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Abstract

The knowledge that data lies close to a par-
ticular submanifold of the ambient Euclidean
space may be useful in a number of ways. For
instance, one may want to automatically mark
any point far away from the submanifold as
an outlier or to use the geometry to come up
with a better distance metric. Manifold learn-
ing problems are often posed in a very high
dimension, e.g. for spaces of images or spaces
of words. Today, with deep representation
learning on the rise in areas such as computer
vision and natural language processing, many
problems of this kind may be transformed
into problems of moderately high dimension,
typically of the order of hundreds. Motivated
by this, we propose a manifold learning tech-
nique suitable for moderately high dimension
and large datasets. The manifold is learned
from the training data in the form of an inter-
section of quadric hypersurfaces—simple but
expressive objects. At test time, this manifold
can be used to introduce a computationally
efficient outlier score for arbitrary new data
points and to improve a given similarity met-
ric by incorporating the learned geometric
structure into it.

1 INTRODUCTION

One particularly interesting new area of research for
manifold learning is motivated by the recent advances
in deep representation learning. In a wide range of
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industrial scenarios where deep feature extractor is
used as a part of a larger pipeline, a feature space level
outlier detector may help tackle the problem of out-of-
distribution input data at test time, which, in its turn,
may appear due to undertraining, faulty preprocessing
or even a deliberate attack. Manifold learning may be
used to build such a detector. Moreover, in problems
where we need to compare the similarity of different in-
puts, e.g. in face recognition, geometry-based detector
can be used to improve the similarity metric.

Motivated by these problems, we propose a manifold
learning technique where the manifold is learned in
form of an intersection of quadric hypersurfaces—the
zero-sets of quadratic polynomials. Like principal com-
ponent analysis (PCA), it yields a manifold as a subset
of the ambient Euclidean space.

Fitting a quadric hypersurface intersection is posed
as an optimization problem of minimizing distances
from training dataset to the intersection. Since the
geometric distances are computationally expensive to
calculate we discuss various approximations. The sim-
plest possible choice gives rise to a close relative of
the kernel PCA with quadratic kernel. We are going
beyond this basic model and utilize a finer and more
robust approximation. Moreover, we introduce new op-
timization constrains to make the optimization problem
equivariant with respect to isometric transformations
of the training dataset.

The proposed quadric hypersurface intersection model
is much more expressive than the linear one used in
PCA, which is the intersection of hyperplanes. It is
also more robust, geometry-respecting and scalable
than simple variations of kernel PCA. The number of
parameters that define the quadric intersection model
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grows quadratically with the dimension, thus making
it suitable for moderately high-dimensional spaces, e.g.
for feature spaces of deep models. One of the most im-
portant features of the proposed technique is that it is
amenable to stochastic gradient descent (SGD), which
allows (sub)linear scaling with respect to the training
dataset size and is straightforward to implement using
modern automatic differentiation frameworks.1

To showcase the potential of the proposed technique,
in Section 5 we consider its application to an industrial
level image classification and outlier detection problem.

2 SETTING AND RELATED WORK

We aim to propose a manifold learning technique to
drive a geometry-based outlier detector which may be
used at a feature space level of industrial scale deep rep-
resentation learners. We are looking at large unlabeled
datasets of synthetically structured data and of mod-
erately high dimension (order of hundreds). We need
to keep in mind that training data may be contami-
nated and may possess complex topology, for instance
be highly clustered, with unknown or even non-fixed
number of clusters (this is common in open set clas-
sification problems). Thus, the technique should be
expressive, robust and scalable.

The need for a new technique comes from the fact
that classical manifold learning algorithms, such as
Isomap (Tenenbaum et al., 2000), LLE (Roweis and
Saul, 2000), Laplacian eigenmaps (Belkin and Niyogi,
2002), LTSA (Zhang and Zha, 2004) and anomaly
detection techniques based on them (e.g. Hein and
Maier (2007)) are not readily suitable for large-scale
problems without further modifications.

Geometry-motivated anomaly detection techniques like
one-class SVM (OCSVM, Schölkopf et al. (2000)),
support vector data description (SVDD, Tax and
Duin (2004))2 or the kernel PCA based novelity detec-
tor (Hoffmann, 2007) aim to solve similar problems.
However, they usually fail to be simultaneously expres-
sive, robust and, most importantly, scalable enough. To
prove this point, we evaluate our technique against (the
suitable approximations of) these methods in Section 5.

We acknowledge that the idea of describing a point
cloud as a zero set of polynomial functions is not novel.
As will be explained later, even the simple PCA may be
interpreted this way. More recently, Livni et al. (2013)
used similar ideas for solving classification problems.
However, their singular value decomposition based ap-

1An additional justification for the expressiveness of the
model can be found in Mumford (2010, Theorem 1).

2In most cases this approach is actually equivalent to
OCSVM (Lampert, 2009).

proach is not scalable enough for our target setting and
thus not really relevant to our further developments.
We also acknowledge the related recent papers by Li
et al. (2017) and Jung et al. (2012).

3 MANIFOLD LEARNING

Manifold learning, as a term, refers to a diverse col-
lection of techniques motivated by the manifold hy-
pothesis (Fefferman et al., 2016), the statement that
natural datasets (e.g. images of pets) lie in the vicinity
of a relatively low-dimensional manifold embedded in a
higher-dimensional ambient space. Manifold learning is
often considered synonymous to nonlinear dimension-
ality reduction (Lee and Verleysen, 2007), though the
latter more often refers to data-visualization methods.

There exists a large set of manifold learning techniques,
many of them are considered by Ma and Fu (2011).
Most of these techniques can be thought of as black
boxes which take a point cloud in a high-dimensional
Euclidean space and which map every point of the cloud
into a point in a low-dimensional Euclidean space. For
example, multidimensional scaling algorithms seek the
mapping so as to preserve pairwise distances as well as
possible, while PCA, viewed through an appropriate
lens, tries to preserve most of the data’s variation.

Another natural but less-often studied class of manifold
learning techniques tries to characterize the manifold in
the vicinity of which the point cloud lies as a submani-
fold of the ambient Euclidean space. We highlight that
this shift in formulation allows one to ask additional
questions, such as how far an arbitrary point in the
ambient space is from the manifold—a key question
for the outlier detection applications. We proceed to
discuss this formulation further.

