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Abstract

We study off-policy evaluation and learning
from sequential data in a structured class
of Markov decision processes that arise from
repeated interactions with an exogenous se-
quence of arrivals with contexts, which gen-
erate unknown individual-level responses to
agent actions that induce known transitions.
This is a relevant model, for example, for dy-
namic personalized pricing and other opera-
tions management problems in the presence
of potentially high-dimensional user types.
The individual-level response is not causally
affected by the state variable. In this set-
ting, we adapt doubly-robust estimation in
the single-timestep setting to the sequen-
tial setting so that a state-dependent policy
can be learned even from a single timestep’s
worth of data. We introduce a marginal
MDP model and study an algorithm for off-
policy learning, which can be viewed as fit-
ted value iteration in the marginal MDP. We
also provide structural results on when er-
rors in the response model leads to the persis-
tence, rather than attenuation, of error over
time. In simulations, we show that the ad-
vantages of doubly-robust estimation in the
single time-step setting, via unbiased and
lower-variance estimation, can directly trans-
late to improved out-of-sample policy perfor-
mance. This structure-specific analysis sheds
light on the underlying structure on a class of
problems, operations research/management
problems, often heralded as a real-world do-
main for offline RL, which are in fact quali-
tatively easier.
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1 Introduction

Offline reinforcement learning seeks to reuse existing
data to evaluate and learn novel policies and is cru-
cial in applications with limited freedom to experi-
ment but plentiful logged data. In general Markov de-
cision processes (MDPs), offline reinforcement learn-
ing can be very difficult, as we must understand
the effect of actions in each state and time, whether
in model-based (e.g., learn the transition kernel) or
model-free methods (e.g., learn Q-functions). How-
ever, many practically-relevant problems fit in sim-
pler, more tractable classes of MDPs with “sequen-
tial decision-making" but not “longitudinal data", for
example because transitions arise in a stochastic sys-
tem from exogenous arrivals. In this paper, we study
off-policy evaluation and optimization from observa-
tional data in this special class. At each timestep the
same contextual response model generates both tran-
sitions and rewards. The setting is a variant of offline
contextual bandits with constraints, where the same
randomness generates transitions in the system state
(status of the constraints) and rewards in the system.
We call this setting, common in operations manage-
ment, “stateful" to emphasize the well-understood and
simple system state, like inventory state, in contrast
to the unknown potentially high-dimensional “contex-
tual" response model, like an individual’s propensity
to purchase, that must be learned.

We first describe some stylized examples to illustrate
how previously studied classical problems in fact share
this broader structure: consider personalized dynamic
pricing with inventory constraints, or managing a
rideshare system and repositioning vehicles by making
price offers to individuals. The system state includes
capacities of each resource, or locations of cars in the
system. Individuals with contexts (covariates) arrive
exogenously. The system takes actions, such as person-
alized price or trip offers. Given a context and action,
the individual response changes system dynamics: the
purchase of a product consumes resources, or accept-
ing a price offer and ride from one location to another
moves cars. But given that we can offer the resource
at all, the state of the system does not further affect
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the response except by affecting our pricing decisions.

We focus on the evaluation and optimization of state-
dependent policies from offline trajectories collected
from these system dynamics. Confounding is of par-
ticular concern in such observational data. Naturally,
system actions can be spuriously correlated with out-
comes. For example, we expect observational oper-
ational data to bias toward higher-revenue actions:
higher price offers are made to individuals deemed
more likely to accept. However, in our setting, the
underlying system state does not causally affect the
individual response and therefore, unlike individual-
level covariates, the system state is not a confounder,
making it easier to learn the response model from ob-
servational data, and then use it to design sequential
policies. Ultimately we show how this special structure
of problems, common to operations problems arising
from uniformized stochastic systems permits develop-
ing specialized OPE.

The contributions of this paper are as follows. We
model the above structure and study estimation of the
transition probabilities in a lifted marginal MDP via
single timestep off-policy evaluation. Therefore we re-
duce the analysis of a high-dimensional, continuous
state space MDP to the standard tabular analysis of
our marginal MDP, reducing the number of nuisances
from T + 1 for doubly-robust OPE to just two in our
setting. We show !O

"
T 3/! 2

#
trajectories are required for

off-policy optimization to achieve ✏-suboptimal value,
where T is the horizon (omitting logarithmic terms).
We study error amplification for the dynamic and ca-
pacitated pricing example and show that bias from
naive model-based approaches would generally per-
sist in realistic scenarios. We validate the theory and
structural analysis in simulations where we improve on
naive model-based approaches and generic offline RL.

2 Problem setup: Stateful off-policy

evaluation and learning

We first describe the generic full-information MDP
that generates our data before describing the restric-
tions that characterize the stateful setting. For ease
of reference, we partition the state space of the full-
information MDP into a product space of the dis-
crete system state space S, potentially continuous
context/covariate space X , and discrete covariate-
conditional response space Y : S ! X ! Y . The inclu-
sion of Y in the state variable is purely informational.
Consider a finite-horizon setting with T + 1 timesteps,
and denote the initial system state s0; timesteps are
indexed 0, . . . , T . Uppercase (S,X) indicates ran-
dom variables; lowercase (s, x) fixed values; and prime
(s! , x!) next-timestep values. Let A(s, x) denote the

discrete action space feasible from the state (s, x). A
contextual policy ⇡t : S ! X "# ! A maps from sys-
tem state/context to a distribution over actions, where
! A is the set of distributions defined on A , so that
⇡t (a | s, x) = P(A = a | S = s,X = x) gives the prob-
ability of taking action a given state and context infor-
mation. Let ⇡ = {⇡t } t =0 ,...,T denote the MDP policy
in a function class " 0:T . Reward is a known determin-
istic function of next state transition, R(s, a, s! ).

“Stateful contextual" structure. We next spec-
ify the restrictions on this MDP that give rise to our
“stateful” setting. These are illustrated in Figure 1.
Roughly: contexts arrive exogenously and contextual
responses Y come from a stationary conditional distri-
bution P(Y | X,A) and deterministically generate the
system transitions. We henceforth use the shorthand
P (s! , x! , y | s, x, y" 1, a) for the transition model under
this convention, although dependence on y" 1 is purely
artificial/notational and will be omitted in general.

We formalize as assumptions the general structure that
appears commonly in more specialized problem con-
texts elsewhere that describes the “stateful" setting.

Assumption 1 (Exogenous context process). The
transition factorizes as

P (s! , x! , y | s, x, y" 1, a) = P (s! , y | s, x, a)f (x! )

$s, s! , x, x! , y" 1, y, a

Assumption 2 (Contextual-response transitions).
We know s! (s, y) : S ! Y "# S such that when s! is
not absorbing from s we have:

P (s! , y | s, x, a) = �s! " s! (s,y )P (Y = y | x, a)

We can easily extend to random transitions given re-
sponses, but focus on deterministic for concreteness
and as it captures the most relevant application set-
tings. Assumption 1 arises from contextual bandits or
uniformizing (with contexts) a stochastic system Gal-
lego et al. (2019); Meyn and Meyn (2008). Assump-
tion 2 reflects the offline contextual bandit nature of
the problem and encodes that Yt is independent of
the originating state. El Shar and Jiang (2020) lever-
ages a factorization with exogenous information, but
not a contextual response model and notes that the
“system transition function" construction is the norm
in control/operations research Bertsekas and Tsitsiklis
(1996); Powell (2007).

For ease of presentation we introduce { s! , y | s, a} as
the pairs of next states and contextual responses reach-
able from s.

Definition 1 (Reachable state transition-potential
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Figure 1: The “stateful" decision model we consider; rewards are functions of St , At , St +1 .

outcomes).

{ (s! , y) | s} áá=

{ (s! , y) % S ! Y : &x, a s.t. P (s! , y | s, x, a) > 0}

The corresponding full-information MDP is M = ( S !
X !Y ,A , P,R, T ) where P is the full-information tran-
sition kernel. Our observational data comprises of N
trajectories; denote individual observations as S i

t for t
timestep of trajectory i: {S i

t , X
i
t , A

i
t , Y

i
t , R

i
t }

n
0:T .

Without loss of generality we omit the Yt " 1 infor-
mation state from the full-information value/reward
to go V - and state-action value Q-function, since
Vt (s, x, y" 1) = Vt (s, x):

V "
t (s, x) = E"

$% T
t ! = t Rt ! | St = s,Xt = x

&
,

Q"
t (s, x, a) = E

$% T
t ! = t Rt ! | St = s,Xt = x,At = a

&

It is useful to define the context-marginalized value
function ÷V "

t (s) = E[V " (s,X)], the value function at
system state St marginalized over context distribution
Xt , and analogously !Q. Under assumptions 1 and 2
and the notation of defn. 1, the Q-function in the
full-information MDP is:

Q"
t (s, x, a) =

'

(s! ,y ) |s

P(Y = y | x, a)(R(s, a, s! )+ ÷V "
t +1 (s! ))

(1)
Finally, throughout the paper we will assume the be-
havior policy is stationary, and not history-adapted
for a simpler statement of our results.1

Assumption 3 (Stationary behavior policy).
⇡b

t (a | s, x) is stationary: possibly time-varying, but
not history-dependent upon {St ! , Xt ! , At ! , Yt ! } t ! <t .

Specific examples of stateful problems. We dis-
cuss illustrative examples. The first example, single-
item personalized and dynamic pricing with inventory

1We leave finer-grained analysis of dependent data,
where the benefits of pooling data also trade-off against
dependence and mixing rates, for future work; Corollary 2
highlights how this assumption may be removed via stan-
dard arguments.

constraints, is adapted from classical models for net-
work revenue management (Gallego et al. (2019); Gal-
lego and Van Ryzin (1997)).2

Example 1 (Single item personalized and dynamic
pricing). Yt % {0, 1} is purchase/no-purchase, re-
spectively, and At % {0, 1} is whether a discount
of value d is not or is offered. Let p(a) be the
price corresponding to taking action A = a. The
reward is fixed given transition to s! : R(s, a, s! ) =
p(a)I [y = 1] I [s > 0]. For short let R(a) denote price of
product under a, e.g. reward only received if item
is sold, and we can only sell if we have stock so
s! (s, y) = I [s > 0, y = 1]( s ' 1) + I [s > 0, y = 0]s. De-
note the difference of value functions as ! V "

t (s) =
÷V "

t (s ' 1) ' ÷V "
t (s), then the full-information Qt func-

tion is 0 for t = T , P(Y = y | x, a)R(a)I [s > 0] for
t = T ' 1, and for t < T ' 1:

Qt (s, x, a) =

P(Y = y | x, a)(R(a)I [s > 0] + ! V "
t +1 (s)) + ÷V "

t +1 (s).

Next we describe in words other examples that also
fit in the model of Figure 1 but defer their specific
mathematical formulations to the appendix.

Example 2 (Multi-item network revenue manage-
ment (informal) Gallego and Van Ryzin (1997); Gal-
lego et al. (2019)). This extends Example 1 with mul-
tivariate outcomes (contextual demands for different
products). We augment the exogenous context ar-
rival process with product arrival types and product-
conditional context distributions.

Example 3 (Spatial pricing and repositioning (in-
formal, contextual adaptation of El Shar and Jiang
(2020); Bimpikis et al. (2019))). The state space is the
number of cars at each station in a ridesharing system.
We augment the exogenous information process via
uniformized arrivals at a station and origin-destination
requests. The individual contextual response is ride
acceptance/rejection at a price; reward is revenue and
a lost sales cost.

