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Abstract

Merging the predictions of multiple experts
is a frequent task. When ground-truth re-
sponse values are available, this merging is
often based on the estimated accuracies of the
experts. In various applications, however, the
only available information are the experts’
predictions on unlabeled test data, which do
not allow to directly estimate their accura-
cies. Moreover, simple merging schemes such
as majority voting in classification or the en-
semble mean or median in regression, are
clearly sub-optimal when some experts are
more accurate than others. Focusing on re-
gression tasks, in this work we propose U-
PCR, a framework for unsupervised ensemble
regression. Specifically, we develop spectral-
based methods that under mild assumptions
and in the absence of ground truth data,
are able to estimate the mean squared er-
ror of the different experts and combine their
predictions to a more accurate meta-learner.
We provide theoretical support for U-PCR
as well as empirical evidence for the validity
of its underlying assumptions. On a variety
of regression problems, we illustrate the im-
proved accuracy of U-PCR over various un-
supervised merging strategies. Finally, we
also illustrate its applicability to unsuper-
vised multi-class ensemble learning.
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1 INTRODUCTION

In multiple contemporary applications, there is a need
to fuse or merge the predictions of multiple experts
or predictors. In this work we consider an unsuper-
vised setting, whereby the experts’ accuracies are not
a-priori known, and there is no labeled data to esti-
mate it. Instead, the available information are the
experts’ predictions on unlabeled test data. One no-
table example of such a setting is crowdsourcing, where
the predictions made by multiple human annotators
need to be combined (Liu et al., 2019; Rodrigues and
Pereira, 2018). Another application domain is biol-
ogy, where there are extensive collaborative efforts to
solve challenging problems by combining the predic-
tions of different research groups. In several past and
ongoing DREAM competitions1, multiple participants
construct prediction models based on publicly avail-
able labeled data. These are evaluated on held-out
data whose statistical distribution may differ signif-
icantly from the training one, so participants’ accu-
racies on the training data, even if available, may
be misleading. Yet another example is in seismol-
ogy. Here, the strength of detected earthquakes are
estimated at different monitoring stations, based on
their distance from the earthquake location and their
own measured seismic signals. Next, these station es-
timates are merged to provide a network estimate of
earthquake magnitude. Similar problems also appear
in medicine, where there is a need to fuse the results
from multiple sources or tests, without a gold stan-
dard. In all of these cases, given the experts’ predic-
tions on unlabeled test data, key tasks are to estimate
their accuracies and provide more accurate predictions
than those of the individual experts, by cleverly com-
bining their predictions.

Most prior work in unsupervised ensemble learning
considered discrete outputs, namely binary, multiclass
or ordinal classification (Johnson, 1996; Sheng et al.,

1www.dreamchallenges.org
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2008; Whitehill et al., 2009; Raykar et al., 2010; Pla-
tanios et al., 2014, 2016; Zhou et al., 2012). One
of the first works, by Dawid and Skene (1979), as-
sumed that conditioned on the unobserved true class
label, experts make independent errors. Despite its
simplicity, their model has proven to be very useful
in practice. As the likelihood of their model is non-
convex, Dawid and Skene (1979) proposed to maximize
it by the expectation-maximization algorithm. Re-
cently, Anandkumar et al. (2014); Zhang et al. (2014);
Jaffe et al. (2015) proposed computationally efficient
and statistically consistent spectral and tensor based
methods to address this problem.

In this work we consider an unsupervised ensemble re-
gression setting, involving an explanatory vectorX, its
real-valued response Y and m experts or predictors fi.
As reviewed in Section 3, most prior work on ensem-
ble regression considered the supervised setting. Only
a handful of papers dealt with the unsupervised case,
by making quite restrictive modeling assumptions. In
contrast, in this work we make much milder assump-
tions.

As detailed in Section 4, we make the following as-
sumptions, without which unsupervised ensemble re-
gression is in general not possible: (i) the regression
problem is learnable, namely it is possible to accu-
rately predict Y given X; (ii) most experts are rea-
sonably accurate and different from each other; and
(iii) the mean of Y and a bound on its variance are
assumed to be known.

In the unsupervised setting we consider, there is no
a-priori knowledge on the mean squared error of the
different experts and no labeled data to estimate it.
Instead, the available observations are an m × n ma-
trix of real-valued predictions fi(xj) made by the m
experts on a set of n ≫ 1 unlabeled samples {xj}nj=1.
Given the matrix fi(xj), and the above three assump-
tions, we aim to (i) detect the most and least accurate
experts; and (ii) construct an ensemble predictor for
the unobserved responses yj .

Focusing on linear aggregation methods, in Section 2
we review the optimal weights that minimize the mean
squared error (MSE). These depend on two quantities:
The m ×m covariance matrix C of the m regressors,
and the vector ρ = (ρ1, . . . , ρm)T of their covariances
with the response. Their entries are given by

Cij = EX [(fi(X)− µi)(fj(X)− µj)]
ρi = E(X,Y )[(fi(X)− µi)(Y − θ1)] ,

(1)

where θ1 = E[Y ], and µi = E[fi(X)]. The matrix C
may be estimated from the predictions fi(xj) of the
m experts. The key challenge is thus to estimate the
entries of ρ, in the absence of the response values yj .

Our main contribution, detailed in Section 4, is a spec-
tral framework for unsupervised ensemble regression.
Specifically, we develop spectral-based methods that
under the above assumptions, are able to estimate the
expert accuracies and combine them to an accurate
meta-learner. Our approach relies on the following
insights: under our modeling assumptions, the covari-
ance matrix C of the m experts can be decomposed as
C = L + S, where L is low-rank, and S is in general
full rank, but is a small perturbation compared to L.
Furthermore, up to an unknown constant g2, the en-
tries of L depend linearly on the vector ρ. Hence, our
method, denoted U-PCR for Unsupervised Principal
Component Regression, consists of four steps, all of
which do not require labeled data: (i) extract the low
rank matrix L under suitable structural assumptions
on S; (ii) estimate the scalar g2; (iii) given estimates
of L and g2, extract the vector ρ; (iv) Given an esti-
mate ρ̂, we compute the weights of the linear ensemble
learner, also by a spectral-based approach.

To recover the matrix L given C or an estimate thereof,
we consider two possible assumptions on the matrix S.
Perhaps the simplest assumption is that the deviations
of all the m experts from the optimal regressor are
pairwise uncorrelated. This implies that Si,j = 0 for
all i ̸= j. Under this assumption extracting L is trivial
as the off-diagonal entries of C and L coincide. This
can be viewed as the regression analogue of the popular
Dawid-Skene model in classification.

Nevertheless, the uncorrelated deviations assumption
often does not hold in real-life settings. We thus pro-
pose a more flexible model, whereby a few experts have
correlated deviations. This, in turn, implies that S is
sparse. Extracting L then boils down to decomposing
C into the sum of a low rank plus sparse matrices. By
analyzing the specific structure of our problem, we de-
rive sharp conditions on the level of sparsity of S that
enables exact recovery of L.

Next we address step (ii) of U-PCR, and derive a
model selection procedure to estimate the unknown
value g2. This procedure is justified by a perturbation
analysis of the covariance matrix C, assuming that
the experts are sufficiently accurate. Our analysis is
of independent interest as it also provides a rigorous
mathematical support for the supervised ensemble re-
gression method PCR* proposed by Merz and Pazzani
(1999). Finally, for step (iii) we show that given esti-
mates of L and g2, the vector ρ may be estimated by
solving a simple system of linear equations.

