
Recoverability Landscape of Tree Structured Markov Random Fields
under Symmetric Noise

Ashish Katiyar Soumya Basu Vatsal Shah Constantine Caramanis
Amazon Google Amazon UT Austin

Abstract

We study the problem of learning tree-
structured Markov random fields (MRF) on
discrete random variables with common sup-
port when the observations are corrupted by a
k-ary symmetric noise channel with unknown
probability of error. For Ising models (support
size = 2), past work has shown that graph
structure can only be recovered up to the leaf
clusters (a leaf node, its parent, and its sib-
lings form a leaf cluster) and exact recovery
is impossible. No prior work has addressed
the setting of support size of 3 or more, and
indeed this setting is far richer. As we show,
when the support size is 3 or more, the struc-
ture of the leaf clusters may be partially or
fully identifiable. We provide a precise charac-
terization of this phenomenon and show that
the extent of recoverability is dictated by the
joint PMF of the random variables. In par-
ticular, we provide necessary and sufficient
conditions for exact recoverability. Further-
more, we present a polynomial time, sample
efficient algorithm that recovers the exact tree
when this is possible, or up to the unidenti-
fiability as promised by our characterization,
when full recoverability is impossible. Finally,
we demonstrate the efficacy of our algorithm
experimentally.

1 INTRODUCTION

Markov Random Fields (MRFs) provide a useful frame-
work for modeling high dimensional probability distri-
butions via an associated dependency graph G, which
captures the conditional independence relationships be-
tween random variables. Here, the nodes correspond to

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

the random variables; edges represent the conditional
independence relationships between these nodes. Any
random variable conditioned on the random variables
with which it shares an edge is independent of all the
remaining random variables.

This ‘Markov’ property has encouraged the adoption of
MRFs in a wide variety of fields such as computer vision,
finance, biology, and social networks. Here, MRFs
model various inference tasks via popular algorithms
such as loopy belief propagation, message passing, etc.
For a deeper understanding of these underlying ideas
and applications, we refer the reader to Lauritzen [1996],
Koller and Friedman [2009], Wainwright and Jordan
[2008], Pearl [2014].

A special class of graphical model where the underlying
graph is tree-structured is suited for applications where
sample efficient learning, and time-efficient inference
are required with strong theoretical guarantees. As a
result, the problem of learning tree-structured graphical
models from data has been well-studied since the 1960s.
In the seminal work Chow and Liu [1968], the authors
propose the Chow-Liu algorithm, which shows that the
maximum weight spanning tree of the empirical mutual
information between all the pairs of random variables
corresponds to the maximum-likelihood tree estimate.
In practice, it is rare to observe the random variables
without noise, as sources of noise are ubiquitous, e.g.
errors in sensors, incorrect human labeling. In Niko-
lakakis et al. [2019], the authors present numerous
motivating examples from social science, epidemiology,
biology, differential privacy, and finance, where noise
is present in the observations. Unfortunately, in the
face of corruption by unequal noise in the nodes, the
Chow-Liu algorithm breaks down. This occurs as the
noise in the random variables alters the order of the
pairwise mutual information. The noise also destroys
the tree structure by adding fictitious edges. Moreover,
as noise is unknown, the structure of a noisy graphical
model could possibly originate from different tree struc-
tures. This brings the recoverability of the original tree
structure into question.

In this paper, we focus on learning the underlying

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

tree-structured graphical model on non-noisy discrete
random variables using samples that are corrupted by
a k-ary symmetric noise channel (where k is the size
of the common support of all the random variables).
Our work reveals a rich recoverability landscape for
MRFs under symmetric noise. We discover that when
k ≥ 3, for a fixed underlying tree structure, the re-
coverability is determined by the pairwise PMF of the
non-noisy random variables. This is in contrast to
the Gaussian graphical model and Ising model results
(Katiyar et al. [2019], Katiyar et al. [2020], Tandon
et al. [2021]) where, for a fixed tree structure, edges
within a leaf cluster (a leaf node, its parent, and its
siblings) are never recoverable irrespective of the prob-
ability distribution of the non-noisy random variables.
We completely characterize the recoverability for k ≥ 2
by providing the necessary and sufficient conditions for
the identifiability of the edges within a leaf cluster.

Our contributions can be summarized as follows:

1. Identifiability Characterization: In Theorem 1,
we completely characterize the recoverability of tree-
structured MRF on support size k when the observa-
tions come from unknown k-ary symmetric channel
noise where each node has a different error proba-
bility. We show the identifiability depends on the
PMF of the non-noisy random variables, which is
unobserved. This dependence can then be translated
to the PMF of the noisy random variables, which is
observed, that provides the characterization.
We show that for the special class of Symmetric
Graphical Models (as defined in Section 4.4), for any
k, the nodes within a leaf cluster are unidentifiable.
On the other direction, we show for the class of
Perturbed Symmetric Graphical Models (details in
Section 4.4) for k ≥ 4, the exact tree is identifiable.

2. Algorithm: We develop an algorithm that recov-
ers the class of candidate trees that can explain the
noisy observations. In the identifiable setting, this
corresponds to recovering the exact tree. The algo-
rithm is iterative where we recover one edge from
the candidate tree per iteration. (Section 5).

3. Sample Complexity Analysis: We provide novel
sample complexity lower bounds and upper bounds
(Section 6). Our upper bounds are shown to have
orderwise tight dependence on underlying graph pa-
rameters, size of the graph, edge parameters (related
to underlying conditional PMF), and noise param-
eters. The lower bound proof relies on a novel con-
struction of a class of graphical models including
perturbed symmetric graphical models where part
of the leaf clusters are identifiable.

4. Experiments: We demonstrate the efficacy of our
algorithm via extensive numerical experiments for
a variety of trees with different structures, edge pa-
rameters, corruption, and support sizes.

2 RELATED WORK

We divide the related work into three main categories:
Learning Generic Graphical Models from Non-
Noisy Samples: There exists a rich literature on
the problem of learning graphical models on discrete
random variables which assume access to non-noisy
samples: Bresler et al. [2014b, 2008], Bresler [2015],
Bresler et al. [2014a], Lee et al. [2007], Klivans and
Meka [2017], Wu et al. [2019], Ravikumar et al. [2010].
However, these models do not provide guarantees in
the face of noise in the samples.
Learning Tree-Structured Graphical Models:
The special class of tree-structured graphical models
has also been extensively studied beginning with the
classical Chow-Liu algorithm was proposed in Chow
and Liu [1968]. Chow-Liu algorithm’s error exponents
for Gaussian graphical models and graphical models
on discrete random variables were analyzed in Tan
et al. [2010] and Tan et al. [2011] respectively. Results
in Tan et al. [2011] were further refined in Tandon
et al. [2020] under additional assumptions of homo-
geneity and zero external field in tree-structured Ising
models. In Bresler and Karzand [2016] the authors
approximate the distribution of generic Ising models
using tree-structured Ising models. More recently, in
Daskalakis and Pan [2020], the authors provide an algo-
rithm to learn tree-structured Ising models providing
total variation distance guarantees. In Bhattacharyya
et al. [2020], the authors provide finite sample guaran-
tees for the Chow-Liu algorithm. As these algorithms
assume access to non-noisy samples, no performance
guarantees can be established when the samples have
noise.
Robust Estimation of Graphical Models: Robust
estimation of graphical models has been studied in
multiple prior works but they are unable to resolve our
setting. The algorithms in Goel et al. [2019], Lindgren
et al. [2019], Hamilton et al. [2017] learn graphical
models on discrete random variables without the tree
structure assumption but assume access to error prob-
abilities. This is complementary to our setting as we
have the tree structure constraint but do not require
the knowledge of the error probabilities.

Recovering Ising models robust to a noise model where
a fraction of samples are arbitrarily corrupted has been
studied in Prasad et al. [2020] and Diakonikolas et al.
[2021]. While we allow all the samples to be noisy, we
restrict the noise to a k-ary symmetric noise channel.
On the contrary these papers allow the noise to be
arbitray, however, they require access to a fraction of
clean samples. Thus, the techniques proposed in these
papers are inapplicable in our setting.

In Tandon et al. [2020], Nikolakakis et al. [2019, 2020],
the authors study the recovery of trees using noisy sam-

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

ples. Critically, they operate in the restricted regime
where the Chow-Liu algorithm converges to the correct
tree. While these results are insightful in their own
right, their assumptions are generally violated in our
setting making their results inapplicable.

For Gaussian graphical models and Ising models, the
unidentifiability properties are established in Katiyar
et al. [2019] and Katiyar et al. [2020], respectively. In
Tandon et al. [2021] the authors extend the results in
Katiyar et al. [2019, 2020], providing better sample
complexity results and a more efficient algorithm. The
critical limitation of these results is that they do not
extend to discrete random variables with support sizes
larger than 2 and therefore fail to capture the nuanced
identifiability properties demonstrated in our setting.

Finally, our problem can be posed as the latent tree
graphical model estimation problem, where the noisy
nodes are observed and non-noisy nodes are latent.
Results for learning latent tree graphical models in
Pearl and Tarsi [1986], Chang [1996], Choi et al. [2011],
and independently and concurrently in Casanellas et al.
[2021], can be used to recover the underlying tree bar-
ring the nodes within leaf clusters. Importantly, these
models do not assume any structure on the noise, and
thereby, contrived noise models make it impossible to
recover nodes within a leaf cluster. As a result they fail
to uncover the possibility of identifiability within a leaf
cluster when we consider the natural k-ary symmetric
channel noise model.

3 PROBLEM SETUP

Let X = [X1, X2 . . . Xn] be the vector of random vari-
ables with a common support set, S = {s1, s2, . . . sk}
such that their graphical model structure is a tree T ∗.
The vanilla learning problem is to recover the tree T ∗

from i.i.d samples of Xi.

In this paper, we consider the problem of recovering T ∗

but we do not get to observe samples of Xi. Instead,
the samples of Xi pass through a k-ary symmetric noise
channel and we observe the output denoted by X ′

i, that
is,

X ′
i =

{

Xi w.p. 1− qi,

Ui w.p. qi,
(1)

where qi is the probability of error for Xi and Ui is
a discrete random variable independent of X and Uj

∀j ̸= i, distributed uniformly on S. Note that qi can
be unequal for all Xi. The vector of the noisy random
variables is denoted by X

′ = [X ′
1, X

′
2 . . . X

′
n]. Due to

the noise in Xi, the graphical model of the nodes in
X

′ is no longer given by T ∗. In general, the graphical
model on the noisy random variables can be a complete
graph.

Matrix PMF and Distance Notation: We denote
the joint PMF matrix for random variables (Xa, Xb),
and (X ′

a, X
′
b) by the matrix Pa,b and Pa′,b′ respectively,

such that:

(Pa,b)i,j = P (Xa = si, Xb = sj),

(Pa′,b′)i,j = P (X ′
a = si, X

′
b = sj).

The conditional PMF of Xa conditioned on Xb is de-
noted by the matrix Pa|b while the marginal distribu-
tion of random variables Xa and X ′

a are denoted using
diagonal matrices Pa and Pa′ respectively such that:

(Pa|b)i,j = P (Xa = si|Xb = sj),

(Pa)i,i = P (Xa = si), (Pa′)i,i = P (X ′
a = si).

The information distance metric between two nodes
proposed in Lake [1994], is defined as follows:

di,j = − log
|det(Pi,j)|√

det(Pi)det(Pj)
. (2)

We require the following assumptions that are natural
and standard in this line of literature (c.f. Chang [1996],
Choi et al. [2011]).

Assumption 1. The probability mass at every support
for each non-noisy random variable is bounded away
from 0 : (Pa)i,i ≥ pmin > 0.

Assumption 2. The distance di,j between adjacent
non-noisy random variables is bounded: 0 < dmin <
di,j < dmax.

Assumption 3. The probability of error is upper
bounded away from 1: qi ≤ qmax < 1.

Assumption 1 ensures that the probability mass at any
support is not arbitrarily small for any random variable.
The bounds on the distance in Assumption 2 ensure
that no adjacent random variables are duplicates or
independent. Assumption 3 ensures that the noisy
observations are not independent of the underlying
random variables. Our sample complexity lower bounds
in Section 6 show that the problem becomes infeasible
if these assumptions are not satisfied.

Lastly, we also formally define a leaf cluster as follows:

Definition 1. The leaf cluster of any leaf node is
the set containing that leaf node, its parent node and
all its sibling leaf nodes.

4 IDENTIFIABILITY RESULTS

In this section, we prove that the identifiability of the
underlying tree is determined by the joint PMF of leaf
parent pairs. We do not assume access to dmin and
dmax. It is straightforward to extend it to a setting
when dmin and dmax are known by ruling out any tree

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

which violates the distance constraints. The proof is
divided in 3 parts - (i) prove that the only potential
unidentifiability is within the leaf clusters of the tree,
(ii) analyze the existence of valid probability of error
for a tree on three nodes, (iii) extend the analysis to a
generic tree and arrive at the necessary and sufficient
condition for identifiability.

4.1 Potential unidentifiability is limited to
leaf clusters

For any tree T ∗, Katiyar et al. [2019] defined the equiv-
alence class TT∗ to be the set of all the trees obtained
by different permutations of nodes within a leaf clus-
ter, and showed that in the Gaussian graphical model
setting, TT∗ can be recovered. We show here that with
a few new proof ideas, essentially the same is true for
graphical models on discrete random variables with
general support size k:

Lemma 1. Suppose the random variables in X form
a tree graphical model T ∗. Given samples from noisy
random variables X ′

i, it is possible to recover the equiv-
alence class TT∗ .

Proof Idea. The proof of this lemma is similar in spirit
to Katiyar et al. [2019] and so we defer the details
to Appendix A. The proof depends on categorizing
groups of 4 nodes as a non-star when 2 of the nodes
lie in one subtree and the remaining 2 nodes lie in a
disjoint subtree. The key new element we need for this
categorization in the discrete setting for general k, is
the information distance metric di,j as defined in (2).
Remarks: (i) Lemma 1 is not limited to the k-ary sym-
metric noise channel and holds for any noise channel
such that when conditioned on Xi, X

′
i is independent

of Xj ∀j ∈ [n] ̸= i and Xi and X ′
i are not indepen-

dent. This result was independently and concurrently
derived in Casanellas et al. [2021]. (ii) If there are no
restrictions on the noise channel, recovering TT∗ is the
best we can do. That is, for every tree in TT∗ , it is
possible to construct a noise model that can produce
the noisy observation. This analysis along with the
proof of Lemma 1 is included in Appendix A.

4.2 Error Estimation for a Tree on 3 Nodes

Additional Notation for k-ary Symmetric Chan-
nel: For each random variable Xa, we define a k × k
error matrix Ea as follows:

Ea = (1− qa)I +
qa
k O,

where O is a matrix of all ones. Recall that k is the
common support size for all the random variables and
qa is the probability of error of Xa.
Note that Pa′,b′ and Pa,b are related as follows:

Pa′,b′ = EaPa,bEb. (3)

It is also easy to see that:

Pa′ = (1− qa)Pa +
qa
k I. (4)

Error Estimation: Suppose there exist 3 nodes such
that X1 ⊥ X3|X2 and we observe X ′

1, X ′
2 and X ′

3

through a k-ary symmetric channel as defined in Equa-
tion (1). The conditional independence relationship
gives us:

P1,3 = P1,2P
−1
2 P2,3. (5)

From Equation (3), we have P1′,3′ = E1P1,3E3, P1′,2′ =
E1P1,2E2, P2′,3′ = E2P2,3E3. From Equation (4), we
have P2′ = (1− q2)P2 +

q2
k I. By substituting these in

Equation (5) we get the following quadratic equation
with matrix coefficients in noise parameter q2 (details
in Appendix B):

q22
k2

(O − kI)− q2
k
(OP2′ + P2′O − kP2′ − I)+

P2′,3′P
−1
1,′3′P1′,2′ − P2′ = 0,

(6)

where the 0 on the RHS is a k×k matrix of all 0s. The
key insight here is that, Equation (6) depends only on
the noisy observations. Therefore, in the absence of the
knowledge of conditional independence relation, it can
be used as a test to check if the noisy observations can
potentially be explained by X1 ⊥ X3|X2. Precisely,
for a graph on 3 nodes (X1, X2, X3), X2 is a potential
middle node if it can satisfy Equation (6) for some
noise parameter q2 ∈ [0, qmax]. In other words, X2 is a
potential middle node if the following holds, with ∥ · ∥F
as the Forbenius norm of a matrix:

min
0≤x≤qmax

∥x
2

k2
(O − kI)− x

k
(OP2′ + P2′O − kP2′ − I)

+ P2′,3′P
−1
1,′3′P1′,2′ − P2′∥F = 0.

(7)
This is equivalent to k2 quadratic equations correspond-
ing to each element of the matrix having a common
root which lies between 0 and qmax. These equations
need not be unique.

4.3 Extension to a generic tree

Before presenting the identifiability result, we first es-
tablish some notation. Let L be the set containing all
the leaf nodes of the tree-structured graphical model
T ∗. Now, consider the subset of leaf nodes with the fol-
lowing property: the leaf node X2, its parent node X1,
and any arbitrary node X3 from the graph have a so-
lution to Equation (7). We label this subset Lsub ⊆ L.
T sub
T∗ ⊆ TT∗ represents the equivalence class where only

leaves in Lsub can exchange positions with their par-
ents.
The next theorem completely characterizes the identi-
fiability of the underlying tree for a k-ary symmetric
noise channel.

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

Theorem 1. Suppose the random variables in X form
a tree-structured graphical model T ∗. Let X

′ be the
observed noisy output after passing X through a k-ary
symmetric channel. Then, we show that for any leaf
node X2 ∈ Lsub and its parent node X1, equation (7)
remains unchanged for any arbitrary third node X3 from
the graph. Using X

′, we can recover T sub
T∗ . Moreover,

for every tree T̃ ∈ T sub
T∗ , there exist random variables X̃

and a k-ary symmetric channels such that the graphical
model of X̃ is T̃ and the k-ary channel output is X

′.

