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Abstract

Markov chain Monte Carlo (MCMC) methods
are often used in clustering since they guar-
antee asymptotically exact expectations in
the infinite-time limit. In finite time, though,
slow mixing often leads to poor performance.
Modern computing environments offer mas-
sive parallelism, but naive implementations of
parallel MCMC can exhibit substantial bias.
In MCMC samplers of continuous random
variables, Markov chain couplings can over-
come bias. But these approaches depend cru-
cially on paired chains meetings after a small
number of transitions. We show that straight-
forward applications of existing coupling ideas
to discrete clustering variables fail to meet
quickly. This failure arises from the “label-
switching problem”: semantically equivalent
cluster relabelings impede fast meeting of cou-
pled chains. We instead consider chains as
exploring the space of partitions rather than
partitions’ (arbitrary) labelings. Using a met-
ric on the partition space, we formulate a
practical algorithm using optimal transport
couplings. Our theory confirms our method is
accurate and efficient. In experiments ranging
from clustering of genes or seeds to graph col-
orings, we show the benefits of our coupling
in the highly parallel, time-limited regime.

1 INTRODUCTION

Markov chain Monte Carlo (MCMC) is widely used in
applications for exploring distributions over clusterings,
or partitions, of data. For instance, Prabhakaran et al.
[2016] use MCMC to approximate a Bayesian posterior
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over clusters of gene expression data for “discovery and
characterization of cell types”; Chen et al. [2019] use
MCMC to approximate the number of k-colorings of a
graph; and DeFord et al. [2021] use MCMC to identify
partisan gerrymandering via partitioning of geographi-
cal units into districts. An appealing feature of MCMC
for many applications is that it yields asymptotically
exact expectations in the infinite-time limit. However,
real-life samplers must always be run in finite time,
and MCMC mixing is often prohibitively slow in prac-
tice. While this slow mixing has led some practitioners
to turn to other approximations such as variational
Bayes [Blei and Jordan, 2006], these alternative meth-
ods can yield arbitrarily poor approximations of the
expectation of interest [Huggins et al., 2020].

A different approach is to speed up MCMC, e.g. by
taking advantage of recent computational advantages.
While wall-clock time is often at a premium, modern
computing environments increasingly offer massive par-
allel processing. For example, institute-level compute
clusters commonly make hundreds of processors avail-
able to their users simultaneously [Reuther et al., 2018].
Recent efforts to enable parallel MCMC on graphics
processing units [Lao et al., 2020] offer to expand par-
allelism further, with modern commodity GPUs pro-
viding over ten thousand cores. A naive approach to
exploiting parallelism is to run MCMC separately on
each processor; we illustrate this approach on a genet-
ics dataset (gene) in Figure 1 with full experimental
details in Section 5. One might either directly aver-
age the resulting estimates across processors (red solid
line in Figure 1) or use a robust averaging procedure
(red dashed line in Figure 1). Massive parallelism can
be used to reduce variance of the final estimate but
does not mitigate the problem of bias, so the final esti-
mate does not improve substantially as the number of
processes increases.

Recently, Jacob et al. [2020] built on the work of Glynn
and Rhee [2014] to eliminate bias in MCMC with a
coupling. The basic idea is to cleverly set up depen-
dence between two MCMC chains so that they are still
practical to run and also meet exactly at a random
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Figure 1: Lower error at high process count using our
estimator (blue) versus using naive parallelism (red).
For details, see Section 5.2.

but finite time. After meeting, these coupled chains
can be used to compute an unbiased estimate of the
expectation of interest. So arbitrarily large reductions
in the estimate’s variance due to massive parallelism
translate directly into arbitrarily large reductions in
total error. Since a processor’s computation concludes
after the chains meet, a useful coupling relies heavily
on setting up coupled chains that meet quickly.

Jacob et al. [2020] did not consider MCMC over par-
titions in particular and Glynn and Rhee [2014] did
not work on MCMC. But there is existing work on
couplings applied to partitions in other contexts that
can be adapted into the Jacob et al. [2020] framework.
For instance, Jerrum [1998] uses maximal couplings on
partition labelings to prove convergence rates for graph
coloring, and Gibbs [2004] uses a common random
number coupling for two-state Ising models. Though
Jerrum [1998] was theoretical rather than practical
and Gibbs [2004] did not apply to general partition
models, we can adapt the Jacob et al. [2020] setup
in a straightforward manner to use either coupling
scheme. While this adaptation ensures asymptotically-
unbiased MCMC samples, we will see (Section 5.3) that
both schemes exhibit slow meeting times in practice.
We attribute this issue to the label-switching problem,
which is well-known for plaguing MCMC over parti-
tions [Jasra et al., 2005]. In particular, many different
labelings correspond to the same partition. In the
case of couplings, two chains may nearly agree on the
partition but require many iterations to change label
assignments, so the coupling is unnecessarily slow to
meet.

Our main contribution, then, is to propose and ana-
lyze a practical coupling that uses the unbiasedness
of the [Jacob et al., 2020] framework but operates di-
rectly in the true space of interest – i.e., the space
of partitions – to thereby exhibit fast meeting times.
In particular, we define an optimal transport (OT)

coupling in the partition space (Section 3). For clus-
tering models, we prove that our coupling produces
unbiased estimates (Section 4.1). We provide a big-
O analysis to support the fast meeting times of our
coupling (Section 4.2).We empirically demonstrate the
benefits of our coupling on a simulated analysis; on
Dirichlet process mixture models applied to real ge-
netic, agricultural, and marine life data; and on a graph
coloring problem. We show that, for a fixed wall time,
our coupling provides much more accurate estimates
and confidence intervals than naive parallelism (Sec-
tion 5.2). And we show that our coupling meets much
more quickly than standard label-based couplings for
partitions (Section 5.3). Our code is available at https:
//github.com/tinnguyen96/partition-coupling.

Related work. Couplings of Markov chains have a
long history in MCMC. But they either have primar-
ily been a theoretical tool, do not provide guarantees
of consistency in the limit of many processes, or are
not generally applicable to Markov chains over par-
titions (Appendix A). Likewise, much previous work
has sought to utilize parallelism in MCMC. But this
work has focused on splitting large datasets into small
subsets and running MCMC separately on each subset.
But here our distribution of interest is over partitions
of the data; combining partitions learned separately on
multiple processors seems to face much the same diffi-
culties as the original problem (Appendix A). Xu et al.
[2021] have also used OT techniques within the Jacob
et al. [2020] framework, but their focus was continuous-
valued random variables. For partitions, OT techniques
might most straightforwardly be applied to the label
space – and we expect would fare poorly, like the other
label-space couplings in Section 5.3. Our key insight is
to work directly in the space of partitions.

2 SETUP

Before describing our method, we first review random
partitions, set up Markov chain Monte Carlo for par-
titions – with an emphasis on Gibbs sampling, and
review the Jacob et al. [2020] coupling framework.

2.1 Random Partitions

For a natural number N , a partition of [N ] :=
{1, 2, . . . , N} is a collection of K ≤ N non-empty dis-
joint sets {A1, A2, . . . , AK}, whose union is [N ]. In a
clustering problem, we can think of Ak as containing
the data indices in a particular cluster. Let PN de-
note the set of all partitions of [N ]. Let π denote an
element of PN , and let Π be a random partition (i.e.
a PN -valued random variable) with probability mass
function (p.m.f.) pΠ. We report a summary that takes
the form of an expectation: H∗ :=

∫
h(Π)pΠ(Π)dΠ.

https://github.com/tinnguyen96/partition-coupling
https://github.com/tinnguyen96/partition-coupling
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As an example, consider a Bayesian cluster analy-
sis for N data points {Wn}Nn=1, with Wn ∈ RD. A
common generative procedure uses a Dirichlet pro-
cess mixture model (DPMM) and conjugate Gaus-
sian cluster likelihoods – with hyperparameters α > 0,
µ0 ∈ RD, and Σ0,Σ1 positive definite D ×D matrices.
First draw Π = π with probability α|π|

∏
A∈π(|A| −

1)!/ [α(α+ 1) · · · (α+N − 1)]. Then draw cluster cen-

ters µA
i.i.d.∼ N (µ0,Σ0) for A ∈ Π and observed

data Wj |µA
i.i.d.∼ N (µA,Σ1) for j ∈ A. The distri-

bution of interest is the Bayesian posterior over Π:
pΠ(π) := Pr(Π = π |W ). A summary H∗ of interest
might be the posterior mean of the number of clusters
for N data points or of the proportion of data in the
largest cluster; see Appendix B for more discussion.

An assignment of data points to partitions is often
encoded in a vector of labels. E.g., one might represent
π = {{1, 2}, {3}} with the vector z = [1, 1, 2]; z indi-
cates that data points 1 and 2 are in the same cluster
(arbitrarily labeled 1 here) while point 3 is in a different
cluster (arbitrarily labeled 2). The partition can be
recovered from the labeling, but the labels themselves
are ancillary to the partition and, as we will see, can
introduce unnecessary hurdles for fast MCMC mixing.

2.2 Markov Chain Monte Carlo

In the DPMM example and many others, the exact com-
putation of the summary H∗ is intractable, so Markov
chain Monte Carlo provides an approximation. In par-
ticular, let Xt (for any t) denote a random partition;
suppose we have access to a Markov chain {Xt}∞t=0

with starting value X0 drawn according to some ini-
tial distribution and evolving according to a transition
kernel Xt ∼ T (Xt−1, ·) stationary with respect to pΠ.
Then we approximate H∗ with the empirical average
of samples: T−1

∑T
t=1 h(Xt).

We focus on Gibbs samplers in what follows – since
they are a convenient and popular choice for partitions
[MacEachern, 1994, Neal, 2000, de Valpine et al., 2017].
We also extend our methods to more sophisticated
samplers, such as split-merge samplers [Jain and Neal,
2004], that use Gibbs samplers as a sub-routine; see
Section 3.3. To form a Gibbs sampler on the partition
itself rather than the labeling, we first introduce some
notation. Namely, let π(−n) and Π(−n) denote π
and Π, respectively, with data point n removed. For
example, if π = {{1, 3}, {2}}, then π(−1) = {{3}, {2}}.

With this notation, we can write the leave-out condi-
tional distributions of the Gibbs sampler as pΠ|Π(−n).
In particular, take a random partition X. Suppose
X(−n) has K − 1 elements. Then the nth data point
can either be added to an existing element or form a
new element in the partition. Each of these K options

forms a new partition; call the new partitions {πk}Kk=1.
It follows that there exist ak ≥ 0 such that

pΠ|Π(−n)(· |X(−n)) =

K∑
k=1

akδπk(·), (1)

where δπk denotes a Dirac measure on πk. When pΠ is
available up to a proportionality constant, it is tractable
to compute or sample from pΠ|Π(−n).

Algorithm 1 shows one sweep of the resulting Gibbs
sampler. For any X, the transition kernel T (X, ·) for
this sampler’s Markov chain is the distribution of the
output, X̃, of Algorithm 1.

