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Abstract

Consider the rank-1 spiked model:
X =

√
νξu + Z, where ν is the spike in-

tensity, u ∈ Sk−1 is an unknown direction
and ξ ∼ N (0, 1),Z ∼ N (0, I). Motivated
by recent advances in analog-to-digital con-
version, we study the problem of recovering
u ∈ Sk−1 from n i.i.d. modulo-reduced
measurements Y = [X] mod ∆, focusing on
the high-dimensional regime (k � 1). We
develop and analyze an algorithm that, for
most directions u and ν = poly(k), estimates
u to high accuracy using n = poly(k)
measurements, provided that ∆ &

√
log k.

Up to constants, our algorithm accurately
estimates u at the smallest possible ∆ that
allows (in an information-theoretic sense) to
recover X from Y. A key step in our analysis
involves estimating the probability that a
line segment of length ≈ √ν in a random
direction u passes near a point in the lattice
∆Zk. Numerical experiments show that the
developed algorithm performs well even in a
non-asymptotic setting.

1 Introduction

We consider the problem of estimating a spiked covari-
ance matrix from Gaussian modulo-folded measure-
ments. Let u ∈ Sk−1 be an unknown direction, and
ν > 0 be the signal-to-noise (SNR) ratio. Consider the
spiked covariance matrix

Σ = νuu> + I , (1)

and denote X ∼ N (0,Σ). Equivalently, one may write

X =
√
νξu + Z , (2)
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where ξ,Z have N (0, 1) entries; the one dimensional
component

√
νξu is often thought of as the “signal”,

whereas Z is thought of as “noise”. In this paper, we
consider the problem of estimating u from n indepen-
dent and modulo-reduced measurements of X. Let
∆ > 0 be the dynamic range, and for X ∈ R, denote
the modulo operation by

Y = [X] mod ∆ ∈
[
−1

2
∆,

1

2
∆

)
, (3)

so that Y is the unique number in the half-open inter-
val such that X−Y ∈ ∆Z. For a vector X ∈ Rk, Y =
[X] mod ∆ is defined by modulo-reducing each coordi-
nate separately. In the setup we consider, one is given
n independent copies of Y, denoted by y1, . . . ,yn, and
wishes to estimate the unknown direction u ∈ Sk−1.
Throughout, we denote by x1, . . . ,xn independent
copies of X, such that yi = [xi] mod ∆. See Figure 1
for a graphical illustration, in k = 2 dimensions.

Motivation. Our motivation for considering this
problem is driven by recent developments in signal pro-
cessing. Analog-to-digital converters (ADCs), devices
that convert analog (continuous) signals into digital
(discrete, e.g. bits) signals, are an essential compo-
nent in virtually all modern communication devices.
From a mathematical perspective, ADCs are set out
to solve essentially the following problem: Given a
vector-valued random variable X ∈ Rk, find a quan-
tizer (binning scheme), φ : Rk → Rk, with a finite
range, |range(φ)| ≤ 2B (B being the allowable repre-
sentation length in bits), so as to minimize the quan-
tization error: E‖X− φ(X)‖2. Quantization is an ex-
tensively studied problem, and its fundamentals lim-
its (in information theory: “rate-distortion theory”),
under setups of varying generality, are largely under-
stood; see, e.g., [Cover and Thomas, 2012,Gersho and
Gray, 2012].

Optimal vector quantizers (that achieve the fun-
damental limits) typically involve rather compli-
cated constructions, that depend intricately on the
exact statistics of X. Since ADCs are imple-
mented in mixed analog-digital circuits, sophisti-
cated vector quantizers are prohibitive and the de-
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Figure 1: A typical problem instance in k = 2 dimen-
sions. Top: A point cloud, corresponding to n = 5000
i.i.d. samples from X ∼ N (0, νuu> + I), for ν = 104

and some fixed u ∈ Sk−1. Bottom: The modulo-
reduced point cloud, with ∆ = 80.

sign is often restricted to architectures of a scalar
product form: φ(X) = (φ1(X1), . . . , φk(Xk)) where
φ1, . . . , φk : R→ R. Perhaps the simplest – and most
popular – architecture in practice is a uniform scalar
quantizer, determined by its dynamic range ∆ > 0 and
bit-rate b = B/k. The quantizer divides the interval
[−∆/2,∆/2] into 2b intervals of equal size ∆2−b, so
that the scalar quantizer φ1 = . . . = φk = φ maps
X ∈ R to its closest interval center. Note that for this
scheme to attain quantization error that vanishes as
the quantization rate b increases, the dynamic range
must be ∆ & max1≤i≤k

√
Var(Xi).1

Although simple to implement, the uniform quantizer
can be pronouncedly sub-optimal for vector-valued sig-
nals, as it cannot leverage the cross-coordinate corre-
lations that often occur in real-world applications. An
important use-case in digital communications is Mas-
sive MIMO, where typically the number of users is
much smaller than the number of receive antennas; this
results in signals X that have strong cross-entry cor-
relations.2 Thus, a quantization scheme that can ex-

1If X falls inside [−∆/2,∆/2], then |X−φ(X)| ≤ ∆2−b.
For the expected error to be of the same order, the proba-
bility of a saturation, namely |X| > ∆/2, has to be small.

2A multi-user MIMO channel is modeled by

ploit these statistical inter-dependencies, while retain-
ing the simplicity of the uniform quantizer, is highly
desired.

A recently proposed architecture, “modulo-ADCs” [Or-
dentlich et al., 2018], attempts to address these is-
sues. Their idea is rather simple: do not truncate X
onto [−∆/2,∆/2]k, as the uniform quantizer does; in-
stead, apply modulo-reduction Y = [X] mod ∆ ∈
[−∆/2,∆/2]k and then quantize as before. For this
idea to work, one clearly need some means of “un-
wrapping” X from Y (with high probability). When
the coordinates of X are independent and unimodal,
with the mode at 0 (for example, a centered Gaus-
sian), it is easy to see that the best estimator for
X from Y (in the sense of error probability) is just
X̂ = Y. Thus, a coordinate Xi cannot be recovered
once it saturates the ADC dynamic range, |Xi| ≥ ∆/2;
so to consistently undo the modulo, one needs ∆ &
max1≤i≤k

√
Var(Xi), and the scheme has no advan-

tage over the standard uniform quantizer. It turns
out, however, that when X has strong correlations, it
is often possible to consistently unwrap at substantially
smaller values of ∆; see next section.

1.1 Related work

We start with very brief background on the spiked
model, Eq. (2). In the high-dimensional statistics
(k ≈ n, k, n → ∞) literature, the spiked model
was popularized by [Johnstone, 2001], who studied
the largest eigenvalue of the sample covariance ma-
trix Σ̂ = 1

n

∑n
i=1 xix

>
i . Subsequent advances in ran-

dom matrix theory [Baik et al., 2005,Paul, 2007] char-
acterized the behavior of PCA (namely, the relation
between the principal components of Σ and its em-
pirical counterpart Σ̂) rather precisely. Since then,
a vast literature on the spiked model (and variations
thereof) has emerged – which we make no pretense to
survey here; as an entry point, geared towards statis-
ticians, see [Wainwright, 2019, Chapter 8]. We cite
the following minimax lower bound for the spike es-
timation problem (without modulo-reduction) [Wain-

X = HS + Z, where k the number of receive anten-
nas, m is the number of transmitting users, each equipped
with a single antenna, and H = [h1| · · · |hm] ∈ Rk×m

is the channel matrix (hi ∈ Rk represents the channel
gains from transmitter i to the receiver). The vector
S = [S1, . . . , Sm] ∈ Rm represents the transmissions of the
m users, and Z ∈ Rk is white noise. The “signal” part,
HS, lives inside an m-dimensional subspace in Rk, where
typically m � k. One example, among many, for the ex-
treme case of rank m = 1 MIMO (corresponding to model
(2) exactly), is in low-earth orbit (LEO) communications,
where a phased array receiver is used to track a rapidly
moving satellite.
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wright, 2019, Example 15.19]:

‖u− û‖ &
(√

1 + ν

ν

√
k

n

)
∧ 1 . (4)

In the regime k = O(n), this rate is attained, up to
prefactors, by PCA (û taken to be the largest eigen-
vector of Σ̂), see [Wainwright, 2019, Corollary 8.7].

Moving on, there has recently been a great deal of
activity in the signal processing community around
recovery from modulo-reduced measurements [Bhan-
dari et al., 2017, Ordentlich et al., 2018, Bhandari
et al., 2018,Graf et al., 2019,Romanov and Ordentlich,
2019, Bhandari and Krahmer, 2019, Bhandari et al.,
2020, Bhandari et al., 2021,Weiss et al., 2021]. Most
relevant to this paper is a line of works dealing with
recovery from modulo-reduced measurements, and mo-
tivated by the modulo-ADC architecture described
before [Ordentlich and Erez, 2017, Ordentlich et al.,
2018]. The setting is this: the source is Gaussian
X ∼ N (0,Σ), with Σ some covariance matrix (not
necessarily spiked); one observes modulo-reduced mea-
surements Y = [X] mod ∆, and wishes to recover
X itself (with high probability). How large should
∆ be so that consistent recovery is possible, in an
information-theoretic sense? When it is possible, how
could one do so practically? (Assuming Σ is known?
And when it is not?) The answers, it turns out, de-
pend rather intricately on the diophantine properties
of the matrix Σ.

Let us start with the fundamental limits. A simple ob-
servation is that when ∆ &

√
log k · max1≤`≤k

√
Σ`,`

(Σ`,` being the variance of the `-th coordinate), one
has X = Y with high probability, so that consistent
recovery is straightforward. It is easy to see that when
X is white, in other words Σ ∝ I, this requirement is
in fact tight. For general Σ, one may readily show that
the maximum a posteriori probability (MAP) estima-
tor for X given Y is

X̂MAP(Y = y) = argmin
x :x−y∈∆Zk

x>Σ−1x , (5)

that is, one needs to minimize a quadratic form over
the coset of y. Searching over the coset directly (and
consequently, computing X̂MAP exactly) is not com-
putationally tractable, in all but the simplest cases;
nonetheless, since X̂MAP is optimal in the sense of
error probability, its performance characterizes the
information-theoretic limits of the problem. The lat-
ter has a rather elegant geometric interpretation. Let
L = ∆Σ−1/2Zk ⊆ Rk be the lattice generated by
∆Σ−1/2 ∈ Rk×k, and let V0 ⊆ Rk be the Voronoi
cell of 0 ∈ L. Then [Romanov and Ordentlich, 2021]
the success probabililty of (5) is the Gaussian measure

of V0:

pMAP = Pr
(
X̂MAP = X

)
= Pr

Z∼N (0,I)
(Z ∈ V0) .

