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Abstract

In this paper we investigate the problem
of stochastic multi-armed bandits (MAB)
in the (local) differential privacy (DP/LDP)
model. Unlike previous results that assume
bounded/sub-Gaussian reward distributions,
we focus on the setting where each arm’s re-
ward distribution only has (1 + v)-th moment
with some v ∈ (0, 1]. In the first part, we
study the problem in the central ε-DP model.
We first provide a near-optimal result by devel-
oping a private and robust Upper Confidence
Bound (UCB) algorithm. Then, we improve
the result via a private and robust version
of the Successive Elimination (SE) algorithm.
Finally, we establish the lower bound to show
that the instance-dependent regret of our im-
proved algorithm is optimal. In the second
part, we study the problem in the ε-LDP
model. We propose an algorithm that can be
seen as locally private and robust version of
SE algorithm, which provably achieves (near)
optimal rates for both instance-dependent and
instance-independent regret. Our results re-
veal differences between the problem of pri-
vate MAB with bounded/sub-Gaussian re-
wards and heavy-tailed rewards. To achieve
these (near) optimal rates, we develop several
new hard instances and private robust estima-
tors as byproducts, which might be used to
other related problems. Finally, experiments
also support our theoretical findings and show
the effectiveness of our algorithms.
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1 INTRODUCTION

As one of the most fundamental problems in statis-
tics and machine learning, (stochastic) Multi-Armed
Bandits (MAB), and its general form, bandit learning,
have already been studied for more than half a century,
starting from Thompson (1933) and Robbins (1952).
They find numerous applications in many areas such as
medicine (Gutiérrez et al., 2017), finance (Shen et al.,
2015), social science (Nakayama et al., 2017), and clin-
ical research (Press, 2009). The wide applications of
bandit learning also present some new challenges to
existing methods. Particularly, due to the existence
of sensitive data and their distributed nature in many
applications like recommendation system, biomedicine,
and genomics, it is often challenging to preserve the
privacy of such data, which makes the data extremely
difficult to aggregate and learn from.

To preserve the privacy of these sensitive data, Differ-
ential Privacy (DP) (Dwork et al., 2006) has received a
great deal of attention and now has established itself as
a de facto notation of privacy for data analysis. Over
the past decade, differentially private bandit learning
has been extensively studied from various setups includ-
ing classical stochastic MAB (Mishra and Thakurta,
2015; Tossou and Dimitrakakis, 2016; Sajed and Shef-
fet, 2019; Ren et al., 2020; Kalogerias et al., 2020),
combinatorial semi-bandits (Chen et al., 2020), and
contextual bandits (Shariff and Sheffet, 2018; Hannun
et al., 2019; Malekzadeh et al., 2020; Zheng et al., 2020).
Additionally, Wang et al. (2020b); Dubey and Pentland
(2020a,b) recently investigated bandit learning in the
federated/distributed setting.

However, these problems are still not well-understood.
For example, all of the previous results and methods
need to assume that the rewards are sampled from some
bounded (or sub-Gaussian) distributions to guarantee
the DP property. However, such assumptions may not
hold when designing decision-making algorithms for
complicated real-world systems. In particular, previous
papers have shown that the rewards or the interactions
in such systems often lead to heavy-tailed and power
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Table 1: Summary of our contributions and comparison with the bounded/sub-Gaussian reward distribution.
All the results are in the expected regret form. For the heavy-tailed reward distribution case, we assume the
(1 + v)-th moment of each reward distribution is bounded by 1 for some known v ∈ (0, 1]. For the bounded reward
distribution case, we assume the rewards are bounded by 1. For the sub-Gaussian reward distribution case, we
assume the variance of each reward distributed is bounded by 1. Here K is the number of arms, T is the number
of rounds, and ∆a is the mean reward gap of arm a.
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(Instance-independent Bound)

ε-DP O
(√

KT log T + K log T
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(√
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(Ren et al., 2020) Ω(

√
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law distributions (Dubey and Pentland, 2019), such
as modeling stock prices (Bradley and Taqqu, 2003),
preferential attachment in social networks (Mahanti
et al., 2013), and online behavior on websites (Kumar
and Tomkins, 2010). Thus, it is necessary to develop
new methods to deal with these heavy-tailed rewards
in the private bandit learning.

To address the above issue, in this paper, we focus on
the most fundamental bandit model, i.e., multi-armed
bandits, with heavy-tailed rewards. We conduct a
comprehensive and the first study on MAB with heavy-
tailed rewards in both central and local DP models,
where the reward distribution of each arm only has the
(1+v)-th moment for some v ∈ (0, 1]. Our contributions
are summarized as follows.

• In the first part (Section 4), we consider the prob-
lem in the central ε-DP model. Specifically, we
first propose a method based on a robust version
of the Upper Confidence Bound (UCB) algorithm,
and also design a new mechanism that could be
seen as an adaptive version of the Tree-based mech-
anism (Dwork et al., 2010). To further improve the
result, we then develop a private and robust version
of the Successive Elimination (SE) algorithm and
show that the (expected) regret bound is improved

by a factor of log1.5+ 1
v T , where T is the num-

ber of rounds. Moreover, we establish the lower
bound and show that the instance-dependent re-

gret bound of O
(

log T
ε

∑
∆a>0 ( 1

∆a
)

1
v + maxa ∆a

)
achieved by our second algorithm is optimal (up
to poly(log log 1

∆a
) factors), where ∆a is the mean

gap defined in Section 3.1.

• In the second part (Section 5), we study the

problem in the ε-LDP model. We first de-
velop a LDP version of the SE algorithm which
achieves an instance-dependent regret bound

of O
(

log T
ε2

∑
∆a>0 ( 1

∆a
)

1
v + maxa ∆a

)
and an

Õ
((

K
ε2

) v
1+v T

1
1+v

)
instance-independent bound.

Then, we show that the above instance-dependent
regret bound is optimal and the instance-
independent regret bound is near-optimal (up to
poly(log T ) factors).

• All of our results also reveal the differences between
the problem of private MAB with bounded/sub-
Guassian rewards and that with heavy-tailed re-
wards (see Table 1 for details). To achieve these
(near) optimal results, we develop several new hard
instances, mechanisms and private robust estima-
tors as byproducts, which could be used to other
related problems, such as private contextual ban-
dits (Shariff and Sheffet, 2018) or private reinforce-
ment learning (Vietri et al., 2020).

Due to space limitation, all the technical lemmas and
proofs are included in the appendix. The source code
is also included in Supplementary Materials.

2 RELATED WORK

As mentioned earlier, there are enormous previous
works on either MAB with bounded/sub-Gaussian re-
ward distributions in the (local) DP model (Mishra and
Thakurta, 2015; Tossou and Dimitrakakis, 2016; Ga-
jane et al., 2018; Shariff and Sheffet, 2018; Basu et al.,
2019; Sajed and Sheffet, 2019; Ren et al., 2020; Vietri
et al., 2020; Zheng et al., 2020) or MAB with heavy-
tailed reward distributions (Bubeck et al., 2013; Lee
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et al., 2020; Yu et al., 2018; Lattimore, 2017; Agrawal
et al., 2021; Vakili et al., 2013; Agrawal et al., 2020).
However, to the best of our knowledge, MAB with
heavy-tailed reward in the (local) DP model has not
been studied before. In the following we only discuss
previous works that are the most close to ours.

In the previous studies of MAB with bounded/sub-
Gaussian rewards, to guarantee DP property, the
most direct way is to modify the classical UCB al-
gorithm (Mishra and Thakurta, 2015; Tossou and Dim-
itrakakis, 2016; Ren et al., 2020). Our first algorithm
is motivated by a robust version of the UCB algo-
rithm in (Bubeck et al., 2013). However, there are sev-
eral differences. First, unlike the non-private setting,
in this paper we show that this approach could only
achieve a suboptimal instance-dependent (expected) re-
gret bound, due to the noises added by the Tree-based
mechanism (Chan et al., 2011). Secondly, due to the
added noises, parameters such as the thresholds are
quite different with the non-private case. To achieve
an improved regret bound, our second algorithm is
based on the Successive Elimination (SE) (Even-Dar
et al., 2006) algorithm, whose private version has been
studied in (Sajed and Sheffet, 2019) for the bounded
reward case. In this paper we extend the method to the
heavy-tailed case and the LDP model. Our algorithms
are provably (near) optimal. For the lower bounds,
previous papers established hard instances for either
private MAB with bounded rewards (Basu et al., 2019;
Sajed and Sheffet, 2019; Ren et al., 2020) or heavy-
tailed MAB in the non-private case (Bubeck et al.,
2013). However, these instances cannot be used to our
problem and this paper builds new hard instances.

Private and robust estimation has drawn much atten-
tion in recent years. Barber and Duchi (2014) provided
the first study on private mean estimation for distri-
butions with bounded moment, which is extended by
Kamath et al. (2020); Brunel and Avella-Medina (2020);
Liu et al. (2021) recently. However, all of them need
to assume the underlying distribution has the second-
order moment, while in this paper we only need to
assume the reward distributions have the (1 + v)-th
moment for some v ∈ (0, 1]. Moreover, all of these
works only focus on the central DP model and offline
setting, and it is generally unclear whether they could
be extended to the stream setting. Thus, our problem
is more general. In addition to the mean estimation
problem, recently Wang et al. (2020a) studied differ-
entially private stochastic convex optimization with
heavy-tailed data, while their work still requires to
assume the distribution of gradient has second-order
moment and cannot be used to the stream setting.

3 PRELIMINARIES

In this section, we present some preliminaries for MAB
with heavy-tailed rewards and differential privacy.

3.1 MAB with Heavy-tailed Rewards

In a stochastic multi-armed bandits (MAB) problem,
there is a learner interacting with the environment
sequentially over T rounds. The learner is faced with a
set of K independent arms {1, . . . ,K}. In each round
t ∈ [T ], the learner selects an arm at ∈ [K] to pull
and then obtains a reward xt drawn i.i.d. from a fixed
but unknown probability distribution Xat associated
with the chosen arm. Denote by µa the mean of each
distribution Xa for a ∈ [K], and by µ∗ = maxa∈[K] µa
the maximum. Define ∆a , µ∗ − µa as the mean
reward gap for arm a. The learner aims to maximize
her/his expected cumulative reward over time, i.e., to
minimize the (expected) cumulative regret, defined as

RT , Tµ∗ − E

[
T∑
t=1

xt

]
, (1)

where the expectation is taken with respect to all the
randomness. This paper considers a heavy-tailed set-
ting where each arm’s reward distribution only has
finite raw moments of order 1 + v for some v ∈ (0, 1].
Concretely, we assume that there is a constant u > 0
such that for each reward distribution Xa,

EX∼Xa [|X|1+v] ≤ u. (2)

In this paper, we assume both v and u are known
constants, i.e., for any constant c we regard c

1
v as

a constant. Note that the assumption is commonly
used in robust estimation (Catoni, 2012; Kamath et al.,
2020; Wang et al., 2020a) and MAB with heavy-tailed
rewards (Bubeck et al., 2013; Dubey and Pentland,
2019; Lee et al., 2020; Agrawal et al., 2021).

Instead of the assumption on the raw moment in (2),
there is another assumption on the central moment in-
stead, i.e., EX∼Xa [|X − E(X)|1+v] ≤ u. We note that
both of the raw moment and central moment assump-
tions have been studied in the previous work on private
robust estimation (Wang et al., 2020a; Kamath et al.,
2020) for the mean estimation of distributions with
bounded second-order moment. Here, we claim that,
the bounded raw moment implies that the bounded
central moment, and vice versa. See Lemma 10 in
Appendix for details.

