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Abstract

We study the neural network (NN) compres-
sion problem, viewing the tension between
the compression ratio and NN performance
through the lens of rate-distortion theory. We
choose a distortion metric that reflects the
effect of NN compression on the model output
and derive the tradeoff between rate (compres-
sion) and distortion. In addition to charac-
terizing theoretical limits of NN compression,
this formulation shows that pruning, implic-
itly or explicitly, must be a part of a good com-
pression algorithm. This observation bridges
a gap between parts of the literature per-
taining to NN and data compression, respec-
tively, providing insight into the empirical
success of model pruning. Finally, we propose
a novel pruning strategy derived from our
information-theoretic formulation and show
that it outperforms the relevant baselines on
CIFAR-10 and ImageNet datasets.

1 Introduction

The recent success of NNs in various machine learning
applications has come with their over-parameterization.
Deployment of such over-parameterized models on edge
devices is challenging as these devices have limited stor-
age, computation, and power resources. Motivated by
this, there has been significant interest in NN compres-
sion by the research community. The most established
NN compression techniques can be broadly grouped
into five categories: quantization (Li et al., 2016; Ban-
ner et al., 2018; Jacob et al., 2018; Jung et al., 2019;
Wang et al., 2019b; Choi et al., 2020; Young et al., 2020;
Idelbayev et al., 2021) and coding (Wiedemann et al.,
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2020; Zhe et al., 2021) of NN parameters, pruning (Han
et al., 2016; Molchanov et al., 2016; Carreira-Perpinan
and Idelbayev, 2018; Liu et al., 2018; Yu et al., 2018; Lin
et al., 2019; Peng et al., 2019; Xiao et al., 2019; Zhao
et al., 2019; Blalock et al., 2020; Elsen et al., 2020; Park
et al., 2020; Renda et al., 2020), Bayesian compression
(Federici et al., 2017; Louizos et al., 2017a,b; Molchanov
et al., 2017; Dai et al., 2018), distillation (Hinton et al.,
2015; Polino et al., 2018; Wang et al., 2019a), and low-
rank matrix factorization (Sainath et al., 2013; Ioannou
et al., 2015; Idelbayev and Carreira-Perpinan, 2020).
The success of these techniques in compressing NN
models without a significant performance loss brings
a theoretical question: what is the fundamental limit
of NN compression while maintaining a target perfor-
mance?

A similar question arises in the classical data compress-
sion problem as well (Salomon, 2004). Shannon (1948)
introduced the mathematical formulation of the data
compression problem, where the goal is to describe
a source sequence with the minimum number of bits.
In an information-theoretic sense, entropy is the
limit of how much a source sequence can be losslessly
compressed. However, in practice, there are many
sources such as image, video, and audio, where lossless
compression cannot achieve a high enough compression
rate. In such cases, we need to compress the source
sequence in a lossy manner allowing some distortion
between the source and reconstruction. This is where
rate-distortion theory comes into the picture. For lossy
compression, rate-distortion theory gives the limit of
how much a source sequence can be compressed without
exceeding a target distortion level (Berger, 2003).

In this work, we connect these two lines of research and
study the theoretical limits of lossy NN compression
via rate-distortion theory. In particular, we consider
a classical lossy compression problem to compress NN
weights while minimizing the perturbation in the NN
output space. We first (1) define a distortion met-
ric that upper bounds the output perturbation due
to compression, then (2) find a probability distribu-
tion that fits NN parameters, and finally (3) derive the
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rate-distortion function for the chosen distortion metric
and distribution. This function describes the theoret-
ical tradeo� between rate (compression ratio) and NN
output perturbation, thus provides insight into how
compressible NN models are. Furthermore, our �ndings
indicate that the compressed model that reaches the
optimal achievable compression ratio must be sparse.
This suggests that a good NN compression algorithm
must, implicitly or explicitly, involve a pruning step,
complimenting the empirical success of pruning strate-
gies (Gale et al., 2019). Therefore, we provide theoret-
ical support for pruning as a rate-distortion theoretic
compression scheme that maintains the model output.

Inspired by this observation, we propose a practical
lossy compression algorithm for NN models. The
reconstruction of our algorithm is a sparse model,
which naturally induces a novel pruning strategy.
Our algorithm is based on successive re�nability � a
property that often helps to reduce the complexity of
lossy compression algorithms (Equitz and Cover, 1991).
Our strategy di�ers from previous score-based pruning
methods as it relies solely on an information-theoretic
approach to a data compression problem with addi-
tional practical bene�ts that we cover in Section 6. We
also prove that the proposed algorithm is sound from a
rate-distortion theoretic perspective. We demonstrate
the e�cacy of our pruning strategy on CIFAR-10 and
ImageNet datasets. Lastly, we show that our strategy
provides a tool for compressing NN gradients as well,
an important objective in communication-e�cient
federated learning (FL) settings (Kairouz et al., 2019).
The contributions of our paper can be summarized as:

ˆ We take a step in bridging the gap between NN
compression and data compression.

ˆ We present the rate-distortion theoretical limit of
achievable NN compression given a target distor-
tion level and show that pruning is an essential
part of a good compression algorithm.

ˆ We propose a novel pruning strategy derived from
our �ndings, which outperforms relevant baselines.

2 Related Work

This section is devoted to prior work on NN compres-
sion that has the same �avor as ours, in particular,
we touch on (a) data compression approaches to NN
compression and (b) pruning. We cover related works
in classical data compression as we go through the
methodology in Sections 3, 4, and 5.

From Data Compression to NN Compression.
To date, several works have proposed to minimize the

bit-rate (compressed size) of NNs with quantization
techniques (Wang et al., 2019b; Idelbayev et al., 2021;
Stock et al., 2021). Some recent work has shown promis-
ing results to go beyond quantization using tools from
data compression. For instance, Havasi et al. (2019)
and Oktay et al. (2019) have trained a model to jointly
optimize compression and performance of the model
using tools from minimum description length princi-
ple (Grünwald and Grunwald, 2007) and a recently
advanced image compression framework (Ballé et al.,
2016), respectively. While we share the same goal with
these papers, our focus is on compressing NN mod-
els post-training. With this distinction, our work is
most related to (Gao et al., 2019), where the authors
have put the �rst attempt to approach NN compression
from a rate-distortion theoretic perspective. Although
they have shown achievability results on one-layer net-
works, their results do not generalize to deeper networks
without �rst-order Taylor approximations. Moreover,
their formulation relies on the assumption that NN
weights follow Gaussian distribution, which currently
lacks empirical evidence. On the other hand, we show
achievable compression ratios generalized to multi-layer
networks without making linear approximations and
provide strong empirical evidence for our choice of
Laplacian distribution for NN weights.