As a corollary, it is not hard to show that3 ∆ . |Σ|1/2k
implies that pMAP = o(1); see also Proposition 2.
When the lattice L is a uniformly random lattice, sam-
pled, up to normalization, from the Haar measure over
SLk(R)�SLk(Z) (also called Haar-Siegel measure), one
can show that V0 is with high probability “sufficiently
ball-like”, so that ∆ & |Σ|1/2k is also a sufficient con-
dition. Random lattices have played a prominent role
in the lattice coding literature [Zamir, 2014], which is
closely related to the present line of work. An impor-
tant point is that “natural” random matrix ensembles,
such as the spiked ensemble (1) with u ∼ Unif(Sk−1),
do not correspond to the Siegel-Haar measure on the
space of lattices. In [Domanovitz and Erez, 2017]
the authors demonstrate that certain orthogonally-
invariant ensembles, that arise in channel coding the-
ory, indeed allow for consistent recovery with ∆ not
much larger than |Σ|1/2k. In particular, for the spiked
ensemble (1), they show that with high probability
over u ∼ Unif(Sk−1), the error probability is small
whenever ∆ & C(k)|Σ|1/2k = C(k)(1 + ν)1/2k, where
C(k) grows exponentially fast in k, but does not de-
pend on the SNR ν.

As for practical recovery algorithms, let us start by
assuming Σ is known. As already mentioned, com-
puting the MAP estimator directly is intractable; in-
stead [Ordentlich and Erez, 2017] proposed to use a
sub-optimal estimator, the so-called Integer Forcing
(IF) decoder. The idea is to find an invertible integer
matrix A = [a1, . . . ,ak] so as to minimize the maximal
variance:

AIF = argmin
A∈Zk×k,

rank(A)=k

max
1≤`≤k

a>` Σa` . (6)

The corresponding maximal deviation, mk(Σ) =

max1≤`≤k

√
a>` Σa`, is called the kth successive min-

imum of the lattice Σ1/2Zk. Since [AY] mod ∆ =
[AX] mod ∆, one can reliably recover X from Y, us-
ing X̂IF = A−1

IF ([AIFY] mod ∆), whenever ∆ &
mk(Σ)

√
log k. Of course, to compute the IF de-

coder, Eq. (6), one clearly needs to know Σ.4 In
3|Σ| denotes the determinant of Σ.
4An important caveat is that Eq.(6) is actually a com-

putationally hard problem, and may only be solved exactly
for very small k. In practice, one usually solves this ap-
proximately, using a lattice reduction algorithm, like the
Lenstra-Lenstra-Lovász (LLL) algorithm [Lenstra et al.,
1982]. Observe that if one a priori restricts the minimiza-
tion to A ∈ SLk(Z), then Eq. (6) is equivalent to finding
a shortest basis for the lattice Σ1/2Zk.
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some applications, for example in wireless commu-
nications (where Σ depends on the channel matrix,
which rapidly changes over time) [Tse and Viswanath,
2005], this is not a reasonable assumption. In [Ro-
manov and Ordentlich, 2021], the authors propose a
blind unwrapping algorithm, that does not know Σ
beforehand, in a setting where one needs to simulta-
neously unwrap many i.i.d. signals y1, . . . ,yn. A nat-
ural step towards that end is to estimate Σ from the
(modulo-reduced) data, from which the integer-forcing
decoder (6) could be computed. Alas, directly com-
puting the maximum likelihood estimator (MLE) of Σ
from modulo-reduced measurements is not computa-
tionally feasible. Instead, they propose an algorithm
which iteratively alternates between 1) A covariance
estimation step, where a certain “proxy” of Σ is esti-
mated; 2) An integer forcing decoder, computed from
that proxy; the idea is to gradually “whiten” the en-
tire dataset, effectively computing the IF decoder “in
small steps”. They prove a result of the following form:
when the error of the informed IF decoder (Eq. (6))
is small enough, then the error of the adaptive algo-
rithm is essentially comparable to it, up to dimension-
dependent prefactors. However, their algorithm is only
suited to rather modest k, as seen both in the analysis
(the prefactors are exponential in k) and the numerical
experiments. The problem lies with their covariance
estimation procedure, whose performance breaks down
rapidly as the dimension increases. This is the starting
point for the present paper.

Our contributions. We propose a computationally
tractable algorithm to estimate the spike u ∈ Sk−1

from modulo-reduced measurements, under the spiked
covariance model Eq. (1) and in high dimension k. We
show that for most directions u (formally: with high
probability over u ∼ Unif(Sk−1)), estimation is possi-
ble with n = poly(k) samples, under essentially the
smallest ∆ (up to constants) that allows for consistent
unwrapping. Thus, in this setting, we provably over-
come the curse of dimensionality suffered by the algo-
rithm of [Romanov and Ordentlich, 2021]. While we
do not directly tackle the unwrapping problem, note
that in applications where the SNR ν is approximately
known, the algorithm readily yields an estimate for
Σ, from whence one could compute the IF decoder
(6). Our numerical experiments below show that this
method attains an unwrapping error probability that
is not far from that of the informed IF decoder.

Notation. For sequences ak, bk we use the following
standard notation: ak ∨ bk = max{ak, bk}, ak ∧ bk =
min{ak, bk}. By ak . bk we mean that ak ≤ Cbk
for some universal constant C > 0; we write ak ≈ bk
whenever both ak . bk and bk . ak. We also use big-O

notation; if M is a parameter, we use ak = OM (bk) to
signify that the constants might depend on M . For a
vector v ∈ Rk, ‖v‖ denotes its `2 (Euclidean) norm.

2 Proposed method

An observation. Our algorithm is based on the
following observation: the eigen-structure of the co-
variance matrix of X is preserved when truncated
onto a ball. Set R > 0 a truncation radius. For
X ∼ N (0,Σ), let XBall be its spherically-truncated
version: for S ⊆ Rk,

Pr(XBall ∈ S) = Pr(X ∈ S|X ∈ B(0, R))

=
Pr(X ∈ S ∩ B(0, R))

Pr(X ∈ B(0, R))
.

Observe that E[XBall] = 0, since XBall is symmetric.
Denote the covariance by ΣBall = E[XBallX

>
Ball].

Proposition 1 Let Σ be any covariance matrix, with
(orthonormal) eigenvectors u1, . . . ,uk ∈ Sk−1 and cor-
responding eigenvalues λ1 ≥ . . . ≥ λk ≥ 0. Then

1. The basis u1, . . . ,uk diagonalizes ΣBall. Denote
g1, . . . , gk

i.i.d.∼ N (0, 1); the respective eigenvalues
are:

µi = E

[
λig

2
i

∣∣∣
k∑

i=1

λig
2
i ≤ R2

]
. (7)

2. The ordering is preserved: µ1 ≥ . . . ≥ µk.

Proposition 1 is not new by any means. It has ap-
peared before in [Palombi et al., 2012], which consid-
ered covariance estimation from spherically-truncated
Gaussian measurements (see also discussion later in
this section). The proof of Item 1 is rather trivial; for
completeness, we provide a short proof (Appendix A).
Item 2 is considerably less so; we refer to [Palombi
et al., 2012, Proposition 3.3] for the details.

The algorithm. We draw inspiration from Figure 1.
For “most” directions u ∈ Sk−1, the points {yi}ni=1

are arranged, essentially, in parallel and separated
stripes. The central stripe (that crosses the origin)
consists of points that have not undergone folding,
yi = xi. Picking only points inside a small enough
ball YBall = {yi}ni=1 ∩ B(0, R), we therefore obtain,
approximately, an i.i.d. sample from XBall. By Propo-
sition 1, the leading eigenvector of ΣBall is u, and
therefore PCA with YBall should yield a consistent es-
timator (as n → ∞). See Figure 2 for a graphical
illustration; and Algorithm 1 for a formal description.
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Algorithm 1: The proposed algorithm
Input: Samples: {yi}ni=1; Radius: R > 0.

1 Pick samples inside ball:
K = {i ∈ [n] : yi ∈ B(0, R)}.

2 Form sample covariance: Σ̂ =
∑
i∈K yiy

>
i .

return û, principal eigenvector of Σ̂.
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Figure 2: An illustration of Algorithm 1. Red: points
inside a small ball; Yellow: the central stripe (xi = yi).

The truncation radius. In spite of its seeming sim-
plicity, the behavior of Algorithm 1 depends drastically
on the truncation radius R. Its choice should balance
between two opposing effects. On the one hand, the al-
gorithm uses effectively E|K| = n · pBall measurements
for estimation (where pBall := Pr(X ∈ B(0, R)), so R
cannot be too small; on the other hand, we need to take
only (or mostly) points from the central stripe, so R
cannot be too large. Let us start with an observation:
when R/

√
k < 1, pBall is exponentially small in k, so

the algorithm requires n & 1/pBall = exp(Ω(k)) mea-
surements. Consequently, to (potentially) overcome
the curse of dimensionality one must set R/

√
k > 1.

In that case, pBall ≈ 1 ∧ (
√
R/ν) (Lemma 2), so that

for a large spike, ν = ω(R), n &
√
ν/R; therefore, we

shall henceforth restrict our attention to ν = poly(k).
As we have said, R cannot be chosen too large, and
in general there is a rather delicate tradeoff between
the parameters ∆, R, ν and the direction u ∈ Sk−1 it-
self. Our main result, Theorem 1, says, roughly, the
following: there is a choice R = Θ(

√
k) such that for

most directions, if ∆ &
√

log k and ν = poly(k), then
Algorithm 1 estimates u with small error from only
n = poly(k) measurements.