3.2 Differential Privacy

We introduce the definition of differential privacy (DP)
in the stream setting since rewards are released con-
tinually. According to (Dwork et al., 2010), for data
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streams there are two different settings, i.e., event-level
setting and user-level setting. This paper will focus on
the event-level setting, i.e., two data streams σ and σ′

are adjacent if they differ at exactly one timestep. Intu-
itively, an algorithm is differentially private if it cannot
be used to distinguish any two adjacent streams.

Definition 1 (Differential Privacy (Dwork et al.,
2010)). An algorithmM is ε-differentially private (DP)
if for any adjacent streams σ and σ′, and any measur-
able subset O of the output space of M, we have
P [M(σ) ∈ O] ≤ eε · P [M(σ′) ∈ O] .

Compared with DP, Local Differential Privacy (LDP)
is a stronger notion of privacy. In LDP, each data is
perturbed before collection to ensure privacy.

Definition 2 (Local Differential Privacy). An algo-
rithm M : X → Y is said to be ε-locally differentially
private (LDP) if for any x, x′ ∈ X , and any measur-
able subset O ⊂ Y, it holds that P [M(x) ∈ O] ≤
eε · P [M(x′) ∈ O] .

In this paper, we will mainly use the Laplacian and
an adaptive version of the Tree-based mechanism (see
Section 4 for details), and the parallel composition
theorem to guarantee the DP property.

Lemma 1 (Parallel Composition). Suppose there are
n ε-differentially private mechanisms {Mi}ni=1 and n
disjoint datasets denoted by {Di}ni=1. Then the algo-
rithm, which applies eachMi on the corresponding Di,
preserves ε-DP in total.

Definition 3 (Laplacian Mechanism). Given a func-
tion f : Xn → Rd, the Laplacian Mechanism is defined
as: ML(D, f, ε) = f(D) + (Y1, Y2, · · · , Yd), where Yi is

i.i.d. drawn from a Laplacian distribution Lap(∆1(f)
ε ),

where ∆1(f) is the `1-sensitivity of the function f , i.e.,
∆1(f) = supD∼D′ ||f(D) − f(D′)||1. Here, D ∼ D′

denotes that D and D′ are neighbouring datasets, i.e.,
those that differ in exactly on entry. For a parameter
λ, the Laplacian distribution has the density function

Lap(λ)(x) = 1
2λ exp(− |x|λ ). Laplacian Mechanism pre-

serves ε-DP.

4 DP HEAVY-TAILED MAB

In this section, we will study the problem of designing
ε-DP algorithms for MAB with heavy-tailed rewards.
Recall that, in the classical setting where the rewards
follow some bounded distributions, the most commonly
used approach is using the Tree-based mechanism to
privately calculate the sum of rewards and then modify
the Upper Confidence Bound (UCB) algorithm (Auer
et al., 2002), such as (Mishra and Thakurta, 2015;
Tossou and Dimitrakakis, 2016). However, their meth-
ods cannot be directly generalized to the heavy-tailed

Algorithm 1 DP Robust Upper Confidence Bound

Input: time horizon T , parameters ε, v, u.
1: Create an empty tree Treea for each arm a ∈ [K].
2: Initialize pull number na ← 0 for each arm a ∈ [K].
3: Denote Bn as ( εun

log1.5 T
)1/(1+v) for any n ∈ N+.

4: for t = 1, . . . ,K do
5: Pull arm t and observe a reward xt.
6: Update the pull number nt ← nt + 1.
7: Truncate the reward by x̃t ← xt · I|xt|≤Bnt .
8: Insert x̃t into Treet.
9: end for

10: for t = K + 1, . . . , T do
11: Obtain Ŝa(t) for each a ∈ [K] via Algorithm 2.
12: Pull arm

at = arg max
a

Ŝa(t)

na
+18u

1
1+v (

log(2t4) log1.5+ 1
v T

naε
)

v
1+v

and observe the reward xt.
13: Update the pull number nat ← nat + 1.
14: Truncate the reward by x̃t ← xt · I|xt|≤Bnat .

15: Insert x̃t into Treeat .
16: end for

setting, since now the reward is unbounded. Thus, the
most natural idea is to first preprocess the rewards
to make them bounded and then use the Tree-based
mechanism and UCB algorithm.

To address MAB with heavy-tailed in the non-private
case, Bubeck et al. (2013) presented a general near-
optimal framework called robust-UCB by combining
the UCB algorithm with several robust mean estima-
tors. Specifically, the framework first truncates the
rewards to some bounded value and then performs a
robust version of UCB. Building upon the framework,
we first design a method for DOP heavy-tailed MAB
based on the above non-private robust-UCB algorithm,
see Algorithm 1 for details.

The key idea of our algorithm is that, in the first K
rounds, we establish a tree instance Treea for each arm
a ∈ [K] (step 4-9). After that, at round t, when the
arm at is pulled, we truncate the newly generated re-
ward by a certain range Bnat and insert the truncated
reward to Treeat (step 10-15). Here we use a robust
version of UCB to select the arm, where the sum of
rewards is given by the Tree-based mechanism (since
we only insert the truncated rewards, we can use the
mechanism). We note that in the original Tree-based
mechanism in (Chan et al., 2011; Dwork et al., 2010)
each element in the data steam is bounded by a uniform
constant B. However, here the bound Bnat is adaptive
and non-decreasing. Thus, we need a finer tree mecha-
nism. To this end, we propose an adaptive Tree-based
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Algorithm 2 (Adaptive) Tree-based Mechanism

Input: time horizon T , privacy budget ε, a stream σ.
Output: A private version Ŝ(t) for S(t) =

∑t
i=1 σ(i)

at each t ∈ [T ]
1: Initialize each p-sum αi and noisy p-sum α̂i to 0.
2: ε′ ← ε/ log T .
3: for t = 1, . . . , T do
4: Express t in binary form: t =

∑
j Binj(t) · 2j .

5: i← min{j : Binj(t) 6= 0}.
6: αi ←

∑
j<i αj + σ(t).

7: for j = 0, . . . , i− 1 do
8: αj ← 0, α̂j ← 0.
9: end for

10: α̂i ← αi + Lap(2Bt/ε
′).

11: return Ŝ(t)←
∑
j:Binj(t)=1 α̂j .

12: end for

mechanism based on the earlier works (Chan et al.,
2011; Dwork et al., 2009), whose procedures are pre-
sented in Algorithm 2. By the same proof as in (Chan
et al., 2011; Dwork et al., 2009) we have the following
guarantees as shown in Lemma 2.

Definition 4 (p-sum). A p-sum is a partial sum of
consecutive data items. Let 1 ≤ i ≤ j. For a data
stream σ of length T , we use σ(t) to denote the data

item at time t ∈ [T ] and
∑

[i, j] ,
∑j
k=i σ(k) to denote

a partial sum involving data items i through j. We use
the notation αti to denote the p-sum

∑
[t− 2i + 1, t].

Lemma 2 ((Adaptive) Tree-based Mechanism). Given
a stream σ such that σ(t) ∈ [−Bt, Bt] for ∀t ∈ [T ],
where Bt is non-decreasing with t, we want to privately
and continually release the sum of the stream S(t) ,∑t
i=1 σ(i) for each t ∈ [T ]. Tree-based Mechanism

(Algorithm 2) outputs an estimation Ŝ(t) for S(t) at

each t ∈ [T ] such that Ŝ(t) preserves ε-differential
privacy and guarantees the following noise bound with
probability at least 1− δ for any δ > 0,∣∣∣Ŝ(t)− S(t)

∣∣∣ ≤ 2Bt
ε
· log1.5 T · log

1

δ
. (3)

When Bt = B, Algorithm 2 will be the same as the
original one. Theorem 1 presents the privacy guarantee
of overall algorithm (Algorithm 1 and Algorithm 2).

Theorem 1. For any ε > 0, the overall algorithm (Al-
gorithm 1 and Algorithm 2) is ε-differentially private.

In fact, the Ŝa(t)/na term in step 12, which is denoted
by µ̂a(na, t), could be seen as a robust and private
estimator of the mean µa after total na pulls of arm a
till time t. Our selection strategy in step 12 is based on
the following estimation error between µ̂a(na, t) and
µa, which is also a key lemma that will be used to
bound the regret of Algorithm 1.

Lemma 3. In Algorithm 1, for a fixed arm a and t,
we have the following estimation error with probability
at least 1− t−4,

µ̂a(na, t) ≤ µa + 18u
1

1+v

(
log(2t4) log1.5+ 1

v T

naε

) v
1+v

.

(4)

We have the following instance-dependent regret bound
by the proof of Theorem 1 in (Auer et al., 2002).

Theorem 2. Under our assumptions, for any 0 < ε ≤ 1
the instance-dependent expected regret of Algorithm 1
satisfies

RT ≤ O

( ∑
a:∆a>0

( log2.5+ 1
v T

ε

( u

∆a

) 1
v

+ ∆a

))
. (5)

Compared with the non-private version of robust
UCB (Bubeck et al., 2013), the main difference is the

threshold value Bnat = (
εunat

log1.5 T
)

1
1+v , where Bubeck

et al. (2013) set it as (
unat

log(t2) )
1

1+v . Informally speaking,

this is caused by the fact that, due to the privacy, the
number of efficient samples now becomes nε. Specifi-
cally, due to privacy constraint, the estimation error
could be decomposed into three parts: the bias, vari-
ance due to the truncation, and the noise we added. We
can show that setting Bnat as the threshold could pro-
vide an improved bound of error. Compared with the
O(
∑
a:∆a>0 [log T ( u

∆a
)

1
v + ∆a]) optimal rate of the re-

gret in the non-private version (Bubeck et al., 2013), we

can see that there is an additional factor of log1.5+ 1
v T

ε in
the private case. In contrast, in the problem where the
reward distributions are bounded, it has been shown
by Shariff and Sheffet (2018) that, there is only an
additional factor of 1

ε compared with the non-private
case. Thus, a natural question arises here is whether
it is possible to further improve the regret. We answer
this question affirmatively by designing an optimal
algorithm, see Algorithm 3 for details.

Our algorithm is based on the Successive Elimination
(SE) algorithm proposed by Even-Dar et al. (2006),
whose DP variant has been studied by Sajed and Sheffet
(2019). Briefly speaking, we first set all the arms as
viable options (step 1), then in each epoch we pull all
the viable arms to get the same (private) confidence
interval around their empirical rewards (step 4-18).
Finally we eliminate the arms with lower empirical
rewards from the viable options if they are sub-optimal
compared with other viable arms (step 21-25).

Theorem 3. For any ε > 0, Algorithm 3 is ε-
differentially private.

Remark 1. As mentioned earlier, Sajed and Sheffet
(2019) also studied a DP variant of the SE algorithm.
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Algorithm 3 DP Robust Successive Elimination

Input: confidence β, parameters ε, v, u.
1: S ← {1, · · · ,K}
2: Initialize: t← 0, τ ← 0.
3: repeat
4: τ ← τ + 1.
5: Set µ̄a = 0 for all a ∈ S.
6: r ← 0, Dτ ← 2−τ .

7: Rτ ←
⌈
u

1
v ( 24(1+v)/v log(4|S|τ2/β)

εD
(1+v)/v
τ

) + 1
⌉
.

8: Bτ ← ( uRτ ε
log(4|S|τ2/β) )1/(1+v).

9: while r < Rτ do
10: r ← r + 1.
11: for a ∈ S do
12: t← t+ 1.
13: Sample a reward xa,r.
14: x̃a,r ← xa,r · I{|xa,r|≤Bτ}.
15: end for
16: end while

17: For each a ∈ S, compute µ̄a ← (
Rτ∑
l=1

x̃a,l)/Rτ .

18: Set µ̃a ← µ̄a + Lap( 2Bτ
Rτ ε

) for all a ∈ S.
19: µ̃max ← maxa∈S µ̃a.