Section 5 describes experimental results on a variety of
problems. This includes both problems for which we
trained multiple regression algorithms, as well as real
applications where the regressors were constructed by
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others and only their predictions were available to us.
We illustrate that on a variety of real-life regression
tasks, our modeling assumptions hold, namely that C
can indeed be well approximated by the sum of a low
rank and a sparse matrix. Furthermore, as we empiri-
cally show, given the predictions fi(xj), the mean of Y
and a bound on its variance, U-PCR is able to (i) re-
liably detect the most and least accurate experts; and
(ii) predict as accurately as, and often better than,
the mean and median of the m regressors. Finally,
we illustrate the broader applicability of U-PCR to
multi-class unsupervised ensemble learning, provided
that the experts output a vector of class probabilities.
Section 6 concludes with a summary and discussion.

2 PROBLEM SETUP

Consider a pair of random variables (X,Y ), where X
belongs to some instance space X and Y ∈ R is its
response. Let {f1, . . . , fm} be m pre-constructed re-
gression functions, fi : X → R, also called experts or
predictors. The task is to construct an ensemble re-
gressor to predict the response y at an instance x by
combining the predictions fi(x) of the m experts.

We consider this ensemble regression problem in an un-
supervised setting, whereby the regressors are viewed
as black boxes with no knowledge on how they were
constructed. In addition, we have no a-priori knowl-
edge on the accuracy or mean squared error of each
regressor and no labeled data pairs (xj , yj) to estimate
it. The available data is an m×n matrix with the pre-
dictions fi(xj) of the m experts over n i.i.d. instances
{xj}nj=1 from the marginal distribution of X. Given
the matrix fi(xj), the mean of Y and an upper bound
on its variance, but no labeled data, we wish to: (i)
estimate the experts’ accuracies, and (ii) construct an
accurate ensemble learner.

For this unsupervised ensemble regression task to be
feasible, beyond knowledge of the mean of Y and a
bound on its variance, we also assume that X is infor-
mative for the prediction of Y , and that most experts
are reasonably accurate and sufficiently diverse. In the
next section we make these assumptions more precise
and explain how they are utilized in our derivation.

We measure the accuracy of a predictor by its mean
squared error, MSE = E[(Y − ŷ(X))2]. For task (ii)
we consider linear ensemble learners of the form

ŷw(x) = θ1 +

m∑
i=1

wi

(
fi(x)− µi

)
. (2)

Our goal is to compute a weight vector w =
(w1, . . . , wm)T so that the corresponding ensemble pre-
dictor ŷw has a small MSE. The following lemma,

proven in the supplement, shows that the optimal
weights depend only on the covariance C and vector
ρ, defined in Eq. (1).

Lemma 1. Any vector w∗, such that w∗ ∈
argminw E(X,Y )

[(
ŷw(X)− Y

)2]
, satisfies

ρ = Cw∗. (3)

In particular, if C is invertible then w∗ is unique.

In an unsupervised scenario with n ≫ 1 samples,
the matrix C can be accurately estimated from the
predictions fi(xj). Similarly, each unknown mean
µi = E[fi(X)] may be replaced by the empirical mean
µ̂i = 1

n

∑
j fi(xj). In contrast, estimating ρ directly

by Eq. (1) requires labeled data. The key challenge
is thus to find an alternative approach to estimate ρ
with no labeled data.

3 PREVIOUS WORK

Most prior work on combining regressors considered
supervised settings. For completeness, we briefly re-
view some of these methods, and then discuss unsu-
pervised ensemble approaches.

3.1 Supervised Ensemble Regression

As reviewed in Mendes-Moreira et al. (2012), various
supervised ensemble regression approaches were pro-
posed over the past 30 years. Some methods re-train a
basic regression algorithm multiple times on different
subsets of the labeled data, possibly assigning weights
to the labeled instances. Examples include stacking
(Wolpert, 1992; Breiman, 1996; Leblanc and Tibshi-
rani, 1996), random forest (Breiman, 2001) and boost-
ing (Freund and Schapire, 1995; Friedman et al., 2000).

Other methods view the regressors as pre-constructed
and only estimate the weights of their linear combi-
nation. In principle, given labeled validation data
{(xi, yi)}nval

i=1 , one may directly estimate the covariance
matrix C and vector ρ of Eq. (1), by their empiri-
cal estimators Ĉ and ρ̂. Then, the optimal weights
of Eq. (3), may be estimated by Ĉ−1ρ̂. However,
due to multi-colinearity of the m experts, the ma-
trix Ĉ is often ill-conditioned and unstable to invert.
To overcome this problem, Merz and Pazzani (1999)
proposed a principal component regression approach,
called PCR*. In PCR* the weight vector takes the
form w =

∑K
k=1 akvk, where vk are the eigenvectors

of Ĉ and the coefficients ak are determined by least
squares regression over the validation set. The num-
ber of components K is chosen by cross validation.
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3.2 Unsupervised Ensemble Regression

The simplest unsupervised ensemble methods are the
average and the median. By definition, at any instance
x the resulting ŷ is a function of only {fi(x)}mi=1 and
does not depend at all on fi(xj) for x ̸= xj . Fur-
thermore, these two methods assign equal weights to
all experts. Hence, they are in general sub-optimal in
heterogeneous situations where some experts are more
accurate than others.

Donmez et al. (2010) developed an unsupervised re-
gression method, based on strong parametric assump-
tions. Specifically, they assumed that the marginal dis-
tribution of Y is known and that the m experts follow
a known parametric model with parameter θ. Given
only unlabeled data, θ can then be estimated by max-
imum likelihood. Ok et al. (2017) assumed that the
response is Gaussian and that each regressor makes
a Gaussian error centered around the unknown true
response. In contrast, our approach does not assume
any parametric model and requires knowing only the
mean of Y , and an upper bound on its variance.

Rodrigues and Pereira (2018) proposed to combine the
predictions of experts within a deep neural network
framework. Specifically, they train a crowd layer neu-
ral network using both the original features of each
instance x and the predictions of the m experts. Our
approach is different (and to some extent simpler) as
we only use the predictions fi(x) and we do not even
assume or require access to the original features of each
instance x.

More closely related is Wu et al. (2016), who proposed
to linearly aggregate the m experts with weights that
depend on the leading eigenvector of Ĉ. Their heuris-
tic approach relied on the following assumptions: for
any pair (x, y) there corresponds a binary hidden vari-
able z ∈ {0, 1}; each expert fi follows a two compo-
nents mixture distribution determined by this hidden
variable z; and conditioned on z, the different regres-
sors are independent. In contrast, our approach does
not make either of these assumptions. Furthermore,
in the simplistic case where experts do make indepen-
dent errors, our analysis below provides a theoretical
support for a variant of their spectral approach.

4 UNSUPERVISED PRINCIPAL
COMPONENT REGRESSION

We propose a framework for unsupervised ensem-
ble regression, based on an analysis of the predic-
tions fi(xj) and in particular their covariance ma-
trix C. Recall that θ1 = E[Y ] is assumed to be
known. Hence, without loss of generality we con-
sider mean-centered responses and bias-corrected pre-

dictions, E[Y ] = E[fi(X)] = 0.

We start with our first assumption, that the regression
problem is learnable. Let g(x) = E[Y |X = x] be the
conditional mean, which is the optimal predictor of Y
given X that minimizes the mean squared error. The
predictive ability of X can be quantified by the con-
stant g2 = Var[g(X)] = E[g(X)Y ]. It is easy to prove
that MSE[g(x)] = Var[Y ]− g2, hence g2 ∈ [0,Var(Y )].
A value g2 close to zero implies that it is not possible
to accurately predict Y from X whereas g2 = Var(Y )
implies perfect error-free prediction. In what follows
we assume the problem is learnable in the sense that
g2 is close to Var(Y ). Furthermore, as the value g2 is
typically unknown, we require knowledge of a bound
on the variance of Y , so we may estimate g2 in the in-
terval between zero and this bound, which with some
abuse of notation we denote as Var[Y ]. We remark
that given the assumptions that most experts are rea-
sonably accurate, a bound of Var[Y ] may be estimated
from the empirical variances of the m experts.