Pruning. The overparameterized nature of NNs has
motivated researchers to explore ways to �nd and re-
move redundant parameters (Cun et al., 1990; Hassibi
et al., 1993). The idea of iterative magnitude pruning
was shown to be remarkably successful in deep NNs
�rst by Han et al. (2016), and since then, NN pruning
research has accelerated. To improve upon the itera-
tive magnitude pruning scheme of (Han et al., 2016),
researchers have looked for di�erent ways to adjust the
pruning ratios across layers. For instance, Zhu and
Gupta (2017) have suggested pruning the parameters
uniformly across layers. Gale et al. (2019), on the other
hand, have shown better results when the �rst convolu-
tional layer is excluded from the pruning and the last
fully-connected layer is not pruned more than80%. Lay-
erwise pruning ratio has also been investigated for NNs
pruned at initialization since the explosion of the Lot-
tery Ticket Hypothesis (Frankle and Carbin, 2019; Mor-
cos et al., 2019). Evci et al. (2020) have shown promis-
ing results on NNs pruned at initialization where the
pruning ratio across layers is adjusted by Erd®s-Rényi
kernel method, as introduced by Mocanu et al. (2018).
More recently, Lee et al. (2021) have proposed adjust-
ing the pruning threshold for each layer based on the
norm of the weights at that layer. We follow a similar
methodology in (Lee et al., 2021) to normalize the pa-
rameters prior to applying our novel pruning algorithm.
Unlike other pruning strategies, our algorithm outputs
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a pruned (sparse) model, without an explicit score-
based pruning step. Instead, our reconstruction goes
from the coarsest (sparsest) to the �nest representation
of the model. Parallel to our work, a recent study has
proposed a heuristic bottom-up approach as opposed to
the common top-down pruning approach and provided
promising empirical results (Chen et al., 2021). To the
best of our knowledge, our work is the �rst to provide
a rate-distortion theoretic justi�cation for pruning.

3 Preliminaries

In this section, we present the problem setup and brie�y
introduce the rate-distortion theory and the successive
re�nement concept.

3.1 Problem Statement

We study a NN compression problem where the net-
work y = f (x ; w) characterizes a prediction from the
input space X to the output space Y, parameterized
by weights w. Our goal is to minimize the di�er-
ence betweeny = f (x; w) and ŷ = f (x ; ŵ ), where
ŵ is a compressed version of the trained parameters
w. In Section 4.1, we de�ne an appropriate distortion
function d(w; ŵ ) that re�ects the perturbation in the
output space kf (x ; w) � f (x ; ŵ )k1. This is a lossy
compression problem where the distortion is a mea-
sure of the distance between the original model and
the compressed model, and the rate is the number of
bits required to represent one weight. In information-
theoretic term, rate distortion theory characterizes the
minimum achievable rate given the target distortion.

3.2 Notation

Throughout the paper, w 2 Rn is the weights of a
trained model. Logarithms are natural logarithms.
Rate is de�ned as nats (the unit of information obtained
from natural logarithm) per symbol (weight in our
case). We use lower caseu to denote the realization of
a scalar random variableU and u = un = ( u1; : : : ; un )
to denote the realization of a random vector U =
Un = ( U1; : : : ; Un ). We use the term �perturbation�
for the change in the model output due to compression,
whereas �distortion� d(w; ŵ ) refers to the change in the
parameter space. Lastly,d(un ; ûn ) = 1

n

P n
i =1 d(ui ; ûi )

is the regular extension of the distortion function for
an n dimensional vector.

3.3 Rate-Distortion Theory

Let U1; : : : ; Un 2 U be a source sequence generated by
i.i.d. � p(u) where p(u) is a probability density func-
tion and U = R. The encoder f e : Un ! f 0; 1gnR

describes this sequence innR bits, where this bi-
nary representation is called a �message�m. The de-
coder f d : f 0; 1gnR ! Ûn reconstructs an estimate
û = ûn 2 Ûn based onm 2 f 0; 1gnR where Û = R
as well. This process, summarized in Figure 1(a), is
called lossy source coding. The number of bits per
source symbol (nR

n = R in this case) and the �distance�
d(u; û) = d(un ; ûn ) = 1

n

P n
i =1 d(ui ; ûi ) betweenu and

û are named as rate and distortion, respectively. Ide-
ally, we would like to keep both rate and distortion low,
but there is a tradeo� between these two quantities,
which is characterized by the rate-distortion function
(Shannon, 1948; Berger, 2003; Cover and Thomas, 2006)
as:

R(D) = min
p( û ju ): E[d(u; û )] � D

I (U; Û) (1)

where I (U; Û) is the mutual information between U
and Û, and d(�; �) is a prede�ned distortion metric, e.g.
`2 distance. The rate-distortion function R(D) in Eq. 1
is the minimum achievable rate at distortion D , and the
conditional distribution p(ûju) that achievesI (U; Û) =
R(D) explains how an optimal encoder-decoder pair
should operate for the sourcep(u). We can also de�ne
the inverse, namely the distortion-rate function D(R),
which is the minimum achievable distortion at rate
R. Clearly, source distribution has a critical role in
the solution of the rate distortion problem. We discuss
possible assumptions for the distribution of NN weights
in Section 4.2.

(a) Lossy Source Coding.

(b) Successive Re�nement.

Figure 1: (a) Source Coding, (b) Successive Re�nement
with 2 Decoders.

3.4 Successive Re�nement

In the successive re�nement problem, summarized in
Figure 1(b), the encoder wants to describe the source



An Information-Theoretic Justi�cation for Model Pruning

to two decoders, where each decoder has its own tar-
get distortion, D1 and D2. Instead of having separate
encoding schemes for each decoder, the successive re-
�nement encoder encodes a messagem1 for Decoder
1 (with higher target distortion, D1), and encodes an
extra messagem2 where the second decoder gets both
m1 and m2. Receiving both m1 and m2, Decoder 2
reconstructs Û 2 with distortion D2. Since the message
m1 is re-used, the performance of successive re�nement
encoder is sub-optimal in general. However, in some
cases, the successive re�nement encoder achieves the
optimum rate-distortion tradeo� as if dedicated en-
coders were used separately. In such a case, we call
the source (distribution) and the distortion pair suc-
cessively re�nable (Koshelev, 1980; Equitz and Cover,
1991). In Section 5.1, we discuss how to achieve low
complexity via successive re�nement.

4 Rate-Distortion Theory for Neural
Network Parameters

In this section, we �rst derive the distortion metric
to be used in the rate-distortion function, then we
estimate the source distribution (probability density of
NN weights), and �nally, we present the rate-distortion
function associated with the chosen distortion metric
and the source distribution.

4.1 Distortion Metric

Our objective is to minimize the di�erence between the
output of the original NN model and the compressed
model. Formally, we would like to keep the output
perturbation kf (x ; w) � f (x ; ŵ )k1 small. Since the
e�ect of a weight distortion on the output space
f (x ; w) is intractable for deep NNs, we seek to �nd
a distortion function on parameter space that upper
bounds kf (x ; w) � f (x ; ŵ )k1.

Prior work has derived an upper bound for the`2 norm
of the output perturbation as the Frobenius norm of
the di�erence between w and ŵ when only a single
layer is compressed (Lee et al., 2021). More precisely,
consider a fully connected NN model withd layers and
ReLU activation. Let w be the weights of the original
trained model and ŵ be a compressed version ofw
whereŵ is the same withw except in the l-th layer. In
such a case, i.e., when only a single layer is compressed,
the output perturbation is bounded by

sup
kx k2 � 1

kf (x ; w) � f (x ; ŵ )k2

�
kw ( l ) � ŵ ( l ) kF

kw ( l ) kF
�

 
dY

k=1

kw (k ) kF

! (2)

where w ( l ) indicates the weights of thel-th layer. In-

spired by Eq. 2, Lee et al. (2021) have introduced Layer-
Adaptive Magnitude-based Pruning (LAMP) score

(w ( l )
i )2=

� P
j (w ( l )

j )2
�

to measure the importance of

the weight w ( l )
i for pruning. Notice that Eq. 2 holds

only when a single layer is pruned.

In this work, we follow a similar strategy to relate the
� `1 norm of perturbation on the output space� to � `1

norm of the weight distortion after compression�, but
not limited to single-layer compression.

