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Abstract

An increasing number of machine learning
problems, such as robust or adversarial vari-
ants of existing algorithms, require minimiz-
ing a loss function that is itself defined as a
maximum. Carrying a loop of stochastic gra-
dient ascent (SGA) steps on the (inner) max-
imization problem, followed by an SGD step
on the (outer) minimization, is known as
Epoch Stochastic Gradient Descent Ascent
(ESGDA). While successful in practice, the
theoretical analysis of ESGDA remains chal-
lenging, with no clear guidance on choices
for the inner loop size nor on the interplay
between inner/outer step sizes. We propose
RSGDA (Randomized SGDA), a variant of
ESGDA with stochastic loop size with a
simpler theoretical analysis. RSGDA comes
with the first (among SGDA algorithms) al-
most sure convergence rates when used on
nonconvex min/strongly-concave max set-
tings. RSGDA can be parameterized using
optimal loop sizes that guarantee the best
convergence rates known to hold for SGDA.
We test RSGDA on toy and larger scale
problems, using distributionally robust opti-
mization and single-cell data matching using
optimal transport as a testbed.
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1 INTRODUCTION

Min-Max problems in ML. Consider the follow-
ing stochastic min-max optimization problem:

min
θ∈Rd

φ(θ) , where φ(θ) def= max
v∈V

F (θ, v), (1)

and F (θ, v) = Ez [f(θ, v; z)] ,

with V ⊆ Rn. Problems such as (1) appear in the
estimation of generative models (Goodfellow et al.,
2014), reinforcement learning (Dai et al., 2018), on-
line learning (Cesa-Bianchi and Lugosi, 2006), and
in many other domains including mathematics and
economics (Von Neumann and Morgenstern, 2007,
Başar and Olsder, 1998) (see Nouiehed et al. (2019a)
and references therein).

Gradient Descent-Ascent algorithms. Most ma-
chine learning applications resort to stochastic gra-
dient methods to solve (1). These methods, which
we refer to as Gradient Descent Ascent (GDA) al-
gorithms, alternate between possibly many ascent
steps in v to increase F , with a descent step along a
stochastic gradient direction to decrease φ. Within
that space alone, several algorithms have been pro-
posed, some of them taking advantage of assump-
tions on the properties of F . The setting that has
received the most attention is by far that where F is
convex-concave (Sion, 1958, Korpelevich, 1976, Ne-
mirovski, 2004, Nedić and Ozdaglar, 2009, Azizian
et al., 2020). Only recently has the application of
GDA to non-convex functions been thoroughly ana-
lyzed from a theoretical perspective, resulting in a
flurry of works (Namkoong and Duchi, 2016, Sinha
et al., 2018, Rafique et al., 2018, Grnarova et al., 2017,
Lu et al., 2020, Nouiehed et al., 2019b, Thekumpara-
mpil et al., 2019, Kong and Monteiro, 2019, Jin et al.,
2020, Zhang et al., 2020). These recent works are
particularly relevant to modern machine learning
problems, where the min problem in (1) often re-
quires optimizing the parameters of models using a
non-convex loss φ.
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Non-convex strongly concave optimization.
We consider in this work the setting where F is non-
convex in θ, yet strongly concave and smooth in v.
This setting is practically relevant since it appears
in Temporal Difference learning (Dai et al., 2018),
robust optimization (Sinha et al., 2018), or entropic
optimal transport (Cuturi, 2013). It is also theoreti-
cally appealing, since it has been shown that GDA
algorithms achieve a complexity similar to single-
variable minimization, up to a factor depending on
the conditioning of the problem (Sanjabi et al., 2018b,
Nouiehed et al., 2019b, Lin et al., 2019, Qiu et al.,
2020, Huang et al., 2020). For example, compared to
the nonconvex-concave and nonconvex-nonconcave
settings, one does not need to assume that the set V
in (1) is bounded in order to ensure convergence.

In practice, one of the most widely used algorithms to
solve (1) is epoch stochastic gradient descent ascent
(Goodfellow et al., 2014, Sanjabi et al., 2018a, Lin
et al., 2019, Jin et al., 2020, Nouiehed et al., 2019b,
Sanjabi et al., 2018b, Houdard et al., 2021), where we
make an arbitrary fixed number of stochastic gradient
ascent steps followed by a gradient descent step. Un-
fortunately, there is very little understanding of the
theoretical justifications behind this method, leaving
practitioners in the dark as to what guarantees they
might expect from their parameter settings.

Our Contributions. In this work, we aim to quan-
tify – in the form of convergence rates and suggested
parameter settings – how much the practical choices
are justified by theory. To this end, we propose
Randomized Stochastic Gradient Descent Ascent (RS-
GDA), a randomization of Epoch Stochastic Gradient
descent ascent (ESGDA) which is more amenable to
theoretical analysis and performs very similarly to
ESGDA in practice. From a theoretical perspective,
we show that RSGDA enjoys the best known con-
vergence rates, which are also verified by one-step
stochastic gradient descent ascent (Lin et al., 2019)
and other variants (Huang et al., 2020, Qiu et al.,
2020), and we demonstrate how the step sizes and
number of gradient ascent steps should be set in order
to retain these convergence guarantees. We evalu-
ate our suggested parameter settings on problems
from robust optimization and optimal transport: we
consider (i) the problem of distributionally robust
optimization (Sinha et al., 2018), where we aim to
learn a classifier which is robust to adversarial inputs,
and (ii) the problem of single-cell data matching us-
ing regularized optimal transport (Schiebinger et al.,
2019, Stark et al., 2020, Cuturi, 2013).

2 BACKGROUND

We present in this section relevant assumptions for
analysis, and briefly review state of the art results.

2.1 Assumptions

Smoothness and strong concavity. Through-
out the paper, we assume that F is smooth in both
variables, and strongly concave in the second variable.

Assumption 2.1. We assume that F is L-smooth
on Rd and v 7→ F (θ, v) is µ-strongly concave on V.

The smoothness and strong concavity of F ensure
that the function φ defined in (1) is smooth as well.
Lemma 2.2 (Lemma 4.3 in Lin et al. (2019)). Let As-
sumption 2.1 hold. Let κ def= L

µ . Define v∗ : Rd 7→ Rn

by v∗(θ) = argmaxv∈Rn F (θ, v) for all θ ∈ Rd. Then,
v∗ is κ-lipschitz and φ is 2κL-smooth.

Assumptions on noise. We assume that the
stochastic gradient in θ has bounded variance, which
is standard in non-convex stochastic optimization.
Assumption 2.3. There exists σ2 > 0 such that for
all (θ, v) ∈ Rd × V,

Ez
[
‖∇θf(θ, v; z)−∇θF (θ, v)‖2

]
≤ σ2.

For the stochastic gradient in v, we only assume that
the noise is finite at the maximizer.

Assumption 2.4. Define v∗(θ) def= argmax
v∈Rn

f(θ, v).

Let σ̃2 def= Ez
[
‖∇vf(θ, v∗(θ); z)‖2

]
<∞.

2.2 Review of Gradient Descent Ascent
Methods

Definitions. Let ε, δ > 0. We call θ ∈ Rd an ε-
approximate stationary point if ‖∇φ(θ)‖ ≤ ε. We call
v a δ-approximate maximizer if for some θ ∈ Rd we
have φ(θ)− F (θ, v) ≤ δ.

SGDmax, SGDA and ESGDA. One of the most
analyzed algorithms for solving min-max problems
such as (1) is (S)GDmax (Sanjabi et al., 2018a, Lin
et al., 2019, Jin et al., 2020, Nouiehed et al., 2019b,
Sanjabi et al., 2018b, Houdard et al., 2021), where at
each iteration we make the number of (stochastic) gra-
dient ascent steps necessary to reach a δ-approximate
maximizer vk+1, before making a descent step us-
ing the gradient ∇θf(θk, vk). See Alg. 1, SGDmax.
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To reach an ε-stationary point θk, this algorithm re-
quires O

(
log (1/δ)κ2ε−2) (resp. O (log (1/δ)κ3ε−4))

total gradient computations in the deterministic (resp.
stochastic) setting (Lin et al., 2019). In practice, how-
ever, because SGDmax involves a subroutine where
we need to ensure that we reach an approximate max-
imizer, this algorithm is rarely implemented. It is
instead approximated by ESGDA.

Algorithm 1 SGDmax/SGDA/ESGDA
Inputs: step sizes α and η, loop sizem, max-oracle
accuracy δ
for k = 0, 1, 2, . . . , do

SGDmax:
Find vk+1 s.t. Ek [F (θk, vk+1)] ≥ φ(θk) + δ

SGDA:
Sample z′k ∼ D
vk+1 = ΠV (vk + η∇vf(θk, vk; z′k))

ESGDA:
for t = 0, 1, 2, . . . ,m− 1 do

Sample ztk ∼ D
vt+1
k = ΠV (vtk + η∇vf(θk, vtk; ztk))

end for
vk+1 = v0

k+1 = vmk

Sample zk ∼ D
θk+1 = θk − α∇θf(θk, vk+1; zk)

end for

At the other end of the spectrum is one-step Gra-
dient Descent Ascent (Lin et al., 2019, Chen et al.,
2020) (also referred to as GDA in the literature),
in which one ascent step is followed by one descent
step. See Alg. 1, SGDA. This algorithm has two
important advantages compared with (S)GDmax: (a)
it is simple: it doesn’t require any inner ascent loop
or stopping criteria, (b) it has better convergence
rates: O

(
κ2ε−2) (resp. O (κ3ε−4)) in the determin-

istic (resp. stochastic) setting.

In practice, instead of choosing a precision δ or run-
ning SGDA, one popular choice (Goodfellow et al.,
2014, Sinha et al., 2018, Houdard et al., 2021) is using
epoch stochastic gradient descent ascent (ESGDA),
where we make a fixed number of ascent steps on v
followed by a descent step on θ. See Alg. 1, ESGDA.
The goal of the ascent steps is to have a good enough
approximation of v∗(θk), and hence of the gradient
∇φ(θk), in order to make a descent step on φ. Despite
its popularity, we know little about the theoretical
properties of ESGDA in the nonconvex-strongly con-
cave setting. Yan et al. (2020) studies a version of
ESGDA with an iteration dependent number of gra-
dient ascent steps. The problem they consider – F

weakly convex and strongly concave – is inherently
harder than the smooth nonconvex-strongly concave
problem. The complexity of their method for finding
a nearly stationary point is O

(
ε−4), but to reach a

stationary point, they still need O
(
ε−6) iterations,

even when their results are specialized to the smooth
setting (See Prop. 4.11 in Lin et al. (2019) for the
relation between stationarity and near stationarity).
Chen et al. (2021) consider the harder problem of
stochastic nested optimization (which includes bilevel
and min-max optimization). They devise an algo-
rithm (ALSET) with O

(
ε−4) complexity when the

epoch size is Θ(κ). But they assume that their func-
tion and its hessian are both lipschitz, whereas the
analysis of SGDA only requires that the gradients
are lipschitz.