Proof Idea: As the unidentifiability is only between the
nodes within a leaf cluster, the key idea is to study a
subset of 3 nodes comprising of a leaf parent pair and
an arbitrary third node. It is clear that, Equation (7)
has a solution when the parent node is the middle node.
Whenever Equation (7) does not have a solution for a
given node being a candidate center node, we can rule
out the possibility of that node being a parent node.
We further show that when the solution exists for a
leaf node as a candidate center node, we can construct
a tree where the parent node exchanges position with
the leaf node. The details are presented in Appendix
C.

4.4 Examples

Theorem 1 naturally gives rise to the questions - (i)
is it possible that Equation (7) never has a solution,
or (ii) is it possible that Equation (7) always has a
solution, irrespective of the joint PMF of the random
variables. In this section we demonstrate that neither
of that is the case by considering 2 classes of graphical
models - symmetric and perturbed symmetric graphical
models. We prove that symmetric graphical models are
unidentifiable, whereas perturbed symmetric graphical
models are unidentifiable for k = 3 but are identifiable
for k ≥ 4. Finally, we show that our analysis recovers
the existing results for k = 2. Note that we do not
assume access to qmax and analyse the solution to
Equation (7) with the constraint 0 < x < 1. Extension
to the setting of 0 < x < qmax is straightforward where
we reject any solution x > qmax.

Symmetric graphical models: Symmetric graphi-
cal models are a class of graphical models where the
marginals of all the random variables are uniform on
the support and the conditional PMF matrix Pa|b for
random variables Xa, Xb that have an edge between
them, takes the following form:

Pa|b = Pb|a = αa,bI + (1− αa,b)
O
k .

Recall that O is the matrix of all ones. The
bounds on the distance in Assumption 2 enforces
exp (−dmax/(k − 1)) < αa,b < exp (−dmin/(k − 1)).

Theorem 2. Suppose the random variables in X form
a tree graphical model T ∗. Let X2 be any leaf node and

X1 be its parent node. If P1 = P2 = I
k and P2|1 =

α2,1I + (1 − α2,1)
O
k such that exp (−dmax/(k − 1)) <

α2,1 < exp (−dmin/(k − 1)), then Equation (7) has a
solution.

The proof is included in Appendix D. Since, Equation
(7) has a solution for every leaf node X2 as the candi-
date center node, using Theorem 1, we conclude that
symmetric graphical models are unidentifiable.

Perturbed symmetric graphical models: We first
define a k × k perturbation matrix ∆a,b. For a given
offset ca,b ∈ {1, 2, . . . , k − 1}, the term in the (i, j)
position of ∆a,b is:

∆a,b(i, j) =

{
δa,b, for j = ((i− 1 + ca,b)%k) + 1

0, o/w.

In the perturbed symmetric model, the marginals con-
tinue to be uniform on the support but the conditional
PMF matrix Pa|b for adjacent Xa and Xb is modified
to:

Pa|b = (αa,b − δa,b)I + (1− αa,b)
O
k +∆a,b.

Here αa,b and δa,b are chosen such that Assumption 2
is satisfied. We find that perturbed symmetric graph-
ical models are unidentifiable for k = 3 but become
identifiable for k ≥ 4.

Theorem 3. Suppose the random variables in X form
a tree graphical model T ∗. Let X2 be any leaf node
and X1 be its parent node. Suppose P1 = P2 = I

k and

P2|1 = (αa,b − δa,b)I + (1 − αa,b)
O
k + ∆a,b such that

|δa,b| > 0, αa,b ≠ δa,b, and αa,b, δa,b are such that the
distance assumptions in 2 are satisfied. Then, equation
(7) has a solution for k = 3, but does not have a solution
for k ≥ 4.

Proof Idea. The proof for k ≥ 4 relies on lower bounding
the Frobenius norm of the quadratic away from 0. In
conjunction with Theorem 1, this implies that the
exact tree is identifiable when k ≥ 4. For k = 3, we
explicitly calculate the solution to Equation (7). Note
that, for k = 3 the class of symmetric and perturbed
symmetric graphical models together comprise all the
joint PMF matrices that are circulant. In fact, for
k = 3, when the marginals are uniformly distributed,
the joint PMF matrix being circulant is a necessary and
sufficient condition for unidentifiability. These details
are presented in Appendix E.

Unidentifiability when k = 2: We now discuss the
unidentifiability for k = 2.

Lemma 2. Suppose the random variables in X have
support size k = 2 and they form a tree graphical model
T ∗. The random variables in X pass through a binary

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

Figure 1: At each iteration, the algorithm uses the
GetLeafParent routine to find a leaf parent pair
from the active set of nodes, registers the edge between
them, and removes the leaf node from the active set of
nodes.

symmetric channel with positive probability of error and
we observe X

′. For any 3 nodes (X1, X2, X3), Equation
(7) always has a valid solution.

The proof of Lemma 2 is in Appendix F. Corollary 1
recovers the unidentifiability results of Katiyar et al.
[2020].

Corollary 1. When the random variables in X have a
support size of 2 and all the parents of leaf nodes have
non-zero noise, we have T sub

T∗ = TT∗ .

5 ALGORITHM

In this section, we present the algorithm to recover
a tree from T sub

T∗ given samples corrupted by a k-ary
symmetric noise channel as inputs.

Key Idea: The algorithm to recover the tree is an
iterative one. During an iteration, we have an active
set of nodes which are guaranteed to form a subtree. At
each iteration, we find a leaf parent pair in the subtree,
record that edge, and remove the leaf node from the
active set of nodes. The algorithm to recover the tree
structure is presented in Algorithm 1. A toy example
illustrating the steps of the algorithm in the completely
identifiable setting is presented in Figure 1.

Algorithm 1 Recover Tree Structure

Input : Pairwise noisy distributions, P ′
i,j ∀i, j ∈ [n]

Output : List of edges, Edges
1: procedure FindTree(P ′

i,j ∀i, j ∈ [n])
2: ActiveSet← {1, . . . n} Edges← {} Parents← {}
3: while |ActiveSet| > 2 do
4: leaf, parent← GetLeafParent(P ′

i,j ,. . .
5: ActiveSet, Edges, Parents)
6: ActiveSet← ActiveSet \ leaf
7: Edges← Edges ∪ (leaf, parent)
8: Parents← Parents ∪ parent

9: Edges← Edges ∪ (ActiveSet[0], ActiveSet[1])
10: return Edges

Figure 2: (a) If the node z lies between l and r, l
becomes z, hence getting closer to r. (b) If the node
r lies between l and z, both l and r shift towards the
right with l becoming r and r becoming z.

Finding a leaf parent pair: We next describe the
algorithm to find a leaf parent pair. We maintain two
nodes - a left node l, and a right node r. The idea is
to move both the nodes towards the right side till r is
a leaf node and l is its parent node. In order to do this
we consider a third node z and perform the following
operations:

1. If the center node in (l, r, z) is z, we shift node l to
node z,

2. If the center node in (l, r, z) is r, we shift node l to
node r and node r to node z.

This is illustrated in Figure (2). Finding the center
node can be done by checking the feasibility of Equation
(7) for different candidate center nodes.

If Equation (7) has a solution for more than one nodes,
we use an alternative method which uses the 3 nodes
in conjunction with different 4th nodes. These 4 nodes
are categorized as star/non-star to arrive at the center
node. While doing the test for the center node, we only
consider the nodes with pairwise distances smaller than
4dmax + 3ηmax. Here ηmax is an upper bound on the
distance between a clean and noisy node. For a given
pmin and qmax from Assumption 1 and 3 respectively,
ηmax = (1− k) log(1− qmax)− 0.5k log pmin (details in
Appendix G). This makes it easy to adapt the algorithm
for the finite sample setting.

Finite sample algorithm: The finite sample version
of the algorithm uses the empirical estimate of the
joint PMF of random variables to test for the center
node given a set of three nodes. We only perform
the test for nodes that whose empirical distance is
small to avoid a sample complexity exponential in the
diameter of the graph. For the test of center node by
checking for existence of a solution to Equation (7)
using empirical PMF estimates, we need the following
additional assumption:

Assumption 4. When Equation (7) does not have a

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

solution, we have the following inequality:

min
0≤x≤qmax

∥x
2

k2
(O − kI)− x

k
(OP2′ + P2′O − kP2′ − I)

+ P2′,3′P
−1
1,′3′P1′,2′ − P2′∥F > t0.

This assumption ensures that when Equation (7) does
not have a solution for a leaf node X2 as a center node,
it can be detected in the presence of perturbations
due to finite samples. In Appendix G, we provide the
details of the algorithm including finding the center
node, and necessary modifications for executing the
algorithm using finite samples. In addition, we also
include the pseudocode and the proof of correctness of
the algorithm.

Insights into the input parameters of the al-
gorithm: The algorithm in its vanilla form requires
dmin, dmax, qmax, pmin and t0 in addition to the noisy
samples as inputs. While the dependence on the knowl-
edge of qmax is necessary, it is possible to obtain es-
timates of bounds of dmin and dmax using the noisy
samples. This comes at the cost of higher sample com-
plexity. Dependence on t0 can also be avoided at the
cost of higher time complexity. This is detailed as
follows:

• The upper bound on dmax is denoted by d̃max. It
is defined as d̃max = maxi minj ̸=i di′j′ . This bound
can potentially be loose by 2ηmax.

• If the ground truth is such that dmin − 2ηmax > 0
then a lower bound on dmin, denoted by d̃min, can
be defined as d̃min = mini minj ̸=i di′j′−2ηmax. This
bound can also be loose by 2ηmax.

• If pmin and qmax are such that pmin > qmax then
a valid lower bound on pmin is mini(Pa′)i,i − qmax

which can potentially be loose by qmax.
• In the absence of the knowledge of t0, we can use the

star/non-star test for finding the center node among
3 nodes as long as no 2 nodes belong to the same
leaf cluster. This increases the time complexity of
finding the center node from O(1) to O(n). Once we
get nodes within the same leaf cluster, the potential
center node with the minimum objective function in
Equation (7) is chosen as the center node.

6 SAMPLE COMPLEXITY

RESULTS

In this section, we provide both the sample complexity
upper bounds and sample complexity lower bounds for
recovering the tree using our algorithm in presence of
corrupted samples.

Theorem 4 (Sample Complexity Upper Bound).
Suppose the random variables in X form a tree graphical

model T ∗ and we observe X
′ such that Assumptions 1,

2, 3 and 4 are satisfied. Then there exists N0, where

N0 = O

(

max

{

k4 exp(8dmax)

(1−qmax)6(k−1)(kpmin)5k(1−exp (−2dmin))2
,

k5 exp(16dmax)

t20(1−qmax)12(k−1)(kpmin)10k

}

log
(

2nk(n−1)
δ

)

)

such that when N > N0, the finite sample Algorithm
1 correctly recovers T sub

T∗ with probability at least 1− δ.

In the unidentifiable setting, since Equation (7) always
has a solution, our algorithm finds more than one
candidate center nodes and therefore resorts to the
star/non-star test for finding the center node. In the
sample complexity, the second term in the max comes
from the quadratic test and therefore it can be dropped.
As a result, since we have an easier learning problem
of learning only TT∗ , the sample complexity has better
dependence on dmax, qmax and pmin. The resulting
sample complexity becomes:

O
(

k4 exp(8dmax)

(1−qmax)6(k−1)(kpmin)5k(1−exp (−2dmin))2

)

log 2nk(n−1)
δ

.

Theorem 5 (Sample Complexity Lower Bound).
Suppose the random variables in X form a tree graphical
model T ∗ and we observe X

′ such that Assumptions
1, 2, 3 and 4 are satisfied. Then any algorithm that
correctly recovers T sub

T∗ with probability at least 1 − δ
requires N samples where

N = Ω
(

dmax exp(dmax)
(1−exp(−dmin))(1−qmax)

k(1− δ) log n
)

.

Furthermore, for k ≥ 4, 0 < t0 ≤ k
10 exp(−2

dmax

k−1), we
additionally have

N = Ω

max
d∈{dmax,dmin}

e
−

2d
k−1

1−e
−

d
k−1

k(1−δ) log(n)

t20

.

We note that our lower bounds on sample complexity
show our certain dependence on the problem parame-
ters cannot be improved orderwise. Firstly, we see the
dependence on the graph size scales as Θ(log(n)) which
is standard in graphical model learning. We observe
that the sample complexity scales as exp(Θ(dmax)) as
a function of the dmax. Furthermore, for small enough
t0 and support size 4 or more, the dependence t0 scales
as Θ(1

t20
) highlighting the significance of Assumption 4

in the recovery of MRFs.

Our lower bound proof for t0 dependence in the (par-
tially) identifiable case uses a family of (n + 1) star
graphs with n edges each, where one graph is a per-
turbed symmetric graphical model (Section 4.4), and
for the other graphs we select one edge each and replace
the conditional PMF with the one from a symmetric
model. Thus, the equivalence class T sub

T∗ for each graph

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

in the family is unique. For the lower bounds in the
unidentifiable scenario, we generalize the construction
in Tandon et al. [2021] to k > 2 support size by intro-
ducing a novel class of graphical models called Partially
Mixing Graphical Models (PMGM). Our derivation for
KL divergence for PMGM, and perturbed symmetric
graphical models used in the lower bound proofs can
be of independent interest. These details can be found
in Appendix I.

7 EXPERIMENTS

In this section, we present the experiments demonstrat-
ing the efficacy of our algorithm. We first demonstrate
the performance of our algorithm for the k = 2 setting
and demonstrate that our algorithm considerably out-
performs the algorithm in Tandon et al. [2021]. Next,
we showcase the performance of our algorithm for the
k = 4 setting with the perturbed symmetric model. As
discussed in Section 4.4, the exact tree is identifiable
in this scenario.

7.1 Support size, k = 2 (Unidentifiable):

In this part, we compare the performance of our algo-
rithm for chain and star graphs to that of SGA proposed
in Tandon et al. [2021]. We use the exact same settings
as in Tandon et al. [2021] and demonstrate that we
outperform SGA.

For chain graphs, the nodes are labeled X1 to X12 from
left to right. The star graphs have X1 as the center
node and X2, . . . X12 are leaf nodes connected to X1.

Setting: (i) Number of nodes = 12. (ii) Correlation
of all the adjacent nodes = ρ. (iii) Alternate nodes
have maximum noise (qi = 0 if i % 2 = 0, qi = qmax if
i %2 = 1). (iv) Assume access to ρ.

For both, chain graphs and star graphs, we vary ρ in
{0.6, 0.8} and qmax in {0, 0.4}.
We would like to point out that qmax is defined differ-
ently in our setting and in SGA; qmax in our setting is
twice the SGA’s qmax. The final results are presented
in Figures 3a and 3b respectively.

7.2 Support size, k = 4 (Identifiable):

We present the performance of our algorithm for chain
graphs for the perturbed symmetric model.

Setting: (i) Number of nodes = 7. (ii) Distance of
all the adjacent nodes = d. (iii) Error probability is
uniformly samples from [0, qmax]. Note that the error
probability has not been adversarially chosen but still
causes Chow-Liu algorithm to fail, thereby demonstrat-
ing the fragility of Chow-Liu algorithm to noise. (iv)
Assume access to qmax, dmin but not to dmax, t0.

While fixing d = 0.7, qmax = 0.2, we vary δ over

{0.01, 0.03, 0.05} to study its impact on the perfor-
mance of the algorithm (see, Figure 4).

We observe, on expected lines, that our algorithm con-
verges faster for larger δ. The Chow-Liu algorithm
consistently converges to the incorrect tree.

We also perform extensive experiments with more graph
structures as well as evaluate the impact of the prob-
ability of error, number of nodes, distance between
adjacent nodes and present the results in Appendix J.

8 CONCLUSION AND FUTURE

WORK

In this paper, we highlight the nuances of the recover-
ability of tree structured Markov Random Fields when
the samples are corrupted by symmetric noise. We
develop an algorithm that is robust to the symmet-
ric noise and provide the sample complexity results.
This paper lays the foundation for further research
in two key directions: (1) generalization of the sym-
metric noise model, and (2) identifiability of non-tree
structured MRFs. Firstly, when the error samples are
independent but non-symmetric our methods can be
extended easily. Further, one may generalize to a set-
ting where noisy observation could come from different
distributions, each with a corresponding unknown error
probability. Here, Eq.(6) needs to be generalized to
recover multiple unknown error probabilities. Finally,
identifiability of non-tree structured MRFs requires
generalizing star and non-star detection in presence of
cycles. See Appendix K for more discussions.

Acknowledgements

The authors would like to thank the anonymous re-
viewers for their constructive inputs. This work was
partially supported by a grant from the AFC, the NSF
Institute for Machine Learning, Award number 2019844,
and the Affiliates of the 6G@UT center within the Wire-
less Networking and Communications Group at The
University of Texas at Austin.

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

2000 3000 4000 5000 6000 7000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 ρ= 0.6, qmax = 0.4

600 800 1000 1200 1400
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 ρ= 0.6, qmax = 0

1000 1200 1400 1600 1800 2000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 ρ= 0.8, qmax = 0.4

100 200 300 400 500 600
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 ρ= 0.8, qmax = 0 Our algorithm
SGA
Chow-Liu

(a) Chain Graph

1000 2000 3000 4000 5000 6000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 ρ= 0.6, qmax = 0.4

100 200 300 400 500 600
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 ρ= 0.6, qmax = 0

1000 1500 2000 2500 3000 3500 4000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 ρ= 0.8, qmax = 0.4

100 150 200 250 300
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 ρ= 0.8, qmax = 0 Our algorithm
SGA
Chow-Liu

(b) Star Graph

Figure 3: For both chain and star graphs, our algorithm outperforms SGA for 4 different settings - (i) ρmax =
0.6, qmax = 0.4, (ii) ρmax = 0.6, qmax = 0.0, (iii) ρmax = 0.8, qmax = 0.4, (iv) ρmax = 0.8, qmax = 0.0

.
103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

δ = 0.01

103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

δ = 0.03

103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

δ = 0.05 Our algorithm - Exact
Our algorithm - EC
Chow-Liu - Exact
Chow-Liu - EC

Figure 4: Comparing the performance of our algorithm and Chow-Liu over different values of δi,j ∈ {0.01, 0.03, 0.05}
given dmin = dmax = 0.7, qmax = 0.2, # of nodes= 7. For both algorithms, we provide results for two cases: i)
when the exact underlying tree is recovered, ii) when a tree from the equivalence class is recovered.

