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Abstract

Level set estimation (LSE) is the problem of
identifying regions where an unknown func-
tion takes values above or below a specified
threshold. Active sampling strategies for ef-
ficient LSE have primarily been studied in
continuous-valued functions. Motivated by
applications in human psychophysics where
common experimental designs produce bi-
nary responses, we study LSE active sam-
pling with Bernoulli outcomes. With Gaus-
sian process classification surrogate mod-
els, the look-ahead model posteriors used
by state-of-the-art continuous-output meth-
ods are intractable. However, we derive ana-
lytic expressions for look-ahead posteriors of
sublevel set membership, and show how these
lead to analytic expressions for a class of look-
ahead LSE acquisition functions, including
information-based methods. Benchmark ex-
periments show the importance of consider-
ing the global look-ahead impact on the en-
tire posterior. We demonstrate a clear bene-
fit to using this new class of acquisition func-
tions on benchmark problems, and on a chal-
lenging real-world task of estimating a high-
dimensional contrast sensitivity function.

1 INTRODUCTION

The level set estimation (LSE) problem is to iden-
tify the regions where a black-box function f(x) is
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above or below a particular threshold γ. Applica-
tions include environmental monitoring (e.g. identify-
ing areas where a contaminant is at a hazardous level,
Gotovos et al., 2013), communications (e.g. finding
wireless network configurations with acceptable signal
quality, Ramakrishnan et al., 2005), and finance (e.g.
for derivative pricing, Lyu et al., 2021). Evaluating
f(x) in these settings entails a time-consuming physi-
cal measurement or computer simulation, so the goal
is to identify the level set with as few samples as pos-
sible.

Sample-efficient LSE is an active learning problem
(Kapoor et al., 2007; Hoang et al., 2014), and is related
to techniques like Bayesian active learning by disagree-
ment (BALD, Houlsby et al., 2011) that use a surro-
gate model to perform active sampling. The function
f(x) is modeled with a Gaussian process (GP) surro-
gate, and then active sampling is driven by an acqui-
sition function that selects the most valuable point to
sample for identifying the level set. Several acquisition
functions have been developed for LSE, as described
in Section 2, primarily for continuous-output functions
with Gaussian noise.

The motivation for this work comes from psy-
chophysics, a field of science that seeks to under-
stand perception of physical stimuli (Fechner et al.,
1966). Understanding and adjusting for the limita-
tions of human perception is important for a variety of
downstream applications including audio/visual com-
pression (Pappas et al., 1996; Nadenau et al., 2000),
hearing aid design (Moore, 1996), clinical evaluation
of auditory and visual impairments (De Boer and
Bouwmeester, 1975; Fitzke, 1988), and the design of
virtual and augmented reality systems (Kress, 2020).

A common task in psychophysics is to identify detec-
tion thresholds, the smallest stimulus intensity (e.g.,
volume of a sound) at which the stimulus can be per-
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ceived, usually as a function of other stimulus proper-
ties (e.g., frequency). Finding detection thresholds is
an LSE problem for the threshold level, notably with
Bernoulli observations y ∈ {0, 1} indicating whether
or not a stimulus was perceived. GP surrogate mod-
els and active sampling methods have been applied
to psychophysics threshold estimation problems with
Bernoulli responses (Gardner et al., 2015; Song et al.,
2015, 2017, 2018; Cox and de Vries, 2016; Schlitten-
lacher et al., 2018, 2020; Owen et al., 2021). This prior
work has been limited to a 1-d or 2-d stimulus space of
audiograms and, in contrast to our work here, has not
used LSE acquisition functions, rather has used global
learning methods such as BALD and then extracted
the level set post hoc from the surrogate posterior. As
a notable exception, Owen et al. (2021) used the strad-
dle acquisition, which is described below.

Look-ahead acquisition functions select points based
on the impact their observation will have on the sub-
sequent surrogate model. They are the state-of-the-art
approach for LSE (Bogunovic et al., 2016; Lyu et al.,
2021; Nguyen et al., 2021), as well as for Bayesian op-
timization (BO) (Scott et al., 2011; Hernández-Lobato
et al., 2014; Wang and Jegelka, 2017; Balandat et al.,
2020), which is related to LSE by the use of GP sur-
rogates and acquisition functions. They have addi-
tionally been shown to be useful in the psychophysics
setting, albeit with a parametric model and only in
one dimension (Kim et al., 2017).

Look-ahead acquisition functions rely on being able
to compute a posterior update given the proposed ob-
servation, which can be done analytically with Gaus-
sian observations. Unfortunately, with Bernoulli ob-
servations the surrogate model posterior updates are
no longer analytic. This is vital for acquisition opti-
mization, which requires computing many thousands
of look-ahead posteriors throughout the course of ac-
tive sampling.

Our work here enables tractable look-ahead acquisi-
tion for the Bernoulli LSE problem. Specifically, the
contributions of this paper are:

1. Despite the look-ahead surrogate model posterior
being intractable with Bernoulli observations, we
derive posterior update formulae that, remarkably,
enable exact, closed-form computation of several
state-of-the-art look-ahead acquisition functions,
including information-based approaches.

2. Our look-ahead posterior formulae enable easy
construction of novel acquisition functions, which
we show by introducing expected absolute volume
change (EAVC), a new acquisition function inspired
by max-value entropy search in BO.

3. We evaluate the acquisition functions with a thor-

ough simulation study, which shows that look-
ahead is critical for achieving good level set esti-
mates in high dimensions. We also show that sim-
ply being look-ahead is not enough to ensure re-
liable performance—the acquisition function must
also be global, a distinction we discuss in Section 2.

4. Our work enables rapid acquisition function com-
putation that is suitable for human experiments,
which we show by applying our global look-ahead
acquisition functions to a real, high-dimensional
psychophysics problem.

2 BACKGROUND

2.1 Models for Level Set Estimation

We consider a black-box function f(x), with x ∈ B
and B ⊂ Rd a compact set. Our goal is to identify the
set Lγ(f) = {x : f(x) ≤ γ}, known as the sublevel set.
When f has continuous outputs, it is typical to assume
a Gaussian observation model y = f(x)+ε, with ε i.i.d.
Gaussian noise. We give f a GP prior, then, given a
set of observations Dn = {(xobs

i , yobs
i )}ni=1, the joint

posterior for any set of points is a multivariate nor-
mal (MVN) with analytic mean and covariance (Ras-
mussen and Williams, 2006). We denote the marginal
posterior at x as f(x)|Dn ∼ N (µ(x|Dn), σ2(x|Dn)).

With Bernoulli observations y ∈ {0, 1}, the stan-
dard practice is to use a classification GP based
on either a logit or probit model (Kuss and Ras-
mussen, 2005). Here we focus on the probit case,
in which y ∼ Bernoulli(z(x)), with latent probability
z(x) = Φ(f(x)) and Φ(·) denoting the Gaussian cu-
mulative distribution function. With Bernoulli obser-
vations, the predictive posterior for f |Dn requires ap-
proximation, but a variety of efficient approximations
have been developed, including Laplace approxima-
tion (Williams and Barber, 1998), expectation propa-
gation (Minka, 2001), and variational inference (Hens-
man et al., 2015). Our experiments use variational
inference, but the acquisition functions we develop are
agnostic to how inference is done—for our purposes it
is sufficient to have an MVN posterior for f .