Despite the popularity of ESGDA, to the best of our
knowledge, there is no theoretical analysis ensuring
that this algorithm converges under the same con-
ditions as SGDA and SGDmax. In this work, we
aim to support practical implementation choices of
ESGDA with solid theory, and in turn suggest new
parameter settings to further improve how ESGDA
is implemented.

Motivating RSGDA. RSGDA is a randomized ver-
sion of ESGDA with a stochastic loop size. Empiri-
cally, RSGDA performs similarly to ESGDA (Fig. 1),
but its theoretical analysis is simpler, thanks to
its inner-loop free structure. This is showcased in
Prop. 3.1, our central result, a descent inequality
(up to additional noise terms), from which we draw
several conclusions. First, we derive almost sure con-
vergence rates for RSGDA (Cor. 3.2). Then, we show
that, like SGDA, RSGDA enjoys the best known
convergence rates in expectation among stochastic
gradient descent ascent algorithms (Cor. 3.8). Im-
portantly, for each of our convergence results, we
determine (i) a range of descent step probabilities p
that guarantees the best possible convergence rate,
and (ii) how the step sizes should be set depending
on p.

3 RANDOMIZED STOCHASTIC
GRADIENT DESCENT ASCENT

We now introduce RSGDA (Alg. 2) in detail. At
each iteration k, we toss a coin: if it lands heads
(with probability 1− p), we keep θk fixed and make
an ascent step on vk along the stochastic gradient
∇vf(θk, vk; zk), where zk ∼ D (or a projected ascent
step if V 6= Rn); if it lands tails (with probability p),
we keep vk fixed and make a descent step along the
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stochastic gradient ∇θf(θk, vk; zk). The algorithm
can also be seen as a version of ESGDA where the
size of the inner loop m is stochastic and equal to
1/p− 1 in expectation.

Algorithm 2 Randomized SGDA
Inputs: step sizes (αk)k and (ηk)k, p ∈ (0, 1).
Initialisation: v0 ∈ Rn, θ0 ∈ Rd
for k = 0, 1, 2, . . . , do

Sample zk ∼ D
θ+
k = θk − αk∇θf(θk, vk; zk)
v+
k = ΠV (vk + ηk∇vf(θk, vk; zk)))

(θk+1, vk+1) =
{

(θ+
k , vk) w. p. p

(θk , v+
k ) w. p. 1− p

end for

From a stochastic optimization perspective, this ran-
domization trick is reminiscent of the way Loopless
SVRG (Stochastic Variance Reduced Gradient) (Hof-
mann et al., 2015, Kovalev et al., 2020) avoids using
the inner loop of the original SVRG method (John-
son and Zhang, 2013). Like for Loopless SVRG and
SVRG, RSGDA results in a much simpler analysis
than for ESGDA.

This is apparent through Prop. 3.1, in which we
establish a one-step recurrence inequality which is
central to deriving our convergence results.
Proposition 3.1. Consider the iterates of Alg. 2.
Let Assumption 2.1 hold. Let p ∈ (0, 1) and define
for all k ∈ N,

Dk = φ(θk)− min
θ∈Rd

φ(θ), rk = ‖v∗(θk)− vk‖2,

and Ek = Dk + κL
pαk

(1− p)ηk
rk.

Let (αk)k and (ηk)k be two positive decreasing se-
quences such that

(
αk
ηk

)
k
is decreasing as well, with

ηk ≤ 1
2L and αk ≤ (1−p)ηk

4κ2
√
p(2p+(1−p)ηkµ)

. Then,

pαk‖∇φ(θk)‖2 + 2Ek [Ek+1] ≤ 2Ek + 4ηkpαkκLσ̃2

+ 2σ2
(
pα2

kκL+ p2 (2p+ (1− p) ηkµ)α3
kκ

4

(1− p)2η2
k

)
.

(2)

Almost sure convergence rates. Establishing the
recurrence inequality of Prop. 3.1 is key to deriving
almost sure convergence results in stochastic opti-
mization (Bertsekas and Tsitsiklis, 2000, Gadat et al.,
2018, Sebbouh et al., 2021), where one can directly
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Figure 1: We use RSGDA (Alg. 2) and ESGDA
(Alg. 1) on the minmax problem described in §4.1.
This figure shows that ESGDA with a given loop size
m and RSGDA with p = 1/(m+ 1) perform similarly.
The objective φ is defined in (5).

apply the Robbins-Siegmund theorem (Robbins and
Siegmund, 1971). In contrast, it is unclear how almost
sure convergence rates can be derived for ESGDA.

Similar to what was done in Sebbouh et al. (2021) for
SGD, we can use this lemma and Prop. 3.1 to derive
small-o almost sure convergence rates for RSGDA.
To the best of our knowledge, these are the first such
rates for a gradient descent ascent algorithm.
Corollary 3.2. Consider the setting of Prop. 3.1.
We have that

min
t=0,...,k−1

‖∇φ(θt)‖2 = o

(
1∑k−1

t=0 αt

)
a.s. (3)

as long as the step sizes αk and ηk verify∑
k

αk =∞,
∑
k

α2
kσ

2 <∞,

∑
k

ηkαkσ̃
2 <∞,

∑
k

α3
k

η2
k

σ2 <∞.
(4)

Let ζ > 0 and take for all k ∈ N, ηk = 1
2L(k+1)2/5+ζ

and αk = 1−p
2
√
p(2p+(1−p)ηkµ)

ηk
κ2(k+1)1/5 , we have that

the step sizes verify (4) and

min
t=0,...,k−1

‖∇φ(θt)‖2 = o
(
k−

2
5 +ζ
)

almost surely.

Remark 3.3. Using the same analysis, it is also
possible to show that using the exact gradients, Ran-
domized GDA converges almost surely at a o(k−1)
rate. Indeed, in that setting, σ2 = σ̃2 = 0 and any
constant step sizes α, η > 0 verify conditions (4).
Substituting in (3) gives the desired rate.

Convergence rates in expectation. In the re-
mainder of this section, we establish convergence
rates in expectation for Randomized GDA (where we
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use the exact gradient at each iteration) and RSGDA
(where we use stochastic gradients). The rates we
recover are similar to the best that can be derived
for GDA and SGDA (Lin et al., 2019). The interest
of the results we present is that (i) we show that it
is possible to do more gradient ascent steps and re-
tain the same complexity as SGDA, and we quantify
this by determining a range of values of p for which
we have this complexity, (ii) we highlight the effect
of changing the probability p on the step sizes, and
(iii) we show that taking p ≥ 1/2 doesn’t result in a
diverging algorithm; instead the convergence rate is
worse by a factor which is an increasing function of
p, so that the strategy of making moderately more
descent steps than ascent steps is worth exploring
depending on the application.

3.1 Randomized GDA (RGDA)

We first consider RGDA, a version of Alg. 2 where
we use the exact gradients, i.e. where the only ran-
domness in the algorithm comes from the coin tosses
governed by the probability p. This is the randomized
equivalent of Epoch GDA.
Corollary 3.4. Consider the setting of Prop. 3.1.
Let for all k ∈ N, ηk = 1

2L and αk =
(1−p)
4κ2L

1√
p(2p+ 1−p

2κ )
. Then, for all p ∈

[ 1
κ ,

1
2
]
, we have

that

min
t=0,...,k−1

E
[
‖∇φ(θt)‖2

]
= O

(
κ2k−1) .

Hence, finding an ε-stationary point requires at most
O(κ2ε−2) iterations for all p ∈

[ 1
κ .

1
2
]
.

Remark. The value 1/2 of the upper bound on p
is arbitrary, and any constant higher than 1/2 but
independent of κ still ensures the same complexity.

We draw two important insights from this corollary:

(a) Flexibility to the choice of p. RGDA admits
a range of values of p for which we have the same
order of complexity. In particular, with p = 1/2, we
recover the same convergence rate for GDA which
was derived in Lin et al. (2019), with better constants,
as highlighted in the appendix.

(b) Suggested choice of step sizes. It is known
from Lin et al. (2019) that the step sizes α and η
need to verify the following relation: α = Θ

(
η/κ2).

How should the step sizes change when we make more
ascent steps? Since p ∈ [1/κ, 1/2] gives the tightest
convergence rate, let us consider the case where p is
in this range. In this setting, Cor. 3.4 shows that the
relation should be α = Θ

(
η/pκ2). Hence, there is a

linear relation between the descent step size and 1/p:
the lower p, i.e. the more ascent steps we make, the
higher α should be.

We can draw similar conclusions in the stochastic
setting as well, but with different ranges for p and
different choices for the step sizes.

3.2 Randomized SGDA (RSGDA)

We now consider RSGDA, where we use stochastic
gradients instead of deterministic ones. This is the
randomized version of Epoch SGDA.

Decreasing Step Sizes. As is the case for SGD,
without additional structure on the objective F , we
can only guarantee the anytime convergence (with-
out knowledge of the last iteration or the required
precision) of RSGDA if we use decreasing step sizes.
Corollary 3.5. Consider the setting of
Prop. 3.1. Let ηk = 1

2L(k+1)2/5 and
αk = 1−p

2
√
p(2p+(1−p)ηkµ)

ηk
κ2(k+1)1/5 . Then,

min
t=0,...,k−1

‖∇φ(θt)‖2 = O
(

log(k)k−2/5
)
.

The previous corollary presented the parameter set-
tings that resulted in the best rate when using de-
creasing step sizes. We have used the O notation
for brevity even though the result is non-asymptotic.
A complete version of this corollary, including the
explicit bound, can be found in the appendix.