2Instead of assuming arrivals would deterministically
purchase and setting the decision variable to be fare avail-
ability, we consider a stochastic demand response model.
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Structure that satisfies or does not satisfy as-

sumptions. We have discussed classical examples
that instantiate these assumptions. However, more
complex modeling could violate them. Assumption 1
would not be true if customers had full observation
of the system and responded to it, such as in queu-
ing if customers can observe queue length and balk.
Or, for example 3, if customer arrivals are correlated
with system state due to unobserved confounders, such
as weather patterns that lead to higher propensity to
accept a ride and higher customer demand at other
locations. In the context of example 3, Assumption 2
is true if the underlying system state St (cars at other
stations) is not a confounder because it does not affect
an individual’s demand in response to price. However,
if system transitions modeled stochastic travel times
where system state variables (such as congestion) did
causally affect outcomes, Assumption 2 may not hold.

3 Related work

In the main text we only highlight the most closely
related work; see Section C.1 for further discussion.

Off-policy policy learning for offline sequential

decision-making. There has been extensive work
on off-policy evaluation and learning in the sequen-
tial setting. We focus on work that builds on statisti-
cal model-free approaches, including doubly robust off-
policy evaluation in incorporating value-function con-
trol variates Thomas and Brunskill (2016); Jiang and
Li (2016); Zhang et al. (2013), and study of the ef-
ficient influence function Kallus and Uehara (2019a);
Bibaut et al. (2019); Kallus and Uehara (2019b), as
well as MIS or fitted-Q-evaluation Yin et al. (2021);
Duan et al. (2020); Le et al. (2019); Hu et al. (2021).

In general, off-policy evaluation in the sequential
setting either includes rejection sampling on entire
trajectories (even with doubly-robust augmentation)
Thomas and Brunskill (2016), or introduces marginal-
ized density ratios Yin et al. (2021); Kallus and Uehara
(2019a) which in the finite-horizon setting cannot be
optimized in a backwards-recursive fashion or are pol-
icy dependent. The latter prevents direct translation
of improvements in statistical OPE to off-policy policy
optimization except by exhaustive search over the pol-
icy class. Nie et al. (2020) similarly specializes OPE
to a different setting, optimal stopping, which admits
policy-independent nuisance functions. We similarly
develop structure-dependent improvements in depen-
dence on nuisance functions, but for different struc-
ture.

Our estimator, derived via the modeling analysis in the
next section, does not require rejection sampling on en-

tire trajectories. Therefore we show statefulness is in
fact more closely related to single-timestep off-policy
evaluation and learning Dudik et al. (2014); Kita-
gawa and Tetenov (2015); Swaminathan and Joachims
(2015); Wager and Athey (2017). We do not claim nov-
elty relative to the extensively-studied doubly-robust
estimation in sequential OPE Jiang and Li (2016);
Tang et al. (2019): rather we show that specializing
to policy structure allows for retaining statistical im-
provements from double robustness with reduced de-
pendence on nuisance functions (two instead of T +1 ).

Online contextual decision-making with con-

straints and algorithmic analysis under known

distributions. Online contextual decision-

making with constraints. There is an extensive
literature on either contextual or stateful problems
in operations research, including online learning.
Typically contexts are discrete, known types. We
highlight work that studies online learning in con-
strained systems, such as (episodic) inventory/revenue
management, (Huh et al., 2011; Besbes and Zeevi,
2012; Agrawal and Jia, 2019), or contextual decisions
such as covariate-based dynamic pricing Cohen et al.
(2016); Javanmard and Nazerzadeh (2016); Qiang and
Bayati (2016); Shah et al. (2019); Ban and Keskin
(2020); Chen et al. (2021). These approaches are
typically model-based: they require uncontextual
demand distributions (known, or learned online) or
impose parametric restrictions. Contextual bandits
with knapsack (CBwK) does consider both con-
texts and statefulness. Badanidiyuru et al. (2018).3
The closest work is Agrawal et al. (2016), which
uses single-timestep offline policy optimization but
considers the Lagrangian relaxation of the resource
constraints: regret guarantees are on the Lagrangian
and the policy satisfies constraints in expectation
rather than with probability 1.

In contrast to the online setting where completely ran-
domized exploration is possible, we are interested in
characterizing the setting of learning a dynamic pol-
icy from offline off-policy data, without the ability to
set an exploration policy to collect more information.
Relative to CBwK and pricing bandits, we consider a
general MDP embedding and our sample complexity
analysis and algorithm do not require specific struc-
ture of the reward beyond assumptions 1 and 2.

Our approach is particularly beneficial in handling
high-dimensional context variables Xt . Naively ana-
lyzing approximate linear program arising from state

3We discuss CBwK for a full discussion of related work.
But while our framework can readily handle unknown or
multiple behavior policies, we do not consider data directly
collected from a bandit algorithm (i.e. outcome-adapted
data subject to adaptive sequential learning bias).
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aggregation on Xt incurs statistical bias in general due
to discretization. On the other hand, structure-specific
analysis of any such problem, such as network revenue
management or online packing problems, will gener-
ally obtain stronger approximation guarantees for the
online setting although we do not comment on di-
rect translation of online algorithms or approxima-
tion algorithm-type guarantees, e.g. benchmarked to
the fluid relaxations, to the contextual setting. Note
Bray (2019) highlights dependence of recent constant-
regret approximation guarantees on discrete distribu-
tions, while our setting of contextual responses corre-
sponds to the case of continuous valuations. We defer
a comprehensive comparison to future work. Our work
is on offline evaluation in such problem settings, and
can for example allow off-policy evaluation of policies
(when they are not history-adapted) from confounded
observational data.

4 Off-policy evaluation and learning

in the Marginal MDP

Marginal MDP construction. Section 2 described
the generating process of the data. We now marginal-
ize over contexts and (policy-induced) outcomes in a
lifted marginal MDP on a discrete state space and con-
tinuous action space where actions are given by policy
parameters. This MDP is purely a conceptual device
which is used in the analysis. Direct OPE methods
cannot be used in the marginal MDP because observa-
tions in the dataset correspond to variation over differ-
ent actions, but not necessarily different policies that
are actions in the marginal MDP. We develop this con-
struction to justify the use of single-timestep off-policy
evaluation, which we denote as P (Y = y | ⇡):

P (Y = y | ⇡) =
'

a#A

E[⇡e(a | X)P(Y = y | a,X)] (2)

To summarize, the marginal MDP is
(M = ( S, " , ÷P , ÷R, T ), where the action space is
the space of (s-dependent) policy functions of x and
transitions and rewards marginalize over context ar-
rivals. The key modeling insight is that expectations
over individual exogenous arrivals may be estimated
via a distribution of iid arrivals; e.g. estimate eq. (2)
by single-timestep off-policy evaluation.

The marginal MDP state space is the system state
space, S.

The action space is the set of parametrized policies,
A(s) = "( s), where "( s) = {⇡(s, á) % " } is the
set of policy functions given s.

Transitions between s and s! (s, y) occur with proba-
bility P (Y = y | ⇡), (eq. (2))

Reward is ÷R(s,⇡) =
%

a

%
s! ,y |s E[⇡(a | X)I [Y (a) = y]R],

the expected reward induced by context-
conditional policy actions and corresponding
outcomes, where R = R(s, a, s! (s, y)) .

By construction, policy values and optimal policies are
equivalent in the marginal and full-information MDPs
(under a policy class that is a product class in s).
(Note that higher-order moments are not equivalent.)
Proposition 1. Assume the policy class " is a prod-
uct space over s % S, t % [T ]. The marginal MDP
(M = ( S, " , ÷P , ÷R, T ) has the same optimal policy,
and policy value V (s), Q(s), as the full-information
MDP with policy class " and marginal policy values
÷V (s), ÷Q(s) when M = ( S ! X ! Y ,A , P,R, T ).

Example: Marginal value function for single-

item pricing. In the marginal MDP for Example 1,

÷P (s ' 1 | s,⇡) = P (Y = 1 | ⇡)

s! (s, y) = I [s > 0]I [y = 1]( s ' 1)
÷V " t :T

t (s) =
÷R(s,⇡) + ÷V " t +1: T

t +1 (s) + P (Y = y | ⇡)! V " t +1: T
t +1 (s)

Estimation via fitted value evaluation and iter-

ation in the marginal MDP. We define the propen-
sity score and outcome model as follows:

e(a | x) = P (At = a | X = x)

µ(y | a, x) = P (Y = y | A = a,X = x).

The propensity score only controls for X: while we
allow the underlying behavior policy to be state-
dependent, Assumption 2 implies that adjusting for
X is sufficient to estimate the marginalized transi-
tion, eq. (2), because the state does not affect the out-
come. To achieve the orthogonality and rate double-
robustness benefits of the doubly-robust estimator we
next introduce, we use two-fold sample splitting in
trajectories and timesteps. We use cross-time fit-
ting and introduce folds that partition trajectories and
timesteps k(i, t). For K = 2 we consider timesteps in-
terleaved by parity (e.g. odd/even timesteps in the
same fold). We let k(i, t) denote that nuisance öµ" k ( i,t )

is learned from {X ( i )
t ! , Y ( i )

t ! } i #I k ( i ) ,t ! mod 2= t mod 2 , e.g.
from the ' k(i) trajectories and from timesteps of the
same evenness or oddness but is only used for evalua-
tion in the other fold. Interleaving between timesteps
insures downstream policy evaluation errors are inde-
pendent of errors in nuisance evaluation at time t.

We let öP (Y = y | ⇡) denote the empirical estimate: we
verify that the standard doubly robust estimator for
single-timestep offline policy learning, reweighting the
empirical transitions in observational data, estimates
the transition probabilities in the marginal MDP.
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Proposition 2 (Single-time-step doubly robust esti-
mator of transitions in the marginal MDP.). Let

#i
t (y | a) áá=

I[Y i
t = y ]" öµ " k (y |A i

t X i
t )

öe" k
t (A i

t |X i
t )

I [Ai
t = a] + öµ" k (y | a,X i

t )

öP (Y = y | ⇡) áá= ( NT )" 1
T'

t =1

N'

i =1

'

a#A

⇡(a | X i
t )# i

t (y | a).

(3)

öP (Y = y | ⇡) is an unbiased estimator of P (Y = y | ⇡)
if at least one of öµ or öe are unbiased.

Proposition 2 verifies orthogonality, that the estimator
is doubly-robust against misspecification of one of µ
or e. The estimator only adjusts for contexts because
Assumption 2 specifies that the state variable is not
a confounder. Proposition 2 considers the stationary
case; when Xt is time-varying but non-adversarial with
fixed distributions, similar data-pooling is possible by
estimating density ratios.4

Given a generic estimator öP (Y = y | ⇡) for the
marginal transition probability P (Y = y | ⇡), we can
construct a Q-estimate as follows: öP (Y = y | ⇡) can
be the doubly robust estimator as in Proposition 2 or
alternatively the IPW estimator (simply let öµk ( i,t ) = 0
in Proposition 2) or direct method estimator (simply
let öek ( i,t ) = ( in Proposition 2). We use backwards
recursion to evaluate )V " t :T

t (s) using model-based eval-
uation with öP (Y = y | ⇡) in the marginal MDP.

)Q"," t +1: T
t (s,⇡) =
'

(s! ,y ) |s

öP (Y = y | ⇡)
*
R(s, a, s! ) + )V " t +1: T

t +1 (s! )
+
. (4)

Policy Learning. When the policy space is in fact a
product set over the state space (i.e., the policy being
optimized can vary independently for every value of
the state), we study a policy learning proposal in Algo-
rithm 1 which implements backwards-recursive policy
learning (which can be understood as fitted value iter-
ation in the marginal MDP) to determine the optimal
policy vector ⇡.

5 Analysis

Sample complexity. We first provide a generaliza-
tion bound for Algorithm 1 on the out-of-sample regret

4In revenue-management settings, it is common for X t

arrivals to be nonstationary. While online algorithms con-
siders adversarial arrival distributions, relevant arrivals
may also have highly structured nonstationarity, e.g.,
“business-class" arrivals arriving later on. To a limited ex-
tent, adversarial arrivals could also be modeled by robust-
ness, e.g., using the approach of Kallus and Zhou (2020)
over density ratios for each timestep’s subproblem in Al-
gorithm 1.

