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Abstract

Units in online A/B tests are often involved
in social networks. Thus, their outcomes
may depend on the treatment of their
neighbors. Many of such networks exhibit
certain cluster structures allowing the use of
these features in the design to reduce the
bias from network interference. When the
average treatment effect (ATE) is considered
from the individual perspective, conditions
for the valid estimation restrict the use of
these features in the design. We show that
such restrictions can be alleviated if the ATE
from the cluster perspective is considered.
Using an illustrative example, we further show
that the weights employed by the Horvitz-
Thompson estimator may not appropriately
accommodate the network structure, and
purely relying on graph-cluster randomization
may generate very unbalanced cluster-treated
structures across the treatment arms. The
measures of such structures for one cluster
may depend on the treatment of other clusters
and pose a great challenge for the design of
A/B tests. To address these issues, we propose
a rerandomized-adaptive randomization to
balance the clusters and a cluster-adjusted
estimator to alleviate the problem of the
weights. Numerical studies are conducted
to demonstrate the usage of the proposed
procedure.

1 Introduction

A/B test, also called the randomized controlled study,
has been widely used by large IT firms to compare a new
version of a product to its older counterpart (Kohavi
et al., 2013). In both online and offline A/B tests, the
units may interact with each other. Thus, the outcome
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of one unit may depends on the treatment assignments
of the others. This phenomenon often occurs when
the units are involved in a network. For example, in
the applications of social networks, the treatment may
affect not only the behavior of the treated users, but
also the behavior of their friends. This kind of network
interference often complicates the evaluation of the
average treatment effect (ATE) (Gui et al., 2015).

Many networks involved in A/B tests have certain
cluster structures (Gui et al., 2015; Holtz et al.,
2020). Recent works showed that using graph-cluster
randomization, i.e., randomization at cluster level,
can reduce the bias for estimation (Ugander et al.,
2013; Eckles et al., 2016; Ugander and Yin, 2020).
To ensure the bounded variance of the estimator for
the ATE, Ugander et al. (2013) suggested that the
cluster sizes have to be bounded. However, the clusters
generated by community detection algorithms or those
observed in practice may not satisfy such conditions,
because the networks found in real applications often
have both large and small clusters (Leskovec et al.,
2008). Thus, the use of such clusters in graph-cluster
randomization may be limited. However, the clusers
found by the community detection algorithms may
have useful interpretations and approximate the ground
truth network structures (Clauset et al., 2004). If such
clusters can be appropriately used in the design of A/B
test, the evaluated effect may have practical meanings.

One possible reason for the restricted use of the cluster
structures in randomization is that the estimator
usually considers the ATE from the individual
perspective but not the cluster perspective. To
demonstrate this difference, consider comparing two
treatments. Suppose we observe a network G with
K clusters and N =

∑K
k=1 nk nodes, where nk is the

size of cluster k. Let Zk,i ∈ {0, 1} be the treatment
assignment of node (unit) i of cluster k for 1 ≤ k ≤ K.
Let Zk = (Zk,1, · · · , Zk,nk

)′ and Z = (Z ′1, · · · , Z ′K)′

represent the nk-treatment assignments of cluster k
and N -treatment assignment of the N units. Using
the Neyman-Rubin’s language (Rubin, 1974; Splawa-
Neyman et al., 1990), let Yk,i(z) represent the potential
outcome of node i of cluster k given Z = z. In many
scenarios of A/B tests, the goal of the experiment is to
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decide whether all of the units should be assigned with
the new treatment. The estimand of interest is thus the
“all versus nothing” ATE that compares Yk,i(1) with
Yk,i(0), where 1 and 0 are N -vectors of ones and zeros,
respectively. The ATE from the individual and cluster
perspectives are

τIN (1,0) = N−1
n∑
k=1

nk∑
i=1

{Yk,i(1)− Yk,i(0)} ,

τCL(1,0) = K−1
K∑
k=1

n−1k

nk∑
i=1

{Yk,i(1)− Yk,i(0)} ,

respectively. The difference between the two
estimands is that τCL(1,0) puts equal weights on
the clusters, whereas τIN (1,0) puts more weights on
the large cluster. In some applications, τCL(1,0)
can be meaningful because the cluster has certain
interpretations. For instance, if the cluster represents
the school, household, etc, then τCL(1,0) represents
the ATE on these higher levels. Moreover, when
the units within the same cluster are more frequently
interfered, τIN (1,0) may be more sensitive to the peer
effect evaluated from the large clusters than τCL(1,0).
Therefore, τCL(1,0) can also be useful in describing
the treatment effect.

The estimation of τIN (1,0) with graph-cluster
randomization is investigated by Ugander et al. (2013)
and Ugander and Yin (2020), but the estimation for
τCL(1,0) with graph-cluster randomization has been
scarcely considered. To compare the conditions under
which the ATEs can be appropriately estimated, we
construct the Horvitz-Thompson estimator (HTE) for
the two ATEs by using the neighborhood interference
assumption (Ugander et al., 2013; Eckles et al., 2016;
Forastiere et al., 2021). We show that the order of
the variance of the HTE for τCL(1,0) does not depend
on the cluster sizes. Therefore, the restriction on the
cluster sizes can be alleviated for estimating τCL(1,0).

Besides the choice of the estimands, other problems
related to the design and the estimation may also
restrict the use of graph-cluster randomization. A
network with four clusters is used to demonstrate these
issues. This example shows that balance needs to be
achieved across treatment arms of clusters with respect
to the cluster-treated structures. Unlike the problem
of covariate balance without network interference, the
value of such structures for one cluster may be affected
by the treatment assignments of its connected clusters.
Therefore, these measures are more difficult to balance
by their nature. Furthermore, the HTEs are often
quite sensitive to their weights (Aronow et al., 2017;
Ugander and Yin, 2020). For instance, the HTEs
can have large variance when several nodes have very
small probabilities to be included in the estimation. If
these problems are not considered in the A/B test, the

evaluated results may not be reliable.

In this article, we propose an adaptive A/B test
procedure consisting of a rerandomized-adaptive
randomization (ReAR) and a cluster-adjusted
estimator (CAE) to tackle these challenges. The ReAR
uses the pairwise-sequential randomization (Qin et al.,
2016) to balance the cluster-treated structures of a
cluster that solely depend on its own treatment, and
rerandomizes the pairwise-sequential randomization for
the rest of the stuctures. Therefore, even the structures
relying on the assignments of other clusters can be
appropriately balanced with ReAR. In addition, the
CAE adjusts the weights used by the HTEs according
to the cluster structure. Numerical studies are
conducted to demonstrate the significant improvement
made by using our proposed procedure for estimating
the ATEs from both of the two perspectives.

The outline of this paper is as follows. The framework
is presented in Section 2. The HTEs for the two ATEs
are studied in Section 3. The illustrating example is
presented in Section 4. We propose our new procedure
in Section 5. Numerical studies based on hypothetical
and real world networks are presented in Section 6. The
concluding remarks are given in Section 7. The proofs
of the theoretical results, the details of the simulation
settings, and one extra simulation study are presented
in the supplementary material.