3.1 Characterizing Manifolds

We begin by recalling and highlighting a key prop-
erty of principal component analysis, namely that it
characterizes the manifold it finds as a submanifold of
the ambient Euclidean space. Given a centered point
cloud p1, . . . ,pn ∈ Rd, PCA finds orthonormal vectors
v1, . . . ,vd ∈ Rd such that

Vk =
{
x ∈ Rd

∣∣x = α1v1 + · · ·+ αkvk
}

(1)

is the k-dimensional linear subspace (thus a submani-
fold) of the ambient Euclidean space Rd that optimally
fits the point cloud in a suitable sense. With this defi-
nition, it is possible to compute the distance from any
point p ∈ Rd to the closest point of Vk:

d(p, Vk) =
∥∥∥p− k∑

j=1

〈p,vj〉vj
∥∥∥ =

( d∑
j=k+1

〈p,vj〉2
)1/2

, (2)



Pavutnitskiy, Ivanov, Abramov, Borovitskiy, Klochkov, Vialov, Zaikovskii, Petiushko

where ‖·‖ and 〈·, ·〉 are standard Euclidean norm and
inner product, respectively. In this sense, PCA explic-
itly characterizes the manifold through (1). Hereinafter
we use d to denote the geometric distance: for a subset
X ⊂ Rd and a point p ∈ Rd this distance is given by

d(p, X) = inf
x∈X
‖p− x‖. (3)

PCA’s way of characterizing a manifold is very conve-
nient but relies on the fact that elements of a linear
subspace can be represented as linear combinations of a
finite collection of basis vectors, which does not directly
extend to non-linear domains. However, one can mod-
ify this point of view, to make it more amenable to the
non-linear setting by considering the linear subspace
that PCA finds as the zero set of some vector-valued
linear mapping. For a map F : Rd → Rl we set

Z(F ) =
{
x ∈ Rd

∣∣F (x) = 0
}
. (4)

Then we have Vk = Z(F (k)) for F (k) : Rd → Rd−k

given by F (k)(x) = (〈x,vk+1〉, . . . , 〈x,vd〉). This is
an instance of a very general way of representing a
submanifold, as a zero set of some smooth function:
rather than viewing a manifold as the span of a set of
basis vectors, we can view a manifold as a solution to
the system of equations Z(F ) = 0 for a suitable F .

By the preimage theorem (Milnor and Weaver, 1997,
§2, Lemma 1), under mild technical assumptions on F ,
we have that Z(F ) is indeed a manifold.

In the following, we will rely on representing a manifold
as a zero set of a function, thus shifting the problem of
finding a manifold to the problem of finding a function.

Note that this representation is much more expressive
(though less explicit) than representing a manifold as
an image of Rk under some function G : Rk → Rd as
for the mapping G(α1, .., αk) = α1v1 + · · ·+ αkvk in
PCA. Although this method is widely used, for example
in autoencoder neural networks, it can only represent
manifolds that can be covered by a single chart: this
prevents the accurate representation of, for instance,
disconnected domains or of the simple sphere or torus.

4 INTERSECTIONS OF QUADRICS

As noted in the previous section, the k-dimensional
submanifold of Rd that PCA finds from a point cloud
p1, ..,pn ∈ Rd is a zero set Z(F (k)) of some linear

function F (k) : Rd → Rd−k. If we look a little bit
deeper at how this manifold is defined, we can see that
F (k) solves the optimization problem

F (k) = arg min
∑n

j=1
d(pj , Z(F (k)))2. (5)

Set uj = vj+k for indices 1 ≤ j ≤ d − k. Then

F (k) = (f1, .., fd−k) where fj(x) = 〈x,uj〉 are linear
polynomials with coefficients uj ∈ Rd such that vec-
tors u1, . . . ,ud−k are orthonormal. It means that (5)
has to be optimized over d − k vectors uj of dimen-
sion d under the constraint that they should form an
orthonormal system. Expanding the distance in (5)
through (2), we get a simple optimization problem
which can either be solved exactly by computing the
singular value decomposition (SVD) of a d× n matrix,
or approximately through gradient-based optimization.

We propose to extend this by considering quadratic
polynomials fj instead of the linear ones, as compo-
nents of function F = (f1, . . . , fd−k).

The zero set of a quadratic polynomial (polynomial
of degree 2) is called a quadric hypersurface or sim-
ply a quadric. We consider linear polynomials and
constants to be special cases of quadratic polynomials
and similarly refer to their zero sets as quadrics. The
word hypersurface is justified by the fact that in the
non-degenerate case Z(fj) are (d− 1)-dimensional.3

Moreover, the zero set Z(F ), which coincides with the
intersection Z(F ) = Z(f1) ∩ · · · ∩ Z(fd−k) is usually a
k-dimensional manifold. Intuitively, each of the d− k
quadrics eliminates one dimension of the d-dimensional
ambient space. We do not dwell here on a precise con-
dition for intersection to be a k-dimensional manifold.

Quadrics in R2 are conic sections: ellipses, hyperbolas
and parabolas. However already in R3 quadrics and
their intersections may be much less trivial. This is
illustrated on Figure 1. We refer the reader to the paper
of Beale et al. (2016) and to the references therein for
a brief review of the previous work on the topic of
fitting quadrics in low dimension, while proceeding to
present an algorithm suitable for high dimension and
large datasets.

4.1 Fitting a Quadric Intersection

We start with the optimization problem (5), which,
at least in theory, is as applicable for intersections of
quadrics as it is to linear subspaces (intersections of
linear hypersurfaces). Any quadratic polynomial in Rd
can be written as

f(x1, . . . , xd) =
∑

i≤j
αi,jxixj +

∑
i
α′ixi + α′′, (6)

where αi,j , α
′
i, α
′′ ∈ R. We denote the vector of its co-

efficients by v(f) = (α1,1, .., αd,d, α
′
1, .., α

′
d, α
′′)> ∈ RD,

3A quadric is non-degenerate if the Hessian ma-
trix of the homogenization fhom(x1, . . . , xd+1) =
x2
d+1f(x1/xd+1, . . . , xd/xd+1) of the corresponding

polynomial f is non-singular. In this case the quadric
is a smooth algebraic variety and thus a manifold of
dimension d− 1 (Harris, 2013, Example 3.3).
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Figure 1: Examples of quadrics and their intersections in R3. Two quadric surfaces are depicted by two meshes,
each with its own color. The dark blue line portrays their intersection. From left to right: the intersection of an
elliptic paraboloid with a hyperbolic cylinder; the intersection of an elliptic cone with an elliptic cylinder; the
intersection of a hyperbolic hyperboloid and a hyperbolic paraboloid.

where D =
(
d2 + 3d

)
/2+1 is the number of monomials

of degree ≤ 2 in d variables. Thus the intersection of
quadrics Z(f1), . . . , Z(fm) is determined by m vectors
v(f1), . . . ,v(fm), similarly to how a linear subspace is
determined by the basis vectors in PCA.