Theorem 1. Supposef (�; w) is a fully-connected NN
model with d layers and 1-Lipschitz activations � (�)
such that � (0) = 0 , e.g., ReLU. Let ŵ be the recon-
structed weights (after compression) where all layers
are subject to compression. Ifkw ( l ) k1 � k ŵ ( l ) k1 for
all 1 � l � d 1, then, we have the following bound on
the output perturbation:

sup
kx k1 � 1

kf (x ; w) � f (x ; ŵ )k1

�

 
dX

l =1

kw ( l ) � ŵ ( l ) k1

kw ( l ) k1

!  
dY

k=1

kw (k ) k1

! (3)

i.e., the output perturbation is bounded by thè 1 dis-
tortion of the normalized weights.

The matrix norm k � k1 is an induced norm by`1 vector
norm. The proof is given in Appendix A. In Section 5.2
(Remark 2), we show that the proposed compression
algorithm satis�es the additional assumption kw ( l ) k1 �
kŵ ( l ) k1 for all 1 � l � d. Since the last term in Eq. 3,� Q d

k=1 kw (k ) k1

�
, is independent of the compression,

we do not include this term in our weight distortion
function. Then, one distortion function that naturally

arises from Theorem 1 isd(w; ŵ ) =
P d

l =1
kw ( l ) � ŵ ( l ) k1

kw ( l ) k1
.

By changing the notation slightly, we would like to
minimize the following distortion function

d(u; û) =
1
n

nX

i =1

jui � ûi j (4)

where u is the normalized weights arisen from the nor-
malization in Eq. 3, i.e., u ( l ) = w ( l )

kw ( l ) k1
for l = 1 ; : : : ; d.

In the next section, we derive the rate-distortion func-
tion with the distortion metric in Eq. 4, which approx-
imates the perturbation ( `1 loss) on the output space
due to compression.

1We provide a symmetric version of Theorem 1 in Ap-
pendix B, which essentially implies the same upper bound
on the output perturbation without requiring the additional
condition of kw k1 � k ŵ k1
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4.2 Rate-Distortion Function for Neural
Network Parameters

Since we de�ne our distortion function as the `1 distor-
tion between u and û as in Eq. 4, whereu is the nor-
malized NN weights, we can formulate the compression
problem as a lossy compression of the normalized NN
weights. Before deriving the rate-distortion function,
we need a source distribution that �ts the normalized
weights u. Figure 2 shows that Laplacian distribution
is a good �t for pretrained NN weights after normaliza-
tion as opposed to the common Gaussian assumption in
the prior work (Gao et al., 2019). For Figure 2, we use
PyTorch's pretrained models with no further training.

Now that we have a distortion metric and a source dis-
tribution, suitable for NN compression problem, we can
�nally derive the rate-distortion function. We consider
i.i.d. Laplacian source sequenceu1; : : : ; un distributed
according to f L (u; � ) = �

2 e� � ju j with zero-mean and
scale factor of � , reconstructed sequencev1; : : : ; vn ,
and `1 distortion given in Eq. 4 with û = v . The rate-
distortion function, which is the minimum achievable
rate given the target distortion D follows by:

Lemma 1 (Berger (2003)). The rate-distortion func-
tion for a Laplacian source with `1 distortion is given
by

R(D) =

(
� log(�D ); 0 � D � 1

�

0; D > 1
�

(5)

with the following optimal conditional probability dis-
tribution that achieves the minimum rate:

f U jV (ujv) =
1

2D
e�j u � v j=D : (6)

Moreover, the marginal distribution of V for the opti-
mal reconstruction is

f V (v) = � 2D 2 � � (v) + (1 � � 2D 2) �
�
2

e� � j v j ; (7)

where � (v) is a Dirac measure.

The proof of Lemma 1 is given in Appendix D. The
rate-distortion function in Eq. 5 describes the tradeo�
between NN compression ratio and weight distortionD �
which upper bounds theoutput perturbation. Lemma 1
further indicates that:

(1) The rate-distortion theoretic optimal encoder-
decoder pair makes the reconstruction sparse as
the optimal marginal distribution in Lemma 1 is a
sparse Laplacian distribution with sparsity � 2D 2.
Therefore, unless a compression scheme involves
an implicit or explicit pruning step (to make the re-
construction sparse), the reconstruction does not

follow the optimal marginal distribution. This
would leave a sub-optimal compression scheme
since the mutual information I (U; Û) between the
source and reconstruction would be strictly larger
than the rate-distortion function.

(2) Once V is reconstructed at the decoder, the error
term on the encoder side,U � V , follows a Lapla-
cian distribution with parameter 1=D (see the
conditional distribution in Lemma 1). This allows
for a practical coding scheme with low complexity
based on successive re�nement. That is, we can
iteratively 2 describe NN weights with reasonable
complexity.

In Theorem 1, we add another constraint that the norm
of the reconstructed weights at each layer is smaller
than the norm of the original weights at the same
layer (kw ( l ) k1 � k ŵ ( l ) k1). This is mainly because (1)
sign change in the NN weights can signi�cantly a�ect
the NN output, hence sign bits must be protected
to maintain the performance (Isik et al., 2021); and
(2) this inequality ( kw ( l ) k1 � k ŵ ( l ) k1) is necessary to
apply the iterative compression algorithm based on
successive re�nement (to be discussed in Section 5).

In the next section, we develop a NN compression algo-
rithm merging (i) our theoretical �ndings in Lemma 1
for optimality and (ii) successive re�nement property
for practicality .

5 Successive Re�nement for Pruning

Rate-distortion theory, although, gives the limit of lossy
compression and suggests that pruning must be a part
of a good compression algorithm, does not explicitly
give the optimal compression algorithm. In theory, a
compression algorithm could be designed by letting the
encoder pick the closest codeword from a random code-
book generated according to the marginal distribution
of V in Lemma 1, as suggested by Shannon (1948).
However, such a compressor would not be practical
due to the size of the randomly generated codebook
jCj = 2 nR (D ) (exponential in n � number of weights
in our case). While designing practical compression
algorithms without sacri�cing the optimality is a fun-
damental dilemma in data compression, recent studies
have shown that it is possible to design theoretically
optimal schemes with low complexity for certain source
distributions. In particular, for a successively re�nable
source, an optimal compression algorithm can also be
practical (No et al., 2016). We exploit this idea for
the Laplacian source and develop a practical iterative

2The term �iterative� in our proposed algorithm is dif-
ferent from the �iterative� magnitude pruning concept.
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(a) ResNet-18. (b) ResNet-50. (c) ResNet-152. (d) Wide ResNet-50.

Figure 2: Density of normalized weights. (a) ResNet-18, (b) ResNet-50, (c) ResNet-152, and (d) Wide ResNet-50.
Gaus: Gaussian, Lap.: Laplacian, Wt.: Normalized NN weights. We use PyTorch's pretrained models with no
further training.

compression algorithm that is rate-distortion theoret-
ically optimal. We call it Successive Re�nement for
Pruning (SuRP) since it also outputs a sparse model,
which can be viewed as a pruned model (although we
do not explicitly prune the model). We �rst present
the successive re�nement scheme for Laplacian source
that shows the core idea to achieve lower complexity,
but still impractical. We then push further to provide
the practical algorithm and prove the optimality in a
rate-distortion theoretic sense.