2 Notations and the Framework

Let Ck denote the set of the nodes that belong to cluster
k, for 1 ≤ k ≤ K. In some of the applications, the
labels of the clusters are directly observed. For example,
current education institutions of the students may
correspond to clusters in the application comparing the
treatments used to improve the student performance.
In other scenarios, the information of the network,
e.g., the adjacency matrix, can be used to generate
the label of the clusters via community detection
algorithms (Clauset et al., 2004). As the labels of
the clusters can be obtained in either one of these two
cases, we assume that both the network and the clusters
are observed before the experiment.

In the design stage, graph-cluster randomization uses
the clusters information by treating the cluster as
the unit for randomization. Let Tk denote treatment
assignments for cluster k, so that if Tk = z then
Zk,i = z for 1 ≤ i ≤ nk and z ∈ {0, 1}. In
addition, denote T = (T1, · · · , TK)′ as the K-vector
treatment assignment of the clusters. Without loss of
generality, we assume the randomization used in graph-
cluster randomization satisfies that P(Tk = 1|G) = 1/2,
where G represents the information of G. Once the
randomization is performed, the treatment assignments
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of the N units are observed. Let Yk,i denote the
observed response of node i in cluster k for 1 ≤ i ≤ nk.
We assume that

Yk,i = Yk,i(Z) =
∑
z∈Z

I(Z = z)Yk,i(z),

where Z is the domain of Z. Therefore, only one
version of the potential outcome is observed.

The network interference poses great challenge for
estimating τIN (1,0) or τCL(1,0), as neither 1 nor 0
will be used in practice. As pointed in Basse and Airoldi
(2018), an unbiased estimator may even not exist under
the assumption of arbitrary network interference. The
following assumption is introduced to reduce the global
interference to a form of local interference.
Assumption 1 (Neighborhood Interference). Let δk,i
denote the set of the neighbors of node i in cluster k.
Define a partition of Z as (Zk,i, Z

′
δk,i

, Z ′−δk,i
)′, where

Zδk,i
represents the treatment assignments of the nodes

in δk,i, and Z−δk,i
represents the treatment assignments

of the nodes in δck,i. For any 1 ≤ k ≤ K, 1 ≤ i ≤ nk,
and ∀Z,Z?, if Zk,i = Z?k,i and Zδk,i

= Z?δk,i
, then

Yk,i(Z) = Yk,i(Z
?).

Assumption 1 restricts the dependence of Yk,i on Z
to the dependence on Zk,i and Zδk,i

. Note that other
forms of neighborhood interference conditions can also
be used (Eckles et al., 2016; Aronow et al., 2017), one
can adjust our results and the proposed method if other
form of neighborhood interference is considered.

3 Horvitz-Thompson Estimator and its
Properties

To construct the HTEs, we introduce the definition of
the effectively treated node as follows.
Definition 3.1. Under Assumption 1, let ξk,i(z) =
I(Zk,i = z, Zδk,i

= zδk,i
) and πk,i(z) = P(ξk,i(z) =

1|G), where zδk,i
is |δk,i|-vector of z for z ∈ {0, 1} and

|A| is the size of A. For z ∈ {0, 1}, the node i in cluster
k is effectively treated with Zk,i = z if ξk,i(z) = 1.

Under Assumption 1, if ξk,i(1) = 1, then Yk,i = Yk,i(1);
and if ξk,i(0) = 1, then Yk,i = Yk,i(0). Therefore, if
the nodes within the same cluster are assigned with
the same treatment, the number of effectively treated
nodes may increase and thus the bias generated from
the interference can be reduced (Eckles et al., 2016).
The effectively treated nodes can be used to construct
the HTEs for τIN (1,0) and τCL(1,0) as

τ̂HT,IN =

K∑
k=1

N−1nk

[
Ŷk(1)− Ŷk(0)

]
,

τ̂HT,CL =

K∑
k=1

K−1
[
Ŷk(1)− Ŷk(0)

]
,

where Ŷk(z) = n−1k
∑nk

i=1{[πk,i(z)]−1ξk,i(z)}Yk,i for
z ∈ {0, 1}. The weights πk,i(z) can be considered
as the general propensity scores resulting in unbiased
estimators for τIN (1,0) and τCL(1,0). These values
are important to validate the use of the HTEs. When
K is large, it is impractical to explicitly calculate
πk,i(z). Ugander et al. (2013) suggest to use a network
exposure model which characterizes the interference
for a given randomization scheme. However, this
model may not correctly specify the network structure.
As an alternative, one can approximate πk,i(z) by
using simulation to replicate T based on the given
randomization procedure. For more details of this
approach, we refer to Aronow et al. (2017).

To introduce the assumption ensuring that the
HTEs are well defined, denote π(k1,i1),(k2,i2)(z1, z2) =
E [ξk1,i1(z1)ξk2,i2(z2)|G] as the probability that two
nodes from the clusters k1, k2 are effectively treated,
for 1 ≤ k1, k2 ≤ K, 1 ≤ i1 ≤ nk1 , 1 ≤ i2 ≤ nk2 , and
z1, z2 ∈ {0, 1}, respectively.
Assumption 2. There exists M1 > 0, such that
|Yk,i(z)| < M1; for 1 ≤ k ≤ K and 1 ≤ i ≤ nk,
πk,i(z) > 0; and for 1 ≤ k1, k2 ≤ K, 1 ≤ i1 ≤ nk1 and
1 ≤ i2 ≤ nk2 , π(k1,i1),(k2,i2)(z1, z2) > 0.

Next, we develop the properties of the HTEs from the
finite-sample population perspective in the following
theorem. We denote Efs[·] = E[·|G,Y] and Vfs[·] =
V [·|G,Y] as the expectation and variance from the
finite-sample population perspective, where Y is the
sigma algebra generated by the N observed responses.

Theorem 3.1. Under Assumptions 1 and 2, both
τ̂HT,IN and τ̂HT,CL are unbiased, that is,

Efs [τ̂HT,IN ] = τIN (1,0), Efs[τ̂HT,CL] = τCL(1,0),

and the variances of τ̂HT,IN and τ̂HT,CL satisfy that

Vfs[τ̂HT,IN ] . O

(
N−2

[
K∑
k=1

n2k + κGMG

])
,

Vfs[τ̂HT,CL] . O
(
K−1 +K−2κGMG

)
,

where MG is maximum number of edges that connects
two different clusters in G, and κG is the number of
pairs of the connected clusters.

Theorem 3.1 complements Ugander et al. (2013) by
providing additional results for τ̂HT,CL. Similarly
shown in Ugander et al. (2013), the valid use of τ̂HT,IN
requires that the there can be only O(N) clusters
with size O(1), and the interference between the
clusters cannot be too strong, i.e., κGMG is bounded
in N (Ugander et al., 2013; Ugander and Yin, 2020).
Therefore, using τ̂HT,IN is desirable in situations where
the cluster sizes nk are bounded. However, nk cannot
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be assumed as bounded in many applications, and
thus, using graph-cluster randomization together with
τ̂HT,IN may be not appropriate in such situations.
Theorem 3.1 shows that the order of Vfs[τ̂HT,CL]
does not depend on the cluster size nk and the value
decreases as K increases. Therefore, using τ̂HT,CL can
be useful in situation where τ̂HT,IN does not work well.

