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Abstract

In high dimension, low sample size
(HDLSS) settings, distance concentration
phenomena affects the performance of
several popular classifiers which are based
on Euclidean distances. The behaviour
of these classifiers in high dimensions
is completely governed by the first and
second order moments of the underlying
class distributions. Moreover, the clas-
sifiers become useless for such HDLSS
data when the first two moments of the
competing distributions are equal, or when
the moments do not exist. In this work,
we propose robust, computationally effi-
cient and tuning-free classifiers applicable
in the HDLSS scenario. As the data
dimension increases, these classifiers yield
perfect classification if the one-dimensional
marginals of the underlying distributions
are different. We establish strong theoret-
ical properties for the proposed classifiers
in ultrahigh-dimensional settings. Numer-
ical experiments with a wide variety of
simulated examples and analysis of real
data sets exhibit clear and convincing
advantages over existing methods.

1 INTRODUCTION

Let us consider a classification problem involving
two distribution functions F1 and F2 on Rp with
p ≥ 1. Suppose Xi = (Xi1, . . . , Xip)

⊤ and Yj =
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(Yj1, . . . , Yjp)
⊤ are independent and identically dis-

tributed (i.i.d.) random vectors following F1 and
F2, respectively, for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.
Let χ = χ1 ∪ χ2 be the training sample of size
n = n1 + n2, where χ1 = {X1, . . . ,Xn1} and
χ2 = {Y1, . . . ,Yn2

}. We develop classifiers that
yield perfect classification under fairly general con-
ditions in high dimension, low sample size (HDLSS)
settings, where the sample size n remains fixed, but
the dimension p increases. A classifier δ is said to
yield perfect classification in the HDLSS setting if
the misclassification probability of δ goes to 0 as
p→ ∞.

In the classical setting, p is fixed and n→ ∞.
Information is accumulated as more samples
are collected.

In HDLSS settings, n is fixed while p → ∞.
Information is accumulated as more features
are measured.

1.1 Literature Review

In the HDLSS asymptotic regime, Euclidean dis-
tance (ED) based classifiers face some natural draw-
backs due to distance concentration (Aggarwal et al.,
2001; Francois et al., 2007). To give a mathemat-
ical exposition of this fact, let µj and Σj denote
the mean vector and the covariance matrix of Fj for
j = 1, 2. We assume that the following limits exist:

ν2 = lim
p→∞

1

p
∥µ1 − µ2∥2 and

σ2
j = lim

p→∞

1

p
tr(Σj) for j = 1, 2. (1.1)

Here, ∥ · ∥ denotes the Euclidean norm on Rp and
tr(M) denotes the trace of a p × p matrix M . The
constants ν2 and |σ2

1 − σ2
2 | can be interpreted as
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asymptotic measures of the difference between lo-
cations and scales of F1 and F2, respectively. Hall
et al. (2005) studied the consequence of distance
concentration on some popular ED based classi-
fiers such as the 1-nearest neighbor (1NN) classi-
fier (Hastie et al., 2009), average distance (AVG)
classifier (Chan and Hall, 2009b) and support vec-
tor machines (SVM) (Vapnik, 1998). The authors
showed that in high dimensions, these methods are
incapable of correctly classifying an observation if
the location difference between the competing pop-
ulations gets masked by their difference in scales,
i.e., ν2 < |σ2

1 − σ2
2 |. Chan and Hall (2009b); Dutta

and Ghosh (2016) proposed some improved classi-
fiers that yield perfect classification if ν2 > 0, or
σ2
1 ̸= σ2

2 . However, these improved methods fail
in high dimensions when the competing populations
have same location and scale, i.e., ν2 = 0 and
σ2
1 = σ2

2 , or when ν2, σ2
1 and σ2

2 do not exist. The
limitations of these methods stem from the fact that
they are based on Euclidean distances, and their
behavior in the HDLSS asymptotic regime is com-
pletely governed by these constants. As a result, ED
based classifiers cannot distinguish between popula-
tions that do not have differences in their first two
moments. On top of that, these classifiers lack ro-
bustness since ED is sensitive to outliers. Chan and
Hall (2009a) proposed a robust version of the NN
classifier for high-dimensional data, but it is appli-
cable to a specific type of two class location problem.
Other approaches for classifying high-dimensional
data include Globerson and Roweis (2005); Tomašev
et al. (2014); Weinberger and Saul (2009). A recent
work by Thrampoulidis (2020) discusses the high-
dimensional behavior of several classifiers, but under
Gaussianity of the underlying distributions.

1.2 Motivation

Li and Zhang (2020) proposed a method for testing
equality of two distributions, where the authors con-
sidered a new measure of distance between F1 and
F2 as defined below:

τ = E
[
h(X1,X2) + h(Y1,Y2)− 2h(X1,Y1)

]
.

Here, h : Rp × Rp → [−1, 1] is given by

h(u,v) =
1

2π
sin−1

(
1 + u⊤v

[(1 + ∥u∥2)(1 + ∥v∥2)] 12

)
for u,v ∈ Rp with p ≥ 1. The authors showed that
for a fixed p, τ = 0 iff F1 = F2. This property of τ
is useful for distinguishing one distribution from an-
other, and can be utilized in classification problems

as well. However, a classifier that directly utilizes τ,
faces certain challenges in the HDLSS setting.

To motivate the problem, we modify the scale-
adjusted average distance (SAVG) classifier (Chan
and Hall, 2009b) by simply replacing the squared
Euclidean norm ∥u − v∥2 with h(u,v) defined
above. A formal definition of this modified classifier
(henceforth, referred to as δ0) is given in Section 2,
where we also discuss how this classifier uses τ to
classify a test observation.

Let us now consider the following examples:

Example 1 X1k
i.i.d.∼ N(1, 1) and Y1k

i.i.d.∼ N(1, 2),

Example 2 X1k
i.i.d.∼ N(0, 3) and Y1k

i.i.d.∼ t3,

for 1 ≤ k ≤ p. Here, N(µ, σ2) denotes the uni-
variate Gaussian distribution with mean µ ∈ R and
standard deviation σ(> 0), and tκ denotes the stan-
dard Student’s t distribution with κ(> 0) degrees of
freedom. In Figure 1, we compare the performance
of the classifier δ0 with some popular classifiers like
1NN, the usual SAVG, SVM with the linear kernel
(SVM-LIN) and SVM with the radial basis function
(SVM-RBF) kernel. Full details of the simulation
study is given in Section 4.
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Figure 1: Average Misclassification Rates (along
with Standard Errors) of δ0 and Some Popular Clas-
sifiers Based on 100 Replications.

In the first example, ν2 = 0 (since µ1 = µ2 = 1p)
but σ2

1 = 1 and σ2
2 = 2. The classifier δ0 inden-

tifies this difference in scales and yields a moder-
ate performance. Whereas existing classifiers (ex-
cept SVM-RBF) misclassify 50% of the observations.
SVM-RBF capitalizes on the difference between σ2

1

and σ2
2 , and perfectly classifies the test observations

as dimension increases. Example 2 poses a more
challenging classification problem. Here, we have
ν2 = 0 (since µ1 = µ2 = 0p) and σ2

1 = σ2
2 = 3,

i.e., there is no difference between either of the loca-
tion and scale parameters. As a result, the classifier
δ0 as well as the existing classifiers fail to correctly
classify the test observations. We will revisit these
examples again in Sections 3.1.2 and 4.
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1.3 Our Contribution

In this article, we develop classifiers that are suit-
able for high dimensional data. The behavior of the
proposed classifiers in HDLSS settings do not de-
pend on the existence of the moments. If the one-
dimensional marginals of the underlying populations
are different, then the proposed classifiers are shown
to yield perfect classification in the HDLSS setting.

The proposed classifiers

• are robust,

• computationally fast,

• free from tuning parameters, and

• have strong theoretical properties.

The rest of the article is organized as follows. In
Section 2, we propose a classifier and further mod-
ify it to achieve improved classification accuracy un-
der specific conditions. Asymptotic properties of the
proposed classifiers are studied in Section 3. A the-
oretical result is presented in Section 3.1.2 to an-
alyze their relative performances. In Section 3.2,
we investigate their behavior when both n and p in-
crease. Numerical performance of the proposed clas-
sifiers is studied using several simulated data sets in
Section 4. We also examine the behavior of our clas-
sifiers on some real data sets in Section 5. The ar-
ticle ends with some concluding remarks in Section
6. All proofs and relevant mathematical details are
provided in Supplementary A. Additional details of
our numerical study, and a link to related R codes
can be found in Supplementary B.

2 METHODOLOGY

Let us recall the classifier δ0 stated in Section 1.2.
Fix z ∈ Rp. For given random samples χ1 and χ2

with sizes n1 and n2, respectively, the classifier δ0 is
formally defined as

δ0(z) = argmin
j∈{1,2}

Lj(z), where Lj(z) = Tjj − 2Tj(z),

Tjj =
1

nj(nj − 1)

∑∑
U,U′∈χj ,

U ̸=U′

h(U,U′) and

Tj(z) =
1

nj

∑
U∈χj

h(U, z) for j = 1, 2. (2.1)

In the previous section, we introduced the
constants ν2, σ2

1 and σ2
2 . Now, we define

νjj′ = limp→∞ µ⊤
j µj′/p for j, j′ ∈ {1, 2} and

further assume the following:

(i) There exists a constant C0 such that E[|Uk|4] <
C0 < ∞ for all 1 ≤ k ≤ p, where U =
(U1, . . . , Up)

⊤ ∼ Fj for j = 1, 2.

(ii) The constants νjj′ and σ
2
j exist for j, j′ ∈ {1, 2}.

Let U and V be two independent vectors such that
U ∼ Fj and V ∼ Fj′ for j, j′ ∈ {1, 2}. We
also assume that the components of the sequence
{UkVk, k ≥ 1} are weakly dependent. In particular,

(iii)
∑∑

1≤k<k′≤p

Corr(UkVk, Uk′Vk′) = o(p2).

Assumption (iii) is trivially satisfied if the com-
ponent variables of the underlying populations are
independent. It continues to hold with some ad-
ditional conditions on their dependence structure.
For example, (iii) is satisfied when the sequence
{UkVk, k ≥ 1} has ρ-mixing property (Bradley, 2005;
Hall et al., 2005). Conditions similar to (iii) are
frequently considered in the literature for studying
high-dimensional behavior of various statistical pro-
cedures (Aoshima et al., 2018).

Lemma 2.1 Suppose assumptions (i)-(iii) are sat-
isfied. For a test observation Z, we define L(Z) =
L2(Z)− L1(Z).

(a) If Z ∼ F1, then |L(Z)− τ | P→ 0 as p→ ∞.

(b) If Z ∼ F2, then |L(Z) + τ | P→ 0 as p→ ∞.

Lemma 2.1 states that if Z ∼ F1 (respectively,
Z ∼ F2), then the discriminant corresponding to
δ0 converges in probability to τ, a positive (respec-
tively, negative) quantity as p → ∞. The misclas-
sification probability of a classifier δ is defined as
∆ = π1P[δ(Z) = 2|Z ∼ F1]+π2P[δ(Z) = 1|Z ∼ F2].
Here πj > 0 is the prior probability of j-th class
for j = 1, 2 with π1 + π2 = 1. Let ∆0 denote the
misclassification probability of the classifier δ0. The
following theorem shows that the asymptotic behav-
ior of δ0 is governed by the constants νjj′ and σ

2
j for

j, j′ ∈ {1, 2} in HDLSS settings.

Theorem 2.2 Suppose that assumptions (i)-(iii)
are satisfied, and either of the following two
conditions hold:

(a) ν11, ν12 and ν22 are unequal,

(b) ν11 = ν12 = ν22 ̸= 0 and σ2
1 ̸= σ2

2.

For any π1 > 0, ∆0 → 0 as p→ ∞.



On Some Fast And Robust Classifiers For High Dimension, Low Sample Size Data

It follows from Theorem 2.2 that if F1 and F2 differ
either in their locations and/or scales, then ∆0 con-
verges to 0 as dimension increases. Recall Example
1, and note that condition (b) of Theorem 2.2 is sat-
isfied in this example since |σ2

1 −σ2
2 | = 1. In Exam-

ple 2, both (a) and (b) are violated and Theorem 2.2
fails to hold. This gives us a clear explanation why
the classifier δ0 performed well in the first example,
but failed in the second one (see Figure 1). We now
develop some classifiers whose asymptotic proper-
ties are not governed by the constants νjj′ , and σ

2
j

for j, j′ ∈ {1, 2}. The proposed classifiers use dif-
ferences between the one-dimensional marginals of
F1 and F2, and attain perfect classification in high
dimensions under fairly general conditions.