5.1 Successive Re�nement with Randomly
Generated Codebooks

Instead of a successive re�nement scheme with two de-
coders as described in Section 3, we consider successive
re�nement with L decoders. Let� = � 1 < � � � < � L

where D t = 1=� t +1 is the target distortion at the
t-th decoder. This is because the error term at iter-
ation t has a Laplacian distribution with parameter
� t +1 = 1=Dt in an optimal compression scheme (see
Lemma 1). We begin by setting U (1) = un . At the
t-th iteration, the encoder �nds V ( t ) that minimizes
the distance d(U ( t ) ; V ( t ) ) from a codebookC( t ) , then
computes the residualU ( t +1) = U ( t ) � V ( t ) . The t-th
codebookC( t ) consists of2nR=L codewords generated
by the marginal distribution in Lemma 1:

f V ( t ) (v) =
� 2

t

� 2
t +1

� � (v) +
�

1 �
� 2

t

� 2
t +1

�
�

� t

2
e� � t j v j

Since U ( t +1) is again an i.i.d. Laplacian random se-
quence with parameter � t +1 = 1=Dt (from the con-
ditional probability in Lemma 1), the encoder can
keep applying the same steps for Laplacian sources
at each iteration. In summary, for 1 � t � L � 1,
the information-theoretic successive re�nement en-
coder performs the following steps iteratively: (1) �nd
V ( t ) 2 C( t ) that minimizes d(U ( t ) ; V ( t ) ); and (2) up-
date U as U ( t +1) = U ( t ) � V ( t ) . The decoder, on
the other hand, reconstructs Û ( t ) =

P t
� =1 V ( � ) at it-

eration t. This scheme has a complexity ofL � 2nR=L

(the total size of the codebooks inL iterations), which
is lower than the naive random coding strategy (2nR

at once). At the same time, it still achieves the rate-
distortion limit, i.e., does not sacri�ce the optimality,
thanks to successive re�nability of Laplacian source.
However, the complexity is still exponential in n, which
is impractical. We �x this in the next section.

5.2 SuRP Algorithm

The algorithm in Section 5.1 is rate-distortion theoretic
optimal with lower complexity thanks to successive
re�nability, but still impractical due to the exponential
size of the codebooks. In this section, we develop
a new algorithm SuRP, that enjoys both practicality
and optimality. Concretely, SuRP does not require a
random codebook or a search for the nearest codeword
V ( t ) from U ( t ) at each iteration, yet still rate-distortion
theoretic optimal. With the same initialization U (1) =
un and � 1 = � , new iterative coding scheme for1 �
t � L � 1 is as follows:

(1) Find indices (i; j ) such that U ( t )
i � 1

� t
log n

2� and

U ( t )
j � � 1

� t
log n

2� . If there are more than one
such indices, pick(i; j ) randomly. Encode (i; j ) as
mt .

(2) Let V ( t ) be ann-dimensional all-zero vector except
V ( t )

i = 1
� t

log n
2� and V ( t )

j = � 1
� t

log n
2� .

(3) Let U ( t +1) = U ( t ) � V ( t ) .

(4) Set � t +1 = n
n � 2 log n

2 �
� � t .

Here, � > 1 is a tunable parameter. Similar to the
algorithm in Section 5.1, the reconstruction at t-th
iteration would be Û ( t ) =

P t
� =1 V ( � ) . We note that

the encoder still communicates a sparse vectorV ( t )

with two nonzero entries by sendingmt = ( i; j ). We
give the pseudocode for SuRP in Appendix E.
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This coding scheme is equivalent to the original scheme
in Section 5.1, where � t

� t +1
=

n � 2 log n
2 �

n for 1 � t � L � 1
except the fact that the encoder does not do a search
over a randomly generated codebook with exponential
size, i.e., SuRP is practical. However, there is still
an implicit codebookC( t ) at every iteration t, which
consists ofn-dimensional all-zero vectors except for
two nonzero elements of values� 1

� t � 1
log n

2� . The size
of this codebook is n(n � 1) (not exponential any-
more). Since theseimplicit codebooks are not directly
generated from the optimal marginal distribution in
Lemma 1, it is not obvious that SuRP is rate-distortion
theoretic optimal. However, we prove the optimality
under some criteria in Section 5.3.

We highlight that our scheme follows a bottom-up ap-
proach, in that sparsity in the reconstructed weights
starts from 100%at the �rst iteration and it decreases
as the decoder receives new indices from the encoder
(see Figure 3(a)). This is similar to the progres-
sive/hierarchical image compression techniques (Lewis
and Knowles, 1992; Rabbani, 2002). Similarly, from
Figure 3(b), accuracy increases through the iterations.

As a practical issue, when there is no indexi or j such
that U ( t )

i � 1
� t � 1

log n
2� or U ( t )

j � � 1
� t � 1

log n
2� , the

encoder re-estimates� and sends a refreshed value to
the decoder. Obviously, these refreshments must be
avoided to preserve optimality. We have seen in our
experiments that this is a rare situation (20 refresh-
ments in 20M iterations) and hence has a negligible
e�ect on the overall optimality. In fact, we control the
probability of this undesired situation (when there is
need for refreshment) with the tunable parameter� .
More precisely, the probability that all Laplacian ran-
dom variables are smaller than 1

� log n
2� in magnitude

(i.e., no index i or j found) is

P
�
maxX i <

1
�

log
n
2�

or min X i > �
1
�

log
n
2�

�

� P
�
maxX i <

1
�

log
n
2�

�
+ P

�
min X i > �

1
�

log
n
2�

�

= 2
�

1 �
1
2

2�
n

� n

� 2e� � :

(8)

We set � = logn to bound this probability by 2
n , which

converges to0 as n increases. We discuss the choice of
� in more detail with empirical results in Appendix E.1.

Remark 1. From the extreme value theory, the maxi-
mum of n Laplacian random variables concentrates near
1
� log n

2 , which is the case of� = 1 . Thus, one iteration
of SuRP can be viewed as �nding a near-maximum (and
minimum) element. From this perspective, magnitude
pruning can be viewed as a special case of SuRP.

(a) Sparsity. (b) Accuracy.

Figure 3: Sparsity and accuracy of the reconstructed
ResNet-50 on ImageNet during one cycle of SuRP. It-
erations correspond to iterations running inside SuRP.

Remark 2. SuRP guaranteeskU ( t ) k1 � k V ( t ) k1 for
all t. This implies that the magnitude of weights in
w is always larger than the magnitude of weights in
ŵ . From Theorem 1, we can say that the`1 weight
distortion of SuRP algorithm is an upper bound to the
NN model's output perturbation.

5.3 Zero-Rate Optimality of SuRP

In this section, we prove that SuRP is a zero-rate
optimal compression algorithm. Given that SuRP uses
an implicit codebook of sizen(n � 1) at each iteration,
the rate is found asRn = log n (n � 1)

n . We note that Rn

gets arbitrarily close to zero asn increases. Moreover,
the decrement in the distortion at each iteration is
given as Dn = 2

n� log n
2� n

, where � n = � as before.
We start with the de�nition of zero-rate optimality,
which states that a sub-linear number of bits (in our
caselogn(n � 1) nats) is being used optimally in the
rate-distortion theoretic sense.

De�nition 1 (Zero-rate optimality) . A scheme with
rate Rn , distortion decrement Dn , and distortion-rate
function D(�), is zero-rate optimal if limn !1 Rn = 0
and limn !1

D n
R n

= D 0(0).

This implies that a zero-rate optimal scheme achieves
the �slope� of the distortion-rate function at zero rate
R = 0 . In the case of Laplacian source, this slope
is D 0(0) = � 1

� since the distortion-rate function is
D(R) = 1

� e� R , which can be derived from the rate-
distortion function in Lemma 1. Finally, the following
theorem states that a single iteration of SuRP is zero-
rate optimal.

