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Abstract

Ensembles are widely used in machine learn-
ing and, usually, provide state-of-the-art per-
formance in many prediction tasks. From the
very beginning, the diversity of an ensemble
has been identified as a key factor for the
superior performance of these models. But
the exact role that diversity plays in ensem-
ble models is poorly understood, specially in
the context of neural networks. In this work,
we combine and expand previously published
results in a theoretically sound framework
that describes the relationship between di-
versity and ensemble performance for a wide
range of ensemble methods. More precisely,
we provide sound answers to the following
questions: how to measure diversity, how di-
versity relates to the generalization error of
an ensemble, and how diversity is promoted
by neural network ensemble algorithms. This
analysis covers three widely used loss func-
tions, namely, the squared loss, the cross-
entropy loss, and the 0-1 loss; and two widely
used model combination strategies, namely,
model averaging and weighted majority vote.
We empirically validate this theoretical anal-
ysis with neural network ensembles.

1 Introduction

Ensemble methods are one of the most widely used and
studied techniques in machine learning (Hansen and
Salomon, 1990; Breiman, 1996, 2001a). It has been
successfully applied in many real-world problems (Gir-
shick et al., 2014; Wang et al., 2012; Zhou et al., 2014;
Ykhlef and Bouchaffra, 2017) and is usually part of
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the winning strategies in many machine learning com-
petitions (e.g., Chen and Guestrin, 2016; Hoch, 2015;
Puurula et al., 2014; Stallkamp et al., 2012). Recently,
ensembles are also becoming very popular to improve
uncertainty modeling in deep neural networks (Laksh-
minarayanan et al., 2017; Wen et al., 2019; Maddox
et al., 2019; Wenzel et al., 2020).

Ensembles are created by combining several individ-
ual predictors. It is widely accepted (Dietterich, 2000;
Lu et al., 2010) that the prediction performance of
an ensemble jointly depends of the individual perfor-
mance and the diversity of its individual members. In-
tuitively speaking, a set of predictors is diverse when
their predictions do not coincide on all the samples.
We know that when classifiers are diverse, they tend
to make independent errors, therefore when they are
aggregated, their errors tend to cancel out (Berend
and Kontorovich, 2016), which improves the ensemble
prediction. For this reason, diversity has long been
recognized as a key factor in ensemble performance
(Kuncheva and Whitaker, 2003; Cunningham and Car-
ney, 2000; Brown et al., 2005). The same cancela-
tion of errors effect happens in the case of neural net-
work ensembles (Hansen and Salomon, 1990; Lee et al.,
2016; Lakshminarayanan et al., 2017) where heuristic
measures of diversity are usually analyzed to get in-
sights of the ensemble learning algorithms (Fort et al.,
2019; Wen et al., 2019; Wenzel et al., 2020).

Unfortunately, there is a lack of consensus surround-
ing the underlying theory that can explain the role of
diversity in the generalization performance of ensem-
bles. The error rate of an ensemble and an individual
predictor, for example, is well defined by the use of
a loss function, but there is no well-established defini-
tion of diversity (Kuncheva and Whitaker, 2003). And
it is not well known how exactly the diversity among
ensemble members affects the generalization error of
the ensemble.

In this work, we introduce a novel theoretical frame-
work that explains the relationship between diversity
and the generalization performance of an ensemble.
This theoretical framework is derived from previously
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published results with no direct connection among
them (Krogh and Vedelsby, 1994; Masegosa, 2020;
Masegosa et al., 2020). The main contribution of our
work is to find a theoretically sound way to combine
these previous results in a single theoretical framework
that explains the role of diversity in the generalization
performance of a wide range of different ensembles.
In our opinion, this general framework could poten-
tially help the machine learning community to have a
better understanding of the underlying trade-offs that
have to be considered when designing novel ensemble
learning algorithms, specially in the context of neural
networks. The detailed contributions of this work are
the followings: a general measure of ensemble diver-
sity; a theoretical analysis that shows how the corre-
lation among ensemble members affects diversity; the
exact trade-off that exists between this diversity mea-
sure, the performance of the individual predictors and
the generalization error of the ensemble; an analysis
of the strategies used by most of current neural net-
work ensemble learning algorithms to promote diver-
sity; and, finally, an empirical evaluation of this theo-
retical framework. This analysis covers model averag-
ing and weighted majority vote ensembles under the
cross-entropy loss, square error and 0-1 loss.

2 Related Work

Diversity Measures

Many different names have been given to the con-
cept of diversity, including ambiguity (Krogh and
Vedelsby, 1994), dependency (Zhou, 2012), orthogo-
nality (Kuncheva and Whitaker, 2003), disagreement
(Masegosa et al., 2020), and so on. And there is a
huge literature proposing many different measures of
diversity, mostly employing the predictions made by
the individual models (Tang et al., 2006; Kuncheva
and Whitaker, 2003; Zhou and Li, 2010; Chandra and
Yao, 2004; Roli et al., 2001; Buschjäger et al., 2020).
However, none of these publications presents a generic
diversity measure that can be applied to different kind
of ensembles and has formal ties to the ensemble gen-
eralization error.

Diversity and Generalization

The first theoretical attempts to explain why diversity
reduces the ensemble error appeared in (Krogh and
Vedelsby, 1994; Geman et al., 1992), in the context of
regression ensembles. These proposals show why en-
sembles with high diversity reduce the prediction error.
However, these works do not describe the relationship
between the empirical diversity of an ensemble and the
generalization error of the ensemble. In this work, we

extend the results given by Krogh and Vedelsby (1994)
and establish such a link for regression ensembles using
PAC-Bayesian bounds (McAllester, 1998). Moreover,
our analysis also applies to ensembles of classifiers.

Many different works have tried to adapt the squared
error decomposition of regression ensembles (Krogh
and Vedelsby, 1994) to classification settings (Brown,
2009; Zhou, 2012; Yu et al., 2011; Jiang et al., 2017). In
this work, we employ upper bounds over the ensemble
error to derive a novel decomposition which applies to
different loss functions, and which incorporates a term
due to the error of individual members as well as a
diversity component.

In the context of majority vote ensembles and PAC-
Bayesian theory, (Laviolette et al., 2011; Germain
et al., 2015) proposed a PAC-Bayesian bound which
depends on the error rate and the variance of the in-
dividual classifiers. This variance term can be inter-
preted as a diversity measure. However the analysis
only applies to binary classifiers. Recently, Masegosa
et al. (2020) presented another theoretical analysis of
majority vote ensembles using a novel PAC-Bayesian
bound which applies to multiclass classification prob-
lems. However, this bound only contains a diversity
term when applied to binary classification, which co-
incides with diversity term found by Laviolette et al.
(2011); Germain et al. (2015). In this work, we ex-
tend the results of Masegosa et al. (2020) and intro-
duce a PAC-Bayesian bound for multiclass classifica-
tion which explicitly contains a novel term measuring
the diversity of the ensemble. We also establish novel
connections with regression ensembles and model av-
eraging of probabilistic classifiers.

In the context of model averaging of probabilistic clas-
sifiers, Masegosa (2020) introduced a novel theoretical
analysis of this problem using a PAC-Bayesian bound
which explicitly contains a term measuring the diver-
sity of this kind of ensembles. However, Masegosa
(2020) was mainly focused on the analysis of Bayesian
model averaging under model misspecification. The
role of diversity in ensemble learning was briefly men-
tioned in this work and was not theoretically or em-
pirically analyzed. We extend this work by doing a
considerably more in-depth theoretical and empirical
investigation of the role that diversity plays in the gen-
eralization performance of various kind of ensembles.