2.1 A New Measure of Distance

Let Fj,k denote the distribution of the random vari-
able Uk, where U = (U1, . . . , Up)

⊤ ∼ Fj for j = 1, 2

and 1 ≤ k ≤ p. Suppose that X1,X2
i.i.d.∼ F1

and Y1,Y2
i.i.d.∼ F2. Fix 1 ≤ k ≤ p and re-

call the definition of τ stated in Section 1.2. The
distance between F1,k and F2,k is given by τk =
E
[
h(X1k, X2k) − 2h(X1k, Y1k) + h(Y1k, Y2k)

]
. Here,

τk ≥ 0 and equality holds iff F1,k = F2,k. We denote
the average of these distances by τ̄p =

∑p
k=1 τk/p.

Clearly, τ̄p = 0 iff τk = 0 for all 1 ≤ k ≤ p,

i.e., τ̄p = 0 iff F1,k = F2,k for all 1 ≤ k ≤ p.

This property of τ̄p suggests that it can be used
as a measure of separation between F1 and F2. If
F1,k ̸= F2,k for some 1 ≤ k ≤ p, then τ̄p is strictly
positive. This is the fundamental idea that we will
use in constructing a new classifier.

Recall the definition of h given in Section 1.2, and
consider

h̄p(u,v) =
1

p

p∑
k=1

h(uk, vk) for u,v ∈ Rp. (2.2)

Using (2.2), we re-write the definition of τ̄p as

τ̄p = E[h̄p(X1,X2)− 2h̄p(X1,Y1) + h̄p(Y1,Y2)].

Let τ̄p(1, 1), τ̄p(1, 2)(= τ̄p(2, 1)) and τ̄p(2, 2) denote
the quantities E[h̄p(X1,X2)], E[h̄p(X1,Y1)] and
E[h̄p(Y1,Y2), respectively. Observe that

τ̄p = τ̄p(1, 1)− 2τ̄p(1, 2) + τ̄p(2, 2). (2.3)

Fix z ∈ Rp. Define the following:

T̄jj =
1

nj(nj − 1)

∑∑
U,U′∈χj

U̸=U′

h̄p(U,U
′),

T̄j(z) =
1

nj

∑
U∈χj

h̄p(U, z),

L̄j(z) = T̄jj − 2T̄j(z) for j = 1, 2

and L̄(z) = L̄2(z)− L̄1(z). (2.4)

It follows from the above definitions that

E[T̄j(Z) | Z ∼ Fj′ ] = τ̄p(j, j
′) and

E[T̄jj ] = τ̄p(j, j) for j, j
′ ∈ {1, 2}. (2.5)

Consequently, we obtain

E[L̄(Z) | Z ∼ F1] = τ̄p ≥ 0 and

E[L̄(Z) | Z ∼ F2] = −τ̄p ≤ 0. (2.6)

It is clear from this equation that E[L̄(Z)] indicates
whether a test observation Z belongs to the first, or
the second class. This key observation motivates us
to use L̄(Z) as the discriminant of our classifier.

2.1.1 A Classifier Based on τ̄p

Using (2.6), we propose the following classifier:

δ1(z) =

{
1, if L̄(z) > 0,

2, otherwise,
(2.7)

The classifier δ1 can also be expressed as
argminj∈{1,2} L̄j(z). For given random sam-
ples χ1, . . . , χJ (with J > 2), we define
δ1(z) = argmin1≤j≤J L̄j(z), where L̄j(z), T̄j(z) and

T̄jj are as defined in (2.4) for 1 ≤ j ≤ J . The
misclassification probability of δ1 is denoted by ∆1.

2.2 Limitations of Using τ̄p

To classify a test point, the classifier δ1 leverages
on the quantity τ̄p, the average of distances between
F1,k and F2,k for 1 ≤ k ≤ p. However, τ̄p has some
limitations. Recall that

τ̄p = τ̄p(1, 1)− 2τ̄p(1, 2) + τ̄p(2, 2)

= {τ̄p(1, 1)− τ̄p(1, 2)}+ {τ̄p(2, 2)− τ̄p(1, 2)}.

Since τ̄p ≥ 0, we always have τ̄p(1, 2) ≤ {τ̄p(1, 1) +
τ̄p(2, 2)}/2. Without loss of generality, let us as-
sume that τ̄p(1, 1) < τ̄p(2, 2). If τ̄p(1, 2) lies be-
tween τ̄p(1, 1) and τ̄p(2, 2), i.e., τ̄p(1, 1) < τ̄p(1, 2) <
τ̄p(2, 2), then τ̄p(1, 1) − τ̄p(1, 2) < 0 and τ̄p(2, 2) −
τ̄p(1, 2) > 0. Adding them up may cancel each other.
As a result, τ̄p may not fully capture the difference
between F1 and F2. One way to rectify this problem
is to square the two quantities before adding them
up. Define

ψ̄p = {τ̄p(1, 1)− τ̄p(1, 2)}2 + {τ̄p(2, 2)− τ̄p(1, 2)}2.
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It is easy to check that ψ̄p = 0 iff F1,k =
F2,k for all 1 ≤ k ≤ p. Hence, ψ̄p can also be
viewed as a measure of separation between F1 and
F2. This new measure can also be expressed as

ψ̄p =
1

2

[
τ̄2p + {τ̄p(1, 1)− τ̄p(2, 2)}2

]
. (2.8)

Observe that if τ̄p(1, 2) lies between τ̄p(1, 1) and
τ̄p(2, 2), then |τ̄p(1, 1)− τ̄p(2, 2)| > τ̄p. As a result,

ψ̄p =
1

2

[
τ̄2p+{τ̄p(1, 1)−τ̄p(2, 2)}2

]
>

1

2

[
τ̄2p+τ̄

2
p ] = τ̄2p .

On the other hand, if τ̄p(1, 2) is smaller than both
τ̄p(1, 1) and τ̄p(2, 2), then ψ̄p < τ̄2p . If ψ̄p > τ̄2p , then

ψ̄p is a better choice than τ̄p in terms of measuring
separation between two distributions. In general,
if the underlying distributions F1 and F2 are such
that τ̄p(1, 2) > min{τ̄p(1, 1), τ̄p(2, 2)}, then a classi-
fier that utilizes ψ̄p is shown to have better classi-
fication accuracy than the classifier δ1 (see Section
3.1.2 for more details). The modification proposed
in (2.8) is similar to what Biswas and Ghosh (2014)
had suggested for improving the power of some en-
ergy based tests for HDLSS data.

2.2.1 A Classifier Based on ψ̄p

We now develop a classifier that leverages the ampli-
fied measure of dissimilarity ψ̄p. First, we estimate
τ̄p(1, 2) as follows:

T̄12 =
1

n1n2

n1∑
i=1

n2∑
j=1

h̄p(Xi,Yj). (2.9)

Fix z ∈ Rp. Define

θ̄(z) =
1

2

{
T̄11 − 2T̄12 + T̄22

}{
L̄2(z)− L̄1(z)

}
+
1

2

{
T̄22 − T̄11

}{
L̄2(z) + L̄1(z) + 2T̄12

}
. (2.10)

We will prove that |θ̄(Z)| is a consistent estimator
of ψ̄p, where Z is a test observation. In particular,
θ̄(Z) converges in probability to ψ̄p as p→ ∞ if Z ∼
F1, and to −ψ̄p if Z ∼ F2 (see Lemma 3.1). This
motivates us to construct the following classifier:

δ2(z) =

{
1, if θ̄(z) > 0,

2, otherwise.
(2.11)

Let ∆2 denote the misclassfication probability of the
classifier δ2. Unlike δ1, the classifier δ2 cannot be
readily extended to deal with J class problems when
J > 2. For multi-class problems, we implement the
idea of ‘majority voting’ (Friedman et al., 2001).

Examples 1 and 2 establish the advantage of using
δ2 over δ1. In Figure 2, we see that δ2 has substan-
tial improvement over δ1 in terms of misclassfication
probability. This improvement stems from the fact
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Figure 2: Average Misclassification Rates (along
with Standard Errors) of the Proposed Classifiers
Are Plotted Based on 100 Replications.

that T̄12 lies between T̄11 and T̄22 in both examples
(see Table 2 in Supplementary B). A theoretical re-
sult on the relative performance of these two classi-
fiers is presented in Section 3.1.2.

3 ASYMPTOTIC PROPERTIES

In HDLSS settings, n is fixed and p → ∞, whereas
in the ultrahigh-dimensional setting, p grows simu-
latenously with n. The behavior of the classifiers
δ1 and δ2 is investigated in both aymptotic regimes.
We first show that the classifiers yield perfect classi-
fication in HDLSS settings under fairly general con-
ditions.

3.1 Asymptotic Behavior in HDLSS
Settings

Suppose U and V are two independent vectors
such that U = (U1, . . . , Up)

⊤ ∼ Fj and V =
(V1, . . . , Vp)

⊤ ∼ Fj′ for j, j′ ∈ {1, 2}. We assume
that the component variables are weakly dependent.
In particular, we assume

A1.
∑∑

1≤k<k′≤p

Corr(h(Uk, Vk), h(Uk′ , Vk′)) = o(p2),

where h is defined in Section 1.2. Assumption
A1 is trivially satisfied if the component variables
of the underlying distributions are independently
distributed and it continues to hold when the
components have weak dependence among them.
For example, A1 is satisfied when the sequence
{h(Uk, Vk), k ≥ 1} has ρ-mixing property. Note
that if the sequences {Uk, k ≥ 1} and {Vk, k ≥ 1}
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have ρ-mixing property, then {h(Uk, Vk), k ≥ 1} has
ρ-mixing property for every measurable function h
(see Theorem 6.6-II of Bradley (2007)).

Recall assumption (iii) introduced in Section 2.
Both (iii) and A1 require the component variables
to be weakly dependent. However, A1 is weaker
between the two since, unlike (iii), it does not
require existence of the first and second order
moments. Observe that the function h is bounded.
Thus, assumption A1 holds even if the underlying
distributions are heavy-tailed.

Lemma 3.1 If A1 is satisfied, then for a test ob-
servation Z, we have

(a) If Z ∼ F1, then |L̄(Z)− τ̄p|
P→ 0 and

|θ̄(Z)− ψ̄p|
P→ 0 as p→ ∞.

(b) If Z ∼ F2, then |L̄(Z) + τ̄p|
P→ 0 and

|θ̄(Z) + ψ̄p|
P→ 0 as p→ ∞.

This lemma shows that assumption A1 is sufficient
for convergence of the discriminants L̄(Z) and θ̄(Z).
Similar results on distance concentration can be
derived for independently distributed sub-Gaussian
components (see Theorem 3.1.1 of Vershynin (2018)
for further details). Lemma 3.1 is stronger than ex-
isting results in the sense that it holds even when
the components are not necessarily independent, or
sub-Gaussian.

Lemma 3.1 states that both the discriminants con-
verge in probability to a non-negative value if Z ∼
F1, while they converge in probability to a value
which is not positive when Z ∼ F2. Now, we expect
δ1 and δ2 to yield good performance if τ̄p and ψ̄p

do not vanish with increasing dimension. Clearly,
τ̄p = ψ̄p = 0 iff F1,k = F2,k for all 1 ≤ k ≤ p. Hence,
it is reasonable to assume the following:

A2. lim inf
p

τ̄p > 0.

A2 implies that the separation between F1 and F2

is asymptotically non-negligible. Observe that this
assumption is satisfied if the component variables of
U ∼ Fj are identically distributed for j = 1, 2. In
this case, τk = τ1 > 0 for all k ≥ 1, making τ̄p(= τ1)
free of p. It follows from the definition of ψ̄p in (2.8)
that A2 also implies lim infp ψ̄p > 0.

3.1.1 Asymptotic Properties of δ1 and δ2 in
HDLSS Settings

We now discuss the behavior of the classifiers δ1 and
δ2 in HDLSS settings. We show that under fairly
general conditions, the proposed classifiers δ1 and δ2
perfectly classify a test observation as the dimension
increases.

Theorem 3.2 If A1 and A2 are satisfied, then for
any π1 > 0,

(a) ∆1 → 0 as p→ ∞, and

(b) ∆2 → 0 as p→ ∞.

Observe that the asymptotic behavior of the classi-
fiers are no longer governed by the constants νjj′ and
σ2
j for j, j′ ∈ {1, 2}. In fact, their behavior do not

depend on the existence of moments. In this sense,
the classifiers δ1 and δ2 are robust.

Asymptotic behavior of the proposed classi-
fiers is free of moment conditions.

The classifiers yield perfect classificaton un-
der quite weak conditions.

One should observe that assumptions A1 and A2
are fairly general, and Theorem 3.2 is stronger than
what currently exists in the literature.

3.1.2 Comparison Between δ1 and δ2

It is clear from Theorem 3.2 that both the classi-
fiers yield perfect classification under the same set
of assumptions. The next result provides a set of
sufficient conditions under which one classifier per-
forms better than the other.

First, let us consider the following assumption:

A3. There exists a p0 ∈ N such that τ̄p(1, 2) >
min{τ̄p(1, 1), τ̄p(2, 2)} for all p ≥ p0.