Input: Target pΠ. Current partition X.
1 X̃ ← X
2 for n← 1 to N do

3 X̃ ∼ pΠ|Π(−n)(· | X̃(−n))
4 end

5 Return X̃
Algorithm 1: Single Gibbs Sweep

2.3 An Unbiased Estimator

[Jacob et al., 2020] show how to construct an unbiased
estimator of H∗ for some Markov chain {Xt} when
an additional Markov chain {Yt} with two properties
is available. First, Yt |Yt−1 must also evolve using
the same transition T (·, ·) as {Xt}, so that {Yt} is
equal in distribution to {Xt}. Second, there must exist
a random meeting time τ < ∞ with sub-geometric
tails such that the two chains meet exactly at time τ
(Xτ = Yτ−1) and remain faithful afterwards (for all
t ≥ τ , Xt = Yt−1). When these properties hold, the
following provides an unbiased estimate of H∗:

H`:m(X,Y ) :=
1

m− `+ 1

m∑
t=`

h(Xt)︸ ︷︷ ︸
Usual MCMC average

+

τ−1∑
t=`+1

min

(
1,

t− `
m− `+ 1

)
{h(Xt)− h(Yt−1)} ,︸ ︷︷ ︸

Bias correction

(2)

where ` is the burn-in length and m sets a minimum
number of iterations [Jacob et al., 2020, Equation 2].
` and m are hyperparameters that impact the run-
time and variance of H`:m; for instance, smaller m is
typically associated with smaller runtimes but larger
variance. Jacob et al. [2020, Section 6] recommend
setting ` to be a large quantile of the meeting time and
m as a multiple of `. We follow these recommendations
in our work.
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One interpretation of Equation (2) is as the usual
MCMC estimate plus a bias correction. Since H`:m

is unbiased, a direct average of many copies of H`:m

computed in parallel can be made to have arbitrarily
small error (for estimating H∗). It remains to apply
the idea from Equation (2) to partition-valued chains.

2.4 Couplings

To create two chains of partitions that evolve together,
we will need a joint distribution over partitions from
both chains that respects the marginals of each chain.
To that end, we define a coupling.

Definition 1 A coupling γ of two discrete distribu-

tions,
∑K
k=1 akδπk(·) and

∑K′

k′=1 bk′δνk′ (·), is a distri-
bution on the product space,

γ(·) =
∑
k

∑
k′

uk,k
′
δ(πk,νk′ )(·), (3)

that satisfies the marginal constraints∑
k u

k,k′ = bk′ ,
∑
k′ u

k,k′ = ak, 0 ≤ uk,k′ ≤ 1.

3 OUR METHOD

We have just described how to achieve unbiased esti-
mates when two chains with a particular relationship
are available. It remains to show that we can construct
these chains so that they meet quickly in practice. First,
we describe a general setup for a coupling of two Gibbs
samplers over partitions in Section 3.1. Our method is
a special case where we choose a coupling function that
encourages the two chains to meet quickly (Section 3.2).
We extend our coupling to split-merge samplers in Sec-
tion 3.3. We employ a variance reduction procedure to
further improve our estimates (Section 3.4).

3.1 Coupling For Gibbs On Partitions

Let X,Y be two partitions of [N ]. By Equation (1),

we can write pΠ|Π(−n)(· |X(−n)) =
∑K
k=1 akδπk(·)

for some K and tuples (ak, π
k). And we can write

pΠ|Π(−n)(· |Y (−n)) =
∑K′

k′=1 bk′δνk′ (·) for someK ′ and

tuples (bk′ , ν
k′). We say that a coupling function is any

function that returns a coupling for these distributions.

Definition 2 A coupling function ψ takes as in-
put a target pΠ, a leave-out index n, and partitions
X,Y. It returns a coupling γ = ψ(pΠ, n,X, Y ) of
pΠ|Π(−n)(· |X(−n)) and pΠ|Π(−n)(· |Y (−n)).

Given a coupling function ψ, Algorithm 2 gives the
coupled transition from the current pair of partitions
(X,Y ) to another pair (X̃, Ỹ ). Repeating this algorithm
guarantees the first required property from the Jacob

et al. [2020] construction in Section 2.3: co-evolution of
the two chains with correct marginal distributions. It
remains to show that we can construct an appropriate
coupling function and that the chains meet (quickly).

Input: Target pΠ. Coupling function ψ. Current
partitions X and Y .

1 X̃ ← X, Ỹ ← Y
2 for n← 1 to N do

3 γ ← ψ(pΠ, n, X̃, Ỹ )

4 (X̃, Ỹ ) ∼ γ
5 end

6 Return X̃, Ỹ
Algorithm 2: Coupled Gibbs Sweep

3.2 An Optimal Transport Coupling

We next detail our choice of coupling function; namely,
we start from an optimal transport (OT) coupling
and add a nugget term for regularity. For a dis-
tance d between partitions, the OT coupling function
ψOT = ψOT(pΠ, n,X, Y ) minimizes the expected dis-
tance between partitions after one coupled Gibbs step
given partitions X,Y and leave-out index n. Using the
notation of Sections 2.4 and 3.1, we define

ψOT := arg min
couplings γ

K∑
k=1

K′∑
k′=1

uk,k
′
d(πk, νk

′
). (4)

To complete the specification of ψOT, we choose a
metric d on partitions that was introduced by Mirkin
and Chernyi [1970] and Rand [1971]:

d(π, ν) =
∑
A∈π
|A|2+

∑
B∈ν
|B|2−2

∑
A∈π,B∈ν

|A∩B|2. (5)

Observe that d(π, ν) is zero when π = ν. More gen-
erally, we can construct a graph from a partition by
treating the indices in [N ] as vertex labels and assign-
ing any two indices in the same partition element to
share an edge; then d/2 is equal to the Hamming dis-
tance between the adjacency matrices implied by π
and ν [Mirkin and Chernyi, 1970, Theorems 2–3]. The
principal trait of d for our purposes is that d steadily
increases as π and ν become more dissimilar. In Ap-
pendix I, we discuss other potential metrics and show
that an alternative with similar qualitative behavior
yields essentially equivalent empirical results.

In practice, any standard optimal transport1 solver can

1We note that the optimization problem defining Equa-
tion (4) is an exact transport problem, not an entropically-
regularized transport problem [Cuturi, 2013]. Hence the
marginal distributions defined by ψOT automatically match
the inputs pΠ|Π(−n)(· |X(−n)) and pΠ|Π(−n)(· |Y (−n)),
without need of post-processing.
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be used in ψOT, and we discuss our particular choice
in more detail in Section 4.2. To prove unbiasedness
of a coupling (Theorem 1), it is convenient to ensure
that every joint setting of (X,Y ) is reachable from
every other joint setting in the sampler. As we discuss
after Theorem 1 and in Appendix C, adding a small
nugget term to the coupling function accomplishes this
goal. To that end, define the independent coupling
ψind to have atom size uk,k

′
= akbk′ at (πk, νk

′
). Let

η ∈ (0, 1). Then our final coupling function ψOT
η =

ψOT
η (pΠ, n,X, Y ) equals{
ψOT(X,X) if X = Y

(1− η)ψOT(X,Y ) + ηψind(X,Y ) else,
(6)

where we elide the dependence on pΠ, n for readability.
In practice, we set η to 10−5, so the behavior of ψOT

η

is dominated by ψOT.

As a check, notice that when two chains first meet, the
behavior of ψOT

η reverts to that of ψOT. Since there is
a coupling with expected distance zero, that coupling
is chosen as the minimizer in ψOT. Therefore, the two
chains remain faithful going forward.

3.3 Extension To Other Samplers

With ψOT
η , we can also couple samplers that use Gibbs

sampling as a sub-routine; to illustrate, we next de-
scribe a coupling for a split-merge sampler [Jain and
Neal, 2004]. Split-merge samplers pair a basic Gibbs
sweep with a Metropolis-Hastings (MH) move designed
to facilitate larger-scale changes across the clustering.
In particular, the MH move starts from partition X
by selecting a pair of distinct data indices (i, j) uni-
formly at random. If i and j belong to the same
cluster, the sampler proposes to split this cluster. Oth-
erwise, the sampler proposes to merge together the
two clusters containing i and j. The proposal is ac-
cepted or rejected in the MH move. For our purposes,
we summarize the full move, including proposal and
acceptance but conditional on the choice of i and j,
as X̃ ∼ SplitMerge(i, j,X). One iteration of the split-
merge sampler is identical to Algorithm 1, except that
between lines 1 and 2 of Algorithm 1, we sample (i, j)

and perform SplitMerge(i, j, X̃).

Algorithm 3 shows our coupling of a split-merge sam-
pler. We use the same pair of indices (i, j) in the
split-merge moves across both the X and Y chains. We
use ψOT

η to couple at the level of the Gibbs sweeps.

Gibbs samplers and split-merge samplers offer differ-
ing strengths and weaknesses. For instance, the MH
move may take long to finish; Algorithm 1 might run
for more iterations in the same time, potentially pro-
ducing better estimates sooner. The MH move is also

Input: Target probability mass function (p.m.f.)
pΠ. Current partitions X and Y .

Output: X̃, Ỹ
1 X̃ ← X, Ỹ ← Y
2 (i, j)← Uniformly random pair of data indices

3 X̃ ∼ SplitMerge(i, j, X̃)

4 Ỹ ∼ SplitMerge(i, j, Ỹ )
5 for n← 1 to N do

6 γ ← ψOT
η (pΠ, n, X̃, Ỹ )

7 (X̃, Ỹ ) ∼ γ
8 end

9 Return X̃, Ỹ
Algorithm 3: Coupled Gibbs Sweep with Split–
Merge Move

more complex and thus potentially more prone to er-
rors in implementation. In what follows, we consider
both samplers; we compare our coupling to naive par-
allelism for Gibbs sampling in Section 5, and we make
the analogous comparison for split-merge samplers in
Appendix J.

3.4 Variance Reduction Via Trimming

We have described how to generate a single estimate of
H∗ from Equation (2); in practice, on the jth processor,
we run chains Xj and Y j to compute H`:m(Xj , Y j).
It remains to decide how to aggregate the observations
{H`:m(Xj , Y j)}Jj=1 across J processors.

A natural option is to report the sample mean,
1
J

∑J
j=1H`:m(Xj , Y j). If each individual estimate is

unbiased, the squared error of the sample mean de-
creases to zero at rate 1/J . And standard confidence
intervals have asymptotically correct coverage.

For finite J , though, there may be outliers that drive
the sample mean far from H∗. To counteract the
effect of outliers and achieve a lower squared error, we
also report a classical robust estimator: the trimmed
mean [Tukey and McLaughlin, 1963]. Recall that for
α ∈ (0, 0.5), the α-trimmed mean is the average of
the observations between (inclusive) the 100α quantile
and the 100(1− α) quantile of the observed data. The
trimmed mean is asymptotically normally distributed
[Bickel, 1965, Stigler, 1973] and provides sub-Gaussian
confidence intervals [Lugosi and Mendelson, 2019]. See
Appendix F for more discussion on the trimmed mean.

4 THEORETICAL RESULTS

To verify that our coupling is useful, we need to check
that it efficiently returns accurate estimates. We first
check that the coupled estimate H`:m(X,Y ) at a single
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processor is unbiased – so that aggregated estimates
across processors can exhibit arbitrarily small squared
loss. Second, we check that there is no undue compu-
tational cost of coupling relative to a single chain.

4.1 Unbiasedness

Jacob et al. [2020, Assumptions 1–3] give sufficient con-
ditions for unbiasedness of Equation (2). We next use
these to establish sufficient conditions that H`:m(X,Y )
is unbiased when targeting a DPMM posterior.

Theorem 1 (Sufficient Conditions for Unbiased
Estimation) Let pΠ be the DPMM posterior in Sec-
tion 2.1. Assume the following two conditions on ψ.

(1) There exists ε > 0 such that for all n ∈ [N ] and
for all X,Y ∈ PN such that X 6= Y , the output γ of
the coupling function ψ satisfies

∀k ∈ [K] and k′ ∈ [K ′], uk,k
′
≥ ε. (7)

(2) If X = Y , then the output coupling γ of ψ sat-

isfies γ(X̃ = Ỹ ) = 1; i.e. the coupling is faithful.
Then, the estimator in Equation (2) constructed from
Algorithm 2 is an unbiased estimator for H∗. Further-
more, Equation (2) has a finite variance and a finite
expected computing time.