Diversity and Ensemble Learning

Virtually, all ensembles methods encourage diversity
among their individual models either implicitly or ex-
plicitly. Classic techniques like Bagging (Breiman,
1996, 2001a) or Boosting (Freund and Schapire, 1996)
implicitly encourage diversity by creating different
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training data sets. Deep ensembles also resort to im-
plicit techniques such as random initialization (Lak-
shminarayanan et al., 2017; Wen et al., 2019), tweak-
ing the optimizer (Maddox et al., 2019; Zhang et al.,
2019; Wenzel et al., 2020) or employing different hy-
perparameter settings (Wenzel et al., 2020). In this
work, we propose a theoretical explanation of why
these diversity-promoting strategies result in superior
ensemble models.

A growing number of ensemble learning methods (Liu
and Yao, 1999; Jiang et al., 2017; Buschjäger et al.,
2020; Pang et al., 2019; Jain et al., 2020) are based on
optimizing loss functions which include a term to ex-
plicitly induce diversity. However, these loss functions
do not have a theoretical connection to the general-
ization error of the ensemble in contrast to the ones
considered here. Masegosa (2020) introduced an en-
semble learning algorithm for the cross-entropy loss
based on PAC-Bayesian bounds which explicitly en-
courage diversity, but it was only applied to ensembles
of simple neural networks. In this work, we signifi-
cantly extend the experimental evaluation presented
in (Masegosa, 2020) and apply this analysis to regres-
sion and weighted majority vote ensembles.

3 Preliminaries

Let D = {(x1, y1), . . . , (xn, yn)} be a set of indepen-
dent and identically distributed data samples accord-
ing to an unknown distribution ν over X ×Y, where X
and Y are arbitrary. Let hθ = h(· ;θ) denote a single
predictor, and hθ(x) = h(x;θ) its prediction for an
input x ∈ X . We assume that predictors are parame-
terized by θ ∈ Θ where Θ is composed by a finite set
of such parameter vectors, Θ = {θ1, . . . ,θK} 1.

Regression ensembles are defined using the ρ-weighted
model average predictor and the squared error loss,
denoted as the sq-loss. Thus, for an specific data-point
(x, y), the loss of an individual regressor is defined
as `sq(θ,x, y) = (y − h(x;θ))2 and the loss of this
ensemble is defined as `sq(ρ,x, y) = (y−Eρ[h(x,θ)])2,
where the subscript “sq” is used to distinguish these
losses from the rest.

Weighted majority voting ensembles are defined us-
ing the ρ-weighted majority vote predictor and the
zero-one loss, denoted as 0/1-loss. Thus, for an spe-
cific data-point (x, y), the loss of an individual clas-
sifier is defined as `0/1(θ,x, y) = 1(h(x,θ) 6= y) and
the loss of this ensemble is defined as `0/1(ρ,x, y) =
1(arg maxy′ Eρ[1(h(x,θ) = y′)] 6= y).

Model averaging ensembles are defined using the ρ-

1Appendix D shows that is not a restrictive setting in-
deed and, also, how to handle Θ ⊆ <M .

weighted model average predictor and the cross en-
tropy loss (a.k.a. log-loss), denoted as the ce-loss. In
this ensemble, the individual models are probabilis-
tic classifiers whose output is a conditional distribu-
tion over the class labels Y given the sample x, i.e.
h(x;θ) = p(·|x). Thus, for an specific data-point
(x, y), the loss of an individual predictor is defined
as `ce(θ,x, y) = − log p(y|x,θ) and the loss of this en-
semble is defined as `ce(ρ,x, y) = − logEρ[p(y|x,θ)].

For any of these loss functions, denoted generically by
`(θ,x, y), the empirical loss of an individual model
hθ over the dataset D is defined by L̂(θ, D) =
1
n

∑n
i=1 `(θ,x, y) and the population-level or expected

counterpart is the expected loss of hθ defined by
L(θ) = Eν [`(θ,x, y)] where the expectation Eν is over
the random choice of (x, y) ∼ ν. Similarly, we can de-
fine the expected loss of an ensemble, denoted L(ρ), as
L(ρ) = Eν [`(ρ,x, y)], for any of the previous ensemble
loss functions `(ρ,x, y).

Throughout the rest of the paper, the terms L(ρ), L(θ)
and L̂(θ, D) usually appear without any subscript. In
this case, we highlight that the performed analyses
apply to any of these three ensemble settings. When
the corresponding subscript is attached (i.e. sq, 0/1
and ce), we refer to the specific ensemble model.

4 Diversity and Generalization

4.1 Decomposing the Loss of an Ensemble
Using an Upper Bound

In this section, we introduce the following upper
bounds of an ensemble’s expected loss L(ρ) as a way
to decompose this error function. These upper bounds
are expressed in terms of the ρ-average loss of the in-
dividual models Eρ[L(θ)] and our newly proposed di-
versity measure, denoted as D(ρ).

Theorem 1. Under the settings given in Section 3,
we have that

L(ρ) ≤ α(Eρ[L(θ)]− D(ρ)),

where α equals 1 if we consider the sq-loss or the ce-
loss, and 4 if we consider the 0/1-loss. Furthermore,
for the sq-loss, this inequality becomes an equality. The
expression of the diversity measure for each of these
loss functions is:

Dsq(ρ) = Eν
[
Vρ(hR(x;θ))

]
,

Dce(ρ) = Eν
[
Vρ
(

p(y | x,θ)√
2 maxθ p(y | x,θ)

)]
,

D0/1(ρ) = Eν
[
Vρ
(
1(hW (x;θ) 6= y)

)]
,

where Vρ(·) denotes the variance of a function w.r.t.
the data generating distribution ν, and for Dce(ρ) to



Diversity and Generalization in Neural Network Ensembles

be well-defined we need that 0 < maxθ∈Θ p(y | x,θ) ≤
1 for every (x, y) ∈ supp(ν). Finally, note that all
diversity terms described above can be written as

D(ρ) = Eν
[
Vρ (f(y,x;θ))

]
,

with a specific function f for each of the loss functions.

The sq-version of Theorem 1 is equivalent to the well-
known decomposition of the squared error of a re-
gression ensemble (Krogh and Vedelsby, 1994). On
the other hand, the ce-version is equivalent to the
one previously proposed by (Masegosa, 2020) based
on second-order Jensen inequalities (Becker, 2012;
Liao and Berg, 2019). In Appendix A, we also de-
tail a tighter variant of this inequality proposed by
(Masegosa, 2020). Lastly, the 0/1-version of Theorem
1 is novel and based on the analysis given by (Masegosa
et al., 2020), which, in turn, is based on second-order
Markov inequalities.

Even though the three versions of this upper-bound
are derived using completely different approaches, here
we show that their expressions are surprisingly similar.
Showing that the loss of an ensemble L(ρ) can be upper
bounded by (or is equal to) the ρ-average loss of the
individual models Eρ[L(θ)] minus the diversity D(ρ)
among the individual models of the ensemble.

4.2 How to Measure the Diversity of an
Ensemble?

In this work, we propose the use of the diversity term
D(ρ) given in Theorem 1 as a diversity measure of an
ensemble. We start showing that this diversity mea-
sure satisfies some intuitive properties:

Lemma 2. The diversity terms D(ρ) defined in The-
orem 1 satisfy the following properties:

i) If all the ensemble members provide the same pre-
dictions, or if ρ outs all its probability mass on a
single predictor, then D(ρ) is null.

ii) 0 ≤ D(ρ) ≤ Eρ[L(θ)].

iii) D(ρ) is invariant to reparametrizations.

The above properties show that D(ρ) can be considered
as a measure of the diversity of an ensemble. The first
property follows the intuition of diversity as a measure
of the difference among ensemble’s members errors,
while the second property is something which has been
empirically found in the literature: the diversity of an
ensemble usually decreases when the predictive error
of individual members is reduced (Fort et al., 2019).
The last property is a desirable result for any diversity
measure.