4 Issues Related to Randomization
and Horvitz-Thompson Estimators

Although Theorem 3.1 describes the usage of graph-
cluster randomization together with the HTEs, several
issues related to the randomization and the estimation
could affect the results evaluating the ATEs. In this
section, an example of a simple network is used to
demonstrate these problems. Consider four clusters
generated from a modified stochastic block models
as shown in Figure 1, where the first two clusters
belong to one type and the last two clusters belong to
another. For simplicity, the labels of the clusters are
assumed known before the experiment. For the design
stage, we use the randomization scheme that two of
the clusters are randomly chosen to one treatment arm
with probability 1/6. The details of the simulation are
presented in Section B of the supplementary materials.

Figure 1: An example of network consisting of 2 types
of clusters. The probability that two nodes in different
clusters are connected is 180−1.
Table 1: Bias and standard deviation (SD) of the HTEs.

Bias SD
τ̂HT,IN -0.060 1.005
τ̂HT,CL -0.058 0.589

We first evaluate the bias and the standard deviation
(SD) of the HTEs in Table 1. Since a few nodes could
have πk,i(z) = 0, both of the two HTEs are slightly
biased. In addition, the SD of τ̂HT,CL is much smaller
than the SD of τ̂HT,IN . Note that the values of the two
ATEs are similar, i.e., τIN (1,0) = 1 and τCL(1,0) =

0.979. Thus, using τ̂HT,CL can be more efficient.

Other than the mean and SD, it is also desirable to
evaluate the performance of the HTEs for a specific
treatment assignment. We evaluate half of the six
treatment assignments in Table 2. Since the first two
clusters are of the same type, the most imbalanced
treatment assignment (0, 0, 1, 1)′ yields the values of the
estimators quite different from τIN (1,0) and τCL(1,0).
Although (0, 1, 1, 0)′ and (0, 1, 0, 1)′ are comparable
with respect to cluster’s type, the values of the HTEs
under these two assignments are still quite different.
This indicates that the choice of the assignment may
greatly affect the evaluation of the ATE.

Table 2: Evaluation of τ̂HT,IN and τ̂HT,CL and
the difference-in-means (DIM) of the cluster-treated
structures under three treatment assignments: Xk,1,1 is
size of Ink; Xk,1,2 is the average degree of the nodes in
Ink; Xk,2,1 is the number of effectively treated nodes in
Otk; and Xk,2,2 is the average degree of the effectively
treated nodes in Otk.

T (0, 0, 1, 1)′ (0, 1, 0, 1)′ (0, 1, 1, 0)′

τ̂HT,IN -0.730 0.711 0.919
τ̂HT,CL -0.001 0.622 0.929

DIM(Xk,1,1) -10.500 3.500 -0.500
DIM(Xk,1,2) -11.912 0.449 0.494
DIM(Xk,2,1) 0.500 -2.500 -1.500
DIM(Xk,2,2) -9.225 -0.583 1.667

To better understand how the different treatment
assignments affect the values of the HTEs, we introduce
the concepts of inner nodes and outer nodes as follows.

Definition 4.1. For 1 ≤ k ≤ K and 1 ≤ i ≤ nk,
if Yk,i(Z) depends only on the treatment assignment
of cluster k, i.e., Tk, then node i is an inner node of
cluster k; otherwise, node i is an outer node of cluster k.

By Definition 4.1, we further denote Ink and Otk as the
set of inner nodes and the set of outer nodes of cluster
k, respectively. Assumption 1 implies that node i is an
inner node of cluster k if δk,i ⊂ Ck, and it is an outer
node if δk,i ∩ Cck 6= ∅. This difference of nodes’ types
can affect their probability to be effectively treated.
Under graph-cluster randomization, the weight of the
HTEs satisfies that

πk,i(z) = P(ξk,i(z) = 1|G)

= P (Tk = z|G)P(ξk,i(z) = 1|Tk = z,G), (1)

where z ∈ {0, 1}. Therefore, Assumption 1 and the
employed randomization scheme imply that πk,i(z) =
1/2 if i ∈ Ink; πk,i(z) = 1/6 if i ∈ Otk and node i
connects two clusters; and πk,i(z) = 0 if i ∈ Otk and
node i connects more than two clusters. Therefore,
the weights for the outer nodes are much larger than
the weights for the inner nodes. As shown in Table 2,
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the treatment assignment (0, 1, 0, 1)′, resulting in more
effectively treated outer nodes in the control arm,
i.e., DIM(Xk,2,1) = −2.5, can impair the evaluation,
because the weights amplify the outcomes of these
nodes. Therefore, the comparability of the treatment
arms also requires the balance of this kind of cluster-
treated structures, such as the number of nodes in
Ink, the average degree of the nodes in Ink, and the
measures with respect to the effectively treated nodes
in Otk. These structures are important because they
may associate with the outcomes of different types of
nodes used in estimation. We calculate the difference-
in-means for four kinds of cluster-treated structures in
Table 2. This table suggests that the most balanced
treatment arms of the clusters with respect to the four
measures, e.g., (0, 1, 1, 0)′, has the best performance.

Besides the balance of cluster-treated structures, the
weights of HTEs can also be problematic. This example
also shows that the values of the weights are majorly
determined by randomization, but are less determined
by the cluster structures. In practice, the weight of an
outer node can be extremely large not reflecting the
network structure, i.e., when πk,i(z) is small due to
the cluster structures, there may be only a few outer
nodes in the network. Therefore, whether these nodes
are effectively treated or not can greatly affect the
evaluation of the ATE. This indicates the importance of
the weights used for the construction of the estimator.

In practice, the network structure can be more
complicated than the presented example. As such,
purely counting on randomization to take care of
cluster-treated structures can cause severe imbalanced
treatment arms of clusters. Moreover, the probability
of an outer node to be efficiently treated may not
reflect the cluster structures. Consequently, using
such weights as the HTEs may result in large variance.
Therefore, the design and the estimation need to be
adjusted according to network structure.

5 Adaptive A/B Test Procedure

In this section, we propose a rerandomized-adaptive
randomization (ReAR) to balance cluster-treated
structures and a cluster-adjusted estimator (CAE) to
assign more appropriate weights for estimation. As
such, the use of ReAR together with CAE can produce
better results evaluating the ATE.

5.1 Rerandomized-Adaptive Randomization

Similar to the idea of the exposures to neighborhood
treatments (Forastiere et al., 2021), when cluster is
used as the unit for randomization, balance should take
the nodes’ type and the nodes’ treatment exposures
into account. The cluster-treated structures considered

in Section 4 are the cluster level summary statistics
demonstrating these concerns. Note that various
measures of the cluster-treated structures can be used
in different applications. As demonstrated in Section 4,
using graph cluster randomization under Assumption 1
indicates that at least the measures associated with the
inner nodes and those associated with the effectively
treated outer nodes should be considered for balance.

