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Abstract

The Maximum Mean Discrepancy (MMD)
has been the state-of-the-art nonparametric
test for tackling the two-sample problem. Its
statistic is given by the difference in expec-
tations of the witness function, a real-valued
function defined as the mean of kernel eval-
uations on a set of basis points. Typically
the kernel is optimized on a training set, and
hypothesis testing is performed on a separate
test set to avoid overfitting (i.e., control type-I
error). That is, the test set is used to simulta-
neously estimate the expectations and define
the basis points, while the training set only
serves to select the kernel and is discarded. In
this work, we propose to use the training set
to also define the weights and the basis points
for better data efficiency. We show that 1) the
new test is consistent and has a well-controlled
type-I error; 2) the optimal witness function
is given by a precision-weighted mean in the
reproducing kernel Hilbert space associated
with the kernel; and 3) the test power of the
proposed test is comparable or exceeds that of
the MMD and other modern tests, as verified
empirically on challenging synthetic and real
problems (e.g., Higgs data).

1 INTRODUCTION

We tackle the classic two-sample problem: given two
samples, do they differ significantly enough that we
can conclude they originate from two different distri-
butions? This is a common task in many life sciences
such as bioinformatics and cancer diagnosis (Borgwardt
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et al., 2006). To decide this, one can perform a two-
sample test, whose goal is to reject the null hypothesis
"the probability distributions are the same" in favor of
the alternative hypothesis "the probability distributions
are not the same" based on data (Lehmann and Ro-
mano, 2005). To quantitatively assess this, one defines
a test statistic and estimates its value on the observed
samples. If we know (or are able to simulate) the distri-
bution of this test statistic under the null, we can reject
the null if the observed value is significantly larger than
what we would expect if the null was true. Traditional
hypothesis tests have test statistics that are defined a
priori. A simple example are t- or z-tests, which only
test whether the empirical means of both samples differ
significantly (Lehmann and Romano, 2005). However,
such a simple approach is not sufficient to detect dif-
ferences of distributions with the same mean but, for
example, different variance, skewness, or kurtosis.

To detect any differences between two distributions
we focus on two categories of tests closely tied to ma-
chine learning, but note that various other methods
exist (Friedman and Rafsky, 1979; Chen and Fried-
man, 2017). The former first transforms data into a
high-dimensional feature space based on a pre-defined
feature map, e.g., kernel function. The test statistics
can then be defined in terms of the embeddings of
the two distributions in the feature space (Harchaoui
et al., 2008b; Gretton et al., 2012a). The second ap-
proach instead learns to distinguish the two distribu-
tions by training a classifier, e.g., via a deep neural
network. Based on the learned model, the test statis-
tics is then computed on an independent set of sam-
ples, e.g., through data splitting (Friedman, 2003; Kim
et al., 2021; Lopez-Paz and Oquab, 2017; Cheng and
Cloninger, 2019).

The popular kernel two-sample test based on the Max-
imum Mean Discrepancy (MMD) in principle does not
require data splitting and is completely determined a
priori by a positive definite kernel function (Gretton
et al., 2012a). However, recent research has shown that
optimizing the kernel function on a held-out dataset



A Witness Two-Sample Test

increases the power of the MMD-based tests (Gretton
et al., 2012b; Sutherland et al., 2017; Liu et al., 2020;
Kirchler et al., 2020). Thus most modern MMD-based
tests are used as two-stage procedures with data split-
ting, although it is in principle possible to use the entire
dataset for kernel selection and testing Fromont et al.
(2012, 2013); Kübler et al. (2020).1

To obtain maximally significant results in the testing
phase, we advocate that in a “two-stage” two-sample
test, it is more appropriate to learn a test statistic that
is as problem-specific as possible. For the MMD tests,
this means that we advocate to learn a one-dimensional
witness function and not a kernel. To formalize this,
we propose a general two-stage witness two-sample
test (WiTS test). The introduced WiTS test has the
following properties:

• The test statistic is the difference in means of a
one-dimensional function called the witness function
and is thus asymptotically normal under both the
null and alternative hypotheses. This allows for a
simple theoretical treatment (cf. Theorem 1 and
Proposition 1).

• Compared to Sutherland et al. (2017) and Liu et al.
(2020), the WiTS test has a simpler test power cri-
terion as a training objective and test thresholds
can be simulated more efficiently (cf. Section 3 &
Eq. (7)).

• The WiTS tests empirically outperform the bench-
mark tests of Liu et al. (2020) and classification-based
tests on challenging synthetic and real problems, e.g.,
Higgs data (cf. Figure 2).

The rest of the paper is organized as follows. Section
2 reviews MMD based two-sample tests with a focus
on the witness function and discusses our motivation.
We then present the general WiTS test framework in
Section 3, followed by a specific example in Section
4. Next, we discuss related work in detail in Section
5. Finally, Section 6 provides the empirical results
comparing the proposed WiTS tests to existing ones
on several benchmark datasets. The code to reproduce
the experiments is published under https://github.
com/jmkuebler/wits-test.

2 BACKGROUND AND
MOTIVATION

Notation and definitions. Let X,Y be random
variables with probability distributions P and Q on
X ⊆ Rd, respectively. In this work, we aim to test
the null hypothesis H0 : P = Q against the alterna-
tive H1 : P 6= Q based on samples X = {x1, . . . , xn}

1Schrab et al. (2021) recently proposed an aggregated
MMD two-sample test working without data splitting.

and Y = {y1, . . . , ym} drawn i.i.d. from P and Q, re-
spectively. Rejecting H0 although it is true creates
a type-I error, whereas not rejecting the null when it
is false creates a type-II error. Desirable testing pro-
cedures should minimize the type-II error rate, while
controlling the type-I error rate at a significance level
α (or below). When we consider data splitting, we
use Xtr,Xte and Ytr,Yte to denote the disjoint training
and test sets with n = ntr + nte, m = mtr +mte. We
define the shorthands [n] := {1, . . . , n}, Z = {X,Y},
Ztr = {Xtr,Ytr} and Zte = {Xte,Yte}.

Although most of our analysis applies to more general
function spaces, we will consider a reproducing kernel
Hilbert space (RKHS) H with positive definite kernel
k : X × X → R (Schölkopf and Smola, 2002). By the
Riesz representation theorem, we have that f(x) =
〈f, k(x, ·)〉 for all x ∈ X and f ∈ H. We assume that

(A1): E [k(X,X)] <∞, E [k(Y, Y )] <∞

holds. (A1) ensures the kernel mean embeddings of
P and Q exist, i.e., µP = E [k(X, ·)], µQ = E [k(Y, ·)],
and that we can write E [f(X)] = 〈f, µP 〉 for all f ∈ H
(Muandet et al., 2017). For a sample X, we define the
empirical mean embedding as µX = 1

|X|
∑
x∈X k(x, ·).

MMD and witness function. A popular class of
two-sample tests are based on the Maximum Mean Dis-
crepancy (MMD) (Gretton et al., 2012a). The MMD
of two distributions with respect to the unit ball of
H is defined as (Gretton et al., 2012a, Eq. (1)):
MMD = supf∈H,‖f‖≤1 {E [f(X)]− E [f(Y )]} .
The function that witnesses the MMD is
argmaxf∈H,‖f‖≤1{E [f(X)] − E [f(Y )]} =
(µP − µQ)/‖µP − µQ‖ (Gretton et al., 2012a,
Sec. 2.3). We define its unnormalized version as
hP,Qk = µP − µQ and obtain

MMD2 = 〈µP − µQ, µP − µQ〉 = 〈µP − µQ, hP,Qk 〉

= E
[
hP,Qk (X)

]
− E

[
hP,Qk (Y )

]
.