References

Rajendra Bhatia. Perturbation bounds for matrix
eigenvalues. SIAM, 2007.

Arnab Bhattacharyya, Sutanu Gayen, Eric Price, and
NV Vinodchandran. Near-optimal learning of tree-
structured distributions by Chow-Liu. arXiv preprint
arXiv:2011.04144, 2020.

Guy Bresler. Efficiently learning ising models on arbi-
trary graphs. In Proceedings of the forty-seventh an-
nual ACM symposium on Theory of computing, pages
771–782. ACM, 2015.

Guy Bresler and Mina Karzand. Learning a tree-
structured ising model in order to make predictions.
arXiv preprint arXiv:1604.06749, 2016.

Guy Bresler, Elchanan Mossel, and Allan Sly. Re-
construction of markov random fields from samples:
Some observations and algorithms. In Approxima-
tion, Randomization and Combinatorial Optimization.
Algorithms and Techniques, pages 343–356. Springer,
2008.

Guy Bresler, David Gamarnik, and Devavrat Shah.
Hardness of parameter estimation in graphical mod-
els. In Advances in Neural Information Processing
Systems, pages 1062–1070, 2014a.

Guy Bresler, David Gamarnik, and Devavrat Shah.
Structure learning of antiferromagnetic ising models.
In Advances in Neural Information Processing Sys-
tems, pages 2852–2860, 2014b.

Guy Bresler, Mina Karzand, et al. Learning a tree-
structured ising model in order to make predictions.
Annals of Statistics, 48(2):713–737, 2020.

Marta Casanellas, Marina Garrote-López, and Piotr
Zwiernik. Robust estimation of tree structured models.
arXiv preprint arXiv:2102.05472, 2021.

Joseph T Chang. Full reconstruction of markov models
on evolutionary trees: identifiability and consistency.
Mathematical biosciences, 137(1):51–73, 1996.

Myung Jin Choi, Vincent YF Tan, Animashree Anand-
kumar, and Alan S Willsky. Learning latent tree
graphical models. Journal of Machine Learning Re-
search, 12(May):1771–1812, 2011.

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

C Chow and Cong Liu. Approximating discrete prob-
ability distributions with dependence trees. IEEE
transactions on Information Theory, 14(3):462–467,
1968.

Constantinos Daskalakis and Qinxuan Pan. Tree-
structured ising models can be learned efficiently.
arXiv preprint arXiv:2010.14864, 2020.

Ilias Diakonikolas, Daniel M Kane, Alistair Stewart,
and Yuxin Sun. Outlier-robust learning of ising mod-
els under dobrushin’s condition. In Conference on
Learning Theory, pages 1645–1682. PMLR, 2021.

Surbhi Goel, Daniel M Kane, and Adam R Klivans.
Learning ising models with independent failures. arXiv
preprint arXiv:1902.04728, 2019.

Linus Hamilton, Frederic Koehler, and Ankur Moitra.
Information theoretic properties of markov random
fields, and their algorithmic applications. In Advances
in Neural Information Processing Systems, pages 2463–
2472, 2017.

Ashish Katiyar, Jessica Hoffmann, and Constantine
Caramanis. Robust estimation of tree structured gaus-
sian graphical models. In International Conference
on Machine Learning, pages 3292–3300, 2019.

Ashish Katiyar, Vatsal Shah, and Constantine Cara-
manis. Robust estimation of tree structured ising
models. arXiv preprint arXiv:2006.05601, 2020.

Adam Klivans and Raghu Meka. Learning graphical
models using multiplicative weights. In 2017 IEEE
58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 343–354. IEEE, 2017.

Daphne Koller and Nir Friedman. Probabilistic graph-
ical models: principles and techniques. MIT press,
2009.

James A Lake. Reconstructing evolutionary trees
from dna and protein sequences: paralinear distances.
Proceedings of the National Academy of Sciences, 91
(4):1455–1459, 1994.

Steffen L Lauritzen. Graphical models, volume 17.
Clarendon Press, 1996.

Su-In Lee, Varun Ganapathi, and Daphne Koller. Ef-
ficient structure learning of markov networks using
l_1-regularization. In Advances in neural Information
processing systems, pages 817–824, 2007.

Erik M Lindgren, Vatsal Shah, Yanyao Shen, Alexan-
dros G Dimakis, and Adam Klivans. On robust learn-
ing of ising models. In NeurIPS Workshop on Rela-
tional Representation Learning, 2019.

Konstantinos E Nikolakakis, Dionysios S Kalogerias,
and Anand D Sarwate. Learning tree structures from
noisy data. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 1771–1782,
2019.

Konstantinos E. Nikolakakis, Dionysios S. Kalogerias,
and Anand D. Sarwate. Information thresholds for
non-parametric structure learning on tree graphical
models, 2020.

Judea Pearl. Probabilistic reasoning in intelligent
systems: networks of plausible inference. Elsevier,
2014.

Judea Pearl and Michael Tarsi. Structuring causal
trees. Journal of Complexity, 2(1):60–77, 1986.

Adarsh Prasad, Vishwak Srinivasan, Sivaraman Bal-
akrishnan, and Pradeep Ravikumar. On learning ising
models under huber’s contamination model. Advances
in neural information processing systems, 33:16327–
16338, 2020.

Pradeep Ravikumar, Martin J Wainwright, John D
Lafferty, et al. High-dimensional ising model selection
using l1-regularized logistic regression. The Annals of
Statistics, 38(3):1287–1319, 2010.

Leon Sot. Simple identity involving q-pochhammer
symbol. Mathematics Stack Exchange. URL
https://math.stackexchange.com/q/2081765.
URL:https://math.stackexchange.com/q/2081765
(version: 2017-01-03).

Vincent YF Tan, Animashree Anandkumar, and
Alan S Willsky. Learning gaussian tree models: Anal-
ysis of error exponents and extremal structures. IEEE
Transactions on Signal Processing, 58(5):2701–2714,
2010.

Vincent YF Tan, Animashree Anandkumar, Lang
Tong, and Alan S Willsky. A large-deviation analysis
of the maximum-likelihood learning of markov tree
structures. IEEE Transactions on Information Theory,
57(3):1714–1735, 2011.

Anshoo Tandon, Vincent YF Tan, and Shiyao Zhu.
Exact asymptotics for learning tree-structured graphi-
cal models with side information: Noiseless and noisy
samples. arXiv preprint arXiv:2005.04354, 2020.

Anshoo Tandon, Aldric HJ Yuan, and Vincent YF
Tan. Sga: A robust algorithm for partial recovery of
tree-structured graphical models with noisy samples.
arXiv preprint arXiv:2101.08917, 2021.

Joel A Tropp. An introduction to matrix concentra-
tion inequalities. arXiv preprint arXiv:1501.01571,
2015.

https://math.stackexchange.com/q/2081765

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

Martin J Wainwright and Michael Irwin Jordan.
Graphical models, exponential families, and varia-
tional inference. Now Publishers Inc, 2008.

Shanshan Wu, Sujay Sanghavi, and Alexandros G
Dimakis. Sparse logistic regression learns all discrete
pairwise graphical models. In Advances in Neural In-
formation Processing Systems, pages 8071–8081, 2019.

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

Figure 5: The equivalence class of this tree is given by all the permutations of nodes in the leaf clusters within
the dotted regions. Nodes (X1, X4, X6, X7) form a non-star. Nodes (X1, X2, X3, X4) form a star.

Figure 6: Four possible configurations of (X1, X2, X3, X4) when they form a non-star such that (X1, X2) form a
pair.

A Proof of Lemma 1

This proof relies on the classification of a set of 4 nodes as star/non-star. This graph theoretic concept was
originally introduced in Katiyar et al. [2019] where it was used to analyze Gaussian graphical models. Any set of
4 nodes is classified as a non-star if the tree can be split into two subtrees with each subtree containing exactly
2 nodes. The nodes in the same subtree form a pair. If the 4 nodes do not form a non-star, they form a star.
Figure 5 provides an example of the equivalence class and star/non-star classification. Once a set of 4 nodes is
classified as a star/non-star, Lemma 1 follows directly from the proof of Theorem 2 in Katiyar et al. [2019]. The
key idea is that the categorization of any set of 4 nodes as star/non-star completely defines all the splits of the
tree into two subtrees with each subtree having at least 2 nodes. All of these splits can be combined to recover
the equivalence class TT∗ .

Next, we see how to categorize a set of 4 nodes as star non-star. In Katiyar et al. [2019] and Katiyar et al.
[2020], the classification of a set of 4 nodes as star/non-star was done using pairwise correlations between random
variables. Unfortunately, for random variables on support sizes larger than 2, correlation cannot be used to
perform this classification. This is where we use the information distance metric di,j as defined in Equation (2).

A set of 4 nodes (X1, X2, X3, X4) forms a non-star with (X1, X2) forming a pair if:

d1′,3′ + d2′,4′ = d1′,4′ + d2′,3′ ̸= d1′,2′ + d3′,4′ .

The set forms a star if:
d1′,3′ + d2′,4′ = d1′,4′ + d2′,3′ = d1′,2′ + d3′,4′ .

Next, we see why these conditions for star/non-star classification are correct.

Non-Star condition: When any 4 nodes (X1, X2, X3, X4) form a non-star such that (X1, X2) form a pair, the
4 nodes can have one of the four configurations as shown in Figure 6. There exist more configurations with X1

and X2 exchanging positions or X3 and X4 exchanging positions. Since X1 and X2 always occur interchangeably,
the results continue to hold for the configurations where X1 and X2 exchange positions. Same argument holds for
X3 and X4.

Note that the distances di,j are additive along the paths connecting Xi and Xj . Therefore for all the cases, it is
easy to see that:

d1,3 + d2,4 = d1,4 + d2,3.

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

Figure 7: Two possible configurations of (X1, X2, X3, X4) when they form a star.

Therefore we have that :

d1,3 + d2,4 + d1,1′ + d2,2′ + d3,3′ + d4,4′ = d1,4 + d2,3 + d1,1′ + d2,2′ + d3,3′ + d4,4′ ,

d1′,3′ + d2′,4′ = d1′,4′ + d2′,3′(As di′,j′ = di,i′ + di,j + dj,j′).

Furthermore, one can see that
d1,3 + d2,4 − (d1,2 + d3,4) ≥ 2dmin.

Adding and subtracting the noise distances again, we get that

d1′,3′ + d2′,4′ − (d1′,2′ + d3′,4′) ≥ 2dmin.

Star condition: When the 4 nodes form a star, they can have either of the two configurations in Figure 7. All
the nodes are allowed to exchange positions with each other. Using the distance additivity for this setting, it is
easy to see that, for both the cases,

d1,3 + d2,4 = d1,4 + d2,3 = d1,2 + d3,4.

Furthermore using di′,j′ = di,i′ + di,j + dj,j′ , we get that

d1′,3′ + d2′,4′ = d1′,4′ + d2′,3′ = d1′,2′ + d3′,4′ .

This concludes the proof that the distances between noisy random variables can be used to classify a set of 4
nodes as star/non-star thereby proving that the only unidentifiability could possibly be within a leaf cluster.

B Obtaining Equation (6)

From Equation (3), we have P1′,3′ = E1P1,3E3, P1′,2′ = E1P1,2E2, P2′,3′ = E2P2,3E3. From Equation (4), we
have P2′ = (1− q2)P2 +

q2
k I. Substituting these in Equation (5), we get:

P2′,3′P
−1
1,′3′P1′,2′ =E2

1

(1− q2)

(

P2′ −
q2
k
I
)

E2 (8)

P2′,3′P
−1
1′,3′P1′,2′ =E2

1

(1− q2)

(

P2′ −
q2
k
I
)

E2 (9)

P2′,3′P
−1
1′,3′P1′,2′ =

E2

1− q2
(1− q2)

(

P2′ −
q2
k
I
) E2

1− q2
(

E2

1− q2

)−1

P2′,3′P
−1
1′,3′P1′,2′

(
E2

1− q2

)−1

=(1− q2)
(

P2′ −
q2
k
I
) (10)

Note that:
E2

1− q2
= I +

q2O

k(1− q2)
(

E2

1− q2

)−1

= I − q2O

k

(11)

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

Substituting this back in Equation (10)

(

I − q2O

k

)

P2′,3′P
−1
1′,3′P1′,2′

(

I − q2O

k

)

= (1− q2)
(

P2′ −
q2
k
I
)

q22
k2

(OP2′,3′P
−1
1′,3′P1′,2′O − kI)− q2

k
(OP2′,3′P

−1
1′,3′P1′,2′ + P2′,3′P

−1
1′,3′P1′,2′O − kP2′ − I)

+ P2′,3′P
−1
1′,3′P1′,2′ − P2′ = 0

(12)

To simplify this, we observe that:
OP2′,3′ = OP1′,3′ = OP ′

3

P2′,3′O = P2′O

P1′,2′O = P1′,3′O = OP ′
1

OP1′,2′ = OP2′

(13)

Substituting these back in Equation (12), we get:

q22
k2

(O − kI)− q2
k
(OP2′ + P2′O − kP2′ − I) + P2′,3′P

−1
1′,3′P1′,2′ − P2′ = 0 (14)

C Proof of Theorem 1

Proof. Note that a graphical model on any subset of 3 nodes comprising of a leaf node X2, it’s parent X1 and
an arbitrary third node X3 always forms a tree and satisfies X2 ⊥ X3|X1. However, due to the unidentifiability
between X2 and X1, we don’t know a priori whether X2 ⊥ X3|X1 or X1 ⊥ X3|X2. Therefore, we attempt to
estimate the probability of error for both the cases using an equation equivalent to Equation (7). All the cases for
which the equation has a feasible solution can explain the noisy observations.

Clearly, the case corresponding to the ground truth X2 ⊥ X3|X1 has a solution.

We denote the error estimated for node Xa which enforces Xb ⊥ Xc|Xa by q̃b,ca and we also define the matrix
Ẽb,c

a as:

Ẽb,c
a = (1− q̃b,ca)I +

q̃b,ca

k O.

Now we see what happens when we check whether node X2 is the middle node by solving Equation (8) when the
ground truth has node 1 in the middle. That is, we try to estimate q̃1,32 when X2 ⊥ X3|X1.

In the current setting, we have:

P2,3 = P2,1P
−1
1 P1,3.

We also have:

P ′
2,3 = E2P2,3E3, P

′
1,3 = E1P1,3E3, P

′
1,2 = E1P1,2E2.

Substituting these in Equations (8) and (6), we get:

E2P2,1P
−1
1 P1,2E2 =Ẽ1,3

2

1

(1− q̃1,32)

(

P2′ −
q̃1,32

k
I

)

Ẽ1,3
2

s.t.0 ≤ q̃1,32 < 1,

(15)

(q̃1,32)2

k2
(O − kI)− q̃1,32

k
(OP2′ + P2′O − kP2′ − I)

+ E2P2,1P
−1
1 P1,2E2 − P2′ = 0 s.t. 0 ≤ q̃1,32 < 1.

(16)

Note that this equation does not depend on the random variable X3. Therefore, whether a leaf node and its
parent are unidentifiable depends solely on the joint distribution of the parent node X1 and the noisy leaf node
X ′

2. When this equation does not have a solution, we can conclude that X2 is a leaf node. Thus any tree in TT∗

which has X1 as a leaf node can be ruled out.

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

Now, let us focus on the case when Equation (16) has a solution. We aim to obtain X̃ whose graphical model is
T̃ . In order to do that, we assign the probability of error q̃i which resulted in each of the observed noisy random
variable X ′

i as follows:
q̃1 = 0, q̃2 = q̃1,32 , q̃i = qi ∀i /∈ {1, 2}. (17)

Therefore we have that X̃i = Xi ∀i /∈ {1, 2}. Note that, by construction, this results in X̃1 ⊥ Xi|X̃2 ∀i /∈ {1, 2}.
We next prove that for any pair of nodes such that Xk1

⊥ Xk2
|X1 and k1, k2 /∈ {1, 2}, we have that Xk1

⊥ Xk2
|X̃2.

This is equivalent to proving that Pk1,k2
= Pk1,2̃

P−1
2̃

P2̃,k2
where Pk1,2̃

, P2̃ and P2̃,k2
are the joint PMF matrix of

Xk1
and X̃2, diagonal marginal of X̃2, and the joint PMF matrix of X̃2 and Xk2

respectively. We have that:

Pk1,2 = Pk1,1P
−1
1 P1,2, P2,k2

= P2,1P
−1
1 Pk2,1.

Substituting these in Pk1,k2 = Pk1,1P
−1
1 P1,k2 , we get:

Pk1,k2
= Pk1,2P

−1
1,2P1P

−1
2,1P2,k2

.

Note that Pk1,2E2 = Pk1,2̃
Ẽ1,3

2 = Pk1,2′ . Using this along with Equation (15) we get Pk1,k2
= Pk1,2̃

P−1
2̃

P2̃,k2
.

The above analysis of ruling out the trees with X1 as a leaf node when Equation (16) does not have a solution and
constructing X̃ when Equation (16) has a solution, holds true for every pair of parent and leaf nodes. Thus any
tree in TT∗ \ T sub

T∗ can be ruled out. Furthermore, for any tree T̃ ∈ T sub
T∗ in which leaf nodes LT̃ ⊆ Lsub exchange

positions with their parents, we can define the probability of error for q̃i for every node X̃i ∈ X̃ as follows:

q̃i = q̃pi,3
i ∀i ∈ LT̃ ,

q̃pi
= ci ∀i ∈ LT̃ ,

q̃i = qi otherwise,

where Xpi
is the parent node of Xi and 0 ≤ ci ≤ qmax. It is straightforward to see that the graphical model of X̃

is T̃ .