4.1 Unsupervised PCR

To derive our approach, we write each expert as
fi(x) = g(x) + hi(x) where g(x) is the conditional
mean and hi is the deviation of fi from g. Denote
a ≡ (a1, . . . , am) with entries ai = E[hi(X)Y ]. Since
E[g(X)Y ] = g2, the entries ρi = E[fi(X)Y ] are

ρi = E[g(X)Y ] + E[hi(X)Y ] = g2 + ai . (4)

Similarly, for the entries Ci.j ≡ Cov(fi(X), fj(X)),

Ci,j = g2 + ai + aj + E[hi(X)hj(X)]. (5)

Equivalently, we may decompose C as

C = L+ S, (6)

where L ≡ g211
T +a1T + 1aT is in general rank two,

and Sij ≡ E[hi(X)hj(X)]. As we show below, Eq. (6)
is crucial for the derivation of U-PCR.

To proceed with the derivation, we assume the experts
are sufficiently accurate and different from each other
in the following precise sense: the values ai are much
smaller than g2, which implies that the spectral norm
∥L∥ ≈ g2m. In addition, we assume that the spectral
norm ∥S∥ ≪ g2m, so the matrix S may be viewed as
a small perturbation compared to L.

Our approach then consists of the following four steps:
(i) Given the covariance matrix Ĉ, extract an estimate
of the low rank matrix L; (ii) Estimate the value of g2;
(iii) Given L̂ and ĝ2, estimate the vector a, which in
turn allows to compute ρ̂ via Eq. (4); (iv) Given Ĉ
and ρ̂, estimate the weight vector w.
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Let us first discuss step (iii). The following theorem,
proven in the Supplementary, states that if g2 and the
off-diagonal entries of L were known, then this task is
indeed feasible.

Theorem 1. Assume m ≥ 3. Suppose the off-
diagonal entries of L and the value of g2 are known.
Then the vector a is the unique minimizer of

min
ã

∑
i<j

(Li,j − g2 − ãi − ãj)
2 (7)

Importantly, solving (7) with an estimated matrix L̂
and an estimated value ĝ2, yields a solution â and a
corresponding estimate ρ̂ = ĝ2 + â that are stable to
errors in L and g2. Namely, ∥ρ̂−ρ∥ = O(∥L̂−L∥, |ĝ2−
g2|). For future use, given an assumed value q for g2
we denote the resulting solution by ρ̂(q).

We next tackle step (i) of extracting L from the matrix
C. We present two possible structural assumptions on
S that facilitate this task.

Uncorrelated Errors. The simplest assumption is
that them regressors have uncorrelated deviations with
respect to g(X),

Si,j = E[hi(X)hj(X)] = 0, ∀i ̸= j. (8)

This is similar to the Dawid-Skene conditional inde-
pendence model in the classification setting. Under
Eq. (8) the off-diagonal entries of C and L coincide.

Beyond Uncorrelated Errors. Assumption (8) is
rather restrictive as it requires all off-diagonal entries
of S to vanish. As this rarely holds in practice, we
now present a more flexible model, which allows a few
experts to have correlated errors and thus violate Eq.
(8). This, in turn, implies that S is sparse.

Let us now describe our approach to extract the vec-
tor a under this assumption. To this end, let vec(S) ≡
(S1,2, S1,3, . . . , S1,m, S2,3 . . . , Sm−1,m)T be the matrix-
vectorization operator that extracts the upper diago-
nal entries of S, with a similar definition for vec(C).
Assuming for the moment that g2 is known, combining
Eq. (6) and the assumption that S is sparse, the vector
a may be recovered by solving the following problem,

min
a,vec(S)

{∥vec(S)∥0 | B1a+vec(S) = vec(C)−g2} (9)

where B1 is the following matrix of size m(m−1)
2 ×m,

B1 =


1 1 0 . . . 0 0
1 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 1

 . (10)

Algorithm 1 Sketch of U-PCR

Input: Predictions fi(xj),E[Y ] and a bound on
Var(Y )
Compute Ĉ and its leading eigenvectors v1,v2

Decompose Ĉ = L̂+ Ŝ
For possible values q ∈ [0,Var(Y )] for g2, compute
ρ̂(q) by solving Eq. (7)
Compute ĝ2 via Eq. (14) and set ρ̂ = ρ̂(ĝ2)
Compute the weight vector w via Eq. (15)
Rank the experts by Eq. (16)
For any x, output ŷw(x) by Eq. (2)

In general, the solution of (9) is a sparse vec(S) and
a dense a, namely it is partially sparse in the opti-
mization variables. Eq. (9) is a generalization of basis
pursuit whose goal is to find a fully sparse solution
(Hastie et al., 2015). Both problems are NP-hard.

A key theoretical question is to quantify how many
non-zeros entries can vec(S) have, such that Eq. (9)
still admits a unique solution. For the general case
with a left hand side of the form B1a + B2vec(S),
this problem was studied by Vaswani and Lu (2010)
using the classical notion of restricted isometry prop-
erty. Here we take advantage of the specific structure
of our problem with B2 being the identity matrix. The
following theorem provides a sufficient and necessary
condition for the uniqueness of the solution of Eq. (9).

Theorem 2. Consider a matrix C that follows the
decomposition (6) with m ≥ 5 experts. Eq. (9) admits
a unique solution if and only if ∥vec(S)∥0 < (m−1)/2.

In practice, we only have an estimate of C, and the
matrix S is only approximately sparse. Hence, rather
than solving Eq. (9), we consider a robust alternative.
Concretely, we use the algorithm of Cherapanamjeri
et al. (2017) that decomposes an input matrix into a
sum of a low-rank and a sparse matrix. Given the
resulting matrix L̂, we next estimate g2 as described
below, and finally estimate the vectors a and ρ, as
described above.

Step (ii): Estimating g2. Extracting the vectors
a and ρ assumed that the value g2 = Var(g(X))
is known. Furthermore, any potential value q ∈
[0,Var(Y )] for g2 leads to a different estimate ρ̂ = ρ̂(q).
Hence, we now derive a model selection criterion to se-
lect a value ĝ2.

To motivate our proposed estimator of g2, we utilize
our assumption that the experts are quite accurate
with S being a small perturbation of L. Concretely,
for analysis purposes, it is instructive to scale the de-
viations hi by a parameter ϵ,

fi(x) = g(x) + ϵhi(x). (11)
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Under Eq. (11), the population covariance of the m
regressors takes the form

C(ϵ) = g211
T + ϵ(a1T + 1aT ) + ϵ2S (12)

where as before ai = E[hi(X)Y ] and Sij =
E[hi(X)hj(X)]. The next lemma characterizes the
leading eigenvalue and eigenvector of C as ϵ→ 0.

Lemma 2. Let λ1(ϵ),v1(ϵ) be the largest eigen-
value/eigenvector pair of C(ϵ). Then, as ϵ→ 0,

λ1(ϵ) = g2m+ (2aT1) · ϵ+O(ϵ2)

v1(ϵ) = g21+ (a− aT 1
m 1) · ϵ+O(ϵ2) .