The intersection of quadrics Z(F ) does not change if we
make a replacement fi 7→ afi for a 6= 0 or fi 7→ fi+afj
for any a ∈ R and i 6= j, which is quite clear from view-
ing the Z(F ) as the solution set of a system of equa-
tions. Moreover, the problem (5) per se has F (x) ≡ 0
for a trivial solution that corresponds to the whole
Z(F ) = Rd. To handle both of these issues we need to
introduce some constraints. We therefore look for an
orthonormal collection of quadratic polynomials with
respect to some inner product, the most simple of which
is the standard inner product of vectors v(f1), ..,v(fm).

It turns out though that optimization problem (5)
is very hard to solve for quadrics: computing
even a single d(pj , Z(fk)) is a (computationally)
hard problem because projecting a point onto a
quadric is nontrivial. A number of approxima-
tions have therefore been proposed (Taubin, 1991;
Taubin, 1993) such as dalg(pj , Z(fk)) :=

∣∣fk(pj)
∣∣,

called the algebraic distance.4 Approximating

d(pj , Z(F )) ≈
(∑m

k=1

∣∣fk(pj)
∣∣2)1/2, gives the optimiza-

tion problem (δkl is the Kronecker delta):

(f1, . . . , fm) = arg min
〈v(fk),v(fl)〉=δkl

for k,l=1,...,m

n∑
j=1

m∑
k=1

∣∣fk(pj)
∣∣2. (7)

In Appendix A.1 we show that the problem (7) is deeply
related to the polynomial kernel PCA. Despite this con-
nection, we view this problem from a different angle
and propose a simple yet fruitful idea of solving (7) by

4A number of techniques in the literature may be linked
to the algebraic distance, e.g. Coope (1993).

applying stochastic gradient descent to perform uncon-
strained optimization of the corresponding Lagrangian,
treating the Lagrange multiplier as a tunable hyperpa-
rameter. Building on this idea, we proceed to improve
this approach. But first, we discuss its downsides.

Discussion The problem (7) has a number of down-
sides. First, the algebraic distance is a poor approxi-
mation of the geometric distance. In practice, this may
result in artifacts and unstable behavior of gradient-
based optimization. Second, the technique’s deep con-
nection to PCA suggests that it may be very sensitive
to outliers, similar to how PCA is (Candès et al., 2011).
Finally, the optimization problem (7) does not reflect
well the geometric structure of the manifold learning
problem as it is non-equivariant in the following sense.
If f1, . . . , fm is an orthonormal collection of quadratic
polynomials and θ : Rd → Rd is an isometry, then the
collection f1◦θ, . . . , fm◦θ can fail to solve the optimiza-
tion problem (7) for the point cloud transformed by θ
(see Appendix A.3). Below we address these downsides
and present a new technique for fitting an intersection
of quadrics to a point cloud.

4.2 Loss Function

In Taubin (1993), a notion dk(p, Z(f)) of approxima-
tion distance of order k is defined, building upon the
idea of k-th order Taylor approximation. This distance
coincides with the only non-negative root of a certain
polynomial c0 + c1t+ · · ·+ ckt

k of degree k, whose co-
efficients depend on partial derivatives of f in p—full
details are given in Appendix A.4. One particularly
popular approximation of a distance is the distance of
order 1 given by d1(p, Z(f)) = |f(p)|/‖∇f(p)‖. For a
quadratic polynomial f , the k-distance coincides with
the 2-distance for k ≥ 2. Moreover, there is a simple
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explicit formula for the 2-distance:

d2(p, Z(f)) =
(√

h2 + |f(p)|‖f‖HS − h
)
/‖f‖HS , (8)

where h = ‖∇f(p)‖/2, and ‖f‖HS is a certain Hilbert–
Schmidt norm defined in (12) below.

The distance of order 2 gives a better approximation
of the geometric distance in a number of ways. Firstly,
it is, in contrast to the algebraic distance, equivariant.
More precisely, for isometries θ : Rd → Rd we have

d2(θ(p), Z(f ◦ θ)) = d2(p, Z(f)). (9)

The proof of this fact can be found in Appendix A.5.
Secondly, it is majorized by the geometric distance

d2(p, Z(f)) ≤ d(p, Z(f)), (10)

(see Taubin (1991, §6)) while dalg and d1 are not, the
latter may even be infinite. This limits the contribution
of outliers to the optimization objective and thus fa-
cilitates robustness. Indeed, Equation (10) shows that
the 2-distance cannot be arbitrarily large for points
that are not geometrically far away from the manifold.
This is an advantage over 1-distance: at every point
where the gradient ∇f vanishes, 1-distance from the
quadric Z(f) to this point will be infinite. Thirdly and
lastly, this distance is simple to compute. Hence, for
quadrics, the distance of order 2 constitutes the optimal
candidate approximation of the geometric distance.

Recall that in order to define a new optimization objec-
tive, we have to approximate the distance d(p, Z(F ))
for F = (f1, .., fm), not just the distance d(p, Z(fk)).
In the original optimization problem (7), we used the

l2-based term (
∑m
k=1|dalg(p, Z(fk))|2)1/2 as a proxy for

d(p, Z(F )). Here, we suggest to use the l1-based term∑m
k=1|d2(p, Z(fk))|, based on the consideration that l1-

loss is more robust to outliers than the squared l2-loss.
This change also leads to equivariance of the objec-
tive, as equivariance of each term of the sum implies
equivariance of the whole sum.

4.3 Constraints

By replacing dalg with d2, we have made the optimiza-
tion objective equivariant with respect to the action
of the Euclidean group. Unfortunately, the coefficient-
wise inner product for quadratic polynomials is not
equivariant and the constrained optimization problem
still exhibits geometrically unnatural behavior. To re-
solve this, we suggest an inner product for quadrics such
that the constraint of orthonormality with respect to
it makes the whole optimization problem equivariant.

Any quadratic polynomial f can be represented in form

f(x) = x>Ax + bx + c, (11)

where A is a symmetric d× d matrix, b is a row vector,
c ∈ R. If f(x1, .., xd) =

∑
i≤j αi,jxixj +

∑
i α
′
ixi + α′′,

as in (6) then Ai,i=αi,i and Ai,j=Aj,i=αi,j/2, i<j.