Algorithm 1 Backwards-Recursive Policy Learning

1: Input: estimate öP (Y = y | ⇡), policy class " 0:T

2: for t = T, . . . , 0 do:
3: for s % Sdo:
4: Estimate off-policy value )Q

", ö" #
t +1: T

t (s,⇡) via
eq. (4)

5: Optimize ö⇡$
t,s % arg max

" # ! t (s)

)Q
", ö" #

t +1: T
t (s,⇡)

and update )V ö" #
t :T (s) ) )Qö" #

t :T
t (s, ö⇡$

t,s )

6: return ö⇡$ = { ö⇡$
t,s : t %[T ], s % S}

÷V ö" #

0 , the true value achieved by the sample-optimal
policy ö⇡$, relative to the best-in-class policy, ÷V " #

0 . We
assume the policy class at a given s, t has restricted
functional complexity in the sense of a finite entropy
integral of the covering numbers Van Der Vaart and
Wellner (1996); Wainwright (2019). In the main text
we use the VC dimension dvc for binary actions; in
the appendix we include corresponding statements for
multi-class notions such as Natarajan dimension Mohri
et al. (2018).
Theorem 1 (Sample complexity and rate double-ro-
bustness ). Suppose ⌫" 1 * e(a | x) * 1 ' ⌫" 1 uni-
formly over a, x, for ⌫ > 0, (overlap) and for some
rates 0 < r1, r2 < 1 and constants C1, C2, we have
uniformly consistent estimation of nuisance estimates

E[(µ(y | a,X) ' öµ(y | a,X)) 2] = op(n" r 1 ),

E[(e(a | X) ' öe(a | X)) 2] = op(n" r 2 )

where r1 + r2 + 1. Then there exists a random variable
 = op((NT )" 1

2 ) so that w.p. + 1 ' �,

÷V " #

0 ' ÷V ö" #

0 *
5⌫Rmax (T 1/ 2 + 1/2T 3/ 2)

,
dvc log( 5T |Y|

# )
,
N

+ .

The  term arises because we decompose the value
difference with an oracle estimator using the true nui-
sance functions µ, e, and obtain a high-probability
bound on the leading order term. The final bound is of
order Op(N " 1

2 T
3
2 ). The proof follows standard tech-

niques, combining single time-step uniform conver-
gence with the performance difference lemma. How-
ever, it is the previous modeling analysis and our de-
rived estimator that permits this reduction.

The main improvement in Theorem 1 is in specializ-
ing to statefulness so only two nuisance functions are
required, rather than T ! | " 0:T | many as would arise
in the case of Q-function nuisances. In appendix sec-
tion C we also discuss improvements in dependence on
concentratability coefficients/sequential overlap.

Finally, we verify the nuisance rates are as achievable
from pooled episodes as they would be from iid data.
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In the main text, ! omits polylogarithmic factors; see
appendix section B.3 for a full statement. This is a
direct corollary of Bojun (2020) and a convergence rate
from mixing data given in (Farahmand and Szepesvári,
2012, Thm. 5); ↵ describes a mild capacity assumption
on the covering numbers of nonparametric nuisance
function classes.
Corollary 2 (Estimation of nuisance functions).
Suppose nuisance function estimator öe(a | x) is
learned from pooled-episode data { (X i

t , A
i
t , Y

i
t )} n

0:T ,
and µ(y | a, x) from { (X i

t , A
i
t )}

n
0:T by regularized least

squares. Assume that A, Y are bounded a.s., and well-
specification of e, µ. Assume there exist C > 0, 0 *
↵ < 1 such that for any ✏, R > 0, the covering num-
bers are bounded, N2(✏,BR , X1:N ) * C(R/✏)2$ . Then
there exists c1, c2 > 0 such that for large enough n, for
any fixed � %(0, 1), with probability + 1 ' �,

E[(e(a | X) ' öe(a | X)) 2] ! n" 1
1+ ! ,

E[(µ(a | X) ' öµ(a | X)) 2] ! n" 1
1+ ! .

Corollary 2 verifies minimax rate-optimality of estima-
tion in this setting Farahmand and Szepesvári (2012);
Yang and Barron (1999), e.g. estimating the nuisance
functions from pooled episodes achieves the minimax
nonparametric rate that prevails in the absence of de-
pendence up to polylogarithmic terms.
Remark 1 (Extension to continuous states). We can
extend to doubly-robust policy evaluation with con-
tinuous transitions by invoking recent advances in es-
timating counterfactual distributions (Kennedy et al.
(2021)) but further work is required for function ap-
proximation for policy learning. See Section C.4.

Structural analysis: error propagation in dy-

namic pricing. We study the possible drawbacks of
naively plugging-in a confounded model (DM) by an-
alyzing the sequential error propagation. We provide
structural conditions for error persistence in the se-
quential setting: error could “persist" if model error
in transitions and value functions continues to impact
downstream learned policies or “attenuate" if these
cancel out in the sequential setting. We specialize to
Example 1: similar results should hold for other set-
tings with less interpretable sufficient conditions. De-
fine the threshold ✓$, true conditional expectation ra-
tio ! µ$, and optimal (threshold) policy ⇡$:

✓$
t (s, ! V ) = R (0)+" V

R (1)+" V , ! µ$(x) = µ(1 |1,x )
µ (1 |0,x ) , (5)

⇡$(1 | s, x) = I [! µ$(x) > ✓$
t ] . (6)

The confounded-optimal policy incurs error from !öµ
or ! V ö" #

. We reparametrize the decision boundary on
!öµ relative to ✓$, ! µ$. Then the biased threshold ö✓$

is related to the true ✓$ by the pointwise error �(a, x):

�(a, x) = öµ(y | a, x) ' µ(y | a, x), (7)
ö✓$ = ✓$

t (s) á(1 + #(0 ,x )/µ (1 |0,x )) ' �(1, x). (8)

When self-evident we omit dependence of ✓$ on argu-
ments that remain fixed for brevity. Error “persists" if
the error at different timesteps, including from value
estimation, persists in the same direction relative to
the optimal policy. We provide a sufficient condition
to conclude the direction of error induced from down-
stream errors in value estimation. In the main text we
state a special case; the appendix includes the full the-
orem for t < T ' 2 with less interpretable conditions.
Theorem 3 (Conditions for error persistence). For
t = T ' 2, assume R(1) > R(0), without loss of gener-
ality. Then, for s > 2,

E[' ⌧ (X)I [ö✓$
T " 1 * ! µ$(X) * ✓$

T " 1]] + 0

=- ö✓$
T " 2(! V

ö" #
T " 1: T

T " 1 ) < ö✓$
T " 2(! V

" #
T " 1: T

T " 1 ).

We discuss implications of Theorem 3 for bias persis-
tence in the context of Example 1.
Example 4 (Error persistence in Example 1.). Sup-
pose �(1, x) > 0 > �(0, x) uniformly over x, for exam-
ple if historical price increases were targeted towards
those more likely to purchase them and discounts were
targeted to those less likely to purchase overall. Then
for any s, ! V , ö✓$(s, ! V ) * ✓$(s, ! V ). By assumption
on, e.g. price elasticity so that ⌧ (x) * 0, we expect the
sufficient condition of Theorem 3 to be true so that
bias persists; for s > 2,

ö✓$
T " 2(! V

ö" #
T " 1: T

T " 1 ) < ö✓$
T " 2(! V

" #
T " 1: T

T " 1 ) < ✓$
T " 2(! V

" #
T " 1: T

T " 1 ).

6 Empirics

Data-generating process. We consider a simple ex-
ample based on single-product dynamic pricing (exam-
ple 1), with a response model that is a ! -weighted mix-
ture model of a logistic specification and a nonlinear
specification, where �(�%x) = (1 + exp( ' �%x)) " 1.

µ(1 | a, x) = (1 ' !) �(�%x + �0pa) + ! �(x2
0pa), (9)

et (1 | x) = �(' 0.8�%x) (10)

We generate the data corresponding to the outcome
specification for parameters � = [ ' 0.75, 0.75], �0 =
' 2. We learn outcome models öµ by either logis-
tic regression (for DM , direct method or DR, dou-
bly robust) or a neural network for a nonparamet-
ric nuisance estimate (DR-nonpara), and the behav-
ior policy by (well-specified) logistic regression. We
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(a) Relative absolute error (y-axis) of off-policy evaluation with in-
creasing model misspecification (! ). Lower is better.
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(b) Out-of-sample value V ö! #
(y-axis) of policy

optimization: threshold policies optimized via
Algorithm 1. Higher is better.

Figure 2: Policy evaluation and optimization as more trajectories (x-axis) are collected of T -horizon selling in
contextual and capacitated dynamic pricing, example 1; specification of eq. (10).
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(a) ! = 0 .2; further OPE compari-
son on a different DGP.

(b) (Normalized) histogram of con-
ditional bias ! (1, x).
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(c) Heatmap of thresholds optimized via DR
vs. (biased) thresholds, over states (y-axis)
and timesteps (x-axis). Red is direction of
single-timestep error (persistence).

Figure 3: Conditions of Theorem 3 for error persistence.

consider a (time and state-stationary) evaluation pol-
icy ⇡e(1 | x) = �(0.25(�%x)) . The time horizon is 10
timesteps, with initial state capacity s0 = 4 .

Policy evaluation and optimization. In Fig-
ure 2 we generate different outcome models with in-
creasing levels of misspecification ! , evaluate V " e

0 (s0)
by Monte Carlo rollouts with N = 10000 trajec-
tories. We compare DM with logistic regression
nuisance, DR doubly-robust with logistic regression,
DR-nonpara with nonparametric nuisance, and IPW ,
inverse propensity weighting. (See Section D for fur-
ther comparison including other baselines and pol-
icy optimization in the well-specified ! = 0 case,
where the variance drawbacks of IPW do worse than
model-based approaches.) Figure 2a considers off pol-
icy evaluation, with absolute relative error on the y-

axis and trajectory size on the x-axis (log grid from
N = 50, . . . 5000). When ! = 0 .2 the logistic out-
come model is misspecified, but orthogonality and the
well-specified propensity score ensures estimates are
asymptotically unbiased. Similar to other DR set-
tings, although incorporating the outcome model re-
duces variance, incorporating a misspecified outcome
model does worse than just using well-specified IPW ,
but we see faster convergence from the flexible, non-
parametric nuisance which outperforms well-specified
IPW . We also compared to nonparametric baselines
FQE Le et al. (2019), and modified stateful versions
of MIS Yin et al. (2021) and DRL Kallus and Uehara
(2019a). However, in this simple setting, the highly
flexible nuisance estimators overfit and fail (incurring
40-50% absolute error). We discuss these baselines in
greater detail in “OPE comparison" in a more favor-
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able data-generating process.

We then consider policy optimization in Figure 2b,
with a rich policy class to avoid misspecification error
issues. Motivated by eq. (8), observe that the optimal
threshold policy on the true ! µ is an affine transform
relative to a threshold on the estimated !öµ (possi-
bly misspecified, hence biased), with an x-conditional
term for the conditional error. We approximate op-
timizing over policies I [! µ > ✓] by ranging over all
thresholds on I [!öµ > ✓! ]; this approximates the x-
conditional error term of eq. (8) by a constant. This
is similar to a contextual version of “bid-price" poli-
cies Gallego et al. (2019). We optimize over the class
of threshold policies on !öµ by enumerating thresholds
and evaluating via the estimate from Proposition 2, so
the functional specification does depend on the (un-
adjusted) nuisance estimation. (Therefore the VC di-
mension of this depends on the VC dimension of the
outcome nuisance). The y-axis depicts out of sample
value (higher is better) averaged over 48 replications.
Both DR and IPW (inverse propensity-weighted) esti-
mates translate to improvements in optimized policy
value. We see dramatic benefits of DR when ! = 0 .2.
For small dataset sizes, IPW suffers from high variance
as expected. Therefore, DR and its variance reduc-
tion estimates achieve sizeable improvements for small
amounts of data. As the amount of data grows larger,
the performance of IPW nears that of DR asymptot-
ically. The DM plug-in approach remains biased and
achieves worse performance, even asymptotically.