Theorem 2. An iteration of SuRP is zero-rate optimal
if limn !1

log 2 � n
log n (n � 1) = 0 holds.

Proof. In an iteration of SuRP, where Rn = log n (n � 1)
n
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Table 1: Accuracy of VGG-16, ResNet-20, and DenseNet-121 on CIFAR-10. Results are averaged over �ve runs.

Pruning Ratio: 93:12% 95:60% 97:19% 98:20% 98:85% 99:53% 99:70% 99:81% 99:88%

VGG-16

Global
Uniform
Adaptive

RiGL
LAMP

SuRP (ours)

91:30
91:47
91:54
92:34
92:24
92.55

90:80
90:78
91:20
91:99
92:06
92:13

89:28
88:61
90:16
91:66
91:71

91:95

85:55
84:17
89:44
91:15
91:66

91:72

81:56
55:68
87:85
90:55
91:07
91:21

41:91
26:41
84:84
88:21
89:64

90:65

31:93
16:75
82:41
86:73
88:75
89:70

21:87
11:58
74:54
84:85
87:07
87:28

11:72
9:95
24:46
81:50
84:90
85:04

Pruning Ratio: 79:03% 86:58% 91:41% 94:50% 96:48% 97:75% 98:56% 99:41% 99:62%

ResNet-20

Global
Uniform
Adaptive

RiGL
LAMP

SuRP (ours)

87:48
87:24
87:30
87:63
87:54

91:37

86:97
86:70
87:00
87:49
87:12
90:44

86:29
86:09
86:27
86:83
86:56

89:00

85:02
84:53
85:00
85:84
85:64
88:87

83:15
82:05
83:23
84:08
84:18

87:05

80:52
77:19
80:40
81:76
81:56

83:98

76:28
64:24
76:40
78:70
78:63

79:00

47:47
20:45
52:06
66:42
67:01
70:64

12:02
13:35
20:19
50:90
51:24
54:22

Pruning Ratio: 94:50% 95:60% 96:48% 97:18% 97:75% 98:20% 98:56% 99:08% 99:26%

DenseNet-121

Global
Uniform
Adaptive

RiGL
LAMP

SuRP (ours)

90:16
90:24
90:25
90:21
90:89

91:42

89:52
89:50
89:70
89:79
90:11
90:75

88:83
88:44
89:03
88:92
89:72

90:30

88:00
87:94
88:22
88:20
89:12
89:62

86:85
86:83
87:40
87:25
88:39

88:77

85:32
85:00
86:26
86:22
87:75

88:06

77:68
82:16
84:55
84:11
86:53

86:71

49:65
66:46
69:25
59:06
82:92
83:18

20:96
48:71
58:91
59:07
79:23
79:45

Pruning Ratio: 59:00% 73:80% 83:20% 89:30% 93:13% 95:60% 97:18% 98:20% 99:26%

E�cientNet-B0

Global
Uniform
Adaptive

RiGL
LAMP

SuRP (ours)

89:66
88:99
89:18
89:54
89:52

90:96

89:55
88:26
88:03
90:09
89:95
90:94

88:80
86:48
86:71
90:01
89:97

90:89

87:64
83:40
84:16
89:62
90:21
90:75

84:36
23:65
36:64
88:82
89:91

90:31

79:25
10:83
10:45
87:08
89:79

90:08

11:09
10:00
10:00
84:72
89:30

89:88

10:62
10:00
10:19
81:53
88:51

89:02

10:00
10:00
10:00
13:40
65:76
70:76

and

Dn

Rn
= �

2
� log n

2� n

logn(n � 1)

= �
1
�

logn2

logn(n � 1)
+

1
�

2 log 2� n

logn(n � 1)
:

If limn !1
log 2 � n

log n (n � 1) = 0 , it is clear that D n
R n

converges

to D 0(0) = � 1
� as n increases. Therefore, SuRP is

zero-rate optimal under the condition that limn !1
log 2 � n

log n (n � 1) = 0 .

In Section 5.2, we choose� n = logn to keep the prob-
ability in Eq. 8 small. With this choice of � n , limn !1

log 2 � n
log n (n � 1) = 0 holds. Therefore, from Theorem 2, our
implementation of SuRP is indeed zero-rate optimal.

Remark 3. In pure information-theoretic compression
setting (main concern is not NN compression), similar
zero-rate optimal schemes were proposed for Gaussian
source under mean squared error (Venkataramanan
et al., 2014; No and Weissman, 2016).

6 Experiments

In this section, we empirically investigate the perfor-
mance of SuRP compared to recent pruning strategies
in terms of accuracy-sparsity tradeo�. We emphasize
that the main contribution of our paper is to provide an
information-theoretic justi�cation for pruning. SuRP
is designed solely to show that an algorithm derived
with an information-theoretic approach indeed outputs
a pruned model, as suggested by our �ndings. This
also provides theoretical support for the recent success
of pruning strategies.

For our NN compression experiments, we consider two
image datasets: CIFAR-10 (Krizhevsky et al., 2009)
and ImageNet (Deng et al., 2009). For CIFAR-10, we
use four architectures: VGG-16 (Simonyan and Zisser-
man, 2014), ResNet-20 (He et al., 2016), DenseNet-121
(Iandola et al., 2014), and E�cientNet-B0 (Tan and
Le, 2019). For ImageNet, we use ResNet-50 (He et al.,
2016; Paszke et al., 2019). We give additional details
on model architectures and hyperparameters in Ap-
pendix J. We present experimental results averaged
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over 3-5 runs (see Appendix K for complete results).

NN Compression/Pruning: In Tables 1 and 2, we
compare our scheme with the recent pruning papers.
We apply iterative pruning, meaning that we apply
SuRP in repeating cycles (see Appendix K for details).
As baselines, we consider Global (Morcos et al., 2019),
Uniform (Zhu and Gupta, 2017), and Adaptive (Gale
et al., 2019) pruning techniques and LAMP (Lee et al.,
2021). Additionally, we include comparisons to recent
works on weight rewinding and dynamic sparsity, in
particular SNIP (Lee et al., 2018), DSR (Mostafa and
Wang, 2019), SNFS (Dettmers and Zettlemoyer, 2019),
and RiGL (Evci et al., 2020).

We present the performance of pruned VGG-16, ResNet-
20, and DenseNet-121 architectures on CIFAR-10 in
Table 1 and ResNet-50 on ImageNet in Table 2 . As can
be seen from Table 1, SuRP outperforms prior work in
all sparsity levels. From Table 2, SuRP and Adaptive
pruning perform similarly (with � 0:06% di�erence),
and they both outperform other baselines.

Table 2: Accuracy of ResNet-50 on ImageNet (3 runs).

Pruning Ratio: 80% 90%

Adaptive 75:60 73:90
SNIP 72:00 67:20
DSR 73:30 71:60
SNFS 74:90 72:90
RiGL 74:60 72:00
LAMP 74:96 73:22
SuRP (ours) 75:54 73:95

We provide a comparison for lower pruning ratios in
Appendix K.

7 Discussion and Conclusion

In this work, we connected two lines of research, namely,
data compression and NN compression. We investi-
gated the theoretical tradeo� between the compression
ratio and output perturbation of NN models, and found
out that the rate-distortion theoretic formulation intro-
duces a theoretical foundation for pruning. Guided by
this, we developed a NN compression algorithm that
outputs a pruned model and outperforms prior work.