20: errτ ← u1/(1+v)( log(4|S|τ2/β)
Rτ ε

)v/(1+v).
21: for all viable arm a do
22: if µ̃max − µ̃a > 12errτ then
23: Remove arm a from S.
24: end if
25: end for
26: until |S| = 1
27: Pull the arm in S in all remaining T − t rounds.

However, there are several differences between their
result and ours. Their algorithm is only for bounded
reward distributions, while here we focus on the heavy-
tailed ones. Due to the irregularity of rewards, we need
to preprocess and shrink these rewards. Moreover, the
forms of parameters are also more complicated than
the bounded distributions case. Finally, in the later
section, we also extend Algorithm 3 to the local model
and show its optimality.

The following lemma claims that the number of rounds
to pull each arm a is at most Õ( 1

ε(∆a)
1+v
v

).

Lemma 4. For any instance of the K-MAB problem,
denote by a∗ its optimal arm. Fix the time horizon T
and confidence level β ∈ (0, 1). Then, with probability
at least 1 − β, in Algorithm 3, the total number of
rounds to pull each sub-optimal arm a 6= a∗ is at most

min

{
T,O

(
u

1
1+v

ε(∆a)
1+v
v

(
log(

K

β
) + log log(

1

∆a
)

))}
.

(6)

Theorem 4 (DP Upper Bound). If we set β = 1
T

in Algorithm 3, then for sufficiently large T and any
ε ∈ (0, 1], the instance-dependent expected regret of
Algorithm 3 satisfies

RT ≤ O

(
u

1
1+v log T

ε

∑
∆a>0

( 1

∆a

) 1
v

+ max
a

∆a

)
. (7)

Moreover, the instance-independent expected regret of
Algorithm 3 satisfies

RT ≤ O

(
u

v
(1+v)2

(
K log T

ε

) v
1+v

T
1

1+v

)
, (8)

where the O(·)-notation omits log log 1
∆a

terms.

From Theorem 4 we can see that compared with the re-

gret bound O( log2.5 T
ε

∑
∆a>0 ( 1

∆a
)

1
v ) in Theorem 2, we

achieve an improved bound of O( log T
ε

∑
∆a>0 ( 1

∆a
)

1
v ).

We think the main reason for the improvement is
that the UCB-based method needs to make a reward-
dependent choice in each round whereas the SE-based
method only makes the reward-dependent choices in
K−1 special rounds when it performs arm elimination.
Moreover, we also have an instance-independent regret
bound. While in the bounded rewards case it has been
shown that a DP variant of the SE algorithm is optimal
(Sajed and Sheffet, 2019), it is still unknown whether
Algorithm 3 is optimal in the heavy-tailed case. In the
following we study the lower bound of regret for heavy-
tailed MAB problem in the ε-DP model. We start
from the two-armed instance-dependent regret lower
bound which is specified in Theorem 10 to show that
the dependency on the term of 1

ε ( 1
∆ )

1
v is unavoidable

in general. Due to space limitation, we put Theorem
10 and its proof in Appendix. Then we extend to
the K-arm case and show the instance-dependent re-
gret bound presented in Theorem 4 is optimal. The
lower bound of the instance-independent regret is still
unclear, and we leave it as an open problem.

Theorem 5 (DP Instance-dependent Lower Bound).
There exists a heavy-tailed K-armed bandit instance
with u ≤ 1 in (2), µa ≤ 1

6 and ∆a ∈ (0, 1
12 ), such that

for any ε-DP (0 < ε ≤ 1) algorithm A whose expected

regret is at most T
3
4 , we have

RT ≥ Ω

(
log T

ε

∑
∆a>0

( 1

∆a

) 1
v

)
. (9)

Below we will sketch the proof of Theorem 5. No-
tably, previous hard instances in the bounded rewards
case cannot provide tight lower bounds in our set-
ting. Moreover, the hard instance in the non-private
heavy-tailed MAB case (Bubeck et al., 2013) is only
for two-armed setting and cannot be generalized to
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K arms. Therefore, it is necessary to construct new
hard instance to prove Theorem 5. Specifically, we
design the following heavy-tailed MAB problem as a
hard instance: the instance P̄ where the distribution
of each arm a ∈ [K] is νa =

(
1− s1+v

a

2

)
δ0 +

s1+v
a

2 δ1/sa ,

with some 1
2 ≥ µ1 ≥ · · · ≥ µK and sa = (2µa)

1
v . That

is when X ∼ νa, X = 0 with probability (1 − s1+v
a

2 ),

and X = 1
sa

with probability
s1+v
a

2 . It is easy to verify
for each a ∈ [K] that E[νa] = µa and the (1 + v)-th
moment is bounded by 1. Now, we fix an arm a 6= 1
and denote Ea as the event that the arm a is pulled

at most ta , log T
100ε41/v ( 1

∆a
)

1+v
v times. We will mainly

show that PA,P̄ (Ea) ≤ 1
2K . To prove this, we consider

another instance Q̄a where the distribution of any arm
a′ 6= a remains unchanged, and the distribution of

arm a is ν′a = [1 − (
s1+v
a

2 + 2∆aγa)]δ0 + (
s1+v
a

2 )δ1/sa +

(2∆aγa)δ1/γa , where γa = (4∆a)
1
v . Note that when set-

ting µ1+v
a ≤ 1

6 and ∆1+v
a ≤ 1

12 , we have
s1+v
a

2 +2∆aγa =

2
1
v µ

1+v
v

a + 2 · 4 1
v ·∆

1+v
v

a ≤ ( 1
3 )

1
v + 2 · ( 1

3 )
1
v ≤ 1, thus the

postulated ν′a is reasonable. It is also easy to verify
that E[ν′a] = µa + 2∆a = µ1 + ∆a ≤ 1 and the (1 + v)-
th moment of v′a is bounded by 1. With the coupling
lemma in Karwa and Vadhan (2018), we can prove that
PA,P̄ (Ea) ≤ 1

2K . Thus, by taking the union bound we

can get with probability at least 1
2 , the regret of P̄ for

any private algorithm A is Ω( log T
ε

∑
∆a>0 ( 1

∆a
)

1
v ).

Remark 2. In the MAB with bounded rewards case,
it has been shown that the optimal rate of the ex-
pected rate is O(K log T

ε +
∑

∆a>0
log T
∆a

) (Sajed and
Sheffet, 2019). Compared with the optimal rate

O( log T
ε

∑
∆a>0 ( 1

∆a
)

1
v ) in the heavy-tailed case, we can

see there is a huge difference. First, the dependency
on 1

∆a
now becomes to ( 1

∆a
)

1
v . Secondly, the price of

privacy in the bounded rewards case is an additional
term of O(K log T

ε ) compared with the non-private rate,
while in the heavy-tailed case, there is an additional
factor of 1

ε compared with the non-private one.

5 LDP HEAVY-TAILED MAB

In this section, we will investigate upper and lower
bounds for heavy-tailed MAB in the local DP model.
We start from the upper bounds. To design an ε-LDP
algorithm, most of the previous works on MAB with
bounded rewards modifies the UCB algorithm and uses
the Laplacian mechanism to guarantee the LDP prop-
erty, such as (Chen et al., 2020; Zhou and Tan, 2021).
For sub-Gaussian rewards, Ren et al. (2020) first map
the unbounded rewards with a Sigmoid function and
then use the Laplacian mechanism and UCB algorithm.
Moreover, it has been shown that this type of method is
near-optimal (Chen et al., 2020; Ren et al., 2020). Thus,

for MAB with heavy-tailed rewards, a straightforward
way is to modify the UCB-based method. Specifically,
each reward will be shrunken to a certain range and
then added Laplacian noise, subsequently the algorithm
uses the confidence bound on these perturbed rewards
to pull an arm. However, such an approach may cause
enormous error. The reason is that, similar to Algo-
rithm 1, here the threshold of each reward depends on
na. That is, the Laplacian noise we added for each
reward will be proportional to na. As a result, unlike
the Tree-based mechanism in the central model, this
LDP version of the UCB algorithm will introduce a
huge amount of error to estimate the mean.

To achieve a better utility, we propose an ε-LDP version
of the SE algorithm, see Algorithm 4 for details. The
basic idea is similar to Algorithm 3, where the algorithm
now maintains (private) confidence interval for each
arm via the perturbed rewards instead of the noisy
average. However, compared with the above LDP
version of the UCB algorithm, we can see that here the
Laplacian noise added to each reward is independent
on the number of rounds na, which could be much
smaller than the noise added in the LDP version of
UCB method when T is sufficiently large. The following
two theorems provide the privacy and utility guarantees
for Algorithm 4, respectively.

Theorem 6. For any ε > 0, Algorithm 4 is ε-local
differentially private.

Theorem 7 (LDP Upper Bound). Set β = 1
T in Al-

gorithm 4. For any ε ∈ (0, 1] and sufficiently large T ,
the instance-dependent expected regret of Algorithm 4
satisfies

RT ≤ O

(
u

2
v log T

ε2

∑
∆a>0

( 1

∆a

) 1
v

+ max
a

∆a

)
. (10)

Moreover, the instance-independent expected regret of
Algorithm 4 satisfies

RT ≤ O

(
u

2
1+v

(
K log T

ε2

) v
1+v

T
1

1+v

)
, (11)

where the O(·)-notations omit log log 1
∆a

terms.

In the following, we derive both instance-dependent
and instance-independent lower bounds for heavy-
tailed MAB in the ε-LDP model. Similar to instance-
dependent lower bounds in central DP, we also first
analyze the two-armed case to show that the depen-
dency on the term of 1

ε2 ( 1
∆ )

1
v is unavoidable in general

(see Theorem 11 in Appendix C) and then extend to
K-armed case in the following result.

Theorem 8 (LDP Instance-dependent Lower Bound).
There exists a heavy-tailed K-armed bandit instance
with u ≤ 1 in (2) and ∆a , µ1 − µa ∈ (0, 1

5 ), such
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Algorithm 4 LDP Robust Successive Elimination

Input: Confidence β, parameters ε, v, u.
1: S ← {1, · · · ,K}
2: Initialize: t← 0, τ ← 0.
3: repeat
4: τ ← τ + 1.
5: Set µ̄a = 0 for all a ∈ S.
6: r ← 0, Dτ ← 4−τ .

7: Rτ ←
⌈
u

2
v ( 282(1+v)/v log(8|S|τ2/β)

ε2D
2(1+v)/v
τ

) + log( 8|S|τ2

β )
⌉
.

8: Bτ ← ( u
√
Rτ ε√

log(8|S|τ2/β)
)1/(1+v).

9: while r < Rτ do
10: r ← r + 1.
11: for a ∈ S do
12: t← t+ 1.
13: Sample a reward xa,r for each arm a ∈ S.
14: x̃a,r ← xa,r · I{|xa,r|≤Bτ}.
15: x̂a,r ← x̃a,r + Lap( 2Bτ

ε )
16: end for
17: end while

18: For each a ∈ S, compute µ̄a ← (
Rτ∑
l=1

x̂a,l)/Rτ .

19: µ̄max ← maxa∈S µ̄i.

20: errτ ← u1/(1+v)(

√
log(8|S|τ2/β)

Rτ ε
)v/(1+v).

21: for all viable arm a do
22: if µ̃max − µ̃a > 14errτ then
23: Remove arm a from S.
24: end if
25: end for
26: until |S| = 1
27: Pull the arm in S in all remaining T − t rounds.

that for any ε-LDP (0 < ε ≤ 1) algorithm whose regret
≤ o(Tα) for any α > 0, the regret satisfies

lim inf
T→∞

RT
log T

≥ Ω

(
1

ε2

∑
∆a>0

(
1

∆a
)

1
v

)
.

