. However, there is still
an implicit codebook C(t) at every iteration t, which
consists of n-dimensional all-zero vectors except for
two nonzero elements of values ± 1

λt−1
log n

2β . The size
of this codebook is n(n − 1) (not exponential any-
more). Since these implicit codebooks are not directly
generated from the optimal marginal distribution in
Lemma 1, it is not obvious that SuRP is rate-distortion
theoretic optimal. However, we prove the optimality
under some criteria in Section 5.3.

We highlight that our scheme follows a bottom-up ap-
proach, in that sparsity in the reconstructed weights
starts from 100% at the first iteration and it decreases
as the decoder receives new indices from the encoder
(see Figure 3(a)). This is similar to the progres-
sive/hierarchical image compression techniques (Lewis
and Knowles, 1992; Rabbani, 2002). Similarly, from
Figure 3(b), accuracy increases through the iterations.

As a practical issue, when there is no index i or j such
that U

(t)
i ≥ 1

λt−1
log n

2β or U
(t)
j ≤ − 1

λt−1
log n

2β , the
encoder re-estimates λ and sends a refreshed value to
the decoder. Obviously, these refreshments must be
avoided to preserve optimality. We have seen in our
experiments that this is a rare situation (20 refresh-
ments in 20M iterations) and hence has a negligible
effect on the overall optimality. In fact, we control the
probability of this undesired situation (when there is
need for refreshment) with the tunable parameter β.
More precisely, the probability that all Laplacian ran-
dom variables are smaller than 1

λ log n
2β in magnitude

(i.e., no index i or j found) is

P

[
maxXi <

1

λ
log

n

2β
or minXi > −

1

λ
log

n

2β

]
≤ P

[
maxXi <

1

λ
log

n

2β

]
+ P

[
minXi > −

1

λ
log

n

2β

]
= 2

(
1− 1

2

2β

n

)n

≈ 2e−β .

(8)

We set β = log n to bound this probability by 2
n , which

converges to 0 as n increases. We discuss the choice of
β in more detail with empirical results in Appendix E.1.

Remark 1. From the extreme value theory, the maxi-
mum of n Laplacian random variables concentrates near
1
λ log n

2 , which is the case of β = 1. Thus, one iteration
of SuRP can be viewed as finding a near-maximum (and
minimum) element. From this perspective, magnitude
pruning can be viewed as a special case of SuRP.

(a) Sparsity. (b) Accuracy.

Figure 3: Sparsity and accuracy of the reconstructed
ResNet-50 on ImageNet during one cycle of SuRP. It-
erations correspond to iterations running inside SuRP.

Remark 2. SuRP guarantees ∥U(t)∥1 ≥ ∥V(t)∥1 for
all t. This implies that the magnitude of weights in
w is always larger than the magnitude of weights in
ŵ. From Theorem 1, we can say that the ℓ1 weight
distortion of SuRP algorithm is an upper bound to the
NN model’s output perturbation.

5.3 Zero-Rate Optimality of SuRP

In this section, we prove that SuRP is a zero-rate
optimal compression algorithm. Given that SuRP uses
an implicit codebook of size n(n− 1) at each iteration,
the rate is found as Rn = logn(n−1)

n . We note that Rn

gets arbitrarily close to zero as n increases. Moreover,
the decrement in the distortion at each iteration is
given as Dn = 2

nλ log n
2βn

, where βn = β as before.
We start with the definition of zero-rate optimality,
which states that a sub-linear number of bits (in our
case log n(n− 1) nats) is being used optimally in the
rate-distortion theoretic sense.

Definition 1 (Zero-rate optimality). A scheme with
rate Rn, distortion decrement Dn, and distortion-rate
function D(·), is zero-rate optimal if limn→∞ Rn = 0
and limn→∞

Dn

Rn
= D′(0).

This implies that a zero-rate optimal scheme achieves
the “slope” of the distortion-rate function at zero rate
R = 0. In the case of Laplacian source, this slope
is D′(0) = − 1

λ since the distortion-rate function is
D(R) = 1

λe
−R, which can be derived from the rate-

distortion function in Lemma 1. Finally, the following
theorem states that a single iteration of SuRP is zero-
rate optimal.

Theorem 2. An iteration of SuRP is zero-rate optimal
if limn→∞

log 2βn

logn(n−1) = 0 holds.

Proof. In an iteration of SuRP, where Rn = logn(n−1)
n
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Table 1: Accuracy of VGG-16, ResNet-20, and DenseNet-121 on CIFAR-10. Results are averaged over five runs.

Pruning Ratio: 93.12% 95.60% 97.19% 98.20% 98.85% 99.53% 99.70% 99.81% 99.88%

VGG-16

Global
Uniform
Adaptive

RiGL
LAMP

SuRP (ours)

91.30
91.47
91.54
92.34
92.24
92.55

90.80
90.78
91.20
91.99
92.06
92.13

89.28
88.61
90.16
91.66
91.71
91.95

85.55
84.17
89.44
91.15
91.66
91.72

81.56
55.68
87.85
90.55
91.07
91.21

41.91
26.41
84.84
88.21
89.64
90.65

31.93
16.75
82.41
86.73
88.75
89.70

21.87
11.58
74.54
84.85
87.07
87.28

11.72
9.95
24.46
81.50
84.90
85.04

Pruning Ratio: 79.03% 86.58% 91.41% 94.50% 96.48% 97.75% 98.56% 99.41% 99.62%

ResNet-20

Global
Uniform
Adaptive

RiGL
LAMP

SuRP (ours)

87.48
87.24
87.30
87.63
87.54
91.37

86.97
86.70
87.00
87.49
87.12
90.44

86.29
86.09
86.27
86.83
86.56
89.00

85.02
84.53
85.00
85.84
85.64
88.87

83.15
82.05
83.23
84.08
84.18
87.05

80.52
77.19
80.40
81.76
81.56
83.98

76.28
64.24
76.40
78.70
78.63
79.00

47.47
20.45
52.06
66.42
67.01
70.64

12.02
13.35
20.19
50.90
51.24
54.22

Pruning Ratio: 94.50% 95.60% 96.48% 97.18% 97.75% 98.20% 98.56% 99.08% 99.26%

DenseNet-121

Global
Uniform
Adaptive

RiGL
LAMP

SuRP (ours)

90.16
90.24
90.25
90.21
90.89
91.42

89.52
89.50
89.70
89.79
90.11
90.75

88.83
88.44
89.03
88.92
89.72
90.30

88.00
87.94
88.22
88.20
89.12
89.62

86.85
86.83
87.40
87.25
88.39
88.77

85.32
85.00
86.26
86.22
87.75
88.06

77.68
82.16
84.55
84.11
86.53
86.71

49.65
66.46
69.25
59.06
82.92
83.18

20.96
48.71
58.91
59.07
79.23
79.45

Pruning Ratio: 59.00% 73.80% 83.20% 89.30% 93.13% 95.60% 97.18% 98.20% 99.26%

EfficientNet-B0

Global
Uniform
Adaptive

RiGL
LAMP

SuRP (ours)