On estimating ν. In this paper, we restrict our at-
tention to estimating only the direction u ∈ Sk−1 (and
not ν). We mention two potential strategies for esti-
mating ν, not pursued here further due to space con-

straints:

• [Palombi et al., 2012] studies covariance esti-
mation from spherically-truncated Gaussian mea-
surements. Relying on Proposition 1, they prove
that the mapping λ 7→ µ between the true and
truncated eigenvalues is invertible, and propose a
fixed point iteration to recover λ from µ (given
exactly, without noise). Our proposed algorithm
computes an estimate of ΣBall; computing error
bounds for the method of [Palombi et al., 2012],
applied to Σ̂, is potentially challenging, especially
in the regime where ν � R2 = Θ(k), where the
mapping λ 7→ µ is necessarily badly conditioned.

• Since only one eigenvalue of Σ is unknown, a more
natural approach is to invert (numerically) the
mapping ν 7→ pBall(ν) = Pr(X ∈ B(0, R)), which
is strictly decreasing.

2.1 Main results

The following is our main result. It shows that for
most directions u ∈ Sk−1, the error attained by Algo-
rithm 1 can be made quite small, with n reasonably
controlled, and assuming only ∆ &

√
log k. To make

the presentation lighter, we focus exclusively on the
regime where the spike is not small, ν = Ω(1) (which
is also practically more interesting). Below, û denotes
the largest eigenvector of Σ̂, with the sign ambiguity
resolved by assuming that 〈u, û〉 ≥ 0.

Theorem 1 Fix a constant M > 12, and set R =
Θ(
√
k) as in (11). There is a universal constant C∗

and a set UM ⊆ Sk−1 with

Pr
u∼Unif(Sk−1)

(u ∈ UM ) = 1−OM (k−10),

such that whenever ∆ ≥ C∗(M
√

log k ∨ ν 1
2(k−1) ) and

u ∈ UM , the following error bounds hold (depending
on the magnitude of ν), with probability 1−O(k−10):

1. Assume that 1 ≤ ν ≤ k and n & log k. Then

‖u− û‖ . 1√
ν

(
k

n
∨
√
k

n

)
+ ν−1k−M

2+12 . (8)

2. Assume that k ≤ ν . k2M2−21. Then

‖u− û‖ .
√
ν

n
+

√
1

n

√
ν

k
+ ν1/2k−M

2+10.5 . (9)

Discussion. Let us start with the small-spike
regime, 1 ≤ ν ≤ k. The first term in Eq. (8) is, up
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to prefactors, the error rate for PCA without modulo-
folding, see e.g. [Wainwright, 2019, Chapter 8]; in par-
ticular, when k = O(n), it matches the minimax lower
bound Eq. (4). The second term corresponds to er-
ror incurred by erroneously taking “bad” points yi,
that do not belong on the central stripe. By taking
∆ &

√
log k large enough, this term can be made to de-

cay arbitrarily (polynomially) fast as k →∞. We note
that in this regime, the consequences of Theorem 1
are, in fact, rather unsurprising: if u ∼ Unif(Sk−1),
then with high probability, ‖u‖∞ .

√
log k/k. Since

∆ &
√

log k, the cube [− 1
2∆, 1

2∆)k contains a segment
{tu : t ∈ [−L,L]} of length 2L & ∆/‖u‖∞ &

√
k;

consequently, a large fraction of x1, . . . ,xn are actually
themselves already inside the cube, since the “typical
length” of the projection along u, |〈u,X〉|, is .

√
ν

(the standard deviation).

The “interesting” regime is ν � k. Note that unlike
in the small-spike regime, here the error, Eq. (9), in-
creases as ν grows. Moreover, the magnitude of ν has
to be constrained by ∆: ν . k2M2−21 (the constant
21 is itself not particularly important, and can be im-
proved). Thus, to retain the scaling ∆ ∼ √log k, ν
has to grow at most polynomially with k; in that case,
note that the term ν1/(2(k−1)) in the bound for ∆ is al-
ways negligible. Furthermore, note that n has to scale
at least as n &

√
ν, which anyhow precludes the prac-

tically of the algorithm when ν is super-polynomial,
regardless of the third term.

Let us try to get some intuition for the particular form
of the bounds (8), (9), by considering a simplified set-
ting, where one had direct access to all the measure-
ments xi that lie inside the ball B(0, R), and used them
to perform PCA. There are roughly (Lemmas 1, 2)

ñ ≈ pBalln ≈ (1 ∧
√
k/ν)n

such measurements. By Proposition 1, the popula-
tion covariance ΣBall is spiked, and one can show
(Lemma 7) that the effective spike is

ν̃ ≈ k ∧ ν .

(Note that XBall lies inside B(0, R), and consequently
λ1(ΣBall) ≤ R2 = Θ(k)). In particular, note that
when ν = ω(k), ñ decreases with ν but ν̃ cannot grow
further to compensate for this; this is the reason why
the error in Eq. (9) degrades with ν. Now, assuming
that ñ is large enough (this point is a little subtle,
since we let ν̃ grow as well), the error is bounded like

‖u− û‖ . 1√
ν̃

(
k

ñ
∨
√
k

ñ

)
,

using “standard” bounds for PCA (e.g. [Wainwright,
2019, Chapter 8]). Plugging in the above estimates

for ñ, ν̃ recovers the first terms in Eqs. (8), (9). The
challenging part of the analysis (and our main techni-
cal contribution) is to control the last term: namely,
show that for most directions u, when ∆ &

√
log k, the

contribution of the erroneously picked (“bad”) points
is indeed very small with high probability.
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(a) The estimation error, ‖u− û‖, as ν changes.
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(b) Performance of the informed vs. blind integer
forcing decoder, as ∆/

√
log k changes.

Figure 3: Numerical results

Experiments. We demonstrate the validity and rel-
evance of our results through numerical experiments:

• In Figure 3a we study the behavior of the error,
‖u− û‖, as the spike magnitude ν changes. For
several values, k = 50, 100, 150, 200, we have set
∆ = 16

√
log k, n = k2 and varied ν = kα for an

exponent α ∈ [0, 5.6]; each point on the graph is
the average error across T = 2400 repetition. We
observe that as k increases, scaling ∆ ∝ √log k
indeed suffices for estimation. Moreover, we see
that for small spikes, α < 1, the error decreases
as α increases, whereas when α > 1 the error in-
creases; this is consistent with Theorem 1.

• In Figure 3b we apply our algorithm as an in-
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termediate step for blind unwrapping. We set
k = 150, n = k2 ≈ 2 · 104, ν = k3 ≈ 3 · 106 and
vary ∆ = 2δ

√
log k. At every working point, we

compute the error rate, namely the fraction of er-
roneously recovered samples p̂e = 1

n

∑n
i=1 1xi 6=x̂i ,

of the informed IF decoder (Eq. (6)), the blind
IF decoder (computed from Σ̂ = νûû + I), and
the trivial decoder X̂ = Y. For each method, δ is
increased in jumps of 0.25, until the point where
pe ≤ 10−4; each point on the graph is the aver-
age of T = 200 repetitions (so, overall, nT ≈ 106

single recovery trials). We see, for this particular
setup, a gap of around δ = 2 bits between the
the informed and blind decoders, and of about
δ = 5 bits between the blind and trivial decoders.
To put things in context, a hypothetical quanti-
zation scheme based around modulo-folding and
the blind decoder could save up to 5 bits per co-
ordinate (so 5k = 750 bits overall) compared to
the uniform quantizer (both designed so that the
probability of a saturation is ≤ 10−4).

By Theorem 1, when ν = poly(k), the condition ∆ &√
log k ensure that one can estimate most directions

u ∈ Sk−1 with n = poly(k) measurements. Recall that
the present problem was motivated by the modulo-
unfolding problem (which is a harder problem). It
turns out that for the latter, the condition ∆ &

√
log k

is actually necessary. Thus, if one’s goal is to solve the
unwrapping problem (e.g. for implementing modulo-
ADCs), and to that end estimates the covariance as
an intermediate step, then our algorithm succeeds with
essentially the smallest allowable dynamic range. We
show the following (see Appendix B for the proof):

Proposition 2 Suppose that there exists X̂ = X̂(Y),
with Pr(X = X̂) ≥ 0.1. Then ∆ & (

√
log k ∨ ν 1

2k ).

We remark in passing that, once we have obtained an
estimate for u, and consequently for Σ, using Algo-
rithm 1, we may use it to unwrap the measurements
x1, . . . ,xn (using, e.g., the IF decoder). Having un-
wrapped the samples, we can use standard methods
(e.g., PCA) to get an improved estimate of u. We
do not pursue this option here for two reasons: 1)
The performance of such an algorithm depends on the
unwrapping error probability, which is difficult to an-
alyze. In particular, unwrapping errors could have a
disastrous effect on the estimation error; 2) Our pri-
mary motivation for estimating u in the first place was
to perform unwrapping. To that end, once we obtain
an estimate of u with accuracy sufficient for unwrap-
ping, further improvements are of limited interest.

3 Analysis

In this section, we give a proof outline for our main re-
sult, Theorem 1. In the interest of space, the proofs of
most technical lemmas are relegated to the Appendix.

For δ ∈ (0, 1), set

z2(δ) :=
(
k + 2

√
k log(1/δ) + 2 log(1/δ)

)1/2

,

z∞(δ) :=
√

2 log k +
√

2 log(2/δ) ,

(10)

so that for Z ∼ N (0, Ik) (see Appendix H, Lemma 17),

Pr(‖Z‖ ≥ z2(δ)) ≤ δ, Pr(‖Z‖∞ ≥ z∞(δ)) ≤ δ .

Going forward, we fix a truncation radius:

R = 2
√
k + z2(0.1) = Θ(

√
k) . (11)

This particular choice is rather arbitrary. One could
carry out the analysis with any R = C

√
k for C > 1;

this would only change the constants in the bounds.

