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Abstract

Generative models can be used to synthe-
size 3D objects of high quality and diver-
sity. However, there is typically no control
over the properties of the generated object.
This paper proposes a novel generative ad-
versarial network (GAN) setup that gener-
ates 3D point cloud shapes conditioned on
a continuous parameter. In an exemplary
application, we use this to guide the gener-
ative process to create a 3D object with a
custom-fit shape. We formulate this gener-
ation process in a multi-task setting by us-
ing the concept of auxiliary classifier GANs.
Further, we propose to sample the generator
label input for training from a kernel density
estimation (KDE) of the dataset. Our abla-
tions show that this leads to significant per-
formance increase in regions with few sam-
ples. Extensive quantitative and qualitative
experiments show that we gain explicit con-
trol over the object dimensions while main-
taining good generation quality and diversity.

1 INTRODUCTION

In recent years many approaches evolved to ana-
lyze point clouds, such as classification or segmenta-
tion (Guo et al., 2021; Hackel et al., 2016; Li et al.,
2018; Qi et al., 2017a; Thomas et al., 2019; Wang et al.,
2019; Wu et al., 2019). Point clouds are a popular rep-
resentation for 3D data acquired with depth sensing
and laser scanning and are used in many applications,
such as automated driving or human-robot interaction.
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Figure 1: Generated objects conditioned on dif-
ferent dimensions: Our method can generate a di-
verse set of object shapes and be conditioned on object
dimensions (values on the axes). The figure shows ob-
jects generated from the same latent vector z, but with
different continuous conditioning parameters y. The
generated objects are realistic and semantically mean-
ingful. Our method generalizes to out-of-distribution
dimensions (outside of dotted shape).

Here, often complex 3D scenes have to be analyzed by
detecting objects, segmenting the scene, or estimating
motion (Zhou and Tuzel, 2018; Lang et al., 2019; Liu
et al., 2019; Milioto et al., 2019; Sirohi et al., 2021).
The scenes are composed of a large number of differ-
ent objects with hierarchical dependencies. Therefore,
most 3D object detection approaches on real-world
data use augmentation techniques to improve detec-
tion performance. This is often achieved by placing
additional objects into the scene when training the net-
works (Yan et al., 2018; Lang et al., 2019; Baur et al.,
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2019). This can greatly improve performance, espe-
cially for underrepresented classes, but is limited to
the size and diversity of the provided object database.
Therefore, it is favorable to have an unlimited number
of objects at ones disposal.

Generative models, such as GANs (Goodfellow et al.,
2014) or variational autoencoders (VAEs) (Kingma
and Welling, 2014), are often used to generate com-
pletely new samples with high quality and diversity.
These approaches are initially introduced for image
generation, but lately a number of approaches for
3D generation have emerged (Achlioptas et al., 2018;
Valsesia et al., 2019; Yang et al., 2019; Shu et al.,
2019; Sun et al., 2020; Luo and Hu, 2021). However,
none of these methods is capable to actively influ-
ence specific properties of the generated object, such
as height and width (see Fig. 1). Therefore, we pro-
pose a method to use descriptions in form of continu-
ous conditional parameters within a GAN to generate
objects with desired properties. These properties can
for example describe the aspect-ratios of the object,
such that the GAN generates a custom-fit shape while
maintaining generation quality and diversity. Using
continuous conditions introduces new challenges, since
it is a mathematically different problem than solving
categorical conditioning problems, such as classifica-
tion (Ding et al., 2021). The challenges arise from an
infinitely large set of parameters and conditioning re-
gions where no training data samples exist.

We formulate the continuous conditioning as a multi-
task problem within the discriminator. We add an ad-
ditional output head, similar to AcGAN (Odena et al.,
2017), that estimates the continuous parameter. The
overall loss function is then formulated as the weighted
sum of the adversarial loss and the regression loss. Ad-
ditionally, we propose an alternative label sampling
that is used at training time. In a specifically de-
signed experiment setup, we show that this sampling
strategy improves the generation quality of the gen-
erator and opens the potential to generate novel out-
of-distribution shapes. To the best of our knowledge,
this work is first to use continuous conditional labels
for 3D generation.

2 RELATED WORK

2.1 3D Generative Models

In recent years, a variety of methods emerged from
GANs and VAEs to synthesize realistic data. Initially
proposed to generate realistic 2D images, these con-
cepts have widely been adapted to fulfill a variety of
tasks on different modalities (Song et al., 2018; Chen
et al., 2019; Karras et al., 2019). Wu et al. (2016) are

first to propose an unsupervised deep generative ap-
proach for 3D data generation from probabilistic in-
put. Their voxel-based GAN allows to directly adapt
concepts from 2D, but is limited in resolution due
to computational inefficiency. Therefore, subsequent
works focus on surface (Mescheder et al., 2019; Chen
and Zhang, 2019; Michalkiewicz et al., 2019; Park
et al., 2019) or point cloud (Qi et al., 2017a,b; Fan
et al., 2017) representations instead. Achlioptas et al.
(2018) propose architectures for both VAEs and GANs
to generate point cloud objects. The use of relative
simple models based on fully connected layers com-
bined with PointNet layers limits the ability to pro-
duce more realistic objects. The method by Valsesia
et al. (2019) exploits local topology by using a compu-
tationally heavy k-nearest neighbor technique to pro-
duce geometrically accurate point clouds. Shu et al.
(2019) aim to improve the expressiveness of the gen-
erative models by introducing convolution-like layers
and up-sampling techniques to the generator. Wang
et al. (2020) deal with the choice of suitable discrim-
inator architectures for 3D generation and show that
models perform better when focusing on overall object
shapes as well as sampling quality.

2.2 Conditional Generation

In many cases additional conditioning parameters
are desired to generate specific object categories or
styles. The most prominent example, conditional
GAN (Mirza and Osindero, 2014), uses explicit con-
ditioning and forms the basis of many other ap-
proaches (Zhu et al., 2017; Taigman et al., 2017; Hoff-
man et al., 2018). AcGAN (Odena et al., 2017) refines
this concept of class conditioning by using an addi-
tional auxiliary classifier in the discriminator to en-
sure class specific content. To condition the output
on arbitrary combinations of discrete attributes, some
works use labeled images as input to the GAN (He
et al., 2019; Perarnau et al., 2016). StyleGAN and
others investigate how to enhance desirable properties
in GAN latent spaces to influence the characteristics of
generated images selectively (Karras et al., 2019, 2020;
Härkönen et al., 2020).