We define θ = Φ(γ) to be the desired threshold for
the probability function z(x). Then, Lγ(f) = Lθ(z),
and so LSE for z(x) can equivalently be done directly
on z(x) or in the latent space of f(x). An important
quantity for the acquisition functions described below
is π(x|Dn) = P(x ∈ Lγ(f)|Dn), which we call the level
set posterior. Given the GP posterior, we can compute
the level set posterior as

π(x|Dn) = Φ

(
γ − µ(x|Dn)

σ(x|Dn)

)
. (1)
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2.2 Acquisition for Level Set Estimation

2.2.1 Non-look-ahead Acquisition

During active sampling, at each iteration we select
a maximizer of the acquisition function to be the
next point sampled. General purpose active sampling
strategies such as BALD seek to reduce global uncer-
tainty in the posterior of f or z, which can waste sam-
ples by reducing variance in regions that are far from
the threshold, the main area of interest for LSE.

Bryan et al. (2005) developed the first acquisition func-
tions tailored for LSE, the most successful of which
was the straddle, which is of similar flavor to the
well-known upper confidence bound (UCB) acquisition
function (Srinivas et al., 2010):

αstraddle(x∗) = −|µ(x∗|Dn)− γ|+ βσ(x∗|Dn).

As in UCB, the parameter β drives exploration by se-
lecting higher variance points; Bryan et al. (2005) used
β = 1.96. They also considered as acquisition func-
tions the misclassification probability and the entropy
of the level set posterior:

αmisclass(x∗) = min(π(x∗|Dn), 1− π(x∗|Dn)),

αentropy(x∗) = Hb(π(x∗|Dn)),

where Hb(p) = −p log2 p − (1 − p) log2(1 − p) is the
binary entropy function. They found that the strad-
dle acquisition performed best, though noted that all
of these acquisition functions are “subject to oversam-
pling edge positions.” Gotovos et al. (2013) provided
theoretical grounding for LSE and proved sample com-
plexity bounds for extensions of the straddle. Ranjan
et al. (2008) adapted the Expected Improvement cri-
terion from BO (Jones et al., 1998) by defining an im-
provement function with respect to the threshold.

2.3 Look-ahead Acquisition

Subsequent development of acquisition functions for
LSE have focused on look-ahead approaches, which
consider not just the posterior at the candidate point
x∗, but how the posterior at a different point xq will
change as a result of an observation at x∗. We de-
note the look-ahead dataset as Dn+1(x∗, y∗) = Dn ∪
{(x∗, y∗)}, and note that Dn+1(x∗, y∗) is a random
variable via y∗. Much of the past work in look-ahead
acquisition has relied on the useful GP property that,
with Gaussian observations, the look-ahead variance
σ2(x|Dn+1(x∗, y∗)) does not depend on y∗, and can be
computed analytically.

Picheny et al. (2010) introduced the first look-ahead
acquisition function for LSE , targeted integrated mean
squared error (tIMSE), which minimizes look-ahead

posterior variance, weighted according to distance to
the threshold by some function wγ(x):

αtIMSE(x∗) = −
∫
B
σ2(x|Dn+1(x∗, y∗))wγ(x)dx

≈ −C
∑
xq∈G

σ2(xq|Dn+1(x∗, y∗))wγ(xq). (2)

This is an example of a global look-ahead acquisition
function that evaluates the impact of observing x∗
on the entire design space, using quasi-Monte Carlo
(qMC) integration (Caflisch, 1998). Here G is a quasi-

random sequence and C = Vol(B)
|G| is a constant that

can be ignored for the purpose of acquisition optimiza-
tion. The tIMSE formula in (2) is analytic due to the
analytic form of σ2(xq|Dn+1(x∗, y∗)), and so can be
cheaply evaluated in batch across a large set of global
reference points G. Bogunovic et al. (2016) used a
similar approach by minimizing the total look-ahead
posterior variance of the region that was not yet de-
cidedly classified as above or below threshold. Zanette
et al. (2018) utilized the analytic look-ahead posterior
to construct an expected improvement-based criterion.

An important class of methods are of the form

α(x∗) = Q(Dn)− Ey∗ [Q(Dn+1(x∗, y∗))] (3)

where Q(Dn) is a cost function applied to the sur-
rogate model posterior, and Q(Dn+1(x∗, y∗)) is that
same cost function applied to the look-ahead poste-
rior. Stepwise uncertainty reduction (SUR, Bect et al.,
2012; Chevalier et al., 2014) uses expected classifica-
tion error as the cost function, and thus maximizes the
expected look-ahead misclassification error reduction:

QGlobalSUR(Dn) =
∑
xq∈G

min(π(xq|Dn), 1− π(xq|Dn))

(4)

=
∑
xq∈G

Φ

(
−|µ(xq|Dn)− γ|

σ(xq|Dn)

)
, (5)

where the global impact is again being estimated
via a sum over a quasi-random sequence, as in (2).
QGlobalSUR(Dn+1(x∗, y∗)) is computed in the same
manner using the look-ahead posterior, so when (5) is
plugged into (3), the acquisition function is analytic.

Acquisitions of the form (3) can be formed either as a
global look-ahead, as with GlobalSUR, or as a local-
ized version that considers the look-ahead impact of
observing x∗ just on x∗:

QLocalSUR(Dn) = min(π(x∗|Dn), 1− π(x∗|Dn)). (6)

Lyu et al. (2021) call this method “gradient SUR.” It
avoids the summation over the global reference set G
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required to compute GlobalSUR, but provides a less
direct measurement of the total value of observing x∗.

Azzimonti et al. (2021) applied the SUR strategy to
the volume of misclassified points, via the Vorob’ev
expectation, with particular focus on active learning of
conservative level set estimates that seek to control the
type I error rate. In Section 4.1 we also use measures of
level set volume to construct an acquisition function,
though with a different approach that does not control
error rates and is not a SUR strategy.

Global information gain has long been a target for level
set acquisition. Bryan et al. (2005) wrote of their ac-
quisition functions, “we believe the good performance
of the evaluation metrics proposed below stems from
their being heuristic proxies for global information
gain.” Nguyen et al. (2021) constructed a localized mu-
tual information (MI) acquisition function by taking

QLocalMI(Dn) = Hb(π(x∗|Dn)) (7)

in the acquisition form (3), and called this strategy
binary entropy search (BES). As with SUR, compu-
tation of the look-ahead term QLocalMI(Dn+1(x∗, y∗))
has hitherto relied on the analytic look-ahead posteri-
ors that exist only for Gaussian observations. A cri-
terion for global information gain naturally parallels
GlobalSUR:

QGlobalMI(Dn) =
∑
xq∈G

Hb(π(xq|Dn)). (8)

The only work that has applied LSE acquisition
functions to GP classification surrogates is that of
Lyu et al. (2021), who studied LSE under high
levels of heavy-tailed noise. For the Bernoulli
likelihood, they derived an approximation for the
intractable look-ahead variance σ2(x|Dn+1(x∗, y∗))
based on plug-in estimates, and further approximated
µ(x|Dn+1(x∗, y∗)) ≈ µ(x|Dn), which enabled approxi-
mate SUR computation via (5).