RSGDA With Fixed Step Sizes. In practice, it
is often the case that stochastic gradient algorithms
are implemented using a fixed step size.
Corollary 3.6. Consider the setting of Prop. 3.1.
Let ε > 0. With suitable choices of step sizes, if
k ≥ Θ

(
κ3ε−5), then mint=0,...,k−1 E [‖∇φ(θt)‖] ≤ ε.

Moreover, for all p ∈
[
ε
κ2 ,

1
2
]
, the complexity is still

O
(
κ3ε−5).

We give the explicit values for the step sizes and the
complexity in the appendix. In this corollary, we
recover the complexity given without proof in Lin
et al. (2019) when using p = 1/2, but we extend their
result to a larger number of ascent steps (instead of
a single one). Note that the step sizes rely on some
quantities that are generally impossible to obtain, like
σ. As is the case for SGD, without knowledge of this
constant and using constant step sizes, it is possible
to guarantee only sublinear convergence towards the
neighborhood of a solution (see e.g. (Gower et al.,
2019)).
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RSGDA With Large Batch Sizes. The best
known complexity for SGDA is O

(
κ3ε−4) (Lin et al.,

2019), and it is obtained using fixed step sizes and
large minibatch sizes. In the following corollary, we
show that the same rate can be recovered for RSGDA
using large minibatch sizes. As done in the previous
corollaries, we also give the range of values of p which
give the same rate. Following Lin et al. (2019), we
assume that all stochastic gradients have bounded
variance in this setting.
Assumption 3.7. There exists σ̄2 > 0 such that for
all (θ, v) ∈ Rd × V,

Ez
[
‖∇θf(θ, v; z)−∇θF (θ, v)‖2

]
≤ σ̄2

Ez
[
‖∇vf(θ, v; z)−∇vF (θ, v)‖2

]
≤ σ̄2.

Corollary 3.8 (Large minibatch sizes). Consider
the setting of Prop. 3.1. Let Assumption 3.7 hold and
choose p ∈ [ 1

κ ,
1
2 ]. Using the step sizes of Cor. 3.4

and a sufficiently large minibatch size, the total num-
ber of stochastic gradient evaluations to reach an
ε-stationary point is O

(
κ3ε−4).

Discussion about other values of p. Note that
Prop. 3.1 and the subsequent corollaries allow for any
value of p in (0, 1) and still guarantee the convergence
of RSGDA, albeit with an additional factor in the
convergence rates (See Appendix). This suggests
tuning p to values that are moderately larger than
1/2, and we would still expect RSGDA to perform
almost as well as with values of p in the range which
gives the best convergence rates. In applications
where descent steps are cheaper than ascent steps,
this strategy is sound.

3.2.1 Interpolation Setting

We consider using RSGDA in a more favorable setting,
where the maximization problem is easier, as in the
interpolation case, when F is a finite-sum and σ̃2 = 0.
Assumption 3.9 (Interpolation). For all (θ, v) ∈
Rd × Rn, F (θ, v) = 1

n

∑n
i=1 Fi(θ, v), where for all

i ∈ [n], Fi verifies Assumption 2.1 and for all θ ∈ Rd,
there exists v∗(θ) ∈ Rn such that for all i ∈ [n],
∇vFi(θ, v∗(θ)) = 0.

Note that we do not assume that σ2 = 0, which, by
Assumption 2.3, would have implied, for i ∈ [n] and
(θ, v) ∈ Rd × Rn that ∇Fi(θ, v) = ∇F (θ, v).

From an optimization perspective, this setting has
been explored in many works on SGD (Vaswani et al.,
2019a,b, Loizou et al., 2021, Sebbouh et al., 2021),

where it was shown that if the two previous assump-
tions are verified (for the single-variable objective),
SGD has the same convergence rate as Gradient De-
scent. This setting has also recently been studied for
bilinear minimax optimization (Li et al., 2021),

The next result shows that in that setting, RSGDA
converges at the improved rate of O

(
κ2ε−4) (versus

O
(
κ3ε−4)), without requiring large batch sizes.

Corollary 3.10. Consider the setting of Proposition
3.1 and let Assumption 3.9 hold. Let ηk = 1/(2L) for
all k ∈ N.

• Almost sure convergence. Let ζ >

0 and αk = O
(

η
κ2(k+1)1/2+ζ

)
. Then,

min
t=0,...,k−1

‖∇φ(θk)‖2 = o
(
k−1/2+ζ) a.s.

• Anytime convergence in expecta-
tion. Let αk = O

(
η

κ2
√
k+1

)
. Then,

min
t=0,...,k−1

E
[
‖∇φ(θk)‖2

]
= O

(
κ log(k)√
k+1

)
.

• Convergence in expectation for a given
precision. With a suitable choice of α,
if p ∈

[ 1
κ ,

1
2
]

and k ≥ Θ
(
κ2ε−4), then

min
t=0,...,k−1

E [‖∇φ(θk)‖] ≤ ε.

By setting σ̃2 = 0, all these results can be derived
from Prop. 3.1 in a similar fashion to the previous
corollaries. As an illustration of these results, we
apply our method to distributionally robust opti-
mization in §4.1, where Assumption 3.9 holds for the
problem we consider (Sinha et al., 2018).

4 APPLICATIONS

To illustrate our results, we consider two noncon-
vex strongly concave problems: distributionally ro-
bust optimization (Shafieezadeh-Abadeh et al., 2015,
Kuhn et al., 2019) and learning with a Sinkhorn loss
(Genevay et al., 2018).

4.1 Distributionally Robust Optimization

The goal of distributionally robust optimization is
to learn machine learning models which are robust
to changes in the distribution of test data com-
pared to training data. Consider a training dataset
D def= {(x1, y1), . . . , (xn, yn)} ⊂ Rp+q, p, q ≥ 1, and
suppose we want to learn a robust classifier from
a parametric family

{
fθ : Rp 7→ Rq, θ ∈ Rd

}
. Sinha

et al. (2018) showed that one way to do so is to solve
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Figure 2: Training loss φ (5) when using RSGDA.
η = 10. We study the effect of the descent step size
α and the descent probability p.

the following optimization problem:

min
θ∈Rd

φ(θ) ≡ F (θ, v), (5)

F (θ, v) = max
v=[v1,...,vn]
∈Rpn

1
n

n∑
j=1

`(fθ(vj), yj)− γ‖vj − xj‖2.

where ` : Rp×Rq 7→ R is the loss function. Intuitively,
the inner maximization problem requires that we find
the (adversarial) inputs {vi}i that maximize the loss,
while minimizing the average distance to the original
inputs {xi}i. The hyperparameter γ controls the
trade-off between these two objectives. A low γ allows
the classifier to be robust to adversarial perturbations,
but sacrifices model accuracy on training data. A high
γ ensures that the model performs well on training
data, but sacrifices robustness. Sinha et al. (2018)
showed that for γ large enough, solving this problem
is nonconvex strongly concave. Moreover, we also
have that Assumption 3.9 is verified.
Lemma 4.1 (Sinha et al. (2018)). Consider F de-
fined in (5). Assume that (θ, v) 7→ `(fθ; (vj , yj)) is
smooth for all (θ, v, y) ∈ Rd×Rpn×Rq, and that the
noise assumption 2.3 holds. Then for a large enough
γ, F verifies Assumption 2.1. Moreover, since F is
separable in each coordinate vj ∈ Rd, j ∈ [n], we have
that Assumption 3.9 is verified.

Application To MNIST. We reproduce the set-
ting of Sinha et al. (2018) for the MNIST dataset and
concentrate on the optimization aspect of their pro-
cedure. For the experiment to still be meaningful, we
only considered the models which resulted in higher
than 98% validation accuracy. As done by Sinha et al.
(2018), we set γ = 1.3 and choose fθ to be a CNN
with smooth ELU activations. More details on the
exprimental settings can be found in the Appendix.
Contrary to Lin et al. (2019), we report the loss of
interest φ(θ) in order to better assess the effect of
the parameter settings.

Fig. 2 shows the performance of RSGDA (Alg. 2) on
Problem (5) with various parameter settings. We use
minibatch RSGDA and set the ascent step size η = 10.
We noticed that further tuning this hyperparameter
had less impact than α and p on the performance of
RSGDA. For each probability p, we display the step
size α that resulted in the lowest training loss. For all
experiments with p ≥ 0.5, choosing α > 0.25 led the
model to diverge or result in a low validation accuracy.
As predicted by theory, decreasing descent probability
allows to take larger step sizes (p = 0.25, α = 0.3)
and results in faster optimization, but decreasing p
too much (p = 0.1) leads to a slow algorithm, as θ is
updated less often. Further increasing the step size
when p = 0.1 makes RSGDA diverge.

4.2 Learning with a Sinkhorn Loss

The second application we consider is that of learning
with a semi-dual Sinkhorn loss (Cuturi and Peyré,
2018, Kitagawa et al., 2019). We establish that this
problem is indeed nonconvex-strongly concave. Then,
inspired by Schiebinger et al. (2019), Stark et al.
(2020), we apply semi-dual optimal transport to a
single-cell data integration problem using RSGDA.
But first, let us recall the definition of the regularized
OT loss between two measures (Cuturi, 2013).

Regularized OT Loss. Let X and Y be two
metric spaces. Consider two probability measures
(µ, ν) ∈ P(X )×P(Y) and let ε > 0. The regularized
OT metric between these two measures is given by

Wε(µ, ν) def= min
π∈Π(µ,ν)

∫
c(x, y) dπ(x, y)

+ ε

∫
log
(

dπ(x, y)
dµ(x) dν(y)

)
dπ(x, y).

where c : X × Y 7→ R+ is the cost to move
a unit of mass from x to y, Π(µ, ν) =
{π ∈ P(X )× P(Y) : P1]π = µ, P2]π = ν}, and
P1(x, y) = x and P2(x, y) = y are projection opera-
tors. With X = Y, dX a metric on X , and c = dX

p,
we have that W1/p

0 defines a distance on P(X ).
Unfortunately, computing W0 is too costly in most
applications, which justifies using the regularized
OT loss with ε > 0. Fortunately, when one of
the measures is discrete, we can express Wε(µ, ν)
as a finite-dimensional stochastic maximization
problem (Genevay et al., 2016). Consider a dataset
Yn = {y1, . . . , yn} ⊆ Y and let ν = 1

n

∑n
j=1 δyj .
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Figure 3: t-SNE embeddings of the point cloud νθk (7) along the iterations of RSGDA (p = 0.9).