(13)

The decomposition in Eq. (11) and Eqs. (12)–(13)
yield several insights. First, under Eq. (11), ρ =
g21 + ϵa. Next, comparing this to Eq. (13), implies
that the vector ρ and the leading eigenvector v1, prop-
erly scaled, are nearly identical, up to a small shift by
( 1
m

∑
ai)ϵ and up to O(ϵ2) terms. The following is

thus a natural model selection criterion for g2:

ĝ2= argmin
q∈[0,Var(Y )]

RES(q)≡argmin
q

∥ρ̂(q)−
(
vT
1 ρ̂(q)

)
v1∥

∥ρ̂(q)∥
.

(14)

Step (iv): the weight vector of U-PCR. In prin-
ciple, given ρ̂(ĝ2) and the estimated covariance matrix
Ĉ, by Lemma 1, we could attempt to estimate ŵ via
Ĉ−1ρ̂. However, in practice the matrix Ĉ is often ill-
conditioned and thus highly unstable to invert.

To overcome this challenge, note that by our assump-
tion that S is a small pertubation of L, the matrix C
is approximately rank two, and spanned by the two
vectors 1 and a. Moreover, up to terms involving the
matrix S (O(ϵ2) terms in our perturbation analysis),
the vector ρ is a linear combination of the first two
eigenvectors of C. Therefore, even though the matrix
C is ill conditioned, a principal component approach
with K = 2 components provides an excellent approx-
imation to the optimal weight vector w∗. We hence
propose the following weight vector,

wU-PCR =
1

λ1
(vT

1 ρ̂(ĝ2))v1 +
1

λ2
(vT

2 ρ̂(ĝ2))v2. (15)

A sketch of U-PCR appears in Algorithm 1.

While our focus is on unsupervised ensemble regres-
sion, the above analysis is also of independent interest
for the supervised case. In particular, it provides the-
oretical support for the PCR* method of Merz and
Pazzani (1999), that also expanded the weight vector
as a linear combination of the first few eigenvectors of
the predictors’ covariance matrix Ĉ.

4.2 Ranking the Experts

In various applications it is of interest to rank the ex-
perts by their mean squared errors, and in particular
detect the most and least accurate experts. Let us
show how this can be done approximately, even in an
unsupervised setting. To this end, note that the em-
pirical MSE can be decomposed as follows

M̂SEi ≡ 1
n

∑
j

(
yj − fi(xj)

)2
(16)

= 1
n

∑
j

y2j − 2
n

∑
j

yjfi(xj) +
1
n

∑
j

fi(xj)
2.

The first sum on the right hand side is unknown, since
the yj ’s are unobserved. Yet, it is the same value for
all experts fi. The third sum can be evaluated directly
from the observed predictions. Hence, estimating the
second sum by −2ρ̂i allows us to rank the experts.

5 EXPERIMENTS

We illustrate the performance of U-PCR on various
real world datasets. These include problems for which
we trained multiple regression algorithms as well as
applications where the regressors were constructed by
a third party and only their predictions were given to
us. We denote by IU-PCR and SU-PCR our ensemble
learners, based on either the uncorrelated errors or the
sparse correlation errors assumptions, respectively.

We compare IU-PCR and SU-PCR to the ensemble
mean and median. We also compare to the fully su-
pervised linear oracle regressor of the form (2), which
has access to all n response values yj , computes ρor =
1
n

∑
yjfi(xj), and determines the weight vector by or-

dinary least squares over the n samples:

wor = Ĉ−1 · ρor .

5.1 Manually Crafted Ensembles

We considered 17 different regression tasks, including
energy output prediction in a power plant, flight de-
lays, basketball scoring and more. Each dataset was
randomly split into ntrain samples used to trainm = 10
different regression algorithms, including Ridge Re-
gression, SVR, Kernel Regression and Decision Trees,
among others. On the remaining n samples, we applied
the predictors and constructed the matrix fi(xj). For
further details, see Table 7 in the Supplementary. We
repeated this protocol 20 times for each dataset, each
time with a different split of train and test samples.

Following our theoretical analysis, we assess the extent
to which the next two conditions hold: (i) the experts’
covariance matrix C is approximately low rank; and
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CCPP Abalone Affairs

UACC812 BT549 BT20

Figure 1: True vs. estimated MSEs normalized by V ar(Y ), for the CCPP, CO2 and Affairs prediction tasks (top)
and for three out of 4 regression tasks in the HPN-DREAM challenge (bottom). The best and worst regressors
according to SU-PCR algorithm are marked with blue and red colors respectively.

(ii) the oracle vector ρor can be well approximated by
its projection on the first two eigenvectors of C. In ad-
dition, we present a method to validate our modeling
assumption that the matrix S is approximately sparse.

To this end, let λ1, λ2 be the first two eigenvalues of
Ĉ and v1,v2 the respective eigenvectors. To quantify
the extent to which (i) holds, for each dataset we com-
pute the two ratios λ1/Tr(Ĉ) and (λ1 + λ2)/Tr(Ĉ).
To assess condition (ii) we project the oracle vec-
tor ρor onto v1,v2, and report the residual norm di-
vided by ∥ρor∥. Table 1 in the supplement shows
that in many datasets both conditions approximately
hold. In particular, Ĉ is indeed nearly low rank with
(λ1 + λ2)/Tr(Ĉ) ∈ [0.83, 0.99]. Also,

∥ρor − (vT
1 ρor)v1 − (vT

2 ρor)v2∥/∥ρor∥ ∈ [0.01, 0.22].

Importantly, in accordance with our theoretical anal-
ysis, as seen in Fig. 4, the closer the matrix C is to
being rank 2, namely (λ1 + λ2)/Tr(Ĉ) ≈ 1, the bet-
ter ρor can be approximated by a linear combination
of v1,v2. Finally, as can be observed in Tables 1 and
2, for datasets where C was low rank and the above
residual was small, SU-PCR tended to be the most
accurate ensemble learner.

Next, we consider the assumption of approximate spar-
sity of S. Since in general the optimal predictor g(x)

is unknown, the deviations hi(x) of each expert fi
from g(x) are also unknown. Hence, directly esti-
mating Si,j = E[hi(X)hj(X)] is impossible. Nonethe-
less, as we now show, it is possible to assess the va-
lidity of this assumption in an unsupervised manner.
The idea is to look at the pairwise differences be-
tween experts. Define ∆i,j ≡ fi(X) − fj(X), and
ρi,j,k,l ≡ Cov(∆i,j ,∆k,l), for 1 ≤ i ̸= j ̸= k ̸= l ≤ m.
By definition,

ρi,j,k,l = Cov ((hi(X)− hj(X)) (hk(X)− hl(X)))

= Sik − Sil − Sjk + Sjl.

Therefore, under the sparsity assumption of S, we ex-
pect ρi,j,k,l to be zero for most quartets of indices. Fig.
3 in the supplement displays the histogram of the em-
pirically estimated ρ̂i,j,k,l for the Abalone, Affair and
Flights-JFK datasets. As expected, the resulting his-
tograms are concentrated around zero. Histograms of
other datasets were qualitatively similar.

Finally, we evaluate two aspects of the U-PCR algo-
rithm: (i) its model selection criterion for g2; and (ii)
its ability to identify the best and worst regressors via
Eq. (16). Due to space limitations, we present only
results for SU-PCR. Regarding the model selection cri-
terion, as the true value g2 is in general unknown, we
cannot compute the error ĝ2 − g2. Hence we evaluate
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the estimated ĝ2 by comparing the MSE of the result-
ing ensemble learner to that attained at other possible
values q for g2. Fig. 2 in the supplement depicts, for
three of the datasets, the unobserved MSE(q) obtained
by the weight vector of Eq. (15) (blue-solid curve) and
the residual RES(q) of Eq. (14) (black-dotted curve),
both as a function of the assumed value q for g2. Also
shown are the estimated ĝ2 (pink-dashed vertical line),
and the value of q that minimizes the MSE curve (red-
dashed vertical line). As can be seen, SU-PCR esti-
mated a value ĝ2 whose corresponding MSE is close
to the minimal MSE achievable by any of the vectors
ρ̂(q).