3 BERNOULLI LOOK-AHEAD
POSTERIOR UPDATES

With Bernoulli observations, the latent look-ahead
posterior p(f |Dn+1(x∗, y∗)) is not analytic. However,
other quantities important for computing acquisition
functions are. The moments of the posterior p(z|Dn)
are analytic:

Proposition 1. Let a∗ = µ(x∗|Dn)√
1+σ2(x∗|Dn)

and c∗ =

1√
1+2σ2(x∗|Dn)

. Then,

E[z(x∗)|Dn] = Φ(a∗),

Var[z(x∗)|Dn] = Φ(a∗)− Φ(a∗)
2 − 2T (a∗, c∗) .

Here T (·, ·) is Owen’s T function, which can be com-
puted efficiently (Patefield and Tandy, 2000) and is
available in SciPy (Jones et al., 2001). The formula
for the mean is well-known and used in several appli-
cations of classification GPs (e.g. Houlsby et al., 2011);
the variance is derived in the supplement. This result
enables computing the straddle acquisition on the pos-
terior of z instead of that of f , which accounts for the
variance squashing of the Φ(·) transformation. How-
ever, our primary interest lies in look-ahead posteriors,
and p(z|Dn+1(x∗, y∗)) is intractable.

Our main result is that despite the look-ahead posteri-
ors for f and z being intractable, the look-ahead level
set posterior π(xq|Dn+1(x∗, y∗)) is analytic, in terms
of Φ(·) and BvN(·, ·; ρ), which denotes the standard
(zero-mean, unit-variance) bivariate normal distribu-
tion function with correlation ρ.

Theorem 1. Let bq =
γ−µ(xq|Dn)
σ(xq|Dn) , σ(xq,x∗|Dn) =

Cov[f(xq), f(x∗)|Dn], and

Zq∗ = BvN

(
a∗, bq;

−σ(xq,x∗|Dn)

σ(xq|Dn)
√

1 + σ2(x∗|Dn)

)
.

The level set posterior at xq given observation y∗ = 1
at x∗ is

π(xq|Dn+1(x∗, y∗ = 1)) =
Zq∗

Φ (a∗)
.

Given observation y∗ = 0, the level set posterior at xq
is

π(xq|Dn+1(x∗, y∗ = 0)) =
Φ (bq)− Zq∗

Φ (−a∗)
.

If xq = x∗, these results hold with σ(xq,x∗|Dn) =
σ2(xq|Dn) = σ2(x∗|Dn) and µ(xq|Dn) = µ(x∗|Dn).

The proof is in the supplement. There are several
routines for efficiently computing BvN(·, ·; ρ)—we use
the method of Genz (2004), which produces a differen-
tiable estimate that enables us to compute gradients
of the look-ahead level set posterior for acquisition op-
timization.

This result shows that the look-ahead level set pos-
terior at xq given an observation at x∗ can be com-
puted analytically using only the GP posterior at those
points. Fig. 1 shows an example of the global look-
ahead posterior for the 2-d discrimination test problem
from Section 5. The posteriors are conditional on the
binary outcome y∗, whose distribution is:

Proposition 2. P(y∗ = 1|Dn,x∗) = Φ(a∗).

We now show how these results can be used to con-
struct Bernoulli LSE versions of look-ahead acquisition
functions from Section 2.3, as well as novel acquisition
functions.
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Figure 1: Level set posteriors. Left : The level set posterior for a model fit to 20 observations (gray markers)
of the 2-d discrimination test function. Middle, Right : Look-ahead posteriors given an observation at x∗ (red
marker) of y∗ = 1 (Middle) and y∗ = 0 (Right). The look-ahead posteriors are computed analytically using the
formulae of Theorem 1, and form the basis of acquisition function computation.
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Figure 2: Acquisition functions. Acquisition surfaces for the same posterior in Fig. 1. The red star indicates
the point that maximizes the acquisition function. Localized look-ahead methods (LocalSUR, LocalMI) show the
same edge-seeking as the non-look-ahead Straddle. Global look-ahead methods (GlobalSUR, GlobalMI, EAVC)
select interior points near the threshold.

4 BERNOULLI LOOK-AHEAD
ACQUISITION FUNCTIONS

The formulae in Theorem 1 enable efficient computa-
tion of any look-ahead acquisition function that de-
pends on the model only via the level set posterior.
In particular, acquisition functions of the form (3)
can be computed for any Q(·) that is a function of
π(·), which includes both SUR and MI. The key quan-
tity is the expectation over the look-ahead posteri-
ors, Ey∗ [Q(Dn+1(x∗, y∗))], which can be computed via
Theorem 1 and Proposition 2. For instance,

Ey∗ [QLocalMI(Dn+1(x∗, y∗))] =

Φ(a∗)Hb

(
Zq∗

Φ (a∗)

)
+ Φ(−a∗)Hb

(
Φ (bq)− Zq∗

Φ (−a∗)

)
.

Expressions for GlobalSUR, LocalSUR, LocalMI, and
GlobalMI in the Bernoulli case are obtained by plug-
ging the posterior formulae into (4), (6), (7), and
(8), respectively. These expressions are fully analytic;
complete expressions for each acquisition function are
given in the supplement.

4.1 A Novel Volume Acquisition Function

Besides SUR and MI, other quantities of interest for
acquisition functions can be computed with the formu-
lae in Theorem 1. In BO, the successful max-value en-
tropy search acquisition function (Wang and Jegelka,
2017) finds the point that is most informative about
the best function value as opposed to being informa-
tive about the best point. The same concept can be
applied to LSE by seeking points that are informative
about the volume of the sublevel set Lγ(f). The qMC
expected sublevel-set volume is

Ṽ (Dn) = C
∑
xq∈G

π(xq|Dn). (9)

There are many approaches one might take to as-
sess how informative a candidate point x∗ is about
Vol(Lγ(f)), and here we consider the expected abso-
lute volume change (EAVC) produced by observing x∗,
which is a direct measure of how sensitive Vol(Lγ(f))
is to the outcome at x∗:

αEAVC(x∗) = Ey∗
[∣∣∣Ṽ (Dn)− Ṽ (Dn+1(x∗, y∗))

∣∣∣] .
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The look-ahead volumes under y∗ = 0 and y∗ = 1 can
be computed by plugging the look-ahead posteriors
into (9), producing an analytic acquisition function;
the complete expression is given in the supplement.
Along with SUR and MI, EAVC shows the breadth of
the acquisition functions that can be computed using
Theorem 1. The acquisition functions cover a broad
set of target criteria (misclassification error, entropy,
and volume), and also have variety in their functional
form: SUR and MI are both of the form (3), while
EAVC is not, showing that acquisition functions do
not have to be of the form (3) in order to be computed
via Theorem 1, or to be useful.

