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Abstract

Optimization problems under affine con-
straints appear in various areas of machine
learning. We consider the task of minimizing
a smooth strongly convex function F (x) un-
der the affine constraintKx = b, with an ora-
cle providing evaluations of the gradient of F
and multiplications by K and its transpose.
We provide lower bounds on the number of
gradient computations and matrix multipli-
cations to achieve a given accuracy. Then
we propose an accelerated primal–dual algo-
rithm achieving these lower bounds. Our al-
gorithm is the first optimal algorithm for this
class of problems.

1 Introduction

We consider the convex optimization problem

min
x∈X

F (x) s.t. Kx = b, (1)

where F is a smooth and strongly convex function over
X := Rd, b ∈ Y := Rp is a vector and K is a nonzero
p × d matrix, for some integers d ≥ 1, p ≥ 1. We
adopt the matrix-vector setting for simplicity of the
notations, but the formalism holds more generally with
arbitrary real Hilbert spaces X and Y and bounded
linear operator K : X → Y. We suppose that b is in the
range of K; then the sought solution to (1), denoted
by x⋆, exists and is unique, by strong convexity.

Problem (1) covers a large number of applications
in machine learning (Sra et al., 2011; Bach et al.,
2012; Polson et al., 2015) and beyond (Bauschke
et al., 2010; Stathopoulos et al., 2016; Glowinski et al.,
2016). Examples include inverse problems in imag-
ing (Chambolle and Pock, 2016), and recovering a
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model from partial measurements b on the model,
in compressed sensing (Goldstein and Zhang, 2016)
or sketched learning-type applications (Keriven et al.,
2018). In optimal transport, one often looks for mea-
sures with fixed marginals, which can be written as
an affine equality constraint (Peyré and Cuturi, 2019).
Network flow optimization takes the form of Prob-
lem (1), where b contains the incoming and outgo-
ing rates at source and sink nodes of a network, and
K is the edge-node incidence matrix (Zargham et al.,
2013). Decentralized optimization is a well-known in-
stance of Problem (1), with K a gossip matrix (or
its square root), and b = 0 (Shi et al., 2015; Scaman
et al., 2017; Gorbunov et al., 2019; Li et al., 2020a,b;
Ye et al., 2020; Arjevani et al., 2020; Kovalev et al.,
2020; Dvinskikh and Gasnikov, 2021). If additional
affine constraints are added to the decentralized opti-
mization problem, for instance that some elements or
linear measurements of the sought model x⋆ are fixed,
decentralized optimization reverts to Problem (1) with
nonzero b.

For large-scale convex optimization problems like (1),
primal–dual splitting algorithms (Boţ et al., 2014; Ko-
modakis and Pesquet, 2015; Condat et al., 2019, 2022)
are well suited, as they are easy to implement and
typically show state-of-the-art performance. The fully-
split algorithms do not require the ability to project
onto the constraint space {x ∈ X : Kx = b}, and
are therefore particularly adequate in the applications
mentioned above. Precisely, we say that an iterative
algorithm is fully split if it produces a sequence of iter-
ates (xk)k≥0 ∈ XN converging to the solution x⋆ of (1),
using only computations of ∇F and multiplications by
K and KT , the transpose of K.

There exist several fully-split primal–dual algorithms
well suited to solve Problem (1) and even more gen-
eral problems (Combettes and Pesquet, 2012; Condat,
2013; Vũ, 2013; Yan, 2018; Mishchenko and Richtárik,
2019; Salim et al., 2020). In particular, we can men-
tion the algorithm first proposed in Loris and Ver-
hoeven (2011), and rediscovered independently as the
PDFP2O algorithm (Chen et al., 2013) and the Prox-
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imal Alternating Predictor-Corrector (PAPC) algo-
rithm (Drori et al., 2015). For simplicity, we name it
the PAPC algorithm. When applied to Problem (1),
with F strongly convex, the PAPC has been proved to
converge linearly by Salim et al. (Salim et al., 2020).

In this paper, we focus on the complexity of fully split
algorithms to solve Problem (1), which is of primary
importance in large-scale applications. That is, we
study the number of gradient computations and ma-
trix multiplications necessary to reach a given accu-
racy. We first derive lower bounds for these two quan-
tities. No algorithm is known, matching these lower
bounds, although nearly optimal algorithms exist in
the case b = 0 (Dvinskikh and Gasnikov, 2021). Then,
we propose a new accelerated primal–dual algorithm,
which matches the lower bounds, and thus is optimal.
Our algorithm can be viewed as an accelerated version
of the PAPC algorithm.

In summary, our main contributions are the follow-
ing:

• We provide complexity lower bounds for solving
Problem (1) within the class of algorithms per-
forming evaluations of ∇F and multiplications by
K and KT , by a reduction to the technique in
Scaman et al. (2017).

• We propose a new algorithm for solving Prob-
lem (1).

• We prove that the complexity of our algorithm
matches the lower bounds, and therefore it is op-
timal.

The complexity results presented in this paper are
dimension-independent. Under the additional assump-
tion that the dimension is small, one can imagine al-
ternative strategies to solve Problem (1) more effi-
ciently. Our algorithm is meant to be applied on high-
dimensional problems.

This paper is organized as follows. In Section 2, we
introduce the notations and assumptions. Then, we
summarize our contributions in the light of prior work
in Section 3. In Section 4, we define the class of algo-
rithms under study and we derive the corresponding
complexity lower bounds for solving (1). Our main
algorithm and our main result about its convergence
and complexity are given in Section 5. Our approach
for deriving and analyzing this algorithm is provided in
Section 6. We illustrate our convergence results by nu-
merical experiments in Section 7. The technical proofs
are postponed to the Supplementary Material.

2 Mathematical Setting

Let us make the formulation of the problem (1) more
precise. The convex function F : X → R is an L-
smooth and µ-strongly convex function, for some µ > 0
and L > 0; that is, F is differentiable and satisfies the
strong convexity inequality

F (x) + ⟨∇F (x), x′ − x⟩+ µ

2
∥x− x′∥2 ≤ F (x′),

and the smoothness inequality

F (x′) ≤ F (x) + ⟨∇F (x), x′ − x⟩+ L

2
∥x′ − x∥2,

for every (x, x′) ∈ X2. That is, ∇F is L-Lipschitz
continuous and F − µ

2 ∥ · ∥2 is convex. Moreover, the
Bregman divergence of F is denoted by DF (x, x

′) :=
F (x) − F (x′) − ⟨∇F (x′), x− x′⟩ ≥ 0. We have 0 <
µ ≤ L and we denote by

κ :=
L

µ
≥ 1

the condition number of F .

The kernel of the matrix K is denoted by ker(K)
and its range by range(K). We define the symmet-
ric positive semidefinite matrix W := KTK. The
largest eigenvalue of W is denoted by λmax(W) and
its smallest positive eigenvalue by λ+

min(W). We have
0 < λ+

min(W) ≤ λmax(W) and we denote by

χ(W) :=
λmax(W)

λ+
min(W)

≥ 1

the condition number of W.