2.3 Continuous Conditioning

Many of the aforementioned concepts use discrete la-
bel conditioning. However, attributes like rotation in
angles or age in years are by definition continuous.
Using continuous conditions is a mathematically dif-
ferent problem than solving categorical conditioning
problems, such as classification (Ding et al., 2021).
First, there may be few or no real samples for some
regression labels and second, conventional label input
methods, i.e. one-hot encoding, is not possible for an
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infinite number of regression labels. CcGAN (Ding
et al., 2021) is first to introduce a continuous con-
ditional GAN for image generation. They solve the
aforementioned problems by introducing a new GAN
loss and a novel way to input the labels based on la-
bel projection (Miyato and Koyama, 2018). Shoshan
et al. (2021) propose to use attribute specific pre-
trained classifiers to enhance desired properties on the
generative behavior. A subsequent training of map-
ping networks allows to generate noise vectors which
produce explicit continuous attributes. Their method
produces convincing results but requires an extensive
amount of labeling and well pre-trained classifiers for
each attribute.

2.4 3D Conditional Generation

The aforementioned conditioning strategies have all
been proposed for image synthesis. There are some
works that use text-based conditioning to generate
3D scenes (Chang et al., 2015a, 2014; Chen et al.,
2018) with focus on database composition. Other ap-
proaches use symbolic part-tree descriptions to gen-
erate 3D objects with predefined compositions (Mo
et al., 2020) or use occupancy networks for image based
generation and coloring of 3D objects (Mescheder
et al., 2019). Although being related, our method
focuses on conditioning point cloud generation using
continuous physical parameters.

2.5 Contributions

Our main contributions are threefold:

• We propose a GAN setup which formulates the
generation process conditioned on continuous pa-
rameters in a multi-task setting by adapting the
concept of auxiliary classifier GANs (Odena et al.,
2017).

• We propose to sample the generator conditioning
input for training from a KDE of the parameter
distribution. Our ablations show that this leads
to a significant performance increase in regions
with few samples.

• We provide a number of qualitative evaluations
that show that we gain explicit control over the
object dimensions while maintaining generation
quality and diversity.

3 BACKBONE

This section gives a short introduction to our back-
bone network. We build upon TreeGAN (Shu et al.,
2019), a state-of-the-art GAN architecture that can
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Figure 2: Architecture: The generator G generates a
point cloud xgen from a random vector z and a contin-
uous parameter ycond. It is then alternately – with a
real point cloud xreal – fed to the discriminator, which
predicts the probability of the sample stemming from
the real distribution D(x) and an estimate of the pa-
rameter ŷ(x). With these two outputs, the adversar-
ial Ladv and regression Lreg losses are computed.

generate point cloud objects with high quality and di-
versity. The generator consists of stacked tree graph
convolution layers (TreeGCN). It receives a random
noise vector z ∈ R96 as input and outputs a point
cloud xgen = G(z) ∈ R2048×3. The loss function of the
generator G is defined as

LG,adv = −Ez∼Z [D (xgen)] , (1)

where D denotes the discriminator. The latent code
distribution Z is sampled from a Normal distribu-
tion z ∈ N (0, I).

The discriminator follows a PointNet architecture (Qi
et al., 2017a). It either receives a real xreal or a gener-
ated xgen point cloud ∈ R2048×3 as input and outputs
a single scalar D(x). The output estimates whether
the sample originates from the distribution of the real
or generated samples. The loss function of the dis-
criminator D is defined as

LD,adv =Ez∼Z [D (xgen)]− Ex∼R [D(xreal)]

+ λgp · Ex̂

[
(∥∆x̂D(x̂)∥2 − 1)

2
]
,

(2)

where x̂ is sampled from an interpolation between real
and fake point clouds and λgp is the weighting param-
eter for the gradient penalty term (Gulrajani et al.,
2017).

4 METHOD

Fig. 2 presents the GAN setup of our proposed contin-
uous conditioning architecture. The concept for the
continuous conditioning is introduced in Section 4.1
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while Section 4.2 explains the required parameter sam-
pling Section 4.3 describes the model architecture and
the training losses are introduced in Section 4.4.

4.1 Continuous Parameters

We aim to control the outer dimensions of the gen-
erated object with the continuous parameters while
maintaining diversity regarding the type and shape of
the object. While the object size and shape shall be
disentangled, our method is still allowed to modify the
shape slightly to better match the defined bounding
box in terms of creating realistic and valid shapes,
i.e. a small table can have a single leg, while a long
table typically does not. We later refer to this prop-
erty as semantically meaningful. The object is defined
as a vector of points x ∈ RN×3 with the number of
points N = 2048 and the dimensions [x, y, z]. The
parameter y ∈ R3 defines the extent of the object in
each dimension y = (∆x,∆y,∆z) ∈ [0, 1]3. Therefore,
the parameters yreal for the training data xreal can
easily be computed from the data itself with yreal =
∥max (xreal)−min (xreal)∥.

4.2 Label Sampling for Training

At training time, we have to sample parameters ycond

as a second input to the generator G. The easiest
method is to sample randomly in [0, 1]. However, this
can lead to a description of unsuitable object dimen-
sions. To circumvent this issue, we can sample the
dimensions from the training dataset. This ensures
that only actually possible conditioning parameters
are sampled. However, this limits the generator train-
ing to a fixed number of input conditioning. Therefore,
we propose to sample the dimensions from the distri-
bution of the dimensions within the training dataset.
We compute a KDE over the whole dataset prior to
training. This again assures that only suitable di-
mensions are drawn, but it does not limit them to be
present in the dataset. In all cases, the aim of the gen-
erator is to generate point clouds that have dimensions
which are close to the conditioned dimensions ycond.