We note that our algorithm SuRP has an additional
advantage in optimizing the bitrate of the model thanks
to the rate-distortion theoretic basis of our approach.
In particular, the decoder has only access to a list of
indices, and these indices represent the whole (com-
pressed) model � more e�ciently than describing the
precise values of surviving weights. However, our cur-
rent implementation does not exploit this e�ciency

to the full extent due to retraining steps after each
pruning iteration. Like many, we will also look for
ways to prune NN models without a retraining step
afterward. That way, SuRP can be improved to provide
a better accuracy-bitrate tradeo�, together with the
already demonstrated sparsity-accuracy gain. We give
more details on this and share experimental results in
Appendices H and K. Finally, to give an idea about the
bitrate e�ciency of SuRP, we apply it for compressing
gradients in a federated learning setting. Since the com-
pressed gradients are not exposed to �ne-tuning (like
retraining in pruning), SuRP provides a substantial
improvement on the bitrate compared to prior work.
We elaborate more on this in the next paragraph.

Compression for Federated Learning (FL): FL
is a distributed training setting where edge devices
are responsible for doing local training and sending
local gradients to a central server (Kairouz et al., 2019).
Given the resource limitations of edge devices, gradient
communication is a signi�cant bottleneck in FL, and
gradient compression is crucial (Kone£ný et al., 2016).
We show in Appendix I that Laplacian distribution
is a good �t for NN gradients. Therefore, SuRP is
applicable to this problem as well. Our preliminary ex-
periments with LeNet-5-Ca�e on MNIST (LeCun et al.,
2010) compare SuRP with DGC (Lin et al., 2017) and
rTop-k (Barnes et al., 2020). We compute the com-
munication budget for prior work by assuming a naive
encoding with k(logn + 32) bits (n is the model size)
since no other method is provided. With the same spar-
sity ratio 99:9%, DGC achieves98:5% accuracy with
2:05KB of budget, rTop-k achieves99:1% accuracy
with 2:05KB of budget, and SuRP achieves99:1%
accuracy with 218B of budget. Thus, SuRP provides
10� times improvement in the gradients' compression
rate while achieving the same accuracy as rTop-k.

Limitations and Broader Impact: When we eval-
uated our strategy, we only considered accuracy as a
metric. However, compression might have an impact on
other properties of the model as well, such as fairness,
as pointed out by Hooker et al. (2020). We agree that
this issue deserves more attention from the community.

The codebase for this work is open-sourced athttps:
//github.com/BerivanIsik/SuRP .
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Supplementary Material:
An Information-Theoretic Justi�cation for Model Pruning

A Proof of Theorem 1

In this section, we provide the proof of Theorem 1. The fully connectedd-layer NN model with 1-Lipschitz
activations � (�) is given by

f (x ; w) = w (d) � (w (d� 1) � (� � � w (2) � (w (1) x))) :

We let w (1: i ) = f w (1) ; : : : ; w ( i ) g for 1 � i � d where w (1: d) = w. Furthermore, we de�ne the �rst i layer of the
network by

f (x ; w (1: i ) ) = w ( i ) � (w ( i � 1) � (� � � w (2) � (w (1) x))) :

Then, the output perturbation is bounded by

kf (x ; w (1: d) ) � f (x ; ŵ (1: d) )k1

= kw (d) � (f (x ; w (1: d� 1) )) � ŵ (d) � (f (x ; ŵ (1: d� 1) ))k1

�k w (d) � (f (x ; w (1: d� 1) )) � ŵ (d) � (f (x ; w (1: d� 1) ))k1

+ kŵ (d) � (f (x ; w (1: d� 1) )) � ŵ (d) � (f (x ; ŵ (1: d� 1) ))k1 (9)

�k w (d) � ŵ (d) k1 � k� (f (x ; w (1: d� 1) ))k1 + kŵ (d) k1 � k� (f (x ; w (1: d� 1) )) � � (f (x ; ŵ (1: d� 1) ))k1 (10)

�k w (d) � ŵ (d) k1 � kf (x ; w (1: d� 1) )k1 + kŵ (d) k1 � kf (x ; w (1: d� 1) ) � f (x ; ŵ (1: d� 1) )k1 (11)

�k w (d) � ŵ (d) k1 �
d� 1Y

l =1

kw ( l ) k1 � kxk1 + kŵ (d) k1 � kf (x ; w (1: d� 1) ) � f (x ; ŵ (1: d� 1) )k1 (12)

�k w (d) � ŵ (d) k1 �
d� 1Y

l =1

kw ( l ) k1 + kŵ (d) k1 � kf (x ; w (1: d� 1) ) � f (x ; ŵ (1: d� 1) )k1 (13)

�k w (d) � ŵ (d) k1 �
d� 1Y

l =1

kw ( l ) k1 + kw (d) k1 � kf (x ; w (1: d� 1) ) � f (x ; ŵ (1: d� 1) )k1 (14)

where Eq. 9 is due to triangle inequality, and Eq. 10 holds from the property of̀ 1-norm (and induced norm).
Eq. 11 is from 1-Lipshitzness of activation� (�), i.e., k� (x)k1 � k xk1. Eq. 12 holds from the following lemma.

Lemma 2. For all 1 � i � d, we havekf (x ; w (1: i ) )k1 �
Q i

j =1 kw ( j ) k1 � kxk1.

Proof. From the property of `1-norm, we have

kf (x ; w (1: i ) )k1 �k w ( i ) k1 � k� (f (x ; w (1: i � 1) ))k1 (15)

�k w ( i ) k1 � kf (x ; w (1: i � 1) )k1 (16)

where the last inequality is due to 1-Lipshitzness of� . Then, we can keep applying the same inequality, which
concludes the proof.

Eq. 13 follows by the constraint kxk1 � 1 in Theorem 1. Finally Eq. 14 is from the assumptionkŵ ( l ) k1 � k w ( l ) k1

for all 1 � l � d.
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Thus, we have

 
dY

l =1

1
kw ( l ) k1

!

kf (x ; w (1: d) ) � f (x ; ŵ (1: d) )k1

�
kw (d) � ŵ (d) k1

kw (d) k1
+

 
d� 1Y

l =1

1
kw ( l ) k1

!

kf (x ; w (1: d� 1) ) � f (x ; ŵ (1: d� 1) )k1: (17)

We can repeat the same procedure, and get

 
dY

l =1

1
kw ( l ) k1

!

kf (x ; w (1: d) ) � f (x ; ŵ (1: d) )k1 �
dX

l =1

kw ( l ) � ŵ ( l ) k1

kw ( l ) k1
: (18)

This completes the proof.

B Modi�ed Theorem 1

In this section, we provide a symmetric version of Theorem 1, which essentially implies the same upper bound on
the output perturbation without requiring the additional condition of kwk1 � k ŵk1.

Theorem 3. Supposef (�; w) is a fully-connected NN model withd layers and 1-Lipschitz activations� (�) such
that � (0) = 0 , e.g., ReLU. Let ŵ be the reconstructed weights (after compression) where all layers are subject to
compression. Then, we have the following bound on the output perturbation:

sup
kx k1 � 1

kf (x ; w) � f (x ; ŵ )k1 �

 
dX

l =1

kw ( l ) � ŵ ( l ) k1

maxfk ŵ ( l ) k1; kw ( l ) k1g

!  
dY

k=1

maxfk ŵ (k ) k1; kw (k ) k1g

!