89.66
88.99
89.18
89.54
89.52
90.96

89.55
88.26
88.03
90.09
89.95
90.94

88.80
86.48
86.71
90.01
89.97
90.89

87.64
83.40
84.16
89.62
90.21
90.75

84.36
23.65
36.64
88.82
89.91
90.31

79.25
10.83
10.45
87.08
89.79
90.08

11.09
10.00
10.00
84.72
89.30
89.88

10.62
10.00
10.19
81.53
88.51
89.02

10.00
10.00
10.00
13.40
65.76
70.76

and

Dn

Rn
= −

2
λ log n

2βn

log n(n− 1)

= − 1

λ

log n2

log n(n− 1)
+

1

λ

2 log 2βn

log n(n− 1)
.

If limn→∞
log 2βn

logn(n−1) = 0, it is clear that Dn

Rn
converges

to D′(0) = − 1
λ as n increases. Therefore, SuRP is

zero-rate optimal under the condition that limn→∞
log 2βn

logn(n−1) = 0.

In Section 5.2, we choose βn = log n to keep the prob-
ability in Eq. 8 small. With this choice of βn, limn→∞

log 2βn

logn(n−1) = 0 holds. Therefore, from Theorem 2, our
implementation of SuRP is indeed zero-rate optimal.

Remark 3. In pure information-theoretic compression
setting (main concern is not NN compression), similar
zero-rate optimal schemes were proposed for Gaussian
source under mean squared error (Venkataramanan
et al., 2014; No and Weissman, 2016).

6 Experiments

In this section, we empirically investigate the perfor-
mance of SuRP compared to recent pruning strategies
in terms of accuracy-sparsity tradeoff. We emphasize
that the main contribution of our paper is to provide an
information-theoretic justification for pruning. SuRP
is designed solely to show that an algorithm derived
with an information-theoretic approach indeed outputs
a pruned model, as suggested by our findings. This
also provides theoretical support for the recent success
of pruning strategies.

For our NN compression experiments, we consider two
image datasets: CIFAR-10 (Krizhevsky et al., 2009)
and ImageNet (Deng et al., 2009). For CIFAR-10, we
use four architectures: VGG-16 (Simonyan and Zisser-
man, 2014), ResNet-20 (He et al., 2016), DenseNet-121
(Iandola et al., 2014), and EfficientNet-B0 (Tan and
Le, 2019). For ImageNet, we use ResNet-50 (He et al.,
2016; Paszke et al., 2019). We give additional details
on model architectures and hyperparameters in Ap-
pendix J. We present experimental results averaged
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over 3-5 runs (see Appendix K for complete results).

NN Compression/Pruning: In Tables 1 and 2, we
compare our scheme with the recent pruning papers.
We apply iterative pruning, meaning that we apply
SuRP in repeating cycles (see Appendix K for details).
As baselines, we consider Global (Morcos et al., 2019),
Uniform (Zhu and Gupta, 2017), and Adaptive (Gale
et al., 2019) pruning techniques and LAMP (Lee et al.,
2021). Additionally, we include comparisons to recent
works on weight rewinding and dynamic sparsity, in
particular SNIP (Lee et al., 2018), DSR (Mostafa and
Wang, 2019), SNFS (Dettmers and Zettlemoyer, 2019),
and RiGL (Evci et al., 2020).

We present the performance of pruned VGG-16, ResNet-
20, and DenseNet-121 architectures on CIFAR-10 in
Table 1 and ResNet-50 on ImageNet in Table 2 . As can
be seen from Table 1, SuRP outperforms prior work in
all sparsity levels. From Table 2, SuRP and Adaptive
pruning perform similarly (with ±0.06% difference),
and they both outperform other baselines.

Table 2: Accuracy of ResNet-50 on ImageNet (3 runs).

Pruning Ratio: 80% 90%

Adaptive 75.60 73.90
SNIP 72.00 67.20
DSR 73.30 71.60
SNFS 74.90 72.90
RiGL 74.60 72.00
LAMP 74.96 73.22
SuRP (ours) 75.54 73.95

We provide a comparison for lower pruning ratios in
Appendix K.

7 Discussion and Conclusion

In this work, we connected two lines of research, namely,
data compression and NN compression. We investi-
gated the theoretical tradeoff between the compression
ratio and output perturbation of NN models, and found
out that the rate-distortion theoretic formulation intro-
duces a theoretical foundation for pruning. Guided by
this, we developed a NN compression algorithm that
outputs a pruned model and outperforms prior work.

We note that our algorithm SuRP has an additional
advantage in optimizing the bitrate of the model thanks
to the rate-distortion theoretic basis of our approach.
In particular, the decoder has only access to a list of
indices, and these indices represent the whole (com-
pressed) model – more efficiently than describing the
precise values of surviving weights. However, our cur-
rent implementation does not exploit this efficiency

to the full extent due to retraining steps after each
pruning iteration. Like many, we will also look for
ways to prune NN models without a retraining step
afterward. That way, SuRP can be improved to provide
a better accuracy-bitrate tradeoff, together with the
already demonstrated sparsity-accuracy gain. We give
more details on this and share experimental results in
Appendices H and K. Finally, to give an idea about the
bitrate efficiency of SuRP, we apply it for compressing
gradients in a federated learning setting. Since the com-
pressed gradients are not exposed to fine-tuning (like
retraining in pruning), SuRP provides a substantial
improvement on the bitrate compared to prior work.
We elaborate more on this in the next paragraph.

Compression for Federated Learning (FL): FL
is a distributed training setting where edge devices
are responsible for doing local training and sending
local gradients to a central server (Kairouz et al., 2019).
Given the resource limitations of edge devices, gradient
communication is a significant bottleneck in FL, and
gradient compression is crucial (Konečný et al., 2016).
We show in Appendix I that Laplacian distribution
is a good fit for NN gradients. Therefore, SuRP is
applicable to this problem as well. Our preliminary ex-
periments with LeNet-5-Caffe on MNIST (LeCun et al.,
2010) compare SuRP with DGC (Lin et al., 2017) and
rTop-k (Barnes et al., 2020). We compute the com-
munication budget for prior work by assuming a naive
encoding with k(log n+ 32) bits (n is the model size)
since no other method is provided. With the same spar-
sity ratio 99.9%, DGC achieves 98.5% accuracy with
2.05KB of budget, rTop-k achieves 99.1% accuracy
with 2.05KB of budget, and SuRP achieves 99.1%
accuracy with 218B of budget. Thus, SuRP provides
10× times improvement in the gradients’ compression
rate while achieving the same accuracy as rTop-k.