4.3 Model

This section only describes the changes made to our
backbone architecture for which we use TreeGAN, as
described in Section 3. Fig. 3 shows how the label con-
ditioning is incorporated into the generator and dis-
criminator models. For the generator (Fig. 3a), we
extend the architecture to receive an additional input,
the conditioning vector ycond. This vector and the
noise vector z ∈ R96 are both passed through a lin-
ear layer. The concatenated results are then fed to
the otherwise unmodified TreeGCN (Shu et al., 2019)
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Figure 3: Model details: (a) shows the label in-
put of the generator. Both inputs are fed through
a fully-connected (FC) layer, concatenated and then
fed to the tree graph convolution network (TreeGCN).
(b) shows the discriminator. After a common feature
extractor (PointNet), the model splits in two identical
parts, where D(x) is the adversarial feedback and ŷ(x)
is the prediction of the continuous object description.

which outputs the point cloud xgen = G(ycond, z).
The discriminator input x is either a point cloud from
the dataset xreal or a generated point cloud from the
generator xgen (Fig. 3b). The network has two out-
puts, one for the standard adversarial feedback D(x)
and one to estimate the continuous parameter condi-
tioning of the presented data ŷ = ŷ(x). This con-
cept is adapted from Auxiliary Classifier GAN (Ac-
GAN) (Odena et al., 2017; Atienza, 2019). The idea is
to leverage potential synergies between the two tasks
within the shared discriminator layers.

4.4 Losses

The training objective is composed of two parts, the
adversarial loss Ladv and the regression loss Lreg for
the continuous parameter. Just like TreeGAN, we uti-
lize the Wasserstein objective function with gradient
penalty for the adversarial loss (Arjovsky et al., 2017;
Gulrajani et al., 2017). For the parameter regression,
we use L2-norm

Lreg (y, ŷ) = ∥y − ŷ∥2 (3)

with the predicted label ŷ and its target label y.

The adversarial part of the generator loss LG,adv is
defined in Eq. (1) with a slight change to the defini-
tion of the generated point cloud xgen. It is now also
dependent on the input conditioning and is therefore
defined as G(ycond, z) (instead of the unconditioned
version G(z)). For the generator regression, we com-
pute the Lreg between the discriminator prediction for
the condition parameter of the generated sample ŷgen

and the actually requested parameter ycond. This re-
sults in the overall generator loss

LG = λadv · LG,adv + λreg · Lreg (ycond, ŷgen) (4)

with the loss weighting factors λadv and λreg.
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Eq. (2) defines the adversarial loss of the discriminator.
The regression loss is defined as the error between the
parameter of the real data yreal and its corresponding
prediction ŷreal. Analogously to the generator, this
leads to the discriminator loss

LD = λadv · LD,adv + λreg · Lreg (yreal, ŷreal) (5)

with the same loss weights λadv and λreg as in Eq. (4).

5 EXPERIMENTS

This section gives an overview on the experiments with
the results reported in Section 6. Further details are
provided in the supplementary material.

5.1 Dataset and Metrics

For our experiments, we use ShapeNetPart (Yi et al.,
2016), a dataset with part annotations of more
than 30,000 3D shapes in 16 object categories from
ShapeNetCore (Chang et al., 2015b). To compare
our results in terms of generation quality, we use
a pre-trained version of the original Fréchet Point
Cloud Distance (FPD) (Shu et al., 2019). The ad-
herence of the conditioning properties are evaluated
by calculating the mean squared error (MSE) for
each dimension extent (∆x, ∆y, ∆z) of the gener-
ated object xgen versus the desired input parametriza-
tion ycond. These are the two most important metrics,
but we also report coverage (COV), minimum match-
ing distance (MMD), and Jensen-Shannon Divergence
(JSD) to make our work comparable to existing meth-
ods (Achlioptas et al., 2018; Shu et al., 2019). The
evaluation also focuses on qualitative results to show
the advantages of our method.

5.2 Implementation Details

We build our model upon the existing implementation
of TreeGAN (Shu et al., 2019) that we further refer to
as our backbone model. The training parameters are
also identical. We only apply the changes introduced
in Section 4 to keep our method directly comparable
to the backbone and do not incorporate any further
mechanisms to enhance generation quality.

The loss weights λadv and λreg from Eq. (4) and Eq. (5)
are variable and learned together with the rest of
the model parameters, as proposed by Kendall et al.
(2018).

We train all networks for 3000 epochs and select the
checkpoint with the lowest combined metric score. The
combined metric is defined as the product of FPD and
MSE. This ensures fidelity as well as correctness and
considers differing value ranges.
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Figure 4: Region-classified dimension distribu-
tion: The plot shows all samples (marks) of the chair
class for the entire training dataset in terms of their
dimension extend in height z and width y. The three
colors represent the resulting regions from k-nearest
neighbor classifier with k=20 based on a KDE. The
regions correspond to 1σ ≈ 68% (green), 2σ ≈ 27%
(orange), and 3σ = 5% (blue) of the entire data dis-
tribution.

5.3 Baselines

We compare our method to two baselines. These base-
lines represent possible design choices to achieve the
desired aim of generating point clouds of specific di-
mensions when no explicit method already exists.

B1 – Backbone with re-sampling: A simple
method to generate shapes of desired dimensions with
an existing model, such as the backbone, is to gener-
ate point clouds from multiple sampled z vectors and
then choose the one that has the dimensions that are
closest to the ones requested. Here it is expected that
the fidelity of the generated samples is similar to the
ones from the backbone network itself. However, the
sampling process is time consuming and the dimen-
sions might not exactly fit, especially if these dimen-
sions are not well reflected in the training dataset. For
our experiments, we sample 10 versions per object and
select the one with the smallest MSE.