D Proof of Theorem 2

We first present a simple equation that helps in working with symmetric and perturbed symmetric models:
(

α1I + (1− α1)
O

k

)(

α2I + (1− α2)
O

k

)

=

(

α1α2I + (1− α1α2)
O

k

)

. (18)

When X2 is a leaf node, X1 is its parent node and X3 is an arbitrary third node, X3 ⊥ X2|X1. This gives us:

P2,3 = P2,1P
−1
1 P1,2.

Substituting this in P2′,3′P
−1
1′,3′P1′,2′ while noting that Pa′,b′ = EaPa,bEb, we get that:

P2′,3′P
−1
1′,3′P1′,2′ = E2P2,1P

−1
1 P1,2E2. (19)

Now, using P1 = I/k, P2|1 = α1,2I + (1− α1,2)
O
k , E2 = (1− q2)I + q2

O
k and Equation 18, we get that:

P2′,3′P
−1
1′,3′P1′,2′ = E2P2,1P

−1
1 P1,2E2 =

1

k

(

(1− q2)
2α2

1,2I + (1− (1− q2)
2α2

1,2)
O

k

)

.

With these expressions, along with P2′ =
I
k , we now look at the quadratic in Equation (7).

x2

k2
(O − kI)− x

k
(OP2′ + P2′O − kP2′ − I) + P2′,3′P

−1
1,′3′P1′,2′ − P2′

=
x2

k2
(O − kI)− 2x

k
(O/k − I) +

1

k

(

(1− q2)
2α2

1,2I + (1− (1− q2)
2α2

1,2)
O

k

)

− I

k

=
(x− 1)2 − (1− q2)

2α2
2,1

k
(O − kI).

Thus, Equation 7 has a solution x = 1− (1− q2)α1,2.

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

E Proof of Theorem 3

Using Equation (19), and recalling that P1 = P1′ = P2 = P2′ =
I
k , we have that:

x2

k2
(O − kI)− x

k
(OP2′ + P2′O − kP2′ − I) + P2′,3′P

−1
1,′3′P1′,2′ − P2′ (20)

=
x2

k2
(O − kI)− 2x

k2
(O − kI) + E2P2,1P

−1
1 P1,2E2 −

I

k
(21)

=

(
x− 1

k

)2

(O − kI)− O

k2
+ kE2P2,1P1,2E2. (22)

Substituting E2 = (1− q2)I + q2
O
k and P2,1 = (αa,b − δa,b)I + (1− αa,b)

O
k +∆a,b, we get:

E2P2,1P1,2E2 =

(

(1− q2)I + q2
O

k

)(

(αa,b − δa,b)I + (1− αa,b)
O

k
+∆a,b

)

(23)

(

(αa,b − δa,b)I + (1− αa,b)
O

k
+∆T

a,b

)(

(1− q2)I + q2
O

k

)

. (24)

Now we have:

E2P2,1 =

(

(1− q2)I + q2
O

k

)(

(αa,b − δa,b)I + (1− αa,b)
O

k
+∆a,b

)

=(1− q2)(αa,b − δa,b)I + (1− q2)(1− αa,b)
O

k
+ (1− q2)∆a,b

+ q2(αa,b − δa,b)
O

k
+ q2(1− αa,b)

O

k
+ q2δa,b

O

k

= (1− q2)(αa,b − δa,b)I + (1− (1− q2)αa,b)
O

k
+ (1− q2)∆a,b

Define α′
a,b ≜ (1− q2)αa,b, δ

′
a,b ≜ (1− q2)δ

′
a,b and ∆′

a,b = (1− q2)∆a,b, we get:

E2P2,1 = (α′
a,b − δ′a,b)I + (1− α′

a,b)
O

k
+∆′

a,b.

Noting that P1,2E2 = (E2P2,1)
T , we get:

E2P2,1P1,2E2 =
1

k2

(

((α′
a,b − δ′a,b)

2 + (δ′a,b)
2)I +

O

k
(1− (α′

a,b)
2) + (α′

a,b − δ′a,b)((∆
′
a,b)

T +∆′
a,b)

)

This gives us:

Q2(x) =∥
(
x− 1

k

)2

(O − kI)− O

k2
+ kEbPb,aPa,bEb∥2F

=∥
(
x− 1

k

)2

(O − kI) + ((α′
a,b − δ′a,b)

2 + δ′
2
a,b)

I

k
− α′2

a,b

O

k2
+

(α′
a,b − δ′a,b)

k
(∆′T

a,b +∆′
a,b)∥2F

Each diagonal element (total k) of the matrix is
(
x−1
k

)2 − (x−1)2

k +
(α′

a,b−δ′a,b)
2+δ′2a,b

k − α′2
a,b

k2 .

Each element at the positions of the support (∆′
a,b +∆′T

a,b) (total 2k) is
(
x−1
k

)2 − α′2
a,b

k2 +
δ′a,b(α

′
a,b−δ′a,b)

k .

Every remaining element (total k2 − 3k) is
(
x−1
k

)2 − α′2
a,b

k2 . To simplify the above equation, we define γ =

(1− x)2 − α′2
a,b, e = δ′a,b(α′

a,b − δ′a,b). Each diagonal element is γ
k2 − γ

k − 2e
k .

Each element at the positions of the support (∆′
a,b +∆′T

a,b) (total 2k) is γ
k2 + e

k .

Every remaining element (total k2 − 3k) is γ
k2 . Thus, we get:

Q2(x) =k

(
γ

k2
− γ

k
− 2e

k

)2

+ 2k
(γ

k2
+

e

k

)2

+ (k2 − 3k)
γ2

k4

= 1
k3 ((k − 1)γ + 2ke)

2
+ 2

k3 (γ + ke)
2
+ k−3

k3 γ2

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

Q2(x) is minimized for γ = − 2ke
k−1 . Substituting this, we get:

Q2(x) ≥ 2(k − 3)e2k2

k − 1
.

When k > 4, Q2(x) ≥ 0. This completes the proof that when k > 4, Equation (7) does not have a solution.

Next we look at the case when k = 3. For k = 3, when γ = −3e, we get Q2(x) = 0. The only thing that remains
is to check that γ = −3e corresponds to a valid solution of x.

(1− x)2 − α′2
a,b = γ

(1− x)2 − α′2
a,b + 3e = 0

(1− x)2 = α′2
a,b − 3δ′a,b(α

′
a,b − δ′a,b)

Note that α′2
a,b − 3δ′a,b(α′

a,b − δ′a,b) ≥
α′2

a,b

4 . Also note that for P2|1 to be a valid PMF, we need that α >

δ, 0 < α < 1. Under these constraints, it is easy to see that α′2
a,b − 3δ′a,b(α′

a,b − δ′a,b) ≤ 1. Therefore (1− x)2 =

α′2
a,b−3δ′a,b(α

′
a,b−δ′a,b) has a solution for 0 ≤ x ≤ 1. This concludes the proof that for k = 3, solution to Equation

(7) always exists. In other words, for k = 3 the joint PMF matrix being circulant is a sufficient condition for
unidentifiability.

Next we go on to prove that for k = 3, the joint PMF matrix being circulant is also a necessary condition for
unidentifiability. In order to arrive at this, note that, from Equation 9, a solution exists for Equation (7) if and
only if it exists for:

P2′,3′P
−1
1′,3′P1′,2′ = Ẽ1,3

2

1

(1− q̃1,32)

(

P2′ −
q̃1,32

k
I

)

Ẽ1,3
2 s.t. 0 ≤ q̃1,32 < 1. (25)

Recall that Ẽ1,3
2 = (1− q̃1,32)I + q̃1,32

O
k We would like to prove that if Equation (25) has a solution then the matrix

P2,1 is circulant. Since P2′ =
I
k , P1 = I

k , P2′,3′P
−1
1′,3′P1′,2′ = E2P2,1P

−1
1 P1,2E2, we have that for some 0 ≤ q̃1,32 < 1:

9P2,1P1,2 = E−1
2 Ẽ1,3

2 Ẽ1,3
2 E−1

2 . (26)

Note that E−1
2 = ((1 − q2)I + q2

O
k)

−1 = 1
1−q2

(I + q2
1−q2

O
k)

−1 = 1
1−q2

(I −
q2

1−q2

O
k

1+
q2

1−q2

) (using Woodbury Matrix

Identity). Simplifying, we get:

E−1
2 =

1

1− q2
(I − q2

O

k
) =

1

1− q2
I + (1− 1

1− q2
)
O

k
.

Now, using Equation (18), we get:

E−1
2 Ẽ1,3

2 =
1− q̃1,32

1− q2
I +

(

1− 1− q̃1,32

1− q2

)

O

k

Again, using Equation (18), we get:

E−1
2 Ẽ1,3

2 Ẽ1,3
2 E−1

2 = (E−1
2 Ẽ1,3

2)2 =

(

1− q̃1,32

1− q2

)2

I +

1−
(

1− q̃1,32

1− q2

)2

O

k
.

We note that in Equation (26), the RHS has equal off-diagonal elements and equal diagonal elements.
Before proceeding further, for the ease of notation, we define M = 3P1,2 and Mi is the ith column of M .
Since Equation (26) has a solution, we have the following properties of M :

1. M is doubly stochastic (as P1 = P2 = I/3),

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

Figure 8: Position of the three column vectors of matrix M for unidentifiability.

2. ||Mi||2 = ||Mj ||2 ∀i, j ∈ {1, 2, 3} (as the diagonal elements of MTM are equal),

3. < Mi,Mj > is equal ∀i ̸= j ∈ {1, 2, 3} (as the off-diagonal elements of MTM are equal).

These properties can hold true only if the columns of M are circulant. In order to see this, note that:

1. A necessary condition for property 1 is that M1,M2 and M3 lie on the probability simplex.

2. For property 2 to hold, M1,M2 and M3 lie on a circle on the plane of the probability simplex with center at
(1/3, 1/3, 1/3).

3. For property 3 to hold, M1,M2 and M3 lie on an equilateral triangle of this circle.

This can be visualized in Figure (8). In order to see that they would be circulant, note that once we are given the
vector M1, vectors M2 and M3 are also determined. Given that we know that circulated versions of M1 satisfy 1,
2 and 3, vectors M2 and M3 have to be the circulated M1.

F Proof of Lemma 2

We first analyze what happens to the solution of Equation (7) for 3 nodes (X1, X2, X3) such that no 2 nodes
are independent conditioned on the third. That is, their marginal distribution is not tree structured. We
perform this analysis for general support size k > 2. In this case, there exists another node, say X4, such that
X1 ⊥ X2 ⊥ X3|X4. This analysis is going to be useful in the proof of Lemma 2 as well as the algorithm design.

Lemma 3. Consider any three nodes (X1, X2, X3) in a tree graphical model whose marginals are not tree
structured. Then there exists a node X4 such that X1 ⊥ X2 ⊥ X3|X4. Solving Equation (7) outputs X2 as
a potential center node among (X1, X2, X3) if and only if it outputs X2 as a potential center node among
(X4, X2, X3)

Proof. In this setting, we would like to estimate the probability of error of X2 using Equation (7). We have that:

P2,3 = P2,4P
−1
4 P4,3,

P1,3 = P1,4P
−1
4 P4,3,

P1,2 = P1,4P
−1
4 P1,2

Using these expressions coupled with Equation (3) and substituting them in Equation (6) we get the following
quadratic equation:

(q̃1,32)2

k2
(O − kI)− q̃1,32

k
(OP ′

2 + P ′
2O − kP ′

2 − I) + E2P2,4P
−1
4 P4,2E2 − P ′

2 = 0. (27)

This is the same equation with X1 replaced by X4.

Next we go on to prove Lemma 2

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

Proof. First, let us look at the case when (X1, X2, X3) form a tree. If X1 ⊥ X3|X2, solution to Equation (7)
exists and it recovers the true error for X2. We see what happens when X2 ⊥ X3|X1. We consider the case when
there is no noise in X2 and X3. This is analysis is sufficient, as even if there was independent noise in X2 and X3,
we would have had X ′

2 ⊥ X ′
3|X2. Thus we can assume that X2 and X3 already have the noise factored in.

For this case, we know that Equation (7) boils down to Equation (16) with E2 = I. Using basic algebra, we see
that all the quadratic equations corresponding to the different matrix components are equal to the following:

(q̃1,32)2

4
− (q̃1,32)

2
+

(P2,1)0,0(P2,1)1,0
(P2,1)0,0 + (P2,1)1,0

+
(P2,1)0,1(P2,1)1,1

(P2,1)0,1 + (P2,1)1,1
= 0 s.t. 0 ≤ q̃1,32 < 1 (28)

Since the entries of P2,1 are positive and sum up to 1, the smallest root of this equation is 0 (when one of
(P2,1)0,0, (P2,1)1,0 and one of (P2,1)0,1, (P2,1)1,1 are 0) and the largest root is 1 (when all entries of P2,1 are 1/4).
Since P2,1 is full rank, we can conclude that Equation (28) has a solution.

Next, consider the case when (X1, X2, X3) do not form a tree. There exists a node X4 such that X1 ⊥ X2 ⊥ X3|X4.
Using the above result, we know that Equation (7) has a solution when we estimate the probability of error of
X2 which enforces X4 ⊥ X3|X2. Using Lemma 3, we conclude that Equation (7) has a solution which enforces
X1 ⊥ X3|X2.

G Algorithm Details

In this section, we provide the details of the algorithm to recover the tree upto unidentifiability. When we have
access to t0 (Assumption 4), we can recover T sub

T∗ . In the absence of the knowledge of t0 , the algorithm returns
one tree from T sub

T∗ . We discuss the details after presenting the pseudocode. Also, if we have prior knowledge that
the tree is identifiable only upto TT∗ (for instance, when k = 2 or for symmetric models), we can gain in runtime
by O(n).

Obtaining ηmax We first prove that ηmax = (1− k) log(1− qmax)− 0.5k log pmin. First note that for any node
Xi, we have that:

Pi′|i = (1− qi)I + qi
O

k
.

Note that:

di′,i = − log

(

|det(Pi′,i)|
√

det(Pi′)det(Pi)

)

= − log

(

det(Pi′|i)

√

det(Pi)

det(Pi′)

)

.

Using the matrix determinant lemma, we get det(Pi′|i) = (1− qi)
k−1. Also det(Pi′) < 1 and det(Pi) ≥ pkmin. This

gives us:

di′,i ≤ (1− k) log(1− qi)− 0.5k log pmin ≜ ηmax

Neighborhood Vectors We define for each node Xi, a neighborhood vector N(Xi), which is the array of
nodes Xj sorted by di′,j′ in ascending order and only contains nodes such that di′,j′ is smaller than a threshold
treal. This is given as follows:

N(Xi) = sort(Xj : di′,j′ ≤ treal, key = di′,j′) (29)

The threshold is treal = 4dmax + 3ηmax.

G.1 Pseudocode and runtime analysis

We first provide the pseudocode for the two building blocks - FindCenter and QuadraticError. FindCenter

returns the center node among 3 nodes as long as no 2 nodes are in the same leaf cluster. Otherwise it returns
the nodes that belong to the same leaf cluster. QuadraticError is used by the LeafClusterResolution

routine to find the parent node within a leaf cluster. Using these, we present the FindLeafParent subroutine
that returns a leaf parent pair given an active set of nodes that form a subtree.

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

G.1.1 QuadraticError

In this subroutine, we test if Equation (7) has a solution. Note that the quadratic in Equation (7) with matrix
coefficients is equivalent to having k2 quadratic equations. Equation (7) has a solution if all the k2 quadratic
equations have a common root in [0, qmax]. Since we are working with the finite sample empirical estimates of the
PMFs, we do not get an exact solution. To work in the finite sample domain, we find the mean of the root of all
the k2 quadratic equations and use that as an estimate of the common root. We return the Frobenius norm of
the quadratic with the estimated root plugged in.

Algorithm 2 Find the Error of the quadratic in Equation (7)

Input - Pairwise noisy distributions, a set of 3 nodes, test center node among the three nodes.
Output - Error of the quadratic in Equation (7).

1: procedure QuadraticError(Pi′,j′ , NodeTriplet, T estCenter)
2: A,B,C ← Matrix Quadratic Coefficients from Equation (7) for given NodeTriplet, T estCenter.
3: MeanRoot← 0
4: for i1 in 1 . . . k do
5: for i2 in 1 . . . k do

6: MeanRoot←MeanRoot+ root(A[i1,i2]x
2+B[i1,i2]x+C[i1,i2])

k2

return ∥A(MeanRoot)2 +B(MeanRoot) + C∥F

G.1.2 FindCenter

The key idea is based on the observation that for any 3 nodes (X1, X2, X3), if X2 is the center node, then any set
of 4 nodes (X1, X2, X3, j) which forms a non-star, never has (X2, j) as a pair. Thus we can scan through all the
nodes j and rule out the nodes that pair with j. This procedure could potentially detect a leaf node as the center
node if its parent is the center node. However, this is as expected since using the star/non-star procedure, it is
impossible to differentiate between leaf and parent nodes.

Algorithm 3 Recover Center Node in the Unidentifiable setting

Input - Pairwise noisy distributions and 3 nodes
Output - Candidate Center Nodes

1: procedure FindCenter(Pi′,j′ , NodeTriplet)
2: x← NodeTriplet[0], y ← NodeTriplet[1], z ← NodeTriplet[2]
3: CenterCand← {x, y, z}
4: for j ∈ N(x) ∩N(y) ∩N(z) do
5: if (x, y, z, j)- Non-star and pair(j) ∈ CenterCand then
6: CenterCand← CenterCand \ pair(j)

return CenterCand

G.1.3 GetLeafParent

This routine finds a leaf parent pair given an active set of nodes that form a subtree. We maintain two nodes - a
left node l, and a right node r. The idea is to move both the nodes towards the right side till r is a leaf node and
l is its parent node. In order to do this we consider a third node z and perform the following operations:

1. If the center node in (l, r, z) is z, we shift node l to node z,

2. If the center node in (l, r, z) is r, we shift node l to node r and node r to node z.

Selecting nodes l, r and z: When the GetLeafParent subroutine is called for the first time, node r is
randomly initialized. For any subsequent calls to GetLeafParent, node r is initialized to one of the nodes that
was detected as a parent node in the previous iterations and is still in the active set. l is initialized to the node
closest to r in terms of di′,j′ . z is obtained by iterating through N(Xi) \ l in the increasing order of distance.