We prove Theorem 1 in Appendix C. Our proof ex-
ploits the discreteness of the sample space to ensure
chains meet. Condition (1) roughly ensures that any
joint state in the product space is reachable from any
other joint state under the Gibbs sweep; we use it to
establish that the meeting time τ has sub-geometric
tails. Condition (2) implies that the Markov chains are
faithful once they meet.

Corollary 1 Let pΠ be the DPMM posterior. The
Equation (2) estimator using Algorithm 2 with coupling
function ψOT

η (pΠ, n,X, Y ) is unbiased for H∗.

Proof It suffices to check Theorem 1’s conditions. We
show ψOT

η is faithful at the end of Section 3.2. For a
partition, the associated leave-out distributions place
positive mass on all K accessible atoms, so marginal
transition probabilities are lower bounded by some
ω > 0. The nugget guarantees each uk,k

′ ≥ ηω2 > 0.

Note that the introduction of the nugget allows us to
verify the first condition of Theorem 1 is met without
relying on properties specific to the optimal transport
coupling. We conjecture that one could analogously
show unbiased estimates may be obtained using cou-
plings of Markov chains defined in the label space by
introducing a similar nugget to transitions on this al-
ternative state space. Crucially, though, we will see
in Section 5.3 that our coupling in the partition space

exhibits much faster meeting times in practice than
these couplings in the label space.

4.2 Time Complexity

The accuracy improvements of our method can be
achieved only if the compute expense of coupling is not
too high relative to single-chain Gibbs. In Section 5.2,
we show empirically that our method outperforms naive
parallel samplers run for the same wall time. Here we
use theory to describe why we expect this behavior.

There are two key computations that must happen in
any coupling Gibbs step within a sweep:
(1) computing the atom sizes ak, bk′ and atom locations
πk, νk

′
in the sense of Definition 1 and Definition 2;

(2) computing the pairwise distances d(πk, νk
′
); and

solving the optimal transport problem (Equation (4)).

Let β(N,K) represent the time it takes to compute
the Gibbs conditional pΠ|Π(−n) for a partition of size

K, and let K̃ represent the size of the largest partition
visited in any chain, across all processors, while the
algorithm runs. Then part (1) takes O(β(N, K̃)) time
to run. For single chains, computing atom sizes and
locations dominates the compute time; the computa-
tion required is of the same order, but is done for one
chain, rather than two, on each processor. We show
in Proposition 1 in Appendix D that part (2) can be

computed in O(K̃3 log K̃) time. Proposition 1 follows
from efficient use of data structures; naive implementa-
tions are more computationally costly. Note that the
total running time for a full Gibbs sweep (Algorithm 1
or Algorithm 2) will be N times the single-step cost.

The extra cost of a coupling Gibbs step will be small
relative to the cost of a single-chain Gibbs step, then,
if O(K̃3 log K̃) is small relative to O(β(N, K̃)).2 As an
illustrative example, consider again the DPMM appli-
cation from Section 2.1. We start with a comparison
that we suspect captures typical operating procedure,
but we also consider a worst-case comparison.
Standard comparison: The direct cost of a stan-
dard Gibbs step is β(N,K) = O(ND + KD3) (see
Proposition 2 in Appendix D). By Equation 3.24 in
Pitman [2006], the number of clusters in a DPMM
grows a.s. as O(logN) as N → ∞.3 If we take

2We show in Appendix D that, while there are also
initial setup costs before running any Gibbs sweep, these
costs do not impact the amortized complexity.

3Two caveats: (1) If a Markov chain is run long enough,
it will eventually visit all possible cluster configurations.
But if we run in finite time, it will not have time to explore
every collection of clusters. So we assume O(logN) is a
reasonable approximation of finite time. (2) Also note
that the logN growth is for data generated from a DPMM
whereas in real life we cannot expect data are perfectly
simulated from the model.
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K̃ = O(logN), O(K̃3 log K̃) will generally be smaller
than β(N,K) = O(ND + KD3) for sufficiently large
N .
Worst-case comparison: The complexity of a
DPMM Gibbs step can be reduced to β(N,K) =
O(KD + D3) through careful use of data structures
and conditional conjugacy (see Proposition 2 in Ap-

pendix D). Still, the coupling cost O(K̃3 log K̃) is not

much larger than the cost of this step whenever K̃ is
not much larger than D.

For our experiments, we run the standard rather than
optimized Gibbs step due to its simplicity and use
in existing work [e.g. de Valpine et al., 2017]. In e.g.
our gene expression experiment with D = 50, we ex-
pect this choice has little impact on our results. Our
Proposition 1 establishing O(K̃3 log K̃) for the optimal
transport solver applies to Orlin’s algorithm [Orlin,
1993]. However, convenient public implementations are
not available. So instead we use the simpler network
simplex algorithm [Kelly and O’Neill, 1991] as imple-
mented by Flamary et al. [2021]. Although Kelly and
O’Neill [1991, Section 3.6] upper bound the worst-case

complexity of the network simplex as O(K̃5), the algo-
rithm’s average-case performance may be as good as
O(K̃2) [Bonneel et al., 2011, Figure 6].

5 EMPIRICAL RESULTS

We now demonstrate empirically that our OT coupling
(1) gives more accurate estimates and confidence in-
tervals for the same wall time and processor budget
as naive parallelism and (2) meets much faster than
label-based couplings.

5.1 Models, Datasets, And Implementation

We run samplers for both clustering and graph coloring
problems, which we describe next. We detail our con-
struction of ground truth, sampler initialization, and
algorithm hyperparameters (` and m) in Appendix G.2.

Motivating examples and target models. For
clustering, we use single-cell RNA sequencing data
[Prabhakaran et al., 2016], X-ray data of agricultural
seed kernels [Charytanowicz et al., 2010, Dua and Graff,
2017], physical measurements of abalone [Nash et al.,
1994, Dua and Graff, 2017], and synthetic data from
a Gaussian mixture model. In each case, our target
model is the Bayesian posterior over partitions from
the DPMM. For graph colorings, sampling from the
uniform distribution on k-colorings of graphs is a key
sub-routine in fully polynomial randomized approxi-
mation algorithms. And it suffices to sample from the
partition distribution induced by the uniform distribu-
tion on k-colorings, which serves as our target model;

see Appendix G.1 for details.

Summaries of interest. Our first summary is the
mean proportion of data points in the largest cluster;
we write LCP for “largest component proportion.” See,
e.g., Liverani et al. [2015] for its use in Bayesian analysis.
Our second summary is the co-clustering probability;
we write CC(a, b) for the probability that data points
indexed by a and b belong to the same cluster. See,
e.g., DeFord et al. [2021] for its use in redistricting. In
Appendix M, we also report a more complex summary:
the posterior predictive distribution, which is a quantity
of interest in density estimation [Görür and Rasmussen,
2010, Escobar and West, 1995].

Dataset details. Our synthetic dataset has 300
observations and 2 covariates. Our gene dataset origi-
nates from Zeisel et al. [2015] and was previously used
by Prabhakaran et al. [2016] in a DPMM-based anal-
ysis. We use a subset with 200 observations and 50
covariates to allow us to quickly iterate on experiments.
We use the unlabeled version of the seed dataset from
Charytanowicz et al. [2010], Dua and Graff [2017] with
210 observations and 7 covariates. For the abalone
dataset from Nash et al. [1994], Dua and Graff [2017],
we remove the labels and binary features, which yields
4177 observations and 7 covariates. For graph data
(k-regular), we use a 4-regular graph with 6 vertices;
we target the partition distribution induced by the
uniform distribution on 4-colorings.

5.2 Improved Accuracy With Coupling

In Figure 2, we first show that our coupling estimates
and confidence intervals offer improved accuracy over
naive parallelism. To the best of our knowledge, no
previous coupling paper as of this writing has compared
coupling estimates or confidence intervals to those that
arise from naively parallel chains.

Processor setup. We give both coupling and naively
parallel approaches the same number of processors J .
We ensure equal wall time across processors as we de-
scribe next; this setup represents a computing system
where, e.g., the user pays for total wall time, in which
case we ensure equal cost between approaches. For the
coupling on the jth processor, we run until the chains
meet and record the total time ξj . In the naively paral-
lel case, then, we run a single chain on the jth processor
for time ξj . In either case, each processor returns an
estimate of H∗. We can aggregate these estimates with
a sample mean or trimmed estimator. Let Hc,J repre-
sent the coupled estimate after aggregation across J
processors and Hu,J represent the naive parallel (un-
coupled) estimate after aggregation across J processors.
To understand the variability of these estimates, we

replicate them I times: {H(i)
c,J}Ii=1 and {H(i)

u,J}Ii=1. In
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Figure 2: Top row and bottom row give results for gene and k-regular, respectively. The first two columns
show that coupled chains provide better point estimates than naive parallelism. The third column shows that
confidence intervals based on coupled chains are better than those from naive parallelism. The fourth column
shows that OT coupling meets in less time than label-based couplings.

particular, we simulate running on 180,000 processors,
so for each J , we let I = 180,000/J ; see Appendix G.2
for details. For the ith replicate, we compute squared

error ec,i := (H
(i)
c,J −H∗)2; similarly in the uncoupled

case.

Better point estimates. The upper left panel of Fig-
ure 2 shows the behavior of LCP estimates for gene.
The horizontal axis gives the number of processes J .
The vertical value of any solid line is found by taking
the square root of the median (across I replicates) of
the squared error and then dividing by the (positive)
ground truth. Blue shows the performance of the aggre-
gated standard-mean coupling estimate; red shows the
naive parallel estimate. The blue regions show the 20%
to 80% quantile range. We can see that, at higher num-
bers of processors, the coupling estimates consistently
yield a lower percentage error than the naive parallel
estimates for a shared wall time. The difference is even
more pronounced for the trimmed estimates (first row,
second column of Figure 2); here we see that, even at
smaller numbers of processors, the coupling estimates
consistently outperform the naive parallel estimates for
a shared wall time. We see the same patterns for esti-
mating CC(2,4) in k-regular (second row, first two
columns of Figure 2) and also for synthetic, seed,
and abalone in Figures 7a, 8a and 9a in Appendix H.
We see similar patterns in the root mean squared error
across replicates in Figure 1 (which pertains to gene)
and the left panel of Figures 7b, 8b, 9b and 11b for the
remaining datasets.

Figure 3 illustrates that the problem with naive paral-
lelism is the bias of the individual chains, whereas only

Figure 3: Coupled-chain estimates have large outliers.
Meanwhile, naive parallelism estimates have substantial
bias that does not go away with replication.

variance is eliminated by parallelism. In particular, the
histogram on the right depicts the J estimates returned
across each uncoupled chain at each processor j. We
see that the population mean across these estimates
is substantially different from the ground truth. This
observation also clarifies why trimming does not benefit
the naive parallel estimator: trimming can eliminate
outliers but not systematic bias across processors.

By contrast, we plot the J coupling estimates returned
across each processor j as horizontal coordinates of
points in the left panel of Figure 3. Vertical coordinates
are random noise to aid in visualization. By plotting
the 1% and 99% quantiles of the J estimators, we can
see that trimming will eliminate a few outliers. But the
vast majority of estimates concentrate near the ground
truth.
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Better confidence intervals. The third column of
Figure 2 shows that the confidence intervals returned
by coupling are also substantially improved relative to
naive parallelism. The setup here is slightly different
from that of the first two columns. For the first two
columns, we instantiated many replicates of individual
users and thereby checked that coupling generally can
be counted upon to beat naive parallelism. But, in
practice, an actual user would run just a single replicate.
Here, we evaluate the quality of a confidence interval
that an actual user would construct. We use only
the individual estimates sj that make up one Hc,J ,
sj = H`:m(Xj , Y j) (or the equivalent for Hu,J ), to form
a point estimate of H∗ and a notion of uncertainty.