(1)

With a characteristic kernel (Sriperumbudur et al.,
2010), µP = µQ if and only if P = Q. Hence, the
squared MMD (1) can be used to test the hypothesis
H0 : P = Q against H1 : P 6= Q.

MMD-BOOT test statistics. We can estimate the
squared MMD (1) by replacing the witness hP,Qk and the
expectations in (1) with their empirical counterparts

https://github.com/jmkuebler/wits-test
https://github.com/jmkuebler/wits-test
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hZk = µX − µY and

M̂MD
2

boot(Z|k) =
1

n

∑
x∈X

hZk(x)− 1

m

∑
y∈Y

hZk(y)

=

〈
1

n

∑
x∈X

k(x, ·)− 1

m

∑
y∈Y

k(y, ·), hZk(·)

〉

=
1

n2

∑
x,x′∈X

k(x, x′) +
1

m2

∑
y,y′∈Y

k(y, y′)

− 2

nm

∑
x∈X,y∈Y

k(x, y).

(2)

The latter expression is a sum of V -statistics and up
to the biased terms where x = x′ or y = y′ equals
the unbiased U -statistic which is the standard MMD
estimate (Gretton et al., 2012a). The witness itself
depends on the same data Z used to evaluate the test
statistic (2) and compute the test threshold, the null
distribution has to be simulated via permutation of
the samples (or bootstrapping) (Gretton et al., 2012a).
Thus, we refer to this approach as mmd-boot.2

OPT-MMD-BOOT test statistics. A drawback
of mmd-boot is that the kernel k has to be chosen a
priori before observing the data. Kernel choice, how-
ever, critically affects the performance of MMD based
two-sample tests (Gretton et al., 2012b; Sutherland
et al., 2017; Liu et al., 2020; Kübler et al., 2020; Jitkrit-
tum et al., 2016). It is thus common to split the data
into Z = (Ztr,Zte) and optimize the kernel only on the
held-out set Ztr. For the moment, without specifying
how the kernel is optimized, we denote the resulting
optimized kernel as ktr with a subscript tr to indicate
that it depends on the training data. After optimizing
the kernel, the standard mmd-boot test is conducted
on Zte with the optimized kernel ktr (Sutherland et al.,
2017; Liu et al., 2020). Hence, the empirical expecta-
tions and witness function in (2) are still dependent
on the same data Zte, and the null distribution still
has to be bootstrapped, for the same reason as in the
case of mmd-boot. We will refer to this approach as
opt-mmd-boot with the test statistic

M̂MD
2

opt-boot(Zte|ktr)

=
1

nte

∑
x∈Xte

hZte
ktr

(x)− 1

mte

∑
y∈Yte

hZte
ktr

(y).
(3)

Our Motivation. This is the starting point of our in-
vestigations: Although the kernel is optimized, it is still

2Our naming convention should emphasizes that the
asymptotic distribution cannot be evaluated in closed-form
and hence we necessarily need to simulate it. Note, however,
that in practice often permutations are used (Sutherland
et al., 2017) and it is not necessary to completely simulate
the distribution from scratch.

a multidimensional representation of the data. While
this makes the test statistic applicable to other prob-
lems (Liu et al., 2020; Kirchler et al., 2020), features
that contain little information about the differences
of P and Q will mainly add noise to the test statis-
tic. Generally, the noisier the test statistic, the harder
it is to obtain significant test results. Motivated by
this drawback, we propose to formulate a test statis-
tic that is more specific to the observed difference in
Ztr. Being more specific to the training data (that
is all we know about P and Q), comes at the risk of
overfitting, which we mitigate via regularization and
model selection (cf. Section 3). Specifically for MMD,
after the kernel is optimized, we define the witness
directly on the training data by replacing hZte

ktr
with

hZtr
ktr

= 1
ntr

∑
x∈Xtr

ktr(x, ·) − 1
mtr

∑
y∈Ytr

ktr(y, ·). We
call this opt-mmd-witness:

M̂MD
2

opt-witness

(
Zte|hZtr

ktr

)
=

1

nte

∑
x∈Xte

hZtr
ktr

(x)− 1

mte

∑
y∈Yte

hZtr
ktr

(y).
(4)

This test statistic comes with numerous advantages.
Firstly, the expectations (defined via Zte) are now inde-
pendent of the witness function (defined via Ztr). Thus,
the test statistic is asymptotically normal. Secondly,
as we will see in the following sections, (4) allows us
to compute asymptotic test thresholds in closed form
and allows for a simpler derivation of a test power cri-
terion than in the case of opt-mmd-boot (Sutherland
et al., 2017; Liu et al., 2020). Lastly, our empirical
results suggest that opt-mmd-witness outperforms
opt-mmd-boot on datasets considered in Liu et al.
(2020).

3 WITNESS TWO-SAMPLE TEST
(WiTS TEST)

Similar to (4), the WiTS tests we propose are by design
two-stage procedures: In Stage I, we learn the witness
function h with the training data Ztr. This ensures
that h is independent of the test data Zte, used in Stage
II to define a test statistic

τ̂(Zte|h) ∝ 1

nte

∑
x∈Xte

h(x)− 1

mte

∑
y∈Yte

h(y). (5)

We reject the null hypothesis H0 : P = Q if the ob-
served value is larger than a test threshold. We start
presenting Stage II and analyze the test’s asymptotic
power for a given function h. Then, we will use this
test power criterion as the objective when optimizing
the witness function in Stage I.
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3.1 Stage II - Testing with the Witness
Function

We start with a basic result on asymptotic normality of
empirical means ((Serfling, 1980), Proof in App. A.1).

Theorem 1 (Asymptotic normality of WiTS test).
For a witness function h : X → R, let σ2

P := Var[h(X)]
and σ2

Q := Var[h(Y )] such that 0 < σ2
P , σ

2
Q < ∞. Let

{Xi}i∈[n]
i.i.d.∼ P , {Yj}j∈[m]

i.i.d.∼ Q, and c := n
n+m ∈

(0, 1) as n+m → ∞. Denote by h̄P := E [h(X)] and
h̄Q := E [h(Y )]. We define the empirical means ĥnP :=
1
n

∑
i∈[n] h(Xi), ĥmQ := 1

m

∑
i∈[m] h(Yi) and denote the

sample variance as σ̂2
c (h) := σ̂2

P /c+ σ̂2
Q/(1− c). Then

√
n+m

σ̂c(h)

[(
ĥnP − h̄P

)
−
(
ĥmQ − h̄Q

)]
d→ N (0, 1) .

For any fixed h and for sufficiently large sample sizes,
we can thus work with the asymptotic distribution of
test statistics of the form τ(·|h) in Eq. (5) to compute
test thresholds and derive an asymptotic test-power
objective for choosing h based on the training data Ztr
in Stage I. Data splitting ensures that h is independent
of Zte, which is necessary for Theorem 1 to hold. In the
following, to make the comparison between different
choices of h easier, we consider the standardized test
statistic on the test samples Zte

τ(Zte|h) =
√
nte +mte

1
nte

∑
x∈Xte

h(x)− 1
mte

∑
y∈Yte

h(y)

σ̂c(h)
,

where c = nte
nte+mte

and σ̂c(h) is the empirical esti-
mate of the pooled variance as in Theorem 1 based
on Zte. To control the type-I error at a significance
level α, we need to find a test threshold tα such that
P (τ(Zte|h) > tα|H0) ≤ α. By Theorem 1, we can
define the threshold to be the (1− α) quantile of the
asymptotic null distribution. Under the null hypothesis
we have h̄P = h̄Q and obtain tα = Φ−1(1− α) where
Φ−1 denotes the inverse CDF of the standard normal.