To showcase the ability of U-PCR to detect the best
and worst regressors, in the following results we as-
sumed the second moment of Y is known and used
Eq. (16) to estimate the MSEs of the various experts.
Fig. 1 (top) shows the estimated MSEs vs. the true
MSEs. The best and worst regressors are depicted in
blue and red, respectively. As can be seen, SU-PCR
correctly identified those regressors.

In light of the above results, it might be tempting to
choose the best regressor using the estimated MSEs,
instead of the U-PCR ensemble learner. Table 2 of the
supplement, third and seventh columns (SU-PCR and

argmini M̂SEi), show the MSE achieved by SU-PCR
and by the single best regressor, respectively, averaged
over the 20 train-test random splits of each dataset. As
can be seen, in 10 out of 17 prediction tasks, SU-PCR
demonstrates favorable performance.

Next we compare IU-PCR and SU-PCR with the en-
semble mean and median. As mentioned in Section
3, in the presence of heterogeneity among experts’ ac-
curacies, the mean and the median are expected to be
sub-optimal, and in general methods that assign differ-
ent weights to different experts may be more accurate.
Indeed, as shown in Table 2, in 12 out of 17 predic-
tion tasks, the MSE attained by SU-PCR is equal or
lower than that achieved by the average or the median.
In addition, SU-PCR is in general better than IU-PCR
attaining lower MSEs in 15 out of the 17 datasets. Fig-
ure 5 in the supplement illustrates on three datasets
that the estimated MSEs via Eq. (16) of SU-PCR
are more accurate than those estimated by IU-PCR.
Results on other datasets were qualitatively similar.
Finally, the sixth column of Table 2 (Hit-Rate) shows
the proportion of realizations at which SU-PCR ob-
tained the minimal MSE. For most datasets and ran-
dom splits, SU-PCR attains the highest accuracy.

5.2 HPN-DREAM Challenge

The task in the HPN-DREAM breast cancer network
inference competition (Hill et al., 2016a) was to pre-

dict the time varying concentrations of 4 proteins af-
ter introduction of an inhibitor. Understanding the
behavior of these proteins is important as it may ex-
plain variation in disease phenotypes or therapeutic
response (Hill et al., 2016b). Given the predictions
of m = 12 participants on n ≈ 2500 instances, we
constructed IU-PCR and SU-PCR predictors for each
protein. As seen in Fig. 1(bottom), with no labeled
data, SU-PCR was able to detect that at least two ex-
perts were highly inaccurate. Furthermore, the expert
with lowest estimated MSE by SU-PCR is indeed one
of the most accurate experts in the ensemble. Due to
space limitations, Fig. 1 illustrates this for three of
the four prediction tasks. Finally, as shown in Table
3 in the supplement, SU-PCR obtained smaller MSEs
than the mean and median on 3 of the 4 proteins, and
a comparable MSE on the remaining one.

5.3 CIFAR10-C Classification

So far we focused on regression settings. As a last ex-
ample, we illustrate the broader applicability of the U-
PCR framework to multi-class problems. Specifically,
we show how one may use the regression technique of
this work to perform multiclass unsupervised ensem-
ble learning. The key assumption is that the individual
experts output a vector of probabilities, rather than a
discrete class label. This is often the case with deep
neural networks, whose result is the output of a soft-
max operation.

Concretely, we consider image classification of the
CIFAR10-C dataset. This dataset consists of n = 104

corrupted images from CIFAR10, a standard image li-
brary with 10 classes. We trained 50 convolutional
networks on CIFAR10 and used the learned models to
classify the images of CIFAR10-C. As expected, the
performance of the various networks sharply decreased
when applied to the unseen corrupted images. Indeed,
on the test images of CIFAR10, the accuracy of the
networks was 85% on average, while on the corrupted
images of CIFAR10-C it dropped to 50%− 55%. This
setting is motivated by practical problems in machine
learning, where training and test data may have dif-
ferent statistical distributions. Specifically, models are
often learned on carefully constructed training data,
but then deployed in real world domains, which ex-
hibit different characteristics. Hence, the constructed
models may have a much lower (and often unknown)
test accuracy compared to their training performance,
see D’Amour et al. (2020). Key challenges are to de-
tect which experts are more accurate on the specific
test data and to aggregate the original predictors to a
more accurate ensemble.

Using the CIFAR-10C multiclass problem as an exam-
ple, we demonstrate how the SU-PCR framework can
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address these challenges. Here we assume that at any
instance x, the i-th expert outputs a vector of prob-
abilities Fi(x) ∈ R10, whose k-th entry indicates the
probability that x belongs to class k. Hence, the data
in this case is a tensor Z consisting of 10 separatem×n
matrices. For each class 1 ≤ k ≤ 10, the matrix Zk

contains the predicted probabilities for the k-th class,
Zk
ij = Fi,k(xj). We adapt the SU-PCR approach to

this setting as follows. First, we apply SU-PCR sepa-
rately to each Zk, which yields for each instance xj an
estimated probability pk(xj) that it belongs to class k.
Next, to solve the multi-class problem, we predict the
class of an image xj by maxk p

(k)(xj). This SU-PCR
based approach achieves 62% accuracy in predicting
the true class out of the 10 possible class labels. In
contrast, majority voting on the predicted labels of the
50 individual networks obtained only 58% accuracy.

6 SUMMARY AND DISCUSSION

We presented a framework to tackle the problem of
unsupervised ensemble regression based on the analy-
sis of the experts’ covariance matrix. We considered
two possible assumptions regarding the statistical de-
pendencies of the deviations of the different experts
from the optimal Bayes predictor: (i) an uncorrelated
error assumption, which can be viewed as a regression
analogue of the Dawid-Skene model in classification;
and (ii) a more realistic assumption that the experts’
deviations covariance matrix is approximately sparse.

As we demonstrated on a variety of regression tasks,
U-PCR was able to detect the best and worst regres-
sors, and construct an ensemble learner more accurate
than the mean and median. Finally, we showcased the
advantage of the sparsity relaxation over the uncorre-
lated errors assumption.

Our work raises several directions for future research.
One is to extend our approach to a semi-supervised set-
ting, in which there is also a limited amount of labeled
data. It is also interesting to theoretically understand
the benefits of labeled versus unlabeled data for en-
semble learning. Another direction is to explore other
relaxations of the uncorrelated error assumption. For
example, in unsupervised classification, Fetaya et al.
(2016) relaxed the Dawid and Skene conditional inde-
pendence model by introducing a tree model with an
intermediate layer of latent variables. It is interest-
ing whether a similar approach could better model the
dependencies in an ensemble of regressors.
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A Proofs

Proof of Theorem 1. Following the notations defined in the main text body, the off-diagonal entries of the matrix
L have the following structure:

Lij = g2 + ai + aj . (17)

Since L is symmetric and g2 is assumed to be known, the off-diagonal entries provide
(
m−1
2

)
linear equations for

the m unknown variables ã = (ã1, . . . , ãm). Define the following set of pairwise indices I ≡ {(i, i + 1) : 1 ≤
i ≤ m− 1} ∪ {(i′, j′)}, for some j′ ̸= i′ + 1. It is easy to prove that if m ≥ 3, the following is a set of m linearly
independent equations, with m variables:

Lij − g2 = ãi + ãj , (i, j) ∈ I (18)

The system above has a unique solution, as it is of a full rank, and by construction it equals to a. Next, define
ψ(ã) ≡

∑
(i,j)∈I(Li,j − g2 − ãi − ãj)

2 and consider the corresponding quadratic optimization problem

min
ã
ψ(ã).