Fig. 2 shows each acquisition function when computed
on the posterior of Fig. 1. The acquisition func-
tions are broadly similar, with elevated values along
the threshold and in the high-uncertainty region of the
top-right corner. However, they have substantially dif-
ferent maxima, and thus propose different candidates
for the next iteration. Straddle selects the point on
the threshold at the edge of the design space, consis-
tent with the observation of Bryan et al. (2005) that
it oversamples the edges. The localized look-ahead
methods (LocalMI, LocalSUR) also select points on
the edges. Edge points have high uncertainty in GP
posteriors, and edge samples are highly informative
about the edge point itself, the criterion for a local-
ized look-ahead method. However, edge points are
less informative about the global surface as a whole,
and so we see the global look-ahead methods (EAVC,
GlobalMI, GlobalSUR) select interior points along the
highest-uncertainty portion of the threshold.

5 BENCHMARK EXPERIMENTS

We use three benchmark problems to evaluate and
understand the performance of look-ahead acquisition
functions for Bernoulli LSE. The first is a binarized
version of the classic Hartmann 6-d function, using
the same modified version of Lyu et al. (2021), plus an
affine transformation and an inverse probit transform
to produce Bernoulli responses; see the supplement for
the full functional form.

Inspired by our primary application area of psy-
chophysics, the other benchmark problems are a low-
dimensional (d = 2) and a high-dimensional (d = 8)
synthetic function modeled after psychophysical dis-
crimination tasks. The 2-d discrimination function is
from Owen et al. (2021), and is linear in an intensity
dimension (x2) with slope given by a polynomial func-
tion of the other dimension (x1). It is modeled after
psychometric functions in domains such as haptics and
multisensory perception. The 8-d discrimination func-
tion is similarly linear in an intensity dimension, with

a slope given by a sum of shifted and scaled sinusoids,
whose parameters form the other seven dimensions.
Functional forms of both are given in the supplement.

Both discrimination test functions mimic psy-
chophysics tasks in which the participant must iden-
tify which of two images/sounds/etc. has the stimulus,
and we record if the identification was correct (y = 1)
or incorrect (y = 0). When the stimulus intensity is
very low, the participant must guess and the probabil-
ity of a correct response is lower-bounded at p = 0.5,
and reaches this minimum along many of the edges
of the search space. The goal in the experiment is to
identify the detection threshold, where p = 0.75.

We applied eight active sampling strategies to each of
the three problems: the non-look-ahead straddle, ap-
plied to the posterior of the response probability z as
in Proposition 1; localized look-ahead methods Local-
SUR and LocalMI; global look-ahead methods Glob-
alSUR, GlobalMI, and EAVC; the approximate global
SUR method of Lyu et al. (2021), ApproxGlobalSUR;
and quasi-random search with a scrambled Sobol se-
quence (Owen, 1998). To ensure differences are due
solely to the acquisition function, all methods used the
same GP classification surrogate model and the same
gradient optimization of the acquisition function—see
the supplement for details1. We evaluated perfor-
mance using the Brier score (Brier, 1950), a strictly
proper scoring rule (Gneiting and Raftery, 2007) that
assesses the quality and calibration of the level set pos-
terior. See the supplement for extended results, includ-
ing additional evaluation metrics, additional baseline
methods such as BALD, and a sensitivity study.

Fig. 3 shows the results of the benchmark experi-
ments. In the 2-d discrimination problem, all LSE ac-
quisition functions performed significantly better than
the quasi-random baseline, and straddle and LocalMI
were among the best-performing methods. However,
on the high-dimensional problems, LocalMI performed
worse than quasi-random search by a substantial mar-
gin, as did straddle and LocalSUR on the 8-d prob-
lem. Global methods generally outperformed local-
ized methods and the quasi-random baseline, consis-
tent with the conclusion that global look-ahead is a key
ingredient needed to achieve consistently strong per-
formance. Among global methods, GlobalSUR showed
variable performance, consistent with the findings of
Lyu et al. (2021) who noted that SUR underperformed
with classification metamodels. Interestingly, Approx-
GlobalSUR generally outperformed GlobalSUR, which
seemed to underexplore on the 8-d discrimination

1Software for reproducing all of the methods and ex-
periments in this paper, including the real-world task,
is available at https://github.com/facebookresearch/
bernoulli_lse/

https://github.com/facebookresearch/bernoulli_lse/
https://github.com/facebookresearch/bernoulli_lse/
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Figure 3: Benchmark results. Brier score (lower is better) for the level set posterior as a function of active
sampling iteration, averaged over 280 repeated runs with error bars showing two standard errors. On the high-
dimensional problems, straddle and the localized look-ahead methods (LocalMI, LocalSUR) did not perform
better than the quasi-random baseline. Global methods GlobalMI and EAVC were best in high dimensions.

Figure 4: Example stimuli from the real psychophysical discrimination task. The human’s task is to
determine whether the white noise is on the right or the left of the image. In the three examples in this figure, the
correct response is “left.” Left : A stimulus whose discrimination probability is approximately 1. The stimulus
is both large and clearly visible against the background. Middle: A stimulus near the detection threshold of
p = 0.75. The contrast is very low and the stimulus is small. Right : A stimulus whose discrimination probability
is p = 0.5. The stimulus is essentially invisible against the background and the participant must resort to random
guessing. The real stimulus was additionally animated with some temporal frequency, and appeared at some
distance and angle from the center of the screen.

problem, suggesting that the posterior approximations
encouraged better exploration. GlobalMI and EAVC
both performed consistently well across problems.

Consistent with Fig. 2, we found that localized look-
ahead methods sampled significantly more near the
edges. On the Binarized Hartmann6 problem, 99% of
samples with LocalMI were near an edge, compared
to 80% with GlobalMI, 55% with EAVC, and 47%
with quasi-random search—see the supplement for a
full analysis of edge sampling behavior. On the low-
dimensional problem, the tendency to oversample the
edges was not as detrimental and the localized meth-
ods showed some advantage. However, they failed
badly in high dimensions where a higher degree of ex-
ploration was critical.

Importantly, the wall time to select the next point with

the global acquisition functions was generally under a
second in a standard multi-core setting, making these
methods suitable for real human experiments—see the
supplement for details on running times.

6 REAL PSYCHOPHYSICS TASK

The contrast sensitivity function (CSF) describes how
human visual sensitivity depends on stimulus proper-
ties such as spatial frequency and contrast. It is a cru-
cial model of human vision used for clinical assessment
(Owsley, 2003) and in applied settings to estimate vi-
sual appearance (Campbell and Robson, 1968; Man-
tiuk et al., 2011, 2021). Contrast sensitivity is affected
by a number of variables including eccentricity, size,
color, orientation, mean luminance, spatial frequency,
and temporal frequency (Robson, 1966; Wright and
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Johnston, 1983; Mullen, 1985; Foley et al., 2007; Kim
et al., 2020). Contrast sensitivity thresholds across
these dimensions have been previously measured piece-
meal with traditional psychophysical methods which
cannot scale beyond three or four dimensions, and
therefore a definitive CSF simultaneously accounting
for all of these variables does not exist.