Limitations and Broader Impact: When we eval-
uated our strategy, we only considered accuracy as a
metric. However, compression might have an impact on
other properties of the model as well, such as fairness,
as pointed out by Hooker et al. (2020). We agree that
this issue deserves more attention from the community.

The codebase for this work is open-sourced at https:
//github.com/BerivanIsik/SuRP.
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Supplementary Material:
An Information-Theoretic Justification for Model Pruning

A Proof of Theorem 1

In this section, we provide the proof of Theorem 1. The fully connected d-layer NN model with 1-Lipschitz
activations σ(·) is given by

f(x;w) = w(d)σ(w(d−1)σ(· · ·w(2)σ(w(1)x))).

We let w(1:i) = {w(1), . . . ,w(i)} for 1 ≤ i ≤ d where w(1:d) = w. Furthermore, we define the first i layer of the
network by

f(x;w(1:i)) = w(i)σ(w(i−1)σ(· · ·w(2)σ(w(1)x))).

Then, the output perturbation is bounded by

∥f(x;w(1:d))− f(x; ŵ(1:d))∥1
=∥w(d)σ(f(x;w(1:d−1)))− ŵ(d)σ(f(x; ŵ(1:d−1)))∥1
≤∥w(d)σ(f(x;w(1:d−1)))− ŵ(d)σ(f(x;w(1:d−1)))∥1
+ ∥ŵ(d)σ(f(x;w(1:d−1)))− ŵ(d)σ(f(x; ŵ(1:d−1)))∥1 (9)

≤∥w(d) − ŵ(d)∥1 · ∥σ(f(x;w(1:d−1)))∥1 + ∥ŵ(d)∥1 · ∥σ(f(x;w(1:d−1)))− σ(f(x; ŵ(1:d−1)))∥1 (10)

≤∥w(d) − ŵ(d)∥1 · ∥f(x;w(1:d−1))∥1 + ∥ŵ(d)∥1 · ∥f(x;w(1:d−1))− f(x; ŵ(1:d−1))∥1 (11)

≤∥w(d) − ŵ(d)∥1 ·
d−1∏
l=1

∥w(l)∥1 · ∥x∥1 + ∥ŵ(d)∥1 · ∥f(x;w(1:d−1))− f(x; ŵ(1:d−1))∥1 (12)

≤∥w(d) − ŵ(d)∥1 ·
d−1∏
l=1

∥w(l)∥1 + ∥ŵ(d)∥1 · ∥f(x;w(1:d−1))− f(x; ŵ(1:d−1))∥1 (13)

≤∥w(d) − ŵ(d)∥1 ·
d−1∏
l=1

∥w(l)∥1 + ∥w(d)∥1 · ∥f(x;w(1:d−1))− f(x; ŵ(1:d−1))∥1 (14)

where Eq. 9 is due to triangle inequality, and Eq. 10 holds from the property of ℓ1-norm (and induced norm).
Eq. 11 is from 1-Lipshitzness of activation σ(·), i.e., ∥σ(x)∥1 ≤ ∥x∥1. Eq. 12 holds from the following lemma.

Lemma 2. For all 1 ≤ i ≤ d, we have ∥f(x;w(1:i))∥1 ≤
∏i

j=1 ∥w(j)∥1 · ∥x∥1.

Proof. From the property of ℓ1-norm, we have

∥f(x;w(1:i))∥1 ≤∥w(i)∥1 · ∥σ(f(x;w(1:i−1)))∥1 (15)

≤∥w(i)∥1 · ∥f(x;w(1:i−1))∥1 (16)

where the last inequality is due to 1-Lipshitzness of σ. Then, we can keep applying the same inequality, which
concludes the proof.

Eq. 13 follows by the constraint ∥x∥1 ≤ 1 in Theorem 1. Finally Eq. 14 is from the assumption ∥ŵ(l)∥1 ≤ ∥w(l)∥1
for all 1 ≤ l ≤ d.
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Thus, we have (
d∏

l=1

1

∥w(l)∥1

)
∥f(x;w(1:d))− f(x; ŵ(1:d))∥1

≤ ∥w
(d) − ŵ(d)∥1
∥w(d)∥1

+

(
d−1∏
l=1

1

∥w(l)∥1

)
∥f(x;w(1:d−1))− f(x; ŵ(1:d−1))∥1. (17)

We can repeat the same procedure, and get(
d∏

l=1

1

∥w(l)∥1

)
∥f(x;w(1:d))− f(x; ŵ(1:d))∥1 ≤

d∑
l=1

∥w(l) − ŵ(l)∥1
∥w(l)∥1

. (18)

This completes the proof.

B Modified Theorem 1

In this section, we provide a symmetric version of Theorem 1, which essentially implies the same upper bound on
the output perturbation without requiring the additional condition of ∥w∥1 ≥ ∥ŵ∥1.
Theorem 3. Suppose f(·;w) is a fully-connected NN model with d layers and 1-Lipschitz activations σ(·) such
that σ(0) = 0, e.g., ReLU. Let ŵ be the reconstructed weights (after compression) where all layers are subject to
compression. Then, we have the following bound on the output perturbation:

sup
∥x∥1≤1

∥f(x,w)− f(x, ŵ)∥1 ≤

(
d∑

l=1

∥w(l) − ŵ(l)∥1
max{∥ŵ(l)∥1, ∥w(l)∥1}

)(
d∏

k=1

max{∥ŵ(k)∥1, ∥w(k)∥1}

)
. (19)

By rearranging the terms in Eq. 19, we get the following relation:

sup
∥x∥1≤1

∥f(x,w)− f(x, ŵ)∥1∏d
k=1 max{∥ŵ(k)∥1, ∥w(k)∥1}

≤

(
d∑

l=1

∥w(l) − ŵ(l)∥1
max{∥ŵ(l)∥1, ∥w(l)∥1}

)
, (20)

which implies that the normalized output perturbation is bounded by the normalized weight differences. With
the additional condition of ∥w∥1 ≥ ∥ŵ∥1, we can simply recover Theorem 1 from Theorem 3.

sup
∥x∥1≤1

∥f(x,w)− f(x, ŵ)∥1∏d
k=1 max{∥ŵ(k)∥1, ∥w(k)∥1}

≤

(
d∑

l=1

∥w(l) − ŵ(l)∥1
max{∥ŵ(l)∥1, ∥w(l)∥1}

)
(21)

≤
d∑

l=1

∥w(l) − ŵ(l)∥1
∥w(l)∥1

, (22)

which is compatible with the rest of our results. The proof of Theorem 3 is almost identical to the proof of
Theorem 1.

