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Abstract

Sequential model-based optimization sequen-
tially selects a candidate point by construct-
ing a surrogate model with the history of
evaluations, to solve a black-box optimiza-
tion problem. Gaussian process (GP) regres-
sion is a popular choice as a surrogate model,
because of its capability of calculating predic-
tion uncertainty analytically. On the other
hand, an ensemble of randomized trees is an-
other option and has practical merits over
GPs due to its scalability and easiness of han-
dling continuous/discrete mixed variables. In
this paper we revisit various ensembles of ran-
domized trees to investigate their behavior in
the perspective of prediction uncertainty esti-
mation. Then, we propose a new way of con-
structing an ensemble of randomized trees,
referred to as BwO forest, where bagging with
oversampling is employed to construct boot-
strapped samples that are used to build ran-
domized trees with random splitting. Exper-
imental results demonstrate the validity and
good performance of BwO forest over existing
tree-based models in various circumstances.

1 INTRODUCTION

Sequential model-based optimization (SMO) (Brochu
et al., 2010; Hutter et al., 2011) constructs a sta-
tistical surrogate model in order to estimate a func-
tion value and its uncertainty – both estimates are
employed to balance a trade-off between exploitation
and exploration. To determine where next to eval-
uate carefully, a surrogate model is one of key com-
ponents in SMO (Bodin et al., 2020). In a common
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setting of SMO including the formulation of Bayesian
optimization (Srinivas et al., 2010; Azimi et al., 2010;
Snoek et al., 2012), Gaussian process (GP) regres-
sion (O’Hagan, 1978; Williams and Rasmussen, 1996)
is a popular choice as a surrogate model due to its
flexibility and expressibility (Rasmussen and Williams,
2006). However, it requires the assumption on smooth-
ness, which can induce a mismatch on the smooth-
ness degree for an objective of interest (Schulz et al.,
2016), and moreover its exact complexity over the
number of the query points already evaluated scales
cubically (Rasmussen and Williams, 2006).

Instead of GP regression, random forest regres-
sion (Breiman, 2001) is another option and has prac-
tical merits as a surrogate model; sequential model-
based algorithm configuration (Hutter et al., 2011)
shows its strength in various real-world applications
such as automated machine learning (Feurer et al.,
2015), neural architecture search (Ying et al., 2019),
and water distribution system (Candelieri et al., 2018).
In particular, it inherently deals with a categorical vari-
able, because a randomized tree – a base estimator
of random forest – is capable of defining a split cri-
terion for categorical variables without any complex
techniques. Compared to GPs for categorical variables
(e.g., using the Aitchison and Aitken kernel (Aitchi-
son and Aitken, 1976) or using a random embedding
to lower-dimensional space (Wang et al., 2016)),1 it
provides an easy-to-use implementation as well as re-
liable performance. Furthermore, a tree-based surro-
gate model tends to be robust in a high-dimensional
search space, in comparison with GP regression. These
strengths mentioned above let us pursue in-depth and
thorough studies on randomized tree-based models.

In this paper, we investigate SMO with a random
forest-based model and provide a new understanding
of tree-based models. Under such an understanding,
we suggest our strategies with sophisticated ensemble
models of trees, e.g., Bayesian additive regression trees
(BART) (Chipman et al., 2010), Mondrian forest (Lak-

1Many GP-based approaches to solving this topic have
been studied, but they are not the scope of this work.
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Figure 1: Results with GP regression and tree-based surrogate models such as random forest (RF), extremely
randomized trees (ERTs), BART, Mondrian forest (MF), NGBoost, and BwO forest (ours). We randomly sample
5 points (green x), where a true function is the sine function (blue) and observation noises exist. Mean function
(orange) and region with ±1.96 standard deviation is plotted. Qualitative analyses are presented in Table 2.

shminarayanan et al., 2016), and NGBoost (Duan
et al., 2020), and then propose a new tree-based surro-
gate model, named bagging with oversampling (BwO)
forest. To be clear, the goal of this work is not to
outperform sequential GP-based optimization in every
task. We aim to re-examine the random forest-based
approach in terms of prediction uncertainty estima-
tion, discuss about SMO strategies with diverse tree-
based surrogate models, and propose a new method
that inherits the nature of the ensemble of randomized
trees and also follows the underlying intuition about
uncertainties.