In the third column of Figure 2, each solid line shows
the sample-average estimate aggregated across J pro-
cessors: (1/J) ×

∑J
j=1 sj . The error bars show ±2

standard errors of the mean (SEM), where one SEM

equals
√

Var({sj}Jj=1)/(J − 1). Since the individual

coupling estimators (blue) from each processor j are
unbiased, we expect the error bars to be calibrated,
and indeed we see appropriate coverage of the ground
truth (dashed black line). By contrast, we again see
systematic bias in the naive parallel estimates – and
very-overconfident intervals; indeed they are so small
as to be largely invisible in the top row of the third
column of Figure 2 – i.e., when estimating LCP in the
gene dataset. The ground truth is many standard er-
rors away from the naive parallel estimates. We see the
same patterns for estimating CC(2,4) for k-regular
(second row, third column of Figure 2). See the right
panel of Figures 7b, 8b and 9b in Appendix H for
similar behaviors in synthetic, seed, and abalone.

5.3 Faster Meeting With OT Couplings

Next we show that meeting times with our OT coupling
on partitions are faster than with label-based coupling
using maximal [Jerrum, 1998] and common random
number generator (common RNG) [Gibbs, 2004]. We
did not directly add a comparison with label-based
couplings to our plots in Section 5.2 since, in many
cases, the label-based coupling chains fail to meet al-
together even with a substantially larger time budget
than Section 5.2 currently uses.

Instead, we now provide a direct comparison of meeting
times in the fourth column of Figure 2. To generate
each figure, we set a fixed amount of compute time
budget: 10 minutes for the top row, and 2 minutes
for the bottom row. Each time budget is roughly the
amount of time taken to generate the ground truth (i.e.,
the long, single-chain runs) for each dataset. If during
that time a coupling method makes the two chains meet,
we record the meeting time τ ; otherwise, the meeting

time for that replica is right-censored, and we record
the number of data sweeps up to that point. Using
the censored data, we estimate the survival functions
of the meeting times using the classic Kaplan–Maier
procedure [Kaplan and Meier, 1958].

In the clustering examples (Figure 2 top row, fourth
column and also the left panel of Figures 7c, 8c and 9c
in Appendix H), the label-based couplings’ survival
functions Pr(τ > t) do not go to zero for large times t,
but instead they plateau around 0.1. In other words,
the label-based coupling chains fail to meet on about
10% of attempts. Meanwhile, all replicas with our
OT coupling successfully meet in the allotted time.
Since so many label-based couplings fail to meet before
the time taken to generate the ground truth, these
label-based couplings perform worse than essentially
standard MCMC. In addition to survival functions,
we also plot the distance between coupled chains –
which decreases the fastest for our OT couplings – in
the right panel of Figures 6c, 7c, 8c, 9c and 11c in
Appendix H. As discussed in Appendix E, we believe
the improvement of our OT coupling over baselines
arises from using a coupling function that incentivizes
decreasing the distance between partitions rather than
between labelings.

Separate from accurate estimation in little time, our
comparison of survival functions in the bottom row,
fourth column of Figure 2 and in Figure 19 from Ap-
pendix L is potentially of independent interest. While
the bottom row of Figure 2 gives results for k-regular,
Figure 19 gives results on Erdős-Rényi random graphs.
The tightest bounds for mixing time for Gibbs samplers
on graph colorings to date [Chen et al., 2019] rely on
couplings on labeled representations. Our result sug-
gests better bounds may be attainable by considering
convergence of partitions rather than labelings.

6 CONCLUSION

We demonstrated how to efficiently couple partition-
valued Gibbs samplers using optimal transport – to
take advantage of parallelism for improved estimation.
Multiple directions show promise for future work. E.g.,
while we have used CPUs in our experiments here,
we expect that GPU implementations will improve
the applicability of our methodology. More extensive
theory on the trimmed estimator could clarify its guar-
antees and best practical settings. Another direction
is developing couplings for models with more compli-
cated combinatorial structure – such as topic modeling
Pritchard et al. [2000], Blei et al. [2003] or feature al-
locations [Griffiths and Ghahramani, 2011], in which
data indices can belong to more than one latent group
at a time.
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d’Eté de Probabilités de Saint-Flour XXXII-2002.
Springer, 2006.

Sandhya Prabhakaran, Elham Azizi, Ambrose Carr,
and Dana Pe’er. Dirichlet process mixture model
for correcting technical variation in single-cell gene
expression data. In International Conference on
Machine Learning, 2016.

Jonathan K Pritchard, Matthew Stephens, and Peter
Donnelly. Inference of Population Structure Using
Multilocus Genotype Data. Genetics, 155(2):945–
959, 06 2000.

James Gary Propp and David Bruce Wilson. Exact
sampling with coupled Markov chains and applica-
tions to statistical mechanics. Random Structures &
Algorithms, 9(1-2):223–252, 1996.

Maxim Rabinovich, Elaine Angelino, and Michael I Jor-
dan. Variational consensus monte carlo. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc., 2015.

William M. Rand. Objective criteria for the evaluation
of clustering methods. Journal of the American
Statistical Association, 66(336):846–850, 1971.

Albert Reuther, Jeremy Kepner, Chansup Byun,
Siddharth Samsi, William Arcand, David Bestor,
Bill Bergeron, Vijay Gadepally, Michael Houle,
Matthew Hubbell, Michael Jones, Anna Klein, Lau-
ren Milechin, Julia Mullen, Andrew Prout, Antonio
Rosa, Charles Yee, and Peter Michaleas. Interactive
supercomputing on 40,000 cores for machine learning
and data analysis. In 2018 IEEE High Performance
extreme Computing Conference (HPEC), pages 1–6.
IEEE, 2018.



Many Processors, Little Time: MCMC for Partitions via Optimal Transport Couplings

Steven L Scott, Alexander W Blocker, Fernando V
Bonassi, Hugh A Chipman, Edward I George, and
Robert E McCulloch. Bayes and big data: The
consensus Monte Carlo algorithm. International
Journal of Management Science and Engineering
Management, 11(2):78–88, 2016.

Sanvesh Srivastava, Cheng Li, and David B. Dunson.
Scalable Bayes via barycenter in Wasserstein space.
The Journal of Machine Learning Research, 19(1):
312–346, 2018.

Stephen M. Stigler. The Asymptotic Distribution of
the Trimmed Mean. The Annals of Statistics, 1(3):
472 – 477, 1973.

Stephen M. Stigler. The 1988 Neyman Memorial Lec-
ture: A Galtonian Perspective on Shrinkage Estima-
tors. Statistical Science, 5(1):147–155, 1990.

Robert H. Swendsen and Jian-Sheng Wang. Replica
Monte Carlo simulation of spin-glasses. Physical
Review Letters, 57(21):2607, 1986.

Andrea Tancredi, Rebecca Steorts, and Brunero Liseo.
A Unified Framework for De-Duplication and Popu-
lation Size Estimation (with Discussion). Bayesian
Analysis, 15(2):633 – 682, 2020.

John W. Tukey and Donald H. McLaughlin. Less
vulnerable confidence and significance procedures
for location based on a single sample: Trim-
ming/winsorization 1. Sankhyā: The Indian Journal
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A RELATED WORK

Couplings of Markov chains have a long history in MCMC. Historically, they have primarily been a theoretical
tool for analyzing convergence of Markov chains (see e.g. Lindvall [2002] and references therein). Some works prior
to Jacob et al. [2020] used coupled Markov chains for computation, but do not provide guarantees of consistency
in the limit of many processes or are not generally applicable to Markov chains over partitions. E.g., Propp and
Wilson [1996] and follow-up works generate exact, i.i.d. samples but require a partial ordering of the state space
that is almost surely preserved by applications of an iterated random function representation of the Markov
transition kernel [Jacob, 2020, Chapter 4.4]. It is unclear what such a partial ordering looks like for the space
of partitions. Neal [1992] proposes estimates obtained using circularly coupled chains that can be computed in
parallel and aggregated, but these estimates are not unbiased and so aggregated estimates are not asymptotically
exact. Parallel tempering methods [Swendsen and Wang, 1986] also utilize coupled chains to improve MCMC
estimates but, like naive parallelism, provide guarantees asymptotic only in the number of transitions, not in the
number of processes.

Outside of couplings, other lines of work have sought to utilize parallelism to obtain improved MCMC estimates
in limited time. To our best knowledge, that work has focused on challenges introduced by large datasets and has
subsequently focused on distributing datasets across processors. For example, Rabinovich et al. [2015], Scott et al.
[2016], Srivastava et al. [2018] explore methods running multiple chains in parallel on small subsets of a large
dataset, and Lao et al. [2020] proposes using data parallelism on GPUs to accelerate likelihood computations.
However, these methods offer little help in the current setting as the partition is the quantity of interest in our
case; even if distributions over partitions of subsets are found at each processor, these distributions are not trivial
to combine across processors. Also, the operations that avail themselves to GPU acceleration (such as matrix
multiplications) are not immediately present in Markov chains on partitions.

B FUNCTIONS OF INTEREST

We express functions of interest, h, in partition notation. Suppose there are N observations, and the partition is
Π = {A1, A2, . . . , AK}. To compute largest component proportion (LCP), we first rank the clusters by decreasing
size, |A(1)| ≥ |A(2)| ≥ . . . ≥ |A(K)|, and report the proportion of data in the largest cluster: |A(1)|/N . If we are
interested in the co-clustering probability of data points indexed by j1 and j2, then we let h be the co-clustering
indicator. Namely, if j1 and j2 belong to the same element of Π (i.e. there exists some A ∈ Π such that j1, j2 ∈ A),
then h(Π) equals 1; otherwise, it equals 0.

In addition to these summary statistics of the partition, we can also estimate cluster-specific parameters, like
cluster centers. For the Gaussian DPMM from Section 2.1, suppose that we care about the mean of clusters
that contain a particular data point, say data point 1. This expectation is E(µA s.t. 1 ∈ A). This is equivalent
to E[θi |x] in the notation of MacEachern [1994]. In Section 2.1, we use µA to denote the cluster center for all
elements i ∈ A, while MacEachern [1994] uses individual θi’s to denote cluster centers for individual data points,
with the possibility that θi = θj if data points i and j belong in the same partition element. We can rewrite the
expectation as E(E[µA s.t. 1 ∈ A |Π]), using the law of total expectation. E[µA s.t. 1 ∈ A |Π] is the posterior
mean of the cluster that contains data point 1, which is a function only of the partition Π.

C UNBIASEDNESS THEOREM

Lemma 1 (Transition kernel is aperiodic and irreducible for Gaussian DPMM) Denote by 1 the
partition of [N ] where all elements belong to one cluster. For Gaussian DPMM, the transition kernel from
Algorithm 1 satisfies

• For any X ∈ PN , T (X,X) > 0.

• For any X ∈ PN , T (X,1) > 0.

• For any X ∈ PN , T (1, X) > 0.

Proof [Proof of Lemma 1] For any starting X ∈ PN , we observe that there is positive probability to stay at the
state after the T (X, ·) transition i.e. T (X,X) > 0. In Gaussian DPMM, because the support of the Gaussian
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distribution is the whole Euclidean space (see also Equation (14)), when the nth data point is left out (resulting
in the conditional pΠ|Π(−n)(· |X−n)), there is positive probability that nth is re-inserted into the same partition
element of X i.e. pΠ|Π(−n)(X |X−n) > 0. Since T (X, ·) is the composition of these N leave–outs and re-inserts,
the probability of staying at X is the product of the probabilities for each pΠ|Π(−n)(· |X−n)), which is overall a
positive number.