Remark 3. Theorem 11 reveals that the term of 1

ε2∆
1
v

is unavoidable in the regret bound. As a result, the
attained bound in Theorem 7 is optimal. Compared
with the optimal rate O( 1

∆
1
v

) in the non-private case,

we can see the price of privacy is an additional factor of
1
ε2 , which is similar to other MAB with bounded/sub-
Gaussian rewards problems in the LDP model (Zhou
and Tan, 2021; Ren et al., 2020).

Theorem 9 (LDP Instance-independent Lower
Bound). There exists a heavy-tailed K-armed ban-
dit instance with the (1 + v)-th bounded moment of
each reward distribution is bounded by 1. Moreover,
if T is large enough, for any the ε-LDP algorithm A

with ε ∈ (0, 1], the expected regret must satisfy

RT ≥ Ω

((K
ε2

) v
1+v

T
1

1+v

)
.

Remark 4. From Theorem 9, we can see the upper
bound (11) of Algorithm 4 is nearly optimal. How-
ever, compared with instance-independent lower bound,
there is still a poly(log T ) factor gap. We conjecture
this factor could be removed by using some more ad-
vanced robust estimator, such as the estimator in Lee
et al. (2020) and we will leave it as an open problem.
For MAB with bounded rewards in the LDP model,
Basu et al. (2019) shows that its instance-dependent re-

gret bound is always at least Ω(
√
KT
ε ), i.e., there is an

additional factor of 1
ε compared with the non-private

case. However, for heavy-tailed MAB, compared with

the lower bound of Ω(K
v

1+v T
1

1+v ) in the non-private
case, from Theorem 9 we can observe that the dif-
ference is a factor of ( 1

ε2 )
v

1+v . Thus, combining with
Remark 2, we can conclude that heavy-tailed MAB
and bounded MAB are quite different in both central
and local differential privacy models.

6 EXPERIMENTS

In this section, we conduct experiments on synthetic
datasets to evaluate the performance of our algorithms.
Since this is the first paper studying DP/LDP heavy-
tailed MAB and there is no previous methods, we will
only evaluate the performance of our algorithms. Our
experiments consist of two parts. In the first part, we
empirically compare our Algorithm 1 and Algorithm 3
in the central DP model. In the second part, we will
evaluate our Algorithm 4 in the LDP model.

Datasets and Setting For the data generation, we
follow similar settings as in the previous work on MAB
with heavy-tailed rewards, such as Lee et al. (2020).
Specifically, we set K = 5 and restrict the mean of
each arm within [0.1, 0.9] throughout the experiment.
We consider three instances, denoted by S1, S2 and S3.
In S1, we let the gaps of sub-optimal arms decrease
linearly where the largest mean is always 0.9 and the
smallest mean is always 0.1 (so the means are {0.9, 0.7,
0.5, 0.3, 0.1}). In S2, we consider the case that a larger
fraction of arms have large sub-optimal gaps, hence
we set the mean of each arm a by a quadratic convex
function µa = 0.05(a−5)2 + 0.1 (so the means are {0.9,
0.55, 0.3, 0.15, 0.1}). In S3, we consider the case that
a larger fraction of arms have small sub-optimal gaps,
hence we set the mean of each arm a by a quadratic
concave function µa = −0.05(a−1)2+0.9 (so the means
are {0.9, 0.85, 0.7, 0.45, 0.1}). In all the settings, the
reward of each arm a ∈ [K] at each pull is drawn from
a Pareto distribution with shape parameter α and scale
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(d) v = 0.9, ε = 1.0

Figure 1: DP Setting 1 (S1)

parameter λa. Specifically, each time after pulling arm
a, the learner receives a reward x which follows the
following probability density function:

f(x) =

{
αλαa
xα+1 x ≥ λa
0 x < λa.

We adopt the Pareto distribution because it is com-
mon in practice. We set α = 1.05 + v such that the
1 + v-th moment of reward distribution always exists

and is bounded by
αλ1+v

a

α−(1+v) . For a given α, we set

λa = (α−1)µa
α since the mean of a Pareto distribution

with parameters α and λa is αλa
α−1 . We take the max-

imum of
αλ1+v

a

α−(1+v) among all arms a ∈ [K] as u in the
experiments.

For each algorithm we run 90 independent repetitions
for each case. In figures, we show the average of cumu-
lative regret (represented by the solid line) for compar-
ing the performance of algorithms and error bars of a
quarter standard deviation (represented by the shaded
region) for comparing the robustness of algorithms.

Results and Discussion. In the first part, we com-
pare the performance of our proposed Algorithm 1
(DPRUCB) and Algorithm 3 (DPRSE) for the central
DP model. In each setting, we vary ε ∈ {0.5, 1.0} and
v ∈ {0.5, 0.9}. The results of setting S1 is given in Fig-
ure 1. And the results of setting S2 and S3 are presents
in Figure 3 and Figure 4, which are included in Ap-
pendix D due to space limitation. From these results,
we can see that DPRSE always outperform DPRUCB
among these three settings. Moreover, we can see when
ε decreases, the regret will increase, and when the term
v becomes larger, we have smaller regret.
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Figure 2: LDP Setting 3 (S3)

In the second part, we evaluate our proposed Algo-
rithm 4 (LDPRSE) for the local DP model in the
Setting 3 (S3), since S3 will has larger regret than S1

and S2 theoretically. We vary ε ∈ {5.0, 10.0, 20.0} and
v ∈ {0.5, 0.9}, The results are given in Figure 2. We
can see that when ε or v is larger, we have smaller re-
gret. Moreover, compared with the central DP model,
we can see the regret is larger in the LDP model.

In summary, we can observe that all the above results
support our previous theoretical analysis.

7 CONCLUSIONS

In this paper, we provided the first study on the prob-
lem of MAB with heavy-tailed reward distributions
in the (local) Differential Privacy model. We mainly
focused on the case the reward distribution of each
arm only has (1 + v)-th moment with some v ∈ (0, 1].
In the central ε-DP model, we first provided a near
optimal result by developing a private and robust UCB
algorithm. To achieve this we provided an adaptive
version of the Tree-based mechanism. Then, we im-
proved the result via a private and robust version of
the SE algorithm. Finally, we showed that the instance-
dependent regret bound of our improved algorithm is
optimal by showing its lower bound. In the ε-LDP
model. We proposed an algorithm which could be seen
a locally private and robust version of the SE algorithm,
which provably achieve (near) optimal rates for both
instance-dependent and instance-independent regret.

There are still many open problems besides the future
work mentioned in the main context. First, throughout
the whole paper we need to assume both u and v are
known. How to address a more practical case where
they are unknown? Recent work that addresses this
issue for standard bandit problems (Ashutosh et al.,
2021), while it remains unknown whether they can be
extended to the private case. Secondly, for the setting
of MAB with bounded reward, it has been shown that
an UCB-based private algorithm can also attain an
optimal regret guarantee. Thus, a natural question is
whether it is possible to get an optimal DP variant of
UCB algorithm for our problem.
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Supplementary Material:
Optimal Rates of (Locally) Differentially Private Heavy-tailed

Multi-Armed Bandits

A TECHNICAL LEMMAS

Lemma 5 (Tail Bound of Laplacian Vairable (Dwork et al., 2006)). If X ∼ Lap(b), then

P(|X| ≥ t · b) = exp(−t).

Lemma 6 (Bernstein’s Inequality (Vershynin, 2018)). Let X1, · · ·Xn be n independent zero-mean random
variables. Suppose |Xi| ≤M and E[X2

i ] ≤ s for all i ∈ [n]. Then for any t > 0, we have

P

{
1

n

n∑
i=1

Xi ≥ t

}
≤ exp

(
−

1
2 t

2n

s+ 1
3Mt

)
Lemma 7. Given a random variable X with E[|X|1+v] ≤ u for some v ∈ (0, 1], for any B > 0 we have

E
[
X · I|X|>B

]
≤ u

Bv
.

Proof [of Lemma 7] By the definition of expectation, we have

u ≥ E[|X|1+v] =

∫ ∞
0

(1 + v)t1+v−1P(|X| > t) dt

≥
∫ ∞
B

tvP(|X| > t) dt

≥ Bv
∫ ∞
B

P(|X| > t) dt

= Bv
∫ ∞

0

P(X · I|X|>B > t) dt

= BvE
[
X · I|X|>B

]
.

Rearranging the inequality finishes the proof.

Lemma 8 (Concentration of Laplace Variables (Wang et al., 2018)). If X1, · · ·Xn ∼ Lap(s/ε), then with
probability at least 1− β, we have ∣∣∣∣∣ 1n

n∑
i=1

Xi

∣∣∣∣∣ ≤ 2s

ε
√
n

√
log

2

β
.

Lemma 9 (Jensen’s Inequality). Let X be an integrable, real-valued random variable, and ψ be a convex function.
Then ψ(E[X]) ≤ E[ψ(X)].

Lemma 10 (Relation between Raw Moment and Central Moment). Let X be a random variable over R such
that E[X] = µ. We have the following two results:

(1) When E[|X|1+v] <∞ for some v ∈ (0, 1], we have

E[|X − µ|1+v] ≤ 4E[|X|1+v] <∞.
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(2) When E[|X − µ|1+v] <∞ for some v ∈ (0, 1], we have

E[|X|1+v] ≤ 2E[|X − µ|1+v] + 2|µ|1+v <∞.

Proof [of Lemma 10] When E[|X|1+v] <∞, we have

E[|X − µ|1+v] ≤ E[|X − µ|1+v + |X + µ|1+v]

≤ E[2(|X|1+v + |µ|1+v)]

= 2E[|X|1+v] + 2E[|µ|1+v]

= 2E[|X|1+v] + 2|µ|1+v

= 2E[|X|1+v] + 2|E[X]|1+v

≤ 2E[|X|1+v] + 2E[|X|1+v]

= 4E[|X|1+v],

where the second inequality is due to the inequality (6) of von Bahr and Esseen (1965), and the last inequality is
due to Jensen’s inequality (Lemma 9).

When E[|X − µ|1+v] <∞, we have

E[|X|1+v] ≤ E[|X|1+v] + E[|X − 2µ|1+v]

≤ E[2(|X − µ|1+v + |µ|1+v)]

= 2E[(|X − µ|1+v)] + 2|µ|1+v,

where the second inequality comes from the inequality (6) of von Bahr and Esseen (1965) as well.

B OMITTED PROOFS FOR SECTION 4 (central differential privacy)

Proof [of Lemma 2] The proof can be directly followed by the proof in the original bounded case, which is given
by (Chan et al., 2011; Dwork et al., 2010).

Proof [of Theorem 1] Note that all rewards generated by arm a are inserted into the corresponding Tree-based
Mechanism Treea and each Tree-based Mechanism is ε-differentially private (by Lemma 2), the proof follows
directly from the Parallel Composition Theorem of DP.

Proof [of Lemma 3] We will prove the following more general lemma:

Lemma 11. In Algorithm 1, for a fixed arm a and t, we have the following estimation error with probability at
least 1− 2δ for any δ ≥ 1

2T 4

µ̂a(na, t) ≤ µa + 18u
1

1+v

(
log 1

δ log1.5+ 1
v T

naε

) v
1+v

. (12)

Thus, in Algorithm 1, we set δ to be 1
2t4 . Hence with probability at least 1− 1

t4 , we have

µ̂a(na, t) ≤ µa + 18u
1

1+v

(
log(2t4) log1.5+ 1

v T

naε

) v
1+v

.

In the following we will prove Lemma 11.