OPE comparison. We compare to state-of-
the-art OPE: FQE of Le et al. (2019) which does
not use the “stateful" structure, and we also derive
“strong baselines" that leverage some of the structure
(MIS-mw Yin et al. (2021), DRL-mw Kallus and Ue-
hara (2019b)). (We reiterate our core contribution
is not in general off-policy evaluation but in deriv-
ing improvements for this specific structure). For ex-
ample, observe that since x is exogenously generated
the finite-horizon state-action density ratio is indepen-
dent of x. We endow MIS-mw and DRL-mw with this
structural information (see appendix Section D for de-
tails). As the general OPE literature prescribes, we
use nonparametric nuisances, e.g. multi-layer percep-
tron with scikit-learn defaults for all nuisance predic-
tors. We consider a more favorable DGP for OPE
comparison in Figure 3a, using eq. (10) with p = 5
and � = [ ' 0.53, ' 0.56, ' 0.10, 0.40, 0.74],�0 = ' 2.39.
MIS-mw does well overall, although empirically we find
other DGPs where MIS-mw underperforms FQE. In
the misspecified setting, our doubly robust estimators
outperform MIS-mw. FQE, which fits next time-step
Q(s, x, a), appears to converge but much slower than
our approaches. The gap between FQE and DM for

the (slightly misspecified) case precisely illustrates the
benefits of encoding problem structure in Equation (1).

Assessing the structural conditions of Theo-

rem 3 in practice. In Figure 3 we investigate as-
sumptions made in Example 4 (e.g. uniformity of error
direction �(1, x)) that do not hold exactly. Figure 3b
plots �: although it is symmetrically distributed for
most x, there is overall marginal error in the expected
direction. In the empirical example we optimize over
marginal thresholds and so we expect, marginalizing
over x, the directional error condition is satisfied. In
Figure 3c, we show a heatmap of ✓$

t (s) ' ö✓t (s) over
timesteps and state values. As the analysis suggests,
for s > 2 for most timesteps the error persists: red in-
dicates regions where naive thresholds are in the same
direction, relative to the optimal threshold, and hence
the error persists rather than attenuates over time.

7 Concluding remarks.

By studying the causal structure of practically rele-
vant problems in operations, we developed specialized
off policy evaluation and optimization which demon-
strate the offline version of such problems is easier than
a generic MDP. We show analytically that confound-
ing matters, and verify our approach, reducing from
T + 1 nuisances to 2 and estimating the expectation
of a transition via the expectation over a population,
achieves practical benefits.

Violations of assumptions and extensions Con-
sider a specific violation of Asn. 1 with state-dependent
contexts, where Xt may depend on St but nothing else;
if Asn. 2 additionally holds, system state S is not a
confounder, but covariate shifts in S induce shifts in
contexts X that are confounders. Therefore eq. 3 is a
biased estimate of the transition probability at a spe-
cific state due to covariate shift. We model this bias as
single-timestep OPE under covariate shift in contexts,
since the only confounding bias is due to integrating
over the observational state-context occupancy distri-
bution. The density ratio factorizes so the only un-
known is de

t (S)
db

t (S) . This suggests we may use ideas based
on robustness: under some additional restrictions on
how far de

t (S)
db

t (S) can vary from 1, we can use the opti-
mization schemes suggested in Footnote 1 for adver-
sarial arrivals. We can optimize for robust transitions
in the Marginal MDP, conduct a robust backwards in-
duction, and return a covariate-shift robust policy.
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Outline of appendix

Section A analyzes the marginal MDP construction of Section 4.

Section B provides analysis of the main estimation strategy and policy learning sample complexity analysis,
e.g. proofs of Section 5.

Section C provides additional discussion.

Section D includes additional empirics and discussion of computational details.

A Proofs for Section 4

Proof of Proposition 1. We argue via backwards induction, though the proof follows largely from construction
of the marginal MDP. Consider the last timestep, t = T : equivalence follows by construction. Next consider the
inductive step. The inductive hypothesis posits equivalence of policy values Vt +1 (s) in the marginal MDP and
÷Vt +1 (s), the marginalized policy value in the full-information MDP, as well as equivalence of optimal policies so
that Vt +1 (s) = ÷Vt +1 (s).

Recall that each policy ⇡ %" in M corresponds to an action ⇡ %" of (M with transition probability:

÷P (s! | s,⇡) =
- -

P (s! | s, a, x)⇡(a | x)f (x)dx (11)

Equivalence of the policy values follows from backwards induction of expected rewards and definition of the
marginal MDPs. Equivalence of optimal policies follows from equivalence of first moments and equivalence
of the policy classes. Equivalence of the inductive step follows from equivalence of policy classes, identically
distributed arrivals Xi within a timestep.

Proof of Proposition 2. Double robustness is standard and follows standard arguments in the single time-step
policy learning literature Dudik et al. (2014); Wager and Athey (2017). The claim follows by observing that
by the restricted causal structure Assumption 2, Y (a) .. S | X, so it is sufficient to adjust for IPW weights
P (A = a | X = x).

For completeness, we verify double-robust unbiasedness properties of öVt (s). The proof follows by backward
induction. The fact that VT +1 (s) = 0 and estimation is unbiased follows from double-robustness in the single-
timestep setting for öVT (s) for all s % S.

Next we show the inductive step. Suppose öVt +1 (s) is unbiased, for all s % S. We require that the evaluation
error is independent ( öV tDR

t +1 (s! ) ' Vt +1 (s! )) from the nuisance evaluation error, which can be easily satisfied by
appropriate sample splitting.

If µ is unbiased:

E[ )Vt (s)] = E

.

/
'

s! ,y |s

'

a

⇡e(a | x)µt (y | a, x)(R(y) + öV tDR
t +1 (s! ))

0

1 (12)

+ E

.

/
'

s! ,y |s

'

a

⇡e(a | x)
2

I [At = a]
⇡b(a | x)

(I [Y = y] ' µt (y | a, x))
3

(R(y) + Vt +1 (s! ))

0

1 (13)

+ E

.

/
'

s! ,y |s

'

a

⇡e(a | x)
2

I [At = a]
⇡b(a | x)

(I [Y = y] ' µt (y | a, x))
3

( öV tDR
t +1 (s! ) ' Vt +1 (s! ))

0

1 (14)

Note eq. (12) = Vt (s) by well-specification, eq. (13) = 0 by unbiasedness of µt and cross-fitting so the estimation
errors are independent, and the first term of eq. (14) is expectation-0 by the previous argument and E[( öV tDR

t +1 (s! ) '
Vt +1 (s! ))] = 0 by the induction hypothesis and cross-fitting.

If e is unbiased:
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E[ )Vt (s)]

= E

.

4
4
4
/

'

s! ,y |s

'

a

⇡e(a | x)

5

6
6
6
7

I [At = a]
⇡b(a | x)

I [Y = y]
8 9: ;

unbiased IPW estimator

+ µt (y | a, x)
2

1 '
I [At = a]
⇡b(a | x)

3

8 9: ;
=0 by unbiasedness of e

<

=
=
=
>

(R(y) + Vt +1 (s! ))

0

?
?
?
1

+ E

.

4
4
4
/

'

s! ,y |s

'

a

⇡e(a | x)

5

6
6
6
7
µt (y | a, x)

2
1 '

I [At = a]
⇡b(a | x)

3

8 9: ;
=0 by unbiasedness of e

<

=
=
=
>

( öV tDR
t +1 (s! ) ' Vt +1 (s! ))

8 9: ;
=0 by inductive hypothesis

0

?
?
?
1

B Proofs for Section 5

B.1 Sample complexity proofs

B.1.1 Concentration preliminaries

We introduce the uniform convergence setup we use to provide tail inequalities. We will apply a standard
chaining argument with Orlicz norms and introduce some notations from standard references, e.g. Vershynin
(2018); Pollard (1990); Wainwright (2019). A function � : [0, ( ) # [0, ( ) is an Orlicz function if � is convex,
increasing, and satisfies �(0) = 0 ,�(x) # ( as x # ( . For a given Orlicz function �, the Orlicz norm of a
random variable X is defined as / X/ % = inf { t > 0: E[$( / X/ | t)] * 1} . The Orlicz norm / Z/ # of random
variable Z is defined by / Z/ # = inf {C > 0: E[$( Z/C)] * 1} . A constant bound on / Z/ # constrains the rate of
decrease for the tail probabilities by the inequality P(|Z| + t) * 1/$( t/C) if C = / Z/ # . For example, choosing
the Orlicz function $( t) = 1

5 exp(t2) results in bounds by subgaussian tails decreasing like exp(' Ct2), for some
constant C.

We next introduce the tail inequalities that use a standard chaining argument to control uniform convergence
over ⇡ % " . Let n denote a generic dataset size (we will later on apply the results with n = NT .) The data
are (X1:n , A1:n , Y1:n ) and fi (⇡) is a function of (Xi , Ai , Yi ). Define the function class F (X1:n , A1:n , Y1:n ) =
{ (fi (⇡), . . . , fn (⇡)) : ⇡ %" } .

For this section, we consider maximal inequalities for the function classes for the enveloped policy class F .
Let ✏i % {' 1,+1 } , be iid Rademacher variables (symmetric Bernoulli random variables with value ' 1,+1 with
probability 1

2 ), distributed independently of all else. We use the following application of chaining with a bounded
envelope function, due to (Pollard, 1990, Eqn. 7.3). (Using different measures of functional complexity for multi-
class predictors, such as Natarajan dimension, simply changes the constants in the final bound.)
Theorem A (Uniform convergence of policy function ⇡ over envelope class F . ). Let f (⇡) * / F / 2 * C be a
bound on the envelope function for f % F. Then for n large enough, where dvc is the VC-dimension,

sup
f #F

@
@
@
@
@
1
n

n'

i =1

(fi (⇡) ' E[f (⇡)])

@
@
@
@
@

* 9/2C

A
dvc log(5/#)

n
(15)

The next variant is a modification of Thm. A which only uses only moment bounds for the envelope function at
the expense of weaker controls of the tails of the supremum process.
Theorem B (Uniform convergence with Lp norm of envelope function.). For an absolute constant Cdvc

which depends only on dvc , where Fn is the envelope for f % F and dvc is the VC dimension,
E[supf #F

@
@1

n

% n
i =1 (fi (⇡) ' E[f (⇡)])

@
@] * C !

dvc

,
dvc ' 1E[|Fn |].

We also state a standard lemma used for sample splitting, as appears in Chernozhukov et al. (2018), without
proof.
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Lemma 1 (Conditional convergence implies unconditional). Let {Xm } and {Ym } be sequences of random vectors.

¥ If for ✏m # 0, P(/ Xm / > ✏m | Ym ) # p 0, then P(/ Xm / > ✏m ) # 0. This occurs if E[/ Xm / q /✏q
m | Ym ] # p 0

for some q + 1 by Markov’s inequality.

¥ Let {Am } be a sequence of positive constants. If / Xm / = Op(Am ) conditional on Ym , that for any `m # ( ,
P(/ Xm / > `m Am | Ym ) # p 0, then / Xm / = Op(Am ) unconditionally, namely, that for any `m # ( , then
P(/ Xm / > `m Am ) # 0.

Proof of Thm. A. We first bound the deviations uniformly over the policy class and introduce the following
empirical processes,

M = sup
f #F

@
@
@
@
@

n'

i =1

(fi (⇡) ' E[f (⇡)])

@
@
@
@
@
, L = sup

f #F

@
@
@
@
@

n'

i =1

✏i fi (⇡)

@
@
@
@
@
.