Another common knowledge about diversity is that
it decreases when the predictors are highly correlated
(Berend and Kontorovich, 2016; Brown, 2009; Zhou,
2012; Yu et al., 2011). The following result shows how
this diversity measure nicely captures this relationship
of diversity and correlation among predictors:

Theorem 3. The diversity terms D(ρ) defined in The-
orem 1 can be written as

D(ρ) = Vν×ρ
(
f(y,x;θ)

)
− Eρ×ρ

[
Covν(f(y,x;θ), f(y,x;θ′))

]
,

where ρ× ρ denotes the joint distribution over Θ×Θ,
ρ × ν denotes the joint distribution over Θ × (X,Y),
and Covν(·, ·) is the co-variance between two models
with respect to the data generating distribution ν.

A proof of this novel result is provided in Appendix B.
This result states that our diversity measure increases
as we reduce the correlation among ensembles. Even-
tually, we will have much higher diversity if ensembles
are anti-correlated (i.e. negative covariance). But that
above result also introduces a novel insight: ensemble
diversity is no only about the correlation among indi-
vidual models. The above decomposition of the diver-

sity also shows, through the Vν×ρ
(
f(y,x;θ)

)
term,

that ensembles with high diversity should provide dif-
ferent predictions across the different individual mod-
els and across the different data samples. Although
this is out the scope of this paper, this last term could
potentially be used to study why randomization ap-
proaches to build ensembles (e.g. Random Forests
Breiman (2001b)) give rise to high diverse ensembles,
because they directly try to maximize this term, which
is positively related to diversity.

4.3 How is Diversity Related to the
Performance of an Ensemble?

The role that diversity plays in the performance of
an ensemble is described by Theorem 1. According
to this result, the generalization error of an ensemble
L(ρ) should be reduced if we increase D(ρ), which is
a measure of the diversity of the ensemble as shown
in the previous section. However, Theorem 1 provides
additional novel insights.

The next result formalizes a empirically observed phe-
nomenon (Dietterich, 2000; Lu et al., 2010) that higher
ensemble diversity induces a higher gap between the
average loss of the individual models (i.e., Eρ[L(θ)])
and the expected loss of the ensemble (i.e. L(ρ)). In
other words, the higher the diversity, the higher is the
advantage of combining these models.

Corollary 4. Under the settings given in Section 3,
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we have that

D(ρ) ≤ Eρ[L(θ)]− 1

α
L(ρ),

where α is equal to 1 if we consider the sq-loss or the
ce-loss, and 4 if we consider the 0/1-loss. For the sq-
loss, this inequality becomes an equality.

Another open question in the ensemble’s literature is
under which situations an ensemble of models outper-
forms a single model. Next result establishes that this
occurs when the ensemble’s diversity is large enough.

Corollary 5. Under the settings given in Section 3,
we have that an ensemble of models weighted according
to a distribution ρ performs better than a single model
θ?, i.e. L(ρ) < L(θ?), if

Eρ[L(θ)]− 1

α
L(θ?) < D(ρ)

where α is equal to 1 if we consider the sq-loss or the
ce-loss, and 4 if we consider the 0/1-loss. For the sq-
loss, the inverse implication also holds.

However, D(ρ) is defined in terms of the unknown
data-generating distribution ν. As a result, D(ρ) can
not be computed. To address this issue, we propose
the use of the empirical version of D(ρ), denoted by

D̂(ρ,D), which directly depends on the empirical dis-

tribution defined by the data sample D. D̂(ρ,D) sat-
isfies the same properties as D(ρ), as shown in Ap-
pendix C, and measures the diversity of an ensemble
in a given data sample D. The relevant question now
is how this empirical diversity measure relates to the
generalization performance of an ensemble. To answer
this question we will rely on PAC-Bayesian bounds.

PAC-Bayesian analysis (McAllester, 1998; Seeger,
2002; Langford and Shawe-Taylor, 2002) is based on
Probably Approximate Correct upper bounds over the
generalization error of a model. These PAC-Bayes
bounds depend on the empirical error of the model.
More precisely, in this work, we consider a new fam-
ily of PAC-Bayesian bounds which upper bounds the
generalization error of an ensemble (i.e. L(ρ)) based
on the ρ-weighted empirical errors of the individual
models (Eρ[L̂(θ, D)]) and the empirical diversity of

their predictions (D̂(ρ,D)). PAC-Bayesian bounds
hold with high probability over random realizations
of the training data sample.

Theorem 6 (PAC-Bayes bounds). For any prior
distribution π over Θ independent of D and for any
ξ ∈ (0, 1) and any λ > 0, with probability at least 1− ξ
over draws of training data D ∼ νn, for all distribution
ρ over Θ, simultaneously,

L(ρ) ≤ α
(
Eρ[L̂(θ, D)]− D̂(ρ,D) +

2KL (ρ | π) + ε

λ n

)
,

where α is equal to 1 if we consider the sq-loss or the
ce-loss, and 4 is we consider the 0/1-loss. KL refers
to the Kullback-Leibler divergence between ρ and the
prior π. And ε > 0 is a function of ν, π, λ, n and
ξ, which is independent of ρ but also depends on the
specific loss (In Appendix C, we detail the functional
forms of these ε terms).

The sq and 0/1 versions of the PAC-Bayesian bound of
Theorem 6 are novel. While the ce-version of Theorem
6 was previously proposed in (Masegosa, 2020).

The preceding result provides a clear theoretical expla-
nation for the widely observed phenomena of accurate
and diversified models leading to ensemble methods
with low generalization error (Dietterich, 2000). High
accurate models imply lower values of Eρ[L̂(θ, D)],
while highly diverse models implies higher values of
D̂(ρ,D). Consequently, the combined effect of both, as
described by the second-order PAC-Bayesian bounds
of Theorem 6, induces a lower upper bound over the
generalization error of the ensemble.

4.4 How to Exploit Diversity to Learn
Ensembles?

The PAC-Bayesian bounds of Theorem 6 provide a
sound framework for ensemble learning. As they
simultaneously hold for all distributions ρ, we can
choose the distribution ρ which minimizes these high-
probability bounds over the generalization error of the
ensemble (McAllester, 1998; Seeger, 2002; Langford
and Shawe-Taylor, 2002). In Appendix D, we provide
a complete description of how this approach precisely
applies to ensembles of neural networks (i.e how each
distribution ρ defines an ensemble of neural networks),
following the ideas introduced by (Masegosa, 2020).

As discussed in Section 2, a growing number of ensem-
ble learning approaches employs learning objectives
which, besides promoting individual models with low
error (i.e. small Eρ[L̂(θ, D)]), they also include a term
which explicitly promotes diversity. In consequence,
this work provides a theoretical justification for these
approaches: promoting diversity can improve the gen-
eralization performance of the ensemble. We elaborate
on this analysis in Appendix D.