If f and g are quadratic polynomials with correspond-
ing symmetric matrices A and B, we define their
Hilbert–Schmidt (degenerate) inner product as the
Hilbert–Schmidt inner product of their matrices

〈f, g〉HS=
∑

i,j
AijBij , ‖f‖HS=

√
〈f, f〉HS . (12)

This inner product is degenerate in the sense that the
corresponding norm ‖f‖HS is actually only a semi-
norm, i.e. ‖f‖HS = 0 does not imply f = 0, this is
because it vanishes on polynomials of degree ≤ 1. A
collection of quadratic polynomials f1, . . . , fm is called
HS-orthonormal if it is orthonormal with respect to
the Hilbert–Schmidt inner product. In particular, an
HS-orthonormal collection of quadratic polynomials
consists only of polynomials of degree 2.5

It is easy to check (see Appendix A.6 for details) that
this inner product is equivariant with respect to the
action of the Euclidean group. Specifically, for any
isometry θ : Rd → Rd the following holds:

〈f, g〉HS = 〈f ◦ θ, g ◦ θ〉HS . (13)

If we define the weighted vector of coefficients by
ṽ(f) = (α1,1, α1,2/

√
2, . . . , αd−1,d/

√
2, αd,d)

>, where
all coefficients that correspond to the non-diagonal
entries of A are divided by

√
2, then, we have

〈f, g〉HS = 〈ṽ(f), ṽ(g)〉, with the regular Euclidean in-
ner product on the right-hand side.

There is a number of ways to enforce orthonor-
mality of ṽ(f1), . . . , ṽ(fm). The problem is well-
studied in the context of orthogonality of fil-
ters inside layers of neural networks (Bansal et
al., 2018). We propose to use the soft orthog-
onality regularization term ‖Ṽ (F )T Ṽ (F )− I‖2HS ,
where Ṽ (F ) = (ṽ(f1), . . . , ṽ(fm)) is a d(d+1)/2 × m-
matrix, whose columns are ṽ(fi).

4.4 Summary: an Outlier-robust and
Equivariant Algorithm

Assume that we have a cloud of points p1, . . . ,pn ∈ Rd
and we want to find m quadratic polynomials
f1, . . . , fm so that this cloud lies close to the inter-
section of quadrics Z(f1) ∩ · · · ∩ Z(fm). Recalling
that δkl denotes the Kronecker delta, we formally pose

5Note that such a collection can still be used to represent
a linear subspace, simply because a linear equation of form
f(x) = 0 may be transformed into the quadratic equation
f(x)2 = 0 with the same solution.
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the optimization problem as follows

(f1, .., fm) = arg min
〈fk,fl〉HS = δkl

for k,l=1,...,m

n∑
j=1

m∑
k=1

∣∣d2(pj , Z(fk))
∣∣, (14)

where each of m quadrics fk is represented by the D-
dimensional vector of its coefficients. Since both the
optimization objective and the constraints are equiv-
ariant, the whole optimization problem is equivariant:
if quadrics f1, . . . , fm solve the optimization problem
above, then for any isometry θ : Rd → Rd the collection
f1 ◦ θ, . . . , fm ◦ θ solves the same optimization problem
for the transformed point cloud θ(p1), . . . , θ(pn).

Compared to the optimization problem (7), closely
related to the polynomial kernel PCA, problem (14)
facilitates robustness and is equivariant.6 This is due to
a finer distance approximation and l1-averaging in the
loss and due to Hilbert–Schmidt equviariant constraints.
The latter is shown theoretically in Appendix A.6 and
the former is illustrated by a toy example in Section 5.1.

In practice, we employ a soft constraint incorporated
into the loss that is given by the Lagrangian7

n∑
j=1

m∑
k=1

∣∣d2(pj , Z(fk))
∣∣+λ∥∥∥Ṽ (F )T Ṽ (F )−I

∥∥∥2
HS
, (15)

where Ṽ (F ) is as above and λ is a hyperparameter. We
solve this via the stochastic gradient descent over the
D×m-dimensional set of quadric coefficients. Thanks
to this, we have (sub)linear scaling with respect to
data size and ease of implementation—another two key
features of the approach.

4.5 Out-of-distribution Detection

Assuming a moderately high (order of hundreds) di-
mensional feature space, we may fit an intersection of
quadrics to the feature embeddings of the training data,
as described in the previous section. The assumption
that the embeddings lie close to the found manifold sug-
gests the distance to manifold as a natural outlier score.

Since it is computationally difficult to evaluate this
distance exactly, we suggest using the same approxi-
mation that was utilized for training. Specifically, we
define the outlier score o(p) of an arbitrary point p in
the embedding space by

o(p) =
1

m

m∑
k=1

d2(p, Z(fk)), (16)

6Non-equivariance of the original kernel PCA optimiza-
tion problem (7) is shown in Appendix A.3.

7For an additional discussion on the choice of the regu-
larization see Appendix B.5.

where f1, . . . , fm are the quadratic polynomials that
define the found manifold. This average, while easy to
compute, may serve as an effective out-of-distribution
score. In Section 5.2 we evaluate the performance of
the out-of-distribution detector built upon it.8

4.6 Similarity Robustification

The most natural way to incorporate the geometric
structure of a manifold into the similarity measurement
procedure is to use the geodesic distance of the mani-
fold as the new dissimilarity function. Unfortunately
though, computing the geodesic distance between a pair
of points on the intersection of quadrics is a difficult
problem rendering such an approach impractical.

On the other hand, a different approach can be used to
improve a given (dis)similarity metric (e.g. Euclidean)
using the found geometric structure. Namely, by in-
corporating the information of the outlierness into the
similarity function, we can make classification more
robust. For instance, we can modify a similarity func-
tion s by declaring the outliers dissimilar to anything:

sh(x,y) =

{
s(x,y), max(o(x), o(y)) < t,

0, max(o(x), o(y)) ≥ t,
(17)

where t is a threshold hyperparameter balancing preci-
sion and recall and sh is the new robustified similarity.
This approach is evaluated in Section 5.2 along with
the out-of-distribution detector described above.

Apart from the empirical results from Section 5, the
robustification given by (17) is supported by the ob-
servation that the similarity between outliers is often
abnormally large. This may be seen as a consequence
of deep feature extractors’ inability to distinguish the
out-of-distribution samples.