If assumption A3 is satisfied, then either τ̄p(1, 1) −
τ̄p(1, 2) or τ̄p(2, 2) − τ̄p(1, 2) is positive, while the
other one is negative. So, τ̄p may take a small value
(recall the discussion in Section 2.2). The next result
suggests that under such circumstances, δ2 leads to
an improve performance over δ1.

Theorem 3.3 If assumptions (A1)− (A3) are sat-
isfied, then there exists an integer p′0 such that

∆2 ≤ ∆1 for all p ≥ p′0.
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If the inequality stated in assumption A3 is inverted,
then the ordering of ∆1 and ∆2 in Theorem 3.3 is
reversed. Note that T̄11, T̄12 and T̄22 are unbiased es-
timators of τ̄p(1, 1), τ̄p(1, 2) and τ̄p(2, 2), respectively
(see (2.5)). We now use these estimators to explain
the relative performance of the proposed classifiers.
In Examples 1 and 2, T̄12 lies in between T̄11 and
T̄22 (see Table 2 in Supplementary B). Following
Theorem 3.3, we expect ∆2 to be smaller than ∆1 in
these examples. Figure 2 shows that the estimated
misclassfication probability of the classifier δ2 is in-
deed smaller than that of δ1 in both examples.

3.2 Asymptotic Properties of δ1 and δ2 for
Increasing Sample Size

In this section, we assess the performance of our
classifiers in the ultrahigh-dimensional asymptotic
regime, when the dimension p (≡ pn) is allowed to
grow with n (in non-polynomial order). In particu-
lar, we assume the following:

A4. There exists β ≥ 0 such that log pn = O(nβ).

Recall that in the classical asymptotic regime, p is
fixed and n → ∞. Therefore, the classical setting
is a special case of the ultrahigh-dimensional regime
with β = 0. Also, assume that limn→∞ n1/n = π1.

We first present the ‘oracle’ versions of our classi-
ifiers when F1 and F2 are known. Fix z ∈ Rp. The
‘oracle’ version of δ1 is defined as follows:

δ01(z) =

{
1, if L̄0(z) > 0,

2, otherwise,
(3.1)

where L̄0(z) = L̄0
2(z)−L̄0

1(z), with L̄
0
j (z) = τ̄p(j, j)−

2E[h̄p(U, z)] for U ∼ Fj and j = 1, 2. Similarly, we
define δ02 , the ‘oracle’ version of δ2 as follows:

δ02(z) =

{
1, if θ̄0(z) > 0,

2, otherwise,
(3.2)

where 2θ̄0(z) = τ̄pL̄
0(z) +

{
τ̄p(2, 2) − τ̄p(1, 1)

}
×{

L̄0
2(z)+ L̄

0
1(z)+2τ̄p(1, 2)

}
. Note that L̄(z) and θ̄(z)

(defined in (2.4) and (2.10)) are in fact estimators of
L̄0(z) and θ̄0(z), respectively.

Let ∆0
j denote the misclassification probability of the

classifier δ0j for j = 1, 2. In this section, we derive an

upper bound on the difference ∆j −∆0
j for j = 1, 2.

Furthermore, we show that in the classical setting
(i.e., p is fixed), if the competing distributions are
absolutely continuous, then ∆j −∆0

j converges to 0
for j = 1, 2 as n→ ∞.We first look into convergence
results for the discriminants L̄(z) and θ̄(z).

Lemma 3.4 Suppose assumption A4 is satisfied for
some 0 ≤ β < 1. For any π1 > 0 and 0 < γ <
(1 − β)/2, there exist positive constants B0 and B1

such that

(a) P
[
|L̄(z)−L̄0(z)| > n−γ

]
≤ O

(
e−B0{n1−2γ−nβ}

)
,

(b) P
[
|θ̄(z)− θ̄0(z)| > n−γ

]
≤ O

(
e−B1{n1−2γ−nβ}

)
for all z ∈ Rp.

Since 1 − 2γ > β, we have e−{n1−2γ−nβ} → 0 as
n→ ∞. The above result shows that |L̄(z)− L̄0(z)|
and |θ̄(z) − θ̄0(z)| converge to 0 at an exponential
rate as n increases. Using Lemma 3.4, we have the
next result.

Theorem 3.5 Suppose assumption A4 is satisfied
for some 0 ≤ β < 1. For any π1 > 0 and 0 < γ <
(1 − β)/2, there exist positive constants B0 and B1

such that

(a) ∆1 −∆0
1

≤ O
(
e−B0{n1−2γ−nβ}

)
+ P

[
|L̄0(Z)| < n−γ

]
,

(b) ∆2 −∆0
2

≤ O
(
e−B1{n1−2γ−nβ}

)
+ P

[
|θ̄0(Z)| < n−γ

]
.

Clearly, e−B0{n1−2γ−nβ} and e−B1{n1−2γ−nβ} con-
verge to 0 as n → ∞ for all 0 < γ < (1− β)/2. Ad-
ditionally, if P[|L̄0(Z)| < n−γ ] and P[|θ̄0(Z)| < n−γ ]
go to 0, then Theorem 3.5 suggests that ∆j−∆0

j → 0
as n→ ∞ for j = 1, 2. Consider the classical setting
when p is fixed (i.e., β = 0). If F1 and F2 are
absolutely continuous, then P[|L̄0(Z)| < n−γ ] and
P[|θ̄0(Z)| < n−γ ] go to 0 as n → ∞. Suppose, A4
is satisfied for β > 0, i.e., p grows with n. One can
prove that if assumptions A1 and A2 are satisfied,
then P[|L̄0(Z)| < n−γ ] and P[|θ̄0(Z)| < n−γ ] go to
0 as min{n, pn} → ∞. Moreover, ∆0

1 and ∆0
2 decay

to 0 under the same set of conditions. As a result,
∆j → 0 as min{n, pn} → ∞ for j = 1, 2. The math-
ematical arguments for proving this convergence are
quite similar to that of the proof of Theorem 3.2.

3.3 Computational Complexity

Computing T̄jj′ and T̄j(z) for z ∈ Rp requires
O(n2p) and O(np) operations, respectively, for
j, j′ ∈ {1, 2}. Thus, the overall complexity of
classifying an observation using δ1 and δ2 is O(n2p).
Clearly, the complexity scales linearly with p. This
makes the methods advantageous when the classi-
fication problem is particularly high-dimensional.
The average time taken by these classifiers to
classify a test observation is reported in Table 2 of
Supplementary B.
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4 SIMULATION STUDY

In this section, we analyze some simulated data sets
to compare the classifiers δ0, δ1 and δ2 with some
popular classifiers like GLMNET (Hastie et al.,
2009), the usual 1NN, NN based on the random
projection method (NN-RAND) (Deegalla and
Bostrom, 2006), neural networks (NNET) (Bishop,
1995), SVM-LIN and SVM-RBF. All numerical
exercises are performed on an Intel Xeon Gold 6140
CPU (2.30GHz, 2295 Mhz) using the statistical
software R. Details about the packages used and pa-
rameters related to implementation of the popular
classifiers are provided in Supplementary B.

Recall Examples 1 and 2 introduced in Section 1.
Three more examples are considered to compare the
performances of these classifiers.

Example 3 X1k
i.i.d.∼ C(0, 1) and Y1k

i.i.d.∼ C(1, 1),

Example 4 X1k
i.i.d.∼ C(0, 1) and Y1k

i.i.d.∼ C(0, 2),

Example 5 X1k
i.i.d.∼ Par(1, 1) and Y1k

i.i.d.∼
Par(1.25, 1),

for 1 ≤ k ≤ p. Here, C(µ, σ) denotes the Cauchy
distribution with location µ ∈ R and scale σ > 0,
while Par(θ, s) denotes the Pareto distribution with
θ > 0 and scale s > 0.

Examples 3, 4 and 5 correspond to a location, scale
and location-scale problem, respectively. All three
examples involve heavy-tailed distributions. In each
example, we simulated data for p = 50, 100, 250,
500 and 1000. The training sample was formed with
20 observations from each class and a test set of size
200 (100 from each class) was used. This process
was repeated 100 times to estimate the misclassifi-
cation probabilities, which are reported in Table 4 of
Supplementary A along with their standard errors.

The performance of δ0 in Examples 1 and 2 was
already discussed in Section 2. Figure 3 shows that
δ0 fails miserably in Examples 3-5. Observe that
assumption (iii) is violated for these examples since
the competing distributions are heavy-tailed. Con-
sequently, Theorem 2.2 fails to hold and we observe
poor performance of δ0 in these examples.

The classifiers δ1 and δ2 lead to promising results
in all examples. Assumption A1 is satisfied in these
examples since the component variables are indepen-
dently distributed. Also, the marginals are identical,
i.e., F1,k = F1,1 and F2,k = F2,1 for all 1 ≤ k ≤ p.
Thus, τ̄p (= τ1 > 0) is free of p. Hence, A2 is satis-
fied and Theorem 3.2 holds for all the examples.

Figure 3 shows that the misclassification probability
of δ2 is smaller than that of δ1 in Examples 1, 2, 4
and 5. Whereas, δ1 outperformed δ2 in Example 3.
Recall that the relative performance of these classi-
fiers is goverened by the ordering among T̄11, T̄12,
and T̄22 (see the discussion in Section 3.1.2). We
observed that T̄12 < min{T̄11, T̄22} in Example 3
while T̄12 > min{T̄11, T̄22} in the other examples (see
Table 2 of Supplementary B). These numerical find-
ings are consistent with our claim in Theorem 3.3.

In general, all the popular classifiers exhibited poor
performance (except for a few instances). In Ex-
ample 1, only SVM-RBF identified the difference
between scales of the competing populations and
yielded perfect classification. The rest of the meth-
ods failed miserably and misclassified nearly 50% of
the test observations. In Example 2, none of the
classifiers had satisfactory results since in HDLSS
settings, they are unable to discriminate between
populations with same location and scale. In Ex-
amples 3-5, the competing distributions are heavy-
tailed and we observe deteriorating performances of
all the popular classifiers.

Example 1 Example 2 Example 3 Example 4 Example 5
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Figure 3: Average Misclassification Rates (along with Standard Errors) Based on 100 Repetitions for Different
Classifiers Are Plotted for Fixed n (= 40) and Increasing Values of p.
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5 REAL DATA ANALYSIS

We study the performance of the proposed classi-
fiers in two real data sets, namely, Computers and
SmoothSubspace available at the UCR Time Series
Archive (see Dau et al., 2018). These data sets have
fixed training and test sets. For our analysis, we
combined the training and test data. We randomly
selected 50% of the observations from the combined
set to form a new set of training observations, while
keeping the proportions of observations from differ-
ent classes consistent. The remaining observations
were considered as the test set. This procedure was
repeated 100 times to obtain stable estimates of the
misclassification probabilities.

The Computers (say, Comp) data contains readings
on electricity consumption from households in UK,
sampled in two-minute intervals over a month. Each
observation is of length 720 making the data high-
dimensional. Classes are ‘Desktop’ and ‘Laptop’
with 250 (125 training and 125 test) samples in
each. From Table 1, we observe that δ0 performed
quite poorly, misclassifying almost half of the test
observations. The mislassification probability of δ2
is smaller than that of δ1 in this data. To under-
stand the relative performance of the classifiers δ1
and δ2, we computed T̄11 = 0.972, T̄12 = 1.043, and
T̄22 = 1.155. Observe that T̄12 lies in between T̄11
and T̄22. As discussed in Section 3.1.2, this relation-
ship among T̄11, T̄12 and T̄22 explains the superior
performance of δ2 over δ1. In fact, δ2 outperformed
all the classifiers. The regularized classifier GLM-
NET secured the third position with a competitive
performance. It was closely followed by SVM-RBF,
whereas 1NN, NNRAND, NNET and SVM-LIN mis-
classified more than 40% of the observations.

The second data set SmoothSubspace (say, SSub) is
about testing the ability of a clustering algorithm
to extract smooth subspaces for clustering time se-
ries data. This data set has 3 classes with 100 (50
train and 50 test) observations each. The obser-
vations have dimension 15. We observe in Table 1
that the classifier δ0 misclassified more than 18% of
the test observations. It also perfromed the worst
among all the classifiers. δ1 yielded the lowest mis-
classfication rate, while δ2 had the second best per-
formance. We computed T̄11 = 1.384, T̄22 = 1.378,
T̄33 = 1.386, T̄12 = 1.340, T̄13 = 1.326, and T̄23 =
1.314. Observe that T̄jj′ < min{T̄jj , T̄j′j′} for all
j ̸= j′. These inequalities justify why the classi-
fier δ1 outperformed δ2 in this data set. Among
the existing methods, NNET had the worst class-
fication accuracy. The linear classifiers GLMNET

and SVM-LIN also performed very poorly, while
non-linear classifiers like 1NN, NNRAND and SVM-
RBF yielded improved misclassfication rates. In par-
ticular, SVM-RBF yielded the lowest misclassifica-
tion rate among the popular classifiers, closely fol-
lowed by NN-RAND. However, their misclassifica-
tion probabilities are six times worse than that of
δ1.