One series of updates that transform X into 1 in one sweep is to a) assign 1 to its own cluster and b) assign
2, 3, . . . , N to the same cluster as 1. This series of update also has positive probability in Gaussian DPMM.

On transforming 1 into X, for each component A in X, let c(A) be the smallest element in the component. For
instance, if X = {{1, 2}, {3, 4}} then c({1, 2}) = 1, c({3, 4}) = 3. We sort the components A by their c(A), to get
a list c1 < c2 < . . . < c|X|. For each 1 ≤ n ≤ N , let l(n) = c(A) for the component A that contains n. In the
previous example, we have c1 = 1 and c2 = 3, while l(1) = 1, l(2) = 1, l(3) = 3, l(4) = 3. One series of updates
that transform 1 into X is

• Initialize j = 1.

• for 1 ≤ n ≤ N , if n = cj , then make a new cluster with n and increment j = j + 1. Else, assign n to the cluster
that currently contains l(n).

This series of update also has positive probability in Gaussian DPMM.

Proof [Proof of Theorem 1]

Because of Jacob et al. [2020, Proposition 3], it suffices to check Jacob et al. [2020, Assumptions 1–3].

Checking Assumption 1. Because the sample space PN is finite, maxπ∈PN
h(π) is finite. This means the

expectation of any moment of h under the Markov chain is also bounded. We show that E[h(Xt)]
t→∞−−−→ H∗ by

standard ergodicity arguments.4

• Aperiodic. From Lemma 1, we know T (X,X) > 0 for any X. This means the Markov chain is aperiodic [Levin
and Peres, 2017, Section 1.3].

• Irreducible. From Lemma 1, for any X,Y , we know that T (X,1) > 0 and T (1, Y ) > 0, meaning that
T 2(X,Y ) > 0. This means the Markov chain is irreducible.

• Invariant w.r.t. pΠ. The transition kernel T (X, ·) from Algorithm 1 leaves the target pΠ invariant because
each leave–out conditional pΠ|Π(−n) leaves the target pΠ invariant. If X ∼ pΠ, then X−n ∼ pΠ−n

. Hence, if

X̃ |X ∼ pΠ|Π(−n)(· |X−n) then by integrating out X, we have X̃ ∼ pΠ.

By Levin and Peres [2017, Theorem 4.9], there exists a constant α ∈ (0, 1) and C > 0 such that

max
π∈PN

‖T t(π, ·)− pΠ‖TV ≤ Cαt.

Since the sample space is finite, the total variation bound implies that for any π, expectations under T t(π, ·) are
close to expectations under pΠ,

max
π∈PN

|EXt |X0=πh(Xt)−H∗| ≤ ( max
π∈PN

h(π))Cαt.

Taking expectations over the initial condition X0 = π,

|EXth(Xt)−H∗| = |EX0 [EXt |X0=πh(Xt)−H∗]| ≤ EX0 |EXt |X0=πh(Xt)−H∗]| ≤ ( max
π∈PN

h(π))Cαt.

Since the right hand side goes to zero as t→∞, we have shown that E[h(Xt)]
t→∞−−−→ H∗.

4MacEachern [1994, Theorem 1] states a geometric ergodicity theorem for the Gibbs sampler like Algorithm 1 but does
not provide verification of the aperiodicity, irreducibility or stationarity.



Tin D. Nguyen, Brian L. Trippe, Tamara Broderick

Checking Assumption 2. To show that the meeting time is geometric, we show that there exists ε such that
for any X and Y , under one coupled sweep from Algorithm 2 ((X̃, Ỹ ) ∼ T̂ (·, (X,Y ))),

P(X̃ = Ỹ = 1 |X,Y ) ≥ ε. (8)

If this were true, we have that P(X̃ = Ỹ |X,Y ) ≥ ε, and

P(τ > t) = P
(
∩ti=0X

i+1 6= Y i
)

= P(X1 6= Y 0)

t∏
i=1

P(Xi+1 6= Y i |Xi 6= Y i−1),

where we have used the Markov property to remove conditioning beyond Xi 6= Y i−1. Since minX,Y P(X̃ =

Ỹ |X,Y ) ≥ ε, P(Xi+1 6= Y i |Xi 6= Y i−1) ≤ 1− ε, meaning P(τ > t) ≤ (1− ε)t.

To see why Equation (8) is true, because of Lemma 1, there exists a series of intermediate partitions x1, x2, . . . , xN−1

(x0 = X,xN = 1) such that for 1 ≤ n ≤ N , pΠ|Π(−n)(x
n |xn−1

n ) > 0. Likewise, there exists a series y1, y2, . . . , yN−1

for Y. Because the coupling function ψ satisfies uij > ε, for any n, there is at least probability ε of transitioning to
(xn, yn) from (xn−1, yn−1). Overall, there is probability at least εN of transitioning from (X,Y ) to (1,1). Since
the choice of X,Y has been arbitrary, we have proven Equation (8) with ε = εN .

Checking Assumption 3. By design, the chains remain faithful after coupling.

D TIME COMPLEXITY

Proposition 1 Given the atom sizes ak, bk′ and atom locations πk, νk
′

in the sense of Definition 2, we can
compute the coupling matrix µk,k

′
for OT coupling function in O(K̃3 log K̃) time.

Proof [Proof of Proposition 1] To find µk,k
′
, we need to solve the optimization problem that is Equation (4).

However, given just the marginal distributions (ak, bk′ and πk, νk
′
), we do not have enough “data” in the

optimization problem, since the pairwise distances d(πk, νk
′
) for k ∈ [K], k′ ∈ [K ′], which define the objective

function, are missing. We observe that it is not necessary to compute d(πk, νk
′
); it suffices to compute d(πk, νk

′
)−c

for some constant c in the sense that the solution to the optimization problem in Equation (4) is unchanged when

we add a constant value to every distance. In particular, because for any coupling γ,
∑K
k=1

∑K′

k′=1 u
k,k′ = 1,

γ∗ := arg min
couplings γ

K∑
k=1

K′∑
k′=1

uk,k
′
d(πk, νk

′
) = arg min

couplings γ

K∑
k=1

K′∑
k′=1

uk,k
′
[d(πk, νk

′
)− c]. (9)

We now show that if we set c = d(π(−n), ν(−n)), then we can compute all O(K̃2) values of d(πk, νk
′
) − c in

O(K̃2) time. First, if we use Akn and Bk
′

n to denote the elements of πk and νk
′

respectively, containing data-point
n, then for any n we may write

d(πk, νk
′
) = d(π(−n), ν(−n)) +

[
|Akn|2 − (|Akn| − 1)2

]
+
[
|Bk

′

n |2 − (|Bk
′

n | − 1)2
]

+

− 2
[
|Akn ∩Bk

′

n |2 − (|Akn ∩Bk
′

n |2 − 1)2
]
.

(10)

Simplifying some terms, we can also write

d(πk, νk
′
) = d(π(−n), ν(−n)) +

[
2|Akn| − 1

]
+
[
2|Bk

′

n | − 1
]
− 2

[
2|Akn ∩Bk

′

n | − 1
]

= d(π(−n), ν(−n)) + 2
[
|Akn|+ |Bk

′

n | − 2|Akn ∩Bk
′

n |
]
,

which means

d(πk, νk
′
)− d(π(−n), ν(−n)) = 2

[
|Akn|+ |Bk

′

n | − 2|Akn ∩Bk
′

n |
]
.
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At first it may seem that this still does not solve the problem, as directly computing the size of the set intersections
is O(N) (if cluster sizes scale as O(N)). However, Equation (9) is just our final stepping stone. If we additionally
keep track of sizes of intersections at every step, updating them as we adapt the partitions, it will take only
constant time for each update. As such, we are able to form the K ×K ′ matrix of d(πk, νk

′
)− c in O(K̃2) time.

With the array of d(πk, νk
′
)− d(π(−n), ν(−n)), we now have enough “data” for the optimization problem that is

the optimal transport. Regardless of N , the optimization itself may be computed in O(K̃3 log K̃) time with
Orlin’s algorithm [Orlin, 1993].

The next proposition provides estimates of the time taken to construct the Gibbs conditionals (β(N,K)) for
Gaussian DPMM.

Proposition 2 (Gibbs conditional runtime with dense Σ0, Σ1) Suppose the covariance matrices Σ0

and Σ1 are dense i.e. the number of non-zero entries is Θ(D2). The standard implementation takes time
β(N,K) = O(ND+KD3). By spending O(D3) time precomputing at beginning of sampling, and using additional
data structures, the time can be reduced to β(N,K) = O(KD2 +D3).

Proof [Proof of Proposition 2] We first mention the well-known posterior formula of a Gaussian model with

known covariances [Bishop, 2006, Chapter 2.3]. Namely, if µ ∼ N (µ0,Σ0) and W1,W2, . . .WM |µ
indep∼ N (µ,Σ1)

then µ |W1, . . . ,WM is a Gaussian with covariance Σc and mean µc satisfying

Σc = (Σ−1
0 +MΣ−1

1 )−1

µc = Σc

(
Σ−1

0 µ0 + Σ−1
1

[
M∑
m=1

Wm

])
.

(11)

Suppose |Π| = K. Based on the expressions for the Gibbs conditional in Equation (14), the computational work
involved for a held-out observation Wn can be broken down into three steps

1. Evaluating the prior likelihood N (Wn |µ0,Σ0 + Σ1).

2. For each cluster c ∈ Π(−n), compute µc, Σc, (Σc + Σ1)−1 and the determinant of (Σc + Σ1)−1.

3. For each cluster c ∈ Π(−n), evaluate the likelihood N (Wn |µc,Σc + Σ1).

Standard implementation. The time to evaluate the prior N (Wn |µ0,Σ0 + Σ1) is O(D3), as we need to
compute the precision matrix (Σ0 + Σ1)−1 and its determinant. With time O(KD3), we can compute the various
cluster-specific covariances, precisions and determinants (where D3 is the cost for each cluster). To compute the
posterior means µc, we need to compute the sums

∑
jWj for all clusters, which takes O(ND), as we need to

iterate over all D coordinates of all N observations. The time to evaluate N (Wn |µc,Σc + Σ1) across clusters is
O(KD2). Overall this leads to O(ND +KD3) runtime.

Optimized implementation. By precomputing (Σ0 + Σ1)−1 (and its determinant) once at the beginning
of sampling for the cost of O(D3), we can solve Step 1 in time O(D2), since that is the time to compute the
quadratic form involved in the Gaussian likelihood. Once we have the mean and precisions from Step 2, the time
to complete Step 3 is O(KD2): for each cluster, it takes time O(D2) to evaluate the likelihood, and there are K
clusters. It remains to show how much time it takes to solve Step 2. We note that quantities like Σ−1

0 µ0 and Σ−1
1

can also be computed once in O(D3) time at start up.

Regarding the covariance Σc and the precisions (Σc + Σ1)−1, at all points during sampling, the posterior
covariance Σc only depends on the number of data points in the cluster (Equation (11)), and leaving out data
point n only changes the number of points in exactly one cluster. Hence, if we maintain Σc, (Σc + Σ1)−1

(and their determinants) for all clusters c ∈ Π, when a data point is left out, we only need to update one
such Σc and (Σc + Σ1)−1. Namely, suppose that Π = {A1, A2, . . . , AK}. We maintain the precisions are
(Σ(A1) + Σ1)−1, (Σ(A2) + Σ1)−1, . . . , (Σ(Ak) + Σ1)−1. Let Aj be the cluster element that originally contained n.
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When we leave out data point n to form Π(−n), the only precision that needs to be changed is (Σ(Aj) + Σ1)−1.