The condition number κ (resp. χ(W)) measures the
regularity of F (resp. K). The complexity results
obtained in this paper are (nondecreasing) functions
of κ (resp. χ(W)).

We can note that ker(K) = ker(W). If ker(W) = {0},
the solution x⋆ to the linear system Kx = b is unique,
so that F does not play any role and Problem (1) re-
verts to solving this linear system. We allow for this
case, but it is of course not the focus of this paper.

Finally, we denote by ι{b} the indicator function of
{b}; that is, ι{b} : y ∈ Y 7→ {0 if y = b, +∞
otherwise}. This function is convex and lower semi-
continuous over Y. Denoting by ∂ the subdifferential
operator (Bauschke and Combettes, 2017, Section 16),
we recall that ∂ι{b}(y) ̸= ∅ if and only if y = b.

3 Related Works and Summary of the
Contributions

Most algorithms able to solve Problem (1) using eval-
uations of ∇F and multiplications by K and KT can
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be viewed as primal–dual algorithms. For instance,
the Condat-Vũ algorithm (Condat, 2013; Vũ, 2013)
and its variants, the PAPC algorithm (Loris and Ver-
hoeven, 2011; Chen et al., 2013; Drori et al., 2015)
can be applied to Problem (1). The PAPC algorithm
applied to Problem (1) consists in iterating xk+ 1

2 := xk − η∇F (xk)− ηKT yk

yk+1 := yk + θ(Kxk+ 1
2 − b)

xk+1 := xk − η∇F (xk)− ηKT yk+1

(2)

for some parameters η, θ > 0; it converges in general if
η ∈ (0, 2

L ) and ηθ∥K∥2 ≤ 1, see (Condat et al., 2019),
but this particular instance converges linearly (Salim
et al., 2020), see Table 1. To our knowledge, the first
algorithm solving Problem (1), for which linear conver-
gence was proved, has been proposed in Mishchenko
and Richtárik (2019), see Table 1.

Most of the progress in solving Problem (1), with b = 0,
at an accelerated or (nearly) optimal rate have been
made recently in the particular case of decentralized
optimization (Scaman et al., 2017; Gorbunov et al.,
2019; Li et al., 2020a,b; Ye et al., 2020; Arjevani et al.,
2020; Kovalev et al., 2020; Dvinskikh and Gasnikov,
2021). In this case, K is typically the square root
of a gossip matrix, i.e. a symmetric positive semidefi-
nite matrix supported by a graph, whose kernel is the
consensus space. In particular, optimal decentralized
algorithms have been proposed using acceleration tech-
niques (Nesterov, 2004; Auzinger, 2011; Allen-Zhu,
2017) in (Scaman et al., 2017; Kovalev et al., 2020;
Li et al., 2020b). In particular, the algorithm of Sca-
man et al. (2017) relies on the computation of ∇F ∗,
where F ∗ is the Fenchel transform of F . Since evaluat-
ing ∇F ∗ is equivalent to minimizing F , Kovalev et al.
(2020) proposed an algorithm relying on ∇F only. In
Machine Learning applications, ‘full’ gradients are of-
ten intractable, therefore Li et al. (2020b) introduced
a method relying on stochastic estimates of ∇F only.
Each of these three methods is optimal for the class of
algorithms they belong to. Our approach can be seen
as an extension of (Kovalev et al., 2020) to the general
setting of linearly constrained minimization, with an
arbitrary right hand side b.1

1We do not assume the knowledge of a solution x̃ to the
linear system Kx = b, otherwise one could get back to the
case b = 0 using a change of variable. One could think of
solving this linear system approximately as a preprocess-
ing step: the typical Conjugate Gradient Method yields
x̂ with ∥Kx̂ − b∥2 ≤ ϵ∥b∥2 with O(

√
χ log(1/ϵ)) complex-

ity, where χ = χ(W). But, assuming for simplicity that
∥K∥ = 1, to guarantee that ∥x̂ − x̃∥2 ≤ ϵ∥b∥2 for some x̃
with Kx̃ = b, using the inequality ∥x̂− x̃∥2 ≤ χ∥Kx̂− b∥2,
the complexity becomes O(

√
χ log(χ/ϵ)). Thus, there is an

additional log(χ) factor appearing in the complexity, which
is not optimal, contrary to the proposed approach.

In the case where projecting onto the constraint space
{x ∈ X : Kx = b} is possible, FISTA (Beck and
Teboulle, 2009; Chambolle and Dossal, 2015) is an op-
timal algorithm for solving Problem (1). FISTA can
be seen as Nesterov’s acceleration (Nesterov, 2004) of
the classical projected gradient algorithm.

In a nutshell, our approach consists in a rigorous com-
bination of Nesterov’s acceleration (Nesterov, 2004)
to minimize a smooth and strongly convex function,
and the Chebyshev iteration method (Flanders and
Shortley, 1950; Golub and Loan, 1983; Auzinger, 2011;
Gutknecht and Röllin, 2002) for linear system solving.
Our approach allows us to accelerate the PAPC algo-
rithm and, for the first time, to achieve the asymp-
totic complexity lower bounds. Our results and the
most relevant results of the literature are summarized
in Table 1.

4 First-Order Algorithms for the
Problem

We now define the family of algorithms considered to
solve Problem (1). Informally, this is the family of al-
gorithms using gradient computations and matrix mul-
tiplications. Since no particular structure is assumed
on K, any multiplication of the iterates by K must be
followed by a multiplication by KT in order to map
the iterates back into the optimization space X, before
an application of ∇F . Hence, we consider the wide
class of Black-Box First Order algorithms using ∇F ,
K andKT , denoted by BBFO(∇F,K), which generate
a sequence of vectors (xn)n∈N ∈ XN such that

xn+1 ∈ Span
(
x0, . . . , xn,∇F (x0), . . . ,∇F (xn),

KTSpan
(
b,Kx0, . . . ,Kxn,K∇F (x0), . . . ,

K∇F (xn)
))

and do not apply the operators ∇F , K and KT to
other vectors. It is important to note that the index
n need not coincide with the iteration counter of an
iterative algorithm: each xn can correspond to an in-
termediate vector in X obtained after any computation
or sequence of computations during the course of the
algorithm.

Theorem 1 (Lower bounds). Let χ ≥ 1. There exist
a vector b0, a matrix K0 such that the condition num-
ber of KT

0 K0 is χ, and a smooth and strongly convex
function F0 with condition number κ, such that the
following holds: for any ε > 0, any BBFO(∇F0,K0)
algorithm requires at least

• Ω(
√
κχ log(1/ε)) multiplications by K0,

• Ω(
√
κχ log(1/ε)) multiplications by KT

0 ,
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Table 1: Comparison of the complexity of state-of-the-art algorithms with our results, in terms of gradient
computations and matrix multiplications to find x ∈ X such that ∥x− x⋆∥2 ≤ ε. The condition number of F is
denoted by κ and the condition number of KTK is denoted by χ.