Proof of Theorem 3. Since Eq. 13 still holds without the additional condition ∥w∥1 ≥ ∥ŵ∥1,

∥f(x;w(1:d))− f(x; ŵ(1:d))∥1

≤∥w(d) − ŵ(d)∥1 ·
d−1∏
l=1

∥w(l)∥1 + ∥ŵ(d)∥1 · ∥f(x;w(1:d−1))− f(x; ŵ(1:d−1))∥1 (23)

≤∥w(d) − ŵ(d)∥1 ·
d−1∏
l=1

max{∥w(l)∥1, ∥ŵ(l)∥1}+max{∥w(d)∥1, ∥ŵ(d)∥1} · ∥f(x;w(1:d−1))− f(x; ŵ(1:d−1))∥1,

(24)
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which implies

∥f(x;w(1:d))− f(x; ŵ(1:d))∥1∏d
l=1 max{∥w(l)∥1, ∥ŵ(l)∥1}

≤ ∥w(d) − ŵ(d)∥1
max{∥w(d)∥1, ∥ŵ(d)∥1}

+
∥f(x;w(1:d−1))− f(x; ŵ(1:d−1))∥1∏d−1

l=1 max{∥w(l)∥1, ∥ŵ(l)∥1}
. (25)

Similar to the proof of Theorem 1, we can recursively apply the above inequality to obtain Eq. 20.

C Density Estimation for Neural Network Parameters without Normalization

Figure 4: Weight Density of ResNet-18 (trained on CIFAR-10) before normalization.

In Section 4, we have justified our assumption of Laplacian distribution over normalized NN weights through
density plots for three distinct architectures. We have also emphasized that Laplacian would be a good fit for
unnormalized NN weights as well. We give the density plots of unnormalized weights of ResNet-18 in Figure 4 to
justify our claim empirically. This claim implies that SuRP can also be applied to NNs without normalization and
it would achieve rate-distortion theoretic optimal performance for reconstructing the NN weights back. However,
recall from Theorem 1 that ℓ1 distortion of normalized weights upper bounds the output perturbation. Since we
care more about maintaining the outputs rather than the weights themselves, we have applied SuRP after the
normalization.

We have additionally observed that weights of layers closer to the input tend to follow a Gaussian-like distribution.
In contrast, the weights of layers closer to the output behave like Laplacian random variables. Since the last
layers have larger number of parameters in the architectures used in this work, we see a Laplacian distribution
over the weights globally. Therefore, different pruning strategies might be necessary for layers with Gaussian and
Laplacian behaviour for a layer by layer pruning approach.

D Proof of Lemma 1

In this section, we briefly describe the proof outline of Lemma 1 in Section 4, which is provided in (Berger, 2003).
Consider the Laplacian source U ∼ PU with parameter λ, and the target distortion D satisfies 0 ≤ D ≤ 1/λ.
Then,

R(D) = min
E[d(U,Û)]≤D

I(U ; Û)

= inf
E[|U−Û |]≤D

I(U ; Û).
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Let Q be another conditional distribution where QU |Û (u|û) =
1
D e−|u−û|/D. Then,

I(U ; Û) =DKL(PU |Û∥PU |PÛ )

=DKL(PU |Û∥QU |Û |PÛ ) + EPU,Û

[
log

QU |Û (U |Û)

PU (U)

]

≥EPU,Û

[
log

QU |Û (U |Û)

PU (U)

]
(26)

=− log(λD)− 1

D
E[|U − Û |] + λE[|U |]

≥− log(λD) (27)

where Eq. 26 is due to nonnegativity of KL divergence, and Eq. 27 is because E[|U |] = 1
λ and E[|U − Û |] ≤ D.

This implies that R(D) ≥ − log(λD). We note that we followed a technique inspired by Verdu’s proof for
rate-distortion function of exponential source (Verdu, 1996). The same lower bound can also be achieved via
Shannon lower bound (SLB) (Shannon, 1959).

On the other hand, we need to show that the lower bound R(D) ≥ − log(λD) is indeed tight. Let V be a mixture
of point measure and Laplacian random variable, where the probability density function is given by

PV (v) = λ2D2 · δ(v) + (1− λ2D2) · λ
2
e−λ|v|.

We further let N be a Laplacian random variable with parameter 1/D, where V and N are independent. Then,
the Laplace transform of PV and PN are given by

E[e−sV ] =λ2D2 + (1− λ2D2)
λ2

λ2 + s2

E[e−sN ] =
1/D2

1/D2 + s2
.

Consider the sum of two random variables V +N . Since they are independent, Laplace transform of the density
of V +N is a product of the above two terms.

E[e−s(V+N)] =E[e−sV ] · E[e−sN ]

=
λ2

λ2 + s2
.

Since it coincides with the Laplace transform of PU , we conclude that U
(d)
= V +N . Thus, by letting U = V +N ,

we obtain the conditional distribution QU |V (u|v) = 1
D e−|u−v|/D. It is clear that QU |V satisfies the equality

conditions in Eq. 26 and Eq. 27, and therefore it achieves the lower bound I(U ; Û) = − log(λD) with Û = V .

To sum, the optimal rate-distortion tradeoff is R(D) = − log(λD) and it can be achieved with a reconstruction
that follows

PV (v) = λ2D2 · δ(v) + (1− λ2D2) · λ
2
e−λ|v|. (28)

E Algorithms

We give the algorithm described in Section 5 in Algorithm 1. For the experiments in Section 6, we slightly
modified Algorithm 1 and used Algorithm 2.

As mentioned in Section 6, these two algorithms are equivalent except the fact that Algorithm 2 applies the
same compression scheme after taking the absolute value of the normalized weights. Furthermore, Algorithm 2
is rate-distortion theoretic optimal too. To see this, it is enough to follow the same steps in Sections 4 and 5
for exponential source instead of Laplacian source since the magnitude of Laplacian source sequence follows an
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Algorithm 1 SuRP
Hyperparameters: β
Inputs: weights w1, . . . , wn in d layers
Output: reconstructed weights wrecon

1 , . . . , wrecon
n

Normalization:
for l = 1, . . . , d do
u(l) ← w(l)

∥w(l)∥1

end for

(urecon
1 , . . . , urecon

n )← 0
λ← ParamEst((u1, . . . , un))
Encoder sends λ to the Decoder.
for t = 1, . . . , L do

Encoder:
mmax ← (indices of the components in (u1, . . . , un) that are larger than 1

λ · log
n
2β .)

mmin ← (indices of the components in (u1, . . . , un) that are smaller than − 1
λ · log

n
2β .)

if mmax or mmin is empty then
λ← ParamEst((u1, . . . , un))
sends λ to the Decoder.

end if
m1 ← (a random index from mmax)
m−1 ← (a random index from mmin)
sends m1 and m−1 to the Decoder.
um1

= um1
− 1

λ · log
n
2β

um−1
= um−1

+ 1
λ · log

n
2β

λ← n
n−2 log n

2β
· λ

Decoder:
receives m1 and m−1 from the Encoder.
urecon
m1

= urecon
m1

+ 1
λ · log

n
2β

urecon
m−1

= urecon
m−1

− 1
λ · log

n
2β

λ← n
n−2 log n

2β
· λ

end for
wrecon

1 , . . . , wrecon
n ← (denormalize urecon

1 , . . . , urecon
n .)