Figure 4: Loss Wε (µ, νθk) (7) when using RSGDA
vs. Sinkhorn’s algorithm, depending on the descent
probability p (for RSGDA) or the number of iterations
msin of Sinkhorn’s algorithm. η = 5.

Then,

Wε(µ, ν) = max
v∈Rn

Ex∼µ [h(x, v)] , where (6)

h(x, v) def=
n∑
j=1

vj
n
− ε log

 n∑
j=1

exp
(
vj−c(x,yj)

ε

)
n

− ε.
Learning With a Semi-discrete Sinkhorn Loss
is a Nonconvex Strongly Concave Problem.
Consider the task of learning a parametric map from
observed data Yn = {y1, . . . , yn} ⊂ Y. Given a prob-
ability space Z and a possibly continuous distribution
µ ∈ P(Z), we may want to solve one of two problems:

min
θ∈Rd

Wε

(fθ)]µ,
1
n

n∑
j=1

δyj

 ≡ max
v∈Rn

Ez [h(fθ(z), v)] ,

or min
θ∈Rd

Wε

µ, 1
n

n∑
j=1

δfθ(yj)

 =:Wε (µ, νθ) , (7)

where fθ ∈
{
fθ′ : Z 7→ X , θ′ ∈ Rd

}
. An instance

of the first problem is learning generative models
(Genevay et al., 2018, Houdard et al., 2021), where
one wants to fit fθ to the dataset Yn. There, µ is

typically a Gaussian in a low-dimensional space, and
Yn is for example a dataset of images. An instance
of the second problem is single-cell data matching,
which we present later in this section. Using the for-
mulation (6) of Wε, we can express both problems as
finite dimensional stochastic min-max problems. We
now show that these problems are indeed nonconvex
strongly concave.

Proposition 4.2. Define for all (θ, v) ∈ Rd × Rn,
F (θ, v) = Ez∼µ [h(fθ(z), v)]. Assume that for all z ∈
Z, θ 7→ c(gz(θ), y) is lipschitz continuous and smooth,
and that y 7→ c(gz(θ), y) is lipschitz-continuous al-
most surely for all (θ, y) ∈ Rd×Y. Then, there exists
V ⊂ Rn such that F verifies Assumptions 2.1, 2.3
and 2.4 on Rd×V and φ(θ) = maxv∈V F (θ, v) for all
θ ∈ Rd.

A similar result can be proved for (7) (see App. for
proof of Lem. 4.2). This result is of independent
interest for OT practitioners since combining Lem. 4.2
with our convergence results in §3, we extend (Sanjabi
et al., 2018a) to the semi-discrete setting, and we
give stronger theoretical guarantees than those in
(Houdard et al., 2021) when using GDA algorithms
for learning with a semi-discrete Sinkhorn loss.

Single-cell Genomic Data Matching. We
consider the single cell melanoma tumor dataset
from (Stark et al., 2020). Patient data is analyzed
using two different technologies, scRNA and CyTOF,
resulting in two point clouds of different sample
sizes and dimensions. The goal is to integrate both
datasets in order to understand the correspondances
between technologies, and obtain a unified analy-
sis on larger sample sizes. We denote the CyTOF
point cloud as {x1, . . . , xm} ⊂ R41, m = 135334,
and define µ = 1

m

∑m
i=1 δxi , and the scRNA one

as {y1, . . . , yn} ⊂ R1024, n = 4683, and define ν =
1
n

∑n
j=1 δyj . Instead of embedding both point clouds

in another low-dimensional space as done in Stark
et al. (2020), we aim to map the point cloud ν directly
into µ via a multilayer perceptron (MLP), namely
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solve (7), where fθ is an MLP. We compare mini-
batch RSGDA (where we sample from µ) against
Sinkhorn’s algorithm (the most widely used approach
to compute Wε) with minibaching (Cuturi, 2013) in
Fig. 4. Details on the architecture and on Sinkhorn’s
algorithm are provided in the appendix (see also
Genevay et al. (2018)). Using a single iteration of
Sinkhorn’s algorithm resulted in the best performance
for this algorithm: due to the bias introduced by using
Sinkhorn’s algorithm on minibatches (Fatras et al.,
2020), increasing the number of iterations resulted
in an increasingly biased gradient direction for the
descent step. For RSGDA, we found that increasing
the descent probability resulted in a faster algorithm
up to the value p = 0.95, after which the algorithm
is slower than p = 0.5. On this problem, decreasing
p below 0.5 was not beneficial, despite increasing the
descent step size. Using t-SNE embeddings (Van der
Maaten and Hinton, 2008), we also display in Fig. 3
the evolution of νθk for the best run of RSGDA with
p = 0.9.

Conclusion. We have presented RSGDA, a ran-
domized version of Epoch Stochastic Gradient De-
scent Ascent, a popular method for solving min-
max optimization problems in machine learning. We
showed empirically that RSGDA performs similarly
to ESGDA, and demonstrated theoretically that
RSGDA enjoys the same theoretical properties as
Stochastic Gradient Descent Ascent (Lin et al., 2019),
a method which is well grounded in theory. We
also provided practical parameter settings, which we
tested numerically on a distributionally robust op-
timization problem and single-cell data integration
using optimal transport.
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The appendix is organized as follows:

• In appendix A, we present the detailed statements of the corollaries we presented in §3.

• In appendix B, we present the proofs of all the statements of §3.

• In appendix C, we present the proof of Proposition 4.2.

• In appendix D, we present details on the experimental setting of §4.2.

A Complete results

In this section, we give the detailed statements of the corollaries we presented in §3. The proofs of these
results are presented in appendix B.

A.1 Corollary 3.4

Corollary 3.4 presented the convergence rate in expectation of Randomized Gradient Descent Ascent, i.e.
Alg. 2 when using deterministic gradients to update θk and vk.
Corollary A.1. Consider the setting of Proposition 3.1. Let ηk = η = 1

L and α = (1−p)
2κ2L

1√
p(2p+ 1−p

κ )
. Then,

min
t=0,...,k−1

E
[
‖∇φ(θk)‖2

]
≤ 4κ2L

(1− p)k

√
2 + 1− p

pκ
D0

+ κL2

(1− p)k r0.

In particular, for all p ∈
[ 1
κ ,

1
2
]
, we have that

min
t=0,...,k−1

E
[
‖∇φ(θk)‖2

]
= O

(
κ2k−1) .

This implies that finding an ε-stationary point requires at most O(κ2ε−2) iterations for all p ∈
[ 1
κ .

1
2
]
.

A.2 Corrolary 3.5

Corollary 3.5 presented the anytime convergence rate in expectation of RSGDA (Alg.2) using decreasing step
sizes.
Corollary A.2. Consider the setting of Proposition 3.1. Then,

min
t=0,...,k−1

E
[
‖∇φ(θt)‖2

]
≤ 2E0∑k−1

t=0 ptαt
+ 4κLσ̃2∑k−1

t=0 ηtptαt∑k−1
t=0 ptαt

+ 2σ2κL∑k−1
t=0 ptαt

k−1∑
t=0

ptα
2
t

+ 2σ2κ4∑k−1
t=0 ptαt

k−1∑
t=0

(
2p3
tα

3
t

(1− pt)2η2
t

+ p2
tα

3
tµ

(1− pt)ηt

)
.

Let p = p ∈ (0, 1), ηk = 1
2L(k+1)2/5 and αk = (1−p)ηk

4pκ2(k+1)1/5 . Then,

min
t=0,...,k−1

‖∇φ(θt)‖2 = O
(
κ log(k)
k2/5

)
.
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A.3 Corollary 3.6

Corollary 3.6 presented the convergence rate in expectation of RSGDA (Alg.2) given a specified precision
ε > 0 for an arbitrary minibatch size.
Corollary A.3. Consider the setting of Proposition 3.1. Choose following step sizes

η = ε2

24κLσ2 and α = ε2

12κLσ2 min
{

ε2

12κLσ2 ,
1− p
p

ε3

48
√

3κ3Lσ3
,

√
1− p
p

ε2

12
√

2κ2Lσ2
,

1− p

8κ2L

√
p
(

2p+ (1−p)ε2

24κ2σ2

)
 ,

and a number of iterations k which verifies

k ≥ 12
ε2

12D0κLσ
2

pε2
,

48
√

3D0κ
3Lσ3

(1− p)ε3 ,
12
√

2D0κ
2Lσ2√

p(1− p)ε2
,

8κ2L
√

2 + (1−p)ε2

24pκ2σ2

1− p ,
κ2L2r0σ

2

(1− p)σ2

 .

Then, by choosing p ∈
[
ε
κ2 ,

1
2
]
, we have that finding an ε-stationary point requires at most O

(
κ3ε−5) iterations.

A.4 Corollary 3.8

Corollary 3.8 presented the convergence rate in expectation of RSGDA (Alg.2) given a specified precision
ε > 0 for a large enough minibatch size.
Corollary A.4 (Large minibatch sizes). Consider the setting of proposition 3.1. Let Assumption 3.7 hold.
Choose the step sizes

η = 1
L

and α = 1− p

2κ2L
√
p
(
2p+ 1−p

κ

) ,
There exists a minibatch size M(κ, ε, p) such that if the total number of stochastic gradient evaluations is
larger than

O

 κ2LD0
1−p

√
2 + 1−p

pκ + κL2r0
1−p

ε2
max {1,M(κ, ε, p)}

 ,

then, mint=0,...,k−1 E [‖∇φ(θt)‖] ≤ ε. Moreover, choosing p ∈
[ 1
κ ,

1
2
]
ensures that the total number stochastic

gradient computations is O
(
κ3ε−4).

B Proofs

B.1 Proof of Proposition 3.1

Proof. In this proof, we define θ+
k = θk−αk∇θf(θk, vk, zk) and v+

k = ΠV (vk + ηk∇vf(θk, vk; zk)). We denote
by Ezk [·] the expectation conditioned on the random variable zk, and by Ek [·] the expectation conditioned
on all past random variables.

Recall that

(θk+1, vk+1) =
{

(θ+
k , vk) w. p. p

(θk , v+
k ) w. p. 1− p

We have

Ek [φ(θk+1)] = pEzk
[
φ(θ+

k )
]

+ (1− p)φ(θk). (8)
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From Lemma 2.2, we have that φ is 2κL-smooth. Hence,

φ(θ+
k ) ≤ φ(θk)− αk〈∇φ(θk),∇θf(θk, vk; zk)〉+ α2

kκL‖∇θf(θk, vk; zk)‖2.