Youming Tao ∗, Yulian Wu ∗, Peng Zhao, Di Wang

Denote the total noise introduced by the Treea by noise and the i-th reward obtained from arm a by xa,i. From
Bernstein’s inequality for bounded random variables, noting that E(X2

a · I|Xa|≤B) ≤ uB1−v if E|X|1+v ≤ u, we
have, with probability at least 1− 2δ,

|µ̂a(na, t)− µa|

=

∣∣∣∣∣ 1

na

na∑
i=1

xa,iI|xa,i|≤Bi + noise− µa

∣∣∣∣∣
≤

∣∣∣∣∣ 1

na

na∑
i=1

xa,iI|xa,i|≤Bi − µa

∣∣∣∣∣+ |noise|

=

∣∣∣∣∣ 1

na

na∑
i=1

[
xa,iI|xa,i|≤Bi − E(XaI|Xa|≤Bi)

]
+

1

na

na∑
i=1

[
E(XaI|Xa|≤Bi)− EXa

]∣∣∣∣∣+ |noise|

≤

∣∣∣∣∣ 1

na

na∑
i=1

[
xa,iI|xa,i|≤Bi − E(XaI|Xa|≤Bi)

]∣∣∣∣∣+

∣∣∣∣∣ 1

na

na∑
i=1

E(XaI|Xa|>Bi)

∣∣∣∣∣+ |noise|

≤

√
2B1−v

na u log( 1
δ )

na
+
Bna log 1

δ

3na
+

1

na

na∑
i=1

u

Bvi
+

2Bna log 1
δ log1.5 T

εna
.

Where the last inequality is due to Lemma 7 and Lemma 5, and Lemma 6 that with probability at least 1− δ,∣∣∣∣∣ 1

na

na∑
i=1

[
xa,iI|xa,i|≤Bi − E(XaI|Xa|≤Bi)

]∣∣∣∣∣ ≤
√

2B1−v
na u log( 1

δ )

na
+
Bna log 1

δ

3na
.

Recall that Bn =
(

εun
log1.5 T

) 1
1+v

for any n ∈ N+, with some evident calculations, we can bound each term above

in the last inequality respectively.

1

na

na∑
i=1

u

Bvi
=

u

na

na∑
i=1

(
log1.5 T

εui

) v
1+v

≤ u
1

1+v

na

(log1.5 T )
v

1+v

ε
v

1+v

na∑
i=1

i−
v

1+v

≤ u
1

1+v

na

(log1.5 T )
v

1+v

ε
v

1+v
· (1 + v) · n

1
1+v
a ≤ 2u

1
1+v

(
log 1

δ log1.5 T

εna

) v
1+v

, (13)√
2B1−v

na u log( 1
δ )

na
=

√
2u

1
1+v ε

1−v
2(1+v) (log 1

δ )
1
2

n
v

1+v
a (log1.5 T )

1−v
2(1+v)

≤
√

10u
1

1+v

(
log 1

δ log1.5 T

εna

) v
1+v

, (14)

Bna log 1
δ

3na
≤

5Bna(log 1
δ )

v
1+v (log1.5 T )

1
1+v

3na
≤

5(εun)
1

1+v (log 1
δ )

v
1+v (log1.5 T )

1
1+v

3(log1.5 T )
1

1+v na

=
5ε

1
1+v u

1
1+v (log 1

δ )
v

1+v

3n
v

1+v
a

≤ 2u
1

1+v

(
log 1

δ log1.5 T

εna

) v
1+v

. (15)

The inequality of the second term is based on the fact that ε ≤ 1 and

(
log

1

δ

) 1
2−

v
1+v

=

(
log

1

δ

) 1−v
2(1+v)

≤ (log 2T 4)
1−v

2(1+v) ≤ (5 log T )
1−v

2(1+v) ≤
√

5(log1.5 T )
1−v

2(1+v) .

The inequality of the third term holds due to the following fact:

log 1
δ

(log1.5 T )
1

(1+v)

≤
(

log 1
δ

log1.5 T

) 1
(1+v)

(
log

1

δ

) v
1+v

≤ 5

(
log

1

δ

) v
1+v

.
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Moreover we have with probability at least 1− δ

2Bna log 1
δ log1.5 T

εna
=

2u
1

1+v (log 1
δ log1.5 T )

v
1+v

(εna)
v

1+v
(log

1

δ
)

1
1+v

≤
10u

1
1+v (log 1

δ log1.5 T )
v

1+v

(εna)
v

1+v
log

v
1+v T ≤

10u
1

1+v (log 1
δ log1.5 T )

v
1+v

(εna)
v

1+v
log

1
1+v T

≤
10u

1
1+v (log 1

δ log1.5+ 1
v T )

v
1+v

(εna)
v

1+v
. (16)

Based on (13), (14), (15), (16), we obtain

|µ̂a(na, t)− µa| ≤ 18u
1

1+v

(
log 1

δ log1.5+ 1
v T

εna

) v
1+v

,

Proof [of Theorem 2] We denote by Na(t) the (random) number of times arm a is selected up to time t and let

Is,t = 18u
1

1+v

(
log[2(t+1)4] log1.5+ 1

v T
εs

) v
1+v

. We first derive the upper bound on E[Na(T )] for any arm a. Let ` be

an arbitrary positive integer.

Na(T ) = 1 +

T∑
t=K+1

Iat=a

≤ `+

T∑
t=K+1

Iat=a and Na(t−1)≥`

≤ `+

T∑
t=K+1

Iµ̂a∗ (na∗ ,t−1)+INa∗ (t−1),t−1≤µ̂a(na,t−1)+INa(t−1),t−1 and Na(t−1)≥`

≤ `+

T∑
t=K+1

I min
0<s<t

µ̂a∗ (s,t−1)+Is,t−1≤ max
`<sa<t

µ̂a(sa,t−1)+Isa,t−1

≤ `+

∞∑
t=1

t∑
s=1

t∑
sa=`

Iµ̂a∗ (s,t)+Is,t≤µ̂a(sa,t)+Isa,t
.

Note that µ̂a∗(s, t) + Is,t ≤ µ̂a(sa, t) + Isa,t implies that at least one of the following three inequalities is true:

µ̂a∗(s, t) ≤ µa∗ − Is,t (17)

µ̂a(sa, t) ≥ µa + Isa,t (18)

∆a < 2Isa,t (19)

Otherwise, assume that all three inequalities are false, then we have

µ̂a∗(s, t) + Is,t > µa∗

= µa + ∆a

> µ̂a(sa, t)− Isa,t + ∆a

≥ µ̂a(sa, t)− Isa,t + 2Isa,t

= µ̂a(sa, t) + Isa,t,

which contradicts the condition. By the result of Lemma 3, we know that (17) or (18) hold with probability at

most 2t−4. For sa ≥ 36u
1
v

log(2t4) log1.5+ 1
v T

ε∆
1+v
v

a

, (19) is false. Now, let ` =

⌈
36u

1
v

log(2t4) log1.5+ 1
v T

ε∆
1+v
v

a

⌉
, we can bound the
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term E[Na(T )] as follows,

E[Na(T )] ≤

⌈
36u

1
v

log(2t4) log1.5+ 1
v T

ε∆
1+v
v

a

⌉
+

∞∑
t=1

t∑
s=1

t∑
sa=`

P((17) or (18) is true)

≤

⌈
36u

1
v

log(2t4) log1.5+ 1
v T

ε∆
1+v
v

a

⌉
+

∞∑
t=1

t∑
s=1

t∑
sa=`

2

t4

≤

⌈
36u

1
v

log(2t4) log1.5+ 1
v T

ε∆
1+v
v

a

⌉
+ 2

∞∑
t=1

1

t2

≤ 36u
1
v

log(2t4) log1.5+ 1
v T

ε∆
1+v
v

a

+ 1 +
π2

3

≤ 36u
1
v

log(2t4) log1.5+ 1
v T

ε∆
1+v
v

a

+ 5.

Finally, using that RT =
∑K
a=1(∆aENa(T )), we directly obtain

RT ≤
K∑
a=1

(
36

log(2T 4) log1.5+ 1
v T

ε

(
u

∆a

) 1
v

+ 5∆a

)

Proof [of Theorem 3] Consider two adjacent reward streams that differ only on one reward of arm a. In each
epoch τ , the difference of the mean of arm a between the two adjacent streams is at most 2Bτ

Rτ
since the reward of

each arm is truncated by [−Bτ , Bτ ]. Thus, adding noise of Lap( 2Bτ
εRτ

) to µa guarantees ε-DP.

Proof [of Lemma 4] The bound of T is trivial so we focus on proving the latter bound. Denote the i-th reward
obtained from arm a by xa,i. We first bound |µa − µ̄a| and |µ̄a − µ̃a| for each epoch τ and each a ∈ S. For
|µa − µ̄a|, by Lemma 6, Lemma 7 and noting that E(X2I|X|≤B) ≤ uB1−v, we have, with probability at least

1− β
4|S|τ2 ,

|µa − µ̄a|

=

∣∣∣∣∣ 1

Rτ

Rτ∑
t=1

xa,tI|xa,t|≤Bτ − µa

∣∣∣∣∣
=

∣∣∣∣∣ 1

Rτ

Rτ∑
t=1

[
xa,tI|xa,t|≤Bτ − E(xa,tI|xa,t|≤Bτ )

]
+

1

Rτ

Rτ∑
t=1

[
E(xa,tI|xa,t|≤Be)− Exa,t

]∣∣∣∣∣
≤

∣∣∣∣∣ 1

Rτ

Rτ∑
t=1

[
xa,tI|xa,t|≤Bτ − E(xa,tI|xa,t|≤Bτ )

]∣∣∣∣∣+

∣∣∣∣∣ 1

Rτ

Rτ∑
t=1

E(xa,tI|xa,t|>Bτ )

∣∣∣∣∣
≤

√√√√2B1−v
τ u log

(
4|S|τ2

β

)
Rτ

+
Bτ log

(
4|S|τ2

β

)
3Rτ

+
u

Bvτ

≤ 4u
1

1+v

 log
(

4|S|τ2

β

)
Rτ ε


v

1+v

= 4errτ .

For |µ̄a − µ̃a|, by using the concentration of the Laplace distribution Lemma 5, we have with probability at least
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1− β
4|S|τ2 ,

|µ̄a − µ̃a| =
∣∣∣∣Lap

(
2Bτ
εRτ

)∣∣∣∣ ≤ 2Bτ
εRτ

log
4|S|τ2

β
= 2u

1
1+v

 log
(

4|S|τ2

β

)
Rτ ε


v

1+v

= 2errτ .

Given an epoch τ , we denote by Eτ the event where for all i ∈ S it holds that |µa−µ̄a| ≤ 4errτ and |µ̄a−µ̃a| ≤ 2errτ
and denote E =

⋃
τ≥1 Eτ . By taking the union bound, we have

P(Eτ ) ≥ 1− β

2τ2

and

P(E) ≥ 1− β

2

∑
τ≥1

τ−2

 ≥ 1− β.

In the remainder of the proof, we assume that E holds. So for any epoch τ and any viable arm a, we have
|µ̃a − µa| ≤ 6errτ . As a result, for any epoch τ and any two arms a and a′, we have

|(µ̃a − µ̃a′)− (µa − µa′)| ≤ 12errτ .

Next, we show that under E , the optimal arm a∗ is never eliminated. For any epoch τ , let aτ = arg maxa∈S µ̃a.
Since

|(µ̃aτ − µ̃a∗)− (µaτ − µa∗)| = |(µ̃aτ − µ̃a∗) + ∆aτ | = (µ̃aτ − µ̃a∗) + ∆aτ ≤ 12errτ ,

it is easy to see that the algorithm doesn’t eliminate a∗.

Next, we show that under E , in any epoch τ the algorithm eliminate all viable arms with sub-optimality
gap at least Dτ = 2−τ . Fix an epoch τ and a viable arm a with sup-optimality gap ∆a ≥ Dτ . Due to

Rτ = u
1
v

(
24(1+v)/v log(4|S|τ2/β)

εD
(1+v)/v
τ

)
+ 1, we know that 12errτ <

Dτ
2 . Thus,

µ̃aτ − µ̃a ≥ µ̃a∗ − µ̃a ≥ ∆a − 12errτ > Dτ −
Dτ

2
=
Dτ

2
> 12errτ ,

which means arm a is eliminated by the algorithm.