Note that we only consider a "one-sided" test, since we
choose h in stage I with the appropriate sign, i.e., such
that it has larger expectation under Xtr than under
Ytr. A "two-sided" test ignores this and may lead to a
reduction in test power.

We reject the null hypothesis H0 : P = Q if τ(Zte|h) >
tα. As an advantage of the asymptotic normality under
the alternative and the closed form of the threshold
of our test, we can write the asymptotic type-II error
rate in closed form, similar as in Gretton et al. (2012b,

Sec. 3):

P (τ(Zte|h) < tα)

≈ Φ

(
Φ−1(1− α)−

√
nte +mte

h̄P − h̄Q
σc(h)

)
.

(6)

An important consideration in designing a hypothesis
test is test consistency. A hypothesis test is called
consistent, if for a fixed alternative hypothesis, its test
power converges to one as sample size goes to infinity.
With (6), we can characterize for which functions h the
statistic τh leads to a consistent test.

Proposition 1 (Consistency of WiTS test). Assume
0 < σc(h) <∞, where σc(h) is defined in Theorem 1.
A WiTS test based on h is consistent against a fixed
alternative hypothesis P 6= Q if and only if h̄P > h̄Q.

Proposition 1 ensures that, for a given alternative hy-
pothesis, our proposed test will eventually (in the limit
of the sample size) reject the null hypothesis H0 when
it is false. Associated with this notion is the test power,
the probability that the test rejects H0 when it is false;
this quantity is equivalent to 1− type-II error. Defining
the signal-to-noise ratio SNR(h) =

h̄P−h̄Q
σc(h) , it follows

from (6) that the asymptotic test power of our test is

βh ≈ 1− Φ
(
Φ−1(1− α)−

√
nte +mte SNR(h)

)
. (7)

Since Φ increases monotonically, the test power grows
monotonically with the signal-to-noise ratio (SNR).

3.2 Stage I - Finding an Optimal Witness

We now propose an objective to find an optimal witness
function. Based on our test power consideration, we
argue that in the first stage one should find a witness by
maximizing a, possibly regularized, empirical estimate
of the SNR in (7). Let F be a function class contain-
ing candidates for the witness. We propose using the
witness ĥλ defined as

ĥλ = argmax
f∈F

f̄Xtr − f̄Ytr

σZtr
c,λ(f)

,

with f̄Xtr =
1

ntr

∑
x∈Xtr

f(x), f̄Ytr =
1

mtr

∑
y∈Ytr

f(y),

(8)

and σZtr
c,λ(f) = ((σZtr

c (f)2 +λΩ(f))
1
2 , where σZtr

c (f) cor-
responds to σ̂c(h) defined in Theorem 1 and Ω is a
regularizer. We remark that the optimal witness is
generally not uniquely defined since the SNR is invari-
ant to rescaling the function. Correctly rejecting H0

when it is false is at the core of hypothesis testing.
Our choice of maximizing the SNR in (7) is in line
with this principle: it leads to a test that maximizes
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the asymptotic test power. By contrast, while other
objectives such as classification loss(Kim et al., 2021;
Lopez-Paz and Oquab, 2017), softmax loss (Cheng and
Cloninger, 2019), or the MMD statistic itself (Gretton
et al., 2012a), can be used to learn the witness function,
their relationship to the test power may be indirect.

OPT-MMD-Witness. A closely related objective
to our SNR in (7) was used in previous work (Suther-
land et al., 2017; Liu et al., 2020) to find a good kernel
for a opt-mmd-boot test, see (3). For a given kernel
k, Liu et al. (2020, Eq.(3)) derive the training objec-
tive as J(P,Q|k) = MMD2(P,Q|k)/σH1

(P,Q|k) where
σ2
H1

(P,Q|k) is the asymptotic variance of the MMD
estimate under the alternative hypothesis. In Appendix
A.5, we examine this quantity in more detail, and show
that J(P,Q|k) = 1/

√
2 SNR(hP,Qk ). For a given class of

kernels and corresponding (empirical) MMD witnesses,
this implies that selecting the optimal witness accord-
ing to our SNR criterion leads to the same function
as first optimizing the kernel with the J criterion and
defining the witness afterwards.

Model Selection and Optimization. The choice
of function class F and regularization parameter λ
affects the learned witness in (8). We therefore recom-
mend that practitioners use standard tools for model
selection such as cross-validation (CV) for finding suit-
able “hyperparameters” and to validate that the learned
witness actually has a high SNR. CV ensures that the
witness actually learns the differences between P and
Q and does not solely overfit the training data. Model-
selection on Ztr is legit since in Stage II we only use
Zte, which are independent of Ztr. While this is also
possible in classifier two-sample tests (Lopez-Paz and
Oquab, 2017), in the standard mmd-boot this is not
done.

Our objective (7) can be used with a variety of function
classes F . For instance, F can be defined based on
an RKHS, or parameterized by a deep neural network.
Note that optimization methods to maximize (8) are
generally function class specific, and may require an
iterative procedure. However, when F is an RKHS, we
can derive the closed-form solution to (8), as shall be
explained in Section 4. Algorithm 1 shows the general
procedure for the two-stage WiTS test.

Permutation-based Thresholds. For our theoreti-
cal analysis we used the asymptotic threshold. However,
the witness is also chosen in a data-dependent man-
ner. Thus, we generally recommend to simulate the
threshold via permutations in order to ensure type-I
error control at finite sample size. In this case, for
simplicity and ease of implementation, we compute the
test statistic without normalization and simply take

the difference in means. We first compute the value of
the witness function on all points in Zte and store it in
an array. Then we compute the simplified test statistic
by taking the difference in means of Xte and Yte (as
computed from the array that stores all the witness
evaluations). We then iterate over B ∈ N permutation
runs to estimate the p-value of the computed test statis-
tic. For each run, we permute the array storing the
witness evaluations, and then compute the difference
in means of the first nte and the last mte entries. If
this is larger or equal than the test statistic on the
original partition, this contributes 1/B to the p-value.
After all permutations, if the p-value is smaller than
α, we reject (see Alg. 1). This correctly controls type-I
errors, as under the null, the initial partition can be
thought of as being itself a random permutation of the
data. Since for this procedure we only need to compute
the witness once on each data point the overall cost
is O((nte +mte)B). Note that simulating the null for
mmd-boot instead has cost O((nte + mte)

2B) (Liu
et al., 2020, Sec. 5).

4 KFDA-WITNESS

In this section, we consider the function class in (8)
to be an RKHS, and show that this choice leads to
a closed form solution for the optimal witness. To
start, let H be an RKHS associated with a positive
definite kernel k (see Section 2). Additionally to the
mean embeddings µP , µQ, we define the (centered)
covariance operator ΣP = E [k(X, ·)⊗ k(X, ·)]− µP ⊗
µP (analogously for Q) whose existence is ensured by
Assumption (A1) (Muandet et al., 2017, Sec. 3). For
any function in the RKHS we then have E [f(X)] =
〈µP , f〉 and Var[f(X)] = 〈f,ΣP f〉, and analogously
for Q. We define the pooled covariance operator Σ =
ΣP
c +

ΣQ
1−c . Then for all f ∈ H with non-zero variance

we have

SNR(f) =
〈µP − µQ, f〉
〈f,Σf〉

1
2

, (9)

where SNR is defined in (7). This objective corresponds
to Kernel Fisher discriminant analysis (KFDA)’s learn-
ing objective (Mika et al., 1999). For singular covari-
ance operator the SNR can diverge, and for infinite-
dimensional RKHS, the empirical estimation of the
covariance operator is ill-posed. In the following, we
therefore consider a regularized (λ > 0) version of (9)
and call its solution (regularized) KFDA witness:

hλ = argmax
f∈H

〈µP − µQ, f〉
〈f, (Σ + λ I)f〉

1
2

. (10)