According to the nature of these measures, the cluster-
treated structures can be categorized as the following
two types: (1) the measures that do not depend on
the treatment assignment of other clusters, and (2) the
measures whose values are determined only when the
treatment assignment of other clusters are determined.
For instance, the first type of measures may include
the number of nodes in Ink, and the second type of
measures may include the number of effectively treated
nodes in Otk. Let Xk,1 denote the m1-covariates of
cluster k whose values do not depend on the treatment
assignments of other clusters, i.e., the first type of
measures, and Xk,2 denote the m2-covariates of cluster
k whose values depend on the treatment assignments
of other clusters, i.e., the second type of measures.
Therefore, Xk = (X ′k,1,X

′
k,2)′ include both of the two

types of cluster-treated structures.

The second type of the measures, i.e., Xk,2, poses
certain challenges for the design. Since Xk,2 depends
on the assignments of other clusters, traditional design
approaches such as blocking, stratification, and the
covariate-adaptive randomization (Pocock and Simon,
1975; Hu et al., 2012), that sequentially balance
the covariates, are not applicable to Xk,2. As an
alternative, we can rerandomize the assignment T
and choose one of such assignments that gives the
desirable balanced treatment arms with respect to
both Xk,1 and Xk,2 (Morgan et al., 2012; Morgan and
Rubin, 2015). However, it may take a large number of
rerandomizations to find one useful assignment (Qin
et al., 2016). We thus consider to combine covariate-
adaptive randomization and rerandomization to take
the advantages of both of the two types of procedures.

Let B denote the number of rerandomization and Tb
denote the bth treatment assignment generated from
the pairwise-sequential randomization (Qin et al., 2016;
Zhou et al., 2020) with (X1,1, · · · ,XK,1)′ for 1 ≤ b ≤
B. The pairwise-sequential randomization sequentially
assigns a larger probability to the assignment leading to
the smaller value of the Mahalanobis distance of Xk,1

for a pair of clusters. Therefore, the imbalance with
respect to Xk,1 are minimized for large K. We present
the pairwise-sequential randomization in Section C.1
of the supplementary material. Next, we rerandomize
of the pairwise-sequential randomization to choose the
treatment assignment which maintains the balance



Adaptive A/B Test on Networks with Cluster Structures

with respect to both Xk,1 and Xk,2. Denote X̄1
b and

X̄0
b as the sample means of Xk with respect to the

treatment and control arms calculated with Tb for the
bth rerandomization. In addition, let Db = X̄1

b − X̄0
b

and denote S(D) as the sample covariance matrix
calculated from D1, · · · ,DB. Consider the following
modified Mahalanobis distance that measures the
imbalance with respect to both Xk,1 and Xk,2 for
the bth rerandomization,

Imbb = D′bS(D)−1Db, for b = 1, · · · , B.

Furthermore, denote Imb(b) as the bth ordered value
of Imb1, · · · , ImbB, then ReAR can be described as
Algorithm 1. Note that an assignment is randomly
selected from those with Imb(1), · · · , Imb(bαBc), the
imbalance measure calculated with both Xk,1 and
Xk,2 can thus be controlled by a given threshold α.
Therefore, one can use a sufficiently large B and a small
α to obtain the assignment with desirably balanced
treatment arms. Furthermore, a relatively large α
can increase the randomness for rerandomization and
relieve the problem of confounding. For more detailed
discussion for choosing B and α, please see Section C.2
of the supplementary material.

Algorithm 1 Rerandomized-Adaptive Randomization
1: Input: covariates X1, · · · ,XK ; number of

rerandomization B; threshold α;
2: for b = 1 to B do
3: Generate Tb from pairwise-squential

randomization with (X1,1, · · · ,XK,1)′ ;
4: end for
5: Calculate and order Imb1, · · · , ImbB ;
6: Select the b′th assignment with Imbb′ ∼

Unif(Imb(1), · · · , Imb(bαBc));
7: Output: T = Tb′ ;

5.2 Cluster-Adjusted Estimator

To improve the estimation for ATE, it is still necessary
to appropriately adjust the weight of the effectively
treated nodes in estimation. Notice that a node of
cluster k belongs to either Ink or Otk. This difference
of nodes’ type can affect the probability to be efficiently
treated and consequently affects the cluster-treated
structures. Ideally, the weight should reflect the nodes’
type and should not over-amplify beyond the cluster
size, e.g., if there is only one outer node in a cluster
then the weight for this node should not be too large.
We introduce the following weights that adaptively
adjust the node according to the nodes’ type

wk,i(z) = P(Tk = z|G)
{
I(i ∈ Ink, Tk = z)

+ I(i ∈ Otk)

∑
j∈Otk ξk,j(z)∑nk

j=1 I(j ∈ Otk)

}
.

The advantage of using wk,i(z) is that the weights for
the outer nodes satisfy that wk,i(z) ≤ P(Tk = z|G)×
|Otk|−1, whereas the weights for the inner nodes keep
the same as the weights used by HTEs, i.e., wk,i(z) =
πk,i(z) = P(Tk = z|G). Therefore, using wk,i can
reduce the variance for estimating the ATEs. The
CAEs for τIN (1,0) and τCL(1,0) can be defined as

τ̂CAE,IN =

K∑
k=1

N−1nk

[
Ỹk(1)− Ỹk(0)

]
,

τ̂CAE,CL =

K∑
k=1

K−1
[
Ỹk(1)− Ỹk(0)

]
,

where Ỹk(z) = n−1k
∑nk

i=1[wk,i(z)]
−1 ξk,i(z)Yk,i(z) for

z ∈ {0, 1}. If none of the nodes in Otk are effectively
treated, we replace nk used in the CAEs with |Ink|.

Although the proposed CAEs can be biased, they still
have several advantages compared to the HTEs. First,
the CAEs and the HTEs are equivalent when the
clusters are disjoint. Furthermore, CAEs can alleviate
the problem of overweighting by adjusting weights of
the nodes according the nodes’ type. Therefore, the
CAEs may have better performance when there are
moderate amount of interference among the clusters.

6 Numerical Studies

In Section 6.1, hypothetical networks are used to show
that the restrictions on cluster sizes can be alleviated
when the estimators from the cluster perspective are
used. In Section 6.2, the MIT phone call network
listed in the Network Data Repository (Rossi and
Ahmed, 2015) shows that the inappropriate weights
used by HTEs may impair the evaluation of the ATEs,
whereas our proposed adaptive A/B test procedure can
still be useful. In Section D.3 of the supplementary
material, the Facebook pages to pages network is
used to demonstrate the performance of our proposed
procedure, where the network contains only 64.1% of
the inner nodes.

Throughout this section, the potential outcomes are
generated according to the following model,

Yk,i(0) = µ0 + α0 · d̄−1dk,i + εk,i,

Yk,i(Z) = Yk,i(0) + (µ1 − µ0)Zk,i

+ (α1 − α0) · d̄−11′δk,i
Zδk,i

, (2)

where dk,i is the degree of node i in cluster k, d̄ is
the average degree of G, 1δk,i

is |δk,i|-vector of ones,
and εk,i are i.i.d. N (0, σ2

ε ). The parameter setting
(µ1, µ0, α1, α0, σε) = (1.6, 1, 1.4, 1, 1) is used, resulting
in the direct effect µ1−µ0 = 0.6 and the spillover effect
α1 − α0 = 0.4, respectively.
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Figure 2: Histograms of the difference-in-means of the six measures of the cluster-treated structures for K = 20.
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Figure 3: The densities of the MSEs evaluated from the 100 hypothetical networks for K = 20.