5 EXPERIMENTS

5.1 Toy Example

To illustrate the robustness of the proposed technique
we study a toy example. Consider the curve shaped like
a seam line of a tennis ball, given by the parametriza-
tion

x = a cos t+ b cos 3t, y = a sin t− b sin 3t, (18)

z = 2
√
ab sin 2t, with a = 0.8, b = 0.2, (19)

and take a cloud of 100 points generated by adding
normally distributed noise to random points on the

8Note that this score may alternatively be viewed as the
combined score of the ensemble of simple out-of-distribution
detectors induced by individual quadrics.
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(c) The proposed technique fit

Figure 2: The point cloud of 99 points is generated by adding Gaussian noise to random points lying on the
ground truth curve. A random outlier (under the arrow) having twice the norm of the points on the curve is then
added to the point cloud. The ground truth (a), the fit corresponding to the exact solution of the optimization
problem (7) from Section 4.1 computed by means of kernel PCA with quadratic kernel (b) and the fit of the
proposed technique summarized in Section 4.4 (c) are shown.

curve. The curve, a contaminated point cloud and
results of application of both the kernel PCA related
basic approach from Section 4.1 and the new proposed
technique are illustrated on Figure 2. In this Figure
the kernel PCA based approach is virtually equiva-
lent (see Appendix A.1 for the details) to minimizing
the l2-norm of the algebraic distances with Euclidean
orthonormality constraints, while the proposed tech-
nique utilizes l1-norm minimization of the 2-distances
with the Hilbert-Schmidt orthonormality constraints.

5.2 Outlier Detection for Face Recognition

We consider an image classification pipeline consisting
of a face detection and alignment algorithm (MTCNN,
Xiang and Zhu (2017)), deep feature extractor (Arc-
Face, Deng et al. (2019)) and cosine similarity based
classifier. The feature extractor used was trained on
the variation of the MS1M dataset (Guo et al., 2016).9

In this setting, we fit a quadric intersection manifold
to ≈ 6 · 106 feature space embeddings of photos from
the same dataset. The embeddings lie in the 512-
dimensional space. Details of the test datasets con-
struction and respective licences are discussed in Ap-
pendix B. We then measure the performance of the
quadric intersection based outlier detector and the
performance of the cosine similarity improved by pe-
nalizing the outliers detected by it as by Section 4.6.
The quadric based approach is compared to various
geometry-based outlier detectors such as principal com-
ponent analysis (PCA), kernel principal component
analysis for novelty detection (KPCA-ND, Hoffmann
(2007)) with RBF kernel and kernel one-class support
vector machine (OCSVM, Schölkopf et al. (2000)) with

9We used the MS1M-ArcFace dataset from https:
//github.com/deepinsight/insightface/wiki/Dataset-Zoo.
In the sequel, for outliers we use the Anime-Faces dataset
from https://github.com/bchao1/Anime-Face-Dataset.

degree 3 polynomial kernel.10 In all these approaches
we normalize the embeddings as a preprocessing step.
Finally, we compare our technique to the approach
based on the embedding norm (NORM), that is mo-
tivated by recent work of Yu et al. (2020) that shows
that in the face recognition domain, the norm of an
embedding might carry some information on the image
outlierness.

Motivated by a simple ablation study (see details
in Appendix B.4), we fit the intersection of 100
quadrics (we refer to this approach as Q-FULL) and
a 170-dimensional PCA plane to data. Additionally,
to showcase the advantages of the proposed technique
over the basic idea from Section 4.1, we fit the inter-
section of 100 quadrics by applying SGD to solve the
kernel PCA related optimization problem (7), we refer
to this approach as Q-BASE. Since the näıve kernel
PCA scales cubically with respect to data size, to use
the RBF-based KPCA-ND we need to resort to approx-
imations. Specifically, we utilize 300 random Fourier
features (Rahimi and Recht, 2008) to approximate the
implicit feature map. OCSVM does not scale favorably
with data size as well, thus we train it on a subsample
of size 8 · 104 of the full training data. To examine
our method in the low-data regime we also consider an
intersection of 30 quadrics fit to the same subsample
of size 8 · 104 of the data, we refer to this as Q-SUB.

Fitting an intersection of 100 quadrics took us 72 hours
on a pair of Quadro RTX 8000 GPUs, using an unop-
timized implementation, for both methods Q-BASE
and Q-FULL. The resulting (weights of the) quadric
intersection models occupy around 50MB each.

Outlier Detection We construct a contaminated
dataset by mixing the in-distribution photos from one
of the special face recognition datasets with the out-of-

10In our setting, OCSVM is also equivalent to support
vector data description (Lampert, 2009).

https://github.com/deepinsight/insightface/wiki/Dataset-Zoo
https://github.com/deepinsight/insightface/wiki/Dataset-Zoo
https://github.com/bchao1/Anime-Face-Dataset
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Table 1: The AUC-ROC scores for different feature space outlier detectors described in the main text. For the
larger datasets (all except CPLFW and CALFW) the order of standard deviation was estimated from 10 random
subsamplings. For OCSVM the standard deviation is of order 10−2, while for all other methods it does not exceed
a number of order 10−3. Here (a), (b), (c), (d), (e) correspond respectively to Kemelmacher-Shlizerman et al.
(2016), Cao et al. (2018), Karras et al. (2019), Zheng and Deng (2018), Zheng et al. (2017). (b) has been taken
from https://github.com/deepinsight/insightface/wiki/Dataset-Zoo.

Dataset Q-FULL PCA Q-BASE KPCA-ND Q-SUB OCSVM NORM

MS1M-ArcFace 0.97 0.89 0.95 0.66 0.82 0.71 0.75
MegaFace (a) 0.89 0.81 0.87 0.73 0.76 0.76 0.74

VGGFace2 (b) 0.96 0.88 0.94 0.70 0.81 0.83 0.75
FFHQ (c) 0.93 0.90 0.92 0.71 0.82 0.85 0.72

CPLFW (d) 0.93 0.81 0.91 0.67 0.73 0.82 0.75
CALFW (e) 0.98 0.88 0.95 0.71 0.79 0.84 0.70

distribution photos in the approximate ratio of 99 to 1.
The out-of-distribution photos contain 235 manually
picked photos from the CPLFW dataset (Zheng and
Deng, 2018) where a face cannot be uniquely recognized
by a human (e.g. photos of people in hockey helmets,
photos with multiple faces) and 235 images from the
Anime-Faces dataset7 aligned by the MTCNN. See the
resulting AUC-ROC values for different detectors in
Table 1.