To briefly present our main analyses on prediction un-
certainty estimation by tree-based surrogate models,
we demonstrate 1D examples using GP, random for-
est, extremely randomized trees (Geurts et al., 2006),
BART, Mondrian forest, NGBoost, and BwO forest,
as shown in Figure 1. While the results by random
forest, BART, Mondrian forest, and NGBoost are dis-
tinct from the result by GP regression, our BwO forest
yields satisfactory uncertainty estimation, which rep-
resents small variance on the region that the previous
decisions have already been evaluated and large vari-
ance on an unexplored region. By the definition of un-
certainties (Gal, 2016), we can interpret that random
forest, BART, (Mondrian forest), and NGBoost rely
on aleatoric uncertainty, which comes from the uncer-
tainty of data such as a noise in data, and on the con-
trary, GP, (Mondrian forest), and BwO forest capture
epistemic uncertainty as well.2 Finally, such intuitive
results lead us to obtain the global optimization re-
sults that BwO forest tends to be more beneficial than
the other tree-based models in various circumstances
defined on continuous, high-dimensional binary, and
mixed search spaces. In addition to such results, our
BwO forest consistently enjoys the advantage of com-
putational efficiency, similar to some of tree-based sur-
rogate models such as random forest and extremely
randomized trees.

2The reason why Mondrian forest is included in both
groups is that the results (e.g., Figure 3(b)) show that
Mondrian forest also works well by capturing the uncer-
tainty derived from the amount of the knowledge of data.

Our contributions are summarized as follows:

(i) We investigate the characteristics of tree-based
surrogate models (e.g., random forest, extremely
randomized trees, BART, Mondrian forest, and
NGBoost) in terms of prediction uncertainties;

(ii) We propose a new ensemble of randomized trees,
named BwO forest, which can elaborate uncer-
tainty estimation and yield the satisfactory re-
sults that follow the intuition about prediction
uncertainties;

(iii) We employ various tree-based surrogate models
including BwO forest as a component of SMO in
solving diverse global optimization problems.

2 PREDICTION UNCERTAINTY
ESTIMATION BY TREE-BASED
SURROGATE MODELS

In this section, we begin by introducing the notation
of tree-based surrogate models. Denote that a decision
tree T = (τ , δ,η), where τ = {τ r, τ d, τ l} is the nodes
of tree including the root node τ r, all the decision
nodes τ d, and all the leaf nodes τ l, δ is a collection of
all the split dimensions of the parent nodes, and η is a
collection of the split locations thereof. A tree-based
model f̂ : Rd → R is an ensemble of B decision trees
{Tb}Bb=1, where N points X ∈ RN×d and their evalu-
ations y ∈ RN are given. For example, if we define a
surrogate output as the average of all the outputs of
base decision trees, the surrogate is defined as

f̂(x;X,y) =
1

B

B∑
b=1

g(x; Tb,X,y), (1)

where a function g guides a route to a leaf node over
x:

g(x; T ,X,y) =
∑
τ∈τ l

∑N
i=1 yi1xi∈τ∑N
i=1 1xi∈τ

1x∈τ , (2)

and 1x∈τ is 1 if x ∈ τ is true; otherwise, it is 0. For

brevity, we denote
∑N
i=1 yi1xi∈τ∑N
i=1 1xi∈τ

by µτ , which can be
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preemptively computed using X and y. In addition to
µτ , without loss of generality, the variance of node τ ,
σ2
τ can also be defined with µτ . As will be discussed,

the definition of tree-based surrogate model can differ
as to how we define its formulation; however we first
describe the surrogate that defines as the form of sum-
of-trees model (1).

2.1 Sum-of-Trees Models

Generic tree-based surrogate models such as bootstrap
aggregating (bagging) (Breiman, 1996) with decision
trees and random forest (Breiman, 2001), however, do
not model a posterior predictive distribution over real-
valued variables p(y|x,X,y). To define a function pre-
diction with its uncertainty for the sum-of-trees model,
under the assumption that a joint distribution over all
random variables is a multivariate normal distribution,
the posterior predictive distribution is defined as

p(y|x,X,y) = N
(
y|µ
(
x; {Tb}Bb=1,X,y

)
,

σ2
(
x; {Tb}Bb=1,X,y

))
, (3)

where

µ
(
x; {Tb}Bb=1,X,y

)
=

1

B

B∑
b=1

µb(x)

=
1

B

B∑
b=1

∑
τ∈τ b,l

µτ1x∈τ , (4)