Table 1: Average Misclassification Rates of Classifiers
(in %) with Standard Errors in Parentheses

Data δ0 δ1 δ2 GLM 1NN NN NNet SVM SVM
NET RAND LIN RBF

Comp 47.09 36.40 35.47 39.10 42.67 42.04 46.80 46.16 39.95
J = 2 (0.24) (0.22) (0.21) (0.24) (0.28) (0.27) (0.28) (0.34) (0.27)
SSub 18.15 1.05 1.33 13.35 8.71 7.09 16.19 10.79 6.35
J = 3 (0.27) (0.06) (0.08) (0.28) (0.20) (0.22) (0.44) (0.28) (0.19)

6 CONCLUDING REMARKS

In this article, we have developed some classifiers
that utilize the difference between one-dimensional
marginals of the underlying distributions to classify
new data points. We have proved that the misclas-
sification probability of these classifiers go to zero
(i.e., perfect classification) in the HDLSS asymptotic
regime under very general conditions. The proposed
classifiers also have strong theoretical properties in
ultrahigh-dimensional settings. They yield perfect
classification even when the competing distributions
are heavy-tailed. Furthermore, the proposed meth-
ods are free from tuning parameters. Using several
simulated and real data sets, we have demonstrated
promising performance of our classifiers.

Suppose that the underlying distributions have iden-
tical one-dimensional marginals, and discriminatory
information comes from joint distributions of the
components. Under such circumstances, discrimi-
nants of the proposed classifiers need to be modified
in a way such that they capture this difference be-
tween joint distributions (see Roy et al. (2022)).

Another aspect is handling the sparse signal set-
ting. In our theoretical investigations, assumption
A2 corresponds to the case when the number of com-
ponents carrying discriminatory information scales
as p. This assumption can be relaxed further. In
particular, if the variables are weakly dependent,
then Theorem 3.2 continues to hold if the number
of informative components scales as pα (for some
1/2 < α ≤ 1). However, in practice, one whould be
interested in capturing sparsity in a data dependent
way and modify the classifier accordingly. This is a
topic of future research.
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Supplementary Material:
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Sample Size Data

A MATHEMATICAL DETAILS AND PROOFS

We will use the following definitions in our proofs presented below.

1. an = o(bn) as n → ∞ implies that for every ϵ > 0 there exists an N ∈ N such that |an/bn| < ϵ for all
n ≥ N .

2. an = O(bn) as n→ ∞ implies that there exist M > 0 and N ∈ N such that |an/bn| < M for all n ≥ N .

Lemma A.1 Suppose U ∼ Fj and V ∼ Fj′ for j, j′ ∈ {1, 2} and U,V are independent. If assumptions
(i)-(iii) are satisfied, then∣∣∣∣∣∣h(U,V)− 1

2π
sin−1

 νjj′[
(σ2

j + νjj)(σ2
j′ + νj′j′)

] 1
2

∣∣∣∣∣∣ P→ 0 as p→ ∞.

Proof of Lemma A.1We have assumed in (ii) that the limiting constants νjj′ , and σ
2
j exist for j, j′ ∈ {1, 2}.

Fix ϵ > 0. Now, observe that

P

[∣∣∣∣1pU⊤V − νjj′

∣∣∣∣ > ϵ

]
= P

[∣∣∣∣1pU⊤V − 1

p
µ⊤

j µj′ +
1

p
µ⊤

j µj′ − νjj′

∣∣∣∣ > ϵ

]
≤ P

[∣∣∣∣1pU⊤V − 1

p
µ⊤

j µj′

∣∣∣∣ > ϵ

2

]
+ I

[∣∣∣∣1pµ⊤
j µj′ − νjj′

∣∣∣∣ > ϵ

2

]
[using the union bound].

Since limp→∞ µ⊤
j µj′ = νjj′ , there exists p0 ∈ N such that I

[∣∣∣ 1pµ⊤
j µj′ − νjj′

∣∣∣ > ϵ
2

]
= 0 for all p ≥ p0. So, we

get

P

[∣∣∣∣1pU⊤V − νjj′

∣∣∣∣ > ϵ

]
≤ P

[∣∣∣∣1pU⊤V − 1

p
µ⊤

j µj′

∣∣∣∣ > ϵ

2

]
for all p ≥ p0.

Observe that

P

[∣∣∣∣1pU⊤V − 1

p
µ⊤

j µj′

∣∣∣∣ > ϵ

2

]
(A.1)

= P

[∣∣∣∣1p
p∑

k=1

UkVk − 1

p

p∑
k=1

E[Uk]E[Vk]

∣∣∣∣ > ϵ

2

]

≤ 4

ϵ2
Var

[
1

p

p∑
k=1

UkVk

]
[using Chebyshev’s inequality]

=
4

ϵ2p2

p∑
k=1

Var
[
UkVk)

]
+

8

ϵ2p2

∑∑
1≤k<k′≤p

Cov (UkVk, Uk′Vk′)

≤ 4

ϵ2p2

p∑
k=1

E
[
U2
kV

2
k )

]
+

8

ϵ2p2

∑∑
1≤k<k′≤p

Corr (UkVk, Uk′Vk′)
√
E
[
U2
kV

2
k )

]
E
[
U2
k′V 2

k′)
]
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≤ 4C

ϵ2p
+

8C

ϵ2p2

∑∑
1≤k<k′≤p

Corr (UkVk, Uk′Vk′) [for some C <∞ (due to (i))]

= o(1) as p→ ∞ [using (iii)]. (A.2)

Therefore, P
[∣∣∣ 1pU⊤V − νjj′

∣∣∣ > ϵ
]
≤ P

[∣∣∣ 1pU⊤V − 1
pµ

⊤
j µj′

∣∣∣ > ϵ
2

]
= o(1) for U ∼ Fj and V ∼ Fj′ with

j, j′ ∈ {1, 2} as p→ ∞.

Following similar arguments, one can also prove that (as p→ ∞),

P

[∣∣∣∣1p∥U∥2 − 1

p
E[∥U∥2]

∣∣∣∣ > ϵ

]
≤ o(1)

⇒ P

[∣∣∣∣1p∥U∥2 − 1

p

{
∥µi∥2 + tr(Σj)

}∣∣∣∣ > ϵ

]
≤ o(1)

⇒ P

[∣∣∣∣1p∥U∥2 −
{
νjj + σ2

j

}∣∣∣∣ > ϵ

]
≤ o(1) [ lim

p→∞
∥µj∥2/p = νjj and lim

p→∞
tr(Σj)/p = σ2

j ].

Using the continuous mapping theorem (repeatedly), we obtain

sin(2πh(U,V)) =
1 +U⊤V√

(1 + ∥U∥2)(1 + ∥V∥2)
=

1
p + U⊤V

p√(
1
p + ∥U∥2

p

)(
1
p + ∥V∥2

p

) P→ νjj′√
(σ2

j + νjj)(σ2
j′ + νj′j′)

as p→ ∞. Consequently, we have h(U,V)
P→ 1

2π sin−1

{
νjj′√

(σ2
j+νjj)(σ2

j′+νj′j′ )

}
as p→ ∞.

Hence, the proof. □

Define τii =
1
2π sin−1

{
νii

(σ2
i+νii)

}
for i = 1, 2 and τ12 = 1

2π sin−1

{
ν12√

(σ2
1+ν11)(σ2

2+ν22)

}
. Lemma 2.1 suggests

that h(U,V)
P→ τjj′ as p→ ∞, where U ∼ Fj , V ∼ Fj′ for j, j

′ ∈ {1, 2} and U,V are independent.

Corollary A.2 For j, j′ ∈ {1, 2}, if assumptions (i)-(iii) are satisfied, then

(a) |Tjj′ − τjj′ |
P→ 0 as p→ ∞, and

(b) if Z ∼ Fj′ , then |Tj(Z)− τjj′ |
P→ 0 as p→ ∞.

Proof of Corollary A.2

(a) Fix ϵ > 0. It follows from Lemma 2.1 that

P
[∣∣T11 − τ11

∣∣ > ϵ
]
= P

[∣∣∣∣ 1

n1(n1 − 1)

∑∑
1≤i ̸=j≤n1

{h(Xi,Xj)− τ11}
∣∣∣∣ > ϵ

]

≤ P

[
1

n1(n1 − 1)

∑∑
1≤i̸=j≤n1

|h(Xi,Xj)− τ11| > ϵ

]
≤

∑∑
1≤i ̸=j≤n1

P [|h(Xi,Xj)− τ11| > ϵ]

= n1(n1 − 1)o(1) = o(1) as p→ ∞ [n1 is fixed]. (A.3)

Therefore, |T11 − τ11|
P→ 0 as p → ∞. Similarly, |T12 − τ12| and |T22 − τ22| also converge in probability

to 0 as p→ ∞.
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(b) Fix ϵ > 0. Let U ∈ χi (i.e., U ∼ Fj) and Z ∼ Fj′ for j, j
′ ∈ {1, 2}. Since nj is fixed for j ∈ {1, 2}, using

Lemma 2.1, we have

P
[∣∣Tj(Z)− τjj′

∣∣ > ϵ | Z ∼ Fj′
]
= P

∣∣∣∣∣∣
 1

nj

∑
U∈χj

{
h(U,Z)− E[h(U,Z) | Z ∼ Fj′ ]

}
∣∣∣∣∣∣ > ϵ

∣∣∣∣Z ∼ Fj′


≤ P

 1

nj

∑
U∈χj

|h(U,Z)− E[h(U,Z) | Z ∼ Fj′ ]| > ϵ

∣∣∣∣Z ∼ Fj′


≤

∑
U∈χj

P [|h(U,Z)− E[h(U,Z) | Z ∼ Fj′ ]| > ϵ | Z ∼ Fj′ ]

≤ njo(1) = o(1) as p→ ∞ [nj is fixed]. (A.4)

Hence, the proof. □

Recall the definition of τ0 given as follows:

τ0 =
1

2π
sin−1

{
ν11

(σ2
1 + ν11)

}
+

1

2π
sin−1

{
ν22

(σ2
2 + ν22)

}
− 1

π
sin−1

{
ν12√

(σ2
1 + ν11)(σ2

2 + ν22)

}
i.e., τ0 = τ11 + τ22 − 2τ12.

If ν11 = ν12 = ν22 = 0, then τ0 = 0. Also, if ν11 = ν12 = ν22 and σ2
1 = σ2

2 , then τ0 = 0.

Proof of Lemma 2.1

(a) First of all, we have |L(z)− τ | ≤ |L(z)− τ0|+ |τ − τ0| using triangle inequality for all z ∈ Rp.

Now, observe that L(Z) = L2(Z)−L1(Z) = {T22 − 2T2(Z)}− {T11 − 2T1(Z)}. If Z ∼ F1, then it follows
from Corollary A.2 that

L(Z)
P→ {τ22 − 2τ12} − {τ11 − 2τ11} = τ11 + τ22 − 2τ12 = τ0 as p→ ∞.

It follows from Lemma A.1 that h(X1,X2)
P→ τ11, h(X1,Y1)

P→ τ12 and h(Y1,Y2)
P→ τ22 as

p → ∞. Since, h is a bounded function, using the Dominated Convergence Theorem, we have
E[h(X1,X2)] → τ11,E[h(X1,Y1)] → τ12 and E[h(Y1,Y2)] → τ22 as p → ∞. Therefore, τ =

E[h(X1,X2)] + E[h(X1,X2)]− 2E[h(X1,X2)] → τ11 + τ22 − 2τ12 = τ0 as p→ ∞. Thus, |L(Z)− τ | P→ 0
as p→ ∞.

(b) The arguments for the proof of this part are similar to part (a), and we skip it.

Hence, the proof. □

Proof of Theorem 2.2

Recall that the prior probability of an observation Z belonging to the j-th class is given by πj for j = 1, 2
with π1 + π2 = 1. The misclassification probability of δ0 is as follows:

P[δ0(Z) ̸= true label of Z] = π1P[δ0(Z) = 2 | Z ∼ F1] + π2P[δ0(Z) = 1 | Z ∼ F2]

= π1P[L2(Z) ≤ L1(Z) | Z ∼ F1] + π2P[L2(Z) > L1(Z) | Z ∼ F2]. (A.5)

We have assumed that either (a) ν11, ν12, ν22 are unequal, or (b) ν11 = ν12 = ν22 ̸= 0, and σ2
1 = σ2

2 holds. As
a consequence, τ0 is strictly positive. Fix 0 < ϵ < τ0. Now, we have

P
[
L2(Z) ≤ L1(Z) | Z ∼ F1

]
≤ P

[
L2(Z)− L1(Z) ≤ τ0 − ϵ | Z ∼ F1

]
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≤ P
[
L2(Z)− L1(Z)− τ0 ≤ −ϵ | Z ∼ F1

]
≤ P

[
|L2(Z)− L1(Z)− τ0| > ϵ | Z ∼ F1

]
= o(1) as p→ ∞ [using Corollary A.1(a)]. (A.6)

Similarly,

P
[
L2(Z) > L1(Z) | Z ∼ F2

]
≤ P

[
L2(Z)− L1(Z) > −τ0 + ϵ | Z ∼ F2

]
≤ P

[
L2(Z)− L1(Z) + τ0 > ϵ | Z ∼ F2

]
≤ P

[
|L2(Z)− L1(Z) + τ0| > ϵ | Z ∼ F2

]
= o(1) as p→ ∞ [using Corollary A.1(b)]. (A.7)

Combining (A.5), (A.6) and (A.7), we get P[δ0(Z) ̸= true label of Z] = o(1) as p→ ∞. □

Lemma A.3 For j, j′ ∈ {1, 2}, if A1 is satisfied, then

(a) |T̄jj′ − τ̄p(j, j
′)| P→ 0 as p→ ∞, and

(b) if Z ∼ Fj, then |T̄j′(Z)− τ̄p(j, j
′)| P→ 0 as p→ ∞.