Let the new cluster be Ãj : the time to compute Σ(Ãj), (Σ(Ãj) + Σ1)−1, and its determinant is O(D3).

Regarding the means µc, the use of data structures similar to the covariances/precisions removes the apparent
need to do O(ND) computations. If we keep track of

∑
i∈cWi for each cluster c, then when data point n

is left out, we only need to update
∑
i∈cWi for the cluster c that originally contained n, which only takes

O(D). With the
∑
jWj in place, to evaluate each of K means µc takes O(D2); hence the time to compute the

means is O(KD2). Overall, the time spent in Step 2 is O(KD2+D3), leading to an overall O(KD2+D3) runtime.

The standard implementation is used, for instance, in de Valpine et al. [2017] (see the
CRP conjugate dmnorm dmnorm() function from NIMBLE’s source code). Miller and Harrison [2018]
uses the standard implementation in the univariate case (see the Normal.jl function).

Corollary 2 (Gibbs conditional runtime with diagonal Σ0, Σ1) Suppose the covariances Σ0 and Σ1

are diagonal matrices i.e. there are only Θ(D) non-zero entries. Then a standard implementation takes time
β(N,K) = O(ND). Using additional data structures, the time can be reduced to β(N,K) = O(KD).

Proof [Proof of Corollary 2] When the covariance matrices are diagonal, we do not incur the cubic costs of
inverting D ×D matrices. The breakdown of computational work is similar to the proof of Proposition 2.

Standard implementation. The covariances and precision matrices each take only time O(D) to compute:
as there are K of them, the time taken is O(KD). To compute the posterior means µc, we iterate through all
coordinates of all observations in forming the sums

∑
jWj , leading to O(ND) runtime. Time to evaluate the

Gaussian likelihoods are just O(D) because of the diagonal precision matrices. Overall the runtime is O(ND).

Optimized implementation. By avoiding the recomputation of
∑
jWj from scratch, we reduce the time

taken to compute the posterior means to O(KD). Overall the runtime is O(KD).

E LABEL-SWITCHING

E.1 Example 1

Suppose there are 4 data points, indexed by 1,2,3,4. The labeling of the X chain is z1 = [1, 2, 2, 2], meaning
that the partition is {{1}, {2, 3, 4}}. The labeling of the Y chain is z2 = [2, 1, 1, 2], meaning that the partition
is {{1, 4}, {2, 3}}. The Gibbs sampler temporarily removes the data point 4. For both chains, the remaining
data points is partitioned into {{1}, {2, 3}}. We denote π1 = {{1, 4}, {2, 3}}, π2 = {{1}, {2, 3, 4}}, π3 =
{{1}, {2, 3}, {4}}: in the first two partitions, the data point is assigned to an existing cluster while in the last
partition ,the data point is in its own cluster. There exists three positive numbers a1, a2, a3, summing to one,
such that

pΠ|Π(−4)(· |X(−4)) = pΠ|Π(−4)(· |Y (−4)) =

3∑
k=1

akδπk(·).

Since the two distributions on partitions are the same, couplings based on partitions like ψOT
η will make the

chains meet with probability 1 in the next step. However, this is not true under labeling–based couplings like
maximal or common RNG. In this example, the same partition is represented with different labels under either
chains. The X chain represents π1, π2, π3 with the labels 1, 2, 3, respectively. Meanwhile, the Y chain represents
π1, π2, π3 with the labels 2, 1, 3, respectively. Let zX be the label assignment of the data point in question (recall
that we have been leaving out 4) under the X chain. Similarly we define zY . Maximal coupling maximizes the
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probability that zX = zY . However, the coupling that results in the two chains X and Y meeting is the following

Pr(zX = u, zY = v) =


a3 if u = v = 3

a1 if u = 1, v = 2

a2 if u = 2, v = 1

0 otherwise.

In general, a1 6= a2, meaning that the maximal coupling is different from this coupling that causes the two chains
to achieve the same partition after updating the assignment of 4. A similar phenomenon is true for common RNG
coupling.

E.2 Example 2

For the situation in Appendix E.1, the discussion of Ju et al. from Tancredi et al. [2020] proposes a relabeling
procedure to better align the clusters in the two partitions before constructing couplings. Indeed, if z2 were
relabeled [1, 2, 2, 1] (the label of each cluster is the smallest data index in that cluster), then upon the removal of
data point 4, both the label-based and partition-based couplings would agree. However, such a relabeling fix still
suffer from label-switching problem in general, since the smallest data index does not convey much information
about the cluster. For concreteness, we demonstrate an example where the best coupling from minimizing label
distances is different from the best coupling minimizing partition distances.

Suppose there are 6 data points, indexed from 1 through 6. The partition of the X chain is {{1, 3, 4}, {2, 5, 6}}.
The partition of the Y chain is {{1, 5, 6}, {2, 3, 4}}. Using the labeling rule from above, the label vector for X is
zX = [1, 2, 1, 1, 2, 2] while that for Y is zY = [1, 2, 2, 2, 1, 1]. The Gibbs sampler temporarily removes the data
point 1. The three next possible states of the X chain are the partitions ν1, ν2, ν3 where ν1 = {{1, 3, 4}, {2, 5, 6}},
ν2 = {{3, 4}, {1, 2, 5, 6}} and ν3 = {{3, 4}, {2, 5, 6}, {1}}. The labelings of data points 2 through 6 for all three
partitions are the same; the only different between the labeling vectors are the label of data point 1: for ν1,
zX(1) = 1, for ν2, zX(1) = 2 and for ν1, zX(1) = 3. On the Y side, the three next possible states of the Y chain are
the partitions µ1, µ2, µ3 where µ1 = {{1, 5, 6}, {2, 3, 4}}, µ2 = {{5, 6}, {1, 2, 3, 4}} and µ3 = {{5, 6}, {2, 3, 4}, {1}}.
As for the labeling of 1 under Y , for µ1, zY (1) = 1, for µ2, zY (1) = 2 and for µ3, zY (1) = 3. Suppose that the
marginal assignment probabilities are the the following:

• Pr(X = ν1) = Pr(X = ν2) = 0.45,Pr(X = ν3) = 0.1.

• Pr(Y = µ1) = Pr(Y = µ2) = 0.45,Pr(Y = µ3) = 0.1.

Under label-based couplings, since Pr(zX(1) = a) = Pr(zY (1) = a) for a ∈ [1, 2, 3], the coupling that minimizes
the distance between the labels will pick Pr(zX(1) = zY (1)) = 1, which means the following for the induced
partitions:

Pr(X = ν, Y = µ) =


0.45 if ν = ν1, µ = µ1

0.45 if ν = ν2, µ = µ2

0.1 if ν = ν3, µ = µ3

. (12)

Under the partition-based transport coupling, the distance between partitions (Equation (5)) is the following.

µ1 µ2 µ3

ν1 16 10 12
ν2 10 16 14
ν3 12 14 8

Notice that the distances d(ν1, µ1) and d(ν2, µ2) are actually larger than d(ν1, µ2) and d(ν2, µ1): in other words,
the label-based coupling from Equation (12) proposes a coupling with larger-than-minimal expected distance. In
fact, solving the transport problem, we find that the coupling that minimizes the expected partition distance is
actually

Pr(X = ν, Y = µ) =


0.45 if ν = ν1, µ = µ2

0.45 if ν = ν2, µ = µ1

0.1 if ν = ν3, µ = µ3

. (13)
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Figure 4: Trimmed mean has better RMSE than sample mean on Example 1. Left panel plots RMSE versus J.
Right panel gives boxplots J = 1000.

F TRIMMING

We consider the motivating situation in Example 1. This is a case where trimming outliers before taking the
average yields a more accurate estimator (in terms of mean squared error) than the regular sample mean. For
reference, the RMSE of an estimator µ̂ of a real-valued unknown quantity µ is√

E‖µ̂− µ‖2.

Example 1 (Mixture distribution with large outliers) For µ > 0, p < 1, consider the mixture distribution
(0.5− p/2)N (−µ, 1) + pN (0, 1) + (0.5− p/2)N (µ, 1). The mean is 0. The variance is 1 + (1− p)µ2. Therefore,
the RMSE of the sample mean computed using J iid draws is

√
1 + (1− p)µ2/

√
J.

In Example 1, increasing µ, which corresponds to larger outlier magnitude, increases the RMSE.

In trimmed means (Section 3.4), the quantity α determines how much trimming is done. Intuitively, for Example 1,
if we trim about 0.5 − p/2 of the top and bottom samples from the mixture distribution in Example 1, what
remain are roughly samples from N (0, 1). The mean of these samples should have variance only 1/J , resulting in
an RMSE which does not suffer from large µ.

In Figure 4, we illustrate the improvement of trimmed mean over sample mean for problems like Example 1. We
set p = 0.9, µ = 7, and α = 1.2(0.5− p/2). Similar to Figure 1, RMSE is estimated by adding another level of
simulation to capture the variability across aggregates. The left panel shows that RMSE of trimmed mean is
smaller than that of sample mean. The right panel explains why that is the case. Here, we box plot the trimmed
mean and sample mean, where the randomness is from the iid Monte Carlo draws from the target mixture for
J = 1000. The variance of trimmed mean is smaller than that of sample mean, which matches the motivation for
trimming.

For other situations where there exist better estimators than the sample mean, we refer to the literature on
Stein’s paradox [Stigler, 1990].

G ADDITIONAL EXPERIMENTAL DETAILS

G.1 Target Distributions And Gibbs Conditionals

DPMM. Denote N (x |µ,Σ) to be the Gaussian density at x for a Gaussian distribution with mean µ and
covariance Σ. For the Gaussian DPMM from Section 2.1, the Gibbs conditional have the form

Pr(zn = c |Π(−n),W1:N ) =

{
β α
N−1+αN (Wn |µ0,Σ0 + Σ1) if c is new cluster

β size of cluster c
N−1+α N (Wn |µc,Σc + Σ1) if c is an existing cluster,

(14)
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where β is a normalization constant so that
∑
c Pr(zn = c |Π(−n),W1:N ) = 1, c is an index into the clusters that

comprise Π(−n) (or a new cluster), µc and Σc are the posterior parameters of the cluster indexed by c. See Neal
[2000] for derivations.

Graph coloring. Let G be an undirected graph with vertices V = [N ] and edges E ⊂ V ⊗ V, and let Q = [q]
be set of q colors. A graph coloring is an assignment of a color in Q to each vertex satisfying that the endpoints
of each edge have different colors. We here demonstrate an application of our method to a Gibbs sampler which
explores the uniform distribution over valid q−colorings of G, i.e. the distribution which places equal mass on
ever proper coloring of G.

To employ Algorithm 2, for this problem we need only to characterise the p.m.f. on partitions of the vertices
implied by the uniform distribution on its colorings. A partition corresponds to a proper coloring only if no two
adjacent vertices are in the element of the partition. As such, we can write

pΠN
(π) ∝ 1{|π| ≤ q and A(π)i,j = 1→ (i, j) 6∈ E, ∀i 6= j}

(
q

|π|

)
|π|!,

where the indicator term checks that π can correspond to a proper coloring and the second term accounts for the
number of unique colorings which induce the partition π. In particular it is the product of the number of ways to
choose |π| unique colors from Q (

(
q
|π|
)

:= q!
|π|!(q−|π|)! ) and the number of ways to assign those colors to the groups

of vertices in π.