This is not the case for ensembles of deep neural net-
works. In this context, individual models are large
and operate in the interpolation regime (Zhang et al.,
2016) and, in consequence, the Eρ[L̂(θ, D)] (present
in Theorem 6) will be very close to zero, if not null.
Moreover, using Lemma 2, the empirical diversity term
D̂(ρ,D) of this bound will be very close to zero too.
As a result, ensemble learning algorithms based on the
direct minimization of Theorem 6 become useless be-



Diversity and Generalization in Neural Network Ensembles

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
ce(ρ)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0


ρ[
L c

e(
θ)
]−

ⅅ
ce
(ρ
)

ce-loss
LeNet5
ResNet20

CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0
0/1(ρ)

0.0

0.2

0.4

0.6

0.8

1.0

α(

ρ[
L 0

/1
(θ

)]
−

ⅅ
0/

1(
ρ)

)

0/1-loss

LeNet5 α= 4
LeNet5 α= 1
ResNet20 α= 4
ResNet20 α= 1

CIFAR-10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
ce(ρ)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0


ρ[
L c

e(
θ)
]−

ⅅ
ce
(ρ
)

ce-loss
LeNet5
ResNet20

CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0
0/1(ρ)

0.0

0.5

1.0

1.5

2.0

2.5
α(


ρ[
L 0

/1
(θ

)]
−

ⅅ
0/

1(
ρ)

)

0/1-loss
LeNet5 α= 4
LeNet5 α= 1
ResNet20 α= 4
ResNet20 α= 1

CIFAR-100

Figure 1: Evaluation of Theorem 1. Each point
is an ensemble model learn with Ensemble or PAC2B-
Ensemble. The distance to the black line measures the
tightness of the upper bounds of Theorem 1.

cause the diversity term (D̂(ρ,D)) will hardly influ-
ence the learning process. In Appendix D, we provide
a mathematical formulation of this issue and, in the
next section, we also provide empirical evidence.

Given this, we seem to arrive to a contradiction be-
cause, according to this analysis, having high diversity
is essential for the generalization performance of an
ensemble. And, at the same time, ensembles of deep
neural networks have almost null empirical diversity
and strong generalization performance. However, the
key point is that having low diversity over the training
data (i.e. D̂(ρ,D) ≈ 0) does not imply we will not have
diversity over the test data (i.e. D(ρ) > 0), which is
what we really want to have according to Theorem 1.

Most of the current state-of-the-art deep ensemble
learning algorithms follow this general scheme: they
independently learn each neural network of the ensem-
ble by minimizing the provided loss function (usually
the ce-loss or the sq-loss) using some randomization
method (e.g. random initialization of the parameters
(Lakshminarayanan et al., 2017; Wen et al., 2019) ,
or different hyper-parameters for the gradient descent
algorithm (Wenzel et al., 2020), etc.) in order to force
the gradient descent algorithm to converge to different
local minimum of the loss function. Current state-of-
the-art deep ensemble learning algorithms exploit the
highly multi-modal landscape of the loss function (Fort
et al., 2019) to achieve that.

In consequence, when the ensemble is composed by K
models {θ1, . . . ,θK} defining different predictive func-

tions, then the expected diversity D(ρ) will be positive,
as stated in the following result:

Lemma 7. If there exists θi 6= θj and an input sam-
ple x ∈ supp(ν), where supp(ν) denotes the support
of the data generating function, such that h(x;θi) 6=
h(x;θj), we then have that D(ρ) > 0.

This analysis shows that ensembles of deep neural net-
work promote diversity by learning neural networks
which induce different predicitve functions. And this
is achieved, in general, by using randomization strate-
gies that exploits the highly multi-modal landscape of
the loss function of deep neural networks . In the next
section, we empirically illustrate this analysis. But the
evidence already given in some previous works (Fort
et al., 2019) clearly aligned with these conclusions.

5 Experimental Evaluation

5.1 Experimental Settings

We performed the empirical evaluation for the three
ensembles detailed in Section 3. Note that regression
ensembles are associated to the sq-loss, weighted ma-
jority vote ensembles are associated to the 0/1-loss,
and model averaging ensembles to the ce-loss. We will
use these losses as a way to refer to the different en-
sembles (e.g. the generalization error of a regression
ensemble will be denoted by Lsq(ρ)).

The regression ensemble is evaluated on the Wine-
Quality (Cortez et al., 2009) data set using a
multilayer-perceptron with one layer containing 50
hidden units and a dropout layer, this model is de-
noted as MLP50.

The majority vote and the model averaging ensem-
bles are evaluated on two standard data sets, CIFAR-
10 and CIFAR-100 (Krizhevsky, 2009), using two net-
works: LeNet5 (LeCun et al., 1989) and Resnet20 (He
et al., 2016). LeNet5 is chosen for its simplicity, mean-
ing it does not operate on the interpolation regime (i.e.
the empirical error is not close to zero). On the other
hand, we use ResNet20 because it operates in (or close
to) the interpolation regime for the CIFAR-10 and the
CIFAR-100 data sets. More complex networks could
have been employed, but for the aim of this empirical
evaluation ResNet20 is powerful enough.

All ensembles are made of four individual models. This
is not an arbitrary amount as this setting is the default
one in the widely used neural network ensemble library
Uncertainty Baselines2. However, Appendix E shows
results for other ensemble sizes.

We consider two ensemble learning algorithms; en-

2github.com/google/uncertainty-baselines

https://github.com/google/uncertainty-baselines
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Figure 2: Each box-plot represents a set of ensemble models learned with the same algorithm. The X-axis
represents the diversity of the ensemble and the Y-axis represents the gap between the loss of the individual
ensemble models and the loss of the ensemble (a positive gap indicates that the ensemble performs better than
the individual models).

semble (Lakshminarayanan et al., 2017), where each
randomly initialized model is independently optimized
using gradient descent, and P2B-Ensemble Masegosa
(2020), where the randomly initialized models are
jointly learned minimizing the PAC-Bayes bound of
Theorem 6. The former is the best representative ap-
proach of neural network ensemble learning algorithms
with a randomization approach (Lakshminarayanan
et al., 2017). In both cases, we use the ce-loss for the
CIFAR-10 and CIFAR-100 data sets, and the sq-loss
for Wine-Quality data set. For learning the majority
vote ensembles we optimize the ce-loss instead of the

0/1-loss because the 0/1-loss is non-differentiable, and
the ce-loss is a good proxy. In any case, we can com-
pute the error and diversity measures for this ensemble
and analyse their relationship.

We employ the test data set to approximate the gener-
alization errors of the ensemble L(ρ), of the individual
models L(θ) and, also, the expected diversity of the
ensemble D(ρ). For the experiments with the ce-loss,
we use a more complex but tighter version of the diver-
sity also introduced in Masegosa (2020) (see Appendix
A.2 for details). We do not evaluate the ensembles us-
ing out-of-distribution benchmarks (Snoek et al., 2019)
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Figure 3: Mean plus/minus three standard deviations of the ensemble test error L(ρ), average test error of the
individual models Eρ[L(θ)] and ensemble diversity in the test set D(ρ).

because the aim of this experimentation is to empiri-
cally evaluate our theoretical analysis, which assumes
that both the test and train data are generated from
the same distribution.

Five executions with different seeds were made for each
experiment. Full details of the experimental settings
are given in Appendix E. The needed code to repro-
duce the experiments is provided in the supplementary
material, and is based on publicly available libraries.

Source code for the experimental evaluations is avail-
able in a GitHub Repository3.

3github.com/PGM-Lab/2022-AISTATS-diversity

5.2 Experimental Evaluation

We start this evaluation by assessing how tight are
the upper bounds provided by Theorem 1. Figure 1
show the results of this evaluation. Each point corre-
sponds to an ensemble model, which is characterized
by a given ρδ distribution. The distance of the points
to the identity line measures the tightness of the up-
per bound of Theorem 1. In this results, we can see
that for the sq-version, the upper bound is completely
tight, as stated in the Theorem. For the ce-version,
the upper bound is also fairly tight too. For the 0/1-
version, we evaluate two versions. The original one
with α = 4, which is quite loose. And another version

https://github.com/PGM-Lab/2022-AISTATS-diversity
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with α = 1, which is not an upper bound, to illus-
trate that it seems plausible that there may exist the
possibility to derive bounds with α values closer to 1.
Because α = 4 is a worst case factor (Masegosa et al.,
2020).