To evaluate our methods on CSF threshold identifica-
tion, we ran a real CSF psychophysical discrimination
study on one of the authors using Psychopy (Peirce
et al., 2019). As is standard for CSF measurement,
stimuli were animated, Gaussian-windowed sinusoidal
gratings, conventionally known as Gabor patches (Ga-
bor, 1946), generated by convolving a sinusoid with a
Gaussian, which then had one half of the image scram-
bled, and were animated by advancing the phase of
the sinusoid. Fig. 4 shows three examples of stimuli
used in this experiment, where the task for the par-
ticipant was to identify whether the scrambled half
of the image was on the left or the right, and the y
response is whether they correctly identified the side
with the stimulus (y = 1) or not (y = 0). This was
thus a discrimination task like those in Section 5 where
the success rate was lower-bounded by p = 0.5 (guess-
ing). The goal was to identify the detection threshold
where p = 0.75. For each stimulus, we varied eight
properties that are known to affect the CSF: back-
ground luminance, stimulus contrast, stimulus orienta-
tion, temporal frequency of the animation, spatial fre-
quency, stimulus size, and location on the screen (angle
and distance from center). We collected responses to
1000 quasi-random stimuli which were used to fit a 6-d
surrogate model for benchmarking purposes—see the
supplement for details. We evaluated the same LSE
methods from Section 5, using the surrogate model
as ground truth from which Bernoulli responses were
simulated.

The results on the real-world CSF task are shown in
Fig. 5. As in the high-dimensional synthetic prob-
lems, straddle and the local methods (LocalMI and
LocalSUR) failed to outperform the non-active quasi-
random baseline. Global look-ahead methods contin-
ued to consistently perform best.

7 DISCUSSION

We have derived analytic formulae for the look-
ahead level-set posteriors with Bernoulli observations,
and used them to construct acquisition functions for
Bernoulli LSE. The formulae enabled applying state-
of-the-art approaches for Gaussian observations, SUR
and MI, to the Bernoulli setting, while also making it
easy to construct EAVC, a novel acquisition function.
Prior to this work, none of the look-ahead acquisition
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Figure 5: Real psychophysics task results. Perfor-
mance averaged across 280 repeated runs on the real
contrast sensitivity function task. As in the synthetic
benchmarks, non-global acquisition functions gener-
ally performed poorly, and the quasi-random baseline
was remarkably strong. Global look-ahead methods
performed best, and significantly better than the other
methods.

functions could be applied directly to Bernoulli LSE,
leaving the straddle and quasi-random search as the
primary available strategies. The results of Theorem
1 have thus greatly expanded the Bernoulli LSE ac-
quisition toolbox.

Our empirical results showed that the global look-
ahead acquisition functions developed in this paper
are essential for consistently achieving good estimates
of the level set. The localized look-ahead methods
LocalSUR and LocalMI have previously been stud-
ied with Gaussian observations, and shown to perform
well on those problems (Picheny et al., 2010; Nguyen
et al., 2021); we found that in high-dimensional prob-
lems with Bernoulli observations, they often performed
worse than quasi-random search. This highlights the
importance of evaluating acquisition functions partic-
ularly for this setting, as well as the key differences
between this setting and the more typical Gaussian
observations.

The setting we consider here is particularly challeng-
ing for active learning because Bernoulli observations
in essence have very high noise levels in the region of
interest. The standard deviation of a Bernoulli ran-
dom variable is

√
p(1− p), which at the target thresh-

old here of p = 0.75 is approximately 0.43; this nearly
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equals the total variation of the entire function (p from
0.5 to 1). Noise levels on par with the total function
variation make it difficult to learn a decent global sur-
rogate, and mean that many observations are required
to significantly reduce posterior variance. This exacer-
bates existing boundary over-exploration pathologies
of GPs in general (Siivola et al., 2018) and classifica-
tion GPs in particular (e.g. Song et al., 2017). Local-
ized look-ahead methods target areas of high variance
on the edges, and, unlike in the Gaussian case, get
stuck on the edges because in high dimensions the vari-
ance is never sufficiently reduced. Thus having a look-
ahead acquisition function is not by itself sufficient to
achieve good performance, we must look ahead to the
global impact of a point.

The strong performance of quasi-random search as
a baseline on the high-dimensional problems high-
lights an interesting difference between LSE and BO,
where quasi-random search does not typically provide
as strong a comparator. In BO, the target is often a
single point, the global optimum. In LSE, we are try-
ing to learn the boundary of the set Lγ(f), which in
general could be a (d− 1)-dimensional manifold. LSE
thus inherently requires more global evaluation than
BO. Quasi-random search performs maximally global
evaluation of the function, which is much less detri-
mental for LSE than for BO. Much of the literature on
LSE has not included a critical evaluation of random
or quasi-random search in benchmark experiments—
our results show that one should always be included.

Our real-world application focused on a visual psy-
chophysics task, but there is a broad set of other use-
ful applications for Bernoulli LSE. In robotics, one
may wish to find the set of controller parameters un-
der which a robot can successfully traverse an obstacle
with high probability (Tesch et al., 2013). This prob-
lem can be cast as Bernoulli LSE. Several other impor-
tant classes of problems have discrete outputs, such as
ordinal regression (Chu et al., 2005) and preference
learning (Chu and Ghahramani, 2005; Fürnkranz and
Hüllermeier, 2010). Finding all configurations that are
preferred to a current baseline via preference learning
can be cast as Bernoulli LSE. Finally, psychophysics
itself comprises many application areas: it is a foun-
dational component of AR/VR research, a rapidly de-
veloping area of computing, while also having several
important applications in disease diagnostics and man-
agement, as described in the Introduction.

While our results show strong estimation performance
with the acquisition functions developed here, there
remain several important areas of future work. First,
in acquisition function development: There is no single
best acquisition function for all problems, and LSE as
a field will benefit from expanding the acquisition tool-

box. Our results make it easy to compute any look-
ahead acquisition function that is a function of the
level set posterior, which can accelerate development
for Bernoulli LSE. Second, in the scope of the look-
ahead: Recent work in BO has targeted multi-step
acquisition functions, in which we look ahead multiple
steps of acquisition rather than just one as is done here
(González et al., 2016; Jiang et al., 2020a,b). Our re-
sults here could form a basis for non-myopic Bernoulli
LSE. Finally, in the model classes: Similar results may
exist for other types of classification GPs, such as the
logit model or skew GPs (Benavoli et al., 2020), which
have different advantages relative to the probit model
used here.
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Look-Ahead Acquisition Functions for Bernoulli Level Set
Estimation: Supplementary Materials

S1 PROOFS

Here we provide proofs of the results in Propositions 1 and 2, and Theorem 1. Owen (1980) undertook the
Herculean effort of producing a comprehensive collection of solutions to Gaussian integrals. We use several of
his results, given in the following Lemma. We use the following notation for special functions:

• Φ(·) is the standard Gaussian cumulative distribution function.

• φ(·) is the standard Gaussian density function.

• φ(·;µ, σ2) is the Gaussian density with mean µ and variance σ2, so that φ(x;µ, σ2) = 1
σφ
(
x−µ
σ

)
.

• T (·, ·) is Owen’s T function.

• BvN(·, ·; ρ) is the standard bivariate normal cumulative distribution function.

Lemma S1. ∫ +∞

−∞
Φ(a+ bx)φ(x)dx = Φ

(
a√

1 + b2

)
, (S1)∫ +∞

−∞
Φ(a+ bx)2φ(x)dx = Φ

(
a√

1 + b2

)
− 2T

(
a√

1 + b2
,

1√
1 + 2b2

)
, (S2)∫ +∞

−∞
Φ(a+ bx)Φ(h+ kx)φ(x)dx = BvN

(
a√

1 + b2
,

h√
1 + k2

;
bk√

1 + b2
√

1 + k2

)
. (S3)

These results are 10,010.8, 20,010.4, and 20,010.3, respectively, from Owen (1980).