The settings of the design and estimation used for
simulations are as follows. First, six measures of cluster-
treated structures, i.e., m1 = 4 and m2 = 2, are
considered, where Xk,1,1 is the size of Ink, Xk,1,2 is
the average degree of the nodes in Ink, Xk,1,3 is the
size of Otk, Xk,1,4 is the average degree of the nodes
in Otk, Xk,2,1 is the number of the effectively treated
nodes in Otk, and Xk,2,2 is the average degree of the
effectively treated nodes in Otk. For the design stage,
the following three randomization procedures with
graph-cluster randomization are evaluated: complete
randomization (CR), i.e., no neighborhood exposures
are used; pairwise-sequential randomization (PSR) with
Xk,1; and ReAR using B = 1000 and α = 0.05 with
both Xk,1 and Xk,2. For the estimation stage, the
HTEs from the two perspectives are compared with
the corresponding CAEs for each of the randomization
schemes. The weights for the HTEs are calculated with
the simulation approach (Aronow et al., 2017).

6.1 Hypothetical Networks

The stochastic block model is modified to mimic
the real-world network with clear cluster structures.
According to the details presented in Section D.1
of the supplementary material, 100 networks are
generated and 1,000 simulations are conducted for each
of networks. The results are combined to generate the
histograms of the difference-in-means (DIMs) of the six
cluster-treated structures and are presented in Figure 2.
The distributions of the MSEs for different estimators
are presented in Figure 3. Note that the figures for

K = 50 are similar to the Figure 2 and Figure 3 and are
thus omitted. In Table 3, we compare the performance
of different estimators under different randomization
schemes with graph-cluster randomization.

The histograms presented in Figure 2 demonstrate
the performance of the three designs on balancing the
six measures of the cluster-treated structures. As
Xk,1 is used in pairwise-sequential randomization,
the distributions of the difference-in-means are more
concentrated around zero under pairwise-sequential
randomization than the distributions under complete
randomization. Because the imbalance score used by
ReAR are calculated with both Xk,1 and Xk,2, the
difference-in-means of all of the six measures are all
more concentrated than their values under pairwise-
sequential randomization. Therefore, the treatment
arms generated by ReAR are of the most balanced
with respect to the cluster-treated structures.

Comparing the different approaches for evaluating the
ATEs, we have the following three folds of meaningful
observations. First, the balance of the cluster-
treated structures benefits the estimation of the ATEs.
The average MSEs of the estimators following the
design with better balance properties are smaller. In
particular, the average MSEs of the estimators following
ReAR are the smallest. Comparing the performance
of the two kinds of estimators, the CAEs have slightly
larger bias than the HTEs, but have smaller average
SD. Therefore, the CAEs have better performance than
the HTEs. Last but not least, the estimators from
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Table 3: The average bias, the average standard deviation (SD), and the average MSE of the HTEs and CAEs.

K
Design CR PSR ReAR

Estimators Bias SD MSE Bias SD MSE Bias SD MSE

20

τ̂HT,IN 0.004 1.784 3.774 -0.000 1.491 2.919 0.003 1.298 2.509
τ̂CAE,IN -0.015 1.622 3.302 -0.018 1.328 2.532 -0.011 1.012 1.869
τ̂HT,CL 0.001 0.485 0.241 0.001 0.390 0.156 -0.000 0.373 0.171
τ̂CAE,CL -0.002 0.282 0.081 -0.002 0.224 0.051 -0.002 0.177 0.032

50

τ̂HT,IN 0.005 1.475 2.672 0.003 1.100 1.838 0.001 0.873 1.452
τ̂CAE,IN -0.010 1.395 2.481 -0.012 1.042 1.733 -0.013 0.816 1.359
τ̂HT,CL 0.000 0.277 0.078 0.001 0.178 0.032 0.000 0.131 0.018
τ̂CAE,CL -0.001 0.183 0.034 -0.001 0.124 0.016 -0.001 0.099 0.010

Table 4: The bias, standard deviation (SD), and MSE of the estimators evaluated for the MIT phone call
networks.

Design CR PSR ReAR
Estimators Bias SD MSE Bias SD MSE Bias SD MSE
τ̂HT,IN 0.428 0.962 1.108 0.305 0.539 0.383 0.249 0.369 0.198
τ̂CAE,IN -0.028 0.342 0.117 -0.028 0.114 0.014 -0.029 0.069 0.006
τ̂HT,CL 0.401 0.808 0.814 0.319 0.686 0.572 0.208 0.264 0.113
τ̂CAE,CL -0.001 0.142 0.020 0.002 0.138 0.019 0.001 0.135 0.018

the cluster perspective have better performance than
the estimators from the individual level perspective.
Note that the average SDs of the estimators from the
individual perspective all above 0.8. On the other
hand, the average SDs of the estimators from the
cluster perspective are much smaller. In addition, the
distributions of the MSEs for the estimators from the
cluster perspective are more concentrated and more
shifted to zero. Therefore, using the estimators from
the cluster perspective may be useful in situations
where the estimators from the individual perspective
have large variances.

6.2 The MIT Phone Call network

This network consists of phone calls/voicemails between
6819 users at MIT, where nodes and edges represent
users and calls/voicemails, respectively (Eagle and
Pentland, 2006). In practice, an A/B test may
be conducted by the landline provider to see the
satisfactory improvement measured from the MIT
faculties for a new service. To conduct such experiment,
the network is partitioned to 82 clusters by the label
propagation algorithm (Raghavan et al., 2007). Note
that the portion of the inner nodes for this network
is about 93%. Therefore, the outer nodes should not
affect much on the evaluation of the ATEs. However,
simulation results suggests that the weights of the outer
nodes used by the HTEs can still affect the estimation.

Table 4 shows the advantage of using the CAEs for
adjusting the inappropriate weight used by the HTEs.
Note that τIN (1,0) = 1, and τCL(1,0) evaluated from
this network graph is 0.99. The biases of the HTEs
all above 0.2. Therefore, using the HTEs for the ATE
may not be reliable. On the other hand, the biases of
the CAEs are all less than 0.03. The SDs and MSEs
of the CAEs are also much smaller than the values for

the HTEs. Therefore, the CAEs can be more useful
than the HTEs, when several nodes in the network
have small probabilities to be efficiently treated.

In addition, Table 4 indicates the good performance
of our proposed adaptive A/B test procedure. As
the ReAR can generate more balanced treatment
arms, the potential outcomes from the two treatment
groups under ReAR are more feasible to be compared.
Therefore, our proposed methods can greatly improve
the performance of the estimators by reducing the SDs
for estimating either τIN (1,0) or τCL(1,0).

7 Conclusion

In this article, we discuss several issues about using
cluster information in the design and the estimation for
network A/B tests. We show that the estimator from
the cluster perspective can be useful in some of the
network settings. Furthermore, we demonstrate the
importance of balancing the cluster-treated structures
and the appropriate adjustment of the weight used in
the estimation according to the cluster structures.