Similarity Robustification Here we evaluate per-
formance of the similarity-based classifier with robusti-
fied similarity function. All robustification methods are
based upon the equation (17): the outlier score from
the corresponding detector is used for thresholding
the similarity between given embeddings. For the test
scenario we consider the previously-mentioned Cross-
Posed Labeled Faces in the Wild (CPLFW) dataset
which is considered particularly challenging due to the
presence of the pictures that cannot be recognized even
by a human (which we consider as outliers). Perfor-
mance is measured in terms of the identification rate,
which can be understood as the true positive rate of
the similarity-based classifier solving an identification
problem in the presence (Full IR) or in the absence (IR)
of distractors taken from the MegaFace dataset, see
details in Appendix B.3.

Both CPLFW and MegaFace are split in two halves.
The first half is used for choosing the threshold hy-
perparameter t and the other half is used to measure
performance (in terms of the identification rate). The

Full IR and IR corresponding to each of the robus-
tification methods is presented in Table 2. Q-FULL,
Q-BASE and NORM perform similarly in this experi-
ment, outperforming other methods.

5.3 Discussion and Method Limitations

Quadric based techniques behave favorably in both the
outlier detection and similarity metric robustification
problems, improving on the classic baselines. The norm
based approach turns out to be a stronger competitor,
which is not surprising given that it is specialized to
the setting at hand. Our approach, which is generic,
matches its performance in similarity metric robustifi-
cation, and improves upon its performance in outlier
detection. The performance of the Q-SUB approach
reveals the limitation of our approach: in the low-data
regime quadrics-based model is outperformed by the
classical geometry-based outlier detection approaches.
This is to be expected though, as the proposed tech-
nique is designed for use within the big data domain.

6 CONCLUSION

We describe a manifold learning technique based on
fitting an intersection of quadrics to a point cloud. To
make the problem of fitting a quadric intersection to
data tractable, we start from the simplest possible
approximate formulation that turns out to be deeply
related to the polynomial kernel PCA. Analysing its
downsides, we proceed to introduce a number of im-

Table 2: Effect of the various modifications of similarity on the identification rate. Methods names are as in Table
1. False positive rate is fixed to 10−5. The corresponding threshold hyperparameters are given in Appendix B.5.

Metric Initial Q-FULL PCA Q-BASE KPCA-ND Q-SUB OCSVM NORM

Full IR 0.61 0.67 0.65 0.63 0.59 0.61 0.64 0.67
IR 0.66 0.74 0.72 0.69 0.64 0.66 0.70 0.75

https://github.com/deepinsight/insightface/wiki/Dataset-Zoo


Pavutnitskiy, Ivanov, Abramov, Borovitskiy, Klochkov, Vialov, Zaikovskii, Petiushko

provements to the formulation that promote robustness
and equivariance. The resulting optimization problem
is tractable in moderately high dimension, such as the
feature space of a deep representation learning model,
is amenable to minibatch training, and thus scales well
with respect to point cloud size. The learned quadric
intersection can be used to define an outlier score and
to improve a given similarity metric. We demonstrate
and benchmark the proposed approach empirically on
an open set image classification task.

6.1 Societal impact

The paper is mainly theoretical, presenting a new mani-
fold learning technique suitable for modern application
settings, mainly outlier detection and similarity metric
improvement at the feature space level of deep rep-
resentation learning models. The pipelines based on
these models are widespread in computer vision and
natural language processing where the scalability of
the proposed technique allows it to be used as a drop
in solution in a wide range of industrial applications.

As the main application of the approach is in the do-
main of anomaly detection, technique may be used to
increase reliability of existing pipelines. Our experi-
ments have shown that our technique may be used to
improve the identification rate within a facial recog-
nition framework. Examples of the negative societal
impact of misuse of such frameworks are widely known.
However, we stress that the technique’s advantages are
simplicity and generality, and our choice of the experi-
mental setting should not be regarded as determinative.
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A Theory

A.1 Connection to polynomial kernel PCA

Consider a feature map ϕ : Rd→RD that is given by

ϕ(p1, . . . , pd) = ( . . . , pipj , . . .︸ ︷︷ ︸
pairwise products

, p1, . . . , pd︸ ︷︷ ︸
coordinates

, 1︸︷︷︸
constant

)>. (20)

For a quadratic polynomial f we have
f(p) = 〈ϕ(p),v(f)〉, (21)

where v(f) is the coefficient vector (see Section 4.1).

Let f1, . . . , fm be quadratic polynomials in Rd and v(f1), . . . ,v(fm) ∈ RD be their coefficient vectors that we
assume to be orthonormal. We denote by Vm ⊆ RD the vector space spanned by these vectors and by V⊥m its
orthogonal completion. A simple computation (see Appendix A.2 for details) yields

n∑
j=1

m∑
k=1

∣∣fk(pj)
∣∣2 =

n∑
j=1

d(ϕ(pj),V⊥m)2. (22)

It follows that the optimization problem is equivalent to minimization of
∑n
j=1 d(ϕ(pj),V⊥m)2, the same problem

that PCA solves. This means that the technique presented above is equivalent to applying PCA in a feature
space defined by (20), when viewed from a different angle. Note that here we do not assume that the point cloud
ϕ(p1), . . . ,ϕ(pn) is centered, so the optimization problem (7) is equivalent to the non-centered version of PCA.

A slight modification of the feature map (20) that is given by

ϕ̃(p1, . . . , pd) = (. . . , pipj , . . . ,
√

2p1, . . . ,
√

2pd, 1)> (23)

corresponds to the polynomial kernel k(x,y) = (〈x,y〉+ 1)
2

of degree 2 in the sense that k(x,y) = 〈ϕ̃(x), ϕ̃(y)〉.
This shows that the optimization problem is closely connected with kernel PCA with a polynomial kernel.11

This suggests an alternative way of solving the optimization problem (7)—by computing the SVD of a D ×D
matrix, although it is usually impractical since D depends quadratically on d and the computational complexity
of SVD is of order O(D3) = O(d6).

A.2 Additional details on the connection to polynomial kernel PCA

For each u ∈ RD we denote by pr(u) its orthogonal projection onto Vm. It is defined by the formula

pr(u) =

m∑
k=1

〈u,v(fk)〉 · v(fk). (24)

Therefore the following holds for the distance d(u,V⊥m) form u to V⊥m:

d(u,V⊥m)2 = ‖pr(u)‖2 =

m∑
k=1

〈u,v(fk)〉2. (25)

Using the formulas (25) and (21) we obtain

n∑
j=1

m∑
k=1

∣∣fk(pj)
∣∣2 =

n∑
j=1

m∑
k=1

〈
ϕ(pj),v(fk)

〉2
=

n∑
j=1

∥∥pr(ϕ(pj))
∥∥2 =

n∑
j=1

d(ϕ(pj),V⊥m)2, (26)

which proves equation (22).