Thus,

Ezk
[
φ(θ+

k )
]
≤ φ(θk)− αk〈∇φ(θk),∇θF (θk, vk)〉+ α2

kκLEzk
[
‖∇θf(θk, vk; zk)‖2

]
= φ(θk)− αk

2 ‖∇φ(θk)‖2 − αk
2 ‖∇θF (θk, vk)‖2 + αk

2 ‖∇φ(θk)−∇θF (θk, vk)‖2

+ α2
kκLEzk

[
‖∇θf(θk, vk; zk)−∇θF (θk, vk)‖2

]
+ α2

kκL‖∇θF (θk, vk)‖2

≤ φ(θk)− αk
2 ‖∇φ(θk)‖2 + αk

2 ‖∇φ(θk)−∇θF (θk, vk)‖2

− αk
2 (1− 2αkκL) ‖∇θF (θk, vk)‖2 + α2

kκLσ
2

≤ φ(θk)− αk
2 ‖∇φ(θk)‖2 + αk

2 ‖∇φ(θk)−∇θF (θk, vk)‖2 + α2
kκLσ

2

− αk
4 ‖∇θF (θk, vk)‖2,

where we used the fact that αk ≤ 1
4κL in the last inequality.

Let δk
def= ‖vk − v∗(θk)‖2. From assumption 2.1, F is L-smooth. Hence,

Ezk
[
φ(θ+

k )
]
≤ φ(θk)− αk

2 ‖∇φ(θk)‖2 + αkL
2

2 δk + α2
kκLσ

2 − αk
4 ‖∇θF (θk, vk)‖2.

Using this inequality in (8), we have

Ek [φ(θk+1] ≤ φ(θk)− pαk
2 ‖∇φ(θk)‖2 + pαkL

2

2 δk + pα2
kκLσ

2 − pαk
4 ‖∇θF (θk, vk)‖2.

Besides, we have

Ek [δk+1] = (1− p)Ezk
[∥∥v+

k − v
∗(θk)

∥∥2
]

+ pEzk
[∥∥vk − v∗(θ+

k )
∥∥2
]
.

First, note that since v+
k = ΠV (vk + ηk∇vf(θk, vk; zk)) and v∗(θk) ∈ V , where V is a convex set, we have that∥∥v+

k − v
∗(θk)

∥∥2 = ‖ΠV (vk + ηk∇vf(θk, vk; zk))−ΠV (v∗(θk))‖2 ≤ ‖vk + ηk∇vf(θk, vk; zk)− v∗(θk)‖2,

where we used the fact that ΠV is contractive. Hence, using the classical analysis for SGD in the strongly
convex and smooth setting (see for example Gower et al. (2019)), we have that

Ezk
[∥∥v+

k − v
∗(θk)

∥∥2
]
≤ (1− ηkµ)‖vk − v∗(θk)‖2 − 2ηk (1− 2ηkL) (f(θk, v∗(θk))− f(θk, vk)) + 2η2

kσ̃
2.

Hence, with ηk ≤ 1
2L , we have

Ek [δk+1] ≤ (1− p)(1− ηkµ)‖vk − v∗(θk)‖2 + pEzk
[∥∥vk − v∗(θ+

k )
∥∥2
]

+ 2(1− p)η2
kσ̃

2.

Let βk > 0. Then,

Ek [δk+1] ≤ ((1− p)(1− ηkµ) + p (1 + βk)) δk + p

(
1 + 1

βk

)
Ezk

[∥∥v∗(θ+
k )− v∗(θk)

∥∥2
]

+ 2(1− p)η2
kσ̃

2.

From Lemma 2.2, we have that v∗ is κ-lipschitz. Hence, by also using Assumption 2.3,

Ezk
[∥∥v∗(θ+

k )− v∗(θk)
∥∥2
]
≤ α2

kκ
2Ezk

[
‖∇θf(θk, vk; zk)‖2

]
≤ α2

kκ
2‖∇θF (θk, vk)‖2 + α2

kκ
2σ̃2.
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Hence,

Ek [δk+1] ≤ ((1− p)(1− ηkµ) + p (1 + βk)) δk + p

(
1 + 1

βk

)
α2
kκ

2‖∇θF (θk, vk)‖2

+ 2(1− p)η2
kσ̃

2 + p

(
1 + 1

βk

)
α2
kκ

2σ2.

With βk = (1−p)ηkµ
2p , this inequality becomes

Ek [δk+1] ≤
(

1− (1− p) ηkµ
2

)
δk + p (2p+ (1− p) ηkµ)α2

kκ
2

(1− p)ηkµ
‖∇θF (θk, vk)‖2

+ 2(1− p)η2
kσ̃

2 + p (2p+ (1− p) ηkµ)α2
kκ

2

(1− p)ηkµ
σ2.

Rearranging, we have

δk ≤
(

2
(1− p)ηkµ

δk −
2

(1− p)ηkµ
Ek [δk+1]

)
+ 2p (2p+ (1− p) ηkµ)α2

kκ
2

(1− p)2η2
kµ

2 ‖∇θF (θk, vk)‖2

+ 4ηkσ̃2

µ
+ 2p (2p+ (1− p) ηkµ)α2

kκ
2σ2

(1− p)2η2
kµ

2 .

Hence,
pαkL

2

2 δk ≤
(

pαkκL

(1− p)ηk
δk −

pαkκL

(1− p)ηk
Ek [δk+1]

)
+ p2 (2p+ (1− p) ηkµ)α3

kκ
4

(1− p)2η2
k

‖∇θF (θk, vk)‖2

+ 2ηkpαkκLσ̃2 + p2 (2p+ (1− p) ηkµ)α3
kκ

4σ2

(1− p)2η2
k

≤
(

pαkκL

(1− p)ηk
δk −

pαk+1κL

(1− p)ηk+1
Ek [δk+1]

)
+ p2 (2p+ (1− p) ηkµ)α3

kκ
4

(1− p)2η2
k

‖∇θF (θk, vk)‖2

+ 2ηkpαkκLσ̃2 + p2 (2p+ (1− p) ηkµ)α3
kκ

4σ2

(1− p)2η2
k

,

where we used in the last inequality that αk+1
ηk+1

≤ αk
ηk

Using this inequality in (B.1) and rearranging gives

pαk
2 ‖∇φ(θk)‖2 + Ek

[
φ(θk+1) + pαk+1κL

(1− p)ηk+1
δk+1

]
≤ φ(θk) + pαkκL

(1− p)ηk
δk −

αkp

4

(
1− 4p (2p+ (1− p) ηkµ)α2

kκ
4

(1− p)2η2
k

)
‖∇θF (θk, vk)‖2

+ pα2
kκLσ

2 + 2ηkpαkκLσ̃2 + p2 (2p+ (1− p) ηkµ)α3
kκ

4σ2

(1− p)2η2
k

.

Hence, since αk ≤ (1−p)ηk
4κ2
√
p(2p+(1−p)ηkµ)

,

pαk‖∇φ(θk)‖2 + Ek
[
2φ(θk+1) + 2pαk+1κL

(1− p)ηk+1
δk+1

]
≤ 2φ(θk) + 2pαkκL

(1− p)ηk
δk

+ 2pα2
kκLσ

2 + 4ηkpαkκLσ̃2 + 2p2 (2p+ (1− p) ηkµ)α3
kκ

4σ2

(1− p)2η2
k

.

Hence,

pαk‖∇φ(θk)‖2 + 2Ek [Ek+1] ≤ 2Ek + 2σ2
(
pα2

kκL+ p2 (2p+ (1− p) ηkµ)α3
kκ

4

(1− p)2η2
k

)
+ 4ηkpαkκLσ̃2.
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B.2 Proof of Corollary 3.2

Before the proof of Corollary 3.2, we first present a simplified version of the Robbins-Siegmund theorem.
Lemma B.1 (Robbins and Siegmund (1971)). Consider a filtration (Fk)k, the nonnegative sequences of
(Fk)k −adapted processes (Vk)k, (Uk)k and (Zk)k such that

∑
k Zk <∞ almost surely, and

∀k ∈ N, E [Vk+1|Fk] + Uk+1 ≤ Vk + Zk.

Then (Vk)k converges and
∑
k Uk <∞ almost surely.

We now move on to the proof of Corollary 3.2.

Proof. In this proof, we use a similar proof technique to Sebbouh et al. (2021). From Proposition 3.1, we have

αk‖∇φ(θk)‖2 + 2Ek [Ek+1]
p

≤ 2Ek
p

+ 4ηkαkκLσ̃2 + 2σ2
(
α2
kκL+ p (2p+ (1− p) ηkµ)α3

kκ
4

(1− p)2η2
k

)
.

Using Lemma B.1 and the fact that
∑
k α

2
kσ

2 < ∞,
∑
k ηkαkσ̃

2 < ∞,
∑
k
α3
k

η2
k

σ2 < ∞,
∑
k
α3
k

ηk
σ2 < ∞, we

have that (Ek)k converges almost surely. Now define for all k ∈ N,

wk = 2αk∑k
j=0 αj

, g0 = ‖∇φ(θ0)‖2, gk+1 = (1− wk)gk + wk‖∇φ(θk)‖2.

Notice that since (αk)k is decreasing, we have wk ∈ [0, 1]. Hence, using the convexity of the squared norm, we
have ∑k

j=0 αj

2 gk+1 + 2Ek [Ek+1]
p

+ αk
2 gk ≤

∑k−1
j=0 αj

2 gk + 2Ek
p

+ 4ηkαkκLσ̃2 + 2σ2
(
α2
kκL+ p (2p+ (1− p) ηkµ)α3

kκ
4

(1− p)2η2
k

)
.