In Section 4.3, we discussed how, according to our the-
oretical analysis, diversity is directly related to the en-
hanced performance we get when combining different
models. More precisely, as shown in Corollary 4, those
ensembles with higher diversity D(ρ) should raise a
higher gap between the average performance of the in-
dividual models Eρ[L(θ)] and the performance of the
ensemble L(ρ). Figure 2 shows how high diversity is
consistently linked to a higher performance gap (i.e.
Eρ[L(θ)]−L(ρ)) in all the cases. This figure also shows
how PAC2B-Ensemble, which explicitly promotes di-
versity, consistently induces higher-diversity ensembles
than the standard Ensemble algorithm.

In Section 4.4 we discussed why the P2B-Ensemble
algorithm, which minimizes the PAC-Bayes bound of
Theorem 6, learns better ensembles if the individual
network models do not operate in the interpolation
regime. By looking at the results of Figure 3, we can
see how this analysis matches our empirical findings:

• The P2B-Ensemble algorithm effectively induces
ensembles with higher diversity that have better
generalization performance than the Ensemble al-
gorithm for MLP50 and LetNet5.

• However, P2B-Ensemble on ResNet20 does not
induce ensembles with much higher diversity than
the Ensemble algorithm. Moreover, it performs
similar or worst than the Ensemble algorithm.

Figure 4 shows that the empirical error and empir-
ical diversity terms of the bound of Theorem 6 for
the ResNet20 ensemble is much smaller than for the
LeNet5 ensemble. In that case, ResNet20 is operating
close to the in the interpolation regime for CIFAR-10
and close to the interpolation regime for CIFAR-100.

6 Discussion and Limitations

Although it is well-known that diversity plays a key
role in the performance of an ensemble, no theoreti-
cal works have previously established a well founded
description of this relationship between diversity and
generalization that applies to a wide range of ensemble
models. This work aims to contribute a new stepping
stone in this direction.

We have shown in Theorem 1 that employing an upper-
bound-based decomposition of the error of an ensemble
is a promising approach that applies to a wide range
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Figure 4: Empirical error of individual models
Eρ[L̂(θ, D)] and empirical diversity D̂(ρ,D) of LetNet5
and ResNet20 on CIFAR-10 and CIFAR-100 data sets.

of ensembles. For example, we have shown which is
the role that correlation among predictors plays in en-
semble diversity. This decomposition has also allowed
us to apply a PAC-Bayesian analysis that has estab-
lished a neat link between the empirical diversity of
an ensemble and its generalization performance. And
we have also discussed why ensembles of deep neu-
ral networks promote diversity through randomization
strategies.

Although some of the results presented in this work are
straightforward consequences results that are readily
available in the literature, the main contribution of
this work has been to put them together and use them
as a framework for reasoning about diversity and gen-
eralization of neural network ensembles.

This theoretical analysis also presents several limita-
tions that open exciting research directions. First,
the upper bounds of Theorem 1 could potentially
be tighter. For example, C-bounds (Germain et al.,
2015) are known to be tighter than our 0/1-bound (see
(Masegosa et al., 2020) for a discussion at this respect).

Same happens with the PAC-Bayesian bounds employ
in Theorem 6. This family of PAC-Bayesian bounds
builds on the the upper bounds of Theorem 1. Hence,
if these bounds are not tight then we may expect the
same for the associated PAC-Bayesian bound. At the
same time, we have only chosen a general form of PAC-
Bayesian bounds. Thus, more specialized and tighter
PAC-Bayesian bounds could be employed instead, as
done by (Masegosa et al., 2020).
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A Decomposing the Loss of an Ensemble Using an Upper Bound

A.1 Proof of Theorem 1

We first provide the following preliminary result:

Corollary A.8. The diversity terms D(ρ) defined in Theorem 1 can be written as,

Dsq(ρ) = Eρ2
[
Eν
[
hR(x;θ)2 − hR(x;θ)hR(x;θ′)

]]
D0/1(ρ) = Eρ2

[
Eν
[
1(h(x;θ) = y)1(h(x;θ′) 6= y)

]]
Dce(ρ) = Eρ2

Eν
p(y | x,θ)2 − p(y | x,θ)p(y | x,θ′)

2 max
θ∈Θ

p(y | x,θ)2


where ρ2 is a shorthand for the product distribution ρ × ρ over Θ × Θ and the shorthand Eρ2 [f(θ,θ′)] =
Eθ∼ρ,θ′∼ρ[f(θ,θ′)].

Proof. This Corollary raises from the fact that the variance of the classifiers can be decomposed as:

V arρ(f(θ)) = Eρ[f(θ)2]− Eρ[f(θ)]2 = Eρ[f(θ)2]− Eρ2 [f(θ)f(θ′)]

= Eρ2
[
f(θ)2 − f(θ)f(θ′)

]
,

where f is determined by the considered loss function: for the sq-loss, f(θ) = hR(x;θ), the ce-loss, f(θ) = p(y |
x,θ), and the 0/1-loss f(θ) = 1(h(x;θ) 6= y).

�

Theorem 1. Under the settings given in Section 2, we have that

Lsq(ρ) = Eρ[Lsq(θ)]− Dsq(ρ), (A.1)

Lce(ρ) ≤ Eρ[Lce(θ)]− Dce(ρ), (A.2)

L0/1(ρ) ≤ 4(Eρ[L0/1(θ)]− D0/1(ρ)). (A.3)

The diversity terms D(ρ) have the following expressions:

Dsq(ρ) = Eν
[
Eρ
[(
hR(x;θ)− Eρ [hR(x;θ)]

)2]]
, (A.4)

Dce(ρ) = Eν

 1

2 max
θ∈Θ

p(y|x,θ)2Eρ
[
(p(y | x,θ)− Eρ[p(y | x,θ)])

2
] , (A.5)

D0/1(ρ) = Eν
[
Eρ
[(
1(hW (x;θ) 6= y)− Eρ [1(hW (x;θ) 6= y)]

)2]]
, (A.6)

where Dce(ρ) is well-defined since maxθ∈Θ p(y | x,θ) ≤ 1.

Proof. Let us begin with the mse-error. Recall the definition of the expected mean squared error of a regression
ensemble reparameterized by the distribution ρ, that is,

Lmse(ρ) = Eν
[
(y − hR(x; ρ))2

]
,

where hR(x; ρ) = Eρ [hR(x;θ)] with hR(x;θ) an individual regression model. We can get the desired result by
expanding the square in each of the elements on the right hand side of the equation, that is:

E [Lmse(θ)] = Eρ,ν
[
(y − hR(x;θ))2

]
= Eρ,ν

[
y2 − 2yhR(x;θ) + hR(x;θ)2

]
= Eν

[
y2 − 2yhR(x; ρ) + Eρ[hR(x;θ)2]

]
,
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where we used that y is constant under Eρ. On the other hand,

Dsq(ρ) = Eν,ρ
[
(hR(x,θ)− Eρ[hR(x;θ)])2

]
= Eν,ρ

[
(hR(x,θ)− hR(x; ρ))2

]
= Eν,ρ

[
hR(x,θ)2 − 2hR(x,θ)hR(x, ρ) + hR(x; ρ)2

]
= Eν

[
Eρ[hR(x,θ)2]− 2hR(x, ρ)2 + hR(x; ρ)2

]
.

Finally, subtracting both expressions, we get that

Eρ[Lsq(θ)]− Dsq(ρ) = Eν
[
y2 − 2yhR(x; ρ) + hR(x; ρ)2

]
= Eν

[
(y − hR(x; ρ))2

]
= Lmse(ρ).

Continuing with the cross-entropy error, we will be using the Taylor’s theorem with a remainder of second order
over the logarithm function. That is, given log x and a fixed value a > 0,

log x = log a+
1

a
(x− a)− 1

2ξ2
(x− a)2, ξ ∈ (x, a).