ParamEst((u1, . . . , un)) :
1/λ← mean of (|u1|, . . . , |un|)
return λ

exponential distribution. We now give the rate-distortion function for exponential source (magnitude of normalized
weights). We consider i.i.d. exponential source sequence u1, . . . , un with distribution fexp(u;λ) = λe−λu for u ≥ 0,
reconstruction v1, . . . , vn, and one-sided ℓ1 distortion given by:

d(u, v) =

{
u− v, if u ≥ v

∞, otherwise.

Then, the rate-distortion function is given in Lemma 3:

Lemma 3. (Verdu, 1996) The rate-distortion function for an exponential source with one-sided distortion is
given by

R(D) =

{
− log(λD), 0 ≤ D ≤ 1

λ

0, D > 1
λ

(29)



Berivan Isik, Tsachy Weissman, Albert No

Algorithm 2 SuRP-modified
Hyperparameters: β
Inputs: weights w1, . . . , wn in d layers
Output: reconstructed weights wrecon

1 , . . . , wrecon
n

Normalization:
for l = 1, . . . , d do
u(l) ← |w(l)|

∥w(l)∥1

end for

(urecon
1 , . . . , urecon

n )← 0
λ← ParamEst((u1, . . . , un))
Encoder sends λ to the Decoder.
for t = 1, . . . , L do

Encoder:
minds ← (indices of the components in (u1, . . . , un) that are larger than 1

λ · log
n
β .)

if minds is empty then
λ← ParamEst((u1, . . . , un))
sends λ to the Decoder.

end if
m← (a random index from minds)
sends m to the Decoder.
um = um − 1

λ · log
n
β

λ← n
n−log n

β
· λ

Decoder:
receives m from the Encoder.
urecon
m = urecon

m + 1
λ · log

n
β

λ← n
n−log n

β
· λ

end for
wrecon

1 , . . . , wrecon
n ← (denormalize urecon

1 , . . . , urecon
n and add sign bits.)

ParamEst((u1, . . . , un)) :
1/λ← mean of (u1, . . . , un)
return λ

with the following optimal conditional probability distribution that achieves the minimum mutual information

fU|V(u|v) =

{
1
D e−(u−v)/D, u ≥ v ≥ 0

0, otherwise.
(30)

Moreover, the marginal distribution of V is as follows

fV(v) = λD · δ(v) + (1− λD) · λe−λv (31)

where δ(v) is a Dirac measure at 0.

Proof of Lemma 3 can be found in (Verdu, 1996). It is clear to see from Eq.s 30 and 31 that exponential source
has the same nice properties as Laplacian:

1. It suggests pruning as an essential step in a good compression algorithm since Eq. 31 is a sparse distribution.

2. It is successively refinable, allowing for a both practical and rate-distortion theoretic optimal algorithm (see
Algorithm 2).

Following the same steps in Section 5, it can be proven that Algorithm 2, which we used in our experiments, is
zero-rate optimal with β = log n.
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E.1 Effect of β

Table 3 shows the effect of the hyperparameter β on the model accuracy, the number of SuRP iterations needed
to achieve the desired sparsity, and the number of required refreshment for the Laplacian parameter λ. We
perform one-shot pruning experiments without retraining, i.e., apply SuRP once, with different β values as shown
in the table. We can consider the accuracy as a measure of distortion; and ’the number of iterations’ and ’the
number of parameter refreshments’ as a measure of rate. More concretely, we first fix a target sparsity for all the
experiments. If the number of iterations to achieve this sparsity is large, then the compression amount is small
since higher number of indices represents the same model. During one running of SuRP, there might be a need
for re-estimating the parameter λ of the underlying Laplacian distribution, as we stated in Section 5.2. This is an
undesirable situation since this requires the encoder to send the re-estimated parameter λ to the decoder; we call
this a "refreshment". The numbers in this table verify our theoretical analysis that as β increases, the number
of refreshments becomes negligible compared to the total number of iterations (see Eq. 8). However, for very
large β such as β = (log n)2, zero-rate optimality is not as strong as β = log n (see Theorem 2). This can also be
seen from the table since the number of iterations needed is significantly larger for β = (log n)2, indicating that
the bit-rate is large and we do not compress the model much. Since the accuracy is similar across different β
values, we can conclude that c · log n is indeed a reasonable choice for β as it balances the two factors (number of
iterations and number of refreshments) that contribute to the rate.

Table 3: Effect of the choice of β on the model accuracy, the number of SuRP iterations needed to achieve the
desired sparsity, and the number of required refreshment for the Laplacian parameter λ. The experiments are run
with VGG-16 model on CIFAR-10 dataset. The sparsity is 95% in all cases. Note that these experiments do not
involve multiple pruning steps or retraining, that is why the accuracy is slightly smaller than the numbers in
Table 1.

β :
√
log n 1/2 · log n log n 2 · log n (log n)2

Accuracy 89.2% 90.02% 90.02% 90.00% 90.00%
Required Number of Iterations 1.1M 1.2M 1.2M 1.3M 20M
Number of Parameter Refreshment 20K 500 22 20 10

F Visualization of SuRP

Figure 5 shows the decreasing ℓ1 distortion and sparsity, and increasing accuracy of the reconstructed model
through the iterations (running inside SuRP). We note that SuRP is applied only once in Figure 5 and iterations
correspond to the iterations running inside SuRP. However, as stated in Section 6, we adopted iterative pruning
approach, where each pruning iteration corresponds to running SuRP one time. After each pruning iteration,
SuRP outputs a sparse model, and a retraining procedure is applied to the sparse model. When we do iterative
pruning, we apply SuRP several times by increasing the target sparsity ratio every time. For instance, let us say
we want to prune 90% of the parameters in the first pruning iteration. Then, as shown in Figure 6, SuRP stops
once the sparsity ratio drops to 90%. Before starting the next iteration (next round of SuRP), we retrain the
sparse model by excluding the pruned parameters (as proposed in (Han et al., 2016)). In the next iteration, as
shown in Figure 7, the sparsity can never be lower than 90% no matter how long we run the algorithm since 90%
of the parameters are already pruned in the previous iteration of the pruning. As we typically desire a higher
sparsity ratio in the later iterations, we need to stop SuRP at the target sparsity (which is higher than 90%).