3.1 High level view

Divide the pairs {(xi,yi)}i∈[n] into groups. Denote by

K = {i ∈ [n] : yi ∈ B(0, R)} ,
KBall = {i ∈ [n] : xi ∈ B(0, R)} ,

respectively the points that were picked by Algo-
rithm 1, and those for which xi ∈ B(0, R). Note that,
conditioned on i ∈ KBall, xi

d
= XBall; hence {xi}i∈KBall

is an i.i.d. sample from XBall. Observe also that
KBall ⊆ K, since ‖X mod ∆‖ ≤ ‖X‖. We denote by
KGood ⊆ KBall the subset of measurements for which
xi = yi, in other words, such that xi ∈ [− 1

2∆, 1
2∆)k to

begin with. The measurements in KBad = K \ KGood,
will be called bad. We have

KGood ⊆ KBall ⊆ K = KGood t KBad ⊆ [n] .

Now, the sample covariance,

Σ̂X :=
1

|KBall|
∑

i∈KBall

xix
>
i (12)

is a consistent (as |KBall| → ∞) estimator for ΣBall,
whose largest eigenvector is u (Proposition 1). Con-
sequently, PCA yields a consistent estimator for the
unknown direction. Alas, the set KBall is not directly
observable, so the algorithm uses K ⊇ KBall instead:5

Σ̂ =
1

|KBall|
∑

i∈K
yiy
>
i . (13)

5Note that we have normalized by |KBall|, which is un-
known. This is done for the sake of convenience in the
analysis; the eigenvectors, of course, are not affected.
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This injects additional error into the covariance esti-
mation process, in two ways. First, the covariance is
computed using the yi-s instead of the xi-s (the latter
are unknown); we have yi = xi only for i ∈ KGood,
which may be a strict subset of K. Second, we use ad-
ditional samples, on top of KBall: the points in K\KBall

necessarily come from the wrong distribution. Set

εCovEst := ‖Σ̂X −ΣBall‖ , εPick := ‖Σ̂X − Σ̂‖ ,

so that ‖Σ̂−ΣBall‖ ≤ εCovEst +εPick. A bound on this
operator norm yields, by standard eigenvector pertur-
bation results, a bound on ‖u − û‖. Note: εCovEst

is simply the statistical estimation error in estimating
ΣBall = Cov(XBall) from |KBall| i.i.d. measurements;
the other term, εPick, is the error induced through pick-
ing erroneous measurements. We shall bound each er-
ror term separately.

3.2 The covariance estimation error

We start with εCovEst; the argument is quite standard.
First, we show that with high probability, |KBall| is
reasonably large. Denote

pBall = pBall(ν;R) = Pr (X ∈ B(0, R)) , (14)

so that |KBall| ∼ Binomial (pBall, n). Controlling
|KBall| is straightforward using, e.g., Chernoff’s in-
equality (Appendix H, Lemma 19):

Lemma 1 For any u ∈ Sk−1, for universal c1, c2 > 0,

Pr
(
|KBall| ≤ c1pBalln

∣∣u
)
≤ 2e−c2pBalln .

Next is an (tight, for large ν) estimate for pBall; the
(short) proof is relegated to Appendix G.1:

Lemma 2

0.9 erf

(√
2k

ν

)
≤ pBall ≤ erf

(√
2k + z2(0.1)/2

1 + ν

)
,

where, recall, the error function is defined by

erf(x) =
2√
π

∫ x

0

e−t
2

dt = Pr(|ξ| ≤
√

2x) . (15)

Note that Lemma 2 implies that pBall = Θ(1) when
ν = O(k), whereas pBall = Θ(

√
k/ν) when ν = ω(k);

in other words, pBall = Θ(1 ∧
√
k/ν).

Error bounds for covariance estimation rely on the con-
centration properties of the data. Thus, we need to
show that XBall “inherits” the favorable properties of
the underlying Gaussian vector X. We start with a
general Lemma, whose proof appears in Appendix G.2:

Lemma 3 For every convex function g : Rk → R,

E [g(XBall)] ≤ E [g(X)] .

The proof of Lemma 3 relies on the Gaussian corre-
lation inequality. As an important corollary, it allows
us to control the sub-Gaussian and sub-exponential
norms of XBall; see Appendix C, Lemma 9.

Recall that by Proposition 1, ΣBall is a spiked covari-
ance matrix with largest eigenvector u:

λ1(ΣBall) > λ2(ΣBall) = . . . = λk(ΣBall) ,

so that applying Lemma 3 (with g(X) = 〈ui,X〉2),

λ1(ΣBall) ≤ R2 ∧ (1 + ν), λ2(ΣBall) ≤ 1 .

The rest of the analysis proceeds along rather standard
lines, as in e.g. [Wainwright, 2019, Section 8.2.2]; the
full details are given in Appendix C. We prove:

Lemma 4 Suppose that pBalln & log k. Then, with
probability 1−O(k−10),

εCovEst . (k ∧ (1 + ν))

√
log k

pBalln

+
√

(k ∧ (1 + ν)

(
k

pBalln
∨
√

k

pBalln

)
.

3.3 The sample picking error

Decompose
∑

i∈K
yiy
>
i =

∑

i∈KGood

xix
>
i +

∑

i∈KBad

yiy
>
i ,

so that

εPick =
1

|KBall|
·

∥∥∥∥∥∥
∑

i∈KBad

yiy
>
i −

∑

i∈KBall\KGood

xix
>
i

∥∥∥∥∥∥

≤ 2|KBad| ·R2

|KBall|
. k · |KBad|

|KBall|
.

(16)

Above, we used: ‖xi‖ ≤ R for i ∈ KBall; ‖yi‖ ≤ R for
i ∈ K; and |KBall \ KGood| ≤ |K \ KGood| ≤ |KBad|.
The next Lemma is one of our main technical re-
sults. It states that for most directions u ∈ Sk−1,
the probabiliy that a pair (X,Y) is bad, meaning that
Y ∈ B(0, R) but X 6= Y, is overwhelmingly small
provided that ∆ &

√
log k ∨ ν 1

2(k−1) :

Lemma 5 Fix a constant M ≥ 1. There is a univer-
sal C∗ > 0 and a subset UM ⊆ Sk−1 with

Pr
u∼Unif(Sk−1)

(u ∈ UM ) = 1−OM (k−10) ,



Elad Romanov, Or Ordentlich

such that if ∆ ≥ C∗(M
√

log k ∨ ν 1
2(k−1) ), then for all

u ∈ UM ,

Pr
(
(X,Y) is bad

∣∣u
)
≤ k−M2

.

The proof appears in Appendix D. The key idea is
to reduce the problem into a question in geometric
probability: whether a randomly rotated line segment
is far away from all non-zero lattice points.

Lemma 5 readily gives the following bound; the details
are given in Appendix G.3:

Lemma 6 Assume the setup of Lemma 5, with
M >

√
12, u ∈ UM , ∆ ≥ C∗(M

√
log k∨ν 1

2(k−1) ). Sup-
pose that pBalln & log k. With probability 1−O(k−10):

εPick .
k−M

2+12

pBall
.

3.4 Concluding the analysis

So far, we have shown that ‖Σ̂−ΣBall‖ is small with
high probability. To deduce that their largest eigenvec-
tors are close as well (using eigenvector perturbation
results), we first need to show that the spectral gap of
ΣBall is large. We prove the following in Appendix E:

Lemma 7 There are universal C1, C2 such that for
ν ≥ e−C1k,

λ1(ΣBall) ≥ 1 + C2(k ∧ ν) .

Consequently, λ1(ΣBall)− λ2(ΣBall) & (k ∧ ν).

The proof of Theorem 1 follows by combining our
bounds thus far. The details appear in Appendix F.
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A Proof of Proposition 1, Item 1

Decompose X along the principal components:

X =

k∑

i=1

√
λigiui ,

where g1, . . . , gk
i.i.d.∼ N (0, 1). Then,

ΣBall = E
[
XX>

∣∣ ‖X‖2 ≤ R2
]

=

k∑

i,j=1

E

[
√
λiλjgigjuiu

>
j

∣∣∣
k∑

i=1

λig
2
i ≤ R2

]
.

Now, observe that the cross terms, i 6= j, are zero, since conditioning onto the ball preserves the symmetry
(gi, gj) 7→ (−gi, gj). Thus,

ΣBall =

k∑

i=1

E

[
λig

2
i uiu

>
i

∣∣∣
k∑

i=1

λig
2
i ≤ R2

]
=:

k∑

i=1

µiuiu
>
i ,

and so the claim is proved.

B Proof of Proposition 2

For brevity, define

p(ν; u) = Pr
X∼N (0,νuu>+I)

(
X = X̂MAP

)
, (17)

where XMAP is the MAP estimator of X from Y = [X] mod ∆; in other words, p(ν; u) is the success probability
of the MAP estimator at SNR ν with spike direction u. Recalling that the MAP estimator is optimal in the
sense of error probability, it is clear that to prove Proposition 2, it suffices to show that p(ν; u) ≥ 0.1 implies
that ∆ & ν1/2k ∨√log k.

We start with a simple observation:

Lemma 8 The function ν 7→ p(ν; u) is decreasing.

Proof. For any ν ≥ 0, denote Xν ∼ N (0, νuu> + I) and Yν = [Xν ] mod ∆, and let gν : [−∆/2,∆/2)k → Rk
be a deterministic function such that gν(Yν) is the MAP estimator for Xν . Fix any τ ≥ 0; we shall now
construct a suboptimal estimator for Xν given Yν , based on gν+τ (·). The idea is simple: we generate known
noise N ∼ N (0, τuu>) and set Y′ = [Yν + N] mod ∆, which also equals Y′ = [Xν + N] mod ∆. Note that
(Xν+τ ,Yν+τ )

d
= (Xν + N,Y′). Considering the sub-optimal estimator X̂′ = gν+τ (Y′)−N for Xν , we conclude,

p(ν; u) ≥ Pr(Xν = X̂′) = Pr (Xν = gν+τ (Y′)−N) = Pr (Xν+τ = gν+τ (Yν+τ )) = p(ν + τ ; u) .