Applying this to p(y | x,θ) centered at Eρ[p(y | x,θ)] > 0,

log p(y | x,θ) = logEρ[p(y | x,θ)] +
1

Eρ[p(y | x,θ)]
(p(y | x,θ)− Eρ[p(y | x,θ)])

− 1

2ξ2
(p(y | x,θ)− Eρ[p(y | x,θ)])

2
,

taking expectation over ρ at both sides,

Eρ[log p(y | x,θ)] = logEρ[p(y | x,θ)]− Eρ
[

1

2ξ2
(p(y | x,θ)− Eρ[p(y | x,θ)])

2

]
.

Rearranging terms,

− logEρ[p(y | x,θ)] = −Eρ[log p(y | x,θ)]− Eρ
[

1

2ξ2
(p(y | x,θ)− Eρ[p(y | x,θ)])

2

]
.

The desired inequality raises from the fact that ξ is between p(y | x,θ) and Eρ[p(y | x,θ)], and hence, is upper
bounded by maxθ∈Θp(y | x,θ). Additionally, the square in the last term is always positive, implying the whole
term is positive. Using this two properties,

− logEρ[p(y | x,θ)] ≤ −Eρ[log p(y | x,θ)]

− Eρ
[

1

2 maxθ p(y | x,θ)2
(p(y | x,θ)− Eρ[p(y | x,θ)])

2

]
.

Finally, taking expectations wrt ν on both sides raises the desired result. Lastly, let us consider the 0/1-error. In
order to prove this result, we are using Markov’s inequality for monotonically increasing functions, in this case,
for ψ(a) = a2. That is, for a given random variable X,

P(|x| ≥ a) ≤ E[ψ(|x|)]
ψ(a)

=
E[|x|2]

a2
, for any a > 0.

Applying this theorem to Eρ [1(hW (x;θ) 6= y)] we get that

P (Eρ [1 (hW (x;θ) 6= y)] ≥ 0.5) ≤ 4Eν
[
Eρ [1 (hW (x;θ) 6= y)]

2
]
.

We may notice that if majority vote makes an error, at least half (ρ-weighted) of the classifiers are wrong, that
is

1(hW (x; ρ) 6= y) ≤ 1(Eρ[1hW (x;θ) 6= y] ≥ 0.5),
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which implies

Eν [1 (hW (x; ρ) 6= y)] ≤ Eν [1 (Eρ [1 (hW (x;θ) 6= y)] ≥ 0.5)] =

= P (Eρ [1 (hW (x;θ) 6= y)] ≥ 0.5) .

Using the derived inequality of the last term,

L0/1(ρ) = Eν [1 (hW (x; ρ) 6= y)] ≤ 4Eν
[
Eρ [1 (hW (x;θ) 6= y)]

2
]
.

In order to conclude the proof, we need to show that the right hand side of the inequality is the desired upper
bound of the 0/1 loss. Using that V ar(X) = E[(X−E[X])2] = E[X2]−E[X]2 over 1(hW (x;θ) 6= y), we get that

D0/1(ρ)) = Eν
[
Eρ
[
(1(hW (x;θ) 6= y)− Eρ [1(hW (x;θ) 6= y)])2

]]
)

= Eν
[
Eρ [1(hW (x;θ) 6= y)]− Eρ [1(hW (x;θ) 6= y)]

2
]

= Eρ
[
Eν [1(hW (x;θ) 6= y)]

]
− Eν

[
Eρ [1(hW (x;θ) 6= y)]

2
]
.

Which implies that

4
(
Eρ[L0/1(θ)]− D0/1(ρ)

)
= 4
(
Eρ [Eν [1(hW (x;θ) 6= y)]]− D0/1(ρ)

)
= 4Eν

[
Eρ [1(hW (x;θ) 6= y)]

2
]
.

�

A.2 Tighter variant of Theorem 1 inequality

The following result demonstrates how to define a tighter second-order Jensen bound for the cross-entropy error
using the Jensen inequality stated in (Liao and Berg, 2019).

Theorem. Any distribution ρ over Θ satisfies the following inequality,

Lce(ρ) ≤ Eρ(θ)[L(θ)]− VTce(ρ),

where VTce(ρ) is the normalized variance of p(y | x,θ) wrt ρ(θ),

VTce(ρ) = Eν
[
h(m,µ)Eρ(θ)

[
(p(y | x,θ)− p(y))2

]]
.

Where µ = Eρ[p(y | x,θ)], m = maxθ p(y | x,θ) and h(m,µ) = lnµ−lnm
(m−µ)2 + 1

µ(m−µ) .

Proof sketch. Apply (Liao and Berg, 2019)’s result to the random variable p(x | θ), following the same strategy
used in the proof of Theorem 1. �

B How to Measure the Diversity of an Ensemble?

B.1 Proof of Theorem 3

Theorem 3. The diversity terms D(ρ) defined in Theorem 1 can be written as

D(ρ) = Vν×ρ
(
f(y,x;θ)

)
− Eρ×ρ

[
Covν(f(y,x;θ), f(y,x;θ′))

]
were ρ× ν denotes the joint distribution over Θ× (X,Y) and f is completely determined by the considered loss
function.



Diversity and Generalization in Neural Network Ensembles

Proof.

D(ρ) = Eν
[
Vρ
[
f(y,x;θ)

]]
= Eν

[
Eρ2
[
f(y,x;θ)2 − f(y,x;θ)f(y,x;θ′)

]]
= Eν

[
Eρ
[
f(y,x;θ)2

]
− Eρ2

[
f(y,x;θ)f(y,x;θ′)

]]
= Vν×ρ

[
f(y,x;θ)

]
+ Eν×ρ

[
f(y,x;θ)

]2 − Eν×ρ2
[
f(y,x;θ)f(y,x;θ′)

]]
= Vν×ρ

[
f(y,x;θ)

]
− Eρ×ρ

[
Covν

(
f(y,x;θ), f(y,x;θ′)

)]
�

B.2 Proof of Lemma 3

Lemma 3. The diversity terms D(ρ) defined in Theorem 1 satisfy the following properties:

i) If all the ensemble’s members provide the same predictions or places all its probability mass in a single
model, then D(ρ) is null.

ii) 0 ≤ D(ρ) ≤ Eρ[L(θ)]

iii) D(ρ) is invariant to reparametrizations.

Proof.

i) Notice that if all models make the same prediction, h(x;θ) = Eρ[h(x;θ)] and p(y | x,θ) = Eρ[p(y | x,θ)],
which nullifies all diversity definitions from Theorem 1.

ii) Using that every considered loss function and variance are positive, the given inequality is trivial.

iii) Let φ : Ω → Θ be an injective differentiable function with continuous partial derivatives, with non-zero
Jacobian at any point. This result follows from the fact that we are considering a probability distribution
that is a finite mixture of delta distributions, as a result, the distribution is compactly supported and the
variable change theorem can be applied to a continuous function f : Θ→ R:

Eρ[f(θ)] =

∫
Θ

ρ(θ)f(θ) =

∫
Ω

ρ ◦ φ(ω) f ◦ φ(ω) |det(Dφ)(ω)|

= Eρ′ [f ◦ φ(ω)]

where
ρ′(ω) = ρ ◦ φ(ω) |det(Dφ)(ω)|.

The result follows from taking f(θ) = (θ − Eρ(θ))2.

B.3 Pairwise diversity measures

Note that Corollary A.8 shows how the provided diversity measures are pairwise diversity measures (Kuncheva
and Whitaker, 2003) because they only consider interactions among pair of models.

C How is Diversity Related to the Performance of an Ensemble?