Finally, fix a suboptimal arm a, we derive the upper bound on the total number of timesteps that arm a is pulled.
Let τ(a) be the first epoch such that ∆a ≥ Dτ(a), which implying Dτ(a) ≤ ∆a ≤ Dτ(a)−1 = 2Dτ(a). Due to

∆a ≤ 2Dτ(a) and Dτ(a) = 2−τ(a), we have τ(a) ≤ log2

(
2

∆a

)
. Thus, the total number of pulls of arm a is

∑
τ≤τ(a)

Rτ ≤
∑

τ≤τ(a)

2
1+v
v [τ−τ(a)]Rτ(a) ≤ Rτ(a)

τ(a)−1∑
i=0

2−
1+v
v i

≤ 1

1− 2−
1+v
v

Rτ(a)

=
2

1+v
v

2
1+v
v − 1

u 1
1+v

24
1+v
v

D
1+v
v

τ

log
(

4|S|τ(a)2

β

)
ε

+ 1


≤ u

1
1+v

48
1+v
v

D
1+v
v

τ

log
(

4|S|τ(a)2

β

)
ε

+ 2

≤ u
1

1+v

(
96

∆a

) 1+v
v log

(
4K
β

)
+ log log

(
2

∆a

)
ε

+ 2

= O

u 1
1+v

(
1

∆a

) 1+v
v log

(
4K
β

)
+ log log

(
2

∆a

)
ε
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where the last inequality is due to the bounds Dτ > ∆a/2, |S| ≤ K, τ(a) ≤ log2(2/∆a) and K ≤ 2. Combining
with the trivial upper bound T , the lemma follows directly.

Proof [of Theorem 4] We first consider the instance-dependent expected regret. Denote the total number of
rounds to pull each sub-optimal arm a 6= a∗ by Ta. Taking β = 1

T , then with probability at least 1− 1
T , we have

RT ≤
∑

∆a>0

Ta ·∆a =
∑

∆i>0

[
u

1
1+v

ε(∆a)
1
v

(
log

(
K

β

)
+ log log

(
1

∆a

))]

= O

(
u

1
1+v log T

ε

∑
∆a>0

(
1

∆a

) 1
v

)
.

With probability at most 1
T , Algorithm 3 will fail to identify the optimal arm and thus incur an expected

cumulative regret of O(T ·max∆a>0 ∆a). Combining the two cases, we obtain

RT ≤ (1− 1

T
) ·O

[
u

1
1+v log T

ε

∑
∆a>0

(
1

∆a

) 1
v

]
+

1

T
·O(T · max

∆a>0
∆a)

≤ Õ

(
u

1
1+v log T

ε

∑
∆a>0

(
1

∆a

) 1
v

+ max
∆a>0

∆a

)
.

We now consider the instance-independent expected regret, which is inspired by (Sajed and Sheffet, 2019).

Throughout the proof we assume Algorithm 3 runs with a parameter β = 1
T . Since any arm a with ∆a <

1
T yields

a negligible expected regret bound of at most 1, we assume ∆a ≥ 1
T . Then the bound of Lemma 4 becomes

min

{
T,C

u
1

1+v log(KT )

ε

(
1

∆a

) 1+v
v

}
.

It follows that for any suboptimal arm a, the expected regret from pulling arm a is therefore at most

min

{
∆aT,C

u
1

1+v log(KT )

ε

(
1

∆a

) 1
v

}
.

Denote by ∆∗ the gap which equates the two possible regret bounds when all arms are pulled T/K times. That

is, ∆∗ TK = C u
1

1+v log T
ε

(
1

∆∗

) 1
v . It can be easily derived that

∆∗ = O

(
u

v
(1+v)2

(
CK

ε

log T

T

) v
1+v

)
.

Note that in the setting where all suboptimal arms have the gap of precisely ∆∗, the expected regret bound is
proportional to

O

(
u

v
(1+v)2

(
CK log T

ε

) v
1+v

T
1

1+v

)
.

Next, we show that no matter how different the arm gaps are, the expected regret of Algorithm 3 is still
proportional to this bound. For an arbitrary MAB instance, we rearrange arm by the increasing order of arm gaps
such that arm 1 is the optimal arm. We partition the set of suboptimal arms 2, · · · ,K to two sets: {2, · · · , k′}
and {k′ + 1, · · ·K}, where k′ is the largest index of the arm with gap at most ∆∗. If we only pull the arms in the
former set, the upper bound on the expected regret will be T∆∗, since the incurred expected regret at each pull
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is at most ∆∗. If we only pull the arms in the latter set, the expected regret will be at most

C
u

1
1+v log(KT )

ε

K∑
a=k′+1

(
1

∆a

) 1
v

≤ 2C
u

1
1+v log T

ε

K∑
a=k′+1

(
1

∆∗

) 1
v

= 2(K − k′) · Cu
1

1+v log T

ε

(
1

∆∗

) 1
v

= 2(K − k′)∆∗ T
K
≤ 2T∆∗.

Since {2, · · · , k′} and {k′ + 1, · · ·K} is a partition of the subtoptimal arms, one of the two sets contributes
at least half of the expected regret. It is simple to see that the expected regret is upper bounded by

O(T∆∗) = O

(
u

v
(1+v)2

(
CK log T

ε

) v
1+v

T
1

1+v

)
.

Theorem 10. There exists a heavy-tailed two-armed bandit problem with arm 2 being sub-optimal, u ≤ 1 in (2),

and ∆ , µ1 − µ2 ∈ (0, 1
5 ). Such that for any ε-DP algorithm A with expected regret at most T

3
4 for sufficiently

large number of rounds T ,∗ we have

RT ≥ Ω

(
log T

ε
(

1

∆
)

1
v

)
. (20)

Proof [of Theorem 10] Let γ = (5∆)
1
v . Consider the instance P̄ where the distribution of arm 1 is

ν1 =

(
1− γ1+v

2

)
δ0 +

γ1+v

2
δ1/γ

and the distribution of arm 2 is

ν2 =

[
1−

(
γ1+v

2
−∆γ

)]
δ0 +

(
γ1+v

2
−∆γ

)
δ1/γ ,

where δx is the Dirac distribution on x and the distribution p · δx + (1− p) · δy takes the value x with probability
p and the value y with probability 1− p. It is easy to verify that

E[ν1] =
5

2
∆, u(ν1) =

1

2
< 1

and

E[ν2] =
3

2
∆, u(ν2) =

3

10
≤ 1.

Denote E as the event that arm 2 is pulled at most t2 , log T
100ε·51/v

(
1
∆

) 1+v
v times. We show in the following that

PA,P̄ (E) ≤ 1
2 . Consider another instance Q̄ where the distribution of arm 1 remains unchanged, the distribution

of arm 2 is

ν′2 =

[
1−

(
γ1+v

2
+ ∆γ

)]
δ0 +

(
γ1+v

2
+ ∆γ

)
δ1/γ .

Note that since ∆ ∈ (0, 1
5 ), (γ

1+v

2 + ∆γ) < 1, hence the instance Q̄ is reasonable. It is also easy to verify that

E[ν′2] =
7

2
∆, u(ν′2) =

7

10
≤ 1.

Denote the regret of algorithm A under the instance Q̄ by RA
T,Q̄

. Then we have

RAT,Q̄ ≥ PA,Q̄(E)(T − t2)∆ ≥ T∆

2
PA,Q̄(E),

where the first inequality is since that when E holds, we have additional (T − t2)∆ regret and the second inequality

is since that we assume T is sufficiently large. Recall that RAT is at most T
3
4 , then we can obtain that

PA,Q̄(E) ≤ 2

∆T
1
4

.

Now we consider the influence of differential privacy. Before that, we recall the following lemma.

∗Note that we can replace 3
4

to other constants. The same to other results.
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Lemma 12 (Lemma 6.1 in (Karwa and Vadhan, 2018)). For each pair of distribution D and D′ and any ε-
differentially private mechanismM, let P and P′ be the two marginal distributions on the output ofM evaluated
on n data sampled i.i.d. from D and D′ respectively, then for any event E, we have

P[E] ≤ e6εn·dTV (D,D′)P′[E], (21)

where dTV (D,D′) is the total-variation distance between D and D′.

Lemma 12 suggests that the “effective” group privacy for the case that n data items of the inputs are drawn
i.i.d. either from distribution D or from distribution D′ is proportional to exp(6εn · dTV (D,D′)). We apply the
coupling argument in (Karwa and Vadhan, 2018) to our setting. Note that we only consider the change under
the event E here. Suppose there is an oracle O that can generate a collection of at most t2 pairs of data, where
the left ones are i.i.d. samples from ν2 and the right ones are i.i.d. samples from ν′2. Whenever the algorithm
needs to sample a reward from arm 2, it turns to the oracle O and O provides either a fresh left-sample or a
right-sample depending on the true environment (the true reward distribution of arm 2). Suppose there is a
counter C standing between the algorithm A and the Oracle O. And if O runs out of t2 samples, C routes A’s
oracle calls to another oracle. Lemma 12 guarantees that, the oracle never runs out of t2 samples, i.e. event E
happens, with similar probabilities under ν2 and ν′2. Formally, using the result of Lemma 12, for sufficiently large
T such that T 0.13 > 4

∆ , we have

PA,P̄ (E) ≤ e6εt2dTV (ν2,ν
′
2) · PA,Q̄(E) ≤ e6εt2·2∆γ · 2

∆T
1
4

≤ e 12
100 log T · 2

∆
T−

1
4 = T−0.13 2

∆
<

1

2
.

Thus we obtain

RT ≥ Ω (∆ · t2) ≥ Ω

(
log T

ε

(
1

∆

) 1
v

)
.

Proof [of Theorem 5] We focus on the K arms with mean reward satisfying 1
2 ≥ µ1 ≥ · · · ≥ µK . Consider the

instance P̄ where the distribution for each arm a ∈ [K] is

νa =

(
1− s1+v

a

2

)
δ0 +

s1+v
a

2
δ1/sa ,

where sa = (2µa)
1
v . It is easy to verify for each a ∈ [K] that

E[νa] = µa, u(νa) =
1

2
< 1.

Now, we fix an arm a 6= 1 and denote Ea as the event that the arm a is pulled at most ta , log T
100ε41/v

(
1

∆a

) 1+v
v

times. We show in the following that PA,P̄ (Ea) ≤ 1
2K . Consider another instance Q̄a where the distribution of

any arm a′ 6= a remains unchanged, and the distribution of arm a is

ν′a =

[
1−

(
s1+v
a

2
+ 2∆aγa

)]
δ0 +

(
s1+v
a

2

)
δ1/sa + (2∆aγa)δ1/γa ,

where γa = (4∆a)
1
v . Note that since µa ≤ 1

6 and ∆a ≤ 1
12 , we have µ1+v

a < 1
6 and ∆1+v

a < 1
12 , and then

s1+v
a

2
+ 2∆aγa = 2

1
v µ

1+v
v

a + 2 · 4 1
v ·∆

1+v
v

a <

(
1

3

) 1
v

+ 2 ·
(

1

3

) 1
v

< 1,

thus the postulated ν′a is reasonable. It is also easy to verify that

E[ν′a] = µa + 2∆a = µ1 + ∆a, u(v′a) = 1.



Optimal Rates of (Locally) Differentially Private Heavy-tailed Multi-Armed Bandits

Then for sufficiently large T we have

RAT,Q̄a ≥ PA,Q̄a(Ea) · (T − ta) ·∆a ≥
T∆a

2
PA,Q̄a(Ea).

Combining with RAT ≤ T
3
4 , we have

PA,Q̄a(Ea) ≤ 2

∆a · T
1
4

.