Proof of Lemma A.3

(a) Recall the definitions of T̄11 and τ̄p(1, 1) given in (2.4) and (2.5), respectively. Fix ϵ > 0. We have

P
[∣∣T̄11 − τ̄p(1, 1)

∣∣ > ϵ
]

= P

[∣∣∣∣ 1

n1(n1 − 1)

∑∑
1≤i ̸=j≤n1

h̄p(Xi,Xj)− E
[
h̄p(X1,X2)

] ∣∣∣∣ > ϵ

]

= P

[∣∣∣∣1p
p∑

k=1

1

n1(n1 − 1)

∑∑
1≤i ̸=j≤n1

h(Xik, Xjk)−
1

p

p∑
k=1

E [h(X1k, X2k)]

∣∣∣∣ > ϵ

]
[using the definition of h̄p]

= P

[∣∣∣∣ 1

n1(n1 − 1)

∑∑
1≤i ̸=j≤n1

1

p

p∑
k=1

h(Xik, Xjk)−
1

p

p∑
k=1

E [h(X1k, X2k)]

∣∣∣∣ > ϵ

]

≤ P

[
1

n1(n1 − 1)

∑∑
1≤i ̸=j≤n1

∣∣∣∣1p
p∑

k=1

h(Xik, Xjk)−
1

p

p∑
k=1

E [h(X1k, X2k)]

∣∣∣∣ > ϵ

]
[using triangle inequality]

≤
∑∑

1≤i ̸=j≤n1

P

[∣∣∣∣1p
p∑

k=1

{
h(Xik, Xjk)− E [h(X1k, X2k)]

}∣∣∣∣ > ϵ

]
[using the union bound]

≤
∑∑

1≤i ̸=j≤n1

1

ϵ2
Var

[
1

p

p∑
k=1

h(Xik, Xjk)

]
[using Chebyshev’s inequality]. (A.8)

Now, we will show that Var [
∑p

k=1 h(Xik, Xjk)/p] converges to 0 for all i ̸= j as p→ ∞.

Fix 1 ≤ i, j ≤ n1 with i ̸= j. Observe that

Var

[
1

p

p∑
k=1

h(Xik, Xjk)

]
=

1

p2

p∑
k=1

Var
[
h(Xik, Xjk)

]
+

2

p2

∑∑
1≤k<k′≤p

Cov (h(Xik, Xjk), h(Xik′ , Xjk′)) . (A.9)

Since 0 ≤ h ≤ 1, we have Var
[
h(Xik, Xjk)

]
≤ 1 for all 1 ≤ k ≤ p. Using the inequality Cov(X,Y ) ≤

Corr(X,Y )
√
E(X2)E(Y 2) and the boundedness of h, we get

Cov (h(Xik, Xjk), h(Xik′ , Xjk′)) ≤ Corr (h(Xik, Xjk), h(Xik′ , Xjk′)) for all 1 ≤ k < k′ ≤ p.
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Since A1 is satisfied, from (A.9) we obtain

Var

[
1

p

p∑
k=1

h(Xik, Xjk)

]
≤ 1

p
+

2

p2

∑∑
1≤k<k′≤p

Corr (h(Xik, Xjk), h(Xik′ , Xjk′)) = o(1) as p→ ∞.

It now follows from (A.8) that |T̄11 − τ̄p(1, 1)|
P→ 0 as p → ∞. Following similar arguments, one can

show that if A1 is satisfied, then both |T̄12 − τ̄p(1, 2)| and |T̄22 − τ̄p(2, 2)| converge in probability to 0 as
p→ ∞.

(b) Fix ϵ > 0, and recall the definitions of T̄1(Z) and τ̄p(1, 1). We have

P
[∣∣T̄1(Z)− τ̄p(1, 1)

∣∣ > ϵ | Z ∼ F1

]
= P

[∣∣∣∣1p
p∑

k=1

T1k(Zk)−
1

p

p∑
k=1

E [h(X1k, X2k)]

∣∣∣∣ > ϵ
∣∣∣Z ∼ F1

]

= P

[∣∣∣∣1p
p∑

k=1

1

n1

n1∑
i=1

{
h(Xik, Zk)− E[h(X1k, Zk) | Z ∼ F1]

}∣∣∣∣ > ϵ
∣∣∣Z ∼ F1

]

= P

[∣∣∣∣ 1n1
n1∑
i=1

1

p

p∑
k=1

{
h(Xik, Zk)− E[h(X1k, Zk) | Z ∼ F1]

}∣∣∣∣ > ϵ
∣∣∣Z ∼ F1

]

≤ P

[
1

n1

n1∑
i=1

∣∣∣∣1p
p∑

k=1

{
h(Xik, Zk)− E [h(X1k, Zk) | Z ∼ F1]

}∣∣∣∣ > ϵ
∣∣∣Z ∼ F1

]
[using triangle inequality]

≤
n1∑
i=1

P

[∣∣∣∣1p
p∑

k=1

{
h(Xik, Zk)− E [h(X1k, Zk) | Z ∼ F1]

}∣∣∣∣ > ϵ
∣∣∣Z ∼ F1

]
[using the union bound]

≤
n1∑
i=1

1

ϵ2
Var

[
1

p

p∑
k=1

h(Xik, Zk)
∣∣∣Z ∼ F1

]
[using Chebyshev’s inequality]

=

n1∑
i=1

1

ϵ2
Var

[
1

p

p∑
k=1

h(Xik, X
′
k)

]
, (A.10)

where X′ = (X ′
1, . . . , X

′
p)

⊤ ∼ F1 and it is independent of χ1. Using the boundedness of h and assumption

A1, we have shown in part (a) of Lemma 3.1 that Var
[
1
p

∑p
k=1 h(Xik, X

′
k)
]
= o(1) as p → ∞. Since

n1 is fixed,
∑n1

i=1 Var
[
1
p

∑p
k=1 h(Xik, X

′
k)
]
= o(1) as p → ∞. Therefore, it follows from (A.10) that∣∣T̄1(Z)− τ̄p(1, 1)

∣∣ converges in probability to 0 as p→ ∞ (when Z ∼ F1).

Following similar arguments, one can prove that P
[∣∣T̄2(Z)−τ̄p(1, 2)∣∣ > ϵ | Z ∼ F1

]
, P

[∣∣T̄1(Z)−τ̄p(1, 2)∣∣ >
ϵ | Z ∼ F2

]
and P

[∣∣T̄2(Z)− τ̄p(2, 2)
∣∣ > ϵ | Z ∼ F2

]
also converge to 0 as p→ ∞.

Hence, the proof. □

Proof of Lemma 3.1

Recall that L̄1(Z) = T̄11 − 2T̄1(Z), L̃2(Z) = T̄22 − 2T̄2(Z) and

θ̄(Z) =
1

2
T̄ (L̄2(Z)− L̄1(Z)) +

1

2
(T̄22 − T̄11)(L̄2(Z) + L̄1(Z) + 2T̄12)

=
1

2

{
(T̄11 − 2T̄12 + T̄22)× (L̄2(Z)− L̄1(Z))

}
+

1

2

{
(T̄22 − T̄11)× (T̄22 − 2T̄2(Z) + T̄11 − 2T̄1(Z) + 2T̄12)

}
. (A.11)

Let us denote L̄2(Z)− L̄1(Z) by L̄(Z) and T̄22 − 2T̄2(Z) + T̄11 − 2T̄1(Z) + 2T̄12 by S̄(Z).

We can write θ̄(Z) =
1

2

{
(T̄11 − 2T̄12 + T̄22)× L̄(Z)

}
+

1

2

{
(T̄22 − T̄11)× S̄(Z)

}
. (A.12)
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(a) Fix ϵ > 0. Now,

P
[
|L̄(Z)− τ̄p| > ϵ | Z ∼ F1

]
= P

[
|L̄2(Z)− L̄1(Z)− τ̄p| > ϵ | Z ∼ F1

]
= P

[
|{T̄22 − 2T̄2(Z)− T̄11 + 2T̄1(Z)} − {τ̄p(1, 1)− 2τ̄p(1, 2) + τ̄p(2, 2)}| > ϵ | Z ∼ F1

]
≤ P

[
|{T̄22 − 2T̄2(Z)− T̄11 + 2T̄1(Z)} − {2τ̄p(1, 1)− τ̄p(1, 1)− 2τ̄p(1, 2) + τ̄p(2, 2)}| > ϵ | Z ∼ F1

]
≤ P

[
|T̄11 − τ̄p(1, 1)| >

ϵ

4

]
+ P

[
|{T̄22 − τ̄p(2, 2)| >

ϵ

4

]
+ P

[
2|T̄2(Z)− τ̄p(1, 2)| >

ϵ

4
| Z ∼ F1

]
+ P

[
2|T̄1(Z)− τ̄p(1, 1)| >

ϵ

4
| Z ∼ F1

]
= o(1) as p→ ∞ [using Lemma A.3]. (A.13)

Therefore, if Z ∼ F1, then |L̄(Z) − τ̄p|
P→ 0 as p → ∞. Next, we use the continuous mapping theorem

and Lemma A.3 to obtain that if Z ∼ F1, then

|{T̄11 − 2T̄12 + T̄22} − τ̄p|
P→ 0,

|{T̄22 − T̄11} − {τ̄p(2, 2)− τ̄p(1, 1)}|
P→ 0 and

|S̄(Z)− {τ̄p(2, 2)− τ̄p(1, 1)}|
P→ 0 as p→ ∞.

Using the continuous mapping theorem once again, we conclude from (A.12) that if Z ∼ F1, then∣∣∣∣θ̄(Z)−{
1

2
τ̄2p +

1

2
(τ̄p(2, 2)− τ̄p(1, 1))

2

}∣∣∣∣ P→ 0 ⇒
∣∣θ̄(Z)− ψ̄p

∣∣ P→ 0 as p→ ∞. (A.14)

(b) The arguments for the proof of this part are similar to part (a), and we skip it.

□
Proof of Theorem 3.2

(a) The misclassification probability of the classifier δ1 can be written as

P[δ1(Z) ̸= true label of Z] = P[δ1(Z) = 2,Z ∼ F1] + P[δ1(Z) = 1,Z ∼ F2]

= π1P[δ1(Z) = 2 | Z ∼ F1] + π2P[δ1(Z) = 1 | Z ∼ F2]

= π1P[L̄(Z) ≤ 0 | Z ∼ F1] + π2P[L̄(Z) > 0 | Z ∼ F2]. (A.15)

Since A2 is satisfied (i.e., lim infp τ̄p > 0), we can choose ϵ > 0 such that ϵ < τ̄p for all p ≥ p0 for some
p0 ∈ N. Therefore, we have

P
[
L̄(Z) ≤ 0 | Z ∼ F1

]
≤ P

[
L̄(Z) ≤ τ̄p − ϵ | Z ∼ F1

]
≤ P

[
L̄(Z)− τ̄p ≤ −ϵ | Z ∼ F1

]
≤ P

[
|L̄(Z)− τ̄p| > ϵ | Z ∼ F1

]
for all p ≥ p0. Now, it follows from part (a) of Lemma 3.1 that P

[
L̄(Z) ≤ 0 | Z ∼ F1

]
= o(1) as p→ ∞.

Similarly,

P
[
L̄(Z) > 0 | Z ∼ F2

]
≤ P

[
L̄(Z) > −τ̄p + ϵ | Z ∼ F2

]
≤ P

[
L̄(Z) + τ̄p > ϵ | Z ∼ F2

]
≤ P

[
|L̄(Z) + τ̄p| > ϵ | Z ∼ F2

]
for all p ≥ p0. Since P

[
|L̄(Z) + τ̄p| > ϵ | Z ∼ F2

]
= o(1) as p → ∞ (using part (b) of Lemma

3.1), P
[
L̄(Z) > 0 | Z ∼ F2

]
= o(1) as p → ∞. Consequently, it follows from (A.15) that P[δ1(Z) ̸=

true label of Z] = π1o(1) + π2o(1) = o(1) as p→ ∞.