C.1 Empirical diversity satisfies the same properties as the theoretical

Let us discuss every point in Lemma 2 from an empirical point of view:

i) It is clear that if all models make the same prediction or place the same probabilities, the empirical diversity
is zero.
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ii) In order to show this, the same arguments used for the theoretical diversity must be applied to the empirical
one, using an empirical version of Theorem 1 that reduces to take the expectation over the empirical
distribution at each step.

iii) To show that invariance beholds, we can redo the same proof using the empirical expectation. In this case,
given that the empirical probability is compactly supported, the variable change theorem holds.

C.2 Proof of Theorem 5

Theorem 5 (PAC-Bayes bounds). For any prior distribution π over Θ independent of D and for any
ξ ∈ (0, 1) and any λ > 0, with probability at least 1 − ξ over draws of training data D ∼ νn(x, y), for all
distribution ρ over Θ, simultaneously,

L(ρ) ≤ α
(
Eρ[L̂(θ, D)]− D̂(ρ,D) +

2KL (ρ | π) + ε(ν, π, λ, n, ξ)

λn

)
,

where α is equal to 1 if we consider the sq-loss or the ce-loss, and 4 is we consider the 0/1-loss. KL refers to the
Kullback-Leibler divergence between ρ and the prior π. And ε(ν, π, λ, n, ξ) > 0 is a function, which is independent
of ρ but also depends on the specific loss.

Proof. In order to prove this theorem, we are going to show that the rhs term is an upper bound for α(Eρ[L(θ)]−
D(ρ)), which, using Theorem 1 concludes the proof. First of all, consider the following tandem losses:

Lmse(θ,θ
′) = Lmse(θ)− Eν

[
hR(x;θ)2 − hR(x;θ)hR(x;θ′)

]
L0/1(θ,θ′) = L0/1(θ)− Eν

[
1(h(x;θ) = y)1(h(x;θ′) 6= y)

]
Lce(θ,θ

′) = Lce(θ)− Eν

p(y | x,θ)2 − p(y | x,θ)p(y | x,θ′)
2 max

θ∈Θ
p(y | x,θ)2


which, using Corollary A.8 verifies

Eρ2 [L(θ,θ′)] = Eρ[L(θ)]− D(ρ).

Applying Germain et al. (2016, Theorem 3) to the tandem loss functionals described above with a prior distri-
bution π(θ,θ′) = π(θ)π(θ′), we got that for any λn > 0, δ ∈ (0, 1], with probability at least 1− δ:

Eρ(θ,θ′)[L(θ,θ′)] ≤ Eρ(θ,θ′)[L̂(θ,θ′)] +
1

λn

[
KL

(
ρ(θ,θ′) | π(θ,θ′)

)
+ ε(ν, π, λ, n, ξ)

]
.

Where

ε(ν, π, λ, n, ξ) = logEπ(θ,θ′)

[
Eν
[
exp

(
λ
(
L(θ,θ′)− L̂(θ,θ′, D)

))]]
+ log

1

δ
, (C.7)

and KL
(
ρ(θ,θ′) | π(θ,θ′)

)
= 2KL (ρ | π). In short, we got that

L(ρ) ≤ α
(
Eρ[L̂(θ, D)]− D̂(ρ,D) +

1

λn

[
2KL (ρ | π) + ε(ν, π, λ, n, ξ)

])
.

�

C.3 ε(ν, π, λ, n, ξ) in Theorem 5

The general expression of ε(ν, π, λ, n, ξ) is described in Equation (C.7). It can be contextualized for the sq-loss,
the ce-loss and the 0/1-loss by instantiating L(θ,θ′) correspondingly, as shown in the beginning of the proof of
Theorem 5.
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D How to Exploit Diversity to Learn Ensembles

D.1 Working with a Finite Parameter space

The assumption of finite parameter space is not restrictive in this case. We have to consider that if Θ =
{θ1, . . . ,θK}, K can be a very large number. Potentially, Θ could contain all finite-precision vectors of size
M . In any case, the distribution ρ will assign positive probabilities to only those models which are part of the
ensemble.

D.2 Working with a Continuous Parameter Space

The only point in this work where considering a continuous parameter space would alter the used reasoning is at
Lemma 2, mode precisely the reparameterization invariance property of the considered diversity formulas. The
key points is that if Θ is a continuous non-compact set, such as <M for a given M ∈ N, the change of variable
theorem cannot be applied. In order to surpass this difficulty, we could always consider

Θ = {θ ∈ <M : ‖θ‖2 ≤ N} ⊂ <M .

With N the highest norm of any representable number within the considered finite-precision of the machine.

D.3 Mixtures of multivariate Gaussian Distributions approximation

As detailed in Section 4.4, we consider an approach with an uniform Gaussian mixture, denoted by ρδ, to
represent an ensemble of K models. That is, the following distribution models the parameters, given a fixed set
of mean values (θ1, . . . ,θK):

ρδ(θ) =
1

K

K∑
k=1

N (θ; θk, εI).

Using this distribution, the expected value of the loss function is

Eρδ [L̂(θ, D)] =

∫
θ

1

K

K∑
k=1

N (θ; θk, εI)L̂(θ, D =
1

K

K∑
k=1

∫
θ

N (θ; θk, εI)L̂(θ, D).

We then use the following approximation approach to simplify the above expression: given that ε is sufficiently
small, we can approximate the expected value of a function over a highly sharp distribution around its mean,
with the evaluation of such function in the mean value of the distribution. More precisely,∫

θ

N (θ; θk, εI)f(θ) ≈ f(θk) ∀k = 1, . . . ,K. (D.8)

Using that, the expected value of the loss can be approximated as

Eρδ [L̂(θ, D)] =
1

K

K∑
k=1

∫
θ

N (θ; θk, εI)L̂(θ, D) ≈ 1

K

K∑
k=1

L̂(θk, D).

The same reasoning can be applied to the regularization KL term, along with another approximation:

K∑
i=1

N (θk; θi, εI) ≈ N (θk;θk, εI) =
1√

(2π)M εM
, ∀k = 1, . . . ,K, (D.9)

with M the dimensionality of θ. The main idea behind this is to assume that the considered mean values
(θ1, . . . ,θK) are far enough from each other so that for any pair (θi,θk), k 6= i evaluating a Gaussian distribution
centered in one of them θi, with covariance matrix εI over the other value θk, is approximately zero. This is
not a strong assumption given that we can fix the value of ε to any value, more precisely, we could set it so that
the minimum euclidean distance between any pair of (θ1, . . . ,θK) is greater than 3ε, which contains the 99.7%
of the density of the distribution.
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As a result, the following approximation raises for the regularization term:

KL (ρδ | π) =

∫
θ

ρδ(θ) log
ρδ(θ)

π(θ)

=
1

K

K∑
k=1

∫
θ

N (θ; θi, εI)

(
log

1

K

K∑
i=1

N (θ; θi, εI)− log π(θ)

)

(by Equation (D.8)) ≈ 1

K

K∑
k=1

(
log

1

K

K∑
i=1

N (θk; θi, εI)− log π(θk)

)

(by Equation (D.9)) ≈ 1

K

K∑
k=1

(
log

1

K
N (θk; θk, εI)− log π(θk)

)

= − 1

K

K∑
k=1

log π(θk) +
1

K

K∑
k=1

log
1

K

1√
(2π)M εM

We also apply the approximation given by Equation (D.8) over the general variance formula:

V̂ρδ(f(θ)) = Eρ2δ
[
f(θ)2 − f(θ)f(θ′)

]
= Eρδ

[
f(θ)2

]
− Eρ2δ

[
f(θ)f(θ′)

]
=

1

K

K∑
k=1

f(θk)2 − 1

K2

K∑
i=1

K∑
j=1

f(θi)f(θj).