By lemma 12, for sufficiently large T such that T 0.13 > max
∆a>0

4K
∆a

, we have

PA,P̄ (Ea) ≤ e6εtadTV (νa,ν′a) · PA,Q̄a(Ea) ≤ e6εta·2∆aγa · 2

∆aT
1
4

≤ e 12
100 log T · 2

∆a
T−

1
4 = T−0.13 2

∆a
<

1

2K
.

Then, with probability at least 1−K · 1
2K = 1

2 , A will pull each a 6= 1 at least ta times. Thus we obtain

RT ≥ Ω

( ∑
∆a>0

∆a · ta

)
≥ Ω

(
log T

ε

∑
∆a>0

(
1

∆a

) 1
v

)
.

C OMITTED PROOFS FOR SECTION 5 (local differential privacy)

Proof [of Theorem 6] Since each |x̃a,r| is bounded by Br. Thus, adding noise of Lap(Brε ) to x̃a,r guarantees
ε-LDP.

Proof [of Theorem 7] Similar to Lemma 3, we prove the following lemma.

Lemma 13. For any instance of the K-armed MAB problem, denote by a∗ the optimal arm and by ∆a the
gap between the mean of arm a∗ and any sub-optimal arm a 6= a∗. Fix the time horizon T and confidence
level β ∈ (0, 1). Then, with probability at least 1− β, in Algorithm 4, the total number of rounds to pull each
sub-optimal arm a 6= a∗, denoted by Ta, is at most

min

{
T,O

(
u

2
v

ε2(∆a)
1+v
v

(
log
(K
β

)
+ log log

( 1

∆a

)))}
. (22)

We first bound the error of |µa − µ̃a| for each epoch τ and each arm a. Recall that

|µ̃a − µa| =

∣∣∣∣∣
∑Rτ
i=1 x̃a,i
Rτ

− µa

∣∣∣∣∣+

∣∣∣∣∣
∑Rτ
i=1 Ya,i
Rτ

∣∣∣∣∣ (23)

where Ya,i ∼ Lap
(
2Bτε

)
and Bτ =

(
u
√
Rτ ε√

log(8|S|τ2/β)

) 1
1+v

. According to Heoffding bound (Lemma 8), we can get

with probability 1− δ, ∣∣∣∣∣
∑Rτ
i=1 Ya,i
Rτ

∣∣∣∣∣ ≤ 4
√

log 2
δ√

Rτ ε

(
u
√
Rτ ε√

log (8 |S| τ2/β)

) 1
1+v

.

Setting δ = β
4|S|e2 , we have ∣∣∣∣∣

∑Rτ
i=1 Ya,i
Rτ

∣∣∣∣∣ ≤ 4u
1

1+v

(√
log (8 |S| τ2/β)√

Rτ ε

) v
1+v

.



Youming Tao ∗, Yulian Wu ∗, Peng Zhao, Di Wang

Now we consider the first term on the right side of Equation (23). From Lemma 6, Lemma 7, noting that
E
(
X2I|X|≤B

)
≤ uB1−v, we have, with probability at least 1− δ

µa −
1

Rτ

Rτ∑
i=1

x̃a,i

=
1

Rτ

Rτ∑
i=1

(
µa − E

(
X · I|X|≤Bτ

))
+

1

Rτ

Rτ∑
i=1

(
E
(
X · I|X|≤Bτ

)
− xa,iI|xa,i|≤Bτ

)
=

1

Rτ

Rτ∑
i=1

E
(
X · I|X|>Bτ

)
+

1

Rτ

Rτ∑
i=1

(
E
(
X · I|X|≤Bτ

)
− xa,iI|xa,i|≤Bτ

)
≤ u

Bvτ
+

√
2B1−v

τ u log (δ−1)

Rτ
+
Bτ log

(
δ−1
)

3Rτ
.

Taking δ = β
8|S|τ2 , we have

u

Bvτ
≤ u

1
1+v

(√
log (8 |S| τ2/β)√

Rτ ε

) v
1+v

,

√
2B1−v

τ u log (δ−1)

Rτ
≤

√
2B1−v

τ u log (δ−1)√
Rτ

√√√√√log 1
δ√

Rτ
≤
√

2u
1

1+v

(√
log (8 |S| τ2/β)√

Rτ ε

) v
1+v

,

where the last inequality is due to the fact that Rτ ≥ log
(
8 |S| τ2/β

)
. Moreover we have

Bτ log
(
δ−1
)

3Rτ
≤
Bτ
√

log (δ−1)

3
√
Rτ

√
log (δ−1)√
Rτ

≤ 1

3
u

1
1+v

(√
log (8 |S| τ2/β)√

Rτ ε

) v
1+v

.

Thus, in total we have
∣∣∣∑Rτ

i=1 X̃a,i
Rτ

− µk
∣∣∣ ≤ 3u

1
1+v

(√
log(8|S|τ2/β)√

Rτ ε

) v
1+v

. Taking union bound yields that with

probability at least 1− 3β
8|S|τ2 ,

|µ̃a − µa| ≤ 7u
1

1+v

(√
log (8 |S| τ2/β)√

Rτ ε

) v
1+v

. (24)

Denote by Eτ the event where for all arms a ∈ S, (24) holds and denote E = ∪τ≥1Eτ . Taking the union for all

epochs and arms, we have E holds w.p. 1− 3β
8

∑
τ≥1 τ

−2 ≥ 1− β. As a result, for any epoch τ and any two arms
i, j ∈ S we have that

|(µ̃i − µ̃j)− (µi − µj)| ≤ 14u
1

1+v

(√
log (8 |S| τ2/β)√

Rτ ε

) v
1+v

.

Next, we show that under E , in each epoch, the optimal arm a∗ will not be eliminated. Let aτ = argmaxa∈S µ̃a,
then in the epoch τ ,

µ̃aτ − µ̃a∗ + ∆aτ ≤ 14u
1

1+v

(√
log (8 |S| τ2/β)√

Rτ ε

) v
1+v

,

so the algorithm doesn’t eliminate µ∗.

Next, we show that under E , in each epoch τ , we eliminate all arms with sub-optimality gap ≥ 2−τ = Dτ . Fix a

sub-optimal arm a such that ∆a ≥ Dτ . By the definition of Rτ , We know that 14u
1

1+v

(√
log(8|S|τ2/β)√

Rτ ε

) v
1+v

≤ Dτ
2 .
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Therefore, since arm a∗ remains viable, we have that

µ̃aτ − µ̃a ≥ µ̃a∗ − µ̃a ≥ ∆a − 14u
1

1+v

(√
log (8 |S| τ2/β)√

Rτ ε

) v
1+v

≥ ∆τ −
∆τ

2
≥ ∆τ

2
≥ 14u

1
1+v

(√
log (8 |S| τ2/β)√

Rτ ε

) v
1+v

,

which ensures that arm a is removed from S.

Lastly, for any fixed sub-optimal arm a, let τ(a) be the first epoch s.t. ∆a ≥ D2
τ(a), implying D2

τ(a) ≤ ∆a <

D2
τ(a)−1 = 4D2

τ(a). For any epoch τ , we have Rτ+1 ≥ 4−
1+v
v Rτ , we have that the total number of pulls of arm a is

∑
τ≤τ(a)

Rτ ≤
∑

τ≤τ(a)

(
4−

1+v
v

)τ−τ(a)

Rτ(a)

≤ Rτ(a)

∑
i≥0

(
4−

1+v
v

)i

≤ 1

1− 4−
1+v
v

28
2(1+v)
v log

(
8 |S| τ2(a)/β

)
ε2D

2(1+v)
v

τ(a)

u
2
v + log

(
8 |S| τ2(a)/β

)
≤ O

(
log
(
|S| τ2(a)/β

)
ε2∆

1+v
v

a

u
2
v

)

Note that τ(a) = O(log 1
∆a

), thus the algorithm pulls sub-optimal arm a for a number of timesteps is bounded by

O

(
(log T+log log 1

∆a
)

ε2∆
1+v
v

a

u
2
v

)
with probability 1− 1

T . Thus the regret is bounded by

RT ≤ (1− 1

T
)O


(

log T + log log 1
∆a

)
ε2∆

1
v
a

u
2
v

+
1

T
T max

a
∆a.

The proof of the instance-independent regret is almost the same as the proof of Theorem 4, we omit it here.

Before proofing the lower bounds in the LDP model, we first recall the two useful lemmas provided by (Basu et al.,
2019). Let HT , {(ai, xi)}Ti=1 be the observed history produced by the interaction between the algorithm A and
bandit problem instance P up to round T . Obviously, an observed history HT is a random variable sampled from
the measurable space (([K]×R)T ,B(([K]×R)T ),PAP ), where B(([K]×R)T ) is the Borel set on ([K]×R)T and
PAP is the probability measure induced by the algorithm A and the instance P . The probability measure PAP
satisfies the following two properties,

1. the probability of selecting arm a at time t is dictated only by the algorithm A, and we denote the probability
by A(a|Ht−1).

2. the reward distribution of arm at, denoted by Xat , is independent of the previous observed history Ht−1.

Hence, for any observed history HT , we have

PTAP , PAP (HT ) =

T∏
t=1

A(at|Ht−1)Xat(xt). (25)

The next lemma states the KL-divergence decomposition for canonical bandit framework. Intuitively, by the
decomposition, we separate the effect of the algorithm and the reward generation.
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Lemma 14. (KL-divergence Decomposition). Given a bandit algorithm A, two distinct instances P1, P2 and a
probability measure PAP satisfying (25). Then

KL
(
PTAP1

‖PTAP2

)
=

T∑
t=1

EAP1
[KL (A (at | Ht, P1) ‖A (at | Ht, P2))] +

K∑
a=1

EAP1
[Na(T )] KL

(
X 1
a ‖X 2

a

)
. (26)

where we use X 1
a and X 2

a to represent the reward distributions of arm a in instance P1 and P2 respectively, and
Na(T ) is the times of pulling arm a among the T rounds.

For locally differentially private bandit algorithms, the first term on the LHS of (26) vanishes since given the
same history Ht, A (at | Ht, P1) and A (at | Ht, P2) should be the same as they depends only on the internal
randomness of the algorithm A. The following lemma is about the locally private KL-divergence decomposition.

Lemma 15. (Locally Private KL-divergence Decomposition). If the reward generation process is ε-local
differentially private for both the instance P1 and P2, Then we have

KL
(
PTAP1

‖PTAP2

)
≤ 2 min

{
4, e2ε

}
(eε − 1)

2
K∑
a=1

EAP1
[Na(T )] KL

(
X 1
a ‖X 2

a

)
. (27)

Next, we prove Theorem 11, Theorem 8 and Theorem 9. We use RAT,P to represent the regret of algorithm A
under the instance P with total T rounds.

Theorem 11. (2-Armed LDP Instance-dependent Lower Bound). There exists a heavy-tailed two-armed bandit
instance with u ≤ 1 in (2) and ∆ , µ1 − µ2 ∈ (0, 1

5 ), such that for any ε-LDP algorithm with ε ∈ (0, 1] and regret
≤ o(Tα) for any α > 0, the regret satisfies

lim inf
T→∞

RT
log T

≥ Ω

(
1

ε2∆
1
v

)
.

Proof [of Theorem 11] Consider the following instance P̄1: the distribution of the first arm a1 is

ν1 =

(
1− γ1+v

2

)
δ0 +

γ1+v

2
δ1/γ

with γ = (5∆)
1
v (∆ ∈

(
0, 1

5

)
), and the distribution of the second arm a2 is

ν2 =

(
1−

(
γ1+v

2
−∆γ

))
δ0 +

(
γ1+v

2
−∆γ

)
δ1/γ .