Algorithm Gradient computations Matrix multiplications

PAPC algorithm (Salim et al., 2020) O
(
(κ+ χ) log 1

ε

)
O
(
(κ+ χ) log 1

ε

)
(Mishchenko and Richtárik, 2019) O

(
(κ+ χ) log 1

ε

)
O
(
(κ+ χ) log 1

ε

)
(Dvinskikh and Gasnikov, 2021) (case b = 0) O

(√
κ log 1

ε

)
O
(√

κχ log2 1
ε

)
Algorithm 1 (This paper, Theorem 2) O

(√
κ log 1

ε

)
O
(√

κχ log 1
ε

)
Lower bound (This paper, Theorem 1) O

(√
κ log 1

ε

)
O
(√

κχ log 1
ε

)
• Ω(

√
κ log(1/ε)) computations of ∇F0,

to output a vector x such that ∥x − x⋆∥2 < ε, where
x⋆ = argmin{x : K0x=b0} F0(x).

Theorem 1 provides lower bounds on the number
of gradient computations and matrix multiplications
needed to reach ε accuracy, which here means that
∥x− x⋆∥2 ≤ ε.

Proof. We follow the ideas of Scaman et al. (2017), in
the context of decentralized optimization, to exhibit
worst-case function F0 and matrix K0. Let χ ≥ 1.

“Bad” function F0 and “bad” matrix K0. Con-
sider the family of smooth and strongly convex func-
tions (fi)

n
i=1 and the matrix W with condition num-

ber χ given by (Scaman et al., 2017, Corollary 2).
Denote by κ the common condition number of fi.
Set F0(x1, . . . , xn) :=

∑n
i=1 fi(xi), K0 :=

√
W and

b0 := 0. Then, the condition number of F is κ and the
condition number of W = KT

0 K0 is χ. Moreover, W
is a gossip matrix (Scaman et al., 2017, Section 2.2).

BBFO(∇F0,K0) are decentralized optimization
algorithms. Any BBFO algorithm using these op-
erators ∇F0, K0, K

T
0 can be rewritten as a function

of ∇F0 and W = KT
0 K0. Indeed,

Span
(
x0, . . . , xn,∇F0(x

0), . . . ,∇F0(x
n),

KT
0 Span

(
b0,K0x

0, . . . ,K0x
n,K0∇F0(x

0), . . . ,

K0∇F0(x
n)
))

= Span
(
x0, . . . , xn,∇F0(x

0), . . . ,∇F0(x
n),

Span
(
Wx0, . . . ,Wxn,W∇F0(x

0), . . . ,

W∇F0(x
n)
))

.

Since W is a gossip matrix, BBFO(∇F0,K0) algo-
rithms are therefore Black-box optimization proce-
dures using W, in the sense of (Scaman et al., 2017,

Section 3.1). In other words, BBFO(∇F0,K0) algo-
rithms are decentralized optimization algorithms over
a network, in which communication amounts to mul-
tiplication by W, and local computations correspond
to evaluations of ∇F .

Any solution to (1) is a solution to a decen-
tralized optimization problem. Since ker(W) is
the consensus space, x⋆ = argmin{x : Wx=0} F0(x)
can be written as x⋆ = (x⋆

0, . . . , x
⋆
0) where x⋆

0 =
argmin 1

n

∑n
i=1 fi.

BBFO(∇F0,K0) algorithms cannot outperform
the lower bounds of decentralized algorithms.
As shown in Scaman et al. (2017, Corollary 2), for
any ε > 0, any Black-box optimization procedure us-
ing W requires at least Ω

(√
κχ log(1/ε)

)
communi-

cation rounds, and at least Ω (
√
κ log(1/ε)) gradient

computations to output x = (x1, . . . , xn) such that
∥x − x⋆∥2 < ε, where x⋆ = argminF0. In particular,
for any ε > 0, any BBFO(∇F0,K0) algorithm requires
at least Ω

(√
κχ log(1/ε)

)
multiplications by KT

0 K0,
and at least Ω (

√
κ log(1/ε)) computations of ∇F0 to

output x = (x1, . . . , xn) such that ∥x−x⋆∥2 < ε, where
x⋆ = argminF0.

Finally, one multiplication by W is equivalent to one
multiplication by K0 followed by one multiplication by
KT

0 .

5 Proposed Algorithm

In this section, we present our main algorithm, Algo-
rithm 1, and our main convergence result, Theorem 2.
The derivations and proofs are deferred to Section 6.
Algorithm 2 implements the classical Chebyshev iter-
ation (Flanders and Shortley, 1950; Golub and Loan,
1983; Auzinger, 2011; Gutknecht and Röllin, 2002),
see Section 6.3 for details. It is used as a subrou-
tine in Algorithm 1 and denoted by Chebyshev, with
its parameters passed as arguments. We stress here
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Algorithm 1 Proposed algorithm

1: Parameters: x0 ∈ X, N ∈ N∗, τ ∈ (0, 1),
2: λ1, λ2, η, θ, α > 0
3: x0

f := x0, u0 := 0X
4: for k = 0, 1, . . . do
5: xk

g := τxk + (1− τ)xk
f

6: xk+ 1
2 := (1 + ηα)−1

(
xk − η(∇F (xk

g)

7: − αxk
g + uk)

)
8: rk := θ

(
xk+ 1

2

9: − Chebyshev(xk+ 1
2 ,K, b,N, λ1, λ2)

)
10: uk+1 := uk + rk

11: xk+1 := xk+ 1
2 − η(1 + ηα)−1rk

12: xk+1
f := xk

g + 2τ
2−τ (x

k+1 − xk)
13: end for

Algorithm 2 Chebyshev iteration

1: Parameters: z0 ∈ X,K, b ∈ Y, N ∈ N∗, λ1 > 0,
λ2 > 0.

2: ρ :=
(
λ1 − λ2

)2
/16, ν := (λ1 + λ2)/2

3: γ0 := −ν/2
4: p0 := −KT (Kz0 − b)/ν
5: z1 := z0 + p0

6: for i = 1, . . . , N − 1 do
7: βi−1 := ρ/γi−1

8: γi := −(ν + βi−1)
9: pi :=

(
KT (Kzi − b) + βi−1pi−1

)
/γi

10: zi+1 := zi + pi

11: end for
12: Output: zN

that the Chebyshev iteration is diverted from its usual
use, which is solving linear systems, and is used here
as a preconditioner (a similar idea appears in Bredies
and Sun (2015)). Although Algorithm 1 runs at every
iteration a number N of Chebyshev iterations, there
is no approximation or truncation error here: Algo-
rithm 1 converges to the exact solution x⋆ of Prob-
lem (1). This is achieved without solving the full linear
system Kx = b at each iteration.

Theorem 2 (Convergence of Algorithm 1). Consider
λ1 ≥ λmax(W) and λ2 such that 0 < λ2 ≤ λ+

min(W).
Let χ := λ1

λ2
and choose N ≥ √

χ.