σ2
(
x; {Tb}Bb=1,X,y

)
=

1

B

B∑
b=1

(
σ2
b (x) + µ2

b(x)
)
− µ

(
x; {Tb}Bb=1,X,y

)2
=

1

B

B∑
b=1

(( ∑
τ∈τ b,l

στ1x∈τ
)2

+
( ∑
τ∈τ b,l

µτ1x∈τ
)2)

−
(

1

B

B∑
b=1

µb(x)

)2

, (5)

by the law of total variance, as described in (Hutter
et al., 2014). Note that τ b,l is a set of leaf nodes for
tree b. Hutter et al. (2011) have applied the formula-
tion (3) in SMO, and it is straightforwardly employed
to estimate a prediction uncertainty using BART and
Mondrian forest.

The uncertainty of such an ensemble model is de-
rived from the randomness of individual trees, which
is achieved by one or more of these techniques:

(i) bagging: it samples a bootstrap sample from X
with replacement and then aggregates base esti-
mators;

(ii) random feature selection: this technique ran-
domly selects δ from a set of dimensions;

(iii) random selection of split locations: it randomly
selects η between lower and upper bounds of the
selected dimension;

(iv) random tree sampling: this strategy randomly
samples a tree under the assumption on a prior
distribution over trees.

As shown in Figure 1, these techniques are effective
in estimating an uncertainty. However, compared to
the result by GP regression, the results by random
forest, BART, and Mondrian forest (see Figure 1(b),
Figure 1(d), and Figure 1(e), respectively) tend not
to follow the underlying property of epistemic uncer-
tainty, which has a small uncertainty on the region
that the previous decisions by SMO have already been
evaluated and a large uncertainty on the region that
has not been explored yet. This property of epistemic
uncertainty is required to explore an unseen region ef-
fectively. Before explaining why it occurs, we specify
all the algorithms based on their respective original
papers; random forest employs (i) and (ii), BART em-
ploys (i), (ii), and (iv), and Mondrian forest employs
(i) and (iii); see the Leo Breiman’s seminal work and
the corresponding original references for the details of
these algorithms.

By (5), the results that do not follow the underlying
property of epistemic uncertainty imply that two ad-
jacent points have the same variance; formally, given
two adjacent points x, x′ where ‖x − x′‖ < ε for 0 <
ε � 1, the following equation |σ2

(
x; {Tb}Bb=1,X,y

)
−

σ2
(
x′; {Tb}Bb=1,X,y

)
| = 0 is satisfied almost every-

where. This consequence is mainly induced due to
the deterministic selection of split locations. Although
there exist a large enough number of distinct boot-
strap samples – we can choose B bootstrap samples
among

(
2N−1
N−1

)
bootstrap samples (Holmes, 2004), for

example, if N = 10, there exist 92,378 bootstrap sam-
ples, possible aggregations of base estimators are fi-
nite and the aforementioned equation is satisfied al-
most everywhere. However, in addition to this state-
ment, we need to explain the result by Mondrian for-
est, which uses the technique, random selection of split
location (Geurts et al., 2006) but tend not to follow
the intuition about uncertainties; also see Figure 7.
An appropriate explanation is that this outcome is de-
rived from a bootstrapping technique, which makes a
surrogate model underfit due to random sampling with
replacement. These understandings lead us to propose
BwO forest, as will be presented in Section 3.

Before proposing our method, we first review a recent
study on a sophisticated tree-based surrogate model.



On Uncertainty Estimation by Tree-based Surrogate Models in SMO

2.2 Gradient Boosting Models

Compared to a class of surrogate models described
in Section 2.1, a more direct approach to estimating
parameters has recently been proposed (Duan et al.,
2020). This approach updates parameters θ (e.g.,
mean and variance) using their gradients in terms of
the objective of parametric distribution (e.g., likeli-
hood function or continuous ranked probability score).
For example, one of potential objectives, a log likeli-
hood function can be used to find its maximizer:

L(θ;X,y) =

N∑
i=1

log p(yi|θ(xi)). (6)

In particular, in (Duan et al., 2020), natural gradi-
ents (Amari, 1998) are used in updating θ in order
to consider an appropriate distance between two pa-
rameter vectors, which is capable of representing the
gradient direction in Riemannian space, and a gradi-
ent boosting machine (Friedman, 2001) with respect to
the parameters is built. Duan et al. (2020) show that
the numerical results with the gradient boosting ma-
chine updated by natural gradients, dubbed NGBoost,
outperform the results by generic gradients.