By a standard symmetrization argument, applying Jensen’s inequality for the convex function $ of the sym-
metrized process (e.g. Theorem 2.2 of Pollard (1990)), we may bound the Orlicz norm of the maxima of the
empirical process by the symmetrized process, conditional on the observed data: E[$( M )] * E[$(2L)]. Taking
Orlicz norms with $( t) = 1

5 exp(t2), we apply a tail inequality on the Orlicz norm of the symmetrized process
$ (2L), under the assumption of bounded outcomes. Applying Dudley’s inequality to the symmetrized empirical
process L, (e.g. Theorem 3.5 of Pollard (1990)), we have that

E!
B
exp(L2/J2) | D

C
* 5 for J = 9 / F / 2

- 1

0

,
log(D(/ F / 2 ⇣,F (X1:n ))) d⇣. (16)

By Markov’s inequality, we have that P
"

1
n L > t

#
* 5 exp(' t2n2/ / L/ 2

2) = 5 exp( ' t2n/J2C2), so that therefore,
bounding the Dudley entropy integral by the VC dimension via (Pollard, 1990, eqn. 7.8),

1
n
M *

9/2C
D
dvc log(5/#)
,
n

.

Proof of Thm. B. By standard results on covering numbers and VC dimension, e.g. Van Der Vaart and Wellner
(1996); Wainwright (2019), for a VC-class of functions with measurable envelope function F and p + 1, for any
probability measure Q with / F / Q,p > 0, N (✏ / F / Q,p ,F , Lp(Q)) * A(dvc )( 1

! )p(dvc " 1) , where Cdvc ) is an absolute
constant that depends only on the vc-dimension. By (Pollard, 1990, eqn. 7.8),

E[sup"

@
@1

n

% n
i =1 (fi (⇡) ' E[f (⇡)])

@
@p

] *

E

18Cp

- 1

0

A

log
*
Cdvc (1/! )p(dvc " 1)

+
dx

F

E[|Fn |p]

* C !
dvc

D
dvc ' 1E[|Fn |p]

The claim follows by taking p = 2 .

Preliminaries Having modeled the marginal MDP, the analysis proceeds via a standard performance differ-
ence lemma which provides an additive decomposition of the regret for finite horizons; and single-timestep causal
inference. For example, this appears in Jin et al. (2018); we simply include the full statement for completeness
and verify for our setting. The ease of analysis is due to our reduction to the marginal MDP: the original MDP
may have a continuous state so that tabular MDP analysis is not possible. Recall that we denote ÷P as the tran-
sition matrices and estimated transition matrices corresponding to the marginal MDP (e.g. transitions between
system states). In this section, for brevity we let )P denote the empirical counterpart of ÷P , e.g. estimating eq. (2)
via some estimation strategy (IPW weighting, doubly robust, or plug-in estimation; typically we focus on the
doubly-robust estimator). Similarly, GM denotes the empirical MDP model with )P . We introduce notation for
indexing into entries after evaluating the transition operator,

( ÷PV )(s,⇡) = Es! & ÷P (á|s," )V (s! ) = E[ ÷R(s,⇡)] +
'

(s! ,y ) |s

P (Y = y | ⇡)(V (s! ))
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We also introduce notation for indexing the difference between applying the true transition operator and the
empirical estimate thereof, for any generic |S|-vector v and policy ⇡:

(( ÷P ' )P )v)(s,⇡) =
'

(s! ,y ) |s

*
P (Y = y | ⇡) ' öP (Y = y | ⇡)

+
v(s! ).

Lemma 2 (Additive decomposition of finite-horizon value iteration). For any policies ÷⇡,⇡ and any (s, t! ) %
S ! [T ],

÷V ÷"
t ! (s) ' )V "

t ! (s)

= E öM, ÷"

H' T

t = t !
E[ ÷R(s,⇡t )] ' öE[ ÷R(s,⇡t )] +

'

(s! ,y ) |s

*
P (Y = y | ⇡t ) ' öP(Y = y | ⇡t )

+
÷V "

t +1 (s! ) | st = s

I

B.2 Sample complexity analysis

We first provide a generalization bound in an oracle nuisance case where we use the true conditional expectations
µ, e rather than estimated counterparts öµ, öe.

#i, $
t (y | a) áá=

I [Y i
t = y] ' µ(y | Ai

t , X
i
t )

e
"
Ai

t | X i
t

# I [Ai
t = a] + µ(y | a,X i

t ) (17)

öP (Y = y | ⇡) áá= 1
NT

% T
t =1

% N
i =1

%
a#A ⇡(a | X i

t )ö#i, $
t (y | a)

Theorem 4 (Sample complexity and rate double-robustness for oracle estimator ). Suppose e(a | x) * ⌫" 1

uniformly over a, x (overlap).

Then w.p. + 1 ' �, for ÷V ö" #

0 optimized via Algorithm 1 with oracle nuisance estimator eq. (17),

÷V " #

0 ' ÷V ö" #
oracle

0 *
⌫dvcRmax (T + 1/2T 2)9/2

D
log(5T |Y|/#)

,
NT

Proof of Theorem 4. In the analysis, we leverage single-timestep uniform convergence arguments. By Assump-
tion 1, X is drawn exogenously/independently of all else, so the X data is iid. We model the dataset as drawn
from multiple behavior policies, so that at timestep t, S 0 ⇢" b

t (S), X 0 ft , A 0 ⇡b(s, x), and Y | A,X is drawn
from the contextual response model. Therefore the data tuples (Si,t , Xi,t , Ai,t , Yi,t ) are viewed as independent
draws from this process. Since Y | A,X .. St and therefore we only need to control for Xt such that e(Xt ) is
not a function of S, the functions we use in our estimator, defined with respect only to the (Xi,t , Ai,t , Yi,t ) data,
admit analysis via iid/single-stage empirical process techniques.

We define the following function classes conditional on all the data, (X1:NT , A1:NT , Y1:NT ). For ⇡, we consider
a shifted function class with an envelope function: let fit (⇡) = ⇡(Ai

t | X i
t )I [Ai

t = a]I [Y i
t = y] where

F (X1:NT , A1:NT , Y1:NT ) = { (f1
1 (⇡), . . . , f i

t (⇡), . . . , fN
T (⇡)) : ⇡ %" } .

Step 1: Error decomposition:

We decompose the error. By optimality of ö⇡$, )V " #

0 ' )V ö" #

0 * 0 and the triangle inequality:

÷V " #

0 ' ÷V !" #

0 = ÷V " #

0 ' )V " #

0 + )V " #

0 ' )V ö" #

0 + )V ö" #

0 ' ÷V ö" #

0

*
@
@
@÷V " #

0 ' )V " #

0

@
@
@+

@
@
@)V ö" #

0 ' ÷V ö" #

0

@
@
@ (18)

Step 2: Uniform convergence over ⇡ and ÷V " :

We apply the additive decomposition of Lemma 2 and obtain a uniform bound on sup" # !
÷V ÷"

0 (s) ' )V "
0 (s), which

we apply twice to the terms of Equation (18).
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For ⇡, we consider a shifted function class with an envelope function: define

fi (⇡) = ⇡(Ai | Xi )I [Ai = a]I [Yi = y]e" 1(a | Xi )

F (X1:NT , A1:NT , Y1:NT ) = { (f1(⇡), . . . , fNT (⇡)) : ⇡ %" } .

By Lemma 2, for any policy ⇡, consider the additive decomposition:

sup
" # !

÷V ÷"
0 (s) ' )V "

0 (s) = sup
÷" # !

E öM, ÷"

J
T'

t =0

( ÷R(s,⇡t ) ' ö÷R(s,⇡t )) + ( ÷Pt ' )Pt )( ÷V "
t +1 )(st ,⇡t ) | st = s

K

Note that the dependence on the state distribution is not relevant (that is, the expectation under ( öM, ö⇡) since the
estimator uses the same data at every state s, and hence it suffices to consider uniformity over Y and equivalently
evaluate the supremum over corresponding transitions.

sup
("," ! )# ! ' !

T'

t =0

sup
y#Y

L
( ÷R(s,⇡t ) ' ö÷R(s,⇡t )) + ( P (Y = y | ⇡t ) ' öP (Y = y | ⇡t ))( ÷V

" !
t +1: T

t +1 ))( st ,⇡t )
M

*
T'

t =0

sup
(" t ," ( t )

t +1: T )# ! t ' ! t +1: T

sup
y#Y

N
( ÷R(s,⇡t ) ' ö÷R(s,⇡t )) + ( P (Y = y | ⇡t ) ' öP (Y = y | ⇡t ))( ÷V

" ( t )
t +1: T

t +1 ))( st ,⇡t )
O

(19)

*
T'

t =0

sup
y#Y

N
sup

" t # ! t

@
@
@( ÷R(s,⇡t ) ' ö÷R(s,⇡t ))

@
@
@+ sup

" t # ! t

@
@
@(T ' t ' 1) á

*
P (Y = y | ⇡t ) ' öP (Y = y | ⇡t )

+@
@
@

O
(20)

Since forward transitions marginalize to ÷Vt +1 (s! ), in the last line we observed that taking the supremum over
⇡t +1: T can only enlarge the fixed envelope function, / F / 2, but does not actually affect the empirical process
analysis. Under assumption of a product set of policies across states, uniform convergence under ⇡t %" t also
establishes uniform convergence for state-dependent policies.

Step 3: applying the concentration inequalities. We bound each of the above terms by Thm. A, applying a high
probability bound with �! = #

T , and finally take a union bound over Y and each summand, in order to obtain
the following bound which holds with probability > 1 ' �,

sup
÷" # !

÷V ÷"
0 (s) ' )V "

0 (s) *
H'

t =0

⌫vRmax (q + ( T ' t ' 1))9/2
D

log(5T |Y|/#)
,
NT

=
⌫vRmax (T + 1/2T 2)9/2

D
log(5T |Y|/#)

,
NT

Proof of Theorem 1. We decompose the regret achieved by the feasible estimator as:

÷V " #

0 ' ÷V ö" #
feasible

0 = ÷V " #

0 ' ÷V ö" #
oracle

0 + ÷V ö" #
oracle

0 ' ÷V ö" #
feasible

0 .

Theorem 4 established the bound on ÷V " #

0 ' ÷V ö" #
oracle

0 . We now show that ÷V ö" #
oracle

0 ' ÷V ö" #
feasible

0 = op(n" 1
2 ) under the

rate assumptions on öe, öµ.

Verifying rate double-robustness is standard given arguments in the single-timestep literature. The key step is,
as in the proof of Theorem 4, applying the additive error decomposition of Lemma 2.

Then standard single-timestep analysis for doubly-robust policy optimization yields the result Wager and Athey
(2017); Zhou et al. (2018). We simply apply our uniform convergence bounds and state the decomposition for
completeness.

Let öP (Y = y | a) denote the estimator for the policy value. Write öP (1) (Y = y | a) for the estimator evaluated
on the first fold using out-of-fold nuisances, and vice-versa.
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ö#i
t (y | a) áá=

I [Y i
t = y] ' öµ" k ( i,t ) (y | Ai

t , X
i
t )

öe" k ( i,t )
t

"
Ai

t | X i
t

# I [Ai
t = a] + öµ" k ( i,t ) (y | a,X i

t )

ö⌧ (a, y) =
1
n

N'

i =1

'

a#A

⇡(a,X i
t )ö#i

t (y | a)

We denote partial sums of the individual contribution to the estimator ö#i
t , as ö#I 1 , in order to denote the sum over

the (sample-split) dataset evaluated with the estimated nuisances, and #I 1 denote evaluation of the corresponding
estimator summands over the oracle nuisance functions.