Let us start by showing ∆ &
√

log k. By Lemma 8, the assumptions of Proposition 2 imply that p(0; u) ≥ 0.1.
Now, it is easy to see that when ν = 0, X̂MAP = Y; in this case, the problem simply decouples across the
different coordinates. Thus,

0.1 ≤ p(0; u) = Pr(X = Y) = Pr (|Xi| ≤ ∆/2 for all 1 ≤ i ≤ k)) =
{

erf
(

∆/23/2
)}k

,

and therefore erf(∆/23/2) ≥ 1 − ck−1 for some universal c ≥ 0. Clearly, then, ∆ = ω(1) for large k, so by the
standard estimate 1− erf(x) & e−x

2

/x (for large x), we get e−c1∆2

/∆ . 1/k hence ∆ &
√

log k.

It remains to show ∆ & ν1/2k. To that end, we will use a simple geometric characterization of the MAP estimator,
following [Romanov and Ordentlich, 2021]. Let

L = ∆Σ−1/2Zk =
{

∆Σ−1/2t : t ∈ Zk
}
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be the lattice generated by the matrix ∆Σ−1/2, and denote by V0 ⊂ Rk the Voronoi cell of 0 ∈ L (that is, all
points a ∈ Rk whose closest lattice point is 0 ∈ L). By [Romanov and Ordentlich, 2021, Section III, Eq. (38)],
the success probability of the MAP estimator is

Pr
(
X̂MAP(Y) = X

)
= Pr

Z∼N (0,Ik)
(Z ∈ V0) .

Now, it is a well-known fact that V0 is a convex symmetric set, with volk(V0) = |∆Σ−1/2| = ∆k/|Σ|1/2. Let r0

be the effective radius of L, defined by

volk(B(0, r0)) = volk(V0) =⇒ r0 =
∆

|Σ| 1
2kV1/k

k

,

(Vk denotes the volume of the Euclidean unit ball). Recall that among all convex bodies with a given (finite)
volume, a ball has the largest Gaussian measure. Thus,

0.1 ≤ Pr
Z∼N (0,Ik)

(Z ∈ V0) ≤ Pr
Z∼N (0,Ik)

(Z ∈ B(0, r0)) = Pr
Z∼N (0,Ik)

(
‖Z‖2 ≤ r2

0

)
.

Note that ‖Z‖2 ∼ χ2
(k), which concentrates around k with “typical” deviations of order O(

√
k) (see, e.g.,

Lemma 17). This gives r0 &
√
k, so

∆ & |Σ| 1
2k

(
V1/k
k

√
k
)

= (1 + ν)1/2k
(
V1/k
k

√
k
)
& (1 + ν)1/2k ,

where the last inequality follows from Stirling’s approximation: Vk
k→∞≈ 1√

kπ

(
2πe
k

)k/2, and therefore

V1/k
k

√
k =
√

2πe+ o(1) = Θ(1).

C Proof of Lemma 4

Decompose XBall along the principal components:

XBall = wu + p ,

where w is the projection along u and p is the orthogonal complement. Note that, while w and p are uncorrelated,
they are not independent (as was the case without truncation, for a Gaussian vector) since we condition on
w2 + ‖p‖2 ≤ R2. Also, recalling the “spiky” structure of ΣBall,

E(w2) = λ1(ΣBall), E[pp>] = ΣBall − λ1(ΣBall) · uu> = λ2(ΣBall) · (I − uu>) . (18)

Condition on N = |KBall|, and denote for convenience KBall = {1, . . . , N}, so that {xi}Ni=1 are i.i.d. measurements
from XBall. Write

Σ̂X =
1

N

N∑

i=1

(wiu + pi) (wiu + pi)
>

=

(
1

N

N∑

i=1

w2
i

)
uu> +

(
1

N

N∑

i=1

wipi

)
u> +

(
1

N

(
N∑

i=1

wipi

)
u>

)>
+

1

N

N∑

i=1

pip
>
i ,

(19)

so that the error can be decomposed as
∥∥∥Σ̂X −ΣBall

∥∥∥ ≤ ε1 + 2ε2 + ε3, with

ε1 :=

∣∣∣∣∣
1

N

N∑

i=1

w2
i − E[w2]

∣∣∣∣∣ ,

ε2 :=

∥∥∥∥∥
1

N

N∑

i=1

wipi

∥∥∥∥∥ ,

ε3 :=

∥∥∥∥∥
1

N

N∑

i=1

pip
>
i − E

[
pp>

]
∥∥∥∥∥ .

(20)
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We first show that XBall inherits the sub-Gaussian concentration properties of X. We denote, respectively, the
sub-Gaussian and sub-exponential norms by ‖ · ‖ψ2 and ‖ · ‖ψ1 . For a quick reminder on these norm (and Orlicz
norms in general), see Definition 1 and Lemma 20.

Lemma 9 We have
‖p‖ψ2 . 1 , ‖w2‖ψ1 . k ∧ (1 + ν) .

and
‖wp‖ψ1

.
√
k ∧ (1 + ν) .

Proof. Let ψ : [0,∞)→ [0,∞) be convex and increasing, and let g : R→ R be such that x 7→ |g(x)| is convex.
Observe that x 7→ ψ(|g(x)|) is convex, and consequently, by Lemma 3, ‖g(XBall)‖ψ ≤ ‖g(X)‖ψ, where ‖ · ‖ψ is
the Orlicz ψ-norm (see Definition 1). Consequently,

‖w2‖ψ1
≤ ‖〈u,X〉2‖ψ1

. 1 + ν, ‖p‖ψ2
≤
∥∥(I− uu>)X

∥∥
ψ2

. 1 .

Furthermore, using Lemma 20, Items 1 and 5,

‖w2‖ψ1 = ‖w‖2ψ2
. ‖w‖2∞ ≤ R2 . k .

This proves the first two bound. As for the last one,

‖wp‖ψ1
= sup

v∈Sk−1

‖w〈v,p〉‖ψ1

(?)

≤ ‖w‖ψ2
· sup
v∈Sk−1

‖〈v,p〉‖ψ2
= ‖w‖ψ2

‖p‖ψ2

(??)

.
√
k ∧ (1 + ν) ,

where (?) follows from Lemma 20, Item 2, and (??) follows from Lemma 20, Item 1, and the first part of this
proof.

We now bound the errors ε1, ε2, ε3, again conditioned on N = |KBall|:

Lemma 10 Assume that N & log k. Then, with probability 1−O(k−10),

ε1 . (k ∧ (1 + ν))

√
log k

N
.

Proof. By the centralization Lemma (Lemma 20, Item 3) and Lemma 9,
∥∥w2

i − E
[
w2
i

]∥∥
ψ1
≤ ‖w2

i ‖ψ1
. k ∧ (1 + ν) .

By Bernstein’s inequality (Lemma 21),

Pr (ε1 ≥ t) ≤ 2 exp
[
−c1N(δ ∧ δ2)

]
, δ :=

t

k ∧ (1 + ν)
.

Set t =
√

10
c1

(k ∧ (1 + ν))
√

log k
N . Then whenever N ≥ 10

c1
log k, the probability is ≤ 2k−10.

Lemma 11 With probability 1− 2e−Ω(k),

ε2 .
√
k ∧ (1 + ν)

(
k

N
∨
√
k

N

)
.

Proof. Set q = 1
N

∑N
i=1 wipi, and observe that E[q] = 0, since wi and pi are uncorrelated. We want to bound

‖q‖ with high probability; to that end, we use a standard ε-net argument, executed in detail for the sake of
completeness. Using [Vershynin, 2018, Corollary 4.2.13], fix a 1/2-net N of Sk−1 of size |N | ≤ 5k. Let ṽ ∈ N be
a member of the net, such that

∥∥∥ q
‖q‖ − ṽ

∥∥∥ ≤ 1/2. Now,

‖q‖ =

〈
q,

q

‖q‖

〉
=

〈
q,

q

‖q‖ − ṽ

〉
+ 〈q, ṽ〉 ≤ ‖q‖

∥∥∥∥
q

‖q‖ − ṽ

∥∥∥∥+ 〈q, ṽ〉 ≤ 1

2
‖q‖+ 〈q, ṽ〉 ,
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which implies ‖q‖ ≤ 2〈q, ṽ〉. Consequently, ‖q‖ ≤ 2 maxv∈N 〈q,v〉, so it suffices to bound the latter. Recalling,
by Lemma 9, that ‖wipi‖ψ1 .

√
k ∧ (1 + ν), by Bernstein’s inequality and a union bound over the net,

Pr

(
max
v∈N
〈q,v〉 ≥ t

)
≤ 2 · 5k · exp

[
−c1N(δ ∧ δ2)

]
, δ :=

t√
k ∧ (1 + ν)

.

Set

t =
√
k ∧ (1 + ν)

(
10

c1

k

N
∨
√

10

c1

k

N

)
,

so that the probability is bounded by 2 · 5ke−10k = 2e−Ω(k).

Lemma 12 With probability 1− 2e−Ω(k),

ε3 .

(
k

N
∨
√
k

N

)
.

Proof. By Lemma 9, the vectors pi are O(1)-sub-Gaussian. The claim follows by Lemma 22, applied with

t ≈
√
k, δ ≈

√
k
N .

Proof of Lemma 4. The proof follows from Lemmas 10, 11 and 12, combined with N & pBalln from Lemma 1.

D Proof of Lemma 5

The core of the argument is this: we reduce the question of whether Pr((X,Y) is bad |u) is large to a geometric
question; specifically, whether a randomly rotated line segment is close to any non-zero lattice point. The details
proceed as follow.

Recall: the pair (X,Y) is bad when Y ∈ B(0, R) but X /∈ Q∆ := [− 1
2∆, 1

2∆)k. Our goal is to show that for
most directions u ∈ Sk−1, the probability that (X,Y) is bad is small, specifically,

Pr ((X,Y) is bad |u) ≤ k−M2

.