This gradient boosting method over parameters is un-
doubtedly a reasonable approach to estimating pa-
rameters as a probabilistic regression model. How-
ever, such a multi-parameter boosting algorithm is
not robust in a high-dimensional space, and relies on
aleatoric uncertainties (Malinin et al., 2020).

3 ELABORATING UNCERTAINTY
ESTIMATION BY TREE-BASED
SURROGATE MODELS

Before elaborating uncertainty estimation by tree-
based surrogate models, we introduce a context of how
our proposed model is motivated. According to Sec-
tion 2.1, if a split location is deterministic and boot-
strapping is applied, an uncertainty is not estimated
properly. Similar to these observations, Tang et al.
(2018) have discussed that either no or severe subsam-
pling leads to inconsistent forest construction, while
they have not mentioned about the uncertainty of tree-
based surrogate model. Here, we verify this issue with
the property related to the number of unique origi-
nal elements in a bootstrap sample. As pointed out
in the work (Mendelson et al., 2016), the expectation
and variance of an indicator for the existence of xi in

Algorithm 1 Training BwO Forest

Input: Size of ensemble model B, training data X ∈
RN×d, training function evaluations y ∈ RN , size
of bootstrap sample M = αN for the rate of over-
sampling α > 1.

Output: Set of decision trees {Tb}Bb=1

1: Initialize a set of decision trees.
2: for b = 1, . . . , B do
3: Sample a bootstrap sample Bb ∈ RM×d from

X; the evaluations of Bb are also stored using
the indices that have already been sampled to
construct Bb and y.

4: Set a root node τ r that contains all the elements
in Bb, and τ r is set as the current split node.

5: while a stopping criterion has not been met do
6: Randomly choose a fixed number of split di-

mensions δ from all the feature dimensions
{1, . . . , d}.

7: Determine the best split by uniformly sam-
pling a split location η between lower and up-
per bounds of the values along the selected
dimensions δ.

8: Split the current split node into two decision
nodes using δ and η.

9: Update all the parameters of decision tree,
(τ b, δb,ηb).

10: Choose the next split node from decision
nodes τ d included in τ b.

11: end while
12: Update τ b = {τ r, τ d, τ l} by determining leaf

nodes τ l.
13: Update a set of decision trees by adding Tb =

(τ b, δb,ηb).
14: end for
15: return A set of decision trees {Tb}Bb=1

a bootstrap sample B are expressed as

E[1xi∈B] = p
(
1xi∈B = 1

)
= 1− p

(
1xi∈B = 0

)
= 1−

(
1− 1

N

)M
, (7)

Var[1xi∈B] = p(1xi∈B = 0)p(1xi∈B = 1)

=

(
1− 1

N

)M
−
(

1− 1

N

)2M

, (8)

where N is the size of X and M is the size of a
bootstrap sample. By (7) and (8), the distribution
of unique original elements in a bootstrap sample B
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(a) Ackley (4 dim.)
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(b) Bohachevsky (2 dim.)
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Figure 2: Results on various benchmark functions defined on continuous search spaces. The best instantaneous
regret (left panel of each figure) and time consumed per iteration (right panel of each figure) versus iterations
are plotted. All the runs are repeated 10 times. For the results on regrets, y-axis is set as a log-10 scale and
relative log error bars are presented. For brevity, the results on runtime are plotted every 50 iterations.

can be described:

E[|unique(B)|] = E

[
N∑
i=1

1xi∈B

]
= N − (N − 1)M

NM−1 ,

(9)

Var[|unique(B)|] = Var

[
N∑
i=1

1xi∈B

]

= (N − 1)
(N − 2)M

NM−1 +
(N − 1)M

NM−1

− (N − 1)2M

N2M−2 , (10)

where unique(B) filters duplicates and leaves unique
original elements. For example, if N = M = 5, (9) and
(10) return 3.362 and 0.509, respectively, and if N = 5
and M = 20, they are 4.942 and 0.055. Consequently,
the distribution specified by (9) and (10) implies that
combining two techniques, bagging and oversampling
can help a tree construction process to fit well in X.