B2 – Backbone with scaling: Another variant is
to add a subsequent scaling block that squashes the
generated point cloud into the desired dimensions. In
contrast to B1, it is expected that the regression error
on the dimensions is zero. However, the generation
fidelity can be severely impacted.
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5.4 Distribution Sampling

A key aspect of our method is that it is possible to ac-
tively sample from different regions of the conditioning
vector distribution. Therefore, we specifically investi-
gate the generation capabilities within different regions
of the data distribution. Fig. 4 shows the distribution
of the object dimensions of the training dataset for
the chair class. The distribution is divided into three
sections, indicated by the coloring. The sections are
classified into regions where 1σ ≈ 68%, 2σ ≈ 27%, and
3σ ≈ 5%, of the data lies, computed with a KDE. In
additional experiments, we generate 1000 samples for
each region and then compare FPD and MSE to show
the effectiveness of our method.

6 RESULTS

6.1 Quantitative Results

Table 5 contains quantitative comparisons in terms of
typical metrics used to evaluate the quality of gener-
ated point cloud objects. The rows for the backbone
are included for reference but cannot be used for com-
parison, as it does not have the conditioning ability.
B1 and B2 each symbolize the two corner cases. On
the one hand, B1 obtains the lowest FPD but the high-
est MSE. This is the result of exploiting the good gen-
eration quality of the backbone and combine it with
a sampling mechanism to obtain object of desired di-
mensions. However, it becomes clear that it is hard to
obtain the desired shape configuration in an accept-
able inference time, while the inference time depends
on how many samples have to be drawn for one in-
ference step. On the other hand, there is B2 which
obtains an MSE of zero by construction. It simply
scales the object to the desired size. However, this
comes at the cost of realism, as evident from the in-
crease in FPD. Our proposed approach lies in between
B1 and B2 regarding FPD and obtains a very low MSE
of only 0.28%. The other metrics show relatively equal
performance for all methods.

The numbers indicate that our method is capable
to ensure desired dimensions while maintaining high
quality. However, we want to stress that the full po-
tential of our method is better visible in the following
qualitative results.

It is important to note that these baselines are only
applicable since it is possible to easily compute the
dimension parameter from the data itself. For many
other applications this is not the case and our method
offers the suitable solution (see also Section 7).

Additionally to the presented results, we also
evaluated the label incorporation of traditional
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Figure 5: Distribution sampling performance:
The figure shows performances for three data sampling
regions for our model trained with three different la-
bel sampling strategies. The regions correspond to the
labels on the x-axis, as defined in Fig. 4. For each re-
gion, 1000 samples are generated. The left plot shows
the MSE of the dimension regression. On the right,
the FPD of the generated samples is presented.

cGAN (Mirza and Osindero, 2014) and CcGAN (Ding
et al., 2021) combined with the backbone network.
However, these methods did not achieve satisfying re-
sults in our setup. In particular, cGAN completely
ignored the conditioning and therefore received MSE
values over 50% (at FPD≈ 1.9 for “chair”). While for
CcGAN, training was unstable and therefore resulted
in metric scores that are several magnitudes higher
than usual. For more information and additional re-
sults, we refer to the supplemental material.

6.2 Label and Region Sampling Ablations

Fig. 5 shows the results of our distribution sam-
pling experiments on the chair class (explained in Sec-
tion 5.4). We report results for three differently
trained versions of our model. They differ in the way
the conditioning parameter ycond is sampled at train-
ing time (see Section 4.2). The green dots correspond
to random sampling in [0, 1], while orange means that
only parameters existing in the training dataset are
being used, i.e. the marks of Fig. 4. Our proposed
version (purple) uses all possible dimensions sampled
from a KDE of the training distribution, i.e. the entire
region in Fig. 4.

It can be observed that naturally MSE and FPD in-
crease when moving away from the distribution center
of gravity (increasing σ). For random sampling, we see
significantly worse performance in all three sampling
categories compared to the other two methods. For
1σ and 2σ the two other sampling methods perform
almost equally well. However, we see a significant per-
formance improvement of our proposed sampling strat-
egy in the most sparsely populated region where only
5% of all training data lies. This shows the advantage
of the distribution-based training over a data-based
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Table 1: Quantitative Comparison: We report results for the classes “Chair” and “Airplane” in terms of the
metrics used by Shu et al. (2019). Additionally, we report the regression error (MSE) for our introduced task.
We report the results for the backbone network (TreeGAN) for reference. All evaluations are conducted on a
hold-out validation split. Shu et al. (2019) use the entire dataset for training, therefore values vary slightly. Best
results are marked in bold, second best in italic.

Shape Model FPD (↓) MSE [%] (↓) MMD (↓) COV (↑)
JSD (↓)

CD EMD CD EMD

Chair

Backbone 0.9525 – 0.0020 0.1027 0.4875 0.2500 0.1082
Baseline 1 (B1) 1.3674 26.07 0.0023 0.1013 0.4750 0.2625 0.1123
Baseline 2 (B2) 1.9259 0.00 0.0021 0.1003 0.4875 0.2625 0.1068
Ours 1.5290 0.28 0.0022 0.1059 0.4625 0.3125 0.1434

Airplane

Backbone 1.2947 – 0.0002 0.0805 0.4375 0.1375 0.1887
Baseline 1 (B1) 1.0209 15.08 0.0003 0.0812 0.4500 0.1125 0.1819
Baseline 2 (B2) 1.6613 0.00 0.0003 0.0783 0.5250 0.1375 0.1834
Ours 0.8691 0.30 0.0003 0.0724 0.5000 0.1250 0.1291

0.4 0.9height

O
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B
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Figure 6: Manipulation of chair height: Each row
of objects is generated from a different latent vec-
tor. The object height is increased from left to right.
The upper two rows show chairs generated with our
method, while the bottom row shows the backbone
network with scaling to the requested height (B2).

training, especially for increasing σ.

6.3 Continuous Parameter Interpolation

A decisive advantage of our method is that we can
actively and directly influence the object dimensions.
Fig. 6 and Fig. 7 show several examples of generated
objects where the continuous parameter for the object
size is changed. For different latent vectors, our net-
works generates different shapes of good quality and
diversity. If now object sizes are changed, quality de-
clines for the outermost samples (on the edge of the
distribution). However, our method still produces se-
mantically meaningful objects in contrast to the base-
line B2. For example, the overall shape of the office
chair in the upper row of Fig. 6 stays approximately
the same while the backrest gets a slight tilt to the
back to resemble an easy chair for lower heights, while
B2 preserves the shape completely and simply com-
presses the object. We want to stress that these figures

0.4 0.9width
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Figure 7: Manipulation of table width: The ob-
ject width is increased from left to right while keep-
ing length and height constant. The upper three rows
show tables generated with our method, the bottom
row is generated with baseline B2. While B2 simply
stretches the table, our method generates semantically
meaningful object shapes, e.g. in second row, the wide
tables have more than one leg.

are for demonstration purposes, the main application
is rather to define the object size and then sample
shapes (compare Fig. 8) and not to sample a shape
and then modify the size, as shown here.