The solution of (10) is given by the solution to the
generalized eigenvalue problem (Σ + λ I)hλ = γ(µP −
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Algorithm 1 WiTS test with kfda-witness

1: Input: X,Y, α, paramGrid, r
2: Xtr,Xte,Ytr,Yte ← RandomSplit(X,Y, r)
3: # Optionally perform model selection
4: k, λ← GridSearchCV(paramGrid, Ztr)
5: # Stage I - Optimize Witness
6: h← kfdaWitness(Ztr, k, λ) . App. Alg.2
7: # Stage II - Test
8: return: witnessTest(Zte, h, α)

9: function witnessTest(Zte, h(·), α, B = 200)
10: hZte ← [h(z) for z in Zte]
11: τ ← mean(hZte [: nte])−mean(hZte [nte :])
12: p← 0 . simulate p-value via permutations
13: for i in [B] do
14: hZte ← Permute(hZte)
15: if mean(hZte [: nte])−mean(hZte [nte :]) ≥ τ then
16: p← p+ 1/B

17: if p ≤ α then return: 1 else return: 0

µQ) (Mika, 2003, Sec.3.2), thus

hλ = γ(Σ + λ I)−1(µP − µQ), (11)

where γ > 0 is an arbitrary positive constant we fix
to 1, unless stated otherwise. We will refer to the test
with the witness function hλ as the kfda-witness
test.

Next, we show how we can estimate the KFDA-witness
with the training data.

Estimation of the KFDA Witness. Let Ztr =
{x1, . . . , xntr , y1, . . . , ymtr} denote the pooled training
sample and K denote the kernel matrix such that
Kij = k(zi, zj) for i, j ∈ [ntr + mtr]. Further, we
define δ = ( 1

ntr
, . . . , 1

ntr
,− 1

mtr
, . . . ,− 1

mtr
)> ∈ Rntr+mtr .

For l ∈ {ntr,mtr}, we define the idempotent centering
matrix Pl = Il−l−11l1

>
l , where Il denotes the identity

operator and 1l the l dimensional vector with all ones.
With this we define the (ntr +mtr)× (ntr +mtr) ma-

trix Nc =

(
1
cPntr 0

0 1
1−cPmtr

)
. Using the representer

theorem (Schölkopf et al., 2001), we can empirically
estimate the KFDA witness (more detail in App. A.3)
as

ĥλ(·) =

ntr+mtr∑
i=1

α̂ik(zi, ·), (12)

α̂ =

(
KNcK

ntr +mtr
+ λK

)−1

Kδ. (13)

ĥλ(·) can be viewed as a precision-weighted (inverse
covariance) mean of the embeddings of the basis points
Ztr in the RKHS. Since µXtr , µYtr , and Σ̂ are consistent
estimates of µP , µQ, and Σ, for fixed regularization,
we have ĥλ → hλ = (Σ + λ I)−1(µP − µQ) (see Ap-
pendix A.4). For the asymptotic witness hλ we can
compute the difference in expectation under P and
Q in closed form: h̄λ,P − h̄λ,Q = 〈µP − µQ, hλ〉 =
〈µP − µQ, (Σ + λ I)−1(µP − µQ)〉. This difference is
positive, and hence by Proposition 1 we obtain a con-
sistent WiTS test, if and only if µP 6= µQ. We can

ensure this for arbitrary P 6= Q by using a charac-
teristic kernel (Sriperumbudur et al., 2010), the same
condition as for MMD based tests.

Despite asymptotic consistency, the test power at finite
sample size depends on the splitting ratio r ∈ (0, 1), i.e.,
ntr = drne and nte = n− ntr and accordingly for the
sample from Q. Based on our experimental results, we
observe that, for a fixed kernel k, fixed regularization
λ > 0 and sufficiently large sample size, the splitting
ratio r = 1/2 appears to give the highest test power in
many cases, compared to other values of r. Generally,
identifying the optimal splitting ratio remains an open
problem. We observe (middle panel of Fig. 1) that if
we include model selection in stage I, it is favorable to
use more than half of the data for the first stage, i.e.,
r > 1/2. However, since we cannot quantify how much
"more" data we should use, we generally recommend
using a 50/50 split.

The cost of computing the exact solution α̂ in (12) is
O((ntr+mtr)

2) in space (storing the kernel matrix) and
O((ntr +mtr)

3) time (matrix inversion). In Appendix
C, we adopt recent advances in large-scale kernel ma-
chines (Rudi et al., 2017; Meanti et al., 2020) to obtain
approximate solutions with lower time and space com-
plexity and thus scale to large datasets. Using the
Nyström approximation (Williams and Seeger, 2000)
to approximate the solution and approximately solving
it with conjugate gradient, we obtain a complexity of
O((ntr +mtr)Mt+M3) in time and O(M2) in space,
where M denotes the number of Nyström centers and t
the number of conjugate gradient iterations. For stage
II we then only need (nte +mte)M kernel evaluations
to compute the test statistic. This makes our approach
scalable to large-scale dataset.3

Connection of opt-mmd-witness and kfda-
witness. To emphasize the relationship between
optimizing the MMD and using KFDA, consider a fixed
kernel k and denote by A the set of bounded positive

3After acceptance of this work, Chatalic et al. (2022)
proposed a Nyström approximation of the kernel mean
embedding to speed up the MMD estimation.
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operators on Hk. We consider the nonparametric class
of kernels K = {kA|kA(x, y) = 〈Ak(x, ·), Ak(y, ·)〉 , A ∈
A}. For this class of kernels, we show in App. A.6 that
using opt-mmd-witness leads to the same witness
function as using kfda-witness.

kfda-boot. It turns out that KFDA-like test statis-
tics were considered before (Harchaoui et al., 2008b),
but in settings without data splitting. Indeed, for
a fixed k and λ > 0, we can use the whole data,
i.e., X,Y for learning the witness (Σ̂ + λ)−1(µX − µY)
and computing the test statistic (empirical mean dif-
ference). The test statistic thus is τkfda-boot =
〈µX − µY, (Σ̂ + λ)−1(µX − µY)〉 , and we call its pop-
ulation version KFDA2(P,Q|k, λ). This, is the test
statistic as studied by Harchaoui et al. (2008b). As
for mmd-boot, the same data is used for estimating
the witness and computing the mean difference, hence
Theorem 1 does not hold anymore. We thus need
to bootstrap the null distribution via permutations
of the samples; thus, we refer to it as kfda-boot.
kfda-boot has similar drawbacks as mmd-boot: 1.
simulating the null distribution via permutations has
cost O((n + m)3B) for B ∈ N draws from the null
distribution; and 2. we have to fix k and λ a priori,
and their choices strongly affect the test power. Har-
chaoui et al. (2008b) do not provide guidance for how
to choose k and λ.