Since this function is non-negative, by the arguments above, its minimum is attained at the true vector a for
which ψ(a) = 0. We next show that a is also the unique minimizer of the following optimization problem

min
ã

∑
(i,j):i̸=j

(Li,j − g2 − ãi − ãj)
2. (19)

Assume by contradiction that there exists another solution a′ for the problem above, with a zero objective value.
Since for any vector ã, ∑

(i,j):i ̸=j

(Li,j − g2 − ãi − ãj)
2 ≥

∑
(i,j)∈I

(Li,j − g2 − ãi − ãj)
2 (20)

the vector a′ must be also a solution for the linear system of (18). However, this yields a contradiction to the
uniqueness of a. The vector ρ can then be computed from Eq. (4), as g2 is assumed to be known.

Proof of Lemma 1. For any estimator ŷ(X), opening the brackets in the definition of its MSE gives

E(X,Y )[(Y − ŷ(X))2] = θ2 − 2E(X,Y )[Y · ŷ(X)] + EX [(ŷ(X))2]

where θ2 = EY [Y
2]. For linear estimators as in Eq. (2), ŷ(X) = ŷw(X),

MSE(w) = θ2 − 2E
[
Y
(
θ1 +

∑
i

wi(fi(X)− µi)
)]

+ E
[(
θ1 +

∑
i

wi(fi(X)− µi)
)2]

= θ2 − 2θ21 − 2
∑
i

wiρi + θ21 + 2θ1
∑
i

wiE[fi(X)− µi] +
∑
ij

wiwjCij

= Var(Y )− 2wTρ+wTCw. (21)

The minimal MSE achievable by a linear ensemble regressor, denoted MSE*, is found by minimizing Eq. (21)
with respect to the weights w. This gives

ρ = Cw∗, and MSE∗ = Var(Y )− (w∗)TCw .

To prove Theorem 2 we shall use the following auxiliary lemma.

Lemma 3. Assume m ≥ 5. Any non-trivial linear combination of the m columns of the matrix B1 given in
Eq. (10), yields a vector with at least m − 1 non-zero entries. Namely, ∀a ∈ Rm with a ̸= 0, it follows that
∥B1a∥0 ≥ m− 1.
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Proof of Lemma 3. For any non-zero vector a ∈ Rm, denote by v = B1a and by q(a) the number of positive
entries in a. Due to the special structure of B1, any two of its columns intersect at exactly one entry, and the
intersection of any subset of three or more columns is empty. In other words, each entry in v, say k, is the
sum of exactly two terms: vk = aiB1(i, k) + ajB1(j, k), for some i, j. Since all entries B(i, j) ∈ {0, 1}, for vk to
vanish, ai and aj must have opposite signs. Hence, the total number of zero entries in v is upper bounded by
the number of pairs of indices of a with opposite signs, namely q(a)(m− q(a)). Define ψ(q) ≡ q(m− q). For m
even this function attains its maximum at q = m/2 where ψ(m2 ) = m2/4. For m odd, the maximum value of
(m+ 1)(m− 1)/4 is attained at q = (m± 1)/2. The number of non-zero entries, ∥B1a∥0 is thus lower bounded
by m(m−1)/2−m2/4 for m even and a similar expression for m odd. It can be easily verified that when m ≥ 5,
these lower bounds are greater or equal to m− 1.

Note that Lemma 3 is tight. Let u ∈ Rm be the vector with alternating ±1 signs, ui = (−1)i. Then ∥B1u∥0 =
m− 1.

Proof of Theorem 2. Let a, vec(S) be the true values in the decomposition of C with ∥vec(S)∥0 < (m − 1)/2.
Assume to the contrary that there exists another solution ã, vec(S̃) to Eq. (9), with ∥vec(S̃)∥0 ≤ ∥vec(S)∥0.
Then

B1(a− ã) = vec(S̃)− vec(S).

Since ã ̸= a, if follows from Lemma 3 that ∥B1(a− ã)∥0 ≥ m− 1. However, ∥vec(S̃)− vec(S)∥0 ≤ 2∥vec(S)∥0 <
m − 1, a contradiction. For the other direction, we show that there exists a pair a, vec(S) with ∥vec(S)∥0 ≥
(m − 1)/2 for which Eq. (9) does not have a unique solution. This stems from the fact that Lemma 3 is tight.
Specifically, for any such vec(S) choose any (m−1)/2 non-zero entries of B1u where u is the vector of alternating
±1 signs, and let vec(S̃) be the remaining non zero entries in this vector.

Proof of Lemma 2. The proof follows a perturbation approach similar to the one outlined in Nadler (2008). Since
C(ϵ) is symmetric and quadratic in ϵ, classical results on perturbation theory (Kato, 1995) imply that in a small
neighborhood of ϵ = 0, the leading eigenvalue and eigenvector are analytic in ϵ. We may thus expand them in a
Taylor series,

λ(ϵ) = λ0 + λ1ϵ+ λ2ϵ
2 + . . .

v(ϵ) = v0 + v1ϵ+ v2ϵ
2 + . . .

We insert this expansion into the eigenvector equation C(ϵ)v(ϵ) = λ(ϵ)v(ϵ) and solve the resulting equations at
increasing powers of ϵ.

The leading order equation reads g211
Tv0 = λ0v0, which gives v0 ∝ 1 and λ0 = g2∥1∥2 = g2m. Since

the eigenvector v(ϵ) is defined only up to a multiplicative factor, we conveniently chose it to be such that
1Tv(ϵ) = g2m holds for all ϵ. This gives v0 = g21 and vT

1 v0 = 0.

The O(ϵ) equation reads

g211
Tv1 + (a1T + 1aT )v0 = λ0v1 + λ1v0. (22)

Multiplying this equation from the left by vT
0 gives

2(vT
0 1)(a

Tv0) = λ1∥v0∥2

or λ1 = 2
∑
aj . Inserting the expression for λ1 back into Eq. (22) gives

v1 =
1

λ0
[(aTv0)1+ (1Tv0)a− (2

∑
j

aj)v0]

from which Eq. (13) readily follows.
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CCPP Abalone Affairs

Figure 2: Plots of normalized values of MSE(q) and RES(q) for three different datasets. The solid and dashed
vertical lines correspond to the value of ĝ2 that minimizes the MSE and residual curves respectively.

Abalone Affairs Flights JFK

Figure 3: Histogram of ρi,j,k,l ≡ Cov ((hi(X)− hj(X)) (hk(X)− hl(X))) for the Abalone, Affairs and Flights
JFK datasets.

B Beyond Uncorrelated Errors - Implementation Details

As mentioned in the main text, we go beyond the simple case of uncorrelated errors by using the projected
gradient algorithm of Cherapanamjeri et al. (2017). In a nutshell, the algorithm decomposes a partially observed
and corrupted matrix M , into the sum of low rank and sparse matrices, L and S respectively. Our setting can
be viewed as a specific instance of the general setting considered in Cherapanamjeri et al. (2017), where the set
of observed indices consists of all off-diagonal entries in the empirical covariance matrix Ĉ.

Concretely the algorithm has two main parameters: (i) incoherence parameter µ; (ii) threshold ηt. In all experi-
ments we approximated µ by max1≤i≤m

√
m
2 ||e

T
i V ||2, where V is the matrix whose columns are the eigenvectors

of Ĉ. As for η, we follow the authors’ recommendation and at each iteration t, we set η = µ||M −St||2/n, where
St is the approximated sparse component at iteration t.