We start by constraining ourselves to a set of “typical” vectors X. As in Eq. (2), write, X =
√
νξu + Z, for

independent ξ ∼ N (0, 1), Z ∼ N (0, I). Let δ > 0 be a confidence parameter (we shall set δ = k−M
2

later), and
consider the event

EX = {‖Z‖2 ≤ z2(δ/3), ‖Z‖∞ ≤ z∞(δ/3), |ξ| ≤ h(δ/3)} (21)

where h(δ) =
√

2 log(2/δ) is such that Pr(|ξ| ≥ h(δ)) ≤ δ, and z2(δ), z∞(δ) are as in Eq. (10). Clearly,
Pr(EX) ≤ δ.
Operating under EX, let us bound the event {(X,Y) is bad} by another, larger, event. To start, note that X 6= Y
implies that X = Y+∆t for some non-zero lattice vector t ∈ Zk \{0}. Consequently, when Y ∈ B(0, R), X 6= Y
implies that X ∈ ⋃t∈Zk\{0} B (∆t, R). Decomposing X, this further implies that

√
νξu ∈

⋃

t∈Zk\{0}

B (∆t, R+ ‖Z‖) . (22)

As for the condition X /∈ Q∆, equivalently ‖X‖∞ > 1
2∆, it follows from the triangle inequality that

‖√νξu‖∞ = |√νξ|‖u‖∞ ≥
1

2
∆− ‖Z‖∞ . (23)

Let U1,M ⊆ Sk−1 be the set of incoherent directions,

U1,M :=

{
u ∈ Sk−1 : ‖u‖∞ ≤

1

C1

√
log k

k

}
, (24)
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with C1 a universal constant such that Pr(u ∈ U1,M ) = 1−O(k−10) for u ∼ Unif(Sk−1) (see Lemma 18). Now,
under EX, and assuming that u ∈ U1,M , Eqs. (22) and (23) imply that

√
νξu ∈

⋃

t∈Zk\{0}

B (∆t, Rδ) , |√νξ| ≥ C1∆δ

√
k

log k
, (25)

where we set

∆δ :=
1

2
∆− z∞(δ/3), Rδ := R+ z2(δ/3) . (26)

Henceforth, we shall assume ∆ to be large enough so that ∆δ > 0. Consider the line segment, L(u) ⊂ Rk,

L(u) = {su : A ≤ s ≤ B} , where A := C1∆δ

√
k

log k
, B :=

√
νh(δ/3) =

√
2ν log(6/δ) . (27)

Observe that under EX, the occurrence of the event in Eq. (25) implies, in particular, that

L(u) ∩
⋃

t∈Zk\{0}

B (∆t, Rδ) 6= ∅ .

Note that given u, this is a deterministic geometric condition. Set

U2,M :=



u ∈ Sk−1 : L(u) ∩

⋃

t∈Zk\{0}

B (∆t, Rδ) = ∅



 . (28)

and

UM := U1,M ∩ U2,M . (29)

Summarizing the preceding discussion, we have argued that whenever u ∈ UM , the event EX already implies that
(X,Y) are good. Thus, for u ∈ UM ,

Pr
(
(X,Y) is bad

∣∣u
)
≤ Pr(EcX |u) = Pr(EcX) ≤ δ . (30)

The proof of Lemma 5 will follow from the following auxiliary result:

Lemma 13 Fix a constant M ≥ 1 and set δ = k−M
2

. There is a universal constant C∗ > 0, such that if
∆ ≥ C∗

(
M
√

log k ∨ ν 1
2(k−1)

)
then, for u ∼ Unif(Sk−1),

Pr(u /∈ U2,M ) ≤ OM (k−10) .

Lemma 13 is purely a result in geometric probability. It states the following: take the 1D line segment L̃(e1) ⊆ Rk,
and rotate it uniformly in space (apply a random rotation U ∼ Haar(O(k))). Then with high probability, the
rotated segment will end up far away from all non-zero lattice points. The remainder of this section is devoted
to proving Lemma 13.

Let us discretize the interval [A,B] into disjoint sub-intervals of maximal length, such that the length of a sub-
interval is ≤ Rδ; let s0 = A < s1 < . . . < sT = B be the corresponding end-points, and note that we may take
T ≤

⌈
B−A
Rδ

⌉
+ 1. Clearly, any point in L(u) must be 0.5Rδ-close to some point in {s1u, . . . , sTu}. In particular,
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L(u) ∩⋃t∈Zk\{0} B(∆t, Rδ) 6= ∅ implies that s`u ∈
⋃

t∈Zk\{0} B(∆t, 1.5Rδ) for some 1 ≤ ` ≤ T . Consequently,

Pr


L(u) ∩

⋃

t∈Zk\{0}

B(∆t, Rδ) 6= ∅


 ≤ Pr


{s1u, . . . , sTu} ∩

⋃

t∈Zk\{0}

B(∆t, 1.5Rδ) 6= ∅




≤
T∑

`=1

Pr


s`u ∈

⋃

t∈Zk\{0}

B(∆t, 1.5Rδ)




=

T∑

`=1

Pr


u ∈

⋃

t∈Zk\{0}

B
(

∆

s`
t,

1.5Rδ
s`

)


=:

T∑

`=1

p` .

(31)

Since u ∼ Unif(Sk−1), each term of Eq. (31) is, by definition,

p` =
σk−1

(
Sk−1 ∩⋃t∈Zk\{0} B

(
∆
s`

t, 1.5Rδ
s`

))

σk−1(Sk−1)
≤
∑

t∈Zk\{0} σk−1

(
Sk−1 ∩ B

(
∆
s`

t, 1.5Rδ
s`

))

σk−1(Sk−1)
,

where σk−1(·) denotes the surface area. Note that, one the one hand,

σk−1

(
Sk−1 ∩ B

(
∆

s`
t,

1.5Rδ
s`

))
≤ σk−1

(
∂

(
B(0, 1) ∩ B

(
∆

s`
t,

1.5Rδ
s`

)))

(?)

≤ σk−1

(
∂B
(

∆

s`
t,

1.5Rδ
s`

))

=

(
1.5Rδ
s`

)k−1

σk−1(Sk−1) ,

where ∂(·) denotes the boundary of a set, and (?) follows from the well-known fact that for convex bodies L ⊂ K,
σk−1(∂L) ≤ σk−1(∂K); see, e.g., [Artstein-Avidan et al., 2015, Theorem B.1.14]. On the other hand, clearly,
σk−1

(
Sk−1 ∩ B

(
∆
s`

t, 1.5Rδ
s`

))
= 0 whenever Sk−1 ∩ B

(
∆
s`

t, 1.5Rδ
s`

)
= ∅. Setting

N` =

∣∣∣∣
{

t ∈ Zk \ {0} : Sk−1 ∩ B
(

∆

s`
t,

1.5RM
s`

)
6= ∅
}∣∣∣∣ , (32)

we conclude that

p` ≤ N`
(

1.5Rδ
s`

)k−1

. (33)

Lemma 14 We have

N` ≤




Vk ·

(
s`+1.5Rδ

∆ +
√
k
)k

if s` < ∆
√
k + 1.5Rδ

k · Vk ·
(

3Rδ
∆ + 2

√
k
)(

s`+1.5Rδ
∆ +

√
k
)k−1

if s` ≥ ∆
√
k + 1.5Rδ

,

where Vk is the volume of the k-dimensional unit ball.

Proof. This is an essentially standard packing argument, made slightly more complicated (when s` is large)
since we are considering intersections against a sphere rather than a ball. For radii 0 ≤ r1 ≤ r2, denote the
(closed) annulus by

A(r1, r2) = B(0, r2) \ int(B(0, r1)) .
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Observe that Sk−1 ∩ B
(

∆
s`

t, 1.5Rδ
s`

)
6= ∅ implies6 ∆

s`
t ∈ A

([
1− 1.5Rδ

s`

]
+
, 1 + 1.5Rδ

s`

)
, so

N` ≤
∣∣∣∣∣Z
k ∩ A

([
s` − 1.5Rδ

∆

]

+

,
s` + 1.5Rδ

∆

)∣∣∣∣∣ .

Next, we use the following packing argument: the sets Zk +
(
− 1

2 ,
1
2

)k are disjoint, so that if t ∈ A(r1, r2) then

t +
(
− 1

2 ,
1
2

)k ⊂ A
([
r1 −

√
k
]

+
, r2 +

√
k

)
. Therefore, by a volume comparison,

∣∣Zk ∩ A(r1, r2)
∣∣ ≤

Volk

(
A([r1 −

√
k]+, r2 +

√
k)
)

Volk

((
− 1

2 ,
1
2

)k) = Vk ·
(

(r2 +
√
k)k − [r1 −

√
k]k+

)
.

Set r2 = s`+1.5Rδ
∆ and r1 =

[
s`−1.5Rδ

∆

]
+
, so that

N` ≤ Vk ·



(
s` + 1.5Rδ

∆
+
√
k

)k
−
([

s` − 1.5Rδ
∆

−
√
k

]

+

)k
 .

The second term is non-zero if and only if s` ≥ ∆
√
k + 1.5Rδ; the claimed bound follows from the inequality

|ak − bk| ≤ k|b− a|max{|a|, |b|}k−1.

We now conclude the proof of Lemma 13. Recall, by Eq. (31), that our goal is to bound
∑T
`=1 p`, where p` is

bounded in Eq. (33). We treat separately small and large terms in the sum.

• Small terms: `-s such that s` < ∆
√
k + 1.5Rδ. Note that there are ≤ ∆

√
k+1.5Rδ
Rδ

+ 1 . 1 + ∆
√
k

Rδ
such

terms. Bound

Vk ≤ (C/
√
k)k,

1.5Rδ
s`

≤ 1.5Rδ
A

.
Rδ
√

log k

∆δ

√
k

(recall s` ≥ A and the definition of A in Eq. (27)). Assuming

∆ ≥ Rδ√
k
, (34)

we have
s` + 1.5Rδ

∆
+
√
k ≤ (∆

√
k + 1.5Rδ) + 1.5Rδ

∆
+
√
k .
√
k +

Rδ
∆

(34)

.
√
k .