5 RELATED WORK

Besides the kernel-based tests we discussed so far,
Chwialkowski et al. (2015) proposed tests based on
smooth characteristic functions (SCF), and projected
mean embeddings (ME) of the distributions where the
mean embeddings are projected to J-dimensional Eu-
clidean vectors for J ∈ N. In fact, the normalized
ME statistic in (Chwialkowski et al., 2015, Eq. 13)
can be seen as a variant of the KFDA where the func-
tion classes is restricted by the J projection direc-
tions. Note that for a finite-dimensional RKHS and
without regularization, kfda-boot corresponds to the
Hotelling’s T 2 statistic (Hotelling, 1931). Jitkrittum
et al. (2016) improve this approach by optimizing the
features in the first stage. However, they also discard
the training data after learning the J projection direc-
tions. Kirchler et al. (2020) propose to learn a deep
finite-dimensional representation of the data and to
use this for a subsequent MMD or KFDA test. How-
ever, their training objective does not directly maxi-
mize the test power (Kirchler et al., 2020, Sec. 3.1.1).
Liu et al. (2020) propose a deep version of opt-mmd-
boot. They learn a deep-kernel (mmd-d) of the
form kω(x, x′) = [(1− ε)κ(φω(x), φω(x′))) + ε] q(x, x′),
where ε ∈ (0, 1), κ and q are Gaussian kernels and φω

is a deep representation optimized via the criterion J ,
see App. A.5. They also consider a version called mmd-
o which is kω(x, x′) = κ(φω(x), φω(x′)) and conclude
that learning a full kernel (they advocate mmd-d) is
better than learning a one-dimensional representation.

Most of the aforementioned works focus on develop-
ing a practical testing procedure for a specific dataset
at hand. However, there also exist more theoretical
work on the statistical optimality of different kernel-
based approaches. Balasubramanian et al. (2021) show
that a moderated MMD approach (which is related to
KFDA) leads to optimal rates when testing against
local alternatives. A similar discussion can be found
in the long version of Harchaoui et al. (2008a, Sec.5.1).
This resonates our findings, that a witness based on
KFDA is more powerful than simply using the MMD
witness. Furthermore, Li and Yuan (2019) show how
the choice of scaling parameter in Gaussian kernels
affects the statistical optimality. However, such theo-
retically optimal tests oftentimes are unpractical to use.
Balasubramanian et al. (2021), for examples requires,
the eigendecomposition of the kernel function, which
generally is hard to obtain. Furthermore, without data
splitting also these works cannot find a good kernel
function.

Since our proposed witness function is one-dimensional,
it is closely related to classification based two-sample
tests (Friedman, 2003; Kim et al., 2021; Lopez-Paz and
Oquab, 2017; Cheng and Cloninger, 2019; Cai et al.,
2020). Lopez-Paz and Oquab (2017) proposed learning
a deep classifier and using its classification accuracy
as test statistic. We refer to this as c2st-s, where s
stands for sign. The method has two drawbacks. First,
classification loss does optimize the 0-1 loss, whereas we
directly maximize test power (Lopez-Paz and Oquab,
2017, Remark 2). Second, it only uses the sign of the
classification function and thus neglects information
by weighting all points equally. Cheng and Cloninger
(2019) address the second issue by considering the net-
work’s output before thresholding the function into
a classifier. They train with a softmax loss, which
also does not directly address test power. The con-
nections of these methods to kernel-based tests were
also thoroughly discussed by Liu et al. (2020) and, in
accordance, we refer to the approach of Cheng and
Cloninger (2019) as c2st-l.

6 EXPERIMENTS

We empirically assess the test power of the proposed
WiTS tests in two settings. First, we perform instruc-
tive experiments to highlight the differences of the
methods summarized in Table 1. Second, we perform
benchmark experiments on two challenging datasets
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Table 1: Overview of kernel-based two-sample tests. a priori means that the kernel/regularization is chosen
independently of the data. The present work proposes the "witness" methods.

Method kernel choice reg. λ witness obj. witness estim. test data threshold

kfda-witness(proposed) CV CV SNR Ztr Zte analytic
kfda-boot(Harchaoui et al., 2008b) a priori a priori SNR Z (implicit) Z bootstrap
mmd-boot(Gretton et al., 2012a) a priori - MMD Z (implicit) Z bootstrap
opt-mmd-witness(proposed) J with Ztr - MMD Ztr Zte analytic
opt-mmd-boot(Sutherland et al., 2017) J with Ztr - MMD Zte (implicit) Zte bootstrap
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Figure 1: Instructive experiments on "Blobs" dataset. Left: Fixed kernel and fixed regularization for sample
size n = m = 100. Middle: For multiple candidate kernels (K10) kernel optimization becomes more important
and the difference of kfda-witness and opt-mmd-witness becomes smaller. Further, opt-mmd-witness
already outperforms opt-mmd-boot. Right: Same kernels as in the middle figure and r = 1/2. All the tests are
consistent, i.e., converge to power equal 1.

and compare the performance of the introduced WiTS
tests (kfda-witness and opt-mmd-witness) to the
benchmarks (mmd-d, mmd-o, me, scf, c2st-s, c2st-
l) introduced in Section 5. For the benchmarks, we
reuse the implementation provided by Liu et al. (2020)
without changing any hyperparameters. Throughout
our experiments we set the level α = 0.05. App. B
contains experiments for correct type-I error control.
The shaded regions contain ± one standard deviation
of the estimates.4

Instructive experiments. In Figure 1, we consider
a Blobs dataset (Gretton et al., 2012b) where P and
Q are mixtures of nine anisotropic 2-d Gaussians with
Q having the covariance matrix rotated by an angle
θ = π/4, see Figure 5 in the appendix. For the left
panel of Fig. 1, we consider a single Gaussian ker-
nel kσ(x, x′) = exp (−‖x− x′‖2/σ2) with bandwidth
σ = 0.2 and a regularization parameter for the kfda
methods of λ = 10−2 (in the appendix we show the
effect of the regularization in Fig. 4. Note that for
λ→∞, kfda and mmd methods coincide). We show-
case the effect of varying splitting ratios r when the

4Note that in Fig. 2 we used different approaches to
estimate the rejection rates, see Appendix B. This explains
that at the same rejection rate we can have differently large
errors.

kernel is fixed a-priori (thus we can apply mmd-boot
and kfda-boot). With fixed kernel, opt-mmd-boot
essentially discards the training data. We estimate the
test power (rejection rate) with fixed overall sample size
n = m = 100. We observe that the witness methods
achieve highest power for a 50/50 split, given a fixed
kernel and fixed regularization. We also observe that
the boot approaches outperform the witness methods
in this case.

However, in practice, it is unlikely that we can pick
a powerful kernel and regularization a priori. There-
fore, for the middle panel of Figure 1, we optimize
the kernel function over a class of kernels K10 con-
sisting of ten Gaussian kernels with bandwidths on a
logarithmic range from 10−3 to 101. Additionally, for
kfda-witness we cross-validate over five candidate
regularizations on a log range from 10−4 to 103. In this
case, the witness methods attain the highest power at
a splitting ratio r > 1/2, and opt-mmd-witness out-
performs opt-mmd-boot for the majority of splitting
ratios and also globally. For the right panel, we use the
same setting, but fix the splitting ratio at r = 1/2 and
vary the sample size. As we expect, all tests are consis-
tent and we observe that both WiTS test approaches
outperform opt-mmd-boot at a 50/50 split.