From now, we propose our tree-based surrogate model,
named BwO forest, which elaborates prediction uncer-
tainty estimation by applying the technique, bagging
with oversampling. As described in Algorithm 1, our
BwO forest is trained by following a general pipeline of
forest construction, given the size of ensemble model
B, a training dataset (X,y), and the size of bootstrap

samples M = αN for the rate of oversampling α > 1.
Note that a stopping criterion is satisfied when some
pre-defined conditions such as maximum depth or the
minimum number of elements in a node are encoun-
tered. To accommodate a page limit, we highlight the
main components of our model. BwO forest utilizes
random selection of split dimensions (Line 6) and ran-
dom selection of split locations (Line 7), as well as bag-
ging with oversampling (Line 3). Interestingly, as will
be discussed in Section 5, all the components are im-
portant for appropriately estimating a function value
and its uncertainty. As a prediction procedure, BwO
forest estimates a function value and its uncertainty
by computing (3), (4), and (5), where a set of trained
decision trees {Tb}Bb=1 is given.

Finally, BwO forest is utilized as a surrogate model
in the process of SMO; see Section B for the details.
Compared to SMO with GP regression, it does not
need a step for optimizing a kernel hyperparameter of
GP, which is one of the most time-consuming steps in
the corresponding procedure. Therefore, our method
is more efficient than the GP-based approach, and be-
sides it produces more satisfactory uncertainty estima-
tion than the models with other tree-based surrogate
models. More detailed empirical analyses can be found
in the subsequent sections.
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(a) Hartmann6D (6 dim.)
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(b) Michalewicz (2 dim.)
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(c) Rosenbrock (4 dim.)

Figure 3: Results on various benchmark functions defined on continuous search spaces. All the experimental
settings follow the settings described in Figure 2.

4 EXPERIMENTAL RESULTS

In this section, we show the experimental results on
continuous, high-dimensional binary, and mixed search
spaces using SMO strategies with diverse tree-based
surrogate models and GP regression. Experimental
setup is described below.

Experimental setup. We use the implementation
of decision trees and ensemble methods, included in
scikit-learn (Pedregosa et al., 2011), and employ them
in the implementation of our BwO forest. To fairly
compare the results, we set the size of ensemble model
B as 100 and the rate of oversampling α as 4. All the
tree-based surrogate models employ random feature
selection as the square root of the feature dimension-
ality. In addition, for simplicity of BwO implementa-
tion, we duplicate a training dataset β times, where
β is larger than α, and then pick a bootstrap sample
that contains α/β of the duplicated dataset, e.g., if
β = 16, a quarter of the duplicated dataset is sampled
by bootstrapping for every bootstrap sample.

GP regression with Matérn 5/2 kernel is used, and its
hyperparameters are optimized by marginal likelihood
maximization. Because the Cholesky decomposition is
applied to compute a marginal likelihood and a pos-
terior distribution, it is slightly faster than the vanilla
GP regression model. To focus on the tree-based sur-

rogate models, we do not apply more sophisticated
techniques to speed up GP regression. Nevertheless,
we include the results with the aforementioned GP re-
gression, in order to briefly compare it to the results
with tree-based surrogate models.

For the SMO setting, we use the expected improve-
ment (Močkus et al., 1978) as an acquisition function.
To optimize an acquisition function for tree-based sur-
rogate models, a fixed number of points are sampled to
compute acquisition function values; we sample 50,000
points using the Sobol’ sequence. Additionally, for
GP regression, L-BFGS-B with multiple initializations
is used. Note that every set of initial points is fixed
across surrogate models, so that they are started from
same regret values, and 5 initial points are given for
every run.

All the computations are conducted on a system with
CPU, and each experiment set is tested on the same
machine in order to measure wall-clock time precisely.
In addition, all the missing details are described in the
supplementary material.

4.1 Continuous Search Spaces

We test popular benchmark functions such as Ackley
(4 dim.), Bohachevsky (2 dim.), Branin (2 dim.), Hart-
mann6D (6 dim.), Michalewicz (2 dim.), and Rosen-
brock (4 dim.) functions. As shown in Figure 2 and
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(a) Ising (24 dim., λ = 0.01)
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(b) Contamination (25 dim., λ = 0.01)
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(c) Authorship

Figure 4: Results on two functions defined on high-dimensional binary search spaces and automated machine
learning for the Authorship dataset. All the runs are repeated 10 times.

Figure 3, our method with BwO forest works well,
compared to SMO strategies with the other tree-based
models.