When for a given (l, r, z), there are more than one candidate center nodes, we conclude that they belong to the
same leaf cluster. We check if we have already discovered the right node in one of the previous iterations if we

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

have, we return the leaf parent pair. Otherwise, we attempt to find the parent node in that leaf cluster using the
LeafClusterResolution routine.

Algorithm 4 Find a leaf parent pair.

Input - Pairwise noisy distributions and Active nodes
Output - Leaf Node and its parent in the subtree of Active Nodes.

1: procedure GetLeafParent(Pi′,j′ , ActiveSet, Edges, Parents)
2: if |ActiveSet ∩ Parents| > 0 then
3: r ← ActiveSet ∩ Parents[0]
4: else
5: r ← ActiveSet[0]

6: l← N(r)[0] ∩ActiveSet
7: i← 1, visited← {l, r}
8: while i < len(N(r)) do
9: z ← N(r)[i]

10: if z ∈ visited or z /∈ ActiveSet then
11: i← i+ 1
12: continue
13: visited← visited ∪ z
14: C ←FindCenter(Pi′,j′ , (l, r, z))
15: if |C| == 1 then
16: l_r_order = True

17: if C == z then
18: l← z
19: else if C == r then
20: l← r, r ← z, i← 0
21: else if |C| > 1 then
22: if l_r_order == True and r, l ∈ C then
23: break
24: r, l← LeafClusterResolution(C,Parents, ActiveSet)
25: break

return r, l

G.1.4 LeafClusterResolution

When we have more than one nodes from the same leaf cluster, we find the parent node of that leaf cluster. If
one of the nodes has been detected as a parent node in an earlier iteration, it is selected as the parent node.
Otherwise, we perform the following operation on every subset of two nodes Xi1 , Xi2 in C:

1. Consider a third node Xi3 ∈ Xi1 ∩Xi2 .

2. Check if Xi3 also belongs to the same leaf cluster as Xi1 and Xi2 .

(a) If Xi3 is not in the same leaf cluster, record the value Q2(x) in Equation (7), for two cases - (i) if Xi1 is
the center node, (ii) if Xi2 is the center node.

(b) If Xi3 is in the same leaf cluster, record the value Q2(x) in Equation (7), for three cases - (i) if Xi1 is
the center node, (ii) if Xi2 is the center node, (iii) if Xi3 is the center node.

Select the center node with the lowest value of the residual Q2(x) as the parent node. Note that in order to check
if 3 nodes are in the same leaf cluster, we attempt to find the center node using the star/non-star subroutine. If
we cannot eliminate the possibility of any node being a center node, all the nodes are in the same leaf cluster.

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

Algorithm 5 Find the parent node in a leaf cluster

Input - Nodes of the leaf cluster, parents.
Output - A parent leaf pair from the leaf cluster.

1: procedure LeafClusterResolution(Pi′,j′ , C, Parents)
2: if |C ∩ Parents| > 0 then
3: l← C ∩ Parents[0] return C \ {l}[0], l
4: MinError ←∞
5: for (Xi1 , Xi2) ∈ C do
6: for Xi3 ∈ N(Xi1) ∩N(Xi2) do
7: if Xi3 ∈ FindCenter(Pi′,j′ , (Xi1 , Xi2 , Xi3)) and dX′

i3
,X′

i1
, dX′

i3
,X′

i2
≤ dmax + 2ηmax then

8: CandidateParent← (Xi1 , Xi2 , Xi3)
9: else CandidateParent← (Xi1 , Xi2)

10: for Xi ∈ CandidateParent do
11: err ← QuadraticError((Xi1 , Xi2 , Xi3), Xi)
12: if err < MinError then
13: MinError ← err, l← Xi

14: r ← C \ {l}[0]
15: return r, l

G.1.5 Runtime Analysis

Following are the runtime for constant k:

1. QuadraticError: O(1).

2. FindCenter: O(n) as in the worst case, the intersection of the neighborhood can contain O(n) nodes. The
star/non-star test is O(1).

3. LeafClusterResolution: The for loop on line 6 can execute n times in the worst case calling FindCenter

in each iteration. Thus the total time complexity is O(n2).

4. FindLeafParent: In the worst case LeafClusterResolution is called O(n) times thereby making the
sample complexity O(n3).

5. FindTree: This calls FindLeafParent O(n) times. Thus the sample complexity of the algorithm is
O(n4).

Note that when we know apriori that all the nodes within leaf clusters are unidentifiable, we only use the
LeafClusterResolution subroutine to check if the parent node was already selected in the previous iteration
(lines 1-5). We do not use the QuadraticError subroutine, thereby making it LeafClusterResolution

an O(1) operation. In that case, FindLeafParent is now dominated by FindCenter and becomes an O(n2)
making FindTree an O(n3) operation (a gain of O(n))

G.1.6 Recovering T sub
T∗

Once we recover a tree from T sub
T∗ , we can obtain the complete set T sub

T∗ by considering all the parent leaf pairs
within every cluster along with an arbitrary third node. We call the function QuadraticError with this triplet
and only TestCenter node with err < t0/2 is a candidate parent node. This operation does not increase the
time complexity as it is an O(n3) operation in the worst case.

G.1.7 Modifications for the unidentifiable setting

If we know apriori that the nodes within a leaf cluster are unidentifiable, we do not hope to achieve anything from
the QuadraticError subroutine. Therefore, we do not execute any for loops in the LeafClusterResolution

subroutine, thereby making it an O(1) operation. Therefore, the GetLeafParent subroutine becomes an O(n2)
operation making FindTree an O(n3) operation.

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

Figure 9: All the possible when node z lies to the left of node l

G.2 Proof of correctness

G.2.1 Proof of correctness of FindLeafParent subroutine

We first prove that while no two nodes among (l, r, z) are in the same leaf cluster, the subroutine FindCenter

returns C such that |C| ≤ 1. For the next part, we assume that no two nodes among (l, r, z) are in the same leaf
cluster.
Notation: For any node, the adjacent node on its left is denoted with subscript − and the adjacent node on
the right is denoted by subscript +. lt+1, rt+1 and zt+1 are the selection of nodes l, r and z in the next iteration
respectively.

We have already proved the correctness of the star/non-star routine in the proof of Lemma 1. Recall from the
functionality of FindCenter that when we consider nodes (l, r, z) with another node j, if (l, r, z, j) forms a
non-star, we eliminate the node that pairs with node j from the candidate center nodes.

With this in mind, we enumerate all the possible configurations of nodes (l, r, z) such that no two of these nodes
are in the same leaf cluster. For each case, we present two nodes which, when considered with (l, r, z) would
eliminate different nodes from (l, r, z). This is equivalent to proving that |C| ≤ 1.

Claim: dr,l, dr,z ≤ dmax + ηmax

We first show that this holds true in the initialization of l, r, z. When r is an internal node, we have that:

dr,l ≤ dr,l′ ≤ dr,r′− ≤ dmax + ηmax, dr,z ≤ dr,z′ ≤ dr,r′+ ≤ dmax + ηmax.

When r is a leaf node, since l, z are not in the same leaf cluster as r, l ̸= z ̸= r−. Therefore, we have that:

dr,l ≤ dr,l′ ≤ dr,r′− ≤ dmax + ηmax, dr,z ≤ dr,z′ ≤ dr,r− ≤ dmax + ηmax.

Now, we assume that dr,l′ , dr,z′ ≤ dmax + ηmax is true at the beginning of any iteration and prove that it will
continue to hold true at the end of every iteration.
Case 1: We first enumerate all the cases when node z lies to the left of node l. These are presented in Figure 9.

Case 1(a): Node z lies to the left of node l and is adjacent to it and r+ exists.
In the case there exists a node z− to the left of z such that there is an edge between z and z−. (If such a node
did not exist, node l and z would have been in the same leaf cluster.)

dr′,z′
−
=dr,r′ + dr,z + dz,z′

−

≤ηmax + (dmax + ηmax) + (dmax + ηmax)

=2dmax + 3ηmax

dl′,z′
−
=dl,l′ + dl,z + dz,z′

−

≤ηmax + (dmax + ηmax) + (dmax + ηmax)

=2dmax + 3ηmax

dz′,r′+
=dz′,z + dz,r + dr,r′+

≤2dmax + 3ηmax

dl′,r′+ =dl,l′ + dl,r + dr,r′+

≤2dmax + 3ηmax

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

Figure 10: All the possible when node z lies to the right of node r

Thus z−, r+ ∈ N(r)∩N(l)∩N(z). z− eliminates z and r+ eliminates r. In this case, nodes l and r do not change
in this iteration. Therefore, dlt+1,rt+1 = dl,r ≤ dmax + ηmax. Also, dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax.

Case 1(b): Node z lies to the left of node l and is adjacent to it and r+ does not exists.
When r+ does not exist, it is easy to see that ∃r− ≠ l, z. The first 2 inequalities continue to hold true. We also
have:

dz′,r′−
=dz′,z + dz,r− + dr−,r′−

≤dmax + 3ηmax

dl′,r′− ≤dmax + 3ηmax

Thus r−, z− ∈ N(r)∩N(z)∩N(l). r− eliminates r and z− eliminates z. In this case, nodes l and r do not change
in this iteration. Therefore, dlt+1,rt+1 = dl,r ≤ dmax + ηmax. Also, dzt+1,rt+1 ≤ dr′−,r ≤ dmax + ηmax.

Case 1(c): Node z lies to the left of node l and there exists a node between l and z. Also, r+ exists.
We consider the nodes z+ and r+.

dr′,z′
+
= dr′, r + dr,z+ + dz+,z′

+
≤ dmax + 3ηmax,

dl′,z′
+
= dl′, l + dl,z+ + dz+,z′

+
≤ dmax + 3ηmax.

For dz′,r′+
and dl′,r′+ , Case 1(a) calculations are valid.

Thus r+, z+ ∈ N(r)∩N(z)∩N(l). r+ eliminates r and z+ eliminates z. In this case, nodes l and r do not change
in this iteration. Therefore, dlt+1,rt+1 = dl,r ≤ dmax + ηmax. Also, dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax.

Case 1(d): Node z lies to the left of node l and there exists a node between l and z. r+ does not exist.
In this case, we have z′+, r

′
− ∈ N(r) ∩ N(l) ∩ N(z). The derivation comes from Case 1(b) and 1(c). r−

eliminates r and z+ eliminates z. In this case, nodes l and r do not change in this iteration. Therefore,
dlt+1,rt+1 = dl,r ≤ dmax + ηmax. Also, dzt+1,rt+1 ≤ dr′−,r ≤ dmax + ηmax.

Case 2: We next enumerate all the cases when node z lies to the right of node r. These are presented in Figure
10.

Case 2(a): z lies to the right of r and there exists at least one node between l and r and but no node between r
and z.

dl′,z′
+
= dl′,l + dl,r + dr,z′

+
≤ 3dmax + 3ηmax,

dr′,z′
+
≤ 2dmax + 2ηmax,

dr′−,z′ ≤ 2dmax + 2ηmax,

dl′,r′− = dl′,l + dl,r− + dr−, r
′
− ≤ dmax + 3ηmax.

Thus r−, z+ ∈ N(r)∩N(z)∩N(l). r− eliminates l and z+ eliminates z. In this case, lt+1 = r, rt+1 = z Therefore,
dlt+1,rt+1 = dz,r ≤ dmax + ηmax. Also, dzt+1,rt+1 ≤ dz′

+,z ≤ dmax + ηmax.

Case 2(b): z lies to the right of r and there exists at least one node between l and r and also between r and z.
Nodes of interest - r+, r−. dl′,r′− is the same as case 2(a).

dl′,r′+ = dl′,r + dr,r′+ ≤ 2(dmax + ηmax)

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

Figure 11: All the possible when node z does not lie to the left of l or right of r

Similarly, dz′,r′−
≤ 2(dmax + ηmax), dz′,r′+

≤ dmax + 3ηmax. Thus r−, r+ ∈ N(r) ∩N(z) ∩N(l). r− eliminates

l and r+ eliminates z. In this case, lt+1 = r, rt+1 = z Therefore, dlt+1,rt+1 = dz,r ≤ dmax + ηmax. Also,
dzt+1,rt+1 ≤ dz′

−,z ≤ dmax + ηmax.

Case 2(c): z lies to the right of r and there exists at least one node between r and z but no node between r and
l.
This is symmetric to Case 2(a). Thus l−, r+ ∈ N(r) ∩N(z) ∩N(l). l− eliminates l and r+ eliminates z. In this
case, lt+1 = r, rt+1 = z Therefore, dlt+1,rt+1 = dz,r ≤ dmax + ηmax. Also, dzt+1,rt+1 ≤ dz′

−,z ≤ dmax + ηmax.

Case 2(d): z lies to the right of r and no nodes exist between r and z or r and l.
Since all the nodes are within a radius of 3, it is easy to see that l−, r+ ∈ N(r) ∩ N(z) ∩ N(l). l− eliminates
l and r+ eliminates z. In this case, lt+1 = r, rt+1 = z Therefore, dlt+1,rt+1 = dz,r ≤ dmax + ηmax. Also,
dzt+1,rt+1 ≤ dz′

+,z ≤ dmax + ηmax.

Case 3(a): z lies between l and r. Consider l− and r+.

dl′−,r′ = dl′−,l + dl,r + dr,r′ ≤ 2dmax + 3ηmax

dl′−,z′ = dl′−,l + dl,z + dz,z′ ≤ 2dmax + 3ηmax

dl′,r′+ = dl′,l + dl,r + dr,r′+s ≤ 2dmax + 3ηmax

dz′,r′+
= dz′,z + dz,r + dr,r′+ ≤ 2dmax + 3ηmax

Thus l−, r+ ∈ N(r) ∩N(z) ∩N(l). l− eliminates l and r+ eliminates r. In this case, lt+1 = z, rt+1 = r Therefore,
dlt+1,rt+1 = dz,r ≤ dmax + ηmax. Also, dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax.

If l− does not exist, we use l+. Similarly, if r+ does not exist, we use r−.

Case 3(b): Nodes l, r, z form a Y-shape, that is, there exists a node y such that l ⊥ r ⊥ z|y. There exists at
least one node between l and y as well as between y and r.
Consider nodes y−, y+.

dy′
−,z′ = dz,z′ + dy,z + dy,y′

−
≤ 2dmax + 3ηmax

dy′
−,l′ = dl′,l + dl,y−

+ dy−,y′
−
≤ dmax + 3ηmax

dy′
−,r′ = dr′,r + dr,y−

+ dy−,y′
−
≤ dmax + 3ηmax

dy′
+,z′ = dz,z′ + dy,z + dy,y′

+
≤ 2dmax + 3ηmax

dy′
+,l′ = dl′,l + dl,y+

+ dy+,y′
+
≤ dmax + 3ηmax

dy′
+,r′ = dr′,r + dr,y+

+ dy+,y′
+
≤ dmax + 3ηmax

Thus y−, y+ ∈ N(r) ∩N(z) ∩N(l). y− eliminates l and y+ eliminates r. If z is also eliminated, lt+1 = l, rt+1 = r
and dzt+1,rt+1 ≤ dr′−,r ≤ dmax + ηmax. If z is not eliminated, lt+1 = z, rt+1 = r, dlt+1,rt+1 = dr,z ≤ dmax + ηmax

dzt+1,rt+1 ≤ dr′−,r ≤ dmax + ηmax.

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

Case 3(c): Nodes l, r, z form a Y-shape, that is, there exists a node y such that l ⊥ r ⊥ z|y. There exists at
least one node between l and y but no node between y and r.
Consider nodes y−, r+. Analysis for y− is the same as in case 3(b).

dr′+,z′ = dz,z′ + dr,z + dr,r′+ ≤ 2dmax + 3ηmax

dr′+,l′ = dl′,l + dl,r + dr,r′+ ≤ 2dmax + 3ηmax

Thus y−, r+ ∈ N(r) ∩N(z) ∩N(l). y− eliminates l and r+ eliminates r. If z is also eliminated, lt+1 = l, rt+1 = r
and dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax. If z is not eliminated, lt+1 = z, rt+1 = r, dlt+1,rt+1 = dr,z ≤ dmax + ηmax

dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax.

Case 3(d): Nodes l, r, z form a Y-shape, that is, there exists a node y such that l ⊥ r ⊥ z|y. There exists at
least one node between r and y but no node between y and l.
Consider nodes l−, y+. Analysis for y+ is the same as Case 3(b).

dl′−,z′ = dz,z′ + dz,y + dy,l′− ≤ dr,z′ + dy,l′− ≤ 3dmax + 3ηmax

dl′−,r′ = dr′,r + dr,l + dl,l′− ≤ 2dmax + 3ηmax

Thus y+, l− ∈ N(r) ∩N(z) ∩N(l). y+ eliminates r and l− eliminates l. If z is also eliminated, lt+1 = l, rt+1 = r
and dzt+1,rt+1 ≤ dr′−,r ≤ dmax + ηmax. If z is not eliminated, lt+1 = z, rt+1 = r, dlt+1,rt+1 = dr,z ≤ dmax + ηmax

dzt+1,rt+1 ≤ dr′−,r ≤ dmax + ηmax.

Case 3(e): Nodes l, r, z form a Y-shape, that is, there exists a node y such that l ⊥ r ⊥ z|y. There exists no
nodes between r and y and between y and l.
Consider nodes l−, r+. Analysis follows from Cases 3(c) and 3(d). Thus r+, l− ∈ N(r) ∩ N(z) ∩ N(l). r+
eliminates r and l− eliminates l. If z is also eliminated, lt+1 = l, rt+1 = r and dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax.

If z is not eliminated, lt+1 = z, rt+1 = r, dlt+1,rt+1 = dr,z ≤ dmax + ηmax dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax.