6.4 Out-of-Distribution Generation

Fig. 1 shows a larger span of size conditioning, where
only the samples enclosed in the dotted shape are con-
ditioned on parameters sampled from within the dis-
tribution. The dataset does not contain any chairs
with sizes that are larger or smaller than the gray dots
indicate (refer to Fig. 4). The generated shapes for
extreme low or high height or width do not necessarily
resemble realistic objects, but the generator still main-
tains the approximate object and shape configuration.
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Ours

5-NN

Figure 8: Generation Diversity: The upper row
shows examples generated from diverse latent vectors
at a fixed dimension y. The lower row shows the k=5
nearest neighbors from the training dataset in terms
of being closest to y. This shows that our method gen-
erates a variety of shapes for the same dimension and
does not perform a simple lookup from the dataset.

All generated objects show smooth transitions between
the configurations, even when out-of-distribution and
do not collapse in shape.

6.5 Model Properties

Fig. 8 shows five generated examples and five exam-
ples from the dataset that have the same dimensions.
The generated shapes are diverse and considerably dis-
tinct from the dataset samples. This shows two things:
First, our method does not simply generate the same
object for a given dimension when changing the la-
tent vector (diversity). Second, it also does not learn
a simple lookup by reproducing the samples from the
dataset that lie close to the desired dimensions (nov-
elty).

As in related work, we demonstrate smooth represen-
tations within our model by interpolating between two
latent vectors. Fig. 9 shows that we obtain smooth
transitions from left to right for different object shapes.
This property was already included in the backbone
network, but this experiment shows that it was not
compromised by the introduction of our conditioning
method.

interpolation over latent z
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Figure 9: Latent interpolation: Interpolation be-
tween two random latent vectors z with constant y.

Figure 10: Ratio of object parts: The left column
shows two part-annotated examples from the dataset
with airplane body in red, wings in blue, and the re-
maining parts in yellow. In the upper row, our method
increases the ratio of wing points within the object,
while the lower row increases the percentage of the
body part from left to right. Our method adapts the
overall shape to be semantically meaningful and match
the continuous parameter for a fixed latent vector.

7 DISCUSSION

Influencing object dimensions is only one applica-
tion out of many for explicit continuous conditioning.
Fig. 10 demonstrates how our method can be used to
influence the percentage of certain object parts relative
to the entire shape. To this end, the former dimension
conditioning is now defined as a ratio of the body parts
y ∈ R2 with y = (wings : body, others : body) ∈ [0, 1]2

for the class “Airplane” where
∑

y = 1.0. The labels
for the real data are obtained by using the point-wise
part segmentation information from the dataset. We
count the number of points for each part and divide it
with the number of points for the part “body” to ob-
tain a ratio of points for each part. Modifying the rela-
tion of object parts is more entangled with the overall
appearance, therefore the shape changes considerably.
In contrast to the object dimensions it is not possible
to trivially retrieve this parameter from the generated
shape. For the object dimensions a simple calculation
suffices, while for the part manipulation a reliable part
segmentation model would be needed, which requires
annotations for training and can introduce additional
errors. Therefore, a naive regression loss for the condi-
tioning vector or using a simple conditioning discrim-
inator as in cGAN is not applicable. This makes the
discriminator regression vital.

Next steps for this work include the adaptation to real-
world data. Objects scanned with a laser are often
only seen from a certain viewpoint in contrast to the
objects in this work. The viewpoint can be modeled by
using additional continuous parameters that define the
angle and distance from which the object is observed.
Regarding our proposed application for augmentation
of autonomous driving LiDAR scenes, we can then de-
fine the size and position of a 3D bounding box for
which the GAN then generates a custom-fit object.
A challenge is to adapt the backbone architecture to
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generate variable numbers of points, as common for
real-world data.

8 CONCLUSION

This paper presented a novel GAN setup for 3D shape
generation that uses continuous conditional parame-
ters to actively influence the dimensions of generated
shapes. In extensive experiments we showed that our
method can generate custom-fit objects that adhere
the desired configuration while maintaining good gen-
eration quality and diversity. We showed that our dis-
tribution label sampling is superior to sampling ex-
isting dataset parameters. Further, we demonstrated
generalization to out-of-distribution generation and
gave a preview on potential other applications. Fu-
ture work includes the adaptation to real-world data.
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Supplementary Material:
Point Cloud Generation with Continuous Conditioning

A OVERVIEW

This supplementary material covers details of the deep neural network (DNN) architectures, hyperparameters,
evaluation, and additional results. Section B gives all the training details of our proposed approach. For the sake
of completeness, Section C discusses further experiments that are indicated in the main paper. Section D presents
further qualitative and quantitative results to complement the results section of the main paper.

B IMPLEMENTATION DETAILS

B.1 Architecture

Table 2 lists all layers, inputs, and operations of our DNN architecture for the generator model. We use the
code1 from the original PyTorch implementation of TreeGAN (Shu et al., 2019). Except for the input layers, our
configuration is equal to the one of TreeGAN. Table 3 lists all layers, inputs, and operations of the discriminator
DNN architecture. Here, the PointNet (Qi et al., 2017a) contained in the TreeGAN code was used as a basis.
The split of the network for the auxiliary classifier mode is located directly after the PointNet feature extractor
layers. It is followed by two identical sequences of linear operations, where the adversarial head outputs a vector
of size 1, while the regression head outputs a vector of size d of the continuous conditioning parameter.