(b) Firstly, observe that

lim inf
p

τ̄p > 0 ⇒ lim inf
p

1

2
τ̄2p > 0 ⇒ lim inf

p

1

2

{
τ̄2p + (τ̄p(2, 2)− τ̄p(1, 1))

2
}
= lim inf

p
ψ̄p > 0.
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Thus, if A2 is satisfied, then lim infp ψ̄p > 0. Now, let us consider the misclassfication probability of δ2.

P[δ2(Z) ̸= true label of Z] = P[δ2(Z) = 2,Z ∼ F1] + P[δ2(Z) = 1,Z ∼ F2]

= π1P[δ2(Z) = 2 | Z ∼ F1] + π2P[δ2(Z) = 1 | Z ∼ F2]

= π1P[θ̄(Z) ≤ 0 | Z ∼ F1] + π2P[θ̄(Z) > 0 | Z ∼ F2]. (A.16)

The arguments for the rest of the proof are similar to part (a), and we skip it.

□

Proof of Theorem 3.3

In assumption A3, we have assumed that there exists a p0 such that τ̄p(1, 2) lies between τ̄p(1, 1) and τ̄p(2, 2)
for all p ≥ p0. Without loss of generality, let us assume that τ̄p(1, 1) < τ̄p(2, 2). As a result,

τ̄p < τ̄p(2, 2)− τ̄p(1, 1) for all p ≥ p0. (A.17)

Recall that

∆1 = P[δ1(Z) ̸= true label of Z] = π1 P[L̄(Z) ≤ 0|Z ∼ F1] + π2 P[L̄(Z) > 0|Z ∼ F2], and

∆2 = P[δ2(Z) ̸= true label of Z] = π1 P[θ̄(Z) ≤ 0|Z ∼ F1] + π2 P[θ̄(Z) > 0|Z ∼ F2].

It follows from (A.17) that

P[θ̄(Z) ≤ 0|Z ∼ F1] = P[τ̄pL̄(Z) + {τ̄p(2, 2)− τ̄p(1, 1)}S̄(Z) ≤ 0|Z ∼ F1]

≤ P[τ̄p{L̄(Z) + S̄(Z)} ≤ 0|Z ∼ F1] for all p ≥ p0.

Consequently, for all p ≥ p0, we have the following:

P[θ̄(Z) ≤ 0|Z ∼ F1]

≤ P[L̄(Z) + S̄(Z) ≤ 0|Z ∼ F1] (since τ̄p > 0)

= P[L̄(Z) ≤ −S̄(Z)|Z ∼ F1]

= P[L̄(Z) ≤ −S̄(Z), S̄(Z) ≥ 0|Z ∼ F1] + P[L̄(Z) ≤ −S̄(Z), S̄(Z) < 0|Z ∼ F1]

≤ P[L̄(Z) ≤ 0|Z ∼ F1] + P[S̄(Z) < 0|Z ∼ F1]. (A.18)

Similarly, one can show that

P[θ̄(Z) > 0|Z ∼ F2] ≤ P[L̄(Z) > 0|Z ∼ F2] + P[S̄(Z) > 0|Z ∼ F2] for all p ≥ p0. (A.19)

Adding the two inequalities in (A.18) and (A.19), we obtain

∆2 ≤ ∆1 + π1P[S̄(Z) > 0|Z ∼ F1] + π2P[S̄(Z) > 0|Z ∼ F2] for all p ≥ p0. (A.20)

Now, it follows from part (a) of Lemma 3.1 that for Z ∼ F1,
∣∣S̄(Z) − {τ̄p(2, 2) − τ̄p(1, 1)}

∣∣ P→ 0 as p → ∞.
Therefore, for any ϵ1 > 0 and ϵ2 > 0, there exists a p̃1(ϵ1, ϵ2) such that for all p ≥ p̃1(ϵ1, ϵ2)

P
[∣∣S̄(Z)− {τ̄p(2, 2)− τ̄p(1, 1)}

∣∣ > ϵ1
∣∣Z ∼ F1

]
< ϵ2

⇒ P
[
S̄(Z)− {τ̄p(2, 2)− τ̄p(1, 1)} < −ϵ1

∣∣Z ∼ F1

]
< ϵ2

⇒ P
[
S̄(Z) < {τ̄p(2, 2)− τ̄p(1, 1)} − ϵ1

∣∣Z ∼ F1

]
< ϵ2.

We have already assumed that τ̄p(2, 2) > τ̄p(1, 1) for all p ≥ p0. Define λ0 = lim infp
{
τ̄p(2, 2)− τ̄p(1, 1)

}
. It

follows from (A.17) that λ0 ≥ lim infp τ̄p. Consequently, using assumption A2, we have λ0 > 0. Hence, it is
clear from the above inequality that for any 0 < ϵ1 < λ0,

P[S̄(Z) < 0
∣∣Z ∼ F1] < ϵ2 for all p ≥ max{p̃1(ϵ1, ϵ2), p0}.
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Following similar arguments, one can show that for any 0 < ϵ < λ0, we have

P[S̄(Z) > 0
∣∣Z ∼ F2] < ϵ2 for all p ≥ max{p̃1(ϵ1, ϵ2), p0}.

Now, it follows from (A.20) that for any 0 < ϵ1 < λ0,

∆2 ≤ ∆1 + ϵ2 for all p ≥ max{p̃2(ϵ1, ϵ2), p0},
⇒ ∆2 ≤ ∆1 for all p ≥ p′0 = max{p̃2(ϵ1, ϵ2), p0} [since ϵ2 > 0 is arbitrary].

This completes the proof. □

Let us define the following statistics:

T11k =
1

n1(n1 − 1)

∑∑
1≤i ̸=j≤n1

h(Xik, Xjk), T12k =
1

n1n2

n1∑
i=1

n2∑
j=1

h(Xik, Yjk) and

T22k =
1

n2(n2 − 1)

∑∑
1≤i ̸=j≤n2

h(Yik, Yjk) for 1 ≤ k ≤ pn. (A.21)

Also, for z = (z1, . . . , zpn
)⊤ ∈ Rpn , we define

T1k(zk) =
1

n1

n1∑
i=1

h(Xik, zk), T2k(zk) =
1

n2

n2∑
j=1

h(Yjk, zk), L1k(Zk) = T11k − 2T1k(zk) and

L2k(zk) = T22k − 2T2k(zk) for 1 ≤ k ≤ pn. (A.22)

Observe that the estimators of τ̄11, τ̄12 and τ̄22 defined in (2.4) can be expressed as follows:

T̄11 =
1

n1(n1 − 1)pn

pn∑
k=1

∑∑
1≤i ̸=j≤n1

h(Xik, Xjk), T̄12 =
1

n1n2pn

pn∑
k=1

n1∑
i=1

n2∑
j=1

h(Xik, Yjk) and

T̄22 =
1

n2(n2 − 1)pn

pn∑
k=1

∑∑
1≤i ̸=j≤n1

h(Yik, Yjk),

i.e., T̄11 =
1

pn

pn∑
k=1

T11k, T̄12 =
1

pn

pn∑
k=1

T12k and T̄22 =
1

pn

pn∑
k=1

T22k.

Similarly, for z ∈ Rpn , we can write

T̄1(z) =
1

pn

pn∑
k=1

T1k(zk) and T̄2(z) =
1

pn

pn∑
k=1

T2k(zk).

Recall the definitions of L̄1(z), L̄2(z) and θ̄(z) given in (A.11). We now derive upper bounds on the rates of
convergence of these random variables.

First, we present the bounded differences inequality that will be used to derive concentration bounds.

Given vectors x,x′ ∈ Rn and an index l ∈ {1, . . . , n}, we define a new vector x\l ∈ Rn as follows:

x\l =

{
xj , if j ̸= l,

x′l, if j = l.
(A.23)

With this notation, we say that f : Rn → R satisfies the bounded difference inequality with parameters
(M1, . . . ,Mn)

⊤ if

|f(x)− f(x\l)| ≤Ml for each l = 1, . . . , n and for all x,x′ ∈ Rn.



Sarbojit Roy, Jyotishka Ray Choudhury, Subhajit Dutta

Lemma A.4 (Wainwright, 2019, page 37) Suppose that f satisfies the bounded difference property (A.23)
with parameters (M1, . . . ,Mn)

⊤ and that the random vector U = (U1, . . . , Un)
⊤ has independent components.

Then,

P [|f(U)− E[f(U)]| > ϵ] ≤ 2e
− 2ϵ2∑n

l=1
M2

l for all ϵ > 0.

Using Lemma A.4, we first derive the rates of convergence of T̄jj′ and T̄i(z) for j, j
′ ∈ {1, 2} and z ∈ Rpn .

Lemma A.5 Fix 0 < γ < 1/2. There exist positive constants ajj′ , bj for j, j′ ∈ {1, 2} such that

(a) P
[
|T̄jj′ − τ̄p(j, j

′)| > n−γ
]
≤ O(pne

−aijn
1−2γ

) and

(b) P
[
|T̄i(z)− E[T̄i(z)]| > n−γ ] ≤ O(pne

−bin
1−2γ

) for all z ∈ Rpn .

Proof of Lemma A.5

(a) Fix k ∈ {1, . . . , pn}. Recall the definitions of T11k, T22k and T12k in (A.21) and note that the first two
random variables are one sample U-statistics with kernel of order 2, while the third random variable is
a two sample U-statistic with kernel of order (1,1).

The random vector Xk = (X1k, . . . , Xn1k)
⊤ has independent components. Observe that the random

variable T11k is a function of Xk), say f(Xk). Since |h| < 1, for any given co-ordinate l ∈ {1, . . . , n1}, we
have

|f(Xk)− f(X \l
k )| ≤ 2

n1(n1 − 1)

∑
j ̸=l

|h(Xjk, Xlk)− h(Xjk, X
′
lk)| ≤ 2(n1 − 1)

2

n1(n1 − 1)
=

4

n1
.

So, the bounded difference property holds with parameter Ml = 4/n1 in each coordinate. We conclude
from Lemma A.4 that

P
[
|T11k − E[T11k]| > n−γ

]
≤ 2e−

n1n−2γ

8 . (A.24)

Since limn→∞ n1/n = π1 < 1, there exist constants a11 > 0 and N ∈ N such that

P[|T11k − E[T11k]| ≥ n−γ ] ≤ 2e−a11n
1−2γ

for all n ≥ N. (A.25)

Clearly, (A.25) is true for all 1 ≤ k ≤ pn. So, we have

P[|T11k − E[T11k]| ≥ n−γ ] ≤ O
(
e−a11n

1−2γ
)

for all 1 ≤ k ≤ pn

⇒
pn∑
k=1

P[|T11k − E[T11k]| ≥ n−γ ] ≤ O
(
pne

−a11n
1−2γ

)
⇒ P

[
1

pn

pn∑
k=1

|T11k − E[T11k]| ≥ n−γ

]
≤ O

(
pne

−a11n
1−2γ

)
⇒ P

[∣∣∣∣ 1pn
pn∑
k=1

(T11k − E[T11k])

∣∣∣∣ ≥ n−γ

]
≤ O

(
pne

−a11n
1−2γ

)
⇒ P

[∣∣T̄11 − τ̄p(1, 1))
∣∣ ≥ n−γ

]
≤ O

(
pne

−a11n
1−2γ

) [
pn∑
k=1

E[T11k]/pn = τ̄pn(1, 1)

]
. (A.26)

Following similar arguments, it can be shown that there exist positive constants a12 and a22 such that

P
[
|T̄12 − τ̄p(1, 2)| > n−γ

]
≤ O(pne

−a12n
1−2γ

) and P
[
|T̄22 − τ̄p(2, 2)| > n−γ

]
≤ O(pne

−a22n
1−2γ

). (A.27)
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(b) Recall the definition of T̄1(z) from (A.22) and observe that for each z ∈ Rpn , we have the following:

P
[
|T̄1(z)− E[T̄1(z)]| > n−γ

]
= P

[∣∣∣∣∣ 1pn
pn∑
k=1

T1k(zk)−
1

pn

pn∑
k=1

E[T1k(zk)]

∣∣∣∣∣ > n−γ

]

≤ P

[
1

pn

pn∑
k=1

|T1k(zk)− E[T1k(zk)]| > n−γ

]

≤
pn∑
k=1

P
[
|T1k(zk)− E[T1k(zk)]| > n−γ

]
≤

pn∑
k=1

P

[∣∣∣∣∣ 1n1
n1∑
i=1

h(Xik, zk)−
1

n1

n1∑
i=1

E[h(Xik, zk)]

∣∣∣∣∣ > n−γ

]

=

pn∑
k=1

P

[∣∣∣∣∣ 1n1
n1∑
i=1

{h(Xik, zk)− E[h(Xik, zk)]}

∣∣∣∣∣ > n−γ

]
. (A.28)

Here,
∑n1

i=1 h(Xik, zk)/n1 is an average of independently distributed random variables for each z ∈ Rpn .
Using Hoeffding’s inequality, we obtain the following:

P

[∣∣∣∣∣ 1n1
n1∑
i=1

{h(Xik, zk)− E[h(Xik, zk)]}

∣∣∣∣∣ > n−γ

]
≤ 2e−2n1n

−2γ

for all 1 ≤ k ≤ pn

⇒
pn∑
k=1

P

[∣∣∣∣∣ 1n1
n1∑
i=1

{h(Xik, zk)− E[h(Xik, zk)]}

∣∣∣∣∣ > n−γ

]
≤ 2pne

−2n1n
−2γ

⇒
pn∑
k=1

P

[∣∣∣∣∣ 1n1
n1∑
i=1

{h(Xik, zk)− E[h(X1k, zk)]}

∣∣∣∣∣ > n−γ

]
= O

(
pne

−b1n
1−2γ

)
for some b1 > 0. (A.29)

Combining (A.28) and (A.29), for every z ∈ Rpn , we obtain

P
[
|T̄1(z)− E[T̄1(z)]| > n−γ

]
≤ O

(
pne

−b1n
1−2γ

)
for some b1 > 0.