11The feature map (20) is also similar to the Veronese map of degree 2 used in Generalized PCA (Vidal et al., 2005,
§3.1). The difference is we consider not only quadratics, but all monomials of degree ≤ 2.
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A.3 Non-equivariance of the optimization problem (7)

On the pictures below we show an example of two point clouds on the plane and the corresponding quadrics that
solve the optimization problem (7) exactly. The point cloud on Figure 3 (b) can be obtained by shifting the point
cloud on Figure 3 (a) by vector (10, 0). However, the corresponding quadrics are not the shifts of each other.
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(a) The original point cloud.
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(b) The shifted point cloud.

Figure 3: A point cloud and its shifted version (blue) and the respective quadrics (red) that solve the optimization
problem (7).

The picture corresponding to the optimization problem from Section 4.4 should be similar to Figure 3 (a) because
of the equivariance: the solution of the translated problem is the translated solution of the original problem.

A.4 Approximation distance of order k

Let f : Rd → R be a polynomial. For a multi-index I = (i1, . . . , id) we denote by CI the coefficient of the Taylor
polynomial of f in the point p corresponding to the monomial xi11 . . . x

id
d :

CI =
1

I!

∂|I|f

∂xi11 . . . ∂x
id
d

(p), (27)

where |I| = i1 + · · ·+ id and I! = i1!i2! . . . id!.

For each integer l ≥ 1 we set

cl = −
(∑

|I|=l
C2
I /b(I)

)1/2

, (28)

where b(I) = |I|!/I! is the multinomial coefficient and c0 = |f(p)|. Note that c0 ≥ 0 and cl ≤ 0 for l ≥ 1. With

this, the polynomial
∑k
l=0 clt

l has a unique non-negative root. We denote this root by dk(p, Z(f)) and, following
Taubin (1993), call it the approximation distance of order k. Note that dk(p, Z(f)) depends on p and f , not only
on p and the zero set Z(f), despite the notation.

If f(x) = x>Ax + bx+ c is a quadratic polynomial, then it is easy to check that c2 = ‖A‖HS . Using this and
the formula for the roots of the general quadratic equation we obtain the formula

d2(p, Z(f)) =

√
h2 + |f(p)|‖f‖HS − h

‖f‖HS
, (29)

where h = ‖∇f(p)‖/2. In particular, if ‖f‖HS = 1, we have a particularly simple expression

d2(p, Z(f)) =
√
h2 + |f(p)| − h. (30)
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A.5 Equivariance of the approximation distance order k

The coefficients of the polynomial c0 + c1t + · · · + ckt
k from the definition of dk(p, Z(f)) depend only on the

coefficients of the Taylor polynomial of degree k of the map f at point p. We denote this polynomial by Tk,f,p.
In order to prove the equivariance of the k-distance, i.e. dk(θ(p), Z(f ◦ θ)) = dk(p, Z(f)), it is enough to show
the equivariance of the Taylor polynomial, in the sense that

Tk,p,f ◦ θ = Tk,f◦θ,θ(p). (31)

The defining property of the Taylor polynomial is the following: Tk,f,p is the only polynomial of degree ≤ k such
that

‖Tk,f,p(x)− f(x)‖ = o(‖x− p‖k) as x→ p. (32)

Any isometry θ : Rd → Rd is of form θ(x) = Q · x + v, where Q is an orthogonal matrix and v is some vector.
Hence Tk,f,p ◦ θ is also a polynomial of degree ≤ k. The equation (32) then implies

‖(Tk,f,p ◦ θ)(x)− (f ◦ θ)(x)‖ = o(‖θ(x)− θ(p)‖k) = o(‖x− p‖k) as x→ p. (33)

Therefore Tk,p,f ◦ θ = Tk,f◦θ,θ(p).

A.6 Equivariance of the Hilbert–Schmidt inner product

The Hilbert–Schmidt inner product of matrices can be written as

〈A,B〉HS = tr(A> ·B) = tr(B> ·A), (34)

where tr(·) denotes the trace of a matrix. It follows that for any orthogonal matrix Q the following holds

〈A,B〉HS = 〈AQ,BQ〉HS = 〈QA,QB〉HS . (35)

Recall that any isometry θ : Rd → Rd is of form θ(x) = Q · x + v, where Q is an orthogonal matrix and v is a
vector. If f is a quadratic polynomial with the corresponding matrix A (in the sense of equation (11)), then f ◦ θ
is a quadratic polynomial whose corresponding matrix equals to Q>AQ. Therefore the equation (35) implies

〈f ◦ θ, g ◦ θ〉HS = 〈Q>AQ,Q>BQ〉HS = 〈A,B〉HS = 〈f, g〉HS . (36)

B Additional experimental details

B.1 Datasets licenses

1. MS1M-ArcFace was derived from MS1M dataset by InsightFace project, the license of the project applies:
https://github.com/deepinsight/insightface.

2. Images of MegaFace are licensed under Creative Commons License, details of dataset license are given in
http://megaface.cs.washington.edu/dataset/download.html.

3. VGGFace2 is licensed under Creative Commons Attribution 4.0 International license, details are given in https:
//web.archive.org/web/20171113123726/http://www.robots.ox.ac.uk/∼vgg/data/vgg face2/licence.txt.

4. FFHQ is licensed under Creative Commons BY-NC-SA 4.0 license by NVIDIA Corporation, details are given
in https://github.com/NVlabs/ffhq-dataset/blob/master/LICENSE.txt.