B.2 Training

Two Adam optimizers are used for optimization, one for the parameters of the generator and one for the
discriminator. For both, the learning rate is set to 1e−4. Additionally, the two weighting factors λadv and λreg

for the losses are optimized. In the main paper, we formulate the losses for the generator and discriminator as

L = λadv · Ladv + λreg · Lreg

with the adversarial loss Ladv and the regression loss Lreg. In order to avoid simply learning weighting factors
of zero and to ensure stable training convergence at the same time, the loss is implemented as

L = Ladv · evadv + vadv + Lreg · evreg + vreg

with vadv and vreg being the trainable variables. Both variables are initialized to v = 0 at the beginning of the
training, such that both loss parts are equally weighted.

C ADDITIONAL ANALYSIS

C.1 Loss Variations

Both the generator and the discriminator loss consist of an adversarial part and a regression part. The generator
regression loss computes the error between the requested parameter ycond and the corresponding discriminator
prediction, while the discriminator regression is defined as the error between the parameter of the real data yreal

and its corresponding prediction ŷreal, such that

LG,reg = Lreg (ycond, ŷgen) and

LD,reg = Lreg (yreal, ŷreal) .

1TreeGAN code: https://github.com/seowok/TreeGAN

https://github.com/seowok/TreeGAN
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Table 2: Generator Architecture: Detailed network architecture and input format definition. The ID of each
row is used to reference the output of the row. ↑ indicates that the layer directly above is an input. d is the
number of dimensions of the conditioning parameter. In case of the dimensions extent d = 3, while for the
influence of object part percentage d = 1.

ID Inputs Operation Output Shape

1 z Sample latent vector from z ∼ Z = N (0, I) [96]
2 ycond Sample continuous parameter from ycond ∼ KDE (yreal) [d]

Label Handling

3 1 Linear Layer [64]
4 2 Linear Layer [32]
5 3, 4 Concatenate [1× 96]

Tree Graph Convolution (TreeGC) Network

6 ↑ Tree Graph Convolution + LeakyReLU [1× 256]
7 ↑ Branching [2× 256]
8 ↑ Tree Graph Convolution + LeakyReLU [2× 256]
9 ↑ Branching [4× 256]

10 ↑ Tree Graph Convolution + LeakyReLU [4× 256]
11 ↑ Branching [8× 256]
12 ↑ Tree Graph Convolution + LeakyReLU [8× 128]
13 ↑ Branching [16× 128]
14 ↑ Tree Graph Convolution + LeakyReLU [16× 128]
15 ↑ Branching [32× 128]
16 ↑ Tree Graph Convolution + LeakyReLU [32× 128]
17 ↑ Branching [2048× 128]
18 ↑ Tree Graph Convolution [2048× 3]
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Table 3: Discriminator Architecture: Detailed network architecture and input format definition. The ID of
each row is used to reference the output of the row. ↑ indicates that the layer directly above is an input. d is
the number of dimensions of the conditioning parameter. In case of the dimensions extend d = 3, while for the
influence of object part percentage d = 1.

ID Inputs Operation Output Shape Description

1 point cloud x x, y, z [2048× 3] Input point cloud x = xreal for
real data and x = xgen for gen-
erated data.

PointNet Feature Extractor

2 ↑ Conv1D + LeakyReLU [2048× 64] Kernel size 1× 1, stride 1
3 ↑ Conv1D + LeakyReLU [2048× 128] Kernel size 1× 1, stride 1
4 ↑ Conv1D + LeakyReLU [2048× 256] Kernel size 1× 1, stride 1
5 ↑ Conv1D + LeakyReLU [2048× 512] Kernel size 1× 1, stride 1
6 ↑ Conv1D + LeakyReLU [2048× 1024] Kernel size 1× 1, stride 1
7 ↑ MaxPool [1024] Global features

Adversarial Output Head

8 ↑ Linear Layer [1024]
9 ↑ Linear Layer [512]

10 ↑ Linear Layer [512]
11 ↑ Linear Layer [1] Output vector D(x)

Regression Output Head

12 7 Linear Layer [1024]
13 ↑ Linear Layer [512]
14 ↑ Linear Layer [512]
15 ↑ Linear Layer [d] Output vector ŷ(x)



Larissa T. Triess, Andre Bühler, David Peter, Fabian B. Flohr, J. Marius Zöllner

It is notable that LD,reg is only computed for the real samples and not for the generated samples and that LG,reg

uses the discriminator prediction ŷgen instead of the configuration of the actually generated object ygen. These
design choices can be attributed to the fact that in many cases the actual parameter ygen of the generated point
cloud xgen is unknown, i.e. cannot be trivially retrieved from xgen. Since our application of influencing object
dimensions offers the possibility to simply compute ygen from xgen with ygen = ∥max(xgen) − min(xgen)∥, we
additionally investigated loss variations that exploit this property.

First, we define the generator and discriminator regression losses as

LG,reg = Lreg (ycond,ygen) and

LD,reg =
1

2

[
Lreg (yreal, ŷreal) + Lreg (ygen, ŷgen)

]
,

respectively. We found that this leads to slightly better training convergence, but no significant outperformance
in the final model in terms of FPD or MSE. Therefore, we conclude that the proposed losses of the main paper
are a good mechanism to train the model when ygen is unknown, as for most applications.

Second, we investigated another loss configuration. As for the discriminator, our proposed method skips the
generated part of the loss entirely. However, it is also possible to formulate the losses as follows

LG,reg = Lreg (ycond, ŷgen) and

LD,reg =
1

2

[
Lreg (yreal, ŷreal) + Lreg (ycond, ŷgen)

]
,

where ygen from above is replaced with ŷreal in the generator and ycond in the discriminator. However, we found
that this leads to unstable training and results in a significantly worse final model. We attribute this to false
feedback for the discriminator, especially in the beginning of the training. At that time, the generator is not yet
well enough trained to output shapes that are close to the requested parameters (ygen ̸= ŷgen). Therefore, we
found that it is best to not include the generated path for the discriminator regression at all.

C.2 Other Conditioning Concepts

Additionally to our proposed method we also investigate other configurations for the continuous conditioning
of point cloud generation. These method either did not yield promising results or are limited in applicability,
therefore they are not included in the main paper. However, for the sake of completeness and reproducibility,
we include all relevant implementation details here and state the overall results of our experiments.