4.2 High-Dimensional Binary Search Spaces

We conduct the methods studied in this work on two
high-dimensional binary problems such as Ising (24
dim.) and contamination (25 dim.) problems, as in the
first two columns of Figure 4. For the case of contami-
nation problem, the SMO method with random forest
regression shows better results than other methods;
see Figure 4(b). The details of these problems are de-
scribed in the supplementary material.

4.3 Mixed Search Spaces

We carry out the experiments of automated machine
learning, which are defined on a mixed search space;
see Table 1 for the detailed description of search space.
We choose one of machine learning algorithms through
a categorical variable and simultaneously tune their
numerical or ordinal hyperparameters using SMO. To
optimize a categorical variable, we employ a one-hot
encoding, which can be defined as a simplex. Four
datasets such as Authorship, Breast Cancer, Digits,
and Phoneme are used to train and test an automated
machine learning model. The tendency of the results
by our method is better than the other methods, as

Table 1: Details of automated machine learning. AB,
GB, DT, ET, and RF indicate AdaBoost, Gradient-
Boosting, Decision Tree, ExtraTrees, Random Forest
classifiers, respectively, and Cat. and Int. stand for
categorical and integer variables.

Hyperparam. Range Type

Algorithm type {AB, GB, DT, ET, RF} Cat.
Ensemble size [10, 200] Int.
Max. depth [2, 8] Int.

Max. features [0.2, 1.0] Float
log learning rate [-3, 1] Float

presented in Figure 4(c) and Figure 5.

5 DISCUSSION AND LIMITATIONS

Here, we provide the discussion on tree-based mod-
els as well as BwO forest, which is about oversam-
pling, tree construction techniques, epistemic uncer-
tainty, and cheap required computation. Furthermore,
we introduce a future direction of this research to re-
solve the limitations of tree-based surrogate models,
which are related to the choice of tree-based surrogate
models and extrapolation.

Oversampling. While this technique is widely used
in solving an imbalanced data problem (Yap et al.,
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(c) Phoneme

Figure 5: Results on automated machine learning for three datasets, Breast Cancer, Digits, and Phoneme. Note
that the result for the Authorship dataset is presented in Figure 4(c). All the runs are repeated 10 times.

2014; Pérez-Ortiz et al., 2015; Yan et al., 2019), it
is not popular for bagging. Since it samples a boot-
strap sample from an original set of data points X,
it increases the number of unique original elements as
described in Section 3, but it is a solid method to con-
struct a bootstrap sample. To sum up, bagging with
oversampling prevents a surrogate model underfitting
to X. Moreover, it is more effective in the case that N
is relatively small, which is common in SMO, than the
case N is large, as in Figure 1, Figure 7, and Table 2.

Tree construction techniques. We show the ef-
fects of tree construction techniques such as bagging
(denoted as B), oversampling (denoted as O), and ran-
dom sampling of split location (denoted as R), as pre-
sented in Figure 6. The prediction uncertainty estima-
tion by B + O is abnormal compared to other results,
because it overfits to the duplicated training data and
split locations are not properly determined. The R +
B result is similar to the result by Mondrian forest,
but it tends to underfit to training data. The result in
Figure 6(b) looks similar to Figure 6(d), however the
uncertainty on the region out of the range of training
data goes to zero. We provide more diverse results by
individual trees in Figure 9, Figure 10, and Figure 11.

Qualitative analysis on regression. To com-
pare regression results qualitatively, we measure Kull-
back–Leibler divergence from GP to a result by each

Table 2: Kullback–Leibler divergence from GP to re-
spective results by tree-based surrogate models.

Method Figure 1 Figure 7 Figure 8

RF 1.38 0.00 0.00
ERTs 0.06 0.07 0.09
BART 0.93 0.01 0.01

MF 0.93 0.01 0.00
NGBoost 0.21 0.05 0.00

BwO forest 0.04 0.01 0.01

tree-based surrogate model, which shows how similar
a result is to GP. As shown in Table 2, our BwO for-
est tends to follow the GP appropriately, compared
to random forest, extremely randomized trees, BART,
Mondrian forest, and NGBoost.