5. The licences for CPLFW, CALFW and Anime-Faces datasets are unknown to the authors. The official
dataset websites http://www.whdeng.cn/cplfw/index.html, http://whdeng.cn/CALFW/index.html and
https://github.com/bchao1/Anime-Face-Dataset do not provide license information.

https://github.com/deepinsight/insightface
http://megaface.cs.washington.edu/dataset/download.html
https://web.archive.org/web/20171113123726/http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/licence.txt
https://web.archive.org/web/20171113123726/http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/licence.txt
https://github.com/NVlabs/ffhq-dataset/blob/master/LICENSE.txt
http://www.whdeng.cn/cplfw/index.html
http://whdeng.cn/CALFW/index.html
https://github.com/bchao1/Anime-Face-Dataset
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B.2 Datasets construction

The embeddings are constructed by the pretrained ArcFace model LResNet100E-IR, ArcFace@ms1m-refine-v212.
For MegaFace, FFHQ, CALFW and CPLFW datasets additional alignment was performed by by MTCNN. For
CPLFW, due to the complex nature of the dataset, the photos where MTCNN failed to detect a face were preserved
in the dataset, with no additional preprocessing applied apart from resizing. Aligned versions of MS1M-ArcFace
and VGGFace2 datasets were taken from https://github.com/deepinsight/insightface/wiki/Dataset-Zoo.

B.3 Identification rate

Here we describe the procedure for evaluating the performance of the similarity function s on the identification
problem on the set X of face images with the additional set Y of distractor images. It is based on the metric
called identification rate and is widely used in the face recognition domain (Liao et al., 2014).

First, define a family of classifiers Ca, parameterized by a ∈ R as follows: Ca declares a pair p = (x, y) positive
(same class), if s(x, y) ≥ a. The corresponding false positive rate and true positive rate are denoted by fpr(a) and
tpr(a) respectively. For a fixed false positive rate f ∈ [0, 1] we define the similarity threshold sth(f) by

sth(f) = sup{a ∈ R | fpr(a) ≤ f}. (37)

The identification rate is defined to be tpr(sth(f)).

Consider the set
Q = {(x, y) ∈ X ×X | ∀d ∈ Y s(x, y) > max(s(x, d), s(y, d))}, (38)

which contains pairs that cannot be distracted by elements of Y and consider the binary classifier that declares a
pair (x, y) positive (same class) if it is positive with respect to the classifier Csth(f) and it cannot be distracted.
The corresponding tpr is called the full identification rate. We note that another known terminology for IR and
Full IR are verification rate and identification rate respectively. This terminology comes from the corresponding
problems in face recognition:

1. The verification problem is to determine from a pair of images whether they are photos of the same person.
This problem is typically solved by introducing a similarity measure between images or their embeddings. In
a given benchmark like CPLFW, the verification rate is calculated using the pairs suggested by the dataset
creators. However, in our experiments we use all possible pairs in CPLFW.

2. The identification problem is to determine the identity of a person on a given image. This problem is typically
posed in the setting with distractors.

In our experiments the subset of first 8 · 105 embeddings of the MegaFace dataset is used as the distractor set Y .

B.4 Ablation study

The results of the simple ablation study used to identify the best number of quadrics in intersection and the
optimal number of principal components in the setting of Section 5.2 are presented here. AUC-ROC and IR scores
are given in Table 3 and Table 4 respectively. The preliminary selection of numbers of principal components were
made by studying the eigenvalue decay.

Another way to guess the optimal number of quadrics is to study the eigenvalues of PCA by means of Wold
invariant (Wold, 1978) or plotting and analyzing − log λn/λ1. If the estimated dimension of the linear manifold is
d− k, then k may serve as the number of quadrics or as its initialization for further tuning. The problem-specific
limitation on the model size that often exists in practice may also give an upper bound on the number of quadrics.

B.5 Methods implementation details and hyperparameters

Quadrics intersection fitting was implemented in torch framework, the corresponding model and training routines
are included in the repository. PCA and one-class SVM methods implementations from sklearn library were used.

12https://github.com/deepinsight/insightface/wiki/Model-Zoo

https://github.com/deepinsight/insightface/wiki/Dataset-Zoo
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Table 3: AUC-ROC scores for the quadrics based outlier detector depending on the number of quadrics in the
intersection and AUC-ROC scores for the PCA based outlier detector depending on the number of principal
components. Standard deviations do not exceed 10−3.

Quadrics PCA

Dataset 50 quadrics 100 quadrics 200 quadrics 130-dim 170-dim 200-dim

MS1M-ArcFace 0.97 0.97 0.97 0.88 0.89 0.87
MegaFace 0.88 0.89 0.89 0.79 0.81 0.81

VGGFace2 0.95 0.96 0.96 0.86 0.88 0.86
FFHQ 0.92 0.93 0.93 0.89 0.90 0.89

CPLFW 0.92 0.93 0.93 0.80 0.82 0.80
CALFW 0.97 0.98 0.97 0.88 0.88 0.85

Table 4: IR score for the face identification problem with quadric-based and PCA-based robustification depending
(respectively) on the number of quadrics in the intersection or on the number of principal components.

Quadrics PCA

Metric 50 quadrics 100 quadrics 200 quadrics 130-dim 170-dim 200-dim

Full IR 0.632 0.635 0.635 0.620 0.626 0.710
IR 0.737 0.741 0.742 0.611 0.720 0.700

For kernel PCA based novelty detector the implementation from https://github.com/Nmerrillvt/kPCA was used
together with random Fourier features implementation from https://github.com/tiskw/random-fourier-features.

The constrains in the optimization problem (14) require optimization over the set of orthonormal frames relation.
Because of this, stochastic gradient descent over the Stiefel manifold could be a natural choice for solving
the constrained optimization problem. However, in the preliminary experiments we observed that the simple
soft regularization (as in Equation (15)) with λ = 1, is more effective and efficient compared to the manifold
optimization. The latter does not requre tuning λ but may introduce other algorithm-specific hyperparameters. In
our experiments the error term ‖Ṽ (F )T Ṽ (F )−I‖2HS was of order 10−5, which was small enough for our purposes.

The typical values of the threshold hyperparameter t in the similarity robustification experiment are given in
Table 5. They were determined in a series of 10 experiments. In each experiment, both CPLFW and MegaFace
were randomly split in two halves. First half was used for determining threshold t by means of a grid search and
the second one was reserved for evaluating the identification rate.

Robustification based on Q-SUB and KPCA-ND methods leads to IR deterioration for all possible values of
the threshold hyperparameter. For other methods, optimal values of threshold correspond to marking around
one percent of data as outliers. Because of this, to make comparisons fair, we choose thresholds for Q-SUB and
KPCA-ND so as to get one percent of outliers, matching the behavior of other methods.

Table 5: Threshold hyperparameter values for various similarity robustification methods.

Q-FULL PCA Q-BASE KPCA-ND Q-SUB OCSVM NORM

Threshold 0.033 0.529 0.163 31.47 0.452 2.9 · 10−9 14.55

https://github.com/Nmerrillvt/kPCA
https://github.com/tiskw/random-fourier-features
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