Set the parameters τ, η, θ, α as τ := min
{
1, 1

2

√
19
15κ

}
,

η := 1
4τL , θ := 15

19η , and α := µ. Then, there exists
C ≥ 0 such that

1

η

∥∥xk − x⋆
∥∥2 + 2(1− τ)

τ
DF (x

k
f , x

⋆)

≤

(
1 +

1

4
min

{
15

19
,

√
15

19κ

})−k

C.

Moreover, for every ε > 0, Algorithm 1 finds xk for
which ∥xk − x⋆∥2 ≤ ε using O (

√
κ log(1/ε)) gradient

computations and O (N
√
κ log(1/ε)) matrix multipli-

cations with K or KT .

Corollary 1 (Tight version of Theorem 2). Set the
parameters λ1, λ2, N, τ, η, θ, α to λ1 = λmax(W), λ2 =

λ+
min(W), N = ⌈

√
χ(W)⌉, τ = min

{
1, 1

2

√
19
15κ

}
,

η = 1
4τL , θ = 15

19η , and α = µ. Then, for every

ε > 0, Algorithm 1 finds xk for which ∥xk − x⋆∥2 ≤
ε using O (

√
κ log(1/ε)) gradient computations and

O
(√

κχ(W) log(1/ε)
)
matrix multiplications with K

or KT .

The complexity result given by Corollary 1 is summa-
rized in Table 1. Algorithm 1 is a BBFO algorithm
because each step of each iteration is a BBFO update.
Thus, the complexity of Algorithm 1 matches the lower
bounds of Theorem 1, in terms of both gradient com-
putations and matrix multiplications.

6 Derivation of the Algorithm and
Proof of Theorem 2

In this section, we explain how we derive our main
algorithm from the PAPC algorithm and prove Theo-
rem 2 step by step. First, we derive the primal–dual
optimality conditions associated to Problem (1).

6.1 Primal–Dual Optimality Conditions

First, note that argminKx=b F (x) = argminF (x) +
ι{b}(Kx). Define the strongly convex function G :
x 7→ F (x) + ι{b}(Kx). Then, 0 ∈ ∂G(x⋆) =
∇F (x⋆) + KT∂ι{b}(Kx⋆) (Bauschke and Combettes,
2017, Theorem 16.47). This means that there exists
y⋆ ∈ ∂ι{b}(Kx⋆) such that 0 = ∇F (x⋆) +KT y⋆. Be-
sides, ∂ι{b}(Kx⋆) is nonempty if and only if Kx⋆ = b.
Finally, the pair (x⋆, y⋆) must satisfy{

0 = ∇F (x⋆) +KT y⋆,
0 = −Kx⋆ + b.

(3)

These equations are called primal–dual optimality con-
ditions, and are also the first-order conditions associ-
ated to the Lagrangian function L(x, y) := F (x) +
⟨Kx− b, y⟩ associated to Problem (1). Moreover,
(x⋆, y⋆) is called an optimal primal–dual pair. If
(x⋆, y⋆) is an optimal primal–dual pair, then (x⋆, y⋆ +
ȳ), where ȳ ∈ ker(KT ), is also an optimal primal–
dual pair. Thus, in the sequel, we denote by (x⋆, y⋆)
the only optimal primal–dual pair such that y⋆ ∈
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Algorithm 3 Intermediate algorithm

1: Parameters: x0 ∈ X, y0 = 0Y, η, θ, α > 0, τ ∈
(0, 1)

2: Set x0
f = x0

3: for k = 0, 1, 2, . . . do
4: xk

g := τxk + (1− τ)xk
f

5: xk+ 1
2 := (1 + ηα)−1(xk − η(∇F (xk

g) − αxk
g +

KT yk))

6: yk+1 := yk + θ(Kxk+ 1
2 − b)

7: xk+1 := (1 + ηα)−1(xk − η(∇F (xk
g) − αxk

g +

KT yk+1))
8: xk+1

f := xk
g + 2τ

2−τ (x
k+1 − xk)

9: end for

range(K); that is, such that{
0 = ∇F (x⋆) +KT y⋆, y⋆ ∈ range(K),
0 = −Kx⋆ + b.

(4)

We can note that the sequence of iterates (xk, yk) of
the PAPC algorithm, shown in (2), converges linearly
to (x⋆, y⋆) (Salim et al., 2020, Theorem 8), as reported
in Table 1.

6.2 Nesterov’s Acceleration

The first step to derive Algorithm 1 is to propose a
variant of the PAPC (2) using Nesterov’s accelera-
tion (Nesterov, 2004). Nesterov acceleration is now
classical for proximal gradient descent but its exten-
sion to primal-dual settings remains an open area.
This intermediate algorithm is Algorithm 3, shown
above. Its convergence is stated in Proposition 1.

Proposition 1 (Algorithm 3). Consider λ1 ≥
λmax(W) and λ2 such that 0 < λ2 ≤ λ+

min(W). De-
note χ := λ1

λ2
.

Set the parameters of Algorithm 3 as τ :=
min

{
1, 1

2

√
χ
κ

}
, η := 1

4τL , θ := 1
ηλ1

, and α := µ. Then,

1

η

∥∥xk − x⋆
∥∥2 + ηα

θ(1 + ηα)

∥∥yk − y⋆
∥∥2 (5)

+
2(1− τ)

τ
DF (x

k
f , x

⋆) ≤
(
1 +

1

4
min

{
1

√
κχ

,
1

χ

})−k

C,

where C := 1
η

∥∥x0 − x⋆
∥∥2 + 1

θ∥y
0 − y⋆∥2 +

2(1−τ)
τ DF (x

0
f , x

⋆).

Proposition 1 states the linear convergence of the dis-
tance between the iterates and the primal–dual op-
timal point. In particular, if λ1 = λmax(W) and
λ2 = λ+

min(W), then ∥x− x⋆∥2 ≤ ε after

O
((√

κχ(W) + χ(W)
)
log
(
1
ε

))

gradient computations and matrix multiplications.
Besides, Proposition 1 states the linear convergence of
the Bregman divergence of F . Using (4), one can check
that the Bregman divergence of F is equal to the re-
stricted primal–dual gap, in particular: DF (x

k
f , x

⋆) =

L(xk
f , y

⋆)− L(x⋆, yk).

The proof of Proposition 1 is provided in the Supple-
mentary Material. The main tool of the proof is the
following representation of Algorithm 3.

We denote by Q the (d + p) × (d + p) matrix defined
blockwise by

Q :=

[ 1
η IX 0

0 1
θ IY − η

1+ηαKKT

]
, (6)

where IX (resp. IY) is the identity matrix over X (resp.
Y).

Lemma 1. The following equality holds:

Q

[
xk+1 − xk

yk+1 − yk

]
=

[
α(xk

g − xk+1)− (∇F (xk
g) +KT yk+1)

Kxk+1 − b

]
.