Plugging into Eq. (33) and Lemma 14,

p` . Ck(1/
√
k)k ·

(√
k
)k (Rδ

√
log k

∆δ

√
k

)k−1

.

(
C
Rδ
√

log k

∆δ

√
k

)k−1

,

for some universal C. Recalling again that there are . 1 + ∆
√
k

Rδ

(34)

. ∆
√
k

Rδ
such terms, and that, by definition

(Eq. (26)),
∆ = 2∆δ + 2z∞(δ/2) . ∆δ +

√
log k ∨ log(1/δ) , (35)

the total sum of the small terms is

.
√

log k

(
C
Rδ
√

log k

∆δ

√
k

)k−2

+
√

log k ∨ log(1/δ) ·
√
k

Rδ
·
(
C
Rδ
√

log k

∆δ

√
k

)k−1

.
√

log k

(
C
Rδ
√

log k

∆δ

√
k

)k−2

+
√
k log k

(
C
Rδ
√

log k

∆δ

√
k

)k−1

,

6[x]+ denotes the positive part of x, namely, [x]+ = max{x, 0}.
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where, for the second inequality, we used Rδ ≥ z2(δ/3) &
√

log(1/δ). Consequently, whenever

∆δ &
Rδ
√

log k√
k

,

the sum is exponentially decaying in k, and in particular O(k−10). Again, recalling Eq. (35), the following
condition on ∆ is sufficient to get exponential decay:

∆ &
Rδ
√

log k√
k

+
√

log k ∨ log(1/δ) . (36)

• Large terms: such that s` ≥ ∆
√
k + 1.5Rδ. Note that there are . B/Rδ .

√
ν log(1/δ)

Rδ
such terms (recall

the definition of B in Eq. (27)). Bounding s`+1.5Rδ
∆ +

√
k ≤ 2s`

∆ , we estimate, using Vk ≤ (C/
√
k)k and

assuming condition (34),

N` ≤ k · Vk ·
(

3Rδ
∆

+ 2
√
k

)(
s` + 1.5Rδ

∆
+
√
k

)k−1

. k(C/
√
k)k
√
k

(
2s`
∆

)k−1

,

so that, using Eq. (33),

p` ≤ N`
(

1.5Rδ
s`

)k−1

. k

(
3C

Rδ

∆
√
k

)k−1

.

Again, since there are .
√
ν log(1/δ)

Rδ
such terms, the total contribution is

.
k

Rδ

√
ν log(1/δ) ·

(
3C

Rδ

∆
√
k

)k−1

≤ k
(

3C
Rδν

1
2(k−1)

∆
√
k

)k−1

,

where, for the second inequality, we again used Rδ &
√

log(1/δ). This is exponentially decreasing in k
whenever

∆ &
Rδ√
k
ν

1
2(k−1) . (37)

We finish by simplifying conditions (36) and (37) further. Setting δ = k−M
2

, we may estimate

Rδ ≈
√
k ∨

√
log(1/δ) =

√
k ∨ (M

√
log k),

so that for large k ≥ k0(M), Rδ ≈
√
k. Thus, (36) reads ∆ &M

√
log k, and (37) reads ∆ & ν

1
2(k−1) .

E Proof of Lemma 7

Recall the choice of R from Eq. (11). Decompose, rather arbitrarily, R2 = k + B, so that 3k ≤ B ≤ C3k for
some C3. Note that if g1, . . . , gk ∼ N (0, 1), then Pr

(∑k
i=2 g

2
i ≤ B

)
≥ 1 − e−C4k for some C4 > 0. Following

Proposition 1 Eq. (7),

λ1(ΣBall) = E

[
λig

2
i

∣∣∣
k∑

i=1

λig
2
i ≤ R2

]
=
E
[
(1 + ν)g2

1 · 1(1+ν)g21+
∑k
i=2 g

2
i≤k+B

]

Pr
(

(1 + ν)g2
1 +

∑k
i=2 g

2
i ≤ k +B

) .

Clearly, 1(1+ν)g21+
∑k
i=2 g

2
i≤k+B ≥ 1(1+ν)g21≤k · 1∑k

i=2 g
2
i≤B

, therefore,

E
[
(1 + ν)g2

1 · 1(1+ν)g21+
∑k
i=2 g

2
i≤k+B

]
≥ E

[
(1 + ν)g2

1 · 1(1+ν)g21≤k · 1∑k
i=2 g

2
i≤B

]

(?)
= E

[
(1 + ν)g2

1 · 1(1+ν)g21≤k

]
· E
[
1∑k

i=2 g
2
i≤B

]

≥ E
[
(1 + ν)g2

1 · 1(1+ν)g21≤k

]
(1− e−C4k) ,
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where (?) holds since this is the product of independent random variables. Furthermore, clearly,

Pr

(
(1 + ν)g2

1 +

k∑

i=1

g2
i ≤ k +B

)
≤ Pr

(
(1 + ν)g2

1 ≤ k +B
)
≤ Pr

(
(1 + ν)g2

1 ≤ (1 + C3)k
)
.

Let g2
1 =: W ∼ χ2(1), so that, finally,

λ1(ΣBall) ≥ (1− e−C4k)
E
[
(1 + ν)W · 1W≤ k

1+ν

]

Pr
(
W ≤ (1+C3)k

1+ν

) . (38)

We continue case-by-case, depending on the magnitude of ν:

(i) Suppose that e−C1k ≤ ν ≤ 1, where C1 is a sufficiently small constant. Since W has an exponential tail and
E[W ] = 1, there is some C5 such that

E
[
W · 1W≤ k

1+ν

]

Pr
(
W ≤ (1+C3)k

1+ν

) ≥
E
[
W · 1W≤ k2

]

Pr (W ≤ (1 + C3)k)
≥ 1− e−C5k ,

therefore
λ1(ΣBall) ≥ (1 + ν)(1− e−C4k)(1− e−C5k) ≥ 1 + Cν

for small enough C, whenever C1 is chosen sufficiently small compared to C4, C5.

(ii) Note that by [Palombi et al., 2012], λ1(ΣBall) increases with ν. Consequently, for all ν ≥ 1, (i) implies that
λ1(ΣBall) ≥ 1 + C. Now, suppose that 1 ≤ ν ≤ Ak − 1, where A is such that for all A′ ≤ A,

E
[
W · 1W≤ 1

A′

]

Pr
(
W ≤ (1+C3)

A′

) ≥ 4

5
.

Note that such A indeed exists, since the above ratio → 1 as A′ → 0. Then

λ1(ΣBall) ≥ (1 + ν)(1− e−C4k)
E
[
W · 1W≤ k

1+ν

]

Pr
(
W ≤ (1+C3)k

1+ν

) ≥ 4

5
(1− e−C4)(1 + ν) ≥ C ′(1 + ν) ,

so that λ1(ΣBall) ≥ (1 + C) ∨ C ′(1 + ν). Consequently, λ1(ΣBall) ≥ 1 + C ′′ν for some other C ′′.

(iii) ν ≥ Ak − 1. Consider the function

F (h) =
1

h
· E [W · 1W≤h]

Pr (W ≤ (1 + C3)h)
,

so that

λ1(ΣBall) ≥ (1− e−C4k) · k · F
(

k

1 + ν

)
≥ k · (1− e−C4) · inf

h≤1/A
F (h) .

We are done if we show that the infimum is non-zero, and it clearly suffices to show that limh→0+ F (h) > 0.
To do this, recall that W ∼ χ2(1) has a density fW (w) ∝ w−1/2e−w/2 supported on w ≥ 0. Therefore, as
h→ 0+,

E [W · 1W≤h] ∼ Ch3/2, Pr (W ≤ (1 + C3)h) ∼ C ′h1/2 ,

so that indeed F (h) ∼ C ′′ as h→ 0+.
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F Proof of Theorem 1

We shall use the following eigenvalue perturbation result [Wainwright, 2019, Theorem 8.5]:

Lemma 15 Let A be positive semidefinite, with a positive spectral gap: δ := λ1(A)− λ2(A) > 0. Let u ∈ Sk−1

be its largest eigenvector. Suppose that Â is positive semidefinite with ‖A − Â‖ ≤ δ/4. Let û be its maximal
eigenvector, with the sign chosen such that 〈u, û〉 ≥ 0 (part of the claim is that the largest eigenspace of Â is
1-dimensional). Then

‖u− û‖ ≤ 4

δ
·
∥∥∥
(
I− uu>

)
(A− Â)u

∥∥∥ ,

where I− uu> is the projection onto the orthogonal complement of u.

We apply Lemma 15 with A = ΣBall and Â = Σ̂, using the error bounds developed so far. For brevity, denote

δ := λ1(ΣBall)− λ2(ΣBall) . (39)

Lemma 16 Assume the setup of Lemma 5, with ∆ large, M >
√

12, and u ∈ UM .

Assume either of the following conditions hold:

• 1 ≤ ν ≤ k and n & k√
ν
∨ log k.

• k ≤ ν . k2M2−21 and n &
√
ν.

Then with probability 1−O(k−10), one has |ΣBall − Σ̂‖ ≤ δ/4

Proof. We consider two cases:

• Suppose that 1 ≤ ν ≤ k. By Lemma 2, pBall ≈ 1, and by Lemma 7, δ & ν. By Lemmas 4 and 6, it holds
with probability 1−O(k−10) that

‖ΣBall − Σ̂‖ . ν

√
log k

n
+
√
ν

(
k

n
∨
√
k

n

)
+ k−M

2+12 .

Consequently, when n & log k, n & k√
ν
and n & k

ν (the last condition is redundant, since ν ≥ 1), it holds

that, for large enough k, ‖ΣBall − Σ̂‖ ≤ δ/4.

• Suppose that k ≤ ν ≤ k2M2−21. By Lemma 2, pBall ≈
√
k/ν, and by Lemma 7, δ & k. By Lemmas 4 and

6, it holds with probability 1−O(k−10), provided that pBalln & log k =⇒ n &
√

ν
k log k, that

‖ΣBall − Σ̂‖ . k

√√
ν log k

n
√
k

+ k

(√
ν

n
∨
√ √

ν

n
√
k

)
+ k · ν1/2k−M

2+10.5 .