Thus,

E[ν1] =
5

2
∆, u(ν1) =

(
1

γ

)1+v

· γ
1+v

2
=

1

2
< 1,

E[ν2] =
3

2
∆, u(ν2) =

(
1

γ

)1+v

·
(
γ1+v

2
−∆γ

)
< 1.

Suppose we have another instance P̄2: the distribution of the first arm ν′1 is the same as ν1, and the distribution
of the second arm is

ν′2 =

(
1−

(
γ1+v

2
+ ∆γ

))
δ0 +

(
γ1+v

2
+ ∆γ

)
δ1/γ .

Then

E[ν′2] =
7

2
∆, u(ν′2) =

(
1

γ

)1+v

·
(
γ1+v

2
+ ∆γ

)
=

1

2
+

∆

γv
=

7

10
.

Since RT =
∑

a:∆a>0

∆aE [Na(T )], we have

E[RAT,P̄1
] ≥ PTAP̄1

(
N2(T ) ≥ T

2

)
·
(

5

2
∆− 3

2
∆

)
· T

2
=
T∆

2
· PTAP̄1

(
N2(T ) ≥ T

2

)
,
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E[RAT,P̄2
] ≥ PTAP̄2

(
N2(T ) ≤ T

2

)
·
(

7

2
∆− 5

2
∆

)
· T

2
=
T∆

2
· PTAP̄2

(
N2(T ) ≤ T

2

)
.

Thus, by Bretagnolle-Huber inequality (Lattimore and Szepesvári, 2020, Theorem 14.2), we obtain

E[RAT,P̄1
] + E[RAT,P̄2

] ≥ T∆

2

[
PTAP̄1

(
N2(T ) ≥ T

2

)
+ PTAP̄2

(
N2(T ) ≤ T

2

)]
≥ T∆

4
· exp

(
−KL(PTAP̄1

‖PTAP̄2
)
)
.

By Lemma 15, we have KL(PTAP̄1
‖PTAP̄2

) ≤ 8 (eε − 1)
2 · EAP̄1

[N2(T )] ·KL(ν2‖ν′2). Thus,

E[RAT,P̄1
] + E[RAT,P̄2

] ≥ T∆

4
exp

(
−8 (eε − 1)

2 · EAP̄1
[N2(T )] ·KL(ν2‖ν′2)

)
.

Then, we obtain

EAP̄1
[N2(T )] ≥

log T∆
4 − log

(
E[RA

T,P̄1
] + E[RA

T,P̄2
]
)

8 (eε − 1)
2 ·KL(ν2‖ν′2)

≥
log T∆

4 − 2α log T

8ε2 ·KL(ν2‖ν′2)
, (28)

where the last inequality is due to the assumption of sub-linear regret RT ≤ o(Tα) and the fact that eε − 1 ≈ ε
when ε is small.

By using KL (Ber(p)‖Ber(q)) ≤ (p−q)2

q(1−q) , we obtain

KL(ν2‖ν′2) = KL

(
Ber

(
γ1+v

2
−∆γ

)∥∥∥Ber

(
γ1+v

2
+ ∆γ

))
≤ (2∆γ)2(

γ1+v

2 + ∆γ
)
·
(

1−
(
γ1+v

2 + ∆γ
)) .

Note that γ = (5∆)
1
v , we get

KL(ν2‖ν′2) ≤

(
2 · 5 1

v ·∆ 1+v
v

)2

(
5

1+v
v ·∆

1+v
v

2 + 5
1
v ·∆ 1+v

v

)(
1− 7

2 · 5
1
v ∆

1+v
v

)
≤ 4 · 5 1

v ·∆ 1+v
v

7
2

(
1− 7

2 · 5
1
v ∆

1+v
v

) ≤ C · 5 1
v ·∆

1+v
v ,

where C is some constant and the last inequality holds when ∆ ∈ (0, 1
5 ) is sufficiently small.

Thus, according to (28),

lim inf
T→∞

EAP̄1
[N2(T )]

log T
≥ Ω

(
1

5
1
v ∆

1+v
v ε2

)
,

then,

lim inf
T→∞

RA
T,P̄1

log T
≥ lim inf

T→∞

EAP̄1
[N2(T )]

log T
·∆ ≥ Ω

(
1

5
1
v ∆

1
v ε2

)
.

Proof [of Theorem 8] We focus on the K arms with mean reward satisfying 1
2 ≥ µ1 ≥ · · · ≥ µK and 1

5µa ≤ ∆a ≤
1
2µa. Consider the instance P̄ where the distribution for each arm a ∈ [K] is

νa =

(
1− s1+v

a

2

)
δ0 +

s1+v
a

2
δ1/sa ,



Youming Tao ∗, Yulian Wu ∗, Peng Zhao, Di Wang

where sa = (2µa)
1
v . It is easy to verify for each a ∈ [K] that

E[νa] = µa, u(νa) =
1

2
< 1.

Then consider another instance Q̄a, where the reward distribution of any arm a′ 6= a remains unchanged and the
reward distribution of a becomes

ν′a = [1− (
s1+v
a

2
+ 2∆asa)]δ0 + (

s1+v
a

2
+ 2∆asa)δ1/sa .

Note that,
s1+v
a

2 + 2∆asa = 2
1
v µ

1+v
v

a + 2
1+v
v ∆aµ

1
v
a ≤ µa + 2∆a = µ1 + ∆a ≤ 1, where the first inequality is due to

µa ≤ 1
2 , hence the postulated ν′a is reasonable.

For ν′a, we have E[ν′a] = µa + 2∆a = µ1 + ∆a and u(ν′a) = 1
2 + ∆a

µa
≤ 1, where the inequality is due to ∆a ≤ 1

2µa.

Since RT =
∑

a:∆a>0

∆aE[Na(T )], we have

E[RAT,P̄ ] ≥ PTAP̄

(
Na(T ) ≥ T

2

)
·∆a ·

T

2
=
T

2
∆aPTAP̄

(
Na(T ) >

T

2

)
,

E[RAT,Q̄a ] ≥ PTAQ̄a

(
Na(T ) ≤ T

2

)
·∆a ·

T

2
=
T

2
∆aPTAQ̄a

(
Na(T ) ≤ T

2

)
.

By Bretagnolle-Huber inequality (Lattimore and Szepesvári, 2020, Theorem 14.2), we obtain

E[RAT,P̄ ] + E[RAT,Q̄a ] ≥ T∆a

2

[
PTAP̄

(
Na(T ) ≥ T

2

)
+ PTAQ̄a

(
Na(T ) ≤ T

2

)]
≥ T∆a

4
· exp

(
−KL(PTAP̄ ‖P

T
AQ̄a)

)
.

Due to Lemma 15, we have KL(PTAP̄ ‖P
T
AQ̄a) ≤ 8 (eε − 1)

2 · EAP̄ [Na(T )] ·KL(νa‖ν′a). Thus we obtain that

E[RAT,P̄ ] + E[RAT,Q̄a ] ≥ T∆a

4
· exp

(
−8 (eε − 1)

2 · EAP̄ [Na(T )] ·KL(νa‖ν′a)
)
,

which gives that

EAP̄ [Na(T )] ≥
log T∆a

4 − log(E[RA
T,P̄

] + E[RA
T,Q̄a

])

8(eε − 1)2 ·KL(νa‖ν′a)
≥

log T∆a

4 − 2α log T

8ε2 ·KL(νa‖ν′a)
, (29)

where the last inequality is due to the assumption of sub-linear regret RT ≤ o(Tα) and the fact that eε − 1 ≈ ε
when ε is small.

By using the fact that KL (Ber(p)‖Ber(q)) ≤ (p−q)2

q(1−q) , we can obtain that

KL(νa‖ν′a) = KL

(
Ber

(
s1+v
a

2

)∥∥∥Ber

(
s1+v
a

2
+ 2∆asa

))
≤ (2∆γ)2(

γ1+v

2 + ∆γ
)
·
(

1−
(
γ1+v

2 + ∆γ
))

≤ 25
1
v ∆

1+v
v

a

1− 7 · 10
1
v ∆

1+v
v

a

≤ C · (25)
1
v ∆

1+v
v

a ,

where C is some constant and the last inequality holds since 1
5µa ≤ ∆a ≤ 1

2µa and µa ≤ 1
2 . Thus, according to

(29), we have

lim inf
T→∞

EAP̄ [Na(T )]

log T
≥ Ω

(
1

ε2∆
1+v
v

a

)
,
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then,

lim inf
T→∞

RA
T,P̄

log T
≥ lim inf

T→∞

∑
a:∆a>0

EAP̄ [Na(T )] ·∆a

log T
≥ Ω

(
1

ε2

∑
∆a>0

(
1

∆a
)

1
v

)
.

Proof [of Theorem 9] We first define the instance P̄1. In P̄1, the optimal arm (denoted by a1) follows the reward
distribution

ν1 =

(
1− γ1+v

2

)
δ0 +

γ1+v

2
δ1/γ ,

where γ = (5∆)
1
v (∆ ∈

(
0, 1

5

)
). Note that E[ν1] = 5

2∆, u(ν1) = 1
2 .

Any other sub-optimal arm a 6= a1 in P̄1 follows the same reward distribution

νa =

(
1− γ1+v

2
+ ∆γ

)
δ0 +

(
γ1+v

2
−∆γ

)
δ1/γ .

Note that for all a 6= a1 E[νa] = 3
2∆, u(νa) = 1

2 −
1
5 = 3

10 < 1. We denote the corresponding locally private
reward distribution for each arm a ∈ [K] as ν̄a.

For algorithm A and instance P̄1, we denote i = arg mina∈{2,··· ,K}EAP̄1
[Na(T )]. Thus, EAP̄1

[Ni(T )] ≤ T
K−1 .

Now, consider another instance P̄i where ν1, · · · , νK are the same as those in P̄1 except the i-th arm such that

ν′i =

(
1− γ1+v

2
−∆γ

)
δ0 +

(
γ1+v

2
+ ∆γ

)
δ1/γ .

Note that now E[ν′i] = 7
2∆, u(ν′i) = 7

10 < 1. Similarly, we denote the corresponding locally private reward
distribution for arm i as ν̄′i.

Thus,

E[RAT,P̄1
] ≥ PTAP̄1

[
Ni(T ) ≥ T

2

]
T

2
∆,

E[RAT,P̄i ] ≥ PTAP̄i

[
Ni(T ) ≤ T

2

]
T

2
∆.

Thus by Bretagnolle-Huber inequality (Lattimore and Szepesvári, 2020, Theorem 14.2) and Lemma 15 we have,

E[RAT,P̄1
] + E[RAT,P̄i ] ≥

T∆

4
exp

(
−KL(PTAP̄1

‖PTAP̄i)
)

≥ T∆

4
exp

(
−EAP̄1

[Ni(T )] ·KL(ν̄i‖ν̄′i )
)

≥ T∆

4
exp

(
−8(eε − 1)2 · EAP̄1

[Ni(T)] ·KL(νi‖ν′i )
)
.

Since

KL(νi‖ν′i ) ≤
(2∆γ)2(

γ1+v

2 + ∆γ
)(

1−
(
γ1+v

2 + ∆γ
)) ≤ C · 5 1

v ·∆
1+v
v ,

for some constant C > 0 and ∆ is sufficiently small.

We obtain

E[RAT,P̄1
] ≥ T∆

8
exp

(
−8ε2 · T

K − 1
· C · 5 1

v ·∆
1+v
v

)
.

Taking ∆ =
(
K
Tε2

) v
1+v , we get the result

E[RAT,P̄1
] ≥ Ω

(
T

1
1+v

(
K

ε2

) v
1+v

)
.
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D OMITTED EXPERIMENTAL RESULTS FOR SECTION 6
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Figure 3: DP Setting 2 (S2)
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Figure 4: DP Setting 3 (S3)
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