Our work can be further extended in several ways. Note
that the covariate balance promoted by the design often
affects the distribution of the test statistics (Ma et al.,
2015, 2020; Bugni et al., 2018), the valid inference with
our procedure may require an appropriate estimator of
the variance of the CAE following ReAR. This problem
needs further investigation. Moreover, the equal
allocation may not optimize the power for testing the
ATE. Therefore, one should assign the units according
to the ratio that can maximize the power for testing the
ATE. It may be desirable to propose network adaptive
A/B test procedure that has the same spirits as the
response-adaptive randomization (Hu and Rosenberger,
2006; Zhang et al., 2007) to achieve this goal.
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8 Response to the Reviewers

We would like to thank the meta-reviewer and the four
anonymous reviewers for the supportive comments and
the efforts to improve our manuscript. We have revised
the manuscript to address the concerns raised by the
reviewers. In particular, the overloaded acronyms are
reduced, the abstract and the first three sections are
shortened, and more details were added to Section 5.
Other typos have also been checked throughout the
manuscript. We describe our revision in more details
as follows.

1. The paragraph following Theorem 3.1 is revised.
The performances of τ̂HT,IN and τ̂CL are discussed
and compared under different scenarios of the
network structure. We also emphasize on our
novelty compared to Ugander et al. (2013).

2. In the fourth paragraph of Section 4, we added
explanations demonstrating the importance of the
balance for certain types of cluster measures in
the design. Furthermore, more descriptions about
these measures are added in the first paragraph of
Section 5.1. The term “cluster-treated structures”
is introduced to describe these measures, because
they depend on both the cluster structures and
the treatment assignment of the clusters.

3. We added a brief description about the pairwise-
sequential randomization. Furthermore, we
referred to Section C.1 of the supplementary
materials for more details about the pairwise-
sequential randomization.

4. The first paragraph of Section 5.2 is also revised.
We added more details about the explanations
about our proposed cluster-adjusted estimator.
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Supplementary Material:
Adaptive A/B Test on Networks with Cluster Structures

A Proof of Theorem 3.1.

In this section, we provide the proof for Therorem 3.1 using a similar approach as presented in Ugander et al.
(2013). To derive Theorem 3.1, we first prove the following result.

Proposition A.1. For z ∈ {0, 1}, let Ȳk(z) = n−1k
∑nk

i=1 Yk,i(z ·1), and let covfs [·] denote the covariance function
from the finite sample perspective. Under Assumptions 1 and 2, the following statements hold.

1. For 1 ≤ k ≤ K and z ∈ {0, 1}, Efs[Ŷk(z)] = Ȳk(z).

2. For 1 ≤ k1, k2 ≤ K, and z1, z2 ∈ {0, 1}

covfs

[
Ŷk1(z1), Ŷk2(z2)

]
=

1

nk1nk2

nk1∑
i1=1

nk2∑
i2=1

π(k1,i1),(k2,i2)(z1, z2)− πk1,i1(z1)πk2,i2(z2)

πk1,i1(z1)πk2,i2(z2)

× Yk1,i1(z1 · 1)Yk1,i2(z2 · 1).

(a) For k1 = k2 = k, z1 6= z2,

covfs

[
Ŷk(z1), Ŷk(z2)

]
= −Ȳk(1)Ȳk(0) = O(n2kn

−2
k ) = O(1).

(b) For k1 = k2 = k, z1 = z2 = z,

covfs

[
Ŷk(z), Ŷk(z)

]
= Vfs

[
Ŷk(z)

]
=

1

n2k

nk∑
i1=1

nk∑
i2=1

π(k,i1),(k,i2)(z, z)− πk,i1(z)πk,i2(z)

πk,i1(z)πk,i2(z)

× Yk,i1(z · 1)Yk,i2(z · 1)

= O(n−2k n2k) = O(1).

(c) For k1 6= k2,

covfs

[
Ŷk1(z1), Ŷk2(z2)

]
= O

(
{nk1nk2}−1MCk1

,Ck2

)
,

where MCk1
,Ck2

is the number of edges connecting clusters k1 and k2.

Proof of Proposition A.1. First, under Assumption 1, it follows from the definition of the effectively treated node
that

Efs[ξk,i(z)Yk,i(Z)] = πk,i(z)Yk,i(z · 1),

for z ∈ {0, 1}. Therefore, Efs[Ŷk(z)] = Ȳk(z) and

Efs[Ŷk1(z1)Ŷk2(z2)] =
1

nk1nk2

nk1∑
i1=1

nk2∑
i2=1

π(k,i1),(k,i2)(z1, z2)

πk1,i1(z1)πk2,i2(z2)
Yk1,i1(z1 · 1)Yk2,i2(z2 · 1),

for z1, z2 ∈ {0, 1}. We next prove for (a) - (c) of 2.
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(a) For k1 = k2 = k, z1 6= z2, first notice that Tk(1 − Tk) = 0, then ξk,i1(z1)ξk,i2(z2) = 0 and thus
π(k1,i1),(k2,i2)(z1, z2) = 0. Therefore, we have

covfs

[
Ŷk(z1), Ŷk(z2)

]
= −Ȳk(1)Ȳk(0).

Note that Assumption 2 implies that Yk,i(z) = O(1). Then we have Ȳk(z) = O(n−1k nk) and thus (a) follows.

(b) For k1 = k2 = k, z1 = z2 = z, each term within the summation sign is O(1). The sum goes for n2k terms, so
that the sum is O(n2k) and (b) follows.

(c) For k1 6= k2, consider the terms within the summation sign under the following three situations. (i) Under
Assumption 1, for all i1 ∈ Ink1 , Yk1,i1(Z) does not dependent on the treatment assignment of the nodes in other
cluster. Therefore, ξk1,i1(z1) and ξk2,i2(z2) are conditional independent given G. Then the terms for this case
(i1 ∈ Ink1 , i2) are zero as π(k1,i1),(k2,i2)(t1, t2) = πk1,i1(z1)πk2,i2(z2). (ii) Next, if i1 ∈ Otk1 and i2 /∈ δk1,i1 , the
corresponding terms are also zero. (iii) If i ∈ Otk1 and i2 ∈ δk1,i1 , the terms are O(1). Therefore, by (i), (ii) and
(iii), the total number of terms within the summation sign is MCk1

,Ck2
. Therefore, (c) follows.