Similarly, one can show that there exists a constant b2 > 0 such that

P
[
|T̄2(z)− E[T̄2(z)]| > n−γ

]
≤ O

(
pne

−b2n
1−2γ

)
.

Hence, the proof. □

Lemma A.6 Suppose P[|Xn − a0| > ϵ] = O(pne
−M1nϵ

2

) and P[Yn − b0| > ϵ] = O(pne
−M2nϵ

2

) for all ϵ > 0
where max{|a0|, |b0|} > 0 and M1,M2 are positive constants. Then, there exists a positive constant M3 such

that P[|XnYn − a0b0| > ϵ] = O(pne
−M3nϵ

2

) for all ϵ > 0.

Proof: Define c0 = max{|a0|, |b0|}. Using triangle inequality, we get

|XnYn − a0b0| ≤ |XnYn − b0Xn − a0Yn + a0b0|+ |b0||Xn − a0|+ |a0||Yn − b0|
⇒ |XnYn − a0b0| ≤ |Xn − a0||Yn − b0|+ |b0||Xn − a0|+ |a0||Yn − b0|
⇒ |XnYn − a0b0| ≤ |Xn − a0||Yn − b0|+ c0(|Xn − a0|+ |Yn − b0|).

Therefore, |Xn − a0| ≤ ϵ and |Yn − b0| ≤ ϵ implies that |XnYn − a0b0| ≤ ϵ2 + 2c0ϵ. We choose M such that
M > 2 + ϵ/c0. Therefore, ϵ

2 + 2c0ϵ ≤Mc0ϵ. Now,

P[|Xn − a0| ≤ ϵ, |Yn − b0| ≤ ϵ] ≤ P[|XnYn − a0b0| ≤ ϵ2 + 2c0ϵ]
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⇒ P[|Xn − a0| ≤ ϵ, |Yn − b0| ≤ ϵ] ≤ P[|XnYn − a0b0| ≤Mc0ϵ]

⇒ P[|XnYn − a0b0| > Mc0ϵ] ≤ P[|Xn − a0| > ϵ] + P[|Yn − b0| > ϵ]

⇒ P[|XnYn − a0b0| > Mc0ϵ] ≤ O(pne
−M1nϵ

2

) +O(pne
−M2nϵ

2

)

⇒ P[|XnYn − a0b0| > Mc0ϵ] ≤ O(pne
−min{M1,M2}nϵ2)

⇒ P[|XnYn − a0b0| > ϵ] ≤ O(pne
−min{M1,M2}

Mc0
nϵ2).

Therefore, P[|Xn − a0| ≤ ϵ, |Yn − b0| ≤ ϵ] ≤ O(pne
−min{M1,M2}

Mc0
nϵ2) for all ϵ > 0 with M > 2 + c0/ϵ. Hence,

the proof. □

Proof of Lemma 3.4

(a) Fix z ∈ Rpn and recall the definitions of L̄(z) and L̄0(z) given in Section 3.2. For any 0 < γ < 1/2, we
have

P
[
|L̄(z)− L̄0(z)| > n−γ

]
= P

[
|L̄2(z)− L̄1(z)− L̄0

2(z) + L̄0
1(z)| > n−γ

]
= P

[
|T̄22 − 2T̄2(z)− T̄11 + 2T̄1(z)− τ̄pn

(2, 2) + 2E[h̄pn
(Y1, z)]− τ̄pn

(1, 1) + 2E[h̄pn
(X1, z)]| > n−γ

]
≤ P

[
|T̄11 − τ̄pn

(1, 1)| > n−γ

4

]
+ P

[
|T̄22 − τ̄pn

(2, 2)| > n−γ

4

]
+ P

[
|T̄1(z)− E[h̄pn

(X1, z)]| >
n−γ

2

]
+ P

[
|T̄2(z)− E[h̄pn

(Y1, z)]| >
n−γ

2

]
= P1 + P2 + P3 + P4. (A.30)

We already proved in part (a) of Lemma A.5 that P1 ≤ O
(
pne

−a∗
11n

1−2γ
)
and P2 ≤ O

(
pne

−a∗
22n

1−2γ
)

for some positive constants a∗11 and a∗22. Now, let us consider the term P3. Observe that

P3 = P

[
|T̄2(z)− E[h̄pn

(X1, z)]| >
n−γ

2

]
= P

[
|T̄1(z)− E[T̄1(z)]| >

n−γ

2

]
It is shown in part (b) of Lemma A.5 that

P

[∣∣T̄1(z)− E[T̄1(z)]
∣∣ > n−γ

2

]
≤ O

(
pne

−b∗1n
1−2γ

)
for some positive constant b∗1.

Therefore, P3 ≤ O
(
pne

−b∗1n
1−2γ

)
. Similarly, P4 ≤ O

(
pne

−b∗2n
1−2γ

)
for some positive constant b∗2. It

follows from (A.30) that

P
[
|L̄(z)− L̄0(z)| > n−γ

]
≤ O

(
pne

−a∗
11n

1−2γ
)
+O

(
pne

−a∗
22n

1−2γ
)
+O

(
pne

−b∗1n
1−2γ

)
+O

(
pne

−b∗2n
1−2γ

)
= O

(
pne

−B∗
0n

1−2γ
)
, where B∗

0 = min{a∗11, a∗22, b∗1, b∗2}.

Recall that there exist M > 0 and N ∈ N such that

pn ≤ eMnβ

⇒ pne
−B∗

0n
1−2γ

≤ e−{B∗
0n

1−2γ−Mnβ} ⇒ pne
−B∗

0n
1−2γ

≤ e−B0{n1−2γ−nβ}

for all n ≥ N, where B0 = min{B∗
0 ,M}. Therefore, P

[
|L̄(z)− L̄0(z)| > n−γ

]
≤ O

(
e−B0{n1−2γ−nβ}

)
.

(b) Now, we derive a rate of convergence for the random variable θ̄(z) − θ̄0(z) for z ∈ Rpn . As defined in
(A.11), we have

θ̄(z) =
1

2

{
(T̄11 − 2T̄12 + T̄22)× L̄(z)

}
+

1

2

{
(T̄22 − T̄11)× S̄(z)

}
,
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where L̄(z) = T̄22 − 2T̄2(z)− T̄11 +2T̄1(z) and S̄(z) = T̄22 − 2T̄2(z)+ T̄11 − 2T̄1(z)+ 2T̄12. Further, θ̄
0(z)

is defined as

θ̄0(z) =
τ̄pn

2

{
τ̄pn

(2, 2)− 2E[h̄pn
(Y1, z)− τ̄pn

(1, 1) + 2E[h̄pn
(X1, z)]

}
+

1

2
(τ̄pn

(2, 2)− τ̄pn
(1, 1)){τ̄pn

(2, 2)− 2E[h̄pn
(Y1, z)] + τ̄pn

(1, 1)− 2E[h̄pn
(X1, z)] + 2τ̄pn

(1, 2)}

⇒ θ̄0(z) =
τ̄pn

2
E[L̄(z)] +

1

2
(τ̄pn

(2, 2)− τ̄pn
(1, 1))E[S̄(z)].

Note that E[T̄11 − 2T̄12 + T̄22] = τ̄pn
and E[T̄22 − T̄11] = τ̄pn

(2, 2)− τ̄pn
(1, 1). It follows from part (a) of

Lemma A.5 that there exist positive constants c1 and c2 such that

P
[
|{T̄11 − 2T̄12 + T̄22} − τ̄pn

| > n−γ
]
≤ O

(
pne

−c1n
1−2γ

)
and

P
[
|{T̄22 − T̄11} − {τ̄pn

(2, 2)− τ̄pn
(1, 1)}| > n−γ

]
≤ O

(
pne

−c2n
1−2γ

)
. (A.31)

Part (b) of Lemma A.5 suggests that there exist positive constants c3 and c4 such that

P
[
|L̄(z)− E[L̄(z)]| > n−γ

]
≤ O

(
pne

−c3n
1−2γ

)
and

P
[
|S̄(z)− E[S̄(z)]| > n−γ

]
≤ O

(
pne

−c4n
1−2γ

)
for all z ∈ Rpn . (A.32)

Now, for z ∈ Rpn , we have

P
[∣∣θ̄(z)− θ̄0(z)

∣∣ > n−γ
]
≤ P

[∣∣∣∣12{(T̄11 − 2T̄12 + T̄22) L̄(z)
}
− τ̄pn

2
E[L̄(z)]

∣∣∣∣ > n−γ

2

]
+ P

[∣∣∣∣12{(T̄22 − T̄11) S̄(z)
}
− 1

2
{τ̄pn(2, 2)− τ̄pn(1, 1)}E[S̄(z)]

∣∣∣∣ > n−γ

2

]
. (A.33)

Combining (A.31) and (A.32) with Lemma A.6, we conclude that there exists a constant c10 such that

P

[∣∣∣∣12{(T̄11 − 2T̄12 + T̄22)× L̄(z)
}
− τ̄pn

2
E[L̄(z)]

∣∣∣∣ > n−γ

2

]
≤ O(pne

−c10n
1−2γ

). (A.34)

Similarly, there exists a constant c11 > 0 such that

P

[∣∣∣∣12{(T̄22 − T̄11)× S̄(z)
}
− 1

2
{τ̄pn

(2, 2)− τ̄pn
(1, 1)}E[S̄(z)]

∣∣∣∣ > n−γ

2

]
≤ O(pne

−c11n
1−2γ

). (A.35)

Define B∗
1 = min{c10, c11}. Now, it follows from (A.33), (A.34) and (A.35) that

P
[
|θ̄(z)− θ̄0(z)| > n−γ

]
≤ O(pne

−B∗
1n

1−2γ

) for all z ∈ Rpn .

Since there exist M > 0 and N ∈ N such that

pn ≤ eMnβ

⇒ pne
−B∗

1n
1−2γ

≤ e−B1{n1−2γ−nβ} for all n ≥ N,

where B1 = min{B∗
1 ,M}. Therefore, P

[
|L̄(z)− L̄0(z)| > n−γ

]
≤ O

(
e−B1{n1−2γ−nβ}

)
for all z ∈ Rpn .