C Experiments

Manually Crafted Ensembles - Results

Fig. 2 depicts the unobserved MSE(q) obtained by the weight vector of Eq. (15) in the main text, as a function
of the assumed value q for g2 (solid blue curve) and the residual RES(q) given by Eq. (14) in the main text body
(dotted black curve), as a function of q/Var(Y ). In addition shown are the estimated ĝ2 (pink-dashed vertical
line), and the value of q that minimizes the MSE curve (red-dashed vertical line).

The five leftmost columns of Table 2 show, for each dataset, the MSE achieved by the oracle and each aggregation
method, normalized by Var(Y ), averaged over the 20 train-test splits. The seventh column of Table 2 presents
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Figure 4: Normalised residual norm P(v1,v2)(ρ) vs (λ1 + λ2)/Tr(Ĉ), of the various manually crafted ensembles
for the 17 datasets.

the MSE achieved by the single best regressor, averaged over the 20 train-test random splits of each dataset.
Finally, the sixth column of Table 2 (Hit-Rate in the table) shows the proportion of repetitions at which SU-PCR
obtained the minimal MSE.

Figure 5 shows the true MSEs vs. the MSEs estimated by the IU-PCR and SU-PCR (first and second rows,
respectively), for the CPP, Wine quality white and abalone datasets.

The HPN-DREAM Challenge Experiment - Results

As described in the main text, the task in the HPN-DREAM breast cancer network inference competition (Hill
et al., 2016a) was to predict the time varying concentrations of 4 proteins after introduction of an inhibitor.
Given the predictions of m = 12 participants on n ≈ 2500 instances, we constructed separate IU-PCR and
SU-PCR predictors for each protein. Table 3 shows the MSEs achieved by the various aggregation methods,
normalized by Var(Y ).

Bounding Box Challenge

We present the results on an additional regression task, not discussed in the main text. Here we were given
predictions of 16 deep learning models trained by Seematics Inc., on the location of physical objects in images.
The models were trained on the PASCAL Visual Object Classes dataset (Everingham et al., 2012), whereas the
predictions were made on images from COCO dataset (Lin et al., 2014). For demonstration we focused on three
object classes, {Person, Dog, Cat}, with each neural network providing four coordinates for the bounding box:
(x1, y1) and (x2, y2). We consider predicting each of the 4 coordinates as a separate task. Hence, there are a total
of 12 regression problems. For each such problem we constructed IU-PCR and SU-PCR ensemble predictors,
with the mean squared error as our measure of accuracy. Fig. 6 depicts the true MSE vs. the MSE as estimated
by SU-PCR, for coordinate x1. Results for the other coordinates were qualitatively similar. As shown, in the
case of the Cat and Dog classes, the ability of SU-PCR to identify accurate and inaccurate experts is impressive.
However, In the case of the Person class, while it succeeds in identifying the worst regressor, the predictor that
SU-PCR marks as best, is ranked in the seventh place, according to the true MSE. Checking the rank of matrix
Ĉ reveals that in the case of the Person class, (λ1+λ2)/Tr(Ĉ) = 0.81, while (λ1+λ2)/Tr(Ĉ) = 0.93 for the Cat
class and (λ1+λ2)/Tr(Ĉ) = 0.97 for the Dog class. Similarly, n the case of the Person class, P(v1,v2)(ρ) = 0.093,
while P(v1,v2)(ρ) = 0.012 for the Cat class and P(v1,v2)(ρ) = 0.014 for the Dog class. Therefore it is apparent
that in the Person class, the covariance matrix C demonstrates a stronger deviation from the Low-rank plus
Sparse decomposition, than in the other classes. The accuracy of the three object classes and all coordinates are
shown in Tables 4, 5 and 4. Note that all values are normalized by Var(Y ). As can be seen both IU-PCR and
SU-PCR attain similar or lower MSE compared to the mean and median aggregations in 10 out of 12 datasets.
In all prediction tasks, SU-PCR achieves MSEs that are similar or lower than IU-PCR.
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Table 1: Empirical validation of the two key conclusions of our theoretical analysis: (i) the matrix C is approxi-
mately rank 2 and (ii) ρ can be well approximated by its projection on the the first two eigenvectors of C with
a small residual. The affairs dataset is an outlier, for which we indeed were not able to construct an accurate
linear ensemble learner, see right panel of Fig. 2.

Dataset λ1/Tr(Ĉ) (λ1 + λ2)/Tr(Ĉ) Res. Pv1(ρ) Res. P(v1,v2)(ρ)
abalone 0.82 0.91 0.06 0.04
affairs 0.70 0.86 0.57 0.22
basketball 0.89 0.94 0.04 0.04
blog feedback 0.79 0.91 0.06 0.05
CCPP 0.97 0.98 0.04 0.04
CO2 0.95 0.99 0.11 0.04
crime-1 0.90 0.96 0.02 0.01
crime-2 0.84 0.94 0.05 0.03
flights AUS 0.71 0.87 0.10 0.06
flights BOS 0.69 0.85 0.19 0.08
flights BWI 0.68 0.84 0.15 0.10
flights HOU 0.68 0.85 0.26 0.11
flights JFK 0.68 0.84 0.19 0.13
flights LGA 0.66 0.83 0.20 0.12
flights longhaul 0.76 0.88 0.24 0.10
online videos 0.87 0.96 0.07 0.02
qsar aquatic toxicity 0.70 0.84 0.12 0.08
wine quality white 0.72 0.87 0.10 0.06

Manually Crafted Ensembles - Details

For reproducibility, we provide below a short description and reference for every prediction task used in Section
5.1. Table 7 summarizes the main characteristics of each dataset, including the number of randomly chosen
samples for training and testing.

Abalone. A dataset containing features of abalone, where the goal is to predict its age (Lichman, 2013).
Source: archive.ics.uci.edu/ml/datasets/Abalone

Affairs. A dataset containing features describing an individual such as time at work, time spent with spouse,
and time spent with a paramour. The goal here is to predict the time spent in extramarital affairs. Source:
statsmodels.sourceforge.net/0.6.0/datasets/generated/fair.html

Basketball. Dataset contains stats on NBA players. Task: Predict number of points scored by the player on
the next game. The features are: name, venue, team, date, start, pts ma, min ma, pts ma 1, min ma 1, pts,
where start is whether or not the player started, pts is number of points scored, min is number of minutes
played, ma stands for moving average, starts at season, and ma 1 is a moving average with a 1 game lag. Source:
http://www.quantifan.com/

Blog Feedback. Instances in this dataset contain features extracted from blog posts. The task
associated with the data is to predict how many comments the post will receive. Source:
https://archive.ics.uci.edu/ml/datasets/BlogFeedback

Flights. Information on flights from 2008, where the task is to predict the delay upon arrival in minutes.
The features here are the date, day of the week, scheduled and actual departure times, scheduled arrival times,
flight ID, tail number, origin, destination, and distance. Due to its size, we split this dataset to flights orig-
inating from specific airports (AUS, BOS, BWI, HOU, JFK, and LGA), and long-haul flights. Source: stat-
computing.org/dataexpo/2009/the-data.html

CCPP. Combined Cycle Power Plant UCI-dataset containing physical characteristics such as temperature
and humidity. The task here is to predict the net hourly electrical energy output of the plant. Source:
archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
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CCPP Wine Quality White Abalone

Figure 5: (Top): True MSEs vs. MSEs estimated by IU-PCR (up) and SU-PCR (bottom), all normalized by
V ar(Y ), for the CCPP, Wine quality white and Abalone datasets. The best and worst regressors according to
the estimated MSEs are marked with green and red colors respectively.