(7)

Lemma 1, proved in the Supplementary Material,
enables to view Algorithm 3 as a variant of the
Forward–Backward algorithm involving monotone op-
erators, see (Bauschke and Combettes, 2017, Section
26.14) or (Condat et al., 2019) for more details. The
Forward–Backward algorithm is a fixed-point algo-
rithm. For instance, one can see in Equation (7) that
a fixed point (xk, yk) = (x⋆, y⋆) is a solution to (3).
Hence, Algorithm 3 can be viewed as an accelerated
primal–dual fixed-point algorithm.

6.3 Chebyshev’s Acceleration

Our main Algorithm 1 is obtained as a particular
instantiation of Algorithm 3. More precisely, we
use a finite number of steps of the Chebyshev itera-
tion (Flanders and Shortley, 1950; Golub and Loan,
1983; Auzinger, 2011; Gutknecht and Röllin, 2002) to
precondition the linear system and accelerate the res-
olution of Problem (1). This idea was already ap-
plied in the particular setting of decentralized opti-
mization (Scaman et al., 2017, 2018).

Consider a polynomial P such that, for every eigen-
value t of W, P(t) ≥ 0 and (P(t) = 0 ⇔ t = 0). Since
Kx⋆ = b,

Kx = b ⇔ K(x− x⋆) = 0 ⇔ KTK(x− x⋆) = 0

⇔ W(x− x⋆) = 0 ⇔ P(W)(x− x⋆) = 0

⇔
√

P(W)(x− x⋆) = 0

⇔
√

P(W)x =
√

P(W)x⋆.
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Therefore, the problem

min
x∈X

F (x) s.t.
√
P(W)x =

√
P(W)x⋆, (8)

is equivalent to Problem (1). Consequently, to solve
Problem (1), one can apply Algorithm 3 by replacing
K by

√
P(W) and b by

√
P(W)x⋆; we will see below

that x⋆ is not needed in the computations, only b is.
Since

√
P(W) is symmetric, this leads to the following

algorithm:

xk
g := τxk + (1− τ)xk

f

xk+ 1
2 := (1 + ηα)−1

(
xk − η(∇F (xk

g)− αxk
g

+
√
P(W)yk)

)
yk+1 := yk + θ

(√
P(W)xk+ 1

2 −
√
P(W)x⋆

)
xk+1 := (1 + ηα)−1

(
xk − η(∇F (xk

g)− αxk
g

+
√

P(W)yk+1)
)

xk+1
f := xk

g + 2τ
2−τ (x

k+1 − xk)

.

(9)
After applying the change of variable uk :=√

P(W)yk, we get:
xk
g := τxk + (1− τ)xk

f

xk+ 1
2 := (1 + ηα)−1

(
xk − η(∇F (xk

g)− αxk
g + uk)

)
uk+1 := uk + θ

(
P(W)xk+ 1

2 −P(W)x⋆
)

xk+1 := (1 + ηα)−1
(
xk − η(∇F (xk

g)− αxk
g + uk+1)

)
xk+1
f := xk

g + 2τ
2−τ (x

k+1 − xk).

(10)

To obtain Algorithm 1 and Theorem 2, we have to
choose a suitable polynomial P and show how to com-
pute P(W)xk+ 1

2 −P(W)x⋆ efficiently.

6.3.1 Choice of P

The goal is to make Problem (8) better conditioned
than Problem (1). For this, we want P to cluster all
the positive eigenvalues of W around the same value,
say 1 (the scaling of P does not matter, since it is
compensated by the stepsizes). To that aim, the best
choice is to set P as 1 minus a Chebyshev polynomial
of appropriate degree (Auzinger, 2011, Theorem 6.1).
More precisely, let T n be the Chebyshev polynomial
of the first kind of degree n ≥ 0, which is such that
{T n(t) : t ∈ [−1, 1]} = [−1, 1]. Let λ1 ≥ λmax(W)
and 0 < λ2 ≤ λ+

min(W) be upper and lower bounds of
the eigenvalues of W. Set χ := λ1/λ2 ≥ χ(W) ≥ 1.

If λ1 = λ2, no preconditioning is necessary and we
could just set P(W) = W. So, let us assume that
λ2 < λ1 (the derivations can be shown to be still valid
if λ2 = λ1).

For every n ≥ 1, we define the shifted Chebyshev poly-
nomial T̃ n as

T̃ n(t) =
T n

(
(λ1 + λ2 − 2t)/(λ1 − λ2)

)
T n

(
(λ1 + λ2)/(λ1 − λ2)

) . (11)

Then, for every n ≥ 1, T̃ n(0) = 1, T̃ n(t) decreases
monotonically for t ∈ [0, λ2], and

max
t∈[λ2,λ1]

|T̃ n(t)| =
1

T n

(
(λ1 + λ2)/(λ1 − λ2)

) (12)

=
2ζn

1 + ζ2n
< 1, where ζ =

√
χ− 1

√
χ+ 1

< 1,

see (Auzinger, 2011, Corollary 6.1). Hence, ifN ≥ √
χ,

then

max
t∈[λ2,λ1]

|T̃N (t)| < 0.266 <
4

15
. (13)

Indeed, −1/ ln((t − 1)/(t + 1)) < t/2 for every t ≥ 1,
therefore by setting t =

√
χ we obtain N ≥ √

χ ⇒
N > −2/ ln(ζ) ⇒ ζN < e−2 ⇒ 2ζN/(1+ζ2N ) < 0.266.

Therefore, we set

P := 1− T̃N (14)

for some N ≥ √
χ. Then, we have

λmax(P(W)) ≤ max
t∈[λ2,λ1]

P(t) ≤ 1 + max
t∈[λ2,λ1]

|T̃N (t)| ≤ 19

15
,

λ+
min(P(W)) ≥ min

t∈[λ2,λ1]
P(t) ≥ 1− max

t∈[λ2,λ1]
|T̃N (t)| ≥ 11

15
,

χ
(
P(W)

)
≤ 19

11
.

6.3.2 Efficient Computation of
P(W)x−P(W)x⋆ without Knowing x⋆

We still have to show how to compute P(W)x −
P(W)x⋆, for any x ∈ X. Consider N ≥ 1 and P de-
fined in (14). Now, we can observe that Algorithm 1
is equivalent to the iterations (10), and there remains
to prove that for every x ∈ X,

P(W)x−P(W)x⋆ = x−Chebyshev(x,K, b,N, λ1, λ2).
(15)

The vector zN = Chebyshev(x,K, b,N) is the N th it-
erate of the classical Chebyshev iteration to solve the
linear system Kz = b, or equivalently Wz = KT b,
starting with some initial guess z0 = x, using the re-
currence relation of the Chebyshev polynomials T̃N ,
see Algorithm 4 in Gutknecht and Röllin (2002)2. The
rest of the proof is given in the Supplementary Mate-
rial.