Thus at each iteration, we visit one node and remove it from the set of nodes that get visited in subsequent
iterations until we get (l, r, z) such that at least 2 of the nodes are in the same leaf cluster. Note that the
maximum distance in the above analysis is 3dmax + 3ηmax. However our threshold for the neighborhood set is
4dmax + 3ηmax. The extra dmax is there to account for the fact that in the unidentifiable case, a parent node
from a leaf cluster may have been confused with a leaf node. In that case, the leaf node is retained in the active
set while the parent node is removed from the active set for the subsequent iterations. In order to account for
that, we add a factor of dmax to the neighborhood threshold.

Proof of correctness of LeafClusterResolution From the above analysis, we know that LeafClus-

terResolution is called with nodes in C belonging in the same leaf cluster. The idea is to check if any on the
nodes in C are such that when they act as the center node, Equation (7) has a solution. In order to do this, we
consider 2 nodes in C at a time and scan through all the nodes in their common neighborhood as the third node.
We check if the third node is also in the same leaf cluster in which case we also see if the error for this node as
the parent node is small. If it is not in the same leaf cluster, we just use it as the third node needed for Equation
(7). We first show that the routine to check if Xi3 is in the same leaf cluster as (Xi1 , Xi2) is correct:
If Xi3 is in the same leaf cluster as (Xi1 , Xi2), it is easy to see that any star/non-star test on (Xi1 , Xi2 , Xi3 , j)
always returns a non-star. When Xi3 is not in the same leaf cluster as (Xi1 , Xi2), then there exists a node Xi+3

ad-

jacent to Xi3 either away from the path connecting Xi3 to (Xi1 , Xi2) or on that path such that (Xi1 , Xi2 , Xi3 , Xi+3
)

forms a non-star where (Xi3 , Xi+3
) forms a pair. It is easy to see that dX′

1,(Xi
+
3
)′ , dX′

2,(Xi
+
3
)′ ≤ 2dmax + 3ηmax.

Therefore, Xi+3
∈ N(Xi1) ∩N(Xi2) ∩N(Xi3). Thus it is ruled out from being a parent candidate.

Now it is easy to see that if any leaf node is identifiable, it will have a non-zero error for Equation (7). For an
unidentifiable leaf node, both the leaf and parent have a solution to Equation (7) and one of them is randomly
selected as the parent node.

Any subsequent calls with nodes from the same leaf cluster always select the correct parent in line (2).

From the correctness of LeafClusterResolution, we conclude that FindLeafParent subroutine is correct.
Once we have the correctness of GetLeafParent, the correctness of FindTree is easy to understand. We
prove this by induction on the number of nodes.

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

Base Case (n=2): Line 9 recovers the lone edge.

Inductive Case: Let us assume that the algorithm works for all n < k. For n = k + 1, by the correctness of
GetLeafParent, the algorithm correctly recovers one leaf parent pair and adds that edge to the edge set. Once
the leaf node is removed, the algorithm is effectively running on k nodes and by the inductive assumption that is
correct.

This completes the proof of correctness of the algorithm.

G.3 Modification for finite sample domain

In this section we present the necessary modifications needed to execute the algorithm using finite samples.
Classifying 4 nodes as star/non-star using finite samples: Let us denote κi′,j′ = exp−di′,j′ , κmax =
exp(−dmin). We denote the finite sample estimate of κi′,j′ by ˆκi′,j′

In the infinite sample setting, a set of 4 nodes (X1, X2, X3, X4) forms a non-star with (X1, X2) forming a pair if:
√
κ1′,3′κ2′,4′κ1′,4′κ2′,3′

κ1′,2′κ3′,4′
≤ κ2

max

√
κ1′,2′κ3′,4′κ1′,4′κ2′,3′

κ1′,3′κ2′,4′
≥ 1/κ2

max

√
κ1′,3′κ4′,2′κ1′,2′κ4′,3′

κ1′,4′κ2′,3′
≥ 1/κ2

max

The finite sample test is as follows:
√

κ̂1′,3′ κ̂2′,4′ κ̂1′,4′ κ̂2′,3′

κ̂1′,2′ κ̂3′,4′
≤ (1 + κ2

max)/2

√
κ̂1′,2′ κ̂3′,4′ κ̂1′,4′ κ̂2′,3′

κ̂1′,3′ κ̂2′,4′
≥ 1

√
κ̂1′,3′ κ̂4′,2′ κ̂1′,2′ κ̂4′,3′

κ̂1′,4′ κ̂2′,3′
≥ 1

A set of 4 nodes (X1, X2, X3, X4) is classified as a star if:
√

κ̂1′,3′ κ̂2′,4′ κ̂1′,4′ κ̂2′,3′

κ̂1′,2′ κ̂3′,4′
≥ (1 + κ2

max)/2

√
κ̂1′,2′ κ̂3′,4′ κ̂1′,4′ κ̂2′,3′

κ̂1′,3′ κ̂2′,4′
≥ (1 + κ2

max)/2

√
κ̂1′,3′ κ̂4′,2′ κ̂1′,2′ κ̂4′,3′

κ̂1′,4′ κ̂2′,3′
≥ (1 + κ2

max)/2

If neither of the above conditions is satisfied for any pair, the test fails and this set of 4 nodes is not classified as
star/non-star.

Neighborhood Thresholding: In the finite sample setting, we allow for a slack in the threshold to ensure that,
with high probability, the empirical neighborhood vector contains all the nodes from the underlying neighborhood
vector. The empirical neighborhood vector is defined as follows:

N ′(Xi) = sort(Xj : d̂i′,j′ ≤ temp, key = d̂i′,j′),

where the threshold is temp = (4dmax + 3ηmax) + ln(0.5).

H Sample Complexity Upper Bound

Let us define 2 events:

B1 = {(Ea′)i,i < (1− 0.51/k)pmin, ∀a, i},B2 = {∥Ea′,b′∥ < ϵ∀a, b}

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

For any Xa, Xb we only consider nodes such that:

√

|det(P̂a′|b′ P̂b′|a′)| > 0.5 exp(−4dmax)(1− qmax)
3(k−1)(kpmin)

1.5k

=⇒ |det(P̂a′,b′)|
√

|det(P̂a′ P̂b′)|
> 0.5 exp(−4dmax)(1− qmax)

3(k−1)(kpmin)
1.5k.

In the event B1, det(P̂a′), det(P̂b′) > 0.5pkmin, therefore we have:

|det(P̂a′,b′)| ≥ 0.25 exp(−4dmax)(1− qmax)
3(k−1)(kpmin)

1.5kpkmin

Next we bound the minimum absolute eigenvalue of P̂a′,b′ .

Lemma 4. For any k × k matrix M such that Mi,j ≥ 0,
∑

i,j Mi,j = 1 and |det(M)| ≥ c where 0 < c ≤
(
1
k

)k
,

then the minimum absolute eigenvalue of M satisfies c(k − 1)k−1 ≤ |λmin(M)| ≤ ckk−1.

Proof. Let λ1, λ2 . . . λk be the eigenvalues of M such that |λ1| ≥ |λ2| ≥ · · · ≥ |λk|. Standard results tell us that:

∑

i

|λi| ≤
∑

i,j

Mi,j = 1, |det(M)| =
∏

i

|λi| ≥ c

We are interested in the solution to the following optimization problem:

min |λk| (30)

s.t.
k∑

i=1

|λi| ≤ 1 (31)

k∏

i=1

|λi| ≥ c, (32)

|λ1| ≥ |λ2| . . . |λk|, (33)

where 0 < c ≤ (1/k)k. Denote the optimal solution to the above problem by λ∗
1, λ

∗
2, . . . λ

∗
k.

Claim:
∑

i |λ∗
i | = 1,

∏k
i=1 |λ∗

i | = c, |λ∗
1| = |λ∗

2| = · · · = |λ∗
k−1|.

In order to prove this, we prove that if these do not hold true, there exists a smaller |λk|.
By contradiction, let us assume that

∑

i |λ∗
i | = 1− ϵ for some 0 < ϵ < 1. Then it is easy to see that ∃λ̃i, ϵ

′ > 0

such that |λ̃i| = |λ∗
i |+ ϵ

k−1 ∀i ∈ {1, 2 . . . , k − 1} and |λ̃k| = |λ∗
i | − ϵ′ such that

∏k
i=1 |λ̃i| = c. Therefore, |λ∗

i | is
not optimal. Thus,

∑

i |λ∗
i | = 1.

By contradiction, let us assume that
∏

i |λ∗
i | = (1 + ϵ)c for some 0 < ϵ. Consider λ̃i such that λ̃i = λ∗

i

∀i ∈ {1, 2 . . . , k − 1} and λ̃k = λ∗
k/(1 + ϵ). Then λ̃i is feasible and has smaller objective value, thus

∏

i |λ∗
i | = c.

We prove the last part by contradiction too. Let us assume by contradiction that at least one of |λ∗
i | is not equal

for i ∈ {1, 2, . . . k − 1}. Consider λ̃i such that |λ̃i| =
∑k−1

j=1 |λ∗
j |

k−1 . Then, by the AM-GM inequality, we have that:

k−1∏

i=1

|λ̃i| =
(∑k−1

j=1 |λ∗
j |

k − 1

)k−1

= (1 + ϵ)
k−1∏

i=1

|λ∗
i |

for some ϵ > 0. Choosing |λ̃k| = |λ∗
k|/(1+ ϵ), we get a feasible λ̃i with a smaller objective function. This concludes

the proof of the claim.
Thus, the solution to the optimization problem 30 satisfies:

|λ∗
1| = |λ∗

2| = · · · = |λ∗
k−1| =

1− λ∗
k

k − 1
,

(
1− λ∗

k

k − 1

)k−1

λ∗
k = c.

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

Therefore, Equation 30 has the same solution as the following optimization problem:

min |λk|

s.t. 0 < |λk| ≤
1

k

|λk|
(
1− |λk|
k − 1

)k−1

= c,

where 0 < c ≤ (1/k)k. The solution to the above optimization problem satisfies |λ∗
k|
(

1−|λ∗
k|

k−1

)k−1

= c. The

solution exists because |λk|
(

1−|λk|
k−1

)k−1

is monotonically increasing in |λk| and:

|λk|
(
1− |λk|
k − 1

)k−1

= 0, when |λk| = 0,

|λk|
(
1− |λk|
k − 1

)k−1

=

(
1

k

)k

, when |λk| = 1/k.

Therefore, |λ∗
k| satisfies:

|λ∗
k| = c

(
(k − 1)

1− |λ∗
k|

)k−1

Since 0 < |λ∗
k| ≤ 1/k, we have that c(k − 1)k−1 ≤ |λ∗

k| ≤ ckk−1

Using Lemma 4, the minimum absolute eigenvalue of P̂a′,b′ is lower bounded by |det(P̂a′,b′)|(k− 1)k−1. Therefore,
we have that:

∥P̂−1
a′,b′∥ ≤

1

0.25 exp(−4dmax)(1− qmax)3(k−1)(kpmin)1.5kpkmin(k − 1)k−1
≜

1

z1
(34)

H.1 Sample Complexity for Existence of a solution to Equation 7

We are interested in the error in the estimate of Q(x) as defined below:

Q̂(x) = ∥x
2

k2
(O − kI)− x

k
(OP̂ ′

b + P̂ ′
bO − kP̂ ′

b − I) + P̂b′,c′ P̂
−1
a′,c′ P̂a′,b′ − P̂ ′

b∥F

Q(x) = ∥x
2

k2
(O − kI)− x

k
(OP ′

b + P ′
bO − kP ′

b − I) + Pb′,c′P
−1
a′,c′Pa′,b′ − P ′

b∥F

We derive the error bound for the term Pb′,c′P
−1
a′,c′Pab when estimated using the respective empirical estimates.

Pb′,c′P
−1
a′,c′Pa′,b′ = (P̂b′,c′ + Eb′,c′)(P̂a′,c′ + Ea′,c′)

−1(P̂a′,b′ + Ea′,b′)

= (P̂b′,c′ + Eb′,c′)

(

P̂−1
a′,c′ +

∞∑

m=1

(−P̂−1
a′,c′Ea′,c′)

mP̂−1
a′,c′

)

(P̂a′,b′ + Ea′,b′)

= P̂b′,c′ P̂
−1
a′,c′ P̂ab + Eb′,c′ P̂

−1
a′,c′ P̂a′,b′ + P̂b′,c′ P̂

−1
a′,c′Ea′,b′ + P̂b′,c′ẼacP̂a′,b′

+ Eb′,c′ P̂
−1
a′,c′Ea′,b′ + Eb′,c′ẼacP̂a′,b′ + P̂b′,c′ẼacEa′,b′ + Eb′,c′ẼacEa′,b′ ,

here we use the notation Ẽac :=
∑∞

m=1(−P̂−1
a′,c′Ea′,c′)

mP̂−1
a′,c′ . Using the triangle inequality and submultiplicative

property of the spectral norm, we get that:

∥Ẽac∥2 ≤
∥P̂−1

a′,c′∥22∥Ea′,c′∥2
1− ∥P̂−1

a′,c′∥2∥Ea′,c′∥2

We choose such an ϵ in the event B2 that ensures that ∥P−1
a′,c′∥2∥Ea′,c′∥2 < 0.5. This gives us:

∥Ẽac∥2 ≤ 2∥P̂−1
a′,c′∥22∥Ea′,c′∥2

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

In the event B2, ∥Ea′,b′∥2, ∥Eb′,c′∥2∥Ea′,c′∥2 < ϵ. In the event B1, from Equation (34), ∥P̂−1
a′,c′∥2 ≤ z−1

1 . Therefore,

∥Ẽac∥2 ≤ 2z−2
1 ϵ. Since P̂a′,b′ , P̂b′,c′ are joint PMF matrices, we have that ∥P̂a′,b′∥2, ∥P̂b′,c′∥2 < 1. Substituting

these along with triangle inequality and submultiplicative property of the spectral norm gives us the following:

∥P̂b′,c′ P̂
−1
a′,c′ P̂a′,b′ − Pb′,c′P

−1
a′,c′Pa′b′∥2 ≤ 3ϵz−1

1 + 8ϵz−2
1

This gives us:

Q̂(x) = ∥x
2

k2
(O − kI)− x

k
(OP̂ ′

b + P̂ ′
bO − kP̂ ′

b − I) + P̂b′,c′ P̂
−1
a′,c′ P̂a′,b′ − P̂ ′

b∥F

≤ Q(x) + (3x+ 1)∥Eb′∥F + ∥P̂b′,c′ P̂
−1
a′,c′ P̂a′,b′ − Pb′,c′P

−1
a′,c′Pab∥F

=⇒ |Q̂(x)−Q(x)| ≤ 4
√
kϵ+ 3

√
kϵz−1

1 + 8
√
kϵz−2

1 ≤ 15
√
kϵz−2

1

We need that |Q̂(x)−Q(x)| < t0/2. This is satisfied when:

ϵ <
t0z

2
1

30
√
k

(35)

H.2 Sample Complexity for Star/Non-Star test

Consider a set of 4 nodes {X1, X2, X3, X4} such that they form a non-star such that {X1, X2} form a pair.

|det(P1,3P2,4)|
|det(P1,4P2,3)|

=
|det((P̂1,3 + E1,3)(P̂2,4 + E2,4))|
|det((P̂1,4 + E1,4)(P̂2,3 + E2,3))|

(36)

Using the analysis from Tandon et al. [2021], a set of 4 nodes is correctly classified if for any pair of nodes {a, b}
that are in each other’s neighborhood sets, we have that |det(Pa,b)−det(P̂a,b)| < z1(1−α)

20 , where α = 1+exp(−2dmin)
2 .

We can bound the difference in the empirical estimate of the determinant and the true determinant using the
matrix perturbation result in Chapter 5 of Bhatia [2007] as follows:

|det(Pa,b)− det(P̂a,b)| ≤ kmax{∥Pa,b∥, ∥P̂a,b∥}k−1∥Ea,b∥2 ≤ k∥Ea,b∥2

Under event B2 we have that ∥Ea,b∥ < ϵ. Thus the algorithm correctly classifies nodes as star/non-star when:

ϵ <
z1(1− α)

20k
. (37)

From Equations (35), (37) we choose ϵ as follows:

ϵ < min

{
z1(1− α)

20k
,
t0z

2
1

30
√
k

}

. (38)

Next, we find the number of samples needed for B1 and B2 to hold true with high probability.

P (B1,B2) ≥ 1− P (B̄1)− P (B̄2)

For a given a, i, by Hoeffding’s inequality we have that:

P ((Ea′)i,i) > (1− 0.51/k)pmin) ≤ exp(−2N((1− 0.51/k)pmin)
2).

By the union bound on all the nodes and all the alphabets we get:

P (B̄1) ≤ kn exp(−2N((1− 0.51/k)pmin)
2).

In order to achieve P (B̄1) ≤ δ/2, we have the following bound on the sample complexity:

N ≥ 1

2p2min(1− 0.51/k)2
log

(
2nk

δ

)

. (39)

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

Note that:

1

(1− 0.51/k)2
=

(
21/k

21/k − 1

)2

≤ 2

(21/k − 1)2

=
2

(

exp
(

log 2
k

)

− 1
)2

≤ 2k2

(log 2)2
.