: (19)

By rearranging the terms in Eq. 19, we get the following relation:

sup
kx k1 � 1

kf (x ; w) � f (x ; ŵ )k1
Q d

k=1 maxfk ŵ (k ) k1; kw (k ) k1g
�

 
dX

l =1

kw ( l ) � ŵ ( l ) k1

maxfk ŵ ( l ) k1; kw ( l ) k1g

!

; (20)

which implies that the normalized output perturbation is bounded by the normalized weight di�erences. With
the additional condition of kwk1 � k ŵk1, we can simply recover Theorem 1 from Theorem 3.

sup
kx k1 � 1

kf (x ; w) � f (x ; ŵ )k1
Q d

k=1 maxfk ŵ (k ) k1; kw (k ) k1g
�

 
dX

l =1

kw ( l ) � ŵ ( l ) k1

maxfk ŵ ( l ) k1; kw ( l ) k1g

!

(21)

�
dX

l =1

kw ( l ) � ŵ ( l ) k1

kw ( l ) k1
; (22)

which is compatible with the rest of our results. The proof of Theorem 3 is almost identical to the proof of
Theorem 1.

Proof of Theorem 3. Since Eq. 13 still holds without the additional condition kwk1 � k ŵk1,

kf (x ; w (1: d) ) � f (x ; ŵ (1: d) )k1

�k w (d) � ŵ (d) k1 �
d� 1Y

l =1

kw ( l ) k1 + kŵ (d) k1 � kf (x ; w (1: d� 1) ) � f (x ; ŵ (1: d� 1) )k1 (23)

�k w (d) � ŵ (d) k1 �
d� 1Y

l =1

maxfk w ( l ) k1; kŵ ( l ) k1g + max fk w (d) k1; kŵ (d) k1g � kf (x ; w (1: d� 1) ) � f (x ; ŵ (1: d� 1) )k1;

(24)
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which implies

kf (x ; w (1: d) ) � f (x ; ŵ (1: d) )k1
Q d

l =1 maxfk w ( l ) k1; kŵ ( l ) k1g

�
kw (d) � ŵ (d) k1

maxfk w (d) k1; kŵ (d) k1g
+

kf (x ; w (1: d� 1) ) � f (x ; ŵ (1: d� 1) )k1
Q d� 1

l =1 maxfk w ( l ) k1; kŵ ( l ) k1g
: (25)

Similar to the proof of Theorem 1, we can recursively apply the above inequality to obtain Eq. 20.

C Density Estimation for Neural Network Parameters without Normalization

Figure 4: Weight Density of ResNet-18 (trained on CIFAR-10) before normalization.

In Section 4, we have justi�ed our assumption of Laplacian distribution over normalized NN weights through
density plots for three distinct architectures. We have also emphasized that Laplacian would be a good �t for
unnormalized NN weights as well. We give the density plots of unnormalized weights of ResNet-18 in Figure 4 to
justify our claim empirically. This claim implies that SuRP can also be applied to NNs without normalization and
it would achieve rate-distortion theoretic optimal performance for reconstructing the NN weights back. However,
recall from Theorem 1 that `1 distortion of normalized weights upper bounds the output perturbation. Since we
care more about maintaining the outputs rather than the weights themselves, we have applied SuRP after the
normalization.

We have additionally observed that weights of layers closer to the input tend to follow a Gaussian-like distribution.
In contrast, the weights of layers closer to the output behave like Laplacian random variables. Since the last
layers have larger number of parameters in the architectures used in this work, we see a Laplacian distribution
over the weights globally. Therefore, di�erent pruning strategies might be necessary for layers with Gaussian and
Laplacian behaviour for a layer by layer pruning approach.

D Proof of Lemma 1

In this section, we brie�y describe the proof outline of Lemma 1 in Section 4, which is provided in (Berger, 2003).
Consider the Laplacian sourceU � PU with parameter � , and the target distortion D satis�es 0 � D � 1=� .
Then,

R(D) = min
E[d(U;Û )] � D

I (U; Û)

= inf
E[jU � Û j ]� D

I (U; Û):
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Let Q be another conditional distribution where QU jÛ (ujû) = 1
D e�j u � û j=D . Then,

I (U; Û) = DKL (PU jÛ kPU jPÛ )

= DKL (PU jÛ kQU jÛ jPÛ ) + EPU; Û

"

log
QU jÛ (UjÛ)

PU (U)

#

� EPU; Û

"

log
QU jÛ (UjÛ)

PU (U)

#

(26)

= � log(�D ) �
1
D

E[jU � Ûj] + � E[jUj]

� � log(�D ) (27)

where Eq. 26 is due to nonnegativity of KL divergence, and Eq. 27 is becauseE[jUj] = 1
� and E[jU � Ûj] � D .

This implies that R(D) � � log(�D ). We note that we followed a technique inspired by Verdu's proof for
rate-distortion function of exponential source (Verdu, 1996). The same lower bound can also be achieved via
Shannon lower bound (SLB) (Shannon, 1959).

On the other hand, we need to show that the lower boundR(D) � � log(�D ) is indeed tight. Let V be a mixture
of point measure and Laplacian random variable, where the probability density function is given by

PV (v) = � 2D 2 � � (v) + (1 � � 2D 2) �
�
2

e� � j v j :

We further let N be a Laplacian random variable with parameter1=D, where V and N are independent. Then,
the Laplace transform of PV and PN are given by

E[e� sV ] = � 2D 2 + (1 � � 2D 2)
� 2

� 2 + s2

E[e� sN ] =
1=D2

1=D2 + s2 :

Consider the sum of two random variablesV + N . Since they are independent, Laplace transform of the density
of V + N is a product of the above two terms.

E[e� s(V + N ) ] = E[e� sV ] � E[e� sN ]

=
� 2

� 2 + s2 :

Since it coincides with the Laplace transform ofPU , we conclude that U
(d)
= V + N . Thus, by letting U = V + N ,

we obtain the conditional distribution QU jV (ujv) = 1
D e�j u � v j=D . It is clear that QU jV satis�es the equality

conditions in Eq. 26 and Eq. 27, and therefore it achieves the lower boundI (U; Û) = � log(�D ) with Û = V .

To sum, the optimal rate-distortion tradeo� is R(D) = � log(�D ) and it can be achieved with a reconstruction
that follows

PV (v) = � 2D 2 � � (v) + (1 � � 2D 2) �
�
2

e� � j v j : (28)

E Algorithms

We give the algorithm described in Section 5 in Algorithm 1. For the experiments in Section 6, we slightly
modi�ed Algorithm 1 and used Algorithm 2.

As mentioned in Section 6, these two algorithms are equivalent except the fact that Algorithm 2 applies the
same compression scheme after taking the absolute value of the normalized weights. Furthermore, Algorithm 2
is rate-distortion theoretic optimal too. To see this, it is enough to follow the same steps in Sections 4 and 5
for exponential source instead of Laplacian source since the magnitude of Laplacian source sequence follows an
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Algorithm 1 SuRP
Hyperparameters: �
Inputs: weights w1; : : : ; wn in d layers
Output: reconstructed weightswrecon

1 ; : : : ; wrecon
n

Normalization:
for l = 1 ; : : : ; d do

u( l )  w ( l )

kw ( l ) k1

end for

(urecon
1 ; : : : ; urecon

n )  0
�  ParamEst((u1; : : : ; un ))
Encodersends� to the Decoder.
for t = 1 ; : : : ; L do

Encoder:
mmax  (indices of the components in(u1; : : : ; un ) that are larger than 1

� � log n
2� .)

mmin  (indices of the components in(u1; : : : ; un ) that are smaller than � 1
� � log n

2� .)
if mmax or mmin is empty then

�  ParamEst((u1; : : : ; un ))
sends� to the Decoder.

end if
m1  (a random index from mmax )
m� 1  (a random index from mmin )
sendsm1 and m� 1 to the Decoder.
um 1 = um 1 � 1

� � log n
2�

um � 1 = um � 1 + 1
� � log n

2�
�  n

n � 2 log n
2 �

� �

Decoder:
receivesm1 and m� 1 from the Encoder.
urecon

m 1
= urecon

m 1
+ 1

� � log n
2�

urecon
m � 1

= urecon
m � 1

� 1
� � log n

2�
�  n

n � 2 log n
2 �

� �

end for
wrecon

1 ; : : : ; wrecon
n  (denormalize urecon

1 ; : : : ; urecon
n .)