Benchmark Experiments. Liu et al. (2020) bench-



Jonas M. Kübler, Wittawat Jitkrittum, Bernhard Schölkopf, Krikamol Muandet

1000 1500 2000 2500 3000 3500 4000 4500 5000
Samplesize

0.0

0.2

0.4

0.6

0.8

1.0

kfda-witness MMD-D-witness MMD-D MMD-O C2ST_L C2ST_S ME SCF

100 150 200 250 300 350 400 450
Samplesize

0.0

0.2

0.4

0.6

0.8

1.0

Re
je

ct
io

n 
Ra

te

Figure 2: Benchmark experiments adapted from Liu et al. (2020) Left: Blobs, Right: HIGGS. Computing the
MMD witness after kernel optimization and performing a witness test (mmd-d-witness) improves the test power
over mmd-d. Directly learning the kfda-witness also leads to high power.

marked several deep classification two-sample tests
(c2st-l, c2st-c) against MMD with an optimized
deep kernel (mmd-d, mmd-o) and the optimized tests
(me, scf) of Jitkrittum et al. (2016). We implement
opt-mmd-witness on top of their proposed method
mmd-d, which optimizes a deep kernel (Liu et al., 2020,
Section 5). Therefore after the kernel optimization, we
use the training data to define the MMD witness func-
tion (Eq. (4)) and then proceed with WitnessTest
from Algorithm 1. We also run kfda-witness with
grid search over the same kernels and regularization as
for the previous experiments. We run the experiments
on two benchmarks. First, an adopted Blobs problem,
with multiple different covariances (Liu et al., 2020,
Figure 1) (see Figure 5 in the appendix), introduced to
show the limitations of MMD with translation-invariant
kernels. Second, the Higgs dataset (Baldi et al., 2014)
where "we compare the jet φ-momenta distribution
(d = 4) of the background process, P , which lacks
Higgs bosons, to the corresponding distribution Q for
the process that produces Higgs bosons" (cited from
Liu et al. (2020)). For the Higgs dataset we consider
sample sizes larger than a thousand per class. To speed
up the computation of the kfda-witness, we approxi-
mate the solution with M = 500 Nyström centers, see
Appendix C, which underlines the scalability of our
approach. For both datasets we observe higher power
of the WiTS tests we propose, see Figure 2. We em-
phasize that we used the implementation of Liu et al.
(2020), without changing the deep architecture or any
hyperparameters.

7 CONCLUSION

We introduced a principled approach to learn optimal
witness functions for two-sample testing. The approach
consists of two-stages: First, we learn a witness on a
subset of the observations by maximizing a test-power
criterion. In the second stage, we simply test whether
the witness function attains the same mean on the test
samples, and efficiently simulate the null distribution
via permutations. We further showed how to adopt re-
cent tests based on optimized Maximum Mean Discrep-
ancy into a witness two-sample test. Liu et al. (2020)
advocated optimizing a (deep) kernel in the training
stage. Our experiments show, however, that explicitly
learning a one-dimensional witness can perform bet-
ter than learning a high-dimensional representation (a
kernel function) in the training stage.

Our results extend beyond kernel methods since we
derive a principled objective to train a one-dimensional
function optimal for two-sample testing. This objective
and the proposed testing procedure can be applied
with any function class. The proposed framework thus
not only allows domain experts to perform two-sample
tests with the models most suitable to the data at
hand, but can also easily incorporate model selection
techniques developed for classification and regression
tasks to optimize for the best parameter settings.
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A PROOFS

A.1 Proof of Theorem 1

Proof. Theorem 1 follows by the application of the CLT; see, e.g., Theorem A, Chapter 1.9.1 in Serfling (1980).
The CLT implies

√
n+m(ĥnP − h̄P ) =

√
n/c(ĥnP − h̄P )

d→ N (0, σ2
P /c), analogously for Q and the variances add

up. Since σ̂2
c (h)

p→ σc := σ2
P /c+ σ2

Q/(1− c), the result follows from Slutsky’s theorem.

A.2 Proof of Proposition 1

Proof. Since we assume σc(h) > 0, it follows that

lim
nte+mte→∞

Φ

(
Φ−1(1− α)−

√
nte +mte

h̄P − h̄Q
σc(h)

)
= 0, (14)

i.e., the asymptotic rate of type-II errors goes to zero, if and only if h̄P > h̄Q.

A.3 Derivation of Equation (12)

We use the following definitions: Let Z = {x1, . . . , xntr , y1, . . . , ymtr} denote the pooled training sample and
K denote the kernel matrix such that Kij = k(zi, zj) for i, j ∈ [ntr + mtr]. Let us define G ∈ Hntr+mtr such
that Gi = k(zi, ·). And we write K = G>G. Further we define v1 = ( 1

ntr
, . . . , 1

ntr
, 0, . . . , 0)> ∈ Rntr+mtr ,

v2 = (0, . . . , 0, 1
mtr

, . . . , 1
mtr

)> ∈ Rntr+mtr , and δ = v1 − v2. For l = ntr,mtr we define the idempotent centering
operator Pl = Il−l−11l1

>
l , where I denotes the identity operator and 1l the l dimensional vector with all ones.

With this we define the (ntr +mtr)× (ntr +mtr) matrix Nc =

(
1
cPntr 0

0 1
1−cPmtr

)
. With the preceding definitions,

we obtain µ̂P − µ̂Q = Gδ, Σ̂ = 1
ntr+mtr

GNcG
>.

Starting from (10) we estimate the KFDA witness based on the empirical estimates of µP , µQ,Σ, i.e.,

ĥλ = argmax
f∈H

〈µXtr − µYtr , f〉

〈f, (Σ̂ + λ I)f〉
1
2

. (15)

We first show a representer Theorem for KFDA (Mika, 2003, Sec. 3.4.3). Therefore, we decompose possible
candidate functions f = f1 +f2 ∈ H into a part f1 that lies in the span of the training data Str = span({k(zi, ·)|i ∈
[ntr +mtr]}) and f2 which lies in the span’s orthogonal complement. Thus, by definition, we have 〈f2, k(zi, ·)〉 = 0
for all i ∈ [ntr +mtr]. Since µXtr and µYtr are within Str, we have 〈µXtr − µYtr , f〉 = 〈µXtr − µYtr , f1〉. Similarly,
since Σ̂ is only defined via the training samples in Z, Σ̂ maps functions from Str to Str and we have Σ̂f2 = 0.
Thus for the denominator of (15) we get

〈f, (Σ̂ + λ I)f〉 = 〈f1, (Σ̂ + λ I)f1〉+ λ‖f2‖2 ≥ 〈f1, (Σ̂ + λ I)f1〉 . (16)

We have shown that the nominator of (15) stays constant, if we add a function f2 that is not is not in Str and
the denominator can only grow. This implies that the maximum in (15) is attained for a function in Str and we
can expand it as ĥλ(·) =

∑ntr+mtr
i=1 α̂ik(zi, ·). Hence the solution is

α̂ = argmax
α∈Rntr+mtr

〈µXtr − µYtr ,
∑ntr+mtr
i=1 αik(zi, ·)〉

〈
∑ntr+mtr
i=1 αik(zi, ·), (Σ̂ + λ I)

∑ntr+mtr
i=1 αik(zi, ·)〉

1
2

(17)

= argmax
α∈Rntr+mtr

δ>Kα(
α>
(
KNcK
ntr+mtr

+ λK
)
α
) 1

2

. (18)

The solution to this is (Mika, 2003, Sec. 3.2)5(
KNcK

ntr +mtr
+ λK

)
α̂ = Kδ ⇐⇒ α̂ =

(
KNcK

ntr +mtr
+ λK

)−1

Kδ. (19)

5For a sanity check, simply compute the gradient of (17) and set it to zero.
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A.4 Convergence of ĥλ

We will show that ĥλ → hλ = (Σ + λ I)−1(µP − µQ) in probability.

Proof. First, we observe that

ĥλ − hλ = (Σ̂ + λI)−1(µXtr − µYtr)− (Σ + λI)−1(µP − µQ)

= (Σ̂ + λI)−1(µXtr − µYtr)− (Σ̂ + λI)−1(µP − µQ)

+ (Σ̂ + λI)−1(µP − µQ)− (Σ + λI)−1(µP − µQ)

= (Σ̂ + λI)−1 [(µXtr − µYtr)− (µP − µQ)] +
[
(Σ̂ + λI)−1 − (Σ + λI)−1

]
(µP − µQ).