G Proof of Theorem 2

In this section, we provide the proof of Theorem 2. In an iteration of SuRP, where Rn = logn(n−1)
n and

Dn = 2
nλ log n

2βn
, we have

Dn

Rn
= −

2
λ log n

2βn

log n(n− 1)

= − 1

λ

log n2

log n(n− 1)
+

1

λ

2 log 2βn

log n(n− 1)
.
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(a) ℓ1 Distortion. (b) Sparsity. (c) Accuracy.

Figure 5: (a) Average ℓ1 distortion, (b) sparsity and (c) accuracy of the reconstructed VGG-16 when SuRP is
applied once (no iterative pruning). Baseline: fully-trained model without compression.

(a) ℓ1 Distortion. (b) Sparsity. (c) Accuracy.

Figure 6: (a) Average ℓ1 distortion, (b) sparsity and (c) accuracy of the reconstructed VGG-16 during SuRP
(first iteration of the iterative pruning). SuRP stops at the desired sparsity 90%. Baseline: fully-trained model
without compression.

(a) ℓ1 Distortion. (b) Sparsity. (c) Accuracy.

Figure 7: (a) Average ℓ1 distortion, (b) sparsity and (c) accuracy of the reconstructed VGG-16 during SuRP
(after the first iteration of the iterative pruning). The sparsity cannot be lower than 90% and SuRP must stop at
the desired sparsity (which is higher than 90%). Baseline: fully-trained model without compression.

If limn→∞
log 2βn

logn(n−1) = 0, it is clear that Dn

Rn
converges to D′(0) = − 1

λ as n increases. Therefore, SuRP is zero-rate
optimal under the condition that limn→∞

log 2βn

logn(n−1) = 0.

H Optimizing the Bit Rate

In this section, we highlight a useful byproduct of SuRP as a way to minimize the bit rate of the pruned model.
Recall that SuRP requires transmitting two indices i, j ∈ {1, . . . , n} from the encoder to the decoder for each
iteration. This means that SuRP automatically gives the integer (indices are integers from 1, . . . , n) representation
of the model. Therefore, without dealing with floating points, i.e., precise values of the weights, we can reconstruct
the model back using these indices. In order to further optimize this, we need a lossless compression scheme,
namely entropy coding, to represent these indices as binary sequences. In information theory, the optimal entropy
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coding method can be found when the source distribution is known in advance (Huffman, 1952). Although there
are universal codes that encode any source regardless of the distribution, they are preferable only when the source
distribution is unknown since an entropy coding that matches the source distribution is always better than a
universal code. Fortunately, our coding scheme for Laplacian (also for exponential) source induces a well-defined
distribution that allows us to choose an optimal entropy coding method. Notice that randomly picking two indices
i, j from {k : U

(t)
k ≥

1
λt
· log n

2β } and {k : U
(t)
k ≤ −

1
λt
· log n

2β } is equivalent to; (1) first randomly permuting U(t),

and (2) selecting the minimum indices i, j from {k : U
(t)
k ≥

1
λt
· log n

2β } and {k : U
(t)
k ≤ −

1
λt
· log n

2β }. The second
approach induces a geometric distribution under the i.i.d. assumption on the indices where small indices are
always more probable to be selected. For geometric sources, there are two standard entropy coding methods:
unary coding and Golomb coding (Golomb, 1966; Gallager and Van Voorhis, 1975). In our additional experiments
in Appendix K, for comparing SuRP with other works on accuracy-bit rate tradeoff, we use Golomb coding. Now,
we give more details on both methods.

Unary Coding. Unary coding is a prefix-free code that is optimally efficient for the following geometric
distribution:

PB(b) = 2−b (32)

where b is a positive integer. In the simplest term, unary coding encodes an integer b with single 1 followed by
b− 1 consecutive 0’s. For instance, 72 would be uniquely encoded as 100000010. In our problem, indices follow
the distribution in Eq. 32 only when the fraction of normalized weights larger than 1/λt · log n

2β in magnitude is
exactly equal to 1/2. Since this is not the case in every iteration, unary coding is not the optimal entropy coding
method for indices in SuRP.

Golomb Coding. Golomb coding is an optimal prefix-free code for any geometric source, i.e., it is more
general than unary coding. The construction of Golomb codes can be found in (Golomb, 1966). In our additional
experiments in Appendix K, we implemented Golomb coding to represent NN models as binary arrays.

I Compression for Federated Learning

Figure 8: Density of gradients of ResNet-50 trained on ImageNet. We present only the gradients from the late
stages of training since we use a pretrained ResNet-50.

In Section 6, we have applied SuRP to compress gradients in federated learning. In Figures 8, 9, and 10, we justify
that Laplacian is a good fit for gradients of ResNet-50 trained on ImageNet, ResNet-18 trained on CIFAR-10,
and VGG-16 trained on CIFAR-10. Since we need to compress the gradients before each communication round
of federated training, SuRP requires the gradients to follow a Laplacian distribution throughout the learning
process. In other words, although the parameter of the Laplacian distribution might change, we must be able to
fit a Laplacian distribution to the gradients in every round. We provide the density estimation of gradients in
early-, mid-, and late-stages of training in Figures 8, 9, and 10 to show that Laplacian distribution is a good fit
for gradients starting from the early stages of training till the training ends. Therefore, we can apply SuRP to
compress gradients at every communication round. In our experiments, we update the parameter of the Laplacian
distribution (λ) at every communication round.

Among other gradient sparsification methods for federated learning (Aji and Heafield, 2017; Lin et al., 2017;
McMahan et al., 2017; Wang et al., 2018; Wangni et al., 2018), SuRP is most similar to rTop-k (Barnes et al., 2020),
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(a) Gradients at Early Stage. (b) Gradients at Mid Stage. (c) Gradients at Late Stage.

Figure 9: Density of gradients of ResNet-18 trained on CIFAR-10 during (a) early stages of training (epoch 32),
(b) middle stages of training (epoch 155), (c) late stages of training (epoch 336).

(a) Gradients at Early Stage. (b) Gradients at Mid Stage. (c) Gradients at Late Stage.