Due to sample splitting, conditional on a fold I 1, öµ(1) can be treated as deterministic. The decomposition used
in the proof of Theorem 1, eq. (19) allows us to study regret of the oracle vs. nuisance estimators relative to the
true value function ÷V . We establish uniformity of the error from using estimated nuisances:

sup
" t :T

@
@
@
@
@

'

a#A

n'

i =1

⇡t (a | Xi )( ö#i
t (y | a) ' #i

t (y | a))(R(s, a, s! ) + V " t +1: T
t +1 (s! ))

@
@
@
@
@

= op(n" 1
2 ) (21)

We decompose the terms as follows, restricting attention to one action, by adding and subtracting
( I [Y i

t = y ]" µ " k ( i ) (a,X i
t ))

öe" k ( i ) (a,X i
t ) . To clear up the display we suppress arguments depending on Xi and others where self-

evident.

EN,T [⇡(a)( ö#i
I 1

' #i
I 1

)] =

EN,T

J

⇡(a)

E
*

öµ" k ( i,t ) ' µ" k ( i,t )
+

+

E
I [Yt = y] ' öµ" k ( i,t )

öe" k ( i,t )
t

'
I [Yt = y] ' µ" k ( i,t )

e" k ( i,t )
t

F

I [At = a]

FK

= EN,T

J

⇡(a)
*

öµ" k ( i,t ) ' µ" k ( i,t )
+

E

1 '
I [At = a]

e" k ( i,t )
t

F

(R + V " t +1: T
t +1 (s! ))

K

(22)

+ EN,T

J

⇡(a)
*
µ" k ( i,t ) ' öµ" k ( i,t )

+
E

I [At = a]

e" k ( i,t )
t

'
I [At = a]

öe" k ( i,t )
t

F

(R + V " t +1: T
t +1 (s! ))

K

(23)

+ EN,T

J

⇡(a)( I [Yt = y] ' µ" k ( i,t ) )

E
1

öe" k ( i,t )
t

'
1

e" k ( i,t )
t

F

(R + V " t +1: T
t +1 (s! ))

K

(24)

Decomposing each of the above terms into foldwise terms, sample splitting implies that conditioning on the other
folds implies that µ1 is a deterministic function.

We apply our Theorem 1 to establish op(n" 1
2 ) rates on the relevant uniform convergence terms of eqs. (22)

and (23).

The term of eq. (22) evaluates to 0 by iterating expectations, using independent errors property from cross-fitting,
and well-specification of e which implies 0 = EN,T [(1 ' I [A t = a]/e" k ( i,t )

t ) | X].

The term of eq. (23) is bounded by Cauchy-Schwarz since ⇡ * 1 and by assumption on the sum of rates in
Theorem 1: eq. (13)

sup
"

(23) * EN,T

J@
@
@µ" k ( i,t ) ' öµ" k ( i,t )

@
@
@

@
@
@
@
@
I[At = a]

e" k ( i,t )
t

'
I [At = a]

öe" k ( i,t )
t

@
@
@
@
@

K

* EN,T [(µ" k ( i,t ) ' öµ" k ( i,t ) )2]
1
2 EN,T

.

/

E
I [At = a]

e" k ( i,t )
t

'
I [At = a]

öe" k ( i,t )
t

F 2
0

1

1
2

= op(n" 1
2 )
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For the term of eq. (24), we apply the bound of Thm. B which surfaces the dependence of the maximal inequality
on the behavior of the envelope function, allowing us to leverage consistency assumptions of Theorem 1 to verify
that the term is op(n" 1

2 ).

E[sup
"

(24)] * EN,T [⇡(a)( I [Yt = y] ' µ" k ( i,t ) )(R + V " t +1: T
t +1 (s! ))]EN,T

$@
@
@(öe" k ( i,t )

t )" 1 ' (e" k ( i,t )
t )" 1

@
@
@
&

* EN,T [⇡(a)( I [Yt = y] ' µ" k ( i,t ) )(R + V " t +1: T
t +1 (s! ))] ! ⌫EN,T

$@
@
@öe" k ( i,t )

t ' e" k ( i,t )
t

@
@
@
&

= op(n" 1
2 )

eq. (21) follows from the above and applying Markov’s inequality for the bound for eq. (24).

Proof of lemma 2. We follow an induction argument. Note that since ÷VT +1 = 0 , the base case, t = T , satisfies
that

!Q" T
T (s,⇡T ) ' )Q" T

T (s,⇡T ) = E[ ÷R(s,⇡T )] ' öE[ ÷R(s,⇡T )].

Now suppose the inductive hypothesis holds for t + 1 and consider the case of t.

!Q"
t (s,⇡t ) ' )Q"

t (s,⇡t ) = ÷R(s,⇡t ) ' ö÷R(s,⇡t ) + ( ÷P ÷V "
t +1 )(s,⇡t ) ' ( )P )V "

t +1 )(s,⇡t )

= ÷R(s,⇡t ) ' ö÷R(s,⇡t ) + (( ÷P ' )P ) ÷V "
t +1 )(s,⇡t ) ' ( )P ( ÷V "

t +1 ' )V "
t +1 ))( s,⇡t )

by a standard performance difference lemma. Since actions in the policy space are themselves policies, the
previous analysis for Q functions applies also to V functions,

÷V "
t (s) ' )V "

t (s) = E"

$
÷R(s,⇡t ) ' ö÷R(s,⇡t ) + (( ÷P ' )P ) ÷V "

t +1 )(st ,⇡t ) | st = s
&

+ E öM," t

$
÷V "

t +1 (st +1 ) ' )V "
t +1 (st +1 ) | st = s

&

= E öM, ÷"

J
T'

t = t !

( ÷R(s,⇡t ) ' ö÷R(s,⇡t )) + ( ÷Pt ' )Pt )( ÷V "
t +1 )(st ,⇡t ) | st = s

K

where we apply the inductive hypothesis in the first line.

B.3 Verifying nuisance function rates from pooled episodes

Summary of argument We simply verify that the nuisances can be learned from the pooled episodes at the
relevant rates. Note that we learn µ(a | x) from data that can be viewed as the collection of { (X i

t , A
i
t , Y

i
t )} n

0:T ,
and e(a | x) from { (X i

t , A
i
t )}

n
0:T . Throughout the paper, we assume that the behavior policy is stationary (i.e. we

do not handle dependent data from history-adapted policies, such as from learning policies, though doing so is a
straightforward extension via standard mixing arguments). Hence, the sequence of states is strongly stationary.
Nonetheless, dependency across timesteps within an episode is a consequence of St , Xt adapted policies (although
there is no dependence in the noise of the contextual response across timesteps).

Our argument proceeds as follows. First, we invoke results establishing the mixing properties of the infinite-
horizon embedding of episodic finite-horizon MDPs. This general result of Bojun (2020) provides a construction
(with a modification to ensure aperioridicity that preserves other properties of the chain) ensures that such
an embedding has a steady-state distribution. Therefore, we model nuisance estimation as if we estimate the
nuisance functions from a single infinite-horizon trajectory, obtained via the construction of Bojun (2020) by
simply sequentially concatenating the episodes (and the perturbations for aperiodicity). In this infinite-horizon
embedding, the stationary distribution is given by the (finite-horizon) limiting state-action frequencies, so that
the sequence is �' mixing. (Clearly, such an argument generalizes to the case of history-adapted policies with a
corresponding dependence on mixing rate of the adapted policy). We invoke results on learning from �-mixing
sequences, e.g. Farahmand and Szepesvári (2012), which in particular applies the blocking empirical process
argument with a more refined peeling empirical process argument.
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B.3.1 Preliminaries

We quote a result on learning from �-mixing data of Farahmand and Szepesvári (2012). The assumptions and
result are stated for a generic conditional expectation on a generic process {Xt , Yt } 1:N

0:T . (We of course instantiate
the result for the processes {X i

t , A
i
t , Y

i
t } 1:N

0:T , {X i
t , A

i
t }

1:N
0:T ). The estimator of interest is regularized least-squares

regression ömn (x) = clip " L,L ( ÷m(x)) where the final estimates are clipped within a bounded range, and J is a
regularization functional.

÷mn = argmin
f #F

P
1
n

n'

i =1

|f (Xi ) ' Yi |
2 + �nJ

2(f )

Q

(25)

Assumption 4 (Exponential Mixing). The process ((Xt , Yt )) t =1 ,2,... is an X ! R-valued, stationary, exponentially
�-mixing stochastic process. In particular, the �-mixing coefficients satisfy �k * ø�0 exp

"
' ø�1k

#
, where ø�0 + 0

and ø�1 > 0

Assumption 5 (Capacity). There exist C > 0 and 0 * ↵ < 1 such that for any u,R > 0 and all x1, . . . , xn % X

logN2 (u,BR , x1:n ) * C

2
R

u

3 2$

Assumption 6 (Boundedness). There exists 0 < L < ( such that the common distribution of Yt is such that
|Yt | * L almost surely.
Assumption 7 (Realizability). The regression function m(x) = E [Y1 | X1 = x] belongs to the function space
F .

Assumption 5 is a mild assumption common in nonparametric statistics; see (Györfi et al., 2002, Lemmas 20.4,
20.6). We verify we may learn the nuisance functions in the following statement, which is a corollary of the
construction of (Bojun, 2020, Thm. 2) and the convergence rate of (Farahmand and Szepesvári, 2012, Thm. 5).
Corollary 5 (Nuisance functions). Suppose nuisance function estimator öe(a | x) is learned from pooled-episode
data { (X i

t , A
i
t , Y

i
t )} n

0:T , and µ(y | a, x) from { (X i
t , A

i
t )}

n
0:T . Let A2-A4 hold, then there exists c1, c2 > 0

such that for large enough n, for any fixed � % (0, 1), with probability + 1 ' �, E[(m(X) ' öm(X)) 2] *

c1
B
J2(m)

C !
1+ ! n" 1

1+ !

$
log( n ( c2 /# )

ø&1

&3
.

Proof of Corollary 2. We first consider the infinite-horizon embedding, M L , of the finite-horizon MDP. To keep
the presentation self-contained, we describe the construction of Bojun (2020). To allow for time-inhomogeneous
(but state-stationary) policies, augment the state space with a time state Tt so that the infinite-horizon MDP’s
state space is (Tt , St , Xt ). We embed the finite-horizon MDP by advancing time states in the natural sense, and
transitioning from end-of-episodes to initial states,

P (t! , st +1 , xt +1 | t, st , xt , at ) = I [t! = t + 1]P (st +1 , xt +1 | t, st , xt , at )

P (kT + 1 , s0, xkT +1 | kH, skT , xkT , akT ) = P (s0), $k %N

Such a process satisfies the definition of an episodic learning process, e.g. definition 1 of Bojun (2020). Now,
to ensure ergodicity due to periodicity of the episodic/finite-horizon structure, Bojun (2020) establishes that a
simple ✏' perturbation recovers aperiodicity by introducing a perturbed MDP, M + which simply introduces an
auxiliary null state snull . With some ✏ probability, transitions from terminal state (e.g. Tt mod T = 0 ) transit
to snull before transiting to the initial state and beginning another episode. Theorems 2 and 3 verify ergodicity
(evident under aperiodicity) and that the Q functions are identical between M L and M + . Properties of the
construction are clear under aperiodicity, see, e.g. (Meyn and Tweedie, 2012).

Clearly, the stationary distribution of the chain is

p) ,+
" (t, st , xt , at ) =

1
T
ft (xt )d" (st )⇡t (at | st , xt ),

where d" (st ) is the time-t marginal state occupancy distribution under ⇡ in the original finite-horizon MDP, M .
Convergence to stationarity distribution of M L (and hence M + ) is convergence of empirical state-occupancy
distributions d" (st ), which converge geometrically.
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B.4 Proofs of structural analysis for dynamic/capacitated pricing

We include the full statement of theorem including the general sufficient condition for t < T ' 2 that is less
interpretable.
Assumption 8 (Reward ordering). R(1) > R(0), without loss of generality.
Assumption 9 (Discrete concavity of value function). Vt is a discrete concave function in s, for all t.
Assumption 10 (Unimodal expected reward ). ÷R(s,⇡) is decreasing for suboptimal ⇡ (as suboptimal thresholds
ö✓ deviate from optimal thresholds).
Assumption 11 (Treatment effect regime.).