Throughout the proofs in this section, for notational convenience and clarity we will use the shorthand f∗ = f(x∗)
to represent the latent function value at x∗, and will let µ∗ = µ(x∗|Dn) and σ2

∗ = σ2(x∗|Dn) indicate the posterior
mean and variance of f∗. Thus, f∗|Dn ∼ N (µ∗, σ2

∗). Table S1 provides a complete list of the abbreviated notation
used throughout this supplement.

Short-hand notation Definition
f∗, fq f(x∗), f(xq)
µ∗, µq µ(x∗|Dn), µ(xq|Dn)
σ∗, σq σ(x∗|Dn), σ(xq|Dn)
σq∗ Cov[f(xq), f(x∗)|Dn]
a∗

µ∗√
1+σ2

∗

c∗ 1√
1+2σ2

∗

b∗, bq
γ−µ∗
σ∗

,
γ−µq
σq

Zq∗ BvN

(
a∗, bq;

−σq∗
σq
√

1+σ2
∗

)
Z∗∗ BvN

(
a∗, b∗;

−σ∗√
1+σ2

∗

)
Table S1: Abbreviated notation used throughout the proofs and other results in this supplement.
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Proof of Proposition 1.

E[z(x∗)|Dn] = E[Φ(f∗)|Dn]

=

∫ +∞

−∞
Φ(f∗)φ(f∗;µ∗, σ

2
∗)df∗ (S4)

=
1

σ∗

∫ +∞

−∞
Φ(f∗)φ

(
f∗ − µ∗
σ∗

)
df∗

=

∫ +∞

−∞
Φ(µ∗ + σ∗f̃∗)φ(f̃∗)df̃∗ (S5)

= Φ

(
µ∗√

1 + σ2∗

)
, (S6)

where (S5) used the change of variables f̃∗ = f∗−µ∗
σ∗

, and (S6) used (S1). For the variance,

Var[z(x∗)|Dn] = E[z(x∗)
2|Dn]− (E[z(x∗)|Dn])2,

where, similarly as before,

E[z(x∗)
2|Dn] =

∫ +∞

−∞
Φ(f∗)

2p(f∗|Dn)df∗

=

∫ +∞

−∞
Φ(µ∗ + σ∗f̃∗)

2φ(f̃∗)df̃∗

= Φ

(
µ∗√

1 + σ2∗

)
− 2T

(
µ∗√

1 + σ2∗
,

1√
1 + 2σ2∗

)
using (S2). Letting a∗ = µ∗√

1+σ2
∗

and c∗ = 1√
1+2σ2

∗
as in Proposition 1, we have that

Var[z(x∗)|Dn] = Φ(a∗)− Φ(a∗)
2 − 2T (a∗, c∗).

Proof of Proposition 2.

P(y∗ = 1|Dn,x∗) =

∫ +∞

−∞
P(y∗ = 1|f∗)p(f∗|Dn)df∗ =

∫ +∞

−∞
Φ(f∗)φ(f∗;µ∗, σ

2
∗)df∗,

which we have already seen in (S4) equals Φ(a∗).

For the proof of Theorem 1, we will introduce additional shorthand notation fq = f(xq), and as before will let
fq|Dn ∼ N (µq, σ

2
q ). We let σq∗ denote the covariance between f∗ and fq. We use the following result on the

conditional distribution between f∗ and fq.

Lemma S2. Let (
f1

f2

)
∼ N

((
µ1

µ2

)
,

(
σ2

1 σ12

σ21 σ2
2

))
.

Then, the conditional density for f1 given f2 ≤ γ is

p(f1|f2 ≤ γ) =
φ
(
f1−µ1

σ1

)
σ1Φ

(
γ−µ2

σ2

)Φ

γ − µ2 − σ12

σ2
1

(f1 − µ1)√
σ2

2 −
σ2
12

σ2
1


Proof. By Bayes’ theorem,

p(f1|f2 ≤ γ) =
p(f2 ≤ γ|f1)p(f1)

p(f2 ≤ γ)
=
p(f2 ≤ γ|f1)φ

(
f1−µ1

σ1

)
σ1Φ

(
γ−µ2

σ2

) . (S7)
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It is well-known that
p(f2|f1 = x) = N (µ2|1, σ2|1)

where µ2|1 = µ2 + σ12

σ2
1

(x− µ1) and σ2
2|1 = σ2

2 −
σ2
12

σ2
1

. Thus,

p(f2 ≤ γ|f1) = Φ

(
γ − µ2|1
σ2|1

)
= Φ

γ − µ2 − σ12

σ2
1

(f1 − µ1)√
σ2

2 −
σ2
12

σ2
1

 ,

which when plugged into (S7) produces the result.

Proof of Theorem 1. By Bayes’ theorem, we have that

π(xq|Dn+1(x∗, y∗ = 1)) = P(fq ≤ γ|Dn,x∗, y∗ = 1)

=
P(y∗ = 1|Dn,x∗, fq ≤ γ)P(fq ≤ γ|Dn)

P(y∗ = 1|Dn,x∗)
.

From Proposition 2 we know the denominator equals Φ(a∗) and can easily compute P(fq ≤ γ|Dn) = Φ
(
γ−µq
σq

)
=

Φ(bq), so the only term remaining is P(y∗ = 1|Dn,x∗, fq ≤ γ).

P(y∗ = 1|Dn,x∗, fq ≤ γ) =

∫ +∞

−∞
P(y∗ = 1|f∗)p(f∗|Dn, fq ≤ γ)df∗

=

∫ +∞

−∞
Φ(f∗)p(f∗|Dn, fq ≤ γ)df∗

=
1

σ∗Φ
(
γ−µq
σq

) ∫ +∞

−∞
Φ(f∗)Φ

γ − µq − σq∗
σ2
∗

(f∗ − µ∗)√
σ2
q −

σ2
q∗
σ2
∗

φ

(
f∗ − µ∗
σ∗

)
df∗ (S8)

=
1

Φ
(
γ−µq
σq

) ∫ +∞

−∞
Φ(µ∗ + σ∗f̃∗)Φ

γ − µq − σq∗
σ∗
f̃∗√

σ2
q −

σ2
q∗
σ2
∗

φ(f̃∗)df̃∗

=
1

Φ
(
γ−µq
σq

)BvN

 µ∗√
1 + σ2∗

,
γ − µq√

σ2
q −

σ2
q∗
σ2
∗

√
1 +

σ2
q∗

σ2
∗σ

2
q−σ2

q∗

;

−σ∗σq∗√
σ2
∗σ

2
q−σ2

q∗√
1 + σ2∗

√
1 +

σ2
q∗

σ2
∗σ

2
q−σ2

q∗


(S9)

=
1

Φ
(
γ−µq
σq

)BvN

(
µ∗√

1 + σ2∗
,
γ − µq
σq

;
−σq∗

σq
√

1 + σ2∗

)
.