Using Lemma B.1 and the step size conditions again, and the fact that (Ek)k converges almost surely, gives that(∑k
j=0 αjgk+1

)
k
converges almost surely and that

∑
k αkgk <∞ almost surely. In particular, this implies

that limk αkgk = 0. Notice that αkgk = αk∑k−1
j=0

αj

∑k−1
j=0 αjgk. Hence, since we have that

(∑k
j=0 αjgk+1

)
k

converges almost surely and
∑
k

αk∑k−1
j=0

αj
=∞ (which is a consequence of the fact that

∑
k αk =∞), then

limk

∑k−1
j=0 αjgk = 0, i.e.

gk = o

(
1∑k−1

j=0 αj

)

Finally, since, gk is a weighted average of
{
‖∇φ(θ0)‖2, . . . , ‖∇φ(θk−1)‖2

}
, we have that gk ≥

mint=0,...,k−1 ‖∇φ(θt)‖2. Hence,

min
t=0,...,k−1

‖∇φ(θt)‖2 = o

(
1∑k−1

j=0 αj

)
.
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B.3 Proofs for convergence rates in expectation

All the convergence in expectation proofs follow by telescopic cancellation in (2). Indeed, summing Inequality
(2) between t = 0 and k − 1, and using the fact that ∀t = 0, . . . , k − 1, ‖∇φ(θt)‖2 ≥ minj=0,...,k−1 ‖∇φ(θj)‖2,
we have

min
t=0,...,k−1

‖∇φ(θt)‖2 ≤
2 (φ(θ0)− φ∗)
p
∑k−1
t=0 αt

+ 2α0κL‖v0 − v∗(θ0)‖2

(1− p)η0
∑k−1
t=0 αt

+ 4κLσ̃2∑k−1
t=0 ηkαt∑k−1

t=0 αt
+ 2κLσ2∑k−1

t=0 α
2
t∑k−1

t=0 αt

+ 2σ2κ4p

(1− p)2∑k−1
t=0 αt

(
2p

k−1∑
t=0

α3
t

η2
t

+ (1− p)µ
k−1∑
t=0

α3
t

ηt

)
. (9)

B.3.1 Proof of Corollary 3.4

Using constant step sizes in (9), we have

min
t=0,...,k−1

E
[
‖∇φ(θt)‖2

]
≤ 2D0

αpk
+ 2κLr0

(1− p)ηk + 4ηκLσ̃2 + 2ακLσ2 + 2α2κ4p2σ2

(1− p)2η2 + 2α2κ3Lpσ2

(1− p)η . (10)

Proof. When using the exact gradients, we have that σ2 = σ̃2 = 0. Using the constant step sizes of Corollary
3.4 in (10) directly gives the desired result.

B.3.2 Proof of Corollary 3.5

Proof. Using Inequality (9) and the parameter settings of Corollary 3.5, we have

min
t=0,...,k−1

E
[
‖∇φ(θt)‖2

]
/

2 (φ(θ0)− φ∗)
pα0(k + 1)2/5 + 2κL‖v0 − v∗(θ0)‖2

(1− p)η0(k + 1)2/5

+ 4κLσ̃2η0 log(k + 1)
(k + 1)2/5 + 2κLσ2α0

(k + 1)2/5

+ 2σ2κ4pα2
0

η0(1− p)2(k + 1)2/5

(
2p log(k + 1)

η0
+ (1− p)µ

)
,

where ” / ” indicates that we omit the absolute constants arising in the summations. The asymptotically
dominant term is 4κLσ̃2η0 log(k+1)

(k+1)2/5 . Hence

min
t=0,...,k−1

E
[
‖∇φ(θt)‖2

]
= O

(
κ log(k)√

k

)

B.3.3 Proof of Corollary 3.6

Proof. For simplicity, we consider that σ2 ≥ σ̃2 ≥ 1. Otherwise, we can simply replace σ and σ̃ by max {σ, σ̃, 1},
and the proof will still hold with max {σ, σ̃, 1} instead of σ.

Let ε > 0. The proof follows simply from forcing each term of the LHS of (10) to be smaller than ε2

6 . This
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results in the following step sizes

η = ε2

24κLσ2 and α = ε2

12κLσ2 min
{

ε2

12κLσ2 ,
1− p
p

ε3

48
√

3κ3Lσ3
,

√
1− p
p

ε2

12
√

2κ2Lσ2
,

1− p

8κ2L

√
p
(

2p+ (1−p)ε2

24κ2σ2

)
 ,

and the following lower bound on k

k ≥ 12
ε2

12D0κLσ
2

pε2
,

48
√

3D0κ
3Lσ3

(1− p)ε3 ,
12
√

2D0κ
2Lσ2√

p(1− p)ε2
,

8κ2L
√

2 + (1−p)ε2

24pκ2σ2

1− p ,
κ2L2r0σ

2

(1− p)σ2

 .

By choosing p ∈
[
ε
κ2 ,

1
2
]
, we have that the RHS is at most of the order Θ

(
κ3ε−5).

B.3.4 Proof of Corollary 3.8

To prove Corollary 3.8, we need to use the following lemma, which ensures that the variance of the stochastic
gradients decreases linearly with the minibatch size.
Lemma B.2 (Lemma A.2 in Lin et al. (2019)). Let Assumption 3.7 hold. Then, is Gz(θ, v) =
1
M

∑M
i=1∇θf(θ, v; zi) where z1, . . . , zM are sampled i.i.d, then

E
[
‖Gz(θ, v)−∇F (θ, v)‖2

]
≤ σ̄2

M
.

And the same holds with the gradient with respect to v.

Proof. Using (10) with the constant step sizes of Corollary 3.8 and Lemma

min
t=0,...,k−1

E
[
‖∇φ(θt)‖2

]
≤ 8κ2L

(1− p)k

√
2 + 1− p

2pκ D0 + 2κL2

(1− p)k r0

+ 2σ2

M

 1− p

2κ
√
p
(
2p+ 1−p

2κ
) + 2κ+ p

2κ2
(
2p+ 1−p

2κ
) + 1− p

4κ
(
2p+ 1−p

2κ
)
 .

Hence, since p

2κ2(2p+ 1−p
2κ ) + 1−p

4κ(2p+ 1−p
2κ ) ≤ 2κ, we have

min
t=0,...,k−1

E
[
‖∇φ(θt)‖2

]
≤ 8κ2L

(1− p)k

√
2 + 1− p

2pκ D0 + 2κL2

(1− p)k r0

+ 2κσ2

M

 1− p

2κ2
√
p
(
2p+ 1−p

2κ
) + 4

 .

Choosing k ≥ 2
ε2

( 2
κL

(1−p)k

√
2 + 1−p

2pκD0 + 2κL2

(1−p)k r0

)
and M = M (κ, ε) ensures that

8κ2L

(1− p)k

√
2 + 1− p

2pκ D0 + 2κL2

(1− p)k r0 ≤
ε2

2 and 2κσ2

M

 1− p

2κ2
√
p
(
2p+ 1−p

2κ
) + 4

 ≤ ε2

2 .

Hence, the total number of samples required to guarantee that mint=0,...,k−1 E [‖∇φ(θt)‖] ≤ ε is
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max {1,M(κ, ε)} k = O

 κ2LD0
1−p

√
2 + 1−p

2pκ + κL2r0
1−p

ε2
max {1,M(κ, ε)}

 .

B.4 Proofs for the interpolation results of Section 3.2.1 (Corollary 3.10)

B.4.1 Almost sure convergence

Proof. Using σ̃2 = 0 and ηk = 1
2L in (2), we have that

pαk‖∇φ(θk)‖2 + 2Ek [Ek+1] ≤ 2Ek + 2α2
kσ

2

pκL+
4p2

(
2p+ (1−p)

κ

)
αkκ

4L2

(1− p)2

 .

Now note that by choosing αk = η

4(k+1)1/2−ε
√
p(2p+(1−p)ηµ)

, we have that

∑
k

αk =∞,
∑
k

α2
k <∞ and

∑
k

α3
k <∞.

Thus, proceeding as in the proof of Corollary 3.2, but with different choices of step sizes, we have that

min
t=0,...,k−1

‖∇φ(θk)‖2 = o
(
k−1/2+ζ

)
.

B.4.2 Anytime convergence in expectation

Proof. Using σ̃2 = 0 and ηk = 1
2L in (2), we have that

min
t=0,...,k−1

E
[
‖∇φ(θt)‖2

]
≤2 (φ(θ0)− φ∗)

p
∑k−1
t=0 αt

+ 4α0κL
2‖v0 − v∗(θ0)‖2

(1− p)
∑k−1
t=0 αt

+ 2κLσ2∑k−1
t=0 α

2
t∑k−1

t=0 αt
+ 2σ2κ4p

(1− p)2∑k−1
t=0 αt

(
8pL2

k−1∑
t=0

α3
t + 2(1− p)Lµ

k−1∑
t=0

α3
t

)
.

Hence, choosing αk = η

4(k+1)1/2
√
p(2p+(1−p)ηµ)

, we have, omitting absolute constants. As is the case in the

proof of Corollary 3.5, the asymptotically dominant term in the RHS is
∑k−1

t=0
α2
t∑k−1

t=0
αt

. Hence,

min
t=0,...,k−1

E
[
‖∇φ(θt)‖2

]
= O

(
κ log(k)√
k + 1

)
.

B.4.3 Convergence in expectation for a given precision.

Proof. In this proof, we procede as in the proof of Corollary 3.6. For simplicity, we consider that σ2 ≥ 1.
Otherwise, we can simply replace σ by 1, and the proof will still hold with 1 instead of σ.

Using σ̃2 = 0 and ηk = 1
2L in (10), we have

min
t=0,...,k−1

E
[
‖∇φ(θt)‖2

]
≤ 2D0

αpk
+ 4κL2r0

(1− p)k + 2ακLσ2 + 8α2κ4L2p2σ2

(1− p)2 + 4α2κ3L2pσ2

(1− p) .
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Let ε > 0. The proof follows simply from forcing each term of the LHS of the previous inequality to be smaller
than ε2

5 . This results in the following choice of α,

α = min

 ε2

10κLσ2 ,
(1− p)ε

2
√

10κ2Lpσ
,

√
1− p
p

ε2

2
√

5κ
√
κLσ

,
1− p

8κ2L
√
p
(
2p+ 1−p

κ

)
 ,

and the following lower bound on k:

k ≥ max

100D0κLσ
2

pε2
,

20
√

10D0κ
2Lσ

(1− p)ε3 ,
20
√

5D0κ
√
κLσ√

p(1− p)ε4
,

80D0κ
2L

(1− p)ε2
√

2 + 1−p
pκ

,
20κL2r0

(1− p)ε2 .


By choosing p ∈

[ 1
κ ,

1
2
]
, we have that the RHS is at most of the order Θ

(
κ2ε−4).