Hence, the proof. □

Proof of Theorem 3.5

Let lZ denote the true class label of Z with P[lZ = j] = πj , where π1+π2 = 1. Therefore, Z | lZ = 1 ∼ F1 and
Z | lZ = 2 ∼ F2. The unconditional distribution of Z is defined as H(z) = π1F1(z) + π2F2(z) for z ∈ Rpn .
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(a) Recall that the misclassification probabilities of δ1 and δ01 are defined as ∆1 = P[δ1(Z) ̸= lZ] and ∆0
1 =

P[δ01(Z) ̸= lZ], respectively. Now,

∆1 −∆0
1

= P[δ1(Z) ̸= lZ]− P[δ01(Z) ̸= lZ]

=

∫ {
P[δ1(z) ̸= lz]− P[δ01(z) ̸= lz]

}
dH(z)

=

∫ {
P[δ01(z) = lz]− P[δ1(z) = lz]

}
dH(z)

=

∫ {
I[δ01(z) = 1]P[lz = 1] + I[δ01(z) = 0]P[lz = 0]− P[δ1(z) = 1]P[lz = 1] + P[δ1(z) = 0]P[lz = 0]

}
dH(z)

=

∫ {
(I[δ01(z) = 1]− P[δ1(z) = 1])P[lz = 1] + (I[δ01(z) = 0]− P[δ1(z) = 0])P[lz = 0]

}
dH(z)

=

∫
(I[δ01(z) = 1]− E

[
I[δ1(z) = 1]

]
)(2P[lz = 1]− 1) dH(z)

≤
∫ ∣∣E[

I[δ01(z) = 1]− I[δ1(z) = 1]
]∣∣ |2P[lz = 1]− 1| dH(z)

=

∫
E
[
|I[δ01(z) = 1]− I[δ1(z) = 1]|

]
dH(z)

=

∫
E
[
I[δ01(z) ̸= δ1(z)]

]
dH(z)

=

∫
P[δ01(z) ̸= δ1(z)] dH(z)

=

∫
P[L̄(z) ≤ 0, L̄0(z) > 0] dH(z) +

∫
P[L̄(z) > 0, L̄0(z) ≤ 0] dH(z)

= P1 + P2. (A.36)

Consider the first term. For any γ > 0, we have the following:

P1 =

∫
P[L̄(z) ≤ 0, L̄0(z) > 0] dH(z)

=

∫
P[L̄(z) ≤ 0, L̄0(z) > 0, |L̄(z)− L̄0(z)| ≤ n−γ ] dH(z)

+

∫
P[L̄(z) ≤ 0, L̄0(z) > 0, |L̄(z)− L̄0(z)| > n−γ ] dH(z)

≤
∫

P[L̄(z) ≤ 0, L̄0(z) > 0, |L̄(z)− L̄0(z)| ≤ n−γ ] dH(z) +

∫
P[|L̄(z)− L̄0(z)| > n−γ ] dH(z)

= P11(γ) +

∫
P[|L̄(z)− L̄0(z)| > n−γ ] dH(z). (A.37)

Note that

P11(γ) =

∫
P[L̄(z) ≤ 0, L̄0(z) > 0, |L̄(z)− L̄0(z)| ≤ n−γ ] dH(z)

=

∫
P[L̄(z) ≤ 0, L̄0(z) > 0,−L̄(z) + L̄0(z) ≤ n−γ ] dH(z)

≤
∫

P[L̄0(z) ≤ n−γ , L̄0(z) > 0, L̄(z) ≤ 0] dH(z)

≤
∫

P[L̄0(z) ≤ n−γ , L̄0(z) > 0] dH(z) = P[0 < L̄0(Z) ≤ n−γ ]. (A.38)

Combining (A.37) and (A.38), we have

P1 ≤ P[0 < L̄0(Z) ≤ n−γ ] +

∫
P[|L̄(z)− L̄0(z)| > n−γ ] dH(z). (A.39)
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Following similar arguments, we can write P2 as

P2 =

∫
P[L̄0(z) ≤ 0, L̄(z) > 0] dH(z)

≤
∫

P[L̄0(z) ≤ 0, L̄(z) > 0, |L̄0(z)− L̄(z)| ≤ n−γ ] dH(z) +

∫
P[|L̄0(z)− L̄(z)| > n−γ ] dH(z)

=

∫
P[L̄0(z) ≤ 0, L̄(z) > 0, |L̄0(z)− L̄(z)| ≤ n−γ ] dH(z) +

∫
P[|L̄(z)− L̄0(z)| > n−γ ]dH(z)

≤
∫

P[L̄0(z) ≤ 0, L̄(z) > 0,−L̄0(z) + L̄(z) ≤ n−γ ] dH(z) +

∫
P[|L̄(z)− L̄0(z)| > n−γ ]dH(z)

≤
∫

P[−nγ < L̄0(z) ≤ 0] dH(z) +

∫
P[|L̄(z)− L̄0(z)| > n−γ ]dH(z)

= P[−n−γ < L̄0(Z) ≤ 0] +

∫
P[|L̄(z)− L̄0(z)| > n−γ ]dH(z). (A.40)

Combining (A.36), (A.39) and (A.40), we obtain

∆1 −∆0
1 ≤ P[|L̄0(Z)| < n−γ ] + 2

∫
P[|L̄(z)− L̄0(z)| > n−γ ]dH(z) for all γ > 0.

Using part (a) of Lemma 3.4, it now follows that

∆1 −∆0
1 ≤ P[|L̄0(Z)| < n−γ ] +O

(
e−B0{n1−2γ−nβ}

)
for all 0 < γ < (1− β)/2.

(b) The arguments for this part of the proof are similar to part (a), and we skip it.

□
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B TABLES AND ADDITIONAL MATERIAL

Table 2: The Values of T̄11, T̄12 and T̄22 in the Simulated Examples (along with the Standard Errors in
Parentheses) Based on 100 Replications.

Example T̄11 T̄12 T̄22 T̄12 ≥ min{T̄11, T̄22}
1 0.1562 0.1446 0.1273 True

(0.0019) (0.0020) (0.0022)

2 0.0909 0.0984 0.1109 True

(0.0014) (0.0010) (0.0015)

3 0.0857 0.0821 0.1018 False

(0.0018) (0.0016) (0.0027)

4 0.0857 0.0748 0.0545 True

(0.0018) (0.0016) (0.0016)

5 0.2077 0.2106 0.2136 True

(0.0005) (0.0004) (0.0004)

B.1 Details on Implementation of Popular Classifiers

• GLMNET: The R-package glmnet was used for the implementation of GLMNET. The tuning parameter
α in the elastic-net penalty term was kept fixed at the default value 1. The weight λ of the penalty
term was chosen by cross-validation using the function cv.glmnet with default values of its arguments.

• 1NN: The knn1 function from the R-package class was used for implementation of the usual 1-nearest
neighbor classifier.

• NN-RAND: The function classify from the package RandPro was used with default values of the
arguments.

• NNET: We used nnet from the package nnet to fit a single-hidden-layer neural network with default
parameters. The number of units in the hidden layer were allowed to vary in the set {1, 3, 5, 10}, and
the minimum misclassification rate was reported as NNET.

• SVM: The R package e1071 was used for implementing SVM with linear and RBF kernel. For the RBF
kernel, i.e., Kθ(x,y) = exp{−θ∥x − y∥2}, we considered the default value of the tuning parameter θ,
i.e., θ = 1/p.

Table 3: Average Time (in Seconds) Taken by the Classifiers to Classify 200 Test Observations in Example 1

p δ0 δ1 δ2 GLM 1NN NN NNET∗ SVM SVM

NET RAND 1 3 5 10 LIN RBF

50 0.0149 0.0189 0.0188 0.0940 0.0008 2.7834 0.0090 0.0162 0.0328 0.1110 0.0052 0.0060

100 0.0156 0.0236 0.0238 0.0978 0.0024 3.4872 0.0130 0.0454 0.1070 0.4012 0.0104 0.0102

250 0.0185 0.0390 0.0389 0.1050 0.0048 4.6608 0.0382 0.2232 0.5982 4.2194 0.0224 0.0240

500 0.0209 0.0551 0.0549 0.1132 0.0070 5.3308 0.1104 0.8512 3.9240 19.7896 0.0398 0.0402

1000 0.0263 0.0807 0.0808 0.1530 0.0120 6.7963 0.3883 6.3370 19.1236 100.7417 0.0713 0.0797

∗ 1,3,5,10 represent the numbers of units in the single-hidden-layer of the neural network.

B.2 Codes

The R codes for implementation of the proposed classifiers are available here.

https://www.dropbox.com/s/7nz69yah6lg5kr6/RCodes.zip?dl=0
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Table 4: Average Misclassfication Probability (in %) with Standard Errors (in Parentheses) of Different Clas-
sifiers for Fixed n (= 40) and Varying p in Simulated Examples (in Each Row, the Minimum Misclassification
Probability Is Bold Faced, and the Second Minimum Is in Italics).

Example p Bayes δ0 δ1 δ2 GLMNET 1NN NN-RAND NNET SVM-LIN SVM-RBF

1

50
4.22 45.40 44.48 36.67 46.03 50.00 50.00 46.29 46.19 6.78

(0.14) (0.45) (0.41) (0.42) (0.14) (0.00) (0.00) (0.20) (0.13) (0.25)

100
0.75 42.73 41.57 30.40 46.23 50.00 50.00 49.04 47.92 1.96

(0.06) (0.37) (0.40) (0.31) (0.13) (0.00) (0.00) (0.10) (0.11) (0.17)

250
0.01 39.87 37.65 21.34 46.67 50.00 50.00 49.43 49.87 0.09

(0.01) (0.37) (0.39) (0.27) (0.14) (0.00) (0.00) (0.10) (0.03) (0.02)

500
0.00 35.70 32.62 13.02 47.08 50.00 50.00 48.88 50.00 0.00

(0.00) (0.36) (0.34) (0.26) (0.16) (0.00) (0.00) (0.19) (0.00) (0.00)

1000
0.00 30.82 27.32 6.25 47.78 50.00 50.00 47.62 50.00 0.00

(0.00) (0.37) (0.34) (0.22) (0.11) (0.00) (0.00) (0.25) (0.00) (0.00)

2

50
5.96 49.78 45.59 37.01 49.33 48.83 49.81 49.21 49.40 40.50

(0.16) (0.38) (0.42) (0.48) (0.34) (0.24) (0.17) (0.33) (0.29) (0.40)

100
1.22 49.51 43.55 32.30 49.54 49.61 49.95 49.46 49.77 39.56

(0.07) (0.35) (0.43) (0.47) (0.37) (0.21) (0.15) (0.38) (0.36) (0.36)

250
0.01 49.97 40.76 23.93 49.20 49.80 50.22 49.23 48.92 37.14

(0.01) (0.36) (0.45) (0.36) (0.35) (0.15) (0.08) (0.28) (0.30) (0.33)

500
0.00 50.32 36.82 17.73 48.64 50.09 50.04 49.62 50.05 35.87

(0.00) (0.30) (0.34) (0.30) (0.34) (0.08) (0.09) (0.36) (0.28) (0.28)

1000
0.00 50.20 32.42 13.35 49.49 50.08 50.05 49.44 50.04 34.67

(0.00) (0.37) (0.35) (0.32) (0.38) (0.04) (0.04) (0.37) (0.32) (0.30)

3

50
0.68 37.76 28.27 30.34 35.30 36.52 37.67 37.63 36.15 38.38

(0.06) (0.41) (0.39) (0.44) (0.25) (0.28) (0.29) (0.26) (0.26) (0.26)

100
0.04 39.44 21.03 23.26 35.47 36.14 37.90 37.69 35.90 41.12

(0.01) (0.47) (0.35) (0.38) (0.24) (0.26) (0.33) (0.25) (0.26) (0.27)

250
0.00 41.42 10.53 12.59 35.45 36.70 38.72 38.02 35.35 45.23

(0.00) (0.46) (0.26) (0.26) (0.25) (0.26) (0.28) (0.23) (0.21) (0.23)

500
0.00 43.02 3.86 5.38 35.56 36.50 38.14 38.14 35.20 48.19

(0.00) (0.40) (0.14) (0.16) (0.24) (0.26) (0.33) (0.24) (0.21) (0.16)

1000
0.00 44.59 0.60 1.24 35.60 36.53 38.04 37.52 35.42 49.68

(0.00) (0.46) (0.05) (0.10) (0.22) (0.31) (0.35) (0.26) (0.22) (0.05)

4

50
4.14 48.65 43.08 32.34 44.98 43.92 49.01 43.52 44.53 35.45

(0.14) (0.36) (0.42) (0.40) (0.14) (0.21) (0.09) (0.20) (0.15) (0.26)

100
0.76 49.81 41.18 27.10 44.97 45.95 49.68 44.98 43.85 39.96

(0.06) (0.34) (0.39) (0.34) (0.17) (0.16) (0.05) (0.25) (0.18) (0.28)

250
0.00 50.17 34.97 17.48 45.06 47.43 49.85 45.44 44.80 47.21

(0.00) (0.36) (0.42) (0.33) (0.15) (0.13) (0.04) (0.26) (0.14) (0.12)

500
0.00 50.35 31.05 11.63 44.97 48.44 49.94 45.48 44.38 49.66

(0.00) (0.36) (0.42) (0.28) (0.12) (0.10) (0.03) (0.30) (0.17) (0.04)

1000
0.00 49.80 23.73 6.91 44.78 49.02 49.92 46.08 45.09 49.99

(0.00) (0.39) (0.34) (0.21) (0.17) (0.07) (0.02) (0.19) (0.14) (0.00)

5

50
0.00 49.92 15.70 10.54 42.16 45.04 47.10 45.44 42.48 46.17

(0.00) (0.39) (0.34) (0.21) (0.19) (0.22) (0.19) (0.26) (0.22) (0.15)

100
0.00 50.13 7.82 4.02 42.51 46.20 48.77 46.20 44.36 47.81

(0.00) (0.31) (0.20) (0.16) (0.17) (0.19) (0.12) (0.30) (0.20) (0.12)

250
0.00 49.80 1.43 0.33 43.66 47.99 49.76 47.69 48.55 49.73

(0.00) (0.34) (0.10) (0.04) (0.17) (0.13) (0.07) (0.26) (0.10) (0.04)

500
0.00 49.84 0.14 0.02 45.28 48.94 49.81 47.97 49.90 49.99

(0.00) (0.32) (0.03) (0.01) (0.17) (0.07) (0.06) (0.24) (0.02) (0.00)

1000
0.00 50.09 0.00 0.00 45.72 49.45 49.92 48.76 49.99 50.00

(0.00) (0.36) (0.00) (0.00) (0.17) (0.08) (0.05) (0.20) (0.00) (0.00)
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