C.2.1 cGAN with Continuous Parameters

We adapted the concepts of cGAN Fig. 11 and CcGAN (Ding et al., 2021) to work with TreeGAN (Shu et al.,
2019) as the backbone network. In contrast to our proposed approach, we call this as an implicit conditioning
scheme, since there is no extrinsic excitation that forces the model to use the conditioning input explicitly. The
discriminator receives both the point cloud and the conditioning parameter as an input. The loss function of the
generator G is defined as

LG = −Ez∼Z [D (ycond, G(ycond, z))]

where Z represents the latent code distribution which follows a Normal distribution, such that z ∈ N (0, 1). The
loss function of the discriminator is defined as

LD =Ez∼Z [D (ycond, G(ycond, z))]

− Ex∼R [D (yreal,x)] + Lgp

with the gradient penalty Lgp as defined in the main paper.

For the first variant, we use the traditional label incorporation introduced by cGAN (Mirza and Osindero, 2014).
We refer to this as the Vanilla cGAN. The generator details are depicted in Fig. 12a and the discriminator details
are shown in Fig. 12b. The generator label incorporation simply concatenates the latent and the label vector
prior to feeding it to the graph convolution network (GCN). In the discriminator, the point cloud is processed
by PointNet which outputs a feature vector to which the label vector is concatenated before being processed by
a final set of linear layers.
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Figure 11: cGAN with continuous parameters: The generator G generates a point cloud xgen from a random
vector z and a continuous parameter y. The discriminator either receives a set of point cloud and parameter
from the real {yreal,xreal} or the generated distribution {ycond,xgen}. It then outputs an estimate whether the
set is real or generated with which the adversarial loss Ladv is computed.
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Figure 12: Parameter handling details: Generator and discriminator input handling for Vanilla and Projec-
tion cGAN.
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Figure 13: cGAN with additional regression: The generator G generates a point cloud xgen from a random
vector z and a regression label y. The discriminator either receives a real or a generated point cloud and predicts
the probability of the sample originating from the real distribution. Additionally, the dimensions ygen of the
generated point cloud are extracted which are then used to compute the regression error Lreg.

For the second variant, we use the label input configuration proposed by CcGAN (Ding et al., 2021) to handle
continuous parameters. Their approach is inspired by the method of label projection (Miyato and Koyama,
2018), which is why we refer to this variant as Projection cGAN. We used HVDL+NLI and conducted a coarse
hyper-parameter search in steps of magnitudes (e.g. 10..1,2,3,.. to cover a wide range of options. Details for the
generator and discriminator are shown in Fig. 12c and Fig. 12d, respectively. In contrast to Vanilla cGAN, both
the latent and the label vectors are passed through a linear layer first, after which both are added together
element-wise. For the discriminator, the label vector is fed through a linear layer after which the inner product
with the features from PointNet is calculated. The features are fed through the final set of linear layers after
which the result is added to the result of the inner product.

As mentioned in the main paper, both variants did not achieve satisfying results. The Vanilla variant ignored
the conditioning entirely which led to very high MSE values (about four magnitudes higher than our proposed
method). The performance in terms of FPD is close to the backbone. For the Projection variant, we observed
very unstable training courses that often led to a collapse of the training with the model performing significantly
worse in all metrics compared to all other models.

C.2.2 cGAN with Regression

The application of influencing the dimensions of an object has the major advantage that it is possible to directly
compute the dimensions from the generated object to check whether the generator worked properly. This can
also be used as a training signal. Fig. 13 shows an alternative approach for our proposed architecture, where
a standard unconditioned discriminator is combined with an additional regression component. The generation
of the desired dimensions is explicitly enforced with the regression loss, therefore we refer to this variant as the
Regression cGAN. The generator loss is defined as

LG = −Ez∼Z [D (G(ycond, z))] + λreg · Lreg (ycond,ygen)

where ygen are the actual dimensions calculated from the generated point cloud, and λreg is the weighting
factor for the regression loss. The generator loss is solely responsible to enforce the adherence of the dimension
conditioning since the discriminator is not conditioned on the label input. The discriminator only judges from
which distribution a sample originates from. Its loss function is defined as

LD = Ez∼Z [D (G(ycond, z))]− Ex∼R [D(xreal)] + Lgp.

The training behavior of the Regression cGAN is fundamentally different to the one of our proposed method. We
observe that FPD is optimized first, hitting a minimum value at a quite early point during training where MSE



Point Cloud Generation with Continuous Conditioning

Table 4: Quantitative Comparison: We report results for the classes “Chair” and “Airplane”. All evaluations
are conducted on a hold-out validation split. For both FPD and MSE smaller values indicate a better perfor-
mance. MSE is given in %.

Model
Chair Airplane

FPD MSE FPD MSE

Reg. cGAN 1.4420 1.85 0.8802 20.19
Ours 1.5290 0.28 0.8691 0.30
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Figure 14: Dataset Class Distribution: Shown is the class distribution of the ShapeNetPart dataset (Yi et al.,
2016). We use the five largest classes for our experiments: “Table”, “Chair”, “Airplane”, “Car”, and “Lamp”.

is still quite high. The results for this checkpoint are listed in Table 4. From this point onward MSE is further
minimized at the expense of FPD performance. In contrast to our proposed method, Regression cGAN aims at
minimizing MSE down to zero while accepting FPD values that are magnitudes higher than for our proposed
method. This means no realistic object shapes are being generated.

Considering these results and the fact that Regression cGAN can only be used for specific applications where ygen

can easily be retrieved from the generated data, we found that our proposed method is superior to Regression
cGAN. Our method offers a much easier and more stable handling of training while resulting in a very good
performing model that is applicable to many scenarios.