C Learning with a semi-discrete Sinkhorn loss is a nonconvex-strongly
concave problem

The goal of this Section is to present the details and proof of Lemma 4.2. Let us first recall the problem
setting presented in §4.2 in more detail.

C.1 Problem setting

Let X ⊆ Rp. For all n ∈ N∗, define [n] def= {1, . . . , n}. Assume that we are given a fixed dataset (y1, . . . , yn) ⊂ X
and that ν =

∑n
j=1 νjδyj , where

∑n
j=1 νj = 1 (we generalize the setting of §4.2 to non-uniform probabilities).

Then, from Genevay et al. (2016), we have that for any µ ∈ P(X ),

W(µ, ν) = max
v∈Rn

Ez∼µ [h(z, v)] ,

where

h(x, v) =
n∑
j=1

vjνj − ε log
(

n∑
i=1

exp
(
vi − c(x, yi)

ε

)
νi

)
+ ε.

For a mapping g(θ , ·) : Z → X , we have

W(g(· , θ)#µ, ν) = max
v∈Rn

Ez∼µ [h (g(θ, Z), v)] .

Thus, the problem of learning with a Sinkhorn loss can be formulated as

min
θ∈Rd

max
v∈Rn

F (θ, v) def= Ez∼µ [h (gz(θ), v)] . (11)

Assuming that a minimum exists, our goal is to find

θ∗ ∈ argmin
θ∈Rd

φ(θ), where φ(θ) = max
v∈Rn

F (θ, v).

C.2 Assumptions and consequences

We now detail the assumptions of Lemma 4.2.
Assumption C.1. We have

1. for all z ∈ Z, θ 7→ c(gz(θ), y) and y 7→ c(gz(θ), y) are Lc-lipschitz for ‖·‖2 and ‖·‖∞ respectively a.s.
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2. for all z ∈ Z and y ∈ Y, θ 7→ c(gz(θ), y) is twice differentiable and Lc-smooth a.s.

Assumption C.1 has the following consequences on the function F defined in (11).
Lemma C.2. v 7→ F (θ, v) is 1

ε -smooth for all θ ∈ Rd. Moreover, if assumption C.1 holds, then

1. θ 7→ F (θ, v) is Lc-lipschitz and LF -smooth, where LF
def= Lc+2L2

c

ε .

2. v 7→ ∇θF (θ, v) and θ 7→ ∇vF (θ, v) are 2Lc
ε -lipschitz.

Before proving Lemma C.2, we present some notations and preliminary calculations that will be used
throughout the proofs.

Notations. We define for all θ ∈ Rd, v ∈ Rn, z ∈ Z, x, y ∈ X 2

cj(x) def= c(x, yj)

wj(x) def=
exp

(
vj−cj(x)

ε

)
νj∑n

k=1 exp
(
vk−ck(x)

ε

)
νk

c(gz(θ), y) = [c1(gz(θ)), . . . , cn(gz(θ))]>

Closed form gradients. Let θ ∈ Rd, v ∈ Rn, z ∈ Z and y ∈ X . We have

∇vh(gz(θ), v) = ν −
exp

(
v−c(gz(θ),y)

ε

)
� ν

exp
(
v−c(gz(θ),y)

ε

)>
ν

∈ Rn, (12)

and

∇θh(gz(θ), v) =
n∑
j=1

exp
(
vj−cj(gz(θ))

ε

)
νj∑n

k=1 exp
(
vk−ck(gz(θ))

ε

)
νk
∇θcj(gz(θ)) ∈ Rd.

Proof of Lemma C.2. Let Assumption C.1 hold. Let y ∈ X .

• v 7→ F(θ,v) is 1
ε -smooth.

Let θ ∈ Rd, v ∈ Rn, z ∈ Z. Define a def= exp
(
v−c(gz(θ),y)

ε

)
� ν. Differentiating v 7→ h(gz(θ), v) twice, we

have

∇2
vh(gz(θ), v) = 1

ε

(
aa>

(a>1n)2 −
diag(a)
a>1

)
Using the Cauchy-Schwartz inequality, we can show that ∇2

vh(x, v) � 0. Moreover, we have for all b ∈ Rn,

b>diag(a)b
a>1 =

n∑
i=1

ai∑n
j=1 aj

b2i ≤ ‖b‖
2
,

that is, diag(a)
a>1 � I. This, together with the fact that aa>

(a>1n)2 � 0, implies that − 1
ε I � ∇

2
vh(x, v) � 0. This

in turn implies that v 7→ F (θ, v) is 1
ε -smooth.
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• θ 7→ F(θ,v) is Lc+2L2
c

ε -smooth.
Let θ ∈ Rd, v ∈ Rn, z ∈ Z. We have

∇2
θh(gz(θ), v) = 1

ε

n∑
j=1

wj(gz(θ))
(
∇2cj(gz(θ))−∇cj(gz(θ))∇cj(gz(θ))>

) n∑
k=1

wk(gz(θ))∇θck(gz(θ))

+

 n∑
j=1

wj(gz(θ))∇θcj(gz(θ))

( n∑
k=1

wk(gz(θ))∇θck(gz(θ))>
)

= 1
ε

n∑
k=1

wk(gz(θ))
n∑
j=1

wj(gz(θ))
(
∇2
θcj(gz(θ)) + (∇θck(gz(θ))−∇θcj(gz(θ)))∇θcj(gz(θ))>

)
Let b ∈ Rd. Then∥∥∇2

θh(gz(θ), v)b
∥∥ ≤ 1

ε

n∑
k=1

wk(gz(θ))
n∑
j=1

wj(gz(θ))
(∥∥∇2

θcj(gz(θ))b
∥∥

+ ‖∇θck(gz(θ))−∇θcj(gz(θ))‖
∣∣∇θcj(gz(θ))>b∣∣)

Using Cauchy-Schwarz and the fact that θ 7→ cj(gz(θ)) is Lc-lipschitz, we have∣∣∇θcj(gz(θ))>b∣∣ ≤ ‖∇θcj(gz(θ))‖ ‖b‖ ≤ Lc ‖b‖ and ‖∇θck(gz(θ))−∇θcj(gz(θ))‖ ≤ 2Lc.

Moreover, since θ 7→ cj(gz(θ)) is Lc-smooth, we have
∥∥∇2

θcj(gz(θ))b
∥∥ ≤ Lc ‖b‖. Hence,

∥∥∇2
θh(gz(θ), v)b

∥∥ ≤ 2L2
c + Lc
ε

‖b‖
n∑
k=1

wk(gz(θ))
n∑
j=1

wj(gz(θ))

= 2L2
c + Lc
ε

‖b‖ .

Taking the expectation and using Jensen’s inequality gives∥∥∇2
θF (θ, v)b

∥∥ ≤ Ez∼µ
[∥∥∇2

θh(gz(θ), v)b
∥∥] ≤ 2L2

c + Lc
ε

‖b‖ .

This shows that θ 7→ F (θ, v) is 2L2
c+Lc
ε -smooth.

• v 7→ ∇θF(θ,v) and θ 7→ ∇vF(θ,v) are 2Lc
ε -lipschitz.

Let θ ∈ Rd, v ∈ Rn, z ∈ Z. Let a ∈ Rd. Differentiating θ 7→ ∇vh(gz(θ), v), we have

∥∥∇2
θvh(gz(θ), v)a

∥∥2 = 1
ε2

n∑
i=1

(
wi(gz(θ))

∑
k

wk(gz(θ)) (∇θci(gz(θ))−∇θck(gz(θ)))> a
)2

= 1
ε2

n∑
i=1

wi(gz(θ))2

(∑
k

wk(gz(θ)) (∇θci(gz(θ))−∇θck(gz(θ)))> a
)2

≤ 1
ε2

n∑
i=1

wi(gz(θ))2
∑
k

wk(gz(θ))
(

(∇θci(gz(θ))−∇θck(gz(θ)))> a
)2

≤ 1
ε2

n∑
i=1

wi(gz(θ))2
∑
k

wk(gz(θ))‖∇θci(gz(θ))−∇θck(gz(θ))‖2‖a‖2

≤ 4L2
c

ε2
‖a‖2

n∑
i=1

wi(θ)2

≤ 4L2
c

ε2
‖a‖2,
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where we used Jensen’s inequality in the first inequality, Cauchy-Schwarz in the second, the fact that
θ 7→ ci(θ) is Lc-lipschitz a.s. in the third, and wi(θ)2 ≤ wi(θ) in the fourth. Note that the norm on the left
hand side is in Rn, while that on the right hand side is in Rd. Since the squared norm is convex, using
Jensen’s inequality,

∥∥∇2
θvF (θ, v)a

∥∥2 ≤ Ez∼µ
[∥∥∇2

θvh(gz(θ), v)a
∥∥2
]
≤ 4L2

c

ε2
‖a‖2.

We conclude that θ 7→ ∇vF (θ, v) is 2Lc
ε -lipschitz for all v ∈ Rn. Similarly, we have that v 7→ ∇θF (θ, v) is

2Lc
ε -lipschitz for all θ ∈ Rd.

C.3 Restricting the maximization problem

In this section, we give the explicit form of the set V in Lemma 4.2. Indeed, we show that the problem
max
v∈Rn

F (θ, v) can be restricted to a smaller bounded set on which v 7→ F (θ, v) is strongly-concave for all θ ∈ Rd.

Lemma C.3. Let Assumption C.1 hold. Define

V def=

v ∈ Rn : ‖v‖2 ≤
Lc
n

n∑
i,k=1

‖yk − yi‖∞ and
n∑
i=1

vi = 0

 . (13)

Then, for all θ ∈ Rd,

max
v∈Rn

F (θ, v) = max
v∈V

F (θ, v), (14)

and F admits a unique maximizer on V.

Proof. Let v∗ ∈ argmaxv∈Rn F (θ, v). Since θ 7→ c(gz(θ), y) is Lc-lipschitz, we have that the (Sinkhorn)
Kantorvitch potentials are Lc-Lipschitz on Y as well (Genevay et al., 2019, Proposition 1). This means, in
the discrete setting, that for any v∗ ∈ argmaxv∈Rn F (θ, v) and (k, i) ∈ [n]2,

|v∗k − v∗i | ≤ Lc‖yk − yi‖∞.