Figure 10: Density of gradients of small VGG-16 trained on CIFAR-10 during (a) early stages of training (epoch
16), (b) middle stages of training (epoch 100), (c) late stages of training (epoch 170).

in that they also communicate a random subset of the large gradients. Different from our work, they approach
the communication-efficient federated learning problem from a distributed statistical estimation point of view. By
modeling the gradients with a sparse Bernoulli distribution, they show that the optimal compression strategy for
each user (device) is to communicate a random k/r fraction of the r largest gradients. In contrast, we study the
gradient compression problem from an information-theoretic approach and assume Laplacian distribution over
the gradients. With this assumption, we conclude that each user must communicate the parameter of underlying
Laplacian distribution of the local gradients and a list of indices that are randomly selected among the gradients
larger than 1

λt
· log n

2β in magnitude at iteration t. Since the threshold 1
λt
· log n

2β is decreasing at each iteration,
SuRP assigns a higher probability for larger (in magnitude) gradients to be selected, whereas rTop-k picks the
gradients uniformly random from the large gradients.

J Additional Experimental Details

We conducted our experiments on NVIDIA Titan X (MNIST and CIFAR-10) and NVIDIA Titan Xp (ImageNet)
GPUs on an internal cluster server. We used 1 GPU for MNIST and CIFAR-10 experiments and 2 GPUs for
ImageNet experiments. We set the target sparsity of each SuRP round so that at each pruning iteration, 20% of
the surviving parameters will be pruned, e.g., sparsity schedule is as follows 20%, 36%, 48.8%, 59.04%, . . . .

J.1 MNIST:

We provide the architectural details and hyperparameters for LeNet-5 Caffe in Table 4 (LeCun et al., 1998). We
use a batch size of 100 and train for 100 epochs, early stopping at the best accuracy on validation set. We use
the Adam optimizer with learning rate = 0.001, and β1 = 0.9, β2 = 0.999 with weight decay = 5e−4.
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Table 4: LeNet-5 Caffe convolutional architecture.

Name Component
conv1 [5× 5 conv, 20 filters, stride 1], ReLU, 2× 2 max pool
conv2 [5× 5 conv, 50 filters, stride 1], ReLU, 2× 2 max pool
Linear Linear 800→ 500, ReLU

Output Layer Linear 500→ 10

J.2 CIFAR-10:

We provide the architectural details and hyperparameters for the ResNet-20 (He et al., 2016) and (small) VGG-16
(Simonyan and Zisserman, 2014) in Tables 5 and 6, respectively. For both ResNet-20 and VGG-16, we use a batch
size of 128, we train ResNet-20 for 350 epochs and VGG-16 for 200 epochs, early stopping at the best accuracy
on validation set. We use SGD with learning rate = 0.1, momentum = 0.9, and weight decay = 5e−4. We note
that VGG-16 architecture is a smaller version of the original VGG architecture in (Simonyan and Zisserman,
2014). We retrain both models for 20 epochs at the end of each pruning iteration.

Table 5: Slim ResNet-20 architecture.

Name Component
conv1 3× 3 conv, 16 filters. stride 1, BatchNorm

Residual Block 1
[
3× 3 conv, 16 filters
3× 3 conv, 16 filters

]
× 2

Residual Block 2
[
3× 3 conv, 32 filters
3× 3 conv, 32 filters

]
× 2

Residual Block 3
[
3× 3 conv, 64 filters
3× 3 conv, 64 filters

]
× 2

Output Layer 7× 7 average pool stride 1, fully-connected, softmax

Table 6: VGG-16 architecture.

Name Component
conv1-2 [3× 3 conv, 64 filters. stride 1, BatchNorm, ReLU] ×2

max pool 2× 2, stride 2
conv3-4 [3× 3 conv, 128 filters. stride 1, BatchNorm, ReLU] ×2

max pool 2× 2, stride 2
conv5-7 [3× 3 conv, 256 filters. stride 1, BatchNorm, ReLU] ×3

max pool 2× 2, stride 2
conv8-10 [3× 3 conv, 512 filters. stride 1, BatchNorm, ReLU] ×3
max pool 2× 2, stride 2
conv11-13 [3× 3 conv, 512 filters. stride 1, BatchNorm, ReLU] ×3
max pool 2× 2, stride 2

Output Layer 1× 1 average pool stride 1, fully-connected, softmax

J.3 ImageNet:

We provide the architectural details and hyperparameters for the ResNet-50 used
in our experiments in Table 7. We use the pretrained ResNet-50 from PyTorch
(https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py), with a batch
size of 64. At the end of each pruning iteration, we retrain the model for 15 epochs. We use SGD with learning
rate = 0.001, momentum = 0.9 and weight decay = 5e−4.
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Table 7: ResNet-50 architecture.

Name Component
conv1 3× 3 conv, 64 filters. stride 1, BatchNorm

Residual Block 1

 1× 1 conv, 64 filters
3× 3 conv, 64 filters
1× 1 conv, 256 filters

× 3

Residual Block 2

1× 1 conv, 128 filters
3× 3 conv, 128 filters
1× 1 conv, 512 filters

× 4

Residual Block 3

 1× 1 conv, 256 filters
3× 3 conv, 256 filters
1× 1 conv, 1024 filters

× 6

Residual Block 4

 1× 1 conv, 512 filters
3× 3 conv, 512 filters
1× 1 conv, 2048 filters

× 3

Output Layer 4× 4 average pool stride 1, fully-connected, softmax

K Additional Experimental Results

We give a more detailed version of Table 1 in Tables 8, 9, 10 and 11 and a more detailed version of Table 2 in
Table 12 with confidence intervals included in SuRP results.

Table 8: Accuracy of VGG-16 on CIFAR-10. Results are averaged over five runs.

Pruning Ratio: 93.12% 95.60% 97.19% 98.20% 98.85% 99.26% 99.53% 99.70% 99.81% 99.88%

Global (Morcos et al., 2019) 91.30 90.80 89.28 85.55 81.56 54.58 41.91 31.93 21.87 11.72
Uniform (Zhu and Gupta, 2017) 91.47 90.78 88.61 84.17 55.68 38.51 26.41 16.75 11.58 9.95
Adaptive (Gale et al., 2019) 91.54 91.20 90.16 89.44 87.85 86.53 84.84 82.41 74.54 24.46
RiGL (Evci et al., 2020) 92.34 91.99 91.66 91.15 90.55 89.51 88.21 86.73 84.85 81.50
LAMP (Lee et al., 2021) 92.24 92.06 91.71 91.66 91.07 90.49 89.64 88.75 87.07 84.90
SuRP (ours) 92.55± 0.19 92.13± 0.20 91.95± 0.21 91.72± 0.28 91.21± 0.24 90.73± 0.21 90.65± 0.27 89.70± 0.32 87.28± 0.32 85.04± 0.35

Table 9: Accuracy of ResNet-20 on CIFAR-10. Results are averaged over five runs.