D ADDITIONAL RESULTS

Table 5 displays the quantitative results of the five largest classes of the ShapeNetPart dataset and Table 6
gives details on the region-based performance. The class distribution of the dataset is shown in Fig. 14. For our
experiments we did not consider classes with less than 1, 000 object shapes. The quantitative results, especially
when comparing our method to the chosen baselines, also depend on the distribution of the parameter we
influence. For comparison, Fig. 15 shows the distribution of the five largest classes in terms of their extent in
object height and width. While some classes, like “Table” have a wide distribution, others are more densely
packed, like “Car”. Especially for the “Lamp” class, the stretching baseline (B2) achieves bad performance in
terms of FPD, which can be attributed to its unique distribution.

Fig. 16 gives an overview on the quality and the diversity of the generated samples for the five different shapes.
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Table 5: Quantitative Comparison: We report results for the five largest classes of the ShapeNetPart dataset
in terms of the metrics used by Shu et al. (2019) and Achlioptas et al. (2018). Additionally, we report the
regression error (MSE) for our introduced task. We freshly trained TreeGAN (Shu et al., 2019) to serve as our
backbone network and report the results for reference. The baselines B1 and B2 are described in Sec. 5.3 of the
main paper. Baseline 1 is the backbone network where ten versions per object are samples and the one with
the best matching dimensions is chosen. Baseline 2 uses the backbone and then scales the object to the desired
dimensions. All evaluations are conducted on a hold-out validation split. Shu et al. (2019) use the entire dataset
for training, therefore values might vary slightly.

Shape Model FPD (↓) MSE [%] (↓) MMD (↓) COV (↑)
JSD (↓)

CD EMD CD EMD

Table

Backbone 4.5245 – 0.0023 0.0863 0.4750 0.3750 0.1671
Baseline 1 3.3009 52.88 0.0026 0.0912 0.4875 0.3500 0.1423
Baseline 2 4.2851 0.00 0.0028 0.0920 0.5375 0.3125 0.1661
Ours 3.0692 0.16 0.0019 0.1073 0.4875 0.3000 0.1313

Chair

Backbone 0.9525 – 0.0020 0.1027 0.4875 0.2500 0.1082
Baseline 1 1.3674 26.07 0.0023 0.1013 0.4750 0.2625 0.1123
Baseline 2 1.9259 0.00 0.0021 0.1003 0.4875 0.2625 0.1068
Ours 1.5290 0.28 0.0022 0.1059 0.4625 0.3125 0.1434

Airplane

Backbone 1.2947 – 0.0002 0.0805 0.4375 0.1375 0.1887
Baseline 1 1.0209 15.08 0.0003 0.0812 0.4500 0.1125 0.1819
Baseline 2 1.6613 0.00 0.0003 0.0783 0.5250 0.1375 0.1834
Ours 0.8691 0.30 0.0003 0.0724 0.5000 0.1250 0.1291

Car

Backbone 1.0816 – 0.0009 0.0656 0.4250 0.2375 0.0692
Baseline 1 2.6293 5.15 0.0009 0.0651 0.4500 0.2000 0.0743
Baseline 2 2.2045 0.00 0.0009 0.0634 0.4375 0.2750 0.0670
Ours 1.7129 0.69 0.0010 0.0708 0.4125 0.1250 0.0714

Lamp

Backbone 2.9954 – 0.0037 0.1630 0.4500 0.2750 0.2642
Baseline 1 3.4737 79.65 0.0029 0.1614 0.4500 0.2125 0.2569
Baseline 2 36.5025 0.00 0.0041 0.1606 0.4500 0.2250 0.2653
Ours 7.5012 0.77 0.0038 0.1917 0.4375 0.1750 0.2576

Total

Backbone 2.1697 – 0.0018 0.0996 0.4550 0.2550 0.1595
Baseline 1 2.3584 35.77 0.0018 0.1000 0.4625 0.2275 0.1535
Baseline 2 9.3159 0.00 0.0020 0.0989 0.4875 0.2425 0.1577
Ours 2.9363 0.44 0.0018 0.1096 0.4200 0.2075 0.1466
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(d) Car
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Figure 15: Region-classified dimension distribution: Shown is the sample distribution of five different
object classes according to their extent in height z and width y. The length x of the object is not considered in
this visualization. Each mark corresponds to one shape in the dataset. The three colors represent the resulting
regions from k-nearest neighbor classifier with k=20 based on a KDE. The regions correspond to 1σ ≈ 68%
(green), 2σ ≈ 27% (orange), and 3σ = 5% (blue) of the entire data distribution. (Best viewed in color)
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Table 6: Region-based performance: The table shows performances for three sampling regions (σ1, σ2, σ3)
of the data distribution for our architecture. The model is trained with two different sampling strategies each:
our proposed version where labels are sampled from the KDE of the distributions (areas of Fig. 4), and the
default version where labels are sampled from the list of labels contained in the dataset (marks of Fig. 4). For
each σ-region, 1000 samples are generated. We report the MSE of the dimension regression and the FPD of the
generated samples. Especially for less densely populated regions, i.e. σ3, our sampling strategy achieves better
results.

Shape Label Sampling
FPD (↓) MSE [%] (↓)

σ1 σ2 σ3 σ1 σ2 σ3

Table
from distribution [ours] 4.7881 11.1556 83.1944 0.14 0.27 17.49
from dataset samples 5.5063 23.1117 153.7859 0.25 1.15 52.01

Chair
from distribution [ours] 3.1137 2.4310 18.3729 0.22 0.26 6.51
from dataset samples 2.5915 3.8257 138.0703 0.13 0.41 25.30

Airplane
from distribution [ours] 2.8487 1.6660 22.4949 0.20 0.36 7.62
from dataset samples 2.5138 2.0912 42.4436 0.17 0.39 5.17

Car
from distribution [ours] 4.7105 11.8133 32.1120 0.61 0.89 3.74
from dataset samples 3.7981 8.1593 60.2905 0.77 1.13 4.13

Lamp
from distribution [ours] 5.7873 20.2216 111.7557 0.44 1.84 11.50
from dataset samples 4.4660 26.0117 290.8956 1.36 8.16 69.97
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Figure 16: Example Showcase: The figure shows shapes generated with our proposed method from randomly
sampled latent and conditioning parameters. The conditioning parameters are sampled from the KDE of the
real data distribution, therefore only shapes for realistic dimensions are shown here.