Hence,

v∗i − Lc‖yk − yi‖∞ ≤ v
∗
k ≤ v∗i + Lc‖yk − yi‖∞.

Further, since the Kantorovitch potentials are uniquely defined upto a constant, we can restrict our attention
to the unique vector v∗ ∈ Rn which verifies

∑n
i=1 v

∗
i = 0. Thus, summing the previous inequality from i = 1

to n and rearranging, we have

|v∗k| ≤
Lc
n

n∑
i=1
‖yk − yi‖∞.

Finally, summing between k = 1 and n and using the fact that ‖v‖2 ≤ ‖v‖1, we have that

‖v∗‖2 ≤
Lc
n

n∑
i,k=1

‖yk − yi‖∞.

That is, the unique solution v∗ to the maximization problem max
v∈Rn

F (θ, v) which verifies
∑n
i=1 v

∗
i = 0 also

verifies the previous inequality. Thus, we can restrict the maximization to the set V defined in (13)
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Remark C.4. Suppose we want to solve Problem (14) using Projected Stochastic Gradient Ascent. For
simplicity, suppose here that g(z, θ) = z for all z, θ ∈ Z × Rd almost surely. Suppose that we initialize at
v0 = 0 and update for all k ∈ N, vk+1 = ΠV (vk + η∇vh(zk, vk)), where zk ∼ µ. From (12), we have that for
all z ∈ Z and v ∈ Rn,

∑n
j=1 ∂vjh(z, v) = 0, so that, since we initialize at v0 = 0, we will have

∑n
j=1 v

j
k = 0

for all k ∈ N. Hence, we can replace the set V by Ṽ def=
{
v ∈ Rn : ‖v‖2 ≤

Lc
n

∑n
i,k=1 ‖yk − yi‖∞

}
. Let

β = Lc
n

∑n
i,k=1 ‖yk − yi‖∞. The projection operator is then simply

ΠṼ(v) = βv

max {‖v‖ , β}
for all v ∈ Rn.

C.4 The semi-dual objective is strongly concave on the subset V

We now show that v 7→ F (θ, v) is strongly concave on V for all θ ∈ Rd.
Proposition C.5. Let Assumption C.1 hold. Define

V def=

v ∈ Rn : ‖v‖2 ≤
Lc
n

n∑
i,k=1

‖yk − yi‖∞ and
n∑
i=1

vi = 0

 .

Let ∆n
y = maxi,k∈[n] ‖yk − yi‖∞. Then, the function v 7→ F (θ, v), where F is defined in (11), is ξ-strongly

concave on V, with

ξ
def=

exp
(
−2(n+2)Lc∆n

y

ε

)
mink∈[n] νk

2nε .

Proof. Let v, d ∈ V and define a = exp( v−c(gz(θ),y)
ε )� ν. By differentiating v 7→ h(gz(θ), v) twice, we have,

using standard computations for the log-sum-exp function:

∇2
vh(x, v) = 1

ε

(
aa>

(1n>a)2 −
diag(a)
1n>a

)
.

Hence,

d>∇2
vh(x, v)d = 1

ε

(
(
∑n
i=1 aidi)2

(1n>a)2 −
n∑
i=1

aid
2
i

)

= 1
ε

(
(
∑n
i=1 aidi)2

(1n>a)2 −
∑n
i=1 aid

2
i

1n>a

)

Define wi = ai∑n

k=1
ak
. Then, we can rewrite the previous equality as

d>∇2
vh(x, v)d = 1

ε

(
(
n∑
i=1

widi)2 −
n∑
i=1

wid
2
i

)
Since

∑n
j=1 wj = 1, it is easy to show that(

n∑
i=1

wid
2
i − (

n∑
i=1

widi)2

)
= 1

2
∑
ij

wiwj (di − dj)2
.

Hence,

d>∇2
vh(x, v)d = − 1

2ε

∑
ij

wiwj (di − dj)2

 .
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But we have for all i ∈ [n], wi = exp( viε )νi∑n

k=1
exp
(
vk+c(x,yi)−c(x,yk)

ε

)
νk
. And since y 7→ c(x, y) is Lc-lipschitz for all

x ∈ X , we have

|c(x, yi)− c(x, yk)| ≤ Lc‖yi − yk‖∞ ≤ Lc∆
n
y , where ∆n

y = max
i,k∈[n]

‖yi − yk‖∞.

Since v ∈ V, we also have that
‖v‖2 ≤

Lc
n

∑
i,k

‖yk − yi‖∞ ≤ nLc∆
n
y .

Using these two inequalities to lower bound wi, we have that

wi ≥
exp

(
−(n+2)Lc∆n

y

ε

)
mink∈[n] νk

n
.

Hence,

d>∇2
vh(x, v)d ≤ −

exp
(
−2(n+2)Lc∆n

y

ε

)
mink∈[n] νk

2n2ε

∑
ij

(di − dj)2
.

But since d ∈ V, we have that
∑n
i=1 di = 0. Hence;

∑
ij(di − dj)2 = 2n

∑n
i=1 d

2
i = 2n‖d‖2. Hence,

d>∇2
vh(gz(θ), v)d ≤ −

exp
(
−2(n+2)Lc∆n

y

ε

)
mink∈[n] νk

2nε ‖d‖2.

This inequality holds for all z ∼ D almost surely. Taking the expectation shows that v 7→ F (θ, v) is strongly
concave on V for all θ ∈ Rd.

D Details about the experimental setting of Section 4.2

For ease of exposition, we redefine here the semi-dual function used in §4.2. Let x ∈ X , and consider a point
cloud (yj)nj=1 ⊆ Y. Then we define for all v ∈ Rn,

h
(
x, (yj)nj=1 ; v

)
def= 1

n

n∑
j=1

vj − ε log

 1
n

n∑
j=1

exp
(
vj − c(x, yj)

ε

)− ε. (15)

The goal is to solve the following problem

min
θ∈Rd

Wε

µ, n∑
j=1

δfθ(yj)

 ≡ max
v∈Rn

Ex∼µ
[
h
(
x, (fθ(yj))nj=1 ; v

)]
.

Thus, if µ = 1
m

∑m
i=1 δxi for (xi)mi=1 ⊆ X , we want to solve

min
θ∈Rd

max
v∈Rn

1
m

m∑
i=1

h
(
xi, (fθ(yj))nj=1 ; v

)
.

D.1 Dataset, architecture and OT hyperparameters

Dataset. The dataset we used was first considered in Stark et al. (2020). It consists of a single-cell profile
of a metastatic melanoma sample from the Tumor Profiler Consortium1. It contains single-cell data from a

1https://tpreports.nexus.ethz.ch/download/scim/data/tupro/
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cohort of patients which is analyzed using two technologies: Cytometry by Time of Flight (CyTOF, Bandura
et al. (2009)) and scRNA-sequencing (Tang et al., 2009). The number of cells analyzed using CyTOF was
m = 135334 and the dimension of the resulting points is d = 41, and the number of cells analyzed using
scRNA-sequencing was n = 4683, with a dimension d′ = 1024. We denote the CyTOF point cloud by (xi)mi=1
and µ = 1

m

∑m
i=1 δxi , and the scRNA point cloud by (yj)nj=1 and ν = 1

n

∑n
j=1 δyj .

Architecture. Instead of mapping both point clouds to a lower dimensional space, we instead map the
smaller point cloud ν to the larger one µ. This strategy has two benefits: (i) it reduces the possible error due
to learning the parametric map since we only incur the error for one point cloud, (ii) it is computationally
less expensive, since we need to displace a smaller point cloud instead of both point clouds. The map we
used was a 3-layer MLP with a number of hidden units 128-96-64, and we used GELU activation functions
(Hendrycks and Gimpel, 2016). We used a minibatch size b = 128.

OT hyperparameters. We used a regularization parameter ε = 0.1 and a quadratic cost function
c(x, y) = ‖x− y‖2 for all x, y ∈ X .

D.2 Using Sinkhorn’s algorithm

We now present Sinkhorn’s algorithm.

Algorithm 3 Sinkhorn((xi)mi=1 , (yj)nj=1 , c, ε,msin, a0, b0)

Inputs: point clouds (xi)mi=1, (yj)nj=1, cost function c, regulatization ε, number of iterations m. Optional:
initialization (a0, b0) ∈ Rm+ × Rn+.
Compute K ∈ Rn×n, where Ki,j = exp

(
− c(xi,yj)ε

)
for all (i, j)

Initialisation: by default a0 = 1m, b0 = 1n
for ` = 0, . . . ,msin − 1 do

a`+1 = 1m
Kb`

, bk+1 = 1n
K>a`+1

end for
return (amsin , bmsin)

In §4.2, we use Sinkhorn’s algorithm (Alg. 3) as a subroutine instead of the gradient ascent step in RSGDA
(Alg. 2). We present the resulting algorithm explicitely in Alg. 4.

Algorithm 4 Learning using Sinkhorn’s algorithm
Inputs: (xi)mi=1, (yj)nj=1, cost function c, regulatization ε, number of iterations m, parameteric map fθ.
a0 = 1m, b0 = 1n, θ0 ∈ Rd, minibatch size b, step size α
for k = 0, . . . ,K − 1 do

Sample a minibatch B ⊂ [n] of size |B| = b.
ak+1, bk+1 = Sinkhorn((xi)i∈B , (yj)

n
j=1 , c, ε,msin, ak, bk) . Using Alg. 3

vk+1 = −ε log (bk+1)
θk+1 = θk − α

b

∑
i∈B

h
(
xi, (fθ(yj))nj=1 ; vk+1

)
. h defined in (15)

end for

Another way to use Sinkhorn’s algorithm would be to initialize each algorithm with a0 = 1m and b0 = 1n,
but the resulting algorithm was not competitive.

D.2.1 Impact of the choice of the number of iterations of Sinkhorn’s algorithm

Here, we examine how the number of iterations of Sinkhorn’s algorithm msin should be set in Alg. 4. We
find that we should only use one step, and that the more steps we use, the slower the optimization. This
is due to the bias introduced by solving a minibatch version of the true transport problem Wε(µ, νθk) (7)
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at each iteration. This bias is already known to be an issue in computing Sinkhorn’s loss using minibatch
approximations (Fatras et al., 2020).

Figure 5: Loss Wε (µ, νθk) (7) when using Alg. 4 depending on the number of iterations msin of Sinkhorn’s
algorithm. α = 0.005, b = 128.
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