Consequently, whenever n &
√

ν
k log k, n &

√
ν (the first condition is redundant), and ν . k−2M2+21, it

holds that ‖ΣBall − Σ̂‖ ≤ δ/4.

Proof of Theorem 1. We apply Lemma 15. Write, as before, Σ̂ − ΣBall = (Σ̂ − Σ̂X) + (Σ̂X − ΣBall),
so
∥∥∥
(
I− uu>

)
(Σ̂−ΣBall)u

∥∥∥ ≤ εPick +
∥∥∥
(
I− uu>

)
(Σ̂X −ΣBall)u

∥∥∥. Using the decomposition Eq. (19), and
recalling the notation in Eq. (20), we conclude that under the conditions of Lemma 16, with probability 1 −
O(k−10),

‖u− û‖ ≤ 4

δ

∥∥∥
(
I− uu>

)
(Σ̂−ΣBall)u

∥∥∥ ≤ 4

δ
(εPick + 2ε2 + ε3) .

Note that the term ε1 does not appear, since it corresponds to a components of the difference Σ̂X−ΣBall which
is parallel to u. Using Lemmas 6, 11 and 12, δ & k ∨ ν (Lemma 7), and pBall ≈ 1 ∧

√
k/ν, we conclude that the

following holds with probability 1−O(k−10):
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• Suppose that 1 ≤ ν ≤ k and n & k√
ν
∨ log k. Then

‖u− û‖ . 1√
ν

(
k

n
∨
√
k

n

)
+

1

ν
· k−M2+12 .

Note that the requirement n & k√
ν
may effectively be omitted from the statement of the Theorem. The

reason is that a bound of the form ‖u− û‖ ≤ B, for any B ≥ 2, is completely vacuous (since u, û are unit
vectors). As we are not keeping track of the exact constants, it suffices to note that the first term in the
upper bound becomes meaningful only when n & k√

ν
.

• Suppose that k ≤ ν . k2M2−21 and n &
√
ν. Then

‖u− û‖ .
√
ν

n
+

√
1

n

√
ν

k
+ ν1/2k−M

2+10.5 .

The requirement n &
√
ν is omitted from the statement of the Theorem, for the same reason as in the

previous case.

G Proof of additional lemmas

In this section, we provide several short proofs, that were omitted from the main text due to space constraints.

G.1 Proof of Lemma 2

Upper bound: 〈u,X〉 ∼ N (0, 1 + ν); clearly, X ∈ B(0, R) implies |〈u,X〉| ≤ R, so
pBall ≤ Pr(|〈u,X〉| ≤ R) = erf(R/

√
2(1 + ν)).

Lower bound: Writing X =
√
νξu + Z, the event {√ν|ξ| ≤ 2

√
k} ∩ {‖Z‖ ≤ z2(0.1)} implies X ∈ B(0, R). Thus,

pBall ≥ Pr
(
{‖Z‖ ≤ z2(0.1)} ∩ {√ν|ξ| ≤ 2

√
k}
)

(?)
= Pr (‖Z‖ ≤ z2(0.1)) · Pr

(√
ν|ξ| ≤ 2

√
k
)

≥ 0.9 · erf

(√
2k

ν

)
,

where (?) follows since these are independent events.

G.2 Proof of Lemma 3

By the Gaussian correlation inequality [Royen, 2014, Latała and Matlak, 2017], for f, h : Rk → R quasi-
concave7, and one of whom symmetric, E [f(X)h(X)] ≥ E [f(X)]E [h(X)]. Consequently, for g convex,
E [g(X)h(X)] ≤ E [g(X)]E [h(X)]. The Lemma follows by taking h(X) = 1X∈B(0,R).

G.3 Proof of Lemma 6

First, suppose that n ≤ kM2−10. Then by Lemma 5 and Markov’s inequality, with probability 1−O(nk−M
2

) =

1−O(k−10), it holds that |KBad| = 0, and consequently (Eq. (16)), εPick = 0. Next, suppose that n ≥ kM
2−10.

By Chernoff’s inequality (Lemma 19), Lemma 5 and Lemma 1 it hold with probability 1−O(k−10) that

εPick .
k

npBall
|KBad| .

k

npBall

(
nk−M

2 ∨ log k
)
≤ k−M

2+1

pBall
+
k log k

npBall
≤ 2k−M

2+12

pBall
.

7h is quasiconcave if h(tx + (1 − t)y) ≥ min{h(x), h(y)} for all t ∈ [0, 1]. Note that: (i) A concave function is
quasiconcave; (ii) The indicator function of a convex set is quasiconcave (but not concave).
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H Auxiliary technical lemmas

The following are tail bounds for some norms of a Gaussian random vector:

Lemma 17 Let Z ∼ N (0, Ik). Then

(i) `2:

Pr
(
‖Z‖22 ≥ k + 2

√
kx+ 2x

)
≤ e−x , Pr

(
‖Z‖22 ≤ k − 2

√
kx
)
≤ e−x .

(ii) `∞:
Pr
(
‖Z‖∞ ≥

√
2 log k + x

)
≤ 2e−

1
2x

2

.

Proof. (i) is the well-known inequality of Laurent and Massart [Laurent and Massart, 2000, Lemma 1]. (ii) is
a special case of the Borell-TIS inequality; alternatively, it follows from the Gaussian Lipschitz concentration
inequality, e.g. [Boucheron et al., 2013, Theorem 5.6], with the elementary bound E[max1≤i≤k Zi] ≤

√
2 log k.

The following is an immediate corollary:

Lemma 18 (`∞ bound for a uniform vector in Sk−1) Suppose that u ∼ Unif(Sk−1). There are absolute
constants C, c such that

Pr

(
‖u‖∞ ≥ c

√
log k

k

)
≤ Ck−10 .

Proof. Let Z ∼ N (0, Ik), so that u
d
= Z/‖Z‖. Choosing c large enough and using Lemma 17,

Pr

(
‖u‖∞ ≥ c

√
log k

k

)
≤ Pr

(
‖Z‖ ≤ 1

2

√
k

)
+ Pr

(
‖Z‖∞ ≥

1

2
c
√

log k

)
≤ e−Ω(k) +O(k−10) = O(k−10) .

Next is Chernoff’s inequality for Bernoulli random variables [Vershynin, 2018, Theorem 2.3.1, Exercise 2.3.2]:

Lemma 19 (Chernoff’s inequality) Let X1, . . . , Xn be independent Bernoulli random variables. Set
Sn =

∑n
i=1Xi and µ = E [Sn]. Then for all α > 1,

Pr (Sn ≥ αµ) ≤ e−µ(α/e)−αµ, Pr (Sn ≤ µ/α) ≤ (eα)µ/αe−µ .

In particular, there are some absolute constants c, C such that

Pr (Sn ≥ Cµ) ≤ e−cµ, Pr (Sn ≤ µ/C) ≤ e−cµ .

We recall some properties of the sub-Gaussian and sub-exponential norms. The following is taken from [Ver-
shynin, 2018, Chapter 2]:

Definition 1 (Orlicz norm) Let ψ : [0,∞)→ [0,∞) be convex, strictly increasing such that

ψ(0) = 0, ψ(x)→∞ as x→∞ .

For a random variable X, define its ψ-Orlicz norm by

‖X‖ψ = inf {t : Eψ (|X|/t) ≤ 1} . (40)

For a random vector X, its ψ-Orlicz norm is ‖X‖ψ = supv∈Sk−1 ‖〈X,v〉‖ψ.
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It is not hard to show that ‖ · ‖ψ is indeed a norm. The choices

ψ2(x) = ex
2 − 1, ψ1(x) = ex − 1

correspond to the sub-Gaussian and sub-exponential norms respectively. X is sub-Gaussian (resp. sub-
exponential) in the “usual” sense if and only if ‖X‖ψ2

< ∞ (resp. ‖X‖ψ1
< ∞); see [Vershynin, 2018, Chapter

2] for more background. We briefly mention some properties of these norms that are used in the paper:

Lemma 20 The following holds:

1. ‖X2‖ψ1
= ‖X‖2ψ2

.

2. ‖XY ‖ψ1
≤ ‖X‖ψ2

‖Y ‖ψ2
(X,Y do not need to be independent).

3. Centralization lemma: ‖X − E[X]‖ψi ≤ ‖X‖ψi for i = 1, 2.

4. For independent X1, . . . , Xn: ‖
∑n
i=1Xi‖2ψ2

≤ C∑n
i=1 ‖Xi‖2ψ2

, for some C > 0 universal.

5. Hoeffding’s lemma: for a bounded random variable, ‖X‖ψ2 ≤ C‖X‖∞.

The following is Bernstein’s inequality for sums of independent sub-exponential random variables [Vershynin,
2018, Theorem 2.8.1]:

Lemma 21 (Bernstein’s inequality) Let X1, . . . , Xn be independent and sub-exponential. Set Sn =
∑n
i=1Xi.

Then for all t ≥ 0,

Pr (|Sn − E[Sn]| ≥ t) ≤ 2 exp

[
−cmin

(
t2∑n

i=1 ‖Xi‖2ψ1

,
t

max1≤i≤n ‖Xi‖ψ1

)]
,

where c > 0 is an absolute constant.

Lastly, we cite a concentration inequality for sample covariance matrices with sub-Gaussian measurements [Ver-
shynin, 2018, Theorem 4.6.1]:

Lemma 22 Let x1, . . . ,xn ∈ Rk be independent, centered and sub-Gaussian. Denote K = max1≤i≤n ‖xi‖ψ2 .

Let Σ̂ = 1
n

∑n
i=1 xix

>
i be the sample covariance. There is C > 0 such that with probability at least 1− 2e−t

2

,

∥∥∥Σ̂− E
[
Σ̂
]∥∥∥ ≤ K2 max{δ, δ2}, where δ = C

(√
k

n
+

t√
n

)
.

(Note that in [Vershynin, 2018, Theorem 4.6.1], the result is stated for isotropic vectors, meaning Cov(xi) = I.
However, the proof goes through, verbatim, also without this assumption.)
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