Given this, it is easy to approximate each of the diversity terms defined in Corollary A.8. Where f is determined
by the considered loss function: for the sq-loss, f(θ) = hR(x;θ), the ce-loss, f(θ) = p(y | x,θ), and the 0/1-loss
f(θ) = 1(h(x;θ) 6= y).

D.4 Ensemble Learning Algorithms Which Explicitly Promote Diversity

Negative Correlation Learning (Liu and Yao, 1999): This learning algorithm proposes the following
minimization objective, which is written following our notation:

Eρ[L̂sq(θ, D)]− λED[
1

K

K∑
k=1

(hR(x;θk)− hR(x; ρ))
∑
j 6=k

(hR(x;θj) + hR(x; ρ))]︸ ︷︷ ︸
NC(ρ,D)

where λ ∈ [0, 1], ED[·] denotes expectation wrt the empirical distribution of the data, and NC(ρ,D) denotes
the empirical negative correlation which promotes diversity. After simple algebraic manipulations, we can prove
that NC(ρ,D) = −D̂sq(ρ,D). So, this algorithm matches our learning algorithm for the sq-loss. In consequence,
our work provides a novel interpretation of the negative correlation ensemble learning algorithm (Liu and Yao,
1999) based on PAC-Bayesian bounds.

Generalized Ambiguity Decomposition (Jiang et al., 2017): This work tries to extend Krogh and
Vedelsby (1994)’s decomposition to general loss functions. It employs a similar decomposition of the loss function
in individual model errors and ensemble diversity. But their decomposition is not based on upper bounds. It only
matches our decomposition for the sq-loss. This work does not relate the generalization error of the ensemble
with the empirical diversity, as we do through PAC-Bayesian upper bounds. They do not consider multi-class
classification problems. And the 0/1-loss decomposition does not include a diversity term, and they do not
consider weighted majority vote.

Generalized Negative Correlation Learning (Buschjäger et al., 2020): This work mainly builds on the
decompositions given by Jiang et al. (2017). They first arrive to a learning objective which includes a diversity
term. This diversity term is different from the ones presented here. They do not consider the 0/1-loss and
weighted majority vote. However, they disregard the learning objective including a diversity term and advocate
for a learning objective of the form: λL̂(ρ,D) + (1− λ)Eρ[L̂(θ, D)] with λ ∈ [0, 1].
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D.5 Standard Ensemble Learning Algorithms Do Not Explicitly Promote Diversity

Standard learning algorithms can be interpreted as methods trying to minimize the following objective function:

Eρδ [L̂(θ, D)] +
KL (ρ | π)

λn

where either the ce-loss or the sq-loss are employed.

This learning objective does not include the D̂(ρ,D) term encouraging diversity. In fact, under the approximations
discussed in Appendix D.3 and discarding constant terms, this learning objective can be expressed as:

1

K

∑
k

(
L̂(θk, D)− lnπ(θk)

λn

)
where each θk can be learned independently from the rest due to the presence of the V̂(ρ,D) term.

E Experimental Evaluation

E.1 Experimental Settings

The experimental evaluation was carried under Google Colab Pro (colab.research.google.com) in an environ-
ment with 8 TPU cores. The Python packages used are those listed below (together with the corresponding
dependencies):

• Google Uncertainty Metrics 4.

• edward development version 5

• fsspec 2021.5.0

• gcsfs 2021.5.0

• robustness-metrics development version 6

• tensorflow 2.4.1

• tensorflow-datasets 4.0.1

• tensorflow-estimator 2.4.0

• tensorflow-gcs-config 2.4.0

• tensorflow-hub 0.12.0

• tensorflow-metadata 0.30.0

• tensorflow-probability 0.12.1

The set of hyper-parameters considered in the experimentation are shown in Table E.1.

4https://github.com/google/uncertainty-baselines
5https://github.com/google/edward2/tree/f36188e58bd6e0454f551fed6b29beded1b777ad
6https://github.com/google-research/robustness_metrics/tree/5a380c4ec11fa85255b5db643c64efa42d749110

https://colab.research.google.com
https://github.com/google/uncertainty-baselines
https://github.com/google/edward2/tree/f36188e58bd6e0454f551fed6b29beded1b777ad
https://github.com/google-research/robustness_metrics/tree/5a380c4ec11fa85255b5db643c64efa42d749110
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Hyper-parameter LeNet5 ResNet20 MLP50
base learning rate 0.001 0.1 0.001

epochs 200 250 250
l2 Regularization 2 · 10−4 2 · 10−4 2 · 10−4

learning rate decay [60,120,160] [60,120,160] [60,120,160]
per core batch size 64 64 32

Table E.1: Hyperparameters for each model.

E.2 Experiments with different ensemble sizes

Figure D.5 is an extension of Figure 2 where different ensemble sizes are considered. Here we can see again
how those ensembles with higher diversity D(ρ) present a higher gap between the average performance of the
individual models Eρ[L(θ)] and the performance of the ensemble L(ρ), as stated in Corollary 4. This figure
also shows that, for LeNet5 and MLP50, Ensemble do not get a significant gain in diversity by increasing the
size of the ensemble. But, for ResNet20, Ensemble steadily increases diversity by increasing the ensemble size.
We hypothesize that for simple networks random intialization is not as effective to capture different modes as
happens with complex neural networks. On the contrary, P2B-Ensemble always get an increase in diversity when
increasing the ensemble size.

Figure E.6 show the generalization performance of the ensembles learned with the Ensemble and P2B-Ensemble
algorithms, for different ensemble size, from two to five. The obtained results from LeNet5 show how increasing
the number of models decreases the performance of the ensemble, in contrast to ResNet20 and MLP-50, where
the opposite outcome raises. We do not have a convincing explanation for this phenomenom.

E.3 Evaluation of Corollary 5

Finally, we want to through evidence about how good Corollary 5 to decide when an ensemble is better than
a single model. Figure E.7 shows how often the condition of Corollary 5 is met by those ensembles learned
with Ensemble, the standard ensemble learning algorithm. In consequence, these ensembles perform better than
the best individual model in isolation. Points below the line represents ensembles satisfying this condition. As
can be seen, all ensemble models learned by Ensemble for the ce-loss in CIFAR-10 and CIFAR-100 satisfy the
condition and performs better than the best individual model. So, we can see that the random initialization is
an effective way to learn high quality ensembles. However, this is not always the case for sq-loss in WineQuality
using MLP50. In this case, Ensemble often fails to learn ensembles that generalize better than the best individual
model. The problem is, as we show in Figure 2, that Ensemble learn ensembles with very low diversity.

In the case of the 0/1-loss, we have the same ensembles than for the ce-loss (remember, majority vote ensembles
are trained with the ce-loss). In this case, we do not have any model satisfying the condition of Corollary 5. Even
though, one can verify that for all the models the ensemble performs better than best single individual model.
Again, the factor α = 4 has a significant impact because it weakens the bound and reduces its applicability. In
fact, if we use α = 1, we fix the problem as all models satisfy then the condition of Corollary 5.
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Figure D.5: Each box-plot represents a set of ensemble models learned with the same algorithm and a different
ensemble size. The X-axis represents the diversity of the ensemble and the Y-axis represents the gap between the
loss of the individual ensemble models and the loss of the ensemble (a positive gap indicates that the ensemble
performs better than the individual models).
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Figure E.6: Mean plus/minus three standard deviations of the ensemble error, average individual models errors
and ensemble diversity using LeNet5, ResNet20 and MLP50. Ensemble and P2B-Ensemble algorithms with
ensembles of sizes, 2, 3, 4 and 5.
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Figure E.7: Evaluation of Corollary 5. Each point is an ensemble model learned with Ensemble. θ? denotes
the best single individual model of the ensemble. Ensembles below the black line satisfy the condition of the
corollary and outperform the best single individual model.
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