Epistemic uncertainty by tree-based surrogate
models. Epistemic uncertainty is reducible if we col-
lect more data or identify a model well (Gal, 2016).
This type of uncertainty is induced from the random-
ness of model or bootstrapping. Thus, our BwO for-
est can be considered that the randomness of model
is maximized with the tree construction techniques
such as random feature selection, random selection of
split locations as well as bagging with oversampling.
Especially, the bootstrap sample constructed by our
technique, bagging with oversampling, contains more
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Figure 6: Results on tree construction techniques. B,
O, and R indicate bagging, oversampling, and random
split location, respectively. The case of only B is shown
in Figure 1(b) as the result by random forest.

unique original elements to enhance the degree of fit-
ting to training data than a standard bagging method.

Cheap required computation. In general, tree-
based surrogate models are more time-consuming in
predicting an output than other types of estimators,
because it has to compute the outputs of all the base
estimators. However, fortunately the setup of SMO
does not assume a large number of data points, which
implies that the size of ensemble model can be main-
tained as a small size. On the other hand, as shown
in Section 4, tree-based models are consistently faster
than GP regression in many cases, and they are able to
be directly applied to speed up the overall procedure
of SMO with comparable performance.

Choice of tree-based surrogate models. In-
evitably, a specific SMO method successfully optimizes
some specific functions, and simultaneously fails to op-
timize other functions, depending on the characteris-
tics of target functions. As shown in Section 4, our
method is robust in many cases, but either random
forest or Mondrian forest can be a good option in some
cases, e.g., Figure 3(b) and Figure 4(b).

Extrapolation. Lastly, tree-based surrogate models
are vulnerable in predicting a function value and its
corresponding uncertainty out of the range of train-
ing data. At least, even if a function estimate is not
correct, an uncertainty estimate should become larger
than the results shown in the paper. In order to ex-
pand the usage of tree-based models in SMO, improv-

ing the ability to extrapolate is left to a future work.
According to our preliminary experiments, injecting a
noise in the duplicates is likely to improve the extrap-
olation ability.

6 RELATED WORK

From now, we briefly review tree-based estimators and
SMO with tree-based surrogate models.

Tree-based estimators. An estimator that aggre-
gates a set of decision trees is attractive to many ma-
chine learning practitioners in both classification and
regression tasks, since it shows reliable performance
despite its relatively efficient training and test proce-
dures (Biau, 2012; Natekin and Knoll, 2013; Louppe,
2014). In particular, compared to a deep neural net-
work, such a randomized tree-based approach has a
practical strength in real-world problems, which is
shown by the popularity of gradient boosting ma-
chines such as XGBoost (Chen and Guestrin, 2016)
and LightGBM (Ke et al., 2017). As mentioned in
the previous sections, Breiman (1996, 2001); Friedman
(2001); Geurts et al. (2006); Chipman et al. (2010);
Lakshminarayanan et al. (2014, 2016); Duan et al.
(2020) have proposed the foundations and theories of
the approaches used in this work; see the work by Diet-
terich (2000); Zhou (2012); Louppe (2014) for the de-
tails. Moreover, while we omit it in this work, Mentch
and Hooker (2016) suggest a method to estimate un-
certainties using subbagging for random forest.

Sequential model-based optimization with tree-
based surrogate models. Hutter et al. (2011) pro-
pose SMO with random forest by applying itself in
optimizing an algorithm configuration. This method
is widely adopted in many applications (Feurer et al.,
2015; Candelieri et al., 2018; Ying et al., 2019) includ-
ing Auto-sklearn (Feurer et al., 2020). Importantly,
it is beneficial in certain circumstances presented and
tested in this paper.

7 CONCLUSION

We re-examined sequential random forest-based opti-
mization and suggested our methods defined with di-
verse randomized tree-based surrogate models includ-
ing extremely randomized trees, BART, Mondrian for-
est, and NGBoost. Then, we proposed a new tree-
based surrogate model, named BwO forest, which
uses an ensemble construction technique, bagging with
oversampling. The empirical analyses on such meth-
ods help us to understand the tree-based models thor-
oughly and provide a future research direction of SMO
with tree-based surrogate models.
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Supplementary Material:
On Uncertainty Estimation by Tree-based Surrogate Models

in Sequential Model-based Optimization

In this material, we describe the examples and contents that are missing in the main article.

A 1D EXAMPLES

Two 1D examples: (i) y = sin(x) + ε, (ii) y = x3 + ε, where ε is an observation noise, are demonstrated.
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(i) BwO forest (Ours)

Figure 7: Examples on the sine with 50 points.