7 Experiments

We illustrate the performance of our Algorithm 1 in
a compressed-sensing-type experiment: we want to es-
timate a sparse vector x♯ ∈ X = Rd, with d = 1000,

2Several recurrence relations can be used to compute

T̃ n, and we chose Algorithm 4 in Gutknecht and Röllin
(2002) because it is proved to be numerically stable.
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Figure 1: Error ∥x−x⋆∥2 with respect to the number of calls to K and KT to obtain x (left) and to the number
of calls to ∇F , equal to the number k of iterations, to obtain x = xk (right).

having 50 randomly chosen nonzero elements (equal to
1) from b = Kx♯ ∈ Y = Rp, with p = 250, where K
has random i.i.d. Gaussian elements and its nonzero
singular values are modified so that they span the in-
terval [1/

√
χ, 1] for some prescribed value of χ. Solv-

ing Problem (1) with F the ℓ1 norm yields perfect
reconstruction with x⋆ = x♯. Thus, without pretend-
ing in any way that this is the best way to solve this
estimation problem, we solve Problem (1) with F a
L-smooth and µ-strongly convex approximation of the
ℓ1 norm: we set F : x = (xi)

d
i=1 ∈ X 7→

∑d
i=1 f(xi)

with f : t ∈ R 7→
√
t2 + e2 + (e/2)t2, for some e > 0,

so that L = 1/e + e, µ = e, κ = L/µ = 1 + 1/e2. So,
given a prescribed value of κ, we set e =

√
1/(κ− 1).

The results are shown in Figure 1 for Algorithm 1 and
the PAPC algorithm, for χ = 105 and κ = 104; other
values gave similar plots. The computation time is
roughly the same as the number of calls to K and KT

here.

Both algorithms converge linearly, but Algorithm 1
has a much better rate, which corresponds visually
to the slope of the curves in Figure 1. Algorithm 1
makes N = 317 calls to K and KT corresponding to
the Chebyshev ‘inner loop’ between two gradient eval-
uations. It needs less gradient calls than PAPC to
achieve the same accuracy. The red curve in the right
plot is the same as in the left plot, but stretched hor-
izontally by a factor N = 317 (note the change in
horizontal scale).
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8 Proof of Proposition 1

We denote by ∥ · ∥Q (resp. ⟨·, ·⟩Q) the norm (resp. inner product) induced by Q, defined in (6). The norm ∥ · ∥Q
satisfies the following properties, stated as lemmas.

8.1 Preliminary Lemmas

Lemma 2. If the parameters η > 0 and θ > 0 satisfy

ηθλmax(W) ≤ 1, (16)

and if α > 0, then the symmetric matrix Q is positive definite and for every x ∈ X, y ∈ Y, the following inequality
holds:

1

η
∥x∥2 ≤ 1

η
∥x∥2 + ηα

θ(1 + ηα)
∥y∥2 ≤

∥∥∥∥[xy
]∥∥∥∥2

Q

≤ 1

η
∥x∥2 + 1

θ
∥y∥2. (17)

Proof. The nonzero eigenvalues of W = KTK are the nonzero eigenvalues of KKT , therefore λmax(W) =
λmax(KKT ). Consequently, using (16),

η

1 + ηα
∥KT y∥2 ≤ η

1 + ηα
λmax(W)∥y∥2 ≤ ∥y∥2

θ(1 + ηα)
.

Therefore, since αη > 0,

1

η
∥x∥2 +

(
1

θ
− 1

θ(1 + ηα)

)
∥y∥2 ≤

∥∥∥∥[xy
]∥∥∥∥2

Q

=
1

η
∥x∥2 + 1

θ
∥y∥2 − η

1 + ηα
∥KT y∥2,

which proves in particular that Q is positive definite.

Besides, lines 5 to 7 of Algorithm 3 admit the following representation, which is at the core of the convergence
proof.

Lemma 3. The following equality holds:

Q

[
xk+1 − xk

yk+1 − yk

]
=

[
α(xk

g − xk+1)− (∇F (xk
g) +KT yk+1)

Kxk+1 − b

]
. (18)

Proof. Using the definition of Q, we have

Q

[
xk+1 − xk

yk+1 − yk

]
=

[ 1
η (x

k+1 − xk)
1
θ (y

k+1 − yk)− η
1+ηαKKT (yk+1 − yk)

]
.

From line 7 of Algorithm 3 it follows that
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1

η
(xk+1 − xk) = α(xk

g − xk+1)− (∇F (xk
g) +KT yk+1),

and from line 6 of Algorithm 3

yk+1 − yk = θ(Kxk+ 1
2 − b).

Hence,

Q

[
xk+1 − xk

yk+1 − yk

]
=

[
α(xk

g − xk+1)− (∇F (xk
g) +KT yk+1)

(Kxk+ 1
2 − b)− η

1+ηαKKT (yk+1 − yk)

]
.

From lines 5 and 7 of Algorithm 3,

xk+1 − xk+ 1
2 =

−η

1 + ηα
KT (yk+1 − yk), (19)

therefore,

(Kxk+ 1
2 − b)− η

1 + ηα
KKT (yk+1 − yk) = K

(
xk+ 1

2 − η

1 + ηα
KT (yk+1 − yk)

)
− b = Kxk+1 − b.

Finally,

Q

[
xk+1 − xk

yk+1 − yk

]
=

[
α(xk

g − xk+1)− (∇F (xk
g) +KT yk+1)

Kxk+1 − b

]
.

We now start the proof of Proposition 1.

Lemma 4. Suppose that α satisfies 0 ≤ α ≤ µ. Then the following inequality holds:

− 1

2η
∥xk+1 − xk∥2 ≤ −η

4
∥KT yk+1 −KT y⋆∥2 + ηα2∥xk+1 − x⋆∥2 + 2ηLDF (x

k
g , x

⋆). (20)

Proof. From line 7 of Algorithm 3 and the optimality condition ∇F (x⋆) +KT y⋆ = 0, it follows that

∥xk+1 − xk∥2 = ∥η(KT yk+1 −KT y⋆) + η(∇F (xk
g)−∇F (x⋆)− α(xk

g − x⋆)) + ηα(xk+1 − x⋆)∥2

≥ η2

2
∥KT yk+1 −KT y⋆∥2 − 2η2α2∥xk+1 − x⋆∥2

− 2η2∥∇F (xk
g)−∇F (x⋆)− α(xk

g − x⋆)∥2,

where we used ∥a+ b+ c∥2 ≥ 0.5∥a∥2 − 2∥b∥2 − 2∥c∥2. Let F̄ (x) := F (x)− α
2 ∥x∥

2. The function F̄ is a convex
and (L−α)-smooth function, therefore ∥∇F̄ (x)−∇F̄ (x′)∥2 ≤ 2(L−α)DF̄ (x, x

′). Therefore, we can lower bound
the last term and get

∥xk+1 − xk∥2 ≥ η2

2
∥KT yk+1 −KT y⋆∥2 − 2η2α2∥xk+1 − x⋆∥2 − 4η2(L− α)DF̄ (x

k
g , x

⋆)

≥ η2

2
∥KT yk+1 −KT y⋆∥2 − 2η2α2∥xk+1 − x⋆∥2 − 4η2LDF (x

k
g , x

⋆).