The Gibbs conditionals have the form

pΠ|Π(−n)(Π = y |Π(−n)) =

q!
(q−|y|)!∑

x consistent with Π(−n)
q!

(q−|x|)!
=

1
(q−|y|)!∑

x consistent with Π(−n)
1

(q−|x|)!
. (15)

In Equation (15), x and y are partitions of the whole set of N vertices.

In implementations, to simulate from the conditional Equation (15), it suffices to represent the partition with a
color vector. Suppose we condition on Π(−n)) i.e. when the colors for all but the n vertex are fixed, and there
are q′ unique colors that have been used (q′ can be strictly smaller than q). n can either take on a color in [q′]
(as long as the color is not used by a neighbor), or take on the color q′ + 1 (if q′ < q). The transition probabilities
are computed from the induced partition sizes |x|.

G.2 General Markov Chain Settings

Ground truth. For clustering, we run 10 single-chain Gibbs samplers for 10,000 sweeps each; we discard the
first 1,000 sweeps. For graph coloring, we also run 10 chains, but each for 100,000 sweeps and discard the first
10,000. We compute an unthinned MCMC estimate from each chain and use the average across the 10 chains as
ground truth. The standard errors across chains are very small. Dividing the errors by the purported ground
truth yields values with magnitude smaller than 5× 10−3. In percentage error, this is less than 0.5%, which is
orders of magnitude smaller than the percentage errors from coupled chains or naive parallel estimates.5

Sampler initializations. In clustering, we initialize each chain at the partition where all elements belong to
the same element i.e. the one-component partition. In graph coloring, we initialize the Markov chain by greedily
coloring the vertices. Our intuition suggests that coupling should be especially helpful relative to naively parallel
chains when samplers require a large burn-in – since slow mixing induces bias in the uncoupled chains. In general,
one cannot know in advance if that bias is present or not, but we can try to encourage suboptimal initialization
in our experiments to explore its effects. For completeness, we consider alternative initialization schemes, such as
k-means, in Figure 17.

Choice of hyperparameters in aggregate estimates. Recall that Equation (2) involves two free hyperpa-
rameters, ` and m, that we need to set. A general recommendation from Jacob et al. [2020, Section 3.1] is to
select m = 10` and ` to be a large quantile of the meeting time distribution. We take heed of these suggestions,
but also prioritize m’s that are small because we are interested in the time-limited regime. Larger m leads to

5The percentage errors for LCP are typically 0.01%, while percentage errors for co-clustering are typically 0.1%.
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longer compute times across both coupled chains and naively parallel chains, and the bias in naively parallel
chains is more apparent for shorter m: see Figure 16. In the naive parallel case, we discard the first 10% of sweeps
completed in any time budget as burn-in steps. In our trimmed estimates, we remove the most extreme 1% of
estimates (so 0.5% in either directions).

Simulating many processes. To quantify the sampling variability of the aggregate estimates (sample or
trimmed mean across J processors), we first generate a large number (V = 180,000) of coupled estimates
H`:m(Xj , Y j) (and V naive parallel estimates U j , where the time to construct H`:m(Xj , Y j) is equal to the
time to construct U j).6 For each J , we batch up the V estimates in a consistent way across coupled chains
and naive parallel, making sure that the equality between coupled wall time and naive parallel wall time is
maintained. There are I = V/J batches. For the ith batch, we combine H`:m(Xj , Y j) (or U j) for indices j in

the list [(i− 1)J + 1, iJ ] to form H
(i)
c,J (or H

(i)
u,J ) in the sense of Section 5.2. By this batching procedure, smaller

values of J have more batches I. The largest J we consider for gene, k-regular and abalone is 2,750 while
that for synthetic and seed is 1,750. This mean the largest J has at least 57 batches.

To generate the survival functions (last column of Figure 2), we use 600 draws from the (censored) meeting time
distribution by simulating 600 coupling experiments.

G.3 Datasets Preprocessing, Hyperparameters, Dataset-Specific Markov Chain Settings

gene i.e. single-cell RNAseq. We extract D = 50 genes with the most variation of N = 200 cells. We
then take the log of the features, and normalize so that each feature has mean 0 and variance 1. We target
the posterior of the probabilistic model in Section 2.1 with α = 1.0, µ0 = 0D, diagonal covariance matrices
Σ0 = 0.5ID, Σ1 = 1.3ID. Notably, this is a simplification of the set-up considered by Prabhakaran et al. [2016],
who work with a larger dataset and additionally perform fully Bayesian inference over these hyperparameters.
That the prior variance is smaller than the noise variance yields a “challenging” clustering problem, where the
cluster centers themselves are close to each other and observations are noisy realizations of the centers. We set
` = 30 and m = 300.

seed i.e. wheat seed measurements. The original dataset from Charytanowicz et al. [2010] has 8 features;
we first remove the “target” feature, which contains label information for supervised learning. Overall there
are N = 210 observations and D = 7 features. We normalize each feature to have mean 0 and variance 1. We
target the posterior of the probabilistic model in Section 2.1 with α = 1.0, µ0 = 0D, diagonal covariance matrices
Σ0 = 1.0ID, Σ1 = 1.0ID. We set ` = 10 and m = 100.

synthetic. We generate N = 300 observations from a 4-component mixture model in 2 dimensions. The four
cluster centers are [−0.8,−0.8], [−0.8, 0.8], [0.8,−0.8], [0.8, 0.8] Each data point is equally likely to come from one
of four components; the observation noise is isotropic, zero-mean Gaussian with standard deviation 0.5. These
settings result in a dataset where the observations form clear clusters, but there is substantial overlap at the
cluster boundaries – see Figure 5a.

On this data, we target the posterior of the probabilistic model in Section 2.1 with α = 0.2, µ0 = 0D, diagonal
covariance matrices Σ0 = 0.75ID, Σ1 = 0.7ID. Different from gene, the prior variance is larger than the noise
variance for synthetic. We set ` = 10, m = 100.

abalone i.e. physical measurements of abalone specimens. The original dataset from Nash et al. [1994]
has 9 features; we first remove the “Rings” feature, which contains label information for supervised learning, and
the “Sex” feature, which contains binary information that is not compatible with the Gaussian DPMM generative
model. Overall there are N = 4,177 observations and D = 7 features. We normalize each feature to have mean 0
and variance 1. We target the posterior of the probabilistic model in Section 2.1 with α = 1.0, µ0 = 0D, diagonal
covariance matrices Σ0 = 2.0ID, Σ1 = 2.0ID. We set ` = 10 and m = 100.

k-regular. Anticipating that regular graphs are hard to color, we experiment with a 4-regular, 6-node graph –
see Figure 5b. The target distribution is the distribution over vertex partitions induced by uniform colorings

6The best computing infrastructure we have access to has only 400 processors, so we generate these V estimates by
sequential running nEst/400 batches, each batch constructing 400 estimates in parallel.
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(a) synthetic data (b) k-regular data

Figure 5: Visualizing synthetic data

using 4 colors. We set ` = 1, m = 4.

G.4 Visualizing Synthetic Data

Figure 5 visualizes the two synthetic datasets.

H ALL FIGURES

H.1 gene

Figure 6 shows results for LCP estimation on gene – see Figure 15 for results on co-clustering. The two panels
that did not appear in Figure 2 are the left panel of Figure 6b and the right panel of Figure 6c. The left panel
of Figure 6b is the same as Figure 1: the y-axis plots the RMSE instead of the range of losses. As expected
from the bias-variance decomposition, the RMSE for coupled estimates decreases with increasing J because of
unbiasedness, while the RMSE for naive parallel estimates does not go away because of bias. The right panel of
Figure 6c plots typical d distances between coupled chains under different couplings as a function of the number
of sweeps done. d decreases to zero very fast under OT coupling, while it is possible for chains under maximal
and common RNG couplings to be far from each other even after many sampling steps.

H.2 synthetic

Figure 7 shows results for LCP estimation on synthetic – see Figure 15 for results on co-clustering.

H.3 seed

Figure 8 shows results for LCP estimation on seed – see Figure 15 for results on co-clustering.

H.4 abalone

Figure 9 shows results for LCP estimation on abalone. In Figure 9a and Figure 9b, we do not report results for
the trimmed estimator with the default trimming amount (0.01 i.e. 1%). This trimming amount is too large for
the application, and in Figure 10, we show that trimming the most extreme 0.1% yields much better estimation.

In Figure 10, the first panel (from the left) plots the errors incurred using the trimmed mean with the default
α = 1%. Trimming of coupled chains is still better than naive parallelism, but worse than sample mean of coupled
chains. In the second panel, we use α = 0.1%, and the trimming of coupled chains performs much better. In the
third panel, we fix the number of processes to be 2000 and quantify the RMSE as a function of the trimming
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(a) Losses (b) RMSE and intervals

(c) Coupling choice

Figure 6: Results on gene.

amount (expressed in percentages). We see a gradual decrease in the RMSE as the trimming amount is reduced,
indicating that this is a situation in which smaller trimming amounts is prefered.

H.5 k-regular

Figure 11 shows results for CC(2, 4) estimation on k-regular.

I METRIC IMPACT

I.1 Definition Of Variation Of Information Metric

Variation of information, or VI, is defined in Meilă [2007, Equation 16]. We replicate the definition in what
follows. Let π and ν be two partitions of [N ]. Denote the clusters in π by {A1, A2, . . . , AK} and the clusters in ν
by {B1, B2, . . . , BK

′}. For each k ∈ [K] and k′ ∈ K ′, define the number P (k, k′) to be

P (k, k′) :=
|Ak ∩Bk′ |

N
.

|Ak ∩Bk′ | is the size of the overlap between Ak and Bk
′
. Because of the normalization by N , the P (k, k′)’s are

non-negative and sum to 1, hence can be interpreted as probability masses. Summing across all k (or k′) has a
marginalization effect, and we define

P (k) :=

K′∑
k′=1

P (k, k′).

Similarly we define P ′(k′) :=
∑K
k=1 P (k, k′). The VI metric is then

dI(π, ν) =

K∑
k=1

K′∑
k′=1

P (k, k′) log
P (k, k′)

P (k)P (k′)
. (16)

In terms of theoretical properties, Meilă [2007, Property 1] shows that dI is a metric for the space of partitions.
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(a) Losses (b) RMSE and intervals

(c) Coupling choice

Figure 7: Results on synthetic. Figure legends are the same as Figure 6. The results are consistent with
Figure 2.

I.2 Impact Of Metric On Meeting Time

In Figures 12a to 12d, we examine the effect of metric on the meeting time for coupled chains. In place of the
Hamming metric in Equation (5), we can use the variation of information (VI) metric from Equation (16) in
defining the OT problem (Equation (4)). Based on the survival functions, the meeting time under VI metric is
similar to meeting time under the default Hamming metric: in all cases, the survival functions lie mostly right
on top of each other. Time is measured in number of sweeps taken, rather than processor time, because under
Hamming metric we have a fast implementation (Section 4.2) while we are not aware of fast implementations for
the VI metric. Hence, our recommended metric choice is Hamming (Equation (5)).

J EXTENSION TO SPLIT-MERGE SAMPLER

SplitMerge(i, j,X) is the “Restricted Gibbs Sampling Split–Merge Procedure” from Jain and Neal [2004], where
our implementation proposes 1 split–merge move and uses 5 intermediate Gibbs scan to compute the proposed
split (or merge) states.

We refer to Appendix G for comprehensive experimental setup. The LCP estimation results for gene are given
in Figure 13. Instead of the one-component initialization, we use a k-means clustering with 5 components as
initialization. m is set to be 100, while ` is 10. Switching from pure Gibbs sampler to split-merge samplers can
reduce the bias caused by a bad initialization. But there is still bias that does not go away with replication, and
the results are consistent with Figure 2.