Proof of Theorem 3.1. The unbiasedness of τ̂HT,IN and τ̂HT,CL simply follows from Proposition A.1. We now
derive the bounds for the finite-population variances for τ̂HT,IN and τ̂HT,CL. It follows from Proposition A.1 that

Vfs [τ̂HT,IN ] =

K∑
k=1

n2k
N2

Vfs
[
Ŷk(1)− Ŷk(0)

]
+
∑
k1,k2

nk1nk2
N2

covfs

[
Ŷk1(1)− Ŷk1(0), Ŷk2(1)− Ŷk2(0)

]

. O

(
N−2

K∑
k=1

n2k

)
+O

N−2 ∑
k1 6=k2

MCk1
,Ck2


. O

(
N−2

{
K∑
k=1

n2k + κGMG

})
,

Vfs [τ̂HT,CL] =
1

K2


K∑
k=1

V
[
Ŷk(1)− Ŷk(0)

]
+
∑
k1 6=k2

covfs

[
Ŷk1(1)− Ŷk1(0), Ŷk2(1)− Ŷk2(0)

]
. O

(
K−2K

)
+O(K−2κG

∑
k1,k2

MCk1
,Ck2

)

. O
(
K−1 +K−2κGMG

)
,

where Vfs
[
Ŷk(1)

]
, Vfs

[
Ŷk(0)

]
, and covfs

[
Ŷk(1), Ŷk(0)

]
are O(1); and covfs

[
Ŷk1(1), Ŷk2(0)

]
,

covfs

[
Ŷk1(1), Ŷk2(1)

]
, and covfs

[
Ŷk1(0), Ŷk2(0)

]
are O(n−1k1 n

−1
k2
MCk1

,Ck2
). This completes the proof of

this theorem.

B Example used in Section 4

In this section, we discuss the details of the network and the design used for the illustrative example presented in
Section 4. The setting of the network is presented in Section B.1, and the employed randomization scheme is
discussed in Section B.2.

B.1 Generation of the Network and the Responses

The network used in Section 4 is generated as follows. Let G(n, p) be the Erdös-Rényi random graph model,
where n is the number of nodes and p is the probability that two of the n nodes are connected. Suppose the
first two clusters, C1 and C2, are generated from G(40, 0.5), and the last two clusters, C3 and C4, are generated
from G(30, 0.3). Therefore, the first two clusters have larger number of nodes and larger values of the average
within-cluster node degree. Furthermore, we assume that two nodes from different clusters are connected with
probability 180−1, so that the four clusters are sparsely connected.
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The potential outcomes are generated from (2) according to the parameter setting (µ1, µ0, α1, α0, σε) =
(1.6, 1, 1.4, 1, 1). Then, the direct effect and the spill-over effect are µ1 − µ0 = 0.6 and α1 − α0 = 0.4, respectively.

B.2 Randomization Design

As the network consists of only four clusters, the randomization schemes that assign three or all four clusters to
the same treatment arm may not be desirable. Therefore, consider the randomization scheme that assigns two of
the clusters to the same treatment arm, that is,

P(T = tj) = 1/6,

for j = 1, · · · , 6 and {t1, · · · , t6} = {(0, 0, 1, 1)′, (0, 1, 0, 1)′, (0, 1, 1, 0)′, (1, 1, 0, 0)′, (1, 0, 1, 0)′, (1, 0, 0, 1)′}.
According to this randomization scheme, the probability of a node being effectively treated can be calculated as

πk,i(z) =

 P(Tk = z) = 1
2 if node i only connects with nodes in cluster k

P(Tk = Ts = z) = 1
6 if node i connects to nodes in clusters k and s

0 if node i connects to more than 2 clusters
(3)

for z ∈ {0, 1}. (3) shows that using πk,i(z) as the weight for the HTEs can be problematic. Note that the values of
πk,i(z), i.e., 1/2 and 1/6, are determined by the randomization scheme, but not the cluster structures. Therefore,
the value 1/6 can be different from the fraction of the effectively treated outer nodes in a cluster. For instance, if
such fraction is larger than 1/6, i.e., the cluster contains only one outer nodes, then the evaluated effect from this
cluster can be greatly affected due to this inappropriate weight.

C Further Information about the Rerandomized adaptive randomization

In this section, we first describe the pairwise sequential randomization (PSR) used in rerandomized adaptive
randomization (ReAR) and briefly discuss how to choose the parameters for ReAR.

C.1 Pairwise-Sequential Randomization

Algorithm 2 Pairwise-sequential randomization.

1: Input: covariates X1,1, · · · ,XK,1; probability of the biased coin 1/2 < q < 1;
2: Compute S1 based on X1,1, · · · ,XK,1;
3: Assign T1 ∼ Bernoulli(1/2) and set T2 = 1− T1 ;
4: for k = 2 To dK/2e do
5: if 2k ≤ K then
6: . Suppose T1, · · · , T2(k−1) are generated, next generate (T2k−1, T2k)′ as follows;

. Let Mah
(1)
2k and Mah

(2)
2k be the pseudo imbalance scores computed by X1,1, · · ·X2k,1;

7: Compute Mah
(1)
2k from (4) by assuming (T2k−1, T2k)′ = (0, 1)′;

8: Compute Mah
(2)
2k from (4) by assuming (T2k−1, T2k)′ = (1, 0)′;

9: if Mah
(1)
2k < Mah

(2)
2k then

10: Assign T2k−1 ∼ Bernoulli(1− q);
11: end if
12: if Mah

(1)
2k > Mah

(2)
2k then

13: Assign T2k−1 ∼ Bernoulli(q);
14: else
15: Assign T2k−1 ∼ Bernoulli(1/2);
16: end if
17: Set T2k = 1− T2k−1;
18: else
19: Assign T2k−1 ∼ Bernoulli(1/2);
20: end if
21: end for
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For 0 < m < K, let m1 =
∑m
k=1 Tk and m2 =

∑m
k=1(1 − Tk). Denote X̄1

m = m−11

∑m
k=1 TkXk,1, X̄2

m =

m−12

∑m
k=1(1− Tk)Xk,1, and X̄1 = K−1

∑K
k=1Xk,1 as the sample averages of Xk,1 with respect to the treated

clusters, the controlled clusters, and all of the clusters, respectively. Furthermore, denote ζk = X̄1
k − X̄2

k , then
the Mahalanobis distance of Xk,1 calculated for the first 2k clusters can be written as

Mah2k = ζ′2kcov [ζ2k]
−1
ζ2k ∝

j

2
· ζ′2kS−11 ζ2k, (4)

where S1 = K−1
∑K
k=1(Xk,1− X̄1)(Xk,1− X̄1)′ is the sample covariance matrix of Xk,1. The pairwise-sequential

randomization is presented in Algorithm 2. For more details about the theoretical properties of the pairwise-
sequential randomization, we refer to Qin et al. (2016); Zhou et al. (2020).

C.2 The Choice of the parameters

As the pairwise-sequential randomization is rerandomized in ReAR, the choice of B and α can ensure the balance
with respect to Xk,2 and further improve the balance with respect to Xk,1. We can choose a large enough value
of B, and a small enough value of α to guarantee the performance of ReAR. For instance, one can use α = B−1

and a large value of B, e.g., B = 1000, that is, using the treatment assignment that results in the smallest value
of the imbalance measure. Note that if the users in the experiment have the information of the network and the
design, they may use ReAR to predict the treatment assignment. Their prediction may affect their decision to
join the experiment and affect the evaluation of the ATEs. In such case, when B is large, choosing α = B−1

may increase the predictability of the treatment assignment. To reduce such predictability and maintain the
performance of ReAR, one can choose a relatively large value of α, e.g., α ∈ (B−1, 0.05]. For the discussion about
the predictability of the treatment assignment, please see chapter 5 of Rosenberger and Lachin (2015). In our
numerical studies, (q,B, α)′ = (0.85, 1000, 0.05)′ is used to ensure the balance of the two treatment arms with
respect to the cluster-treated structures.