Rearranging and dividing by 2η concludes the proof.

Our last lemma states the linear convergence of a Lyapunov function to zero.

Lemma 5. Consider λ1 ≥ λmax(W) and λ2 ≤ λ+
min(W).

Let parameter η be defined by

η =
1

4τL
. (21)
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Let us set the parameter θ as

θ =
1

ηλ1
. (22)

Let us set the parameter α as
α = µ. (23)

Let us set the parameter τ as

τ = min

{
1,

1

2

√
µ

L

λ1

λ2

}
. (24)

Let Ψk be the following Lyapunov function:

Ψk =

∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

+
2(1− τ)

τ
DF (x

k
f , x

⋆), (25)

Then the following inequality holds:

Ψk+1 ≤

(
1 +

1

4
min

{√
µ

L

λ2

λ1
,
λ2

λ1

})−1

Ψk. (26)

Proof. ∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

=

∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

−
∥∥∥∥[xk+1 − xk

yk+1 − yk

]∥∥∥∥2
Q

+ 2

〈[
xk+1 − xk

yk+1 − yk

]
,

[
xk+1 − x⋆

yk+1 − y⋆

]〉
Q

.

Note that stepsize η defined by (21) and stepsize θ defined by (22) satisfy (16), hence inequality (17) holds.
Using (17) and (18) we get∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− 1

η
∥xk+1 − xk∥2

+ 2

〈[
α(xk

g − xk+1)− (∇F (xk
g) +KT yk+1)

Kxk+1 − b

]
,

[
xk+1 − x⋆

yk+1 − y⋆

]〉
=

∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− 1

η
∥xk+1 − xk∥2 + 2α⟨xk

g − xk+1, xk+1 − x⋆⟩

− 2

〈[
∇F (xk

g) +KT yk+1

−Kxk+1 + b

]
−
[
∇F (x⋆) +KT y⋆

−Kx⋆ + b

]
,

[
xk+1 − x⋆

yk+1 − y⋆

]〉
,

using the primal–dual optimality conditions (4). Rewrite[
∇F (xk

g) +KT yk+1

−Kxk+1 + b

]
−
[
∇F (x⋆) +KT y⋆

−Kx⋆ + b

]
=

[
∇F (xk

g)−∇F (x⋆)
b− b

]
+

[
0 KT

−K 0

] [
xk+1 − x⋆

yk+1 − y⋆

]
.

Using ⟨Az, z⟩ = 0 for any skew-symmetric matrix A, we obtain

−2

〈[
∇F (xk

g) +KT yk+1

−Kxk+1 + b

]
−
[
∇F (x⋆) +KT y⋆

−Kx⋆ + b

]
,

[
xk+1 − x⋆

yk+1 − y⋆

]〉
= −2⟨∇F (xk

g)−∇F (x⋆), xk+1 − x⋆⟩.

Hence, ∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− 1

η
∥xk+1 − xk∥2 + 2α⟨xk

g − xk+1, xk+1 − x⋆⟩

− 2⟨∇F (xk
g)−∇F (x⋆), xk+1 − x⋆⟩

=

∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− 1

η
∥xk+1 − xk∥2 − 2α∥xk+1 − x⋆∥2

− 2α⟨xk
g − x⋆, xk+1 − x⋆⟩ − 2⟨∇F (xk

g)−∇F (x⋆), xk+1 − x⋆⟩.
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Using Young’s inequality 2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2 we get

∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− 1

η
∥xk+1 − xk∥2 − 2α∥xk+1 − x⋆∥2

+ α∥xk
g − x⋆∥2 + α∥xk+1 − x⋆∥2 − 2⟨∇F (xk

g)−∇F (x⋆), xk+1 − x⋆⟩

=

∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− 1

η
∥xk+1 − xk∥2 − α∥xk+1 − x⋆∥2 + α∥xk

g − x⋆∥2

− 2⟨∇F (xk
g)−∇F (x⋆), xk+1 − x⋆⟩.

Using line 4 of Algorithm 3, we have xk − x⋆ = (xk
g − x⋆) + 1−τ

τ (xk
g − xk

f ) and using line 8, xk+1 − xk =
2−τ
2τ (xk+1

f − xk
g). Therefore, decomposing xk+1 − x⋆ = (xk+1 − xk) + (xk − x⋆),

∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− α∥xk+1 − x⋆∥2 + α∥xk
g − x⋆∥2 − 1

2η
∥xk+1 − xk∥2

− 2− τ

τ

(
⟨∇F (xk

g)−∇F (x⋆), xk+1
f − xk

g⟩+
1

2η

(2− τ)

4τ
∥xk+1

f − xk
g∥2
)

− 2⟨∇F (xk
g)−∇F (x⋆), xk

g − x⋆⟩+ 2(1− τ)

τ
⟨∇F (xk

g)−∇F (x⋆), xk
f − xk

g⟩.

Since η defined by (21) satisfies η ≤ 2−τ
4τL , we get

∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− α∥xk+1 − x⋆∥2 + α∥xk
g − x⋆∥2 − 1

2η
∥xk+1 − xk∥2

− 2− τ

τ

(
⟨∇F (xk

g)−∇F (x⋆), xk+1
f − xk

g⟩+
L

2
∥xk+1

f − xk
g∥2
)

− 2⟨∇F (xk
g)−∇F (x⋆), xk

g − x⋆⟩

+
2(1− τ)

τ
⟨∇F (xk

g)−∇F (x⋆), xk
f − xk

g⟩.

Using µ-strong convexity and L-smoothness of F we get

∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− α∥xk+1 − x⋆∥2 + α∥xk
g − x⋆∥2 − 1

2η
∥xk+1 − xk∥2

− 2− τ

τ

(
DF (x

k+1
f , x⋆)−DF (x

k
g , x

⋆)
)

+
2(1− τ)

τ

(
DF (x

k
f , x

⋆)−DF (x
k
g , x

⋆)
)

− 2
(
DF (x

k
g , x

⋆) +
µ

2
∥xk

g − x⋆∥2
)

=

∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− α∥xk+1 − x⋆∥2 + 2(1− τ)

τ
DF (x

k
f , x

⋆)

− 2− τ

τ
DF (x

k+1
f , x⋆)

+ (α− µ)∥xk
g − x⋆∥2 − 1

2η
∥xk+1 − xk∥2 −DF (x

k
g , x

⋆).