Here (S8) used Lemma S2, and (S9) used (S3) with a = µ∗, b = σ∗, h =
γ−µq√
σ2
q−

σ2q∗
σ2∗

, and k =
−σq∗√
σ2
∗σ

2
q−σ2

q∗
.

Combining this term with the other terms, and using the convenient definitions of a∗ and bq, we have that

π(xq|Dn+1(x∗, y∗ = 1)) =
1

Φ(a∗)
BvN

(
a∗, bq;

−σq∗
σq
√

1 + σ2∗

)
.

For the y∗ = 0, case,

π(xq|Dn+1(x∗, y∗ = 0)) =
P(y∗ = 0|Dn,x∗, fq ≤ γ)P(fq ≤ γ|Dn)

P(y∗ = 0|Dn,x∗)

The terms are easily computed from what we have already found: P(y∗ = 0|Dn,x∗) = 1 − Φ(a∗), and P(y∗ =

0|Dn,x∗, fq ≤ γ) = 1− 1
Φ(bq)

BvN

(
a∗, bq;

−σq∗
σq
√

1+σ2
∗

)
. Plugging these in yields the result in the Theorem.
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S2 ACQUISITION EXPRESSIONS

Here we provide the full expression used to compute each look-ahead acquisition function, using the same posterior
short-hand notation as in the previous section.

Global SUR

αGlobalSUR(x∗) =∑
xq∈G

(min(Φ(bq), 1− Φ(bq))−min (Zq∗,Φ(a∗)− Zq∗)−min (Φ(bq)− Zq∗,Φ(−a∗)− Φ(bq)− Zq∗)) .

Localized SUR

αLocalSUR(x∗) = min(Φ(b∗), 1− Φ(b∗))−min (Z∗∗,Φ(a∗)− Z∗∗)−min (Φ(b∗)− Z∗∗,Φ(−a∗)− Φ(b∗)− Z∗∗) .

Localized MI

αLocalMI(x∗) = Hb(Φ(b∗))− Φ(a∗)Hb

(
Z∗∗

Φ (a∗)

)
+ Φ(−a∗)Hb

(
Φ (b∗)− Z∗∗

Φ (−a∗)

)
.

Global MI

αGlobalMI(x∗) =
∑
xq∈G

(
Hb(Φ(bq))− Φ(a∗)Hb

(
Zq∗

Φ (a∗)

)
+ Φ(−a∗)Hb

(
Φ (bq)− Zq∗

Φ (−a∗)

))
.

EAVC

αEAVC(x∗) = Φ(a∗)

∣∣∣∣∣∣
∑
xq∈G

(
Φ(bq)−

Zq∗
Φ (a∗)

)∣∣∣∣∣∣+ Φ(−a∗)

∣∣∣∣∣∣
∑
xq∈G

(
Φ(bq)−

Φ (bq)− Zq∗
Φ (−a∗)

)∣∣∣∣∣∣ .
S3 ADDITIONAL BENCHMARK EXPERIMENT RESULTS

S3.1 Synthetic Functions

The synthetic functions were designed to explore a variety of input and output patterns that are present in real
LSE problems, and in psychophysics problems in particular. A common experimental paradigm in psychophysics
is the two-alternative forced choice (2AFC) method in which the participant is given two options and forced to
select one. The CSF study in Section 6, and illustrated in Fig. 4, is an example of a 2AFC task. For 2AFC
tasks, the minimum probability of being correct is 0.5, because participants are forced to make a choice and in
the absence of a detectable stimulus will guess randomly. Thus the probability output space is [0.5, 1], and the
goal in these experiments is typically to find the θ = 0.75 threshold, as is done in our experiment. However,
there are other experimental designs, and other Bernoulli LSE tasks, in which the probability of success will vary
from 0 to 1, and so to show that the methods are not limited to the 2AFC setting, we designed the Binarized
Hartmann6 function to have probabilities from 0 to 1, and there set the target threshold to θ = 0.5. We now
give the functional form for each synthetic function.

S3.1.1 Binarized Hartmann6 Function

The Binarized Hartmann6 function was a binarization of the modified Hartmann 6-d function used by Lyu et al.
(2021). Their modified Hartmann 6-d function is:

h(x) = 1−
4∑
i=1

αi exp

− 6∑
j=1

Aij(xj − Pij)2
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with α = [2.0, 2.2, 2.8, 3.0],

A =


8 3 10 3.5 1.7 6

0.5 8 10 1.0 6 9
3 3.5 1.7 8 10 6
10 6 0.5 8 1.0 9

 , and P = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 .

We used f(x) = 3h(x)−2 as the ground-truth latent function, so that Bernoulli samples were simulated according
to Φ(f(x)). The input space for this problem is as in the classic Hartmann6 problem, x ∈ [0, 1]6. The output
probabilities, Φ(f(x)), span [0, 1], so for this problem the target threshold was set as θ = 0.5.

S3.1.2 Psychophysical Discrimination, 2-d

The latent function for this problem is computed as

f(x1, x2) =
1 + x2

0.05 + 0.4x2
1(0.2x1 − 1)2

.

The input domain is x1, x2 ∈ [−1, 1], and the output probabilities span [0.5, 1], with the target threshold θ = 0.75.

S3.1.3 Psychophysical Discrimination, 8-d

For x = [x1, . . . , x8], we define

c(x) =

(
x3

2

(
1− cos

(
3

5
πx2x8 + x7

))
+ x4

)(
2− x6

(
1 + sin

(
3

10
πx2x8 + x7

)))
− 1.

Then, the Bernoulli probability for the 8-d Psychophysical Discrimination function is computed as

z(x) =
1

2
+

1

2
Φ

(
x1 − c(x)

x5(2 + c(x))

)
.

The input space is x ∈ [−1, 1]8 and, as in the 2-d discrimination function, the output probabilities span [0.5, 1],
so the target threshold was set to 0.75.

S3.2 Surrogate Model and Acquisition Optimization

All methods and all experiments used the same surrogate model: A typical variational classification GP (Hensman
et al., 2015) with 100 inducing points and an RBF kernel. Kernel hyperpriors were taken as the defaults from the
Botorch package (Balandat et al., 2020). Inducing points were selected by applying k-means to the observations.
In each iteration of active learning, the model was updated with the new observation by refitting the variational
distribution and kernel hyperparameters. In most iterations, the refitting was warm-started by beginning the
fitting at the previous values. To avoid getting stuck in a local optimum, and as is common in Bayesian
optimization, every 10th iteration the re-fitting was done from scratch with a refreshed set of inducing points.

To avoid conflating acquisition quality with the ability to optimize the acquisition function, all acquisition
functions were optimized in the same manner, using the gradient-based acquisition optimization utilities from
the Botorch package. For the global acquisition functions, the reference set G was taken as a quasi-random
(scrambled Sobol) set of 500 points, which was changed for each iteration. Straddle in the probability space
was evaluated as a Monte Carlo acquisition function (Balandat et al., 2020) due to the lack of a differentiable
implementation of Owen’s T function.