The examples by diverse tree-based surrogate models as well as Gaussian process surrogate are shown in Figure 7
and Figure 8. Such examples present the characteristics of surrogate models, as described in the main article.
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Figure 8: Examples on a cubic equation with 10 points.

B SEQUENTIAL MODEL-BASED OPTIMIZATION WITH OUR PROPOSED
SURROGATE MODEL

In this section, we present the sequential model-based optimization procedure with BwO forests. It follows
generic steps of sequential model-based optimization (Brochu et al., 2010).

As shown in Algorithm 2, we are given initial points X0, their corresponding evaluations y0, the number of
iterations T , and the size of ensemble model B. Sequentially, we acquire a query point and evaluate it every
iteration by fitting BwO forest and optimizing an acquisition function. Finally, the best query point xbest among
XT is determined, by considering the evaluations yT .

C REGRESSION RESULTS BY INDIVIDUAL TREES

We visualize the regression results by individual trees for the cases shown in Figure 1, Figure 7, and Figure 8.
These results presented in Figure 9, Figure 10, and Figure 11 help us to understand the consequences by tree-
based ensemble models.
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(a) B (originally proposed as random forest)
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(b) R (originally proposed as extremely randomized trees)
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(c) B + O
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(d) R + B
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(e) R + B + O (i.e., BwO forest)

Figure 9: Results by individual trees for the case shown in Figure 1. For brevity, each result is randomly sampled.
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(a) B (originally proposed as random forest)
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(b) R (originally proposed as extremely randomized trees)
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(c) B + O
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(d) R + B
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(e) R + B + O (i.e., BwO forest)

Figure 10: Results by individual trees for the case shown in Figure 7.
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(a) B (originally proposed as random forest)
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(b) R (originally proposed as extremely randomized trees)
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(c) B + O
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(d) R + B
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(e) R + B + O (i.e., BwO forest)

Figure 11: Results by individual trees for the case shown in Figure 8.
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Algorithm 2 Sequential Model-based Optimization with BwO Forests

Input: Initial points and their evaluations (X0,y0), the number of iterations T , and the size of ensemble model
B.

Output: The best query point xbest.
1: for t = 1, . . . , T do
2: Fit BwO forest {Tb}Bb=1 using Xt−1 and yt−1.
3: Acquire a query point by optimizing an acquisition function, xt = arg max a(x; {Tb}Bb=1).
4: Evaluate yt = f(xt) + ε where ε is an observation noise.
5: Update Xt ← [Xt−1;xt] and yt ← [yt−1; yt].
6: end for
7: return The best query point xbest among XT

D DETAILS OF EXPERIMENTS

In this section, we describe the detailed setup of experiments. As described in the main article, to implement
our BwO forest, we sufficiently duplicate an original dataset and then subsample part of duplicated datasets,
where α = 4 and β = 16. As part of our implementation, we utilize scikit-learn (Pedregosa et al., 2011) and
QMCPy (Choi et al., 2021). For the implementation of BART, Mondrian forest, and NGBoost, we use the follow-
ing open-source projects: https://github.com/JakeColtman/bartpy, https://github.com/scikit-garden/
scikit-garden, and https://github.com/stanfordmlgroup/ngboost, respectively.

High-Dimensional Binary Search Spaces. We adopt the experimental setup suggested by Oh et al. (2019).
Ising sparsification is to optimize the KL-divergence between two probability mass functions with the regular-
ization technique controlled by λ. Contamination control in food supply chain is a problem that optimizes food
contamination with minimum prevention cost. It is also regularized by a balancing hyperparameter λ. See the
work (Oh et al., 2019) for the details of experiments.

Mixed Search Spaces. Our automated machine learning problem selects one of such classifiers: (i) AdaBoost,
(ii) GradientBoosting, (iii) Decision Tree, (iv) ExtraTrees, and (v) Random Forest. This selection is represented
by a one-hot encoding. In addition to this categorical variable, we optimize the following hyperparameters for
classifiers: (i) the size of ensemble model, (ii) maximum depth, (iii) maximum features, and (iv) log learning
rate. It is summarized in Table 1. We use scikit-learn (Pedregosa et al., 2011) to implement all the algorithms.
Datasets used in this work: (i) Authorship (Vanschoren et al., 2013), (ii) Breast Cancer (Dua and Graff, 2019),
(iii) Digits (Dua and Graff, 2019), and (iv) Phoneme (Vanschoren et al., 2013), are available at the respective
references.