Now, we define δ = min
{
1, 1

2ηL

}
. Since α defined by (23) satisfies conditions of Lemma 4, we can use (20) and
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get ∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− α∥xk+1 − x⋆∥2 + 2(1− τ)

τ
DF (x

k
f , x

⋆)

− 2− τ

τ
DF (x

k+1
f , x⋆)

+ (α− µ)∥xk
g − x⋆∥2 − δ

2η
∥xk+1 − xk∥2 −DF (x

k
g , x

⋆)

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− α∥xk+1 − x⋆∥2 + 2(1− τ)

τ
DF (x

k
f , x

⋆)

− 2− τ

τ
DF (x

k+1
f , x⋆)− ηδ

4
∥KT yk+1 −KT y⋆∥2 + ηα2δ∥xk+1 − x⋆∥2

+ 2ηLδDf (x
k
g , x

⋆) + (α− µ)∥xk
g − x⋆∥2 −DF (x

k
g , x

⋆)

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− α∥xk+1 − x⋆∥2 + 2(1− τ)

τ
DF (x

k
f , x

⋆)

− 2− τ

τ
DF (x

k+1
f , x⋆)− ηδ

4
∥KT yk+1 −KT y⋆∥2 + α2

2L
∥xk+1 − x⋆∥2

+ (α− µ)∥xk
g − x⋆∥2

=

∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

−
(
α− α2

2L

)
∥xk+1 − x⋆∥2 − ηδ

4
∥KT yk+1 −KT y⋆∥2

+
2(1− τ)

τ
DF (x

k
f , x

⋆)− 2− τ

τ
DF (x

k+1
f , x⋆) + (α− µ)∥xk

g − x⋆∥2.

Using the parameter α = µ defined in (23) and using µ ≤ L, we get∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− µ

2
∥xk+1 − x⋆∥2 − ηδ

4
∥KT yk+1 −KT y⋆∥2

+
2(1− τ)

τ
DF (x

k
f , x

⋆)− 2− τ

τ
DF (x

k+1
f , x⋆).

For every y ∈ range(K), λ2∥y∥2 ≤ λ+
min(W)∥y∥2 ≤ ∥KT y∥2. Using line 6 of Algorithm 3, one can check by

induction that yk ∈ range(K) for every k ≥ 0. Moreover, using (4), y⋆ ∈ range(K). Therefore,∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

− µ

2
∥xk+1 − x⋆∥2 − ηδλ2

4
∥yk+1 − y⋆∥2

+
2(1− τ)

τ
DF (x

k
f , x

⋆)− 2− τ

τ
DF (x

k+1
f , x⋆).

Using (17) we get ∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

−min

{
ηµ

2
,
ηθδλ2

4

}∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

+
2(1− τ)

τ
DF (x

k
f , x

⋆)− 2− τ

τ
DF (x

k+1
f , x⋆).

Using the parameter θ defined in (22) and the definition of δ, we get∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

−min

{
ηµ

2
,
λ2

4λ1
,

λ2

8ηLλ1

}∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

+
2(1− τ)

τ
DF (x

k
f , x

⋆)− 2− τ

τ
DF (x

k+1
f , x⋆).
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Plugging the parameter η defined in (21), we get∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

−min

{
µ

8τL
,
λ2

4λ1
,
τλ2

2λ1

}∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

+
2(1− τ)

τ
DF (x

k
f , x

⋆)− 2− τ

τ
DF (x

k+1
f , x⋆)

≤
∥∥∥∥[xk − x⋆

yk − y⋆

]∥∥∥∥2
Q

−min

{
µ

8τL
,
λ2

4λ1
,
τλ2

2λ1

}∥∥∥∥[xk+1 − x⋆

yk+1 − y⋆

]∥∥∥∥2
Q

+
2(1− τ)

τ
DF (x

k
f , x

⋆)−
(
1 +

τ

2

) 2(1− τ)

τ
DF (x

k+1
f , x⋆).

After rearranging the terms and using the definition of Ψk in (25), we get

Ψk ≥
(
1 + min

{
τ

2
,

µ

8τL
,
λ2

4λ1
,
τλ2

2λ1

})
Ψk+1.

Plugging the parameter τ defined in (24), we get

Ψk ≥

(
1 +

1

4
min

{√
µ

L

λ2

λ1
,
λ2

λ1

})
Ψk+1.

8.2 End of the Proof of Proposition 1

The conditions of Lemma 5 are satisfied, hence the following inequality holds for every k ≥ 0:

Ψk+1 ≤

(
1 +

1

4
min

{√
µ

L

λ2

λ1
,
λ2

λ1

})−1

Ψk.

After telescoping we get

Ψk ≤

(
1 +

1

4
min

{√
µ

L

λ2

λ1
,
λ2

λ1

})−k

Ψ0.

Inequality (17) implies Ψ0 ≤ C, where C := 1
η

∥∥x0 − x⋆
∥∥2 + 1

θ∥y
0 − y⋆∥2 + 2(1−τ)

τ DF (x
0
f , x

⋆). Hence, we obtain

Ψk ≤

(
1 +

1

4
min

{√
µ

L

λ2

λ1
,
λ2

λ1

})−k

C. (27)

It remains to lower bound Ψk using (17) one more time:

1

η

∥∥xk − x⋆
∥∥2 + ηα

θ(1 + ηα)

∥∥yk − y⋆
∥∥2 + 2(1− τ)

τ
DF (x

k
f , x

⋆) ≤ Ψk.

Combining with (27) gives the result. □

9 Proof of Theorem 2

9.1 Proof of Equation (15)

The vector zN = Chebyshev(x,K, b,N) is the N th iterate of the Chebyshev iteration, which amounts to applying

the Chebyshev polynomials T̃N to the residual KT (Kz0 − b), to make it converge to zero. So, zN satisfies

KT (KzN − b) = T̃N (W)
(
KT (Kz0 − b)

)
, (28)
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so that ∥KzN − b∥ converges linearly to zero when N → +∞.

Since T̃N (0) = 1, there exists a polynomial R̃N such that T̃N (X) = 1 +XR̃N (X). Therefore,

KT (Kzn − b) =
(
KT (Kz0 − b)

)
+WR̃N (W)

(
KT (Kz0 − b)

)
;

that is,

WzN = W
(
z0 + R̃N (W)

(
KT (Kz0 − b)

))
.

One can check by induction that zN ∈ z0 + range(W). Using IX +WR̃N (W) = T̃N (W),

zn = z0 + R̃N (W)
(
KT (Kz0 − b)

)
= z0 +WR̃N (W)z0 − R̃N (W)KT b

= T̃N (W)z0 − R̃N (W)KT b

= T̃N (W)z0 − R̃N (W)Wx⋆

= T̃N (W)z0 − T̃N (W)x⋆ + x⋆.

Finally, for every z0 ∈ X,

P(W)z0 −P(W)x⋆ = z0 − T̃N (W)z0 − x⋆ + T̃N (W)x⋆ = z0 − zN .

9.2 End of proof of Theorem 2

In Sections 6.3.2 and 9.1, we proved that Algorithm 3 applied to the equivalent Problem (8) is equivalent to
our main Algorithm 1. Therefore, we can prove our main Theorem 2 by applying Proposition 1 to Problem (8).
Indeed, the proof of Theorem 2 is a direct application of Proposition 1 to Problem (8), using that N ≥ √

χ
implies λmax(P(W)) ≤ 19/15, λ+

min(P(W)) ≥ 11/15 and χ(P(W)) ≤ 19/11, see Section 6.3.1. □