D Further Information about the Numerical studies

This section provides additional details about the numerical studies with the hypothetical networks and the MIT
network. Furthermore, the Facebook page to page network is studied to show that our proposed method can still
have good performance even when the number of the inner node is not as much as expected. The weights used
for the HTEs are calculated from 1000 simulations by using the approach employed by Aronow et al. (2017).

D.1 The Hypothetical Network in Section 6.1

To mimic the real-world networks that may consist of a few large but more small clusters, the cluster sizes nk are
generated from the following power law distribution

P(nk = x) =
x−a

ζ(a, xmin)

where ζ(a, xmin) =
∑∞
n=0(n+ xmin)−a is the Hurwitz zeta function. The parameters xmin = 10 and a = 2.8 are

used. To generate the clusters, let pk be i.i.d. U(0.3, 0.5) representing the probability that two nodes in cluster k
are connected. Then, the cluster k is generated from G(nk, pk), so that different clusters have different values of
the average within-cluster node degree. Moreover, the nodes from cluster k1 and cluster k2 are connected with
probability qk1,k2 , where qk1,k2 are i.i.d. U(0, (K maxk nk)−1) for 1 ≤ k1 6= k2 ≤ K. Therefore, the clusters in the
hypothetical networks are sparsely connected. Therefore, the probabilities connecting two clusters are restricted
and thus the sizes of outer nodes are not relatively large.

For simplicity, the label of the clusters are assumed known and are directly used in design. Consider K ∈ {20, 50}
and 100 networks are generated according to the same parameter setting for each value of K. For each of these
networks, 1000 simulations are conducted.

D.2 The MIT phone call network in Section 6.2

The MIT phone call network has 6819 nodes and 82 clusters, which can be found from the Network Data
Repository (Rossi and Ahmed, 2015). To see that the weights used for the HTEs may affect the evaluation of the
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ATEs, we evaluate the number of the nodes within different ranges of πk,i(z) in Table 5. Although the majority
of the nodes in this network are the inner nodes, i.e., πk,i(z) = 0.5, the values of πk,i(z) for the outer nodes all
less than 0.3 and thus the weights of the HTEs may affect the estimation of the ATEs.

Table 5: Number of nodes within intervals of πk,i(z).

πk,i(z) CR PSR ReAR
[0, 0.1) 80 84 90

[0.1, 0.2) 92 88 84
[0.2, 0.3] 325 325 323
{0.5} 6322 6322 6322

D.3 Numerical Study for the Facebook Page to Page Network

As suggested by Theorem 3.1, the valid estimation of the ATEs requires that the network should not have too
many outer nodes. In practice, the clusters in real-world networks may not be sparsely connected, and thus have
several outer nodes. The Facebook page to page network is used to show that even when the clusters are not
sparsely connected, our proposed method can still be useful. This network is listed in the stanford large network
dataset collection (Leskovec and Sosič, 2016), which can be found at https://snap.stanford.edu.

This web-graph is a page to page graph of verified Facebook sites. Nodes represent the official Facebook pages
while the links are mutual likes between sites. The company may consider to test whether a new feature might
increase the user engagement on the webpages, i.e., the number of clicks or the number of views. Because
such pages may belong to different categories and are built for different purposes, the improvement of the user
engagement on different pages might be different. Therefore, an A/B test might be conducted to detect the
difference of the average improvement on these pages. As such, the page can be considered as the unit used in the
experiment and the response may correspond to the number of the clicks on the pages. Note that this network
consists of 22,472 nodes and 170,824 edges. The fast greedy optimization of modularity algorithm Clauset et al.
(2004) is used to generate the labels of the clusters. Some of the clusters are combined so that the percentage of
inner nodes of the clusters all above 20%. The network thus has 184 clusters in total. Note that the fraction of
the inner nodes for this network is only 64.1% and 100 of the 184 clusters have the fraction of the inner nodes
less than 60%. Therefore, this network structure poses certain difficulties for evaluating the ATE.

Table 6: The bias, standard deviation (SD), and MSE of the estimators evaluated for the Facebook pages to
pages networks.

Design CR PSR ReAR
Estimators Bias SD MSE Bias SD MSE Bias SD MSE
τ̂HT,IN 1.026 5.250 28.620 4.188 7.199 69.369 0.985 1.695 3.845
τ̂CAE,IN -0.086 1.971 3.892 -0.067 1.028 1.062 -0.071 0.528 0.283
τ̂HT,CL 0.335 1.298 1.796 3.537 7.428 67.689 0.247 1.158 1.401
τ̂CAE,CL -0.235 0.118 0.069 -0.236 0.097 0.065 -0.233 0.091 0.063

As shown in Table 6, the HTEs fails to work well but the CAEs can provide better performance in terms of bias
and standard deviation. Note that the ATEs for this network are τIN (1,0) = 1 and τCL(1,0) = 0.93, the HTEs
under the three randomization procedures are all biased. Furthermore, the standard deviations of the HTEs are
also quite large resulting in large values of the MSE. On the other hand, the performance of the CAEs are less
affected by the number outer nodes, as the weights used by the CAEs can be adjusted according to the cluster
structures. As such, the standard deviations of the CAEs are smaller than the corresponding values of the HTEs.
Note that τ̂CAE,CL still has relatively large bias due to the fractions of the outer nodes in the clusters, where as
τ̂CAE,IN is much less biased.

In addition, Table 6 indicates that our proposed adaptive A/B test procedure can be a useful tool for evaluating
the ATE. The standard deviation of τ̂CAE,IN under ReAR is 0.528, which is much smaller than the values under

https://snap.stanford.edu
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complete randomization and the pairwise-sequential randomization. The bias of τ̂CAE,IN under ReAR is also
moderate. Therefore, the MSE of τ̂CAE,IN under ReAR is the smallest and has the best performance.

E Code

The R codes used for our study is available at https://github.com/LouisLiu-STAT/Cluster_Adaptive_AB_
test.

https://github.com/LouisLiu-STAT/Cluster_Adaptive_AB_test
https://github.com/LouisLiu-STAT/Cluster_Adaptive_AB_test

	Introduction
	Notations and the Framework
	Horvitz-Thompson Estimator and its Properties
	Issues Related to Randomization and Horvitz-Thompson Estimators
	Adaptive A/B Test Procedure
	Rerandomized-Adaptive Randomization
	Cluster-Adjusted Estimator 

	Numerical Studies
	Hypothetical Networks
	The MIT Phone Call network

	Conclusion
	Response to the Reviewers
	Acknowledgements
	Proof of Theorem 3.1.
	Example used in Section 4
	Generation of the Network and the Responses
	 Randomization Design

	Further Information about the Rerandomized adaptive randomization 
	Pairwise-Sequential Randomization
	The Choice of the parameters

	Further Information about the Numerical studies
	The Hypothetical Network in Section 6.1
	The MIT phone call network in Section 6.2
	Numerical Study for the Facebook Page to Page Network

	Code