Thus it follows that

‖ĥλ − hλ‖H ≤ ‖(Σ̂ + λ I)−1[(µXtr − µYtr)− (µP − µQ)]‖H
+ ‖[(Σ̂ + λ I)−1 − (Σ + λ I)−1](µP − µQ)‖H

= (A) + (B).

Probabilistic bound on (A). By the triangle inequality,

‖(Σ̂ + λ I)−1[(µXtr − µYtr)− (µP − µQ)]‖H ≤ ‖(Σ̂ + λ I)−1‖‖(µXtr − µYtr)− (µP − µQ)‖H
≤ ‖(Σ̂ + λ I)−1‖(‖µXtr − µP ‖H + ‖µQ − µYtr‖H).

By the spectral theorem, ‖(Σ̂ + λI)−1‖ = supl̂∈(l̂k)∞k=1

1
l̂+λ
≤ 1/λ where (l̂k)∞k=0 are the eigenvalues of Σ̂ and

by definition non-negative. Then, the
√
n-convergence of (A) follows from the

√
n-convergence of the kernel

mean embeddings ‖µXtr − µP ‖H = Op(n−1/2
tr ) and ‖µQ − µYtr‖H = Op(m−1/2

tr ); see, e.g., Muandet et al. (2017,
Theorem 3.4). That is, (A) = Op(min(ntr,mtr)

−1/2).

Probabilistic bound on (B). Using the identity C−1 −D−1 = C−1(D − C)D−1, we can rewrite (B) as

‖[(Σ̂ + λ I)−1 − (Σ + λ I)−1](µP − µQ)‖H
= ‖(Σ̂ + λ I)−1(Σ̂− Σ)(Σ + λ I)−1(µP − µQ)‖H
≤ ‖(Σ̂ + λ I)−1‖‖Σ̂− Σ‖‖(Σ + λ I)−1(µP − µQ)‖H
≤ ‖(Σ̂ + λ I)−1‖‖Σ̂− Σ‖HS‖(Σ + λ I)−1(µP − µQ)‖H,

where we used that the operator norm is upper bounded by the Hilbert-Schmidt norm. Let n := ntr + mtr.
Then, since ‖(Σ̂ + λ I)−1‖ ≤ 1/λ, the

√
n-convergence of (B) follows from the

√
n-convergence of the covariance

operator, i.e., ‖Σ̂− Σ‖HS = Op(n−1/2) (Fukumizu et al., 2005, Lemma 4). That is, (B) = Op((ntr +mtr)
−1/2).

Combining the rates of (A) and (B) yields the overall rate of convergence: ‖ĥλ−hλ‖H = Op(min(ntr,mtr)
−1/2).

A.5 Witness objective vs. kernel optimization objective in MMD tests

In MMD-based two sample tests, the most common estimate of the MMD is the U-statistic estimate, defined as
(Gretton et al., 2012a)

M̂MD2
u =

1

n(n+ 1)

∑
i 6=j

Hij , (20)

with Hij = 〈k(xi, ·)− k(yi, ·), k(xj , ·)− k(yj , ·)〉. The objective function used in Sutherland et al. (2017); Liu et al.
(2020) bases on the asymptotic variance of the estimator under the alternative hypothesis. If the population value
of MMD2 is positive, then the distribution of the estimate is asymptotically normal (Serfling, 1980, Section 5.5.1),
√
n

(
M̂MD2

u −MMD2

)
d→ N (0, σ2

H1
), with σ2

H1
= 4(E [H12H13]− E [H12]

2
) (Liu et al., 2020). This can be used
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to derive an asymptotic test power criterion, which is given as the signal-to-noise ratio J = MMD2

σH1
(Sutherland

et al., 2017, Sec. 2.1).

We show, that the power criterion J = MMD2

σH1
corresponds to the SNR criterion we derived in (8). It is an easy

exercise to show that

σ2
H1

= 4
(
EX∼P

[
〈µP − µQ, k(X, ·)〉2

]
+ EY∼Q

[
〈µP − µQ, k(Y, ·)〉2

]
−〈µP − µQ, µP 〉2 − 〈µP − µQ, µQ〉2)

)
.

Recalling the definition of the covariance operator ΣP = E [k(X, ·)⊗ k(X, ·)]− µP ⊗ µP , we obtain

σ2
H1

= 4 〈µP − µQ, (ΣP + ΣQ)(µP − µQ)〉 = 2 〈µP − µQ, (2ΣP + 2ΣQ)(µP − µQ)〉
= 2 〈µP − µQ,Σ(µP − µQ)〉 ,

where we used Σ = ΣP /c+ ΣQ/(1− c) and c = 1/2 for balanced samples.

Using hP,Qk = µP − µQ, we have

J(P,Q|k) =
MMD2

σH1

=
〈µP − µQ, µP − µQ〉√

2 〈µP − µQ,Σ(µP − µQ)〉
1
2

=
〈µP − µQ, hP,Qk 〉
√

2 〈hP,Qk ,ΣhP,Qk 〉
1
2

(21)

=
1√
2
SNR(hP,Qk ). (22)

A.6 MMD of nonparametrically optimized kernel corresponds to KFDA

Consider a fixed kernel k and denote by A the set of bounded positive operators on Hk. For the nonparametric
class of kernels K = {kA|kA(x, y) = 〈Ak(x, ·), Ak(y, ·)〉 , A ∈ A} using opt-mmd-witness leads to exactly the
same witness function as using kfda-witness.

Proof. Writing inner products in the original RKHS with kernel k for kernel kA we have the regularized J criterion

JλA =
〈A(µP − µQ), A(µP − µQ〉)

〈A(µP − µQ), A(Σ + λ I)AA(µP − µQ)〉
1
2

.

We define δA := A2(µP − µQ) and obtain

JλA =
〈µP − µQ, δA〉)
〈δA, (Σ + λ I)δA〉

1
2

, (23)

which looks almost like (10). The solution to (10) is (11) which implies that Ãλ = (Σ +λ I)−
1
2 defines the optimal

kernel

k̃λ(x, x′) := 〈(Σ + λ 1)−
1
2 k(x, ·), (Σ + λ 1)−

1
2 k(x′, ·)〉H

= 〈k(x, ·), (Σ + λ 1)−1k(x′, ·)〉H .

Based on the empirical estimates the MMD witness of the optimized kernel would be (expressed in terms of the
original kernel k)

hZtr

k̃λ
= (Σ̂ + λ 1)−1(µXtr − µYtr) = ĥλ, (24)

i.e., the witness of opt-mmd-witness coincides with the kfda-witness in the original RKHS.

B FURTHER EXPERIMENTS AND DETAILS

This section provides supplementary information on our experiments. We provide code upon personal request.
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Figure 3: Rejection Rates for true null hypothesis (Type I error) at α = 0.05. Left: Standard Blobs dataset (500
iterations). Middle: Blobs dataset of Liu et al. (2020), kfda-witness is only average over 100 trials the others
over 10× 100, therefore kfda-witness has higher variance. Right: Higgs dataset
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Figure 4: Effect of regularization on KFDA. We consider the same setting as in the left panel of Fig. 1 (fixed
kernel and fixed regularization and n = m = 100) but for different regularization. Left (λ = 103): For large
regularization KFDA converges to MMD. Middle (λ = 10−2): For a good regularization the KFDA approaches
clearly outperform the corresponding MMD approaches. Right (λ = 10−4): If the regularization is too small for
a given sample size (here n = 100) , then KFDA overfits in the training phase, which leads to a reduction in test
power.