Thus, when

N ≥
(

k

pmin log 2

)2

log

(
2nk

δ

)

, (40)

we have P (B̄1) ≤ δ/2. Next, we upper bound the probability P (B̄1).
The matrix Bernstein’s inequality (Tropp [2015]) states that for independent random matrices S1 . . . SN with

dimension d1 × d2 such that E[Si] = 0, ∥Si∥ < L ∀i and Z =
∑N

i=1 Si, then

P (∥Z∥ > t) ≤ (d1 + d2) exp

(−t2/2
v(Z) + Lt/3

)

where v(Z) = max{∥
∑N

i=1 E
[
SiS

T
i

]
∥}. In order to apply this in our setting, define Si = 1

i
a′,b′ −Pa′,b′ where 1

i
a′,b′

is the indicator matrix for sample i with a 1 in the position corresponding to the value of X ′
a and X ′

b in that
sample.
It is easy to see that E[Si] = 0, ∥Si∥ ≤ 2. Also, in this setting, Ea′,b′ =

1
NZ. Next, we bound v(Z).

E
[
SiS

T
i

]
= E

[
(1i

a′,b′ − Pa′,b′)(1
i
a′,b′ − Pa′,b′)

T
]

= E
[
(1i

a′,b′)(1
i
a′,b′)

T
]
− E

[
Pa′,b′P

T
a′,b′

]

=⇒ ∥
N∑

i=1

E
[
SiS

T
i

]
∥ ≤ 2N

This bounds the probability of ∥Ea′,b′∥ > ϵ as follows:

P (∥Ea′,b′∥ > ϵ) = P (∥Z∥ > nϵ) ≤ 2k exp

(−Nϵ2

4(1 + ϵ/3)

)

By the union bound on all the pair of nodes, we have:

P (B̄2) ≤ kn(n− 1) exp

(−Nϵ2

4(1 + ϵ/3)

)

.

For P (B̄2) ≤ δ/2, the lower bound on the number of samples is given by

N ≥ 2(2 + ϵ/3)

ϵ2
log

(
2nk(n− 1)

δ

)

(41)

From Equations (40) and (41), the algorithm outputs the correct tree if:

N ≥ max

{(
k

pmin log 2

)2

log

(
2nk

δ

)

,
2(2 + ϵ/3)

ϵ2
log

(
2nk(n− 1)

δ

)}

. (42)

From Equation (34), we have that:

z1 =
(1− qmax)

3(k−1)(kpmin)
2.5k

4k exp(4dmax)

(

1− 1

k

)k−1

.

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

Note that:
1

e
<

(

1− 1

k

)k−1

<
1

2
∀ k ≥ 2

Thus we have:

ϵ = O
(

min

{
(1− qmax)

3(k−1)(kpmin)
2.5k(1− exp(−2dmin))

k2 exp(4dmax)
,
t0(1− qmax)

6(k−1)(kpmin)
5k

k2.5 exp(8dmax)

})

From the value of ϵ, we can see that the sample complexity in Equation (41) is dominated by the second term.
Substituting the value of ϵ we get that the sample complexity is of the following order:

N = O
(

max

{

k4 exp(8dmax)

(1− qmax)6(k−1)(kpmin)5k(1− exp (−2dmin))2
,

k5 exp(16dmax)

t20(1− qmax)12(k−1)(kpmin)10k

}

log

(
2nk(n− 1)

δ

))

I Sample Complexity Lower Bound

I.1 Preliminaries

In this section, we present some definitions, and results that we will use for our lower bound proof.

Information theoretic lower bound: We now present the information theoretic lower bound for required
samples in recovering a distribution.

We first define the symmetrized KL-divergence between two distributions P and Q as

J(P,Q) = EX∼P log

(
P (X)

Q(X)

)

+ EX∼Q log

(
P (X)

Q(X)

)

.

Lemma 5 (Fano’s Inequality, Lemma 6.2 in Bresler et al.Bresler et al. [2020]). For M ≥ 2, given the (M + 1)
distributions {P0, . . . , PM}, for any estimator Ψ : [k]n ×N → {0, 1, . . . ,M} that uses N i.i.d. samples X

′(1 : N),
and for any δ > 0 we have for

N ≤ (1− δ)
log(M)

1
M+1

∑M
k=1 J(P

(k), P (0))
, inf

Ψ
max

0≤k≤M
P (j)(Ψ(X′(1 : N)) ̸= j) ≥ δ − 1

log(M) .

The above inequality provides such a characterization in the minimax sense. In particular, it says among the
M distributions there exists at least one from which N (as defined in the lemma) i.i.d. samples are required to
identify that distribution correctly with probability at least (1− δ + 1

log(M)).

Partially Mixing Graphical Model (PMGM): We introduce a special class of tree structured graphical
models called the Partially Mixing Graphical Models (PMGM). In order to define them, we first define the
matrices A as follows:

A =

0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . −1 1
0 0 . . . 1 −1

.

Definition 2. A Partially Mixing Graphical Model (PMGM) is a tree structured graphical model on discrete
random variables with common support such that the marginal distribution of all the random variables is a uniform
distribution and the conditional PMF matrix of two random variables Xi, Xj such that (Xi, Xj) ∈ E is given by:

Pi|j = I + αi,jA, where 0 < αi,j < 1.

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

Intuitively, in PMGMs, if a sample of Xi ∈ {s1, . . . sk−2}, then all the random variables in that sample are equal.
Only for a subset of the support {sk−1, sk}, the random variables are unequal in one sample.

It is easy to see that det(Pi|j) = 1− 2αi,j . Thus, for PMGMs, the distance between two adjacent nodes Xi and
Xj is di,j = − log(1− 2αi,j).

Circulant Matrices: Let R be a rotational operation of a vector v ∈ R
k which maps it to v′ = R(v) ∈ R

k with
v′(i) = v((i+ 1)modk) for all 1 ≤ i ≤ k. Then we have v′′ = Rj(v) as v′′(i) = v((i+ j)modk) for any j ≥ 1, and
for all 1 ≤ i ≤ k.Then a ciculant matrix created from vector v is given as Cir(v) = (v;R(v);R2(v); . . . ;R(k−1)(v)).
For any circulant matrix in R

k×k with vector v, denoted as Cir(v), the determinant is given as

det(Cir(v)) =
k−1∏

j=0

k−1∑

i=0

viω
ji.

The following lemma states that when a graphical model has the conditional PMF as circulant matrix for each
edge, then if one node has uniform marginal then all other nodes have uniform marginals as well.

Lemma 6. Consider a tree graphical model such that the conditional PMF matrix corresponding to every edge
is a circulant matrix. Then, if the marginals of one of the nodes is uniformly distributed on the support, the
marginals of all the remaining nodes are also uniform.

Proof. Suppose the node with uniform marginals is X1. Suppose node X2 has an edge with X1 and P (X2|X1)

is a circulant matrix. Thus we have P (X2, X1) =
P (X2|X1)

k . Therefore, P (X2, X1) is also a circulant matrix.
When the joint PMF matrix is circulant, all the rows and columns the marginal distribution of both the random
variables is uniform. Therefore, the marginal distribution of X2 is also uniform. Thus the marginal distribution
of all the nodes connected to X1 is uniform. Once we know that the marginals of one hop neighbors of X1 are
uniform, we can infer the same about the two hop neighbors of X1. This can further be extended for all the nodes
in the graph.

Simplifying the Quadratic Bound: Suppose the marginals of all the random variables are uniform, that is, P ′
b =

1
k I

and the underlying graphical model on Xa, Xb, Xc is a chain with Xa as the center node. We want to bound the
following quadratic:

Q(x) = ∥x
2

k2
(O − kI)− x

k
(OP ′

b + P ′
bO − kP ′

b − I) + Pb′,c′P
−1
a′,c′Pa′,b′ − P ′

b∥F .

The conditional independence relation gives us Pb,c = Pb,aP
−1
a Pac

. Recall that Ea = (1−qa)I+
qa
k O and similarly

we have Eb, Ec. We have the following:

Pb′,c′P
−1
a′,c′Pa′,b′ = EbPb,cEc(EaPa,cEc)

−1EaPa,bEb

= EbPb,aP
−1
a Pa,cEcE

−1
c P−1

a,cE
−1
a EaPa,bEb

= EbPb,aP
−1
a Pa,bEb

In the circulant setting, we have that Pa = 1
k I . This gives us Pb′,c′P

−1
a′,c′Pa′,b′ = kEbPb,aPa,bEb. Substituting

these in the quadratic, we get:

Q(x) = ∥x
2

k2
(O − kI)− x

k
(OP ′

b + P ′
bO − kP ′

b − I) + Pb′,c′P
−1
a′,c′Pa′,b′ − P ′

b∥F , (43)

= ∥
(
x2 − 2x+ 1

k2

)

O −
(
x2 − 2x+ 1

k

)

I − O

k2
+ kEbPb,aPa,bEb∥F , (44)

= ∥
(
x− 1

k

)2

(O − kI)− O

k2
+ kEbPb,aPa,bEb∥F (45)

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

Perturbed Symmetric Distribution: We now focus on a special case of circulant matrices which will be used
in our lower bound construction later on. The conditional PMF for two nodes a and b in a perturbed symmetric
distribution model takes the following form:

Pb|a = (α− δ)I + (1− α)
O

k
+∆

∆ =

0 δ 0 . . . 0
0 0 δ . . . 0
...

...
...

...
...

0 0 0 . . . δ
δ 0 0 . . . 0

.

Note that this is a class that we define by perturbing the discrete symmetric model slightly.

We first consider the noiseless setting (Eb = I). In order to obtain the results for the noisy case, it is sufficient to
replace α by (1− q)α and δ by (1− q)δ. For our model, we have that:

Pb,a =
1

k

(

(α− δ)I + (1− α)
O

k
+∆

)

.

Noting that Pb,a = PT
a,b, ∆∆T = δ2I, ∆O = O∆T = δO, we get:

Pb,aPa,b =
1

k2

(

((α− δ)2 + δ2)I +
O

k
(1− α2) + (α− δ)(∆T +∆)

)

Lower bounding the Quadratic Bound: Substituting this in Equation (43) along with Eb = I, we get:

Q2(x) =∥
(
x− 1

k

)2

(O − kI)− O

k2
+ kEbPb,aPa,bEb∥2F

=∥
(
x− 1

k

)2

(O − kI) + ((α− δ)2 + δ2)
I

k
− α2 O

k2
+

(α− δ)

k
(∆T +∆)∥2F

Each diagonal element (total k) of the matrix is
(
x−1
k

)2 − (x−1)2

k + (α−δ)2+δ2

k − α2

k2 .

Each element at the positions of the support (∆ +∆T) (total 2k) is
(
x−1
k

)2 − α2

k2 + δ(α−δ)
k .

Every remaining element (total k2−3k) is
(
x−1
k

)2− α2

k2 . To simplify the above equation, we define γ = (1−x)2−α2,
e = δ(α− δ). Each diagonal element is γ

k2 − γ
k − 2e

k .
Each element at the positions of the support (∆ +∆T) (total 2k) is γ

k2 + e
k .

Every remaining element (total k2 − 3k) is γ
k2 . Thus, we get:

Q2(x) =k

(
γ

k2
− γ

k
− 2e

k

)2

+ 2k
(γ

k2
+

e

k

)2

+ (k2 − 3k)
γ2

k4

= 1
k3 ((k − 1)γ + 2ke)

2
+ 2

k3 (γ + ke)
2
+ k−3

k3 γ2

Q2(x) is minimized for γ = − 2ke
k−1 . Substituting this, we get:

Q2(x) ≥ 2(k − 3)δ2(α− δ)2k2

k − 1
. (46)

Computing the determinant of conditional PMF: Let us consider the perturbed symmetric distribution C(v(θ, θ′))
with the vector

v(θ, θ′) =

(1− θ′ − (K − 2)θ), θ′, θ, . . . , θ
︸ ︷︷ ︸

k−2 times

 .

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

For θ = 1−α
k and δ = (θ′ − θ) we have C(v(θ, θ′)) = Pb|a. We make this switch as this helps us computing the

determinant easily.

We now derive some of the necessary results which we will apply in our lower bound graph construction. The
determinant of the matrix C(v(θ, θ′)) is derived first. We have for any j = 0 to k − 1,

k−1∑

i=0

v(θ, θ′)iω
ji = (1− θ′ − (k − 2)θ) + θ′ωj + θ

k−1∑

i=2

ωji

= (1− θ′ − (k − 1)θ) + (θ′ − θ)ωj + θ

k−1∑

i=0

ωji

=

{

1 = (1− θ′ − (k − 1)θ) + (θ′ − θ) + kθ, j = 0

(1− θ′ − (k − 1)θ) + (θ′ − θ)ωj , j ̸= 0

Therefore, we have following the derivations in Sot

det(Pb|a) = det(Cir(v(θ, θ′))) =
k−1∏

j=1

(
(1− θ′ − (k − 1)θ)− (θ − θ′)ωj

)

=
(1− θ′ − (k − 1)θ)k

(1− kθ)

k−1∏

j=0

(

1− (θ−θ′)
(1−θ′−(k−1)θ)ω

j
)

=
(1− θ′ − (k − 1)θ)k − (θ − θ′)k

(1− kθ)

= (1− kθ)(k−1)

((

1− θ′−θ
1−kθ

)k

−
(

θ−θ′

1−kθ

)k
)

= α(k−1)
((

1− δ
α

)k −
(−δ

α

)k
)

In the last line we substitute α = (1− kθ) and δ = (θ′ − θ) to get back to the form common to other parts of the
proof.

I.2 Lower Bound for recovering the equivalence class of trees

In this section we derive the lower bound on the sample complexity to recover the equivalence class when the
underlying model has is totally unidentifiable (no leaf is distinguishable from it’s parent). For this purpose, we
consider PMGMs.

Family of distributions: With the above background, we are now ready to derive the lower bounds. We
consider the family of probability distributions which is structurally similar to Appendix A in Tandon et al.
[2021], but are PMGMs instead of Ising models. The family of distributions is given as (P (i) : i = 0, 1, . . . , t2).
The graph P (0) consists of n = 2t+ 1 nodes (1, 2, . . . , 2t+ 1). Here, we use odd number of nodes for simplifying
exposition. There are 2t edges where node j = 1, . . . , 2t are connected to node (2t + 1). Nodes 1, 2 . . . t have
distance dmax from node 2t+ 1 and are corrupted with probability qmax. Nodes t+ 1, t+ 2 . . . 2t have distance
dmin from node 2t+ 1 and have 0 probability of error. Node 2t+ 1 also has 0 probability of error.

For any i = 1, . . . , t2, the distribution P (i) is constructed from P (0) by disconnecting the edge (ia, 2t+ 1), and
adding edge (ib + t, 2t+ 1) where ia = (1 + ⌊ i−1

t ⌋), and ib = i− ⌊ i−1
t ⌋t.

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

2t+1

1
2

2t

𝑖! 𝑖"

…

𝑃
(")

2t+1

1

2

2t

𝑖!

𝑖"

……

𝑃
($)

Figure 12: The family of distributions used for providing lower bound for completely unidentifiable case. The
graphical model corresponding to P (0) a single recoverable leaf cluster. The graphical model corresponding to
P (i), for each i = 1, . . . , t2 − 1, has nodes {ia, ib} as one recoverable leaf cluster, and the remaining nodes as
another recoverable leaf cluster.

As noted in Tandon et al. [2021], the pair (ia, ib) is unique for every i = 1, . . . , t2. The graph structures of P (0)

and P (i) are illustrated in Figure 12.

We next look at the probability distribution matrices for P (0) and P (i). Without loss of generality we consider
P (i).

To express the probability distribution, we first define wm, wM and S as:

wM =
1

2
(1− exp(−dmax)), wm =

1

2
(1− exp(−dmin)), S = kI −O

For P (0) we have:

P
(0)
i =

I

k
, i ∈ {1, 2, . . . , 2t+ 1},

P
(0)
i|2t+1 = I + wMA, i ∈ {1, 2, . . . t},

P
(0)
i|2t+1 = I + wmA, i ∈ {t+ 1, t+ 2, . . . 2t},

P
(0)
i′|i = I +

q

k
S, i ∈ {1, 2, . . . t},

P
(0)
i′|i = I, i ∈ {t+ 1, t+ 2, . . . 2t+ 1}.

For P (1) we have:

P
(1)
i =

I

k
, i ∈ {1, 2, . . . , 2t+ 1},

P
(1)
i|2t+1 = I + wMA, i ∈ {2, 3, . . . t},

P
(1)
i|t+1 = I + wMA,

P
(1)
i|2t+1 = I + wmA, i ∈ {t+ 1, t+ 2, . . . 2t},

P
(1)
i′|i = I +

q

k
S, i ∈ {1, 2, . . . t},

P
(1)
i′|i = I, i ∈ {t+ 1, t+ 2, . . . 2t+ 1}.

Using

(I + aA)(I + bA) = I + (a+ b− 2ab)A,

(I + aA)(I + bS) = I + bS + a(1− kb)A,

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

we get:

P
(0)
1′|(2t+1)′ = P

(1)
1′|(t+1)′ = I +

qmax

k
S + wM (1− qmax)A, (47)

P
(0)
1′|(t+1)′ = P

(1)
1′|(2t+1)′ = I + qmaxS + (wm + wM − 2wmwM)(1− qmax)A. (48)

Note that:

EX∼P (0) log

(
P (0)(X)

P (1)(X)

)

= EX∼P (0) log(P (0)(X ′
1|X ′

2t+1)− EX∼P (0) log(P (1)(X ′
1|X ′

t+1))).

We have that:

EX∼P (0) log(P (0)(X ′
1|X ′

2t+1)

=EX′
1,X

′
2t+1∼P (0) log(P (0)(X ′

1|X ′
2t+1)

=
∑

(X′
1,X

′
2t+1)∈S2

P (0)(X ′
1, X

′
2t+1) log(P

(0)(X ′
1|X ′

2t+1)

=
1

k

∑

(X′
1,X

′
2t+1)∈S2

P (0)(X ′
1|X ′

2t+1) log(P
(0)(X ′

1|X ′
2t+1)

=
1

k

[

(k − 2)

(

1−
(

1− 1

k

)

qmax

)

log

(

1−
(

1− 1

k

)

qmax

)

+ (k2 − k − 2)
(qmax

k
log
(qmax

k

))

+ 2
((

(1− qmax)(1− wM) +
qmax

k

)

log
(

(1− qmax)(1− wM) +
qmax

k

)

+
(qmax

k
+ wM (1− qmax)

)

log
(qmax

k
+ wM (1− qmax)

))]

.