Pruning Ratio: 79.03% 86.58% 91.41% 94.50% 96.48% 97.75% 98.56% 99.08% 99.41% 99.62%

Global (Morcos et al., 2019) 87.48 86.97 86.29 85.02 83.15 80.52 76.28 70.69 47.47 12.02
Uniform (Zhu and Gupta, 2017) 87.24 86.70 86.09 84.53 82.05 77.19 64.24 47.97 20.45 13.35
Adaptive (Gale et al., 2019) 87.30 87.00 86.27 85.00 83.23 80.40 76.40 69.31 52.06 20.19
RiGL (Evci et al., 2020) 87.63 87.49 86.83 85.84 84.08 81.76 78.70 74.40 66.42 50.90
LAMP (Lee et al., 2021) 87.54 87.12 86.56 85.64 84.18 81.56 78.63 74.20 67.01 51.24
SuRP (ours) 91.37± 0.24 90.44± 0.26 89.00± 0.21 88.87± 0.26 87.05± 0.28 83.98± 0.20 79.00± 0.34 74.86± 0.29 70.64± 0.38 54.22± 0.42

Table 10: DenseNet-121 on CIFAR-10. Results are averaged over five runs.

Pruning Ratio: 94.50% 95.60% 96.48% 97.18% 97.75% 98.20% 98.56% 98.85% 99.08% 99.26%

Global (Morcos et al., 2019) 90.16 89.52 88.83 88.00 86.85 85.32 77.68 45.30 49.65 20.96
Unif. (Zhu and Gupta, 2017) 90.24 89.50 88.44 87.94 86.83 85.00 82.16 70.13 66.46 48.71
Adap. (Gale et al., 2019) 90.25 89.70 89.03 88.22 87.40 86.26 84.55 81.87 69.25 58.91
RiGL (Evci et al., 2020) 90.21 89.79 88.92 88.20 87.25 86.22 84.11 81.82 59.06 59.07
LAMP (Lee et al., 2021) 90.89 90.11 89.72 89.12 88.39 87.75 86.53 85.13 82.92 79.23
SuRP (ours) 91.42± 0.11 90.75± 0.08 90.30± 0.20 89.62± 0.17 88.77± 0.08 88.06± 0.22 86.71± 0.15 85.34± 0.27 83.18± 0.24 79.45± 0.36

We also provide a comparison between SuRP and LAMP at lower pruning rates in Table 13.

Additionally, we provide accuracy-bit rate comparisons between SuRP and relevant baselines such as Deep Comp.
(Han et al., 2016), DeepCABAC (Wiedemann et al., 2020), DNS (Guo et al., 2016), and SWS (Ullrich et al., 2017)
in Table 14. It is seen from Table 14 that SuRP outperforms the baselines both in terms of accuracy-sparsity and
accuracy-bit rate tradeoffs.
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Table 11: EfficientNet-B0 on CIFAR-10. Results are averaged over five runs.

Pruning Ratio: 59.00% 73.80% 83.20% 89.30% 93.13% 95.60% 97.18% 98.20% 98.85% 99.26%

Global (Morcos et al., 2019) 89.66 89.55 88.80 87.64 84.36 79.25 11.09 10.62 10.00 10.00
Uniform (Zhu and Gupta, 2017) 88.99 88.26 86.48 83.40 23.65 10.83 10.00 10.00 10.00 10.00
Adaptive (Gale et al., 2019) 89.18 88.03 86.71 84.16 36.64 10.45 10.00 10.19 10.00 10.00
RiGL (Evci et al., 2020) 89.54 90.09 90.01 89.62 88.82 87.08 84.72 81.53 51.31 13.40
LAMP (Lee et al., 2021) 89.52 89.95 89.97 90.21 89.91 89.79 89.30 88.51 86.79 65.76
SuRP (ours) 90.96± 0.10 90.94± 0.12 90.89± 0.12 90.75± 0.16 90.31± 0.21 90.08± 0.20 89.88± 0.27 89.02± 0.38 87.80± 0.0.36 70.76± 0.52

Table 12: Accuracy of ResNet-50 on ImageNet. Results are averaged over three runs.

Pruning Ratio: 80% 90%

Adaptive (Gale et al., 2019) 75.60 73.90
SNIP (Lee et al., 2018) 72.00 67.20
DSR (Mostafa and Wang, 2019) 73.30 71.60
SNFS (Dettmers and Zettlemoyer, 2019) 74.90 72.90
RiGL (Evci et al., 2020) 74.60 72.00
SuRP (ours) 75.54± 0.05 73.93± 0.04

Table 13: Additional Results with Low Pruning Ratios.

Pruning Ratio: 20% 36% 49% 59% 67% 79%

VGG-16 LAMP (Lee et al., 2021)
SuRP (ours)

93.12
93.72

93.08
93.75

93.05
93.72

92.89
93.63

92.81
93.64

92.75
93.56

ResNet-20 LAMP (Lee et al., 2021)
SuRP (ours)

89.12
92.47

88.81
92.43

88.67
92.29

88.27
92.30

87.95
91.98

87.54
91.37

Table 14: Comparison of SuRP with other pruning strategies in terms of accuracy, sparsity and size (bit rate).

Model Original Method Sparsity Comp. Comp.
(Original size) Acc. (%) |w=0|

|w| (%) Size Acc. (%)

LeNet-5-Caffe
MNIST

(1.72 MB)
99.14

Deep Comp. (Han et al., 2016)
DNS (Guo et al., 2016)

SWS (Ullrich et al., 2017)
DeepCABAC (Wiedemann et al., 2020)

SuRP (ours)
SuRP (ours)

92.0
99.1
99.5
98.1
99.2
99.3

44 KB (×39)
16 KB (×107)
11 KB (×156)
12 KB (×143)
7 KB (×246)
5 KB (×344)

99.3
99.1
99.0
99.1

99.3 (± 0.0)
98.2 (± 0.1)

ResNet-18
CIFAR-10

(44.70 MB)
95.60

SuRP (ours)
SuRP (ours)
SuRP (ours)

90.0
95.0
97.0

3.1 MB (×15)
1.1 MB (×42)
875 KB (×53)

95.1 (± 0.0)
92.2 (± 0.1)
90.0 (± 0.2)

Small VGG-16
CIFAR-10
(58.91 MB)

93.60
DeepCABAC (Wiedemann et al., 2020)

SuRP (ours)
SuRP (ours)

92.4
95.0
90.0

956 KB (×61)
1.1 MB (×54)
3.0 MB (×20)

91.0
92.4 (± 0.1)
93.5 (± 0.1)

ResNet-50
ImageNet

(102.23 MB)
76.60

Deep Comp. (Han et al., 2016)
DeepCABAC (Wiedemann et al., 2020)

SuRP (ours)

71.0
74.6
71.0

6.1 MB (×16)
6.1 MB (×16)
6.1 MB (×16)

76.1
74.1

76.4 (± 0.0)
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