ParamEst((u1; : : : ; un )) :
1=�  mean of (ju1j; : : : ; jun j)
return �

exponential distribution. We now give the rate-distortion function for exponential source (magnitude of normalized
weights). We consider i.i.d. exponential source sequenceu1; : : : ; un with distribution f exp (u; � ) = �e � �u for u � 0,
reconstruction v1; : : : ; vn , and one-sided`1 distortion given by:

d(u; v) =

(
u � v; if u � v
1 ; otherwise.

Then, the rate-distortion function is given in Lemma 3:

Lemma 3. (Verdu, 1996) The rate-distortion function for an exponential source with one-sided distortion is
given by

R(D) =

(
� log(�D ); 0 � D � 1

�

0; D > 1
�

(29)
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Algorithm 2 SuRP-modi�ed
Hyperparameters: �
Inputs: weights w1; : : : ; wn in d layers
Output: reconstructed weightswrecon

1 ; : : : ; wrecon
n

Normalization:
for l = 1 ; : : : ; d do

u( l )  jw ( l ) j

kw ( l ) k1

end for

(urecon
1 ; : : : ; urecon

n )  0
�  ParamEst((u1; : : : ; un ))
Encodersends� to the Decoder.
for t = 1 ; : : : ; L do

Encoder:
minds  (indices of the components in(u1; : : : ; un ) that are larger than 1

� � log n
� .)

if minds is empty then
�  ParamEst((u1; : : : ; un ))
sends� to the Decoder.

end if
m  (a random index from minds )
sendsm to the Decoder.
um = um � 1

� � log n
�

�  n
n � log n

�
� �

Decoder:
receivesm from the Encoder.
urecon

m = urecon
m + 1

� � log n
�

�  n
n � log n

�
� �

end for
wrecon

1 ; : : : ; wrecon
n  (denormalize urecon

1 ; : : : ; urecon
n and add sign bits.)

ParamEst((u1; : : : ; un )) :
1=�  mean of (u1; : : : ; un )
return �

with the following optimal conditional probability distribution that achieves the minimum mutual information

f U jV (ujv) =

(
1
D e� (u � v)=D ; u � v � 0
0; otherwise:

(30)

Moreover, the marginal distribution of V is as follows

f V (v) = �D � � (v) + (1 � �D ) � �e � �v (31)

where � (v) is a Dirac measure at 0.

Proof of Lemma 3 can be found in (Verdu, 1996). It is clear to see from Eq.s 30 and 31 that exponential source
has the same nice properties as Laplacian:

1. It suggests pruning as an essential step in a good compression algorithm since Eq. 31 is a sparse distribution.

2. It is successively re�nable, allowing for a both practical and rate-distortion theoretic optimal algorithm (see
Algorithm 2).

Following the same steps in Section 5, it can be proven that Algorithm 2, which we used in our experiments, is
zero-rate optimal with � = log n.
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E.1 E�ect of �

Table 3 shows the e�ect of the hyperparameter� on the model accuracy, the number of SuRP iterations needed
to achieve the desired sparsity, and the number of required refreshment for the Laplacian parameter� . We
perform one-shot pruning experiments without retraining, i.e., apply SuRP once, with di�erent � values as shown
in the table. We can consider the accuracy as a measure of distortion; and 'the number of iterations' and 'the
number of parameter refreshments' as a measure of rate. More concretely, we �rst �x a target sparsity for all the
experiments. If the number of iterations to achieve this sparsity is large, then the compression amount is small
since higher number of indices represents the same model. During one running of SuRP, there might be a need
for re-estimating the parameter � of the underlying Laplacian distribution, as we stated in Section 5.2. This is an
undesirable situation since this requires the encoder to send the re-estimated parameter� to the decoder; we call
this a "refreshment". The numbers in this table verify our theoretical analysis that as � increases, the number
of refreshments becomes negligible compared to the total number of iterations (see Eq. 8). However, for very
large � such as� = ( logn)2, zero-rate optimality is not as strong as� = logn (see Theorem 2). This can also be
seen from the table since the number of iterations needed is signi�cantly larger for� = ( logn)2, indicating that
the bit-rate is large and we do not compress the model much. Since the accuracy is similar across di�erent�
values, we can conclude thatc � logn is indeed a reasonable choice for� as it balances the two factors (number of
iterations and number of refreshments) that contribute to the rate.

Table 3: E�ect of the choice of � on the model accuracy, the number of SuRP iterations needed to achieve the
desired sparsity, and the number of required refreshment for the Laplacian parameter� . The experiments are run
with VGG-16 model on CIFAR-10 dataset. The sparsity is 95% in all cases. Note that these experiments do not
involve multiple pruning steps or retraining, that is why the accuracy is slightly smaller than the numbers in
Table 1.

� :
p

logn 1=2 � logn logn 2 � logn (log n)2

Accuracy 89:2% 90:02% 90:02% 90:00% 90:00%
Required Number of Iterations 1:1M 1:2M 1:2M 1:3M 20M
Number of Parameter Refreshment 20K 500 22 20 10

F Visualization of SuRP

Figure 5 shows the decreasing̀1 distortion and sparsity, and increasing accuracy of the reconstructed model
through the iterations (running inside SuRP). We note that SuRP is applied only once in Figure 5 and iterations
correspond to the iterations running inside SuRP. However, as stated in Section 6, we adopted iterative pruning
approach, where each pruning iteration corresponds to running SuRP one time. After each pruning iteration,
SuRP outputs a sparse model, and a retraining procedure is applied to the sparse model. When we do iterative
pruning, we apply SuRP several times by increasing the target sparsity ratio every time. For instance, let us say
we want to prune 90% of the parameters in the �rst pruning iteration. Then, as shown in Figure 6, SuRP stops
once the sparsity ratio drops to 90%. Before starting the next iteration (next round of SuRP), we retrain the
sparse model by excluding the pruned parameters (as proposed in (Han et al., 2016)). In the next iteration, as
shown in Figure 7, the sparsity can never be lower than90% no matter how long we run the algorithm since90%
of the parameters are already pruned in the previous iteration of the pruning. As we typically desire a higher
sparsity ratio in the later iterations, we need to stop SuRP at the target sparsity (which is higher than 90%).

G Proof of Theorem 2

In this section, we provide the proof of Theorem 2. In an iteration of SuRP, whereRn = log n (n � 1)
n and

Dn = 2
n� log n

2� n
, we have

Dn

Rn
= �

2
� log n

2� n

logn(n � 1)

= �
1
�

logn2

logn(n � 1)
+

1
�

2 log 2� n

logn(n � 1)
:
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