Similarly, we also have that :

EX∼P (0) log(P (1)(X ′
1|X ′

t+1)

=
1

k

[

(k − 2)

(

1−
(

1− 1

k

)

qmax

)

log

(

1−
(

1− 1

k

)

qmax

)

+ (k2 − k − 2)
(qmax

k
log
(qmax

k

))

+ 2
((

(1− qmax)(1− wM − wm + 2wmwM) +
qmax

k

)

log
(

(1− qmax)(1− wM) +
qmax

k

)

+
(qmax

k
+ (wM + wm − 2wmwM)(1− qmax)

)

log
(qmax

k
+ wM (1− qmax)

))]

.

Thus, we get:

EX∼P (0) log

(
P (0)(X)

P (1)(X)

)

=
2

k
wm(1− 2wM)(1− qmax) log

(1− qmax)(1− wM) + qmax

k
qmax

k + wM (1− qmax)

=
2

k
wm(1− 2wM)(1− qmax) log

(

1 +
(1− 2wM)(1− qmax)
qmax

k + wM (1− qmax)

)

≤2wm(1− 2wM)2(1− qmax)
2

qmax + wM (1− qmax)k
.

Therefore, we have:

J(P (0), P (1)) ≤ 4wm(1− 2wM)2(1− qmax)
2

qmax + wM (1− qmax)k

Substituting wm and wM , we get:

J(P (0), P (1)) ≤ 4(1− exp(−dmin)) exp(−2dmax)(1− qmax)
2

2qmax + (1− exp (−dmax))(1− qmax)k

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

Using the fact that J(P (0), P (1)) = J(P (0), P (i)) ∀ i ∈ {2, . . . , t2}, Lemma 5 gives us that for any algorithm to
correctly recover T sub

T∗ with probability at least 1− δ, the number of samples required are:

N = Ω

(
2qmax + (1− exp(−dmax))(1− qmax)k

(1− exp(−dmin)) exp(−2dmax)(1− qmax)2
(1− δ) log n

)

I.3 Lower bound for recovering T sub
T∗ when T sub

T∗ ⊂ TT∗

In this section, we focus on the dependence of t0 which can not be captured when the graph is completely
unidentifiable. Therefore, we create graphs using perturbed symmetric distribution where the graph is partly
identifiable (a subset of leaf nodes is distinguishable from it’s parent).

Family of distributions: We consider graphical models with random variables whose support size is k ≥ 4. We
construct a family of n+1 star structured distributions on n+1 nodes (as shown in Figure 13), P (0), P (1), . . . , P (n),
such that P (0) is completely identifiable while P (i) is such that leaf node i and the center node 0 is unidentifiable.

We next provide the details of the family of graphical models.

0

1

2

n

𝑖

…

𝑃
(")

Symmetric
Perturbed Symmetric

0

1

2

n

𝑖

…

𝑃
($)

Figure 13: The family of distributions used for providing lower bound with t0 dependence. The graphical model
corresponding to P (0) is completely identifiable. The graphical model corresponding to P (i), for each i = 1, . . . , n,
has edge {i, 0} which forms a recoverable leaf cluster, and the rest are all identifiable.

For P (0), the conditional distribution matrices are as follows:

P
(0)
Xj |X0

= (α− δ)I + (1− α)
O

k
+∆, ∀j ∈ [n],

where

∆ =

0 δ 0 . . . 0
0 0 δ . . . 0
...

...
...

...
...

0 0 0 . . . δ
δ 0 0 . . . 0

For P (i), the conditional distribution matrices are as follows:

P
(i)
Xj |X0

= (α− δ)I + (1− α)
O

k
+∆, ∀j ∈ [n], j ̸= i.

P
(i)
Xi|X0

= αI + (1− α)
O

k
.

Recall from Equation (46), this conditional distribution ensures that in P (0), all the leaves can be identified. It also
ensures that in P (i) all the leaves other than i can be identified. It is easy to see that (α− δ)I + (1− α)Ok +∆ =
C(v(θ, θ′)) for θ = 1−α

k , θ′ = 1−α
k + δ. The marginals of all the random variables in all the distributions are

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

uniform on the support. Given the graph structure and the uniform marginals, the joint PMF of the random
variables can be decomposed as follows:

P (0)(X) =
1

k

n∏

j=1

P (0)(Xj |X0), (49)

P (i)(X) =
1

k

n∏

j=1

P (i)(Xj |X0). (50)

Recall that P
(0)
Xj |X0

is the matrix form of conditional distribution whereas P (0)(Xj |X0) is the scalar value of the

conditional PMF for any Xj and X0.

KL Divergence Computation We now calculate the symmetrized KL divergence between P (0) and P (i) for
i ̸= 0 denoted by J(P (0), P (i)).

J(P (0), P (i)) = EX∼P (i) log
P (i)(X)

P (0)(X)
+ EX∼P (0) log

P (0)(X)

P (i)(X)

Substituting P (0)(X), P (i)(X) from equation 49 and noting that P (0)(Xj |X0) = P (i)(Xj |X0) ∀j ̸= i, we get that:

J(P (0), P (i)) = EP (i) log
P (i)(Xi|X0)

P (0)(Xi|X0)
+ EP (0) log

P (0)(Xi|X0)

P (i)(Xi|X0)

Therefore to compute J(P (0), P (i)), we need EP (i) logP (i)(Xi|X0), EP (i) logP (0)(Xi|X0), EP (0) logP (0)(Xi|X0)
and EP (0) logP (i)(Xi|X0). We first calculate EP (i) logP (i)(Xi|X0). Note that P (i)(Xi = xi|X0 = x0) takes only 2
values - α+ (1− α)/k(whenever xi = x0, that is, for k combinations of xi, x0), (1− α)/k (whenever Xi ̸= X0,
that is, for k2 − k combinations of xi, x0).

EP (i) logP (i)(Xi|X0) =
∑

xi,x0∈S×S
P (i)(Xi = xi, X0 = x0) logP

(i)(Xi = xi|X0 = x0)

=
∑

xi=x0

P (i)(Xi = xi, X0 = x0) logP
(i)(Xi = xi|X0 = x0)

+
∑

xi ̸=x0

P (i)(Xi = xi, X0 = x0) logP
(i)(Xi = xi|X0 = x0)

=
∑

xi=x0

P (i)(Xi = xi|X0 = x0)P
(i)(X0 = x0) logP

(i)(Xi = xi|X0 = x0)

+
∑

xi ̸=x0

P (i)(Xi = xi|X0 = x0)P
(i)(X0 = x0) logP

(i)(Xi = xi|X0 = x0)

=k

(

α+
1− α

k

)
1

k
log

(

α+
1− α

k

)

+ k(k − 1)
1− α

k

1

k
log

(
1− α

k

)

=

(

α+
1− α

k

)

log

(

α+
1− α

k

)

+
k − 1

k
(1− α) log

(
1− α

k

)

.

We next calculate EP (i) logP (0)(Xi|X0). P
(0)(Xi|X0) takes 3 different values -

(
α+ 1−α

k − δ
)

(for k combinations
of xi, x0),

1−α
k + δ (for k combinations of xi, x0),

1−α
k (for k2 − 2k combinations of xi, x0).

EP (i) logP (0)(Xi|X0) =k

(

α+
1− α

k

)
1

k
log

(

α+
1− α

k
− δ

)

+ k

(
1− α

k

)
1

k
log

(
1− α

k
+ δ

)

+

+ k(k − 2)
1− α

k

1

k
log

(
1− α

k

)

=

(

α+
1− α

k

)

log

(

α+
1− α

k
− δ

)

+
1− α

k
log

(
1− α

k
+ δ

)

+
k − 2

k
(1− α) log

(
1− α

k

)

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

Evaluating the remaining terms on similar lines gives us:

EXi,X0∼P (0) logP (0)(Xi|X0) =

(

α+
1− α

k
− δ

)

log

(

α+
1− α

k
− δ

)

+

(
1− α

k
+ δ

)

log

(
1− α

k
+ δ

)

+
k − 2

k
(1− α) log

(
1− α

k

)

,

EXi,X0∼P (0) logP (i)(Xi|X0) =

(

α+
1− α

k
− δ

)

log

(

α+
1− α

k

)

+

(
k − 1

k
(1− α) + δ

)

log

(
1− α

k

)

.

This gives us:

J(P (0), P (i)) =δ

[

log

(

1 +
kδ

1− α

)

− log

(

1− kδ

kα+ (1− α)

)]

≤ kδ2
(

1

1− α
+

1

1 + (k − 1)α

)

≤ (k−1)
8k(k−3)α2

(
1

1− α
+

1

1 + (k − 1)α

)

× t20, for t0 ≤ k
√
k−3α2√
2(k−1)

, k ≥ 4.

The second last inequality holds as for log((1 + ax)/(1− bx)) ≤ (a+ b)x for x > 0, a > 0, b > 0, and b ≤ a.

We now reason about the final inequality. We have Q2(x) ≥ 2(k−3)k2

(k−1) δ2(α − δ)2 for k ≥ 4. If we have δ < α/4

then we have Q2(x) ≥ (k−3)k2

8(k−1) δ
2α2. But we are dealing with the situation when Q2(x) ≥ t20. This means we

must choose δ in a way such that t20 ≤ (k−3)k2

8(k−1) δ
2α2. Let δ =

√
(k−1)

k
√

8(k−3)α
t0. This choice satisfies δ ≤ α/4 for

t0 ≤ k
√

(k−3)α2

√
2(k−1)

. Hence, replacing

√
(k−1)

k
√

8(k−3)α
t0 gives the final inequality for the symmetrized KL divergence

above.

As we have δ ≤ α/4 and k ≥ 4, we can simplify the determinant term as

det(PXi|X0
) = α(k−1)

((
1− δ

α

)k −
(−δ

α

)k
)

det(PXi|X0
) ≤ α(k−1), det(Pa|b) ≥ α(k−1) 3k−1

4k

dmax ≤ −(k − 1) log(α)− log(3
k−1
4k

) ≤ −(k − 1) log(α 3
√

16/5), dmin ≥ −(k − 1) log(α)

α ≥ 1
2 exp(−dmax/(k − 1)), α ≤ exp(−dmin/(k − 1)).

If we use α = exp(−dmin/(k − 1)) for our construction, the symmetrized KL divergence in terms of the distance

bounds, for k ≥ 4 and t0 ≤ k
√
k−3α2√
2(k−1)

, is

J(P (0), P (i)) ≤ (k−1)
8k(k−3)α2

(
1

1−α + 1
1+(k−1)α

)

× t20

≤ (k−1)
8k(k−3) exp(−2dmin/(k−1))

(

1 + 1
1−exp(−dmin/(k−1))

)

× t20

Lower Bound Proof - Part II: We now derive the second part of Theorem 5, thus concluding its proof.

Plugging the above symmetrized KL bound in Lemma 5 we obtain that for a probability error of at most δ > 0
we require at least N samples where

N > (1− δ + 1
log(n))

log(n)

n
n+1

(k−1)
8k(k−3) exp(−2dmin/(k−1))

(

1 + 1
1−exp(−dmin/(k−1))

)

× t20

≥
(1− δ) exp(− 2dmin

k−1)(1− exp(−dmin

k−1))8k(k − 3) log(n)

(k − 1)(2− exp(−dmin

k−1))t
2
0

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

Figure 14: Randomly generated graph used for algorithm evaluation.

Therefore, we have N = Ω

(

(1−δ) exp(− 2dmin

k−1)(1−exp(−dmin

k−1))k log(n)

t20

)

Instead using α = 1
2 exp(−dmax/(k − 1)) in our construction, following similar steps, we obtain

N = Ω

(

(1− δ) exp(− 2dmax

k−1)(1− exp(−dmax

k−1))k log(n)

t20

)

.

Combining these two we obtain the final lower bound in this setting (k ≥ 4 and t0 ≤
√
3

4
√
10
k exp(−2dmax

k−1))as

N = Ω

(

max
d∈{dmax,dmin}

(1− δ) exp(− 2d
k−1)(1− exp(− d

k−1))k log(n)

t20

)

.

J Experiments

Number of iterations used for k = 2 in comparison with SGA : We used 1000 iterations to obtain the
results for k = 2 presented in Figure 3.

Next we provide more results for varying graph shapes and other parameters. All the experiments in this section
are for k = 4.

J.1 Varying graph shape, δ

In this part we see the impact of δ on the performance of the algorithm for different graphs. We execute the
algorithm for a lot of randomly generated graphs and the algorithm converges to the correct output. We report
the results for 3 different graph structures - star, chain and one of the many randomly generated graphs (Figure
14).

Setting: (i) Number of nodes = 7.
(ii) Graph Shape = {Chain, Star, Random}
(iii) Distance of all the adjacent nodes = 0.7.
(iv) Error probability is uniformly sampled from [0, 0.2].
(v) δ ∈ {0.00, 0.02, 0.04}
(vi) Assume access to qmax, dmin but not to dmax, t0.
(vii) Number of iterations = 100

Takeaways:

1. We witness the transition from unidentifiability to identifiability. When δ = 0, the exact graph cannot be
recovered and hence the exact recovery fraction remains low consistently regardless of the number of samples.
Higher δ has faster convergence to the correct graph.

2. Learning a tree from the equivalence class requires much fewer samples.

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

δ = 0.0, shape = chain

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

δ = 0.02, shape = chain

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

δ = 0.04, shape = chain

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

δ = 0.0, shape = star

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

δ = 0.02, shape = star

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

δ = 0.04, shape = star

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

δ = 0.0, shape = random

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

δ = 0.02, shape = random

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

δ = 0.04, shape = random

Our algorithm - Exact
Our algorithm - EC
Chow-Liu - Exact
Chow-Liu - EC

Figure 15: Comparing the performance of our algorithm and Chow-Liu over different values of δi,j ∈
{0.00, 0.02, 0.04} and different graph shapes - chain, star, random. Setting: dmin = dmax = 0.7, qmax = 0.2, # of
nodes= 7. For both algorithms, we provide results for two cases: i) when the exact underlying tree is recovered,
ii) when a tree from the equivalence class is recovered.

Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

shape = chain

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

shape = star Exact, qmax = 0
Exact, qmax = 0.2
Exact. qmax = 0.4
EC, qmax = 0
EC, qmax = 0.2
EC, qmax = 0.4

Figure 16: Comparing the performance of our algorithm for different values of qmax ∈ {0, 0.2, 0.4} and different
graph shapes - chain, star. Setting: dmin = dmax = 0.7, δ = 0.04 # of nodes= 7. We provide results for two cases:
i) when the exact underlying tree is recovered, ii) when a tree from the equivalence class is recovered.

3. For the given noise model when the probability of error is randomly selected, for a significant number of
realizations in the star shape, the Chow-Liu remains in the equivalence class. However, it lags behind
considerably compared to our algorithm.

4. Chow-Liu has high error for complete recovery.

J.2 Varying qmax

Now, we study the impact of the probability of error on the performance of the algorithm.

Setting: (i) Number of nodes = 7.
(ii) Graph Shape = {Chain, Star}
(iii) Distance of all the adjacent nodes = 0.7.
(iv) Error probability is uniformly sampled from [0, qmax], where, qmax ∈ {0, 0.2, 0.4}.
(v) δ = 0.04
(vi) Assume access to qmax, dmin but not to dmax, t0.
(vii) Number of iterations = 100
Takeaway: The convergence is slower for higher qmax as demonstrated in Figure 16.

K Future Work Insights

K.1 Extension 1:

In this section we give insights into the setting when the distribution of noise is non-uniform but known, that is:

X ′
i =

{

Xi w.p. 1− qi,

Qi w.p. qi,
(51)

where Qi are discrete i.i.d random variables random variables with support on S with a known distribution ∀
i ∈ {1, 2, . . . n}.
Let the PMF of Qi be:

P (Qi = sj) = γj ∀j ∈ {1, 2, . . . k}
Define the matries M and MD as follows:

M =

γ1 γ2 γ3 . . . γk
γ1 γ2 γ3 . . . γk
...

...
...

...
...

γ1 γ2 γ3 . . . γk
γ1 γ2 γ3 . . . γk

.

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise

MD = diag([γ1, γ2, γ3, . . . , γk])

Define matrix Ea as follows:
Ea = (1− qa)I + qaM

Then we have that:
Pa′,b′ = EaPa,bE

T
b

Following on the lines of Appendix C and noting that
(

E2

1−q2

)−1

= I − q2M we find the error estimate for X2

when X1 ⊥ X3|X2 is given by:

q22(MP2′,3′P
−1
1′,3′P1′,2′M

T −MD)− q2(MP2′,3′P
−1
1′,3′P1′,2′ + P2′,3′P

−1
1′,3′P1′,2′M

T − P2′ −MD)

+ P2′,3′P
−1
1′,3′P1′,2′ − P2′ = 0

(52)

This gives us a test for which node is a center node among three nodes. Note that the star/non-star test would
be valid as it is in this setting. Thus the techniques in this paper could be used to address the setting when the
noise has a non-uniform distribution.

K.2 Extension 2:

The next potential extension is to the setting when the observation could come from different known distributions
with a corresponding unknown probability of error. In this setting the observed random variable would take the
form:

X ′
i =

{

Xi w.p. 1−∑e
j=1 qi,j ,

Qi,j w.p. qi,j , ∀j ∈ {1, 2, . . . e}.
(53)

In this setting, we can define matrices Mj as follows:

Mj =

γ1,j γ2,j γ3,j . . . γk,j
γ1,j γ2,j γ3,j . . . γk,j
...

...
...

...
...

γ1,j γ2,j γ3,j . . . γk,j
γ1,j γ2,j γ3,j . . . γk,j

.

Matrix Ea is defined as:

Ea = (1−
e∑

j=1

qi,j)I +

e∑

j=1

qi,jMj . (54)

Now, the observed PMF is given by:
Pa′,b′ = EaPa,bE

T
b

Error estimation step would now require estimating each of qi,j . Then, arguing on similar lines as this paper, one
could check the consistency in the estimates of qi,j to get insights into the graph structure.

K.3 Extension 3:

Solving this problem for non-tree Markov Random Fields introduces new challenges as the ideas of finding center
node among 3 nodes and star/non-star classifications are no longer well defined. An approach in this setting
could be to find minimal separator nodes for different pairs of nodes to study the identifiability. Getting insights
into whether this problem would be solvable using polynomial time algorithms would also be very interesting.