Datasets. We used two different versions of the Blobs dataset. We show random draws for both cases in
Figure 5. For the benchmark experiments we also used the Higgs dataset (Baldi et al., 2014), which is part
of the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/HIGGS). We used a
version that is ready for Python usage provided by Liu et al. (2020) (https://drive.google.com/open?id=
1sHIIFCoHbauk6Mkb6e8a_tp1qnvuUOCc). To ensure the comparability we follow the implementation of Liu et al.
(2020) and draw samples from the Higgs dataset without replacement.

Effect of regularization of kfda-witness. In the left panel of Figure 1, we chose a fixed regularization
λ = 10−2 for the KFDA methods. In Figure 4, we show the effect of choosing a bad regularization. If the
regularization is too large (left), then KFDA coincides with MMD. On the other hand, if the regularization is too
small (right), then the effect of inaccurately estimating the covariance operator might as well lead to a reduced
test power. For good performance it is thus important to chose a suitable regularization. This can be automated
by including a model selection procedure, such as cross-validation, in the training stage.

Estimation of Rejection Rates. For the instructive experiments in Figure 1 we estimate the rejection rates
by repeating the whole two-stage procedure 1000 times. For the benchmark experiments we use 100 iterations of
the two-stage procedure for kfda-witness. For all the other methods in the benchmark experiments, we follow
the implementation of Liu et al. (2020) and estimate the rejection rates by running the first stage ten times and
estimating the rejection rate over 100 independent test sets for each run of the first stage. The reason for this is,
that the first stage is quite slow (training a neural network).

https://archive.ics.uci.edu/ml/datasets/HIGGS
https://drive.google.com/open?id=1sHIIFCoHbauk6Mkb6e8a_tp1qnvuUOCc
https://drive.google.com/open?id=1sHIIFCoHbauk6Mkb6e8a_tp1qnvuUOCc
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Figure 5: Left: Draws from Blobs dataset for the instructive experiments. The distributions are mixtures of nine
Gaussians, with anisotropic covariance (but the same covariance matrix across blobs). The covariance matrix of
Q is rotated by θ = π/4 relative to the covariance matrix of P . To simulate the null hypothesis we use θ = 0,
which corresponds to drawing both samples from P . Right: Blobs dataset used for Figure 2 as suggested by Liu
et al. (2020, Figure 1). In this case, P has isotropic Gaussian, the blobs in Q are anisotropic and have different
covariance matrices. To simulate the null hypothesis, we draw both samples from P .

Algorithm 2 Pseudocode for the FdaFalkon algorithm. Adopted for KFDA from (Meanti et al., 2020)

1: function FdaFalkon(Z,y, k, λ,m, t)
2: Zm,ym ← RandomSubsample((Z,y),m)
3: T,A← Preconditioner(Zm,ym, λ)
4: function LinOp(β)
5: v ← A−1β
6: c← k(Zm, Z)NN

>k(Z,Zm)T−1v
7: return A−>(T−>c+ λnv)

8: R← A−>T−>k(Zm, Z)y
9: β ← ConjugateGradient(LinOp, R, t)
10: return T−1A−1β, Zm

13: function Preconditioner(Zm,ym, λ)
14: Kmm ← k(Zm, Zm)
15: T ← chol(Kmm)
16: Kmm ← 1

m
TNmNmT

> + λI
17: A← chol(Kmm)
18: return T,A

19: function kfdaWitness(Ztr, k, λ)
20: Z ← Concatenate(Ztr)
21: y = [1] ∗ len(Xtr) + [−1] ∗ len(Ytr)
22: m = len(Z) . # Nyström centers
23: α,Z ← FdaFalkon(Z,y, k, λ,m)
24: return hλ =

∑m
i=1 αik(zi, ·)

Type-I errors. We report Type-I errors for all three different datasets in Figure 3.

C APPROXIMATE COMPUTATION OF THE KFDA WITNESS

In this section we will use n instead of ntr and m instead of mtr to keep the notation more concise. In A.3, we
showed that the exact solution for the estimate of the KFDA witness is given by

ĥλ(·) =

n+m∑
i=1

α̂ik(zi, ·), (25)

α̂ =

(
KNcK

n+m
+ λK

)−1

Kδ. (26)

Remark 1. The problem with computing the KFDA witness is that a naive implementation scales cubically with
the pooled sample size. In this section, we thus derive an approach that builds on recent results, that show that
one can essentially get optimal convergence guarantees while only using O((n+m)3/2) time. Therefore two steps
are needed. First, the solution is approximated with M = O((n+m)

1
2 ) Nystrom centers. Second the solution with

for the Nystrom centers is found via conjugate gradient, where a preconditioner is computed again with only M
datapoints.
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We take an approach similar to Rudi et al. (2017); Meanti et al. (2020). We will thus explicitly assume that the
function h has the parametric form

hα̃(x) =

M∑
m=1

α̃ik(x, z̃i), (27)

with M = {z̃1, . . . , z̃M} ⊆ {x1, . . . , xn, y1, . . . , ym} (we overload notation and use M to denote the set itself as
well as its size). We take the notation introduced in Section 4 and constrain to the case c = 1

2 . In this case we

can use N =

(
Pn 0
0 Pm

)
= Nc

2 , instead of Nc. Note that this only affects the scaling of the solution (if we also

scale λ accordingly), which is unimportant for WiTS tests. Using N instead of Nc has the advantage that N
itself is idempotent N = NN>, which makes the following easier. Nevertheless, it is straightforward to use the

below algorithm for any c ∈ (0, 1), simply by using Nc =

(
1√
c
Pn 0

0 1√
1−cPm

)(
1√
c
Pn 0

0 1√
1−cPm

)
.

In the following we denote with KZM the (n+m)×M matrix of entries k(zi, z̃j) and KMZ its transpose. We
can then rewrite the terms in our objective

〈µ̂P − µ̂Q, hα̃〉 = δ>KZM α̃, (28)

〈hα̃, (Σ̂ + λ 1)hα̃〉

= α̃>
(

1

n+m
KMZNN

>KZM + λKMM

)
α̃.

(29)

Let us define RMZ := KMZN . This is a M × (n+m) matrix. Note that N is the sum of the identity and two
1-sparse matrices, hence computing RMZ requires only O((n+m) ·M) operations.

With our considerations from above we can write the optimal coefficients as

α̃∗ =
(
RMZR

>
MZ + (n+m)λKMM

)−1
KMZδ, (30)

⇔
(
RMZR

>
MZ + (n+m)λKMM

)
α̃∗ = KMZδ (31)

Computing RMZR
>
MZ explicitly costs O((n+m)M2) operations and would thus dominate the cost of our previous

operations. However, (31) is now exactly in the same form as Eq. (8) in Rudi et al. (2017). Thus from this point
onwards we can build on their results to efficiently find a solution.

The key idea of Rudi et al. (2017) is to find an efficient way to precondition the system of linear equations in (31).
In analogy, we propose to use the following preconditioner

BB> =

(
n+m

M
RMMR

T
MM + λ(n+m)KMM

)−1

, (32)

where RMM := KMMNM and NM is defined in analogy to N but only with the M Nyström centers. The
preconditioner (32) thus corresponds to the ideal preconditioner of the problem without Nyström approximation
but only M points to start with.

Using this preconditioner we use t conjugate gradient steps to solve

B>
(
RMZR

>
MZ + (n+m)λKMM

)
Bβ = B>KMZδ. (33)

If β̂ is the approximate solution after t steps, we obtain an approximate solution as

α̂ = Bβ̂. (34)

The algorithm is described in Algorithm 2 and has overall complexity of O((ntr +mtr)Mt+M3) in time and
O(M2).
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