Each benchmark run initialized with an initial design of 10 quasi-random points, after which the surrogate model
was fit and all subsequent iterations used active sampling with the specified acquisition function. Throughout
the active sampling, performance metrics were computed using a quasi-random test-set of 1000 points, which
was sampled independently from anything done for the modeling or acquisition optimization.
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Figure S1: Benchmark results: alternative metric. Expected classification error (lower is better) of the
GP surrogate model as a function of active sampling iteration, for the same benchmark results as in Fig. 3. As
before, shown is the mean and two standard errors over 200 replications. On the high-dimensional problems,
the localized look-ahead methods (LocalMI, LocalSUR) performed significantly worse than the quasi-random
baseline. Global methods GlobalMI and EAVC were consistently the best.

S3.3 Additional Evaluation Metrics

The results in the main text showed performance evaluated using Brier score, a strictly proper scoring rule.
Proper scoring rules are an appropriate evaluation metric for this problem space because they assess not only
the quality of the model point prediction, but also the calibration of posterior uncertainty. An alternative metric
for evaluating classifiers in particular is the expected classification error, defined as p(1 − y) + (1 − p)y for a
classifier that provides p as the probability that y = 1 (i.e., that a point is below threshold), and y the actual
outcome (i.e., if the point was actually below threshold). Fig. S1 show the results of the benchmark experiments
when evaluated using expected classification error. The conclusions of the experiments do not change under this
alternative evaluation metric.

Fig. S2 shows the amount of wall time required to optimize the acquisition function for a model fit to 250
observations. Global acquisition functions required more wall-time to compute due to the global reference set G,
however with a per-iteration time between half a second and a second for the complete optimization when given
multiple threads, they were well within the speed required for experiments with human participants.

S3.4 Comparison to BALD and BALV

The main text discusses how the use of global active sampling methods such as BALD (Houlsby et al., 2011)
or Bayesian active learning by variance (BALV) (Song et al., 2015) can be inefficient for level-set estimation
because they may focus sampling effort on reducing variance in areas that are not close to the threshold. Fig. S3
shows empirically that this is the case, by evaluating BALD and BALV on the same benchmark problems used in
the main text. For LSE in high dimensions, BALD and BALV performed significantly worse than quasi-random
search, which further emphasizes the importance of developing acquisition functions specifically for LSE.

S3.5 An Analysis of Edge Sampling Behavior

We highlighted in the main text that a source of poor performance for localized look-ahead methods is their
tendency to oversample edge locations. This behavior is shown empirically in Fig. S4, using the benchmark
results from Section 5. For each benchmark run, we evaluated the proportion of active learning samples that
were within 5% of the search space range of an edge. For instance, on the Binarized Hartmann6 problem
where the domain is [0, 1]6, this was the proportion of points with an element less than 0.05 or greater than
0.95. In high dimensions, the localized look-ahead methods LocalMI and LocalSUR, along with the straddle
acquisition, sampled significantly more edge locations than the global look-ahead methods, or quasi-random
sampling. LocalMI was particularly focused on the edges, with 99% edge samples for Binarized Hartmann6.
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Figure S2: Benchmark results: wall time. Wall time required for acquisition optimization, in seconds, based
on a surrogate model fit to 250 observations drawn from a Sobol sequence. This evaluation was done on an AWS
EC2 c6l.18xlarge instance and is the average of 20 replications. Global acquisition methods required less than
a second per iteration to identify the next point for evaluation.
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Figure S3: Benchmark results: BALD. The same benchmark results as in Fig. 3, with the addition of
global active sampling methods BALD and BALV. Global active sampling methods can waste samples reducing
uncertainty in areas far from the threshold, and here they performed worse than quasi-random search for LSE.

EAVC had the least tendency to sample edges, and in high dimensions had an edge sampling rate comparable
to quasi-random search.

S3.6 Sensitivity Study

The look-ahead acquisition functions described and developed in this paper do not have any hyperparameters
that must be tuned. The straddle acquisition function has the β hyperparameter, and Lyu et al. (2021) have
done a sensitivity study of various strategies for selecting β and found that none consistently performed well.
Here we study sensitivity to two aspects of the experiments: the initial design, and the target threshold.

S3.6.1 Initial Design Sensitivity

Each benchmark run in the results of Section 5 was initialized with 10 quasi-random points. We saw in Fig.
S4 that localized look-ahead methods over-sampled edge locations, and hypothesized that a larger initial design
would provide a better initial global surrogate model, under which the high degree of exploitation in the localized
look-ahead methods could actually be beneficial.
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Figure S4: Benchmark results: edge sampling. For the benchmark results from Fig. 3, the proportion of
active learning iterations in which the evaluated point was within 5% of an edge of the search space. Like the
Straddle acquisition, localized look-ahead methods did significantly more edge sampling than global look-ahead
methods in high-dimensions.

Fig. S5 shows the final Brier score after 750 total iterations, for increasingly large initial designs. Note that
the total number of iterations was fixed at 750, so that the initial design of size 10 had 740 active sampling
iterations, while that of size 500 had only 250 active sampling iterations. The sensitivity study focuses on a
subset of methods (EAVC, LocalMI, and GlobalMI) that were most characteristic. As hypothesized, LocalMI
benefited significantly from having a larger initial design, and the improved global surrogate that a larger initial
design entails. Particularly on the Binarized Hartmann6 problem, LocalMI performed significantly worse than
quasi-random sampling with the small initial design of 10 points, but with an initial design of 250 (out of 750)
points, was able to do slightly better than quasirandom. While LocalMI did perform better with a larger initial
design on all three high-dimensional problems, it still did not match the performance of the global methods.
The global methods GlobalMI and EAVC, in contrast, performed best for the smallest initial designs, which
permitted the most active sampling. Generally, performance with the global methods was robust to the size of
the initial design up to 250 points (one third of the total budget).

S3.6.2 Target Threshold Sensitivity

Fig. S6 shows how the final Brier score varies with the target threshold for the problem. Changing the target
threshold significantly alters the LSE problem, by focusing the active sampling in a different part of the search
space. LSE performance thus changes when the target threshold is changed, however Fig. S6 shows that across
this large set of target level sets, the global look-ahead methods continued to consistently be the best.

S4 DETAILS OF REAL-WORLD EXPERIMENT

For the real-world CSF experiment, the stimulus feature space was 8-dimensional and we collected 1000 stimuli
generated from a Sobol sequence over that stimulus space. We used a GP classification surrogate model as
ground truth. The model was fit using an RBF kernel over six of the stimulus features to create a 6-d problem
space. Two stimulus properties, angular dimensions of eccentricity and orientation, were left unmodeled. This
effectively added noise to the surrogate function and increased the difficulty of level-set estimation. The model
was a variational classification GP with training locations used for inducing points. The GP mean was used for
the ground-truth latent f from which Bernoulli responses were simulated.
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Figure S5: Sensitivity study: initial design. The Brier score (mean and two standard errors) after 750 total
iterations (initial design plus active sampling) as a function of the size of the initial design. Global methods
performed better when given more iterations of active sampling (smaller initialization). LocalMI benefited from
a larger initialization, but never achieved the best performance of global methods on the Binarized Hartmann6
and Psychophysical Discrimination (8-d) problems.
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Figure S6: Sensitivity study: target threshold. The Brier score (mean and two standard errors) after
750 iterations when changing the target threshold. Changing the target threshold effectively changes the LSE
problem. While some target thresholds pose more challenging tasks than others, across this range of settings the
global look-ahead methods continued to generally perform best.
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