We also have split-merge results for estimation of CC(0, 1) on synthetic in Figure 14. m is set to be 50, while `
is 5.
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(a) Losses (b) RMSE and intervals

(c) Coupling choice

Figure 8: Results on seed. Figure legends are the same as Figure 6. The results are consistent with Figure 2.

K MORE RMSE PLOTS

K.1 Different Functions Of Interest

Figure 15 displays co-clustering results for clustering data sets. The results are consistent with those for LCP
estimation. Co-clustering appears to be a more challenging estimation problem than LCP, indicated by the higher
percentage errors for the same m.

K.2 Different Minimum Iteration (m) Settings

In Figure 16, with an increase in m (from the default 100 to 150), the bias in the naive parallel approach reduces
(percentage error goes from 15% to 10%, for instance), and the variance of coupled chains’ estimates also reduce.

K.3 Different Initialization

In Figure 17, we initialize the Markov chains with the clustering from a k-means clustering with 5 clusters, instead
of the one-component initialization. Also see Figure 13 for more kmeans initialization results. The bias from naive
parallel is smaller than when initialized from the one-component initialization (RMSE in Figure 17 is around
5% while RMSE in Figure 6 is about 10%). However, the bias is still significant enough that even with a lot of
processors, naive parallel estimates are still inadequate.

K.4 Different DPMM Hyperparameters

For convenience, throughout our experiments, we use diagonal covariance matrices Σ0 = s0ID and Σ1 = s1ID,
where the variances in different dimensions are the same. We find that the bias of standard MCMC is influenced
by s0 and s1: some settings cause naive parallel chains to have meaningfully large bias, while others do not.
Figure 18 illustrates on synthetic that when s1 is small compared to s0, standard MCMC actually has small
bias even when run for a short amount of time. For values of s1 that are closer to (or larger than s0), the bias in
standard MCMC is much larger. m and ` are set to be 100 and 10 across these settings of s1.
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(a) Losses (b) RMSE and intervals

(c) Coupling choice

Figure 9: Results on abalone. Similar to Figure 2, coupled chains perform better than naive parallelism with
more processes, and our coupling yields smaller meeting times than label-based couplings. See Figure 10 for the
performance of trimmed estimators.

L MORE MEETING TIME PLOTS

In Figure 19, we generate Erdős-Rényi random graphs, including each possible edge with probability 0.2. The
graph in the first two panels has N = 25 vertices, while the one in the latter two panels has N = 30. We determine
a sufficient number of colors by first greedily coloring the vertices. It turns out that 6 colors is sufficient to
properly color the vertices in either set of panels.

M ESTIMATES OF PREDICTIVE DENSITY

M.1 Data, Target Model, And Definition Of Posterior Predictive

As the posterior predictive is easiest to visualize in one dimension, we draw artificial data from a univariate,
10-component Gaussian mixture model with known observational noise standard deviation σ = 2.0, and use a
DPMM to analyze this data. The cluster proportions were generated from a symmetric Dirichlet distribution
with mass 1 for all 10-coordinates. The cluster means were randomly generated from N (0, 102). Since this is
an artificial dataset, we can control the number of observations: we denote gmm-100 to be the dataset of 100
observations, for instance.

The target DPMM has µ0 = 0, α = 1,Σ0 = 3.0, and Σ1 = 2.0

The function of interest is the posterior predictive density

Pr(WN+1 ∈ dx |W1:N ) =
∑

ΠN+1

Pr(WN+1 ∈ dx |ΠN+1,W1:N ) Pr(ΠN+1 |W1:N ). (17)

In Equation (17), ΠN+1 denotes the partition of the data W1:(N+1). To translate Equation (17) into an integral
over just the posterior over ΠN (the partition of W1:N ) we break up ΠN+1 into (ΠN , Z) where Z is the cluster
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Figure 10: Effect of trimming amount on abalone.

(a) Losses (b) RMSE and intervals

(c) Coupling choice

Figure 11: Results on k-regular. Figure legends are the same as Figure 6.

indicator specifying the cluster of ΠN (or a new cluster) to which WN+1 belongs. Then

Pr(WN+1 ∈ dx |W1:N ) =
∑
ΠN

[∑
Z

Pr(WN+1 ∈ dx, Z |ΠN ,W1:N )

]
Pr(ΠN |W1:N )

Each Pr(WN+1 ∈ dx, Z |ΠN ,W1:N ) is computed using the prediction rule for the CRP and Gaussian conditioning.
Namely

Pr(WN+1 ∈ dx, Z |ΠN ,W1:N ) = Pr(WN+1 ∈ dx |Z,ΠN ,W1:N )︸ ︷︷ ︸
Posterior predictive of Gaussian

× Pr(Z |ΠN )︸ ︷︷ ︸
CRP prediction rule

.

The first term is computed with the function used during Gibbs sampling to reassign data points to clusters. In
the second term, we ignore the conditioning on W1:N , since Z and W1:N are conditionally independent given ΠN .

M.2 Estimates Of Posterior Predictive Density

We first discretize the domain using 150 evenly-spaced points in the interval [−20, 30]: these are the locations
at which to evaluate the posterior predictive. We set m = 100 and ` = 10 in constructing the estimate from
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(a) gene
(b) synthetic

(c) seed (d) k-regular

Figure 12: Hamming and VI metric induce similar meeting time

Equation (2). We average the results from 400 coupled chain estimates. In each panel of Figure 20, the solid blue
curve is an unbiased estimate of the posterior predictive density: the error across replicates is very small and we
do not plot uncertainty bands. The black dashed curve is the true density of the population i.e. the 10-component
Gaussian mixture model density. The grey histogram bins the observed data.

M.3 Posterior Predictives Become More Alike True Data Generating Density

In Figure 20, by visual inspection, the distance between the posterior predictive density and the underlying
density decreases as N increases. This is related to the phenomenon of posterior concentration, where with more
observations gathered, the Bayesian posterior concentrates more and more on the true data generating process.
We refer to Ghosal et al. [1999], Lijoi et al. [2005] for more thorough discussions of posterior concentration. In
what follows, we justify the concentration behavior for Gaussian DPMM, when the observation noise is correctly
specified.

Theorem 2 (DP mixtures prior is consistent for finite mixture models) Let f0(x) :=
∑m
i=1 piN (x | θi, σ2

1)
be a finite mixture model. Suppose we observe iid data X1, . . . , Xn from f0. Consider the following probabilistic
model

P̂ ∼ DP(α,N (0, σ2
0))

θi | P̂
iid∼ P̂ i = 1, 2, . . . , n

Xi | θi
indep∼ N (θi, σ

2
1) i = 1, 2, . . . , n

Let P̂n be the posterior predictive distribution of this generative process. Then with a.s. Pf0

dTV

(
P̂n, Pf0

)
n→∞−−−−→ 0.

To prove Theorem 2, we first need some definitions and auxiliary results.
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(a) Losses (b) RMSE and intervals

(c) Estimates

Figure 13: Split-merge results on gene

Definition 3 (Strongly consistent priors) Suppose iid data X1, X2, . . . , Xn is generated from some probability
measure measure that is absolutely continuous with respect to Lebesgue measure. Denote the density of this data
generating measure by f0. Let F be the set of all densities on R. Consider the probabilistic model where we
put a prior Π over densities f , and observations Xi are conditionally iid given f . We use Pf to denote the
probability measure with density f . For any measurable subset A of F , the posterior of A given the observations
Xi is denoted Π(A |X1:N ). A strong neighborhood around f0 is any subset of F containing a set of the form
V = {f ∈ F :

∫
|f − f0| < ε} according to Ghosal et al. [1999]. The prior Π is strongly consistent at f0 if for any

strong neighborhood U ,
lim
n→∞

Π(U |X1:n) = 1, (18)

holds almost surely for X1:∞ distributed according to P∞f0 .

Proposition 3 (Ghosh and Ramamoorthi [2003, Proposition 4.2.1]) If a prior Π is strongly consistent
at f0 then the predictive distribution, defined as

P̂n(A | X1:n) :=

∫
f

Pf (A)Π(f | X1:n) (19)

also converges to f0 in total variation in a.s. P∞f0

dTV

(
P̂n, Pf0

)
−→ 0.

The definition of posterior predictive density in Equation (19) can equivalently be rewritten as

P̂n(A | X1:n) = Pr(Xn+1 ∈ A |X1:n),

since Pf (A) = Pf (Xn+1 ∈ A) and all the X’s are conditionally iid given f .

We are ready to prove Theorem 2.



Many Processors, Little Time: MCMC for Partitions via Optimal Transport Couplings

(a) Losses (b) RMSE and intervals

(c) Estimates

Figure 14: Split-merge results on synthetic

Proof [Proof of Theorem 2] First, we can rewrite the DP mixture model as a generative model over continuous
densities f

P̂ ∼ DP(α,N (0, σ2
0))

f = N (0, σ2
1) ∗ P̂

Xi | f
iid∼ f i = 1, 2, . . . , n

(20)

where N (0, σ2
1) ∗ P̂ is a convolution, with density f(x) :=

∫
θ
N (x− θ|0, σ2

1)dP̂ (θ).

The main idea is showing that the posterior Π(f |X1:n) is strongly consistent and then leveraging Proposition 3.
For the former, we verify the conditions of Lijoi et al. [2005, Theorem 1].

The first condition of Lijoi et al. [2005, Theorem 1] is that f0 is in the K-L support of the prior over f in
Equation (20). We use Ghosal et al. [1999, Theorem 3]. Clearly f0 is the convolution of the normal density
N (0, σ2

1) with the distribution P (.) =
∑m
i=1 piδθi . P (.) is compactly supported since m is finite. Since the

support of P (.) is the set {θi}mi=1 which belongs in R, the support of N (0, σ2
0), by Ghosh and Ramamoorthi [2003,

Theorem 3.2.4], the conditions on P are satisfied. The condition that the prior over bandwidths cover the true
bandwidth is trivially satisfied since we perfectly specified σ1.

The second condition of Lijoi et al. [2005, Theorem 1] is simple: because the prior over P̂ is a DP, it reduces to
checking that ∫

R
|θ|N (θ | 0, σ2

0) <∞

which is true.

The final condition trivial holds because we have perfectly specified σ1: there is actually zero probability that σ1

becomes too small, and we never need to worry about setting γ or the sequence σk.
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(a) Losses, CC(0, 21) estimation on gene (b) RMSE and intervals CC(0, 21) estimation on gene

(c) Losses, CC(0, 1) estimation on synthetic (d) RMSE and intervals, CC(0, 1) estimation on synthetic

(e) Losses, CC(0, 19) estimation on seed (f) RMSE and intervals, CC(0, 19) estimation on seed

Figure 15: Co-clustering results for clustering data sets.

(a) m = 100, seed (b) m = 150, seed (c) m = 100, synthetic (d) m = 150, synthetic

Figure 16: Impact of different m on the RMSE. The first two panels are LCP estimation for seed. The last two
panels are CC(0, 1) estimation for synthetic.
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Figure 17: RMSE and intervals for gene on k-means initialization.

(a) s1 = 0.5, s0 = 0.75 (b) s1 = 0.7, s0 = 0.75 (c) s1 = 0.85, s0 = 0.75

Figure 18: The bias in naive parallel estimates is a function of the DPMM hyperparameters.

(a) N = 25 (b) N = 30

Figure 19: Meeting time under OT coupling is better than alternative couplings on Erdos–Renyi graphs, indicated
by the fast decrease of the survival functions.

(a) gmm-100 (b) gmm-200 (c) gmm-300

Figure 20: Posterior predictive density for different number of observations N .
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