(2P (Y = 1 | 0) ' 1) + E[(2⌧ (X) ' 1)I [! µ(X) > ö✓t +1 (s)]] * 0

Theorem 3 (full statement for general case, t < T ' 2.). Let ⌧ (x) = ⌘(1 | 1, x) ' ⌘(1 | 0, x). For t = T ' 2,
assume assumption 8. Then, for s > 2,

E[' ⌧ (X)I [ö✓$
T " 1 * ! µ$(X) * ✓$

T " 1]] + 0 =- ö✓$
T " 2(! V

ö" #
T " 1: T

T " 1 ) < ö✓$
T " 2(! V

" #
T " 1: T

T " 1 ).

For t < T ' 2 and s > 2, assuming assumptions 8 to 11, if

(2V
" #

t +1: T
t +1 (s ' 1) ' (V

" #
t +1: T

t +1 (s) + V
" #

t +1: T
t +1 (s ' 2)))E[' ⌧ (X)I [ö✓$

T " 1 * ! µ$(X) * ✓$
T " 1]]

+ E" #
t (s) " ö" #

t (s) [R(y) + V
" #

t +1: T
t +1 (s! ) | s ' 1] ' E" #

t (s" 1) " ö" #
t (s" 1) [R(y) + V

" #
t +1: T

t +1 (s! ) | s ' 1] * 0,

then ö✓$
t (! V

ö" #
t +1: T

T +1 ) < ö✓$
t (! V

" #
t +1: T

t +1 ).

These conditions are problem dependent, depending on the true response models. Assumption 9 is satisfied for
the specific dynamic pricing example, and Assumption 10 is a common assumption that is satisfied if conditional
responses satisfy log-concave noise distributions. Assumption 11 is an assumption about the treatment effect
and outcome regime, which would be satisfied in a “sparse reward, not very large treatment effect" regime. We
collect some lemmas used for the proof. In this section, we focus on the marginal MDP and for clarity in the
notation, omit ÷V and instead write Vt (S) for the value function in the marginal MDP.
Lemma 3 (Discrete concavity of the value function). Suppose R + 0. For any t % [T + 1] and ⇡, V "

t (s) is
(discrete) concave in s.

Lemma 4 (Single-step deviation and difference in value function differences). For t < T ' 1,

! V
ö" #

t ," #
t +1: T

t (s) ' ! V
" #

t ," #
t +1: T

t (s)

= (2 V
" #

t +1: T
t +1 (s ' 1) ' (V

" #
t +1: T

t +1 (s) + V
" #

t +1: T
t +1 (s ' 2)))E[' ⌧ (X)I [ö✓$

T " 1 * ! µ$(X) * ✓$
T " 1]]

+ E" #
t (s) " ö" #

t (s) [R(y) + V
" #

t +1: T
t +1 (s! ) | s ' 1] ' E" #

t (s" 1) " ö" #
t (s" 1) [R(y) + V

" #
t +1: T

t +1 (s! ) | s ' 1]

For t = T ' 1:

! V
ö" #

T " 1 ," #
T

T " 1 (s) ' ! V
" #

T " 1 ," #
T

T " 1 (s)

= (2 V
" #

T
T (s ' 1) ' (V " #

T
T (s) + V

" #
T

T (s ' 2)))
-

(µ(1 | 0, x) ' µ(1 | 1, x))
*

I
B
! µ$ > ✓$

T " 1

C
' I

$
! µ$ > ö✓$

T " 1

&+
dFx

Lemma 5 (Value function decomposition). Let V ö" #
t :T

t (s) = V
" #

t :T
t (s) + �V

t (s).

V
" #

t :T
t (s) ' V

ö" #
t :T

t (s) (26)

= V
" #

t ," #
T

t (s) ' V
ö" #

t ," #
T

t (s) '
'

s! ,y |s

�V
t +1 (s! )

- *
µ(1 | 1, x)I

$
! µ > ö✓$

t

&
+ µ(1 | 0, x)(1 ' I

$
! µ > ö✓$

t

&
)
+
dFx (27)
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Proof of Theorem 3. First, observe that

ö✓$
t (! V

ö" #
t +1: T

t +1 ) * ö✓$
t (! V

" #
t +1: T

t +1 ) 1- ! V
ö" #

t +1: T
t +1 + ! V

" #
t +1: T

t +1 (28)

To see this, consider for simplicity a+ x
b+ x < a+ y

b+ y , where a = R(0), b = R(1), x = ! V ö" , y = ! V " #
. Note that a < b,

e.g. R(0) < R(1) and x > y and a+ x
b+ x < a+ y

b+ y 1- (a ' b)(y ' x) < 0, i.e. iff ! V ö" t +1: T
t +1 > ! V " t +1: T

t +1 .

Therefore we will show ! V
ö" #

t :T
t + ! V

" #
t :T

t , $t, s > 1.

We will also establish that for a given timestep, the bias in thresholds is decreasing in the system state (as are
the value function differences). To summarize, we consider the following inductive hypotheses:

! V
ö" #

t +1: T
t +1 + ! V

" #
t +1: T

t +1 (29)

✓t +1 (s) ' ö✓t +1 (s) * ✓t +1 (s ' 1) ' ö✓t +1 (s ' 1) (30)

! V " #
t +1: T (s) ' ! V ö" #

t +1: T (s) * ! V " #
t +1: T (s ' 1) ' ! V ö" #

t +1: T (s ' 1) (31)

We prove the inductive step by assuming the above inductive hypotheses are true for t! = t + 1 and verifying
that this implies they hold for t! = t. The main analysis is in verifying ! V

ö" #
t +1: T

t +1 + ! V
" #

t +1: T
t +1 , eq. (29), which

requires the other induction hypotheses. We first show the inductive step holds for eqs. (30) and (31) under the
induction hypotheses. Note that in the special case of t = T ' 2, only eq. (29) is needed.

Inductive step for eq. (30). To lighten the notation for the following comparisons, we denote ! )V $(s) =

! V ö" #
t :T (s), ! V $(s) = ! V " #

t :T (s).

✓t (s) ' ö✓t (s) * ✓t (s ' 1) ' ö✓(s ' 1)

1-
(R(0) ' R(1))(! V $(s) ' ! )V $(s))

(R(1) + ! V $(s))(R(1) + ! )V $(s))
>

(R(0) ' R(1))(! V $(s ' 1) ' ! )V $(s ' 1))

(R(1) + ! V $(s ' 1))(R(1) + ! )V $(s ' 1))

1-
! V $(s) ' ! )V $(s)

! V $(s ' 1) ' ! )V $(s ' 1)
<

(R(1) + ! V $(s))(R(1) + ! )V $(s))

(R(1) + ! V $(s ' 1))(R(1) + ! )V $(s ' 1))

where from the second to last line, we use the fact that R(0) ' R(1) < 0 by assumption (without loss of generality)
of Theorem 3 on the ordering of the rewards.

The LHS of the last inequality above is less than 1 by the induction hypothesis on value function differences in
states, ! V $(s) ' ! )V $(s) * ! V $(s ' 1) ' ! )V $(s ' 1).

The RHS is greater than 1 since

(R(1) + ! V $(s))(R(1) + ! )V $(s)) + (R(1) + ! V $(s ' 1))(R(1) + ! )V $(s ' 1)),

because Lemma 3 implies ! V (s) is increasing as s increases, so ! V $(s) + ! V $(s ' 1) and ! )V $(s) + ! )V $(s ' 1).

Inductive step for eq. (31).

Equation (31) is equivalent to showing ! V $(s) ' ! V $(s ' 1) * ! )V $(s) ' ! )V $(s ' 1). First we decompose the
difference into the single-stage reward difference term and the policy-induced transitions to next value functions.
Having verified eq. (30) for time t, in combination with assumption 10 which implies that greater differences in
biased vs. optimal thresholds lead to greater reward suboptimality, implies the single-stage term satisfies the
inequality. Verifying the inequality for the difference in value functions term holds by an argument similar to used
in showing eq. (30), that the region of integration (even after accounting for differences in thresholds) remains
one of positive measure, while the integrand is negative (satisfies the inequality) by the induction hypothesis for
eq. (31), for next-time-step value function differences over states.

Inductive step for ! V
ö" #

t +1: T
t +1 + ! V

" #
t +1: T

t +1 :

We first establish the base case by studying some properties of VT and its differences which simplify the analysis.

V
" #

T
T (s! ) ' V

ö" #
T

T (s! ) = V
" #

T
T (s) ' V

ö" #
T

T (s), $s, s! + 1 (32)
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Therefore ! V
" #

T
T (s) ' ! V

ö" #
T

T (s) = 0 , for s > 1.

Note that ✓$
T is independent of state. Under Assumption 2, when s > 2, V " #

T
T (s ' 1) ' V

ö" #
T

T (s ' 1) = V
" #

T
T (s) '

V
ö" #

T
T (s), since VT +1 (s) = 0 , since the only non-zero terms are invariant in states. The above follows by rearranging.

When s > 1, the statement is also true because next-stage value is 0 (independent of downstream estimation
error), and it is true by definition for s = 0 .

To establish the inductive step, we decompose ! V
" #

t +1: T
t +1 ' ! V

ö" #
t +1: T

t +1 . By definition,

! V
" #

t +1: T
t +1 (s) ' ! V

ö" #
t +1: T

t +1 (s) = ( V
" #

t +1: T
t +1 (s ' 1) ' V

ö" #
t +1: T

t +1 (s ' 1)) ' (V
" #

t +1: T
t +1 (s) ' V

ö" #
t +1: T

t +1 (s)) (33)

By lemma 5,

! V
" #

t +1: T
t +1 (s) ' ! V

ö" #
t +1: T

t +1 (s)

= ! V " #
t +1 ," #

T (s) ' ! V ö" #
t +1 ," #

T (s)

+
'

s! ,y |s

�V
t +1 (s! )

- *
µ(1 | 1, x)I

$
! µ > ö✓$

t +1

&
+ µ(1 | 0, x)(1 ' I

$
! µ > ö✓$

t +1

&
)
+
dFx

'
'

s! ,y |s" 1

�V
t +1 (s! )

- *
µ(1 | 1, x)I

$
! µ > ö✓$

t +1

&
+ µ(1 | 0, x)(1 ' I

$
! µ > ö✓$

t +1

&
)
+
dFx

Let C(y) =
R*

µ(1 | 1, x)I
$
! µ > ö✓$

t +1

&
+ µ(1 | 0, x)(1 ' I

$
! µ > ö✓$

t +1

&
)
+
dFx.

Then:

! V
" #

t +1: T
t +1 (s) ' ! V

ö" #
t +1: T

t +1 (s) (34)

= ! V " #
t +1 ," #

T (s) ' ! V ö" #
t +1 ," #

T (s)
8 9: ;

1

+ �V
T (s ' 1)(C(1) ' C(0)) + �V

T (s)C(0) ' �V
T (s ' 2)C(1)

8 9: ;
2

(35)

We first analyze 1 , the value function difference under a single-timestep policy difference. By Lemma 4,

! V
ö" #

t ," #
t +1: T

t (s) ' ! V
" #

t ," #
t +1: T

t (s)

= (2 V
" #

t +1: T
t +1 (s ' 1) ' (V

" #
t +1: T

t +1 (s) + V
" #

t +1: T
t +1 (s ' 2)))E[' ⌧ (X)I [ö✓$

t (s) * ! µ$(X) * ✓$
t (s)]]

+ E" #
t (s) " ö" #

t (s) [R(y) + V
" #

t +1: T
t +1 (s! ) | s ' 1] ' E" #

t (s" 1) " ö" #
t (s" 1) [R(y) + V

" #
t +1: T

t +1 (s! ) | s ' 1]

We establish that the last term is equivalent to integrating over an interval, such that the last term is generally
positive since the value functions are nonnegative. Therefore, in the general case, negativity of the first term
from the sufficient condition when t = T ' 2 isn’t completely sufficient. However, the same inequality may hold
given that the state-wise differences in biased threshold suboptimalities is not too large.