Online Videos. YouTube video transcoding dataset. Predict the transcoding time based on
parameters of the video. Source: archive.ics.uci.edu/ml/datasets/Online+Video+ Characteris-
tics+and+Transcoding+Time+Dataset

Wine Quality White. Predict the quality score (1-10) of white wine based on chemical characteristics, such
as acidity and pH level (Cortez et al., 2009). Source: archive.ics.uci.edu/ml/datasets/Wine+Quality

Crime-1. Predict the number of murders per 100K population. Explanatory variables include social charac-
teristics, such as the percent of the population considered urban and the median family income, as well as law
enforcement, such as per capita number of police officer and percent of officers assigned to drug units. Source:
archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized

Crime-2. Predict the number of rapes per 100K population. Explanatory variables include social character-
istics, such as the percent of the population considered urban and the median family income, as well as law
enforcement, such as per capita number of police officers, and percent of officers assigned to drug units. Source:
archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized

CO2 Data from an experiment on the cold tolerance of the grass species Echinochloa crus-galli. Predict the
carbon dioxide uptake rates. Source: the nmle package, R.

Qsar Aquatic Toxicity Predict the acute aquatic toxicity towards the fish Pimephales promelas, based on
8 molecular descriptors. Source: archive.ics.uci.edu/ml/datasets/QSAR+aquatic+toxicity
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Person Dog Cat

Figure 6: The bounding box experiment, true vs. estimated MSEs for the various class objects. The best and
worst regressors according to SU-PCR algorithm are marked with green and red colors respectively.

Table 2: Average MSE of the different ensemble methods, MSE of the single best regressor, based on the
estimated MSE and SU-PCR hit-rate, for the various prediction tasks. Averages and standard deviations (in
parentheses) are computed over 20 train-test random splits. The Affairs dataset is not shown, as its estimated
value ĝ2 is very close to zero (see Fig. 2), namely accurate prediction by UPCR is not feasible for this dataset.

Dataset Oracle IU-PCR SU-PCR mean median Hit-Rate argmini M̂SEi

abalone 0.431 (0.006) 0.480 (0.009) 0.476 (0.011) 0.489 (0.007) 0.490 (0.010) 0.95 0.497 (0.013)
basketball 0.281 (0.005) 0.356 (0.006) 0.346 (0.005) 0.352 (0.004) 0.362 (0.004) 1.00 0.330 (0.018)
blog feedback 0.414 (0.025) 0.514 (0.013) 0.491 (0.016) 0.504 (0.015) 0.582 (0.017) 1 0.531 (0.111)
CCPP 0.059 (0.001) 0.066 (0.002) 0.065 (0.003) 0.068 (0.003) 0.065 (0.002) 0.75 0.068 (0.003)
CO2 0.445 (0.080) 0.752 (0.118) 0.737 (0.114) 0.763 (0.094) 0.812 (0.117) 0.75 0.812 (0.120)
crime-1 0.042 (0.017) 0.185 (0.108) 0.183 (0.102) 0.171 (0.101) 0.326 (0.185 ) 0.40 0.351 (0.203)
crime-2 0.084 (0.036) 0.185 (0.060) 0.199 (0.073) 0.177 (0.069) 0.301 (0.146) 0.35 0.378 (0.107)
flights AUS 0.328 (0.035) 0.613 (0.053) 0.611 (0.034) 0.582 (0.061) 0.664 (0.083) 0.55 0.598 (0.124)
flights BOS 0.469 (0.042) 0.677 (0.031) 0.633 (0.038) 0.659 (0.032) 0.689 (0.084) 0.85 0.620 (0.161)
flights BWI 0.439 (0.064) 0.742 (0.021) 0.673 (0.025) 0.707 (0.029) 0.822 (0.076) 0.95 0.623 (0.204)
flights HOU 0.396 (0.093) 0.712 (0.031) 0.630 (0.044) 0.688 (0.029) 0.753 (0.079) 1 0.569 (0.153)
flights JFK 0.495 (0.051) 0.777 (0.037) 0.714 (0.039) 0.744 (0.030) 0.898 (0.035) 1 0.819 (0.207)
flights LGA 0.471 (0.039) 0.731 (0.027) 0.663 (0.040) 0.704 (0.028) 0.778 (0.085) 0.95 0.653 (0.192)
flights longhaul 0.680 (0.047) 0.866 (0.031) 0.842 (0.074) 0.861 (0.059) 0.967 (0.013) 0.90 0.907 (0.138)
online videos 0.093 (0.006) 0.213 (0.015) 0.188 (0.012) 0.222 (0.014) 0.276 (0.020) 1 0.341 (0.062)
qsar 0.466 (0.028) 0.551 (0.031) 0.553 (0.033) 0.556 (0.029) 0.543 (0.040) 0.35 0.570 (0.048)
wine 0.595 (0.010) 0.658 (0.009) 0.642 (0.011) 0.660 (0.009) 0.687 (0.008) 1 0.624 (0.040)

Table 3: MSE of the different ensemble methods for the four HPN-
DREAM prediction tasks.

Protein Oracle IU-PCR SU-PCR mean median
UACC812 0.237 0.316 0.300 0.329 0.311
MCF7 0.300 0.424 0.396 0.508 0.472
BT549 0.193 0.264 0.253 0.283 0.302
BT20 0.141 0.201 0.215 0.212 0.208

Table 4: MSE of the different ensemble methods for the Person class of
the bounding box task.

Coordinate Oracle IU-PCR SU-PCR mean median
x1 0.029 0.057 0.057 0.056 0.091
y1 0.065 0.141 0.137 0.140 0.222
x2 0.029 0.059 0.059 0.059 0.095
y2 0.056 0.093 0.091 0.097 0.145

Table 5: MSE of the different ensemble methods for the Dog class of
the bounding box task.

Coordinate Oracle IU-PCR SU-PCR mean median
x1 0.080 0.099 0.098 0.098 0.126
y1 0.069 0.091 0.091 0.091 0.119
x2 0.078 0.102 0.101 0.100 0.134
y2 0.069 0.089 0.088 0.090 0.109

Table 6: MSE of the different ensemble methods for the Cat class of
the bounding box task.

Coordinate Oracle IU-PCR SU-PCR mean median
x1 0.176 0.300 0.284 0.298 0.399
y1 0.163 0.291 0.280 0.277 0.393
x2 0.136 0.228 0.225 0.229 0.316
y2 0.138 0.206 0.205 0.218 0.308
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Table 7: Properties of interest of the datasets are shown in this table. n is the number of held-out samples. The
input X is d dimensional, and the same ntrain random samples were used to train the different algorithms in the
ensemble.

Name n ntrain d
Abalone 3277 700 7
Affairs 5466 700 7
Basketball 48899 900 9
Blog Feedback 24197 28000 28055
CCPP 8968 400 4
CO2 84 40 5
Crime-1 325 150 127
Crime-2 325 150 127
Flights AUS 47595 1000 10
Flights BOS 112705 1000 10
Flights BWI 101665 1000 10
Flights HOU 53044 1000 10
Flights JFK 113960 1000 10
Flights LGA 111911 1000 10
Flights longhaul 9393 1000 10
Online Videos 66484 2100 21
qsar aquatic toxicity 547 150 8
Wine Quality White 3598 1100 11

Table 8: Parameters of regressors in manually crafted ensembles

Type Parameters
Ridge α = 0.5
Kernel Regression kernel chosen using cross validation between polynomial, RBF, sigmoid
Lasso α = 0.1
Orthogonal Matching Pursuit -
Linear SVR C = 1
SVR RBF kernel with C chosen using cross validation out of 0.01, 0.1, 1, 10
Regression Tree depth 4
Regression Tree infinite depth
Random Forest m=100 trees
Bagging Regressor -