From the inductive hypothesis that ö✓t +1 (s) < ✓t +1 (s), $s > 1, and Lemma 3 which implies that ! V (s) is
increasing in s (by properties of discrete derivatives of discrete concave functions), we deduce:

ö✓t +1 (s) * ✓t +1 (s) * ✓t +1 (s ' 1), ö✓t +1 (s) * ö✓t +1 (s ' 1) * ✓t +1 (s ' 1) (36)

By the properties in eq. (36) and the induction hypothesis eq. (30), integrating against an increasing function in
! µ is nonnegative:

E
$
g(! µ)I

$
ö✓$
t +1 (s) < ! µ$ < ✓$

t +1 (s)
&

' I
$
ö✓$
t +1 (s ' 1) < ! µ$ < ö✓$

t +1 (s)
&&

+ 0.

We next analyze 2 . Note the inductive hypothesis implies �V
t +1 (s ' 1) * �V

t +1 (s), e.g. �V
t +1 (s) is decreasing in

s, by rewriting eq. (33) with definition of �V . We decompose C(1) ' C(0) as:

C(1) ' C(0) = (2 P (Y (0) = 1) ' 1) +
-

(2(⌘(1 | 1, x) ' ⌘(1 | 0, x)) ' 1)I
$
! µ > ö✓t +1

&
dFx
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Therefore, under Assumption 11,

2 = ( �V
T (s ' 1) ' �V

T (s))(C(0) ' C(1)) + ( �V
T (s ' 2) ' �V

T (s))C(1)

* 0

Simplification when t = T ' 1. When t = T ' 1, the sufficient condition is a direct consequence of eq. (35).
Since �V

T (s) = �V
T (s! ), $s, s! % S, 2 = 0 .

Applying Lemma 4,

! V
" #

T " 1: T
T " 1 (s) ' ! V

ö" #
T " 1: T

T " 1 (s)

= (( V " #
T

T (s) + V
" #

T
T (s ' 2)) ' 2V " #

T
T (s ' 1))E[' ⌧ (X)I [ö✓$

t (s) * ! µ$(X) * ✓$
t (s)]]

The first multiplicative term is negative by Lemma 3, concavity of V " #
T (s) in s.

Proofs of auxiliary lemmas

Proof of Lemma 3. This is a structural result of the dynamic pricing problem. We include the proof for com-
pleteness but the argument is not novel: we simply verify the adaptation of Theorem 1.18 Gallego et al. (2019)
holds for the contextual setting in this paper.

Note that the difference from that formulation is that randomness is modeled in the transition probabilities, not
the arrival rates of consumers, and we express ! V (s) = V (s ' 1) ' V (s) as the negative finite difference.

The proof shows concavity of Vt (s) in s by showing that ! V (s) is increasing in s; hence finite differences (discrete
derivatives) are decreasing so that the value function V is concave. The argument follows by forward induction
on the state space and a sample path argument.

The base case holds by definition of ! V (0) = '( ; clearly ! Vt (1) > ! Vt (0) for any t. The induction hypothesis
posits that for some s + 1 , following the optimal policies, ! V " #

t (s! ) is increasing in s! for s! * s for all t. We
want to show ! V " #

t (s + 1) + ! V " #

t (s), or equivalently

V " #

t (s + 1) + V " #
(t, s ' 1) * V " #

(s) + V " #
(s)

We verify the sample path argument of Gallego et al. (2019) holds in this setting with actions taken in the
marginal MDP formulation. We will show:

V " # (s+1)
t (s + 1) + V " # (s" 1)

t (s ' 1) * V " # (s+1) (s) + V " # (s" 1) (s)

Clearly by suboptimality of the policies optimal at states s + 1 , s ' 1 for state s, V " # (s+1) (s) + V " # (s" 1) (s) *
V " # (s) (s) + V " # (s) (s) so showing the above inequality is sufficient to verify the inductive step.

The sample path argument tracks the usage of the suboptimal policies of the left-hand-side original-state s + 1
and s ' 1 systems, ⇡$(s + 1) ,⇡$(s ' 1) for the right-hand-side state-s system, until one of the following cases:
t = T (time runs out); at some t! + t the difference in inventories of the state-s+ 1 and state s ' 1 systems drops
to 1, or the state of the original state s ' 1 system drops to 0. Then the optimal policies for the system state
are followed thereafter.

Case 1: Use ⇡$(s + 1) ,⇡$(s ' 1) for the two state s systems, respectively, until the end of selling horizon.

The realized revenues by following the same randomness sample path and same action policies are identical by
following the same policies.

Case 2: At some t! + t the difference in inventories of the state s + 1 and state s ' 1 systems drops to 1.

Up to this stopping time, the realized revenues are identical by the stopping path argument. Because the
transition realizations are identical, then the right-hand-side systems have the same state space as the left-hand-
side systems, since under ⇡$(s + 1) , s ' s! items sold while under ⇡$(s ' 1), s ' s! ' 1 items had sold. At some
t! + t, at some state s! * s, following optimal policies thereafter, the LHS value functions are given by

V
" # (s! +1) t ! ," #

t +1: T
t ! (s! + 1) + V

" # (s! +1) t ! ," #
t +1: T

t ! (s! ) + V " # (s! ) t ! ," #
t +1: T (s! ) + V

" # (s! +1) t ! ," #
t +1: T

t ! (s! + 1)
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so that the remaining optimal expected revenues are identical.

Case 3: For some t! < T , original state s ' 1 system stocks out, e.g. has st ! = 0 .

At this point, following policy ⇡$
t (s+1) yields a state s! such that 1 < s! * x+1 (the first inequality holds because

otherwise we would be in case 2), so that the states at this timepoint are (t! , s! ), (t! , 0). By the sample path
argument, identical amounts of goods have sold so the states of the right-hand-side systems are (t! , s! ' 1), (t! , 1).
By the inductive hypothesis, ! V

" #
t ! (s! )

t ! (s! ) + ! V
" #

t ! (1)
t ! (1) for all s! * s + 1 and all t! * t. We verify the

downstream revenues are at least as high for the right hand systems:

V " #

t ! (s! ) + Vt ! (0) * Vt ! (s! ' 1) + Vt ! (1)

The inductive hypothesis verifies that ! V (s! ) + ! V (1), which verifies the above.

Proof of Lemma 4. Since we restrict attention to single-timestep deviations (following the optimal policy after),
we can write ö⇡$(! V

" #
t +1: T

t +1 (s)) in terms of a single threshold based on the optimal value function difference,
✓$ = ✓$(! V

" #
t +1: T

t +1 (s)) .
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The claim follows from the above simplification and by expanding the definition,

! V
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and algebraic manipulation of the resulting expression. The statement for t = T ' 1 follows since ✓T " 1 is the
same for all states, so that the reward differences also cancel out when the differences of ! V are considered.

For t < T ' 1, relative to the simplification of T ' 1 we obtain an additional term that arises from the differences
in ✓t +1 (s) ' ö✓t +1 (s) for different states s:
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Proof of lemma 5.
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and collect terms corresponding to V
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t (s) ' V
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t :T

t (s).
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C Discussion

C.1 Further Related Work

Algorithmic analysis under known distributions. Algorithmic analysis, building on online/approximation
algorithms and approximate dynamic programming also requires known demand distributions, hence is com-
plementary Gallego et al. (2019). Our approach is particularly beneficial in handling high-dimensional context
variables Xt . Naive extensions of these approaches, for example applying them to an MDP with state aggregation
on Xt , incurs statistical bias in general due to discretization. On the other hand, using action-history dependent
policies achieves stronger regret guarantees in recent work, e.g., that include resolving (model-predictive control)
Bumpensanti and Wang (2020). In contrast, we restrict to state- and time-dependent, but history-independent,
policy specifications.

Off-policy policy learning leveraging off-policy evaluation. We also compare to backwards-recursive
off-policy learning approaches in the dynamic treatment regime literature. In some sense, the DTR/longitudinal
causal inference is the opposite of our setting: the difficulty arises from longitudinal dynamics of the same
individual. Zhang et al. (2013) studied an AIPW estimator in the dynamic treatment regime setting but handle
policy-dependent nuisances by approximating with a Q function optimized by another method. Zhao et al. (2015)
proposes “backwards outcome-weighted learning" which considers backwards induction on an inverse-propensity
weighted estimator that conducts importance sampling in the space of trajectories. Their direct consistency
analysis of the backwards induction incurs exponential dependence on horizon.

Clarification to other settings. Emek et al. (2020) introduces “stateful online learning”, a version of online
adversarial learning with state information, but their setting is different. In particular, they focus on MDPs with
deterministic transitions and assume bounded-loss simulatability from any state, focusing on the adversarial
setting. Our focus on offline contextual decision-making with state information is different from the contextual
MDP model where contexts index MDP models themselves.

C.2 Additional examples of stateful problems

Example 5 (Multi-item network revenue management). Multi-item network revenue management is easily
modeled as a modification of Example 1 with additional outcomes (products). Consider a setting with J different
products and K many resources, so that M %RK ' J is the resource consumption matrix, where Mij describes
how much of resource i product j requires. Denote the event I [s feas. for j] áá=

S

i # [M ]
I [Mij < si ], which describes

the event that the state variable s is feasible to produce product j.

We suppose a joint distribution on (X,Z), e.g. we have exogenous context arrivals and exogenous Z | X product
types (which may be conditional on the context in the most general case). Therefore at each timestep we sell at
most one product at a time.

The multiple product Qt (s, x, j, a) function on the expanded state space (including product arrival type) is
analogous. In this case, the context-marginalized value notation, ÷V "

t (S), is overloaded: it now marginalizes over
the joint distribution of contexts and product types.

Example 6 (Pricing and repositioning). We adapt a simplified example of setting rental price for vehicles at
beginning of each period in a finite (or possibly infinite) planning horizon to a contextual setting El Shar and
Jiang (2020). Repositioning is achieved by setting prices to induce directional demand. Discrete state space S
denotes the number of cars at a station, with s the maximum number of cars in vehicle sharing system. Between
locations there is a known origin-destination transition probability �ij . Yik,t +1 is a random variable taking
values in [N ] that represents the random destination of customer k at station i; observed at the beginning of
period t + 1 . Uncontextually, Yik,t +1 = j w.p. �ij . Contextually, we consider (Xt , Ot , Dt ) exogeneous covariate
and origin-destination request, and the individual demand is a binary outcome in response to price, Y (pit ). To
determine the cost function, let `(i, j) be the distance from station i to j, and consider a lost sales unit cost
⇢i , i %[N ]. The decision vector pt = { pit %[p

i
, pi ], $i %[N ]} sets prices for each station. To instantiate the key

assumption in this setting, our stateful formulation holds if we believe that the underlying system state St is not
a confounder because it does not affect whether or not an individual demand arrival responds to price.



Stateful O!ine Contextual Policy Evaluation and Learning

V $ (St , Xt , (Ot , Dt )) =

max
p t

E[pit I [Y = 1] | Xt , pit , Ot , Dt ]`(Ot , Dt )8 9: ;
spatial pricing

' ⇢Ot I [St (Ot ) = 0]
8 9: ;

lost sales penalty

+ �E[ ÷V $ (St +1 ) | pit , Xt , Ot , Dt ]


