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Abstract

We develop a kernel projected Wasserstein
distance for the two-sample test, an essential
building block in statistics and machine learn-
ing: given two sets of samples, to determine
whether they are from the same distribution.
This method operates by finding the nonlinear
mapping in the data space which maximizes
the distance between projected distributions.
In contrast to existing works about projected
Wasserstein distance, the proposed method
circumvents the curse of dimensionality more
efficiently. We present practical algorithms
for computing this distance function together
with the non-asymptotic uncertainty quan-
tification of empirical estimates. Numerical
examples validate our theoretical results and
demonstrate good performance of the pro-
posed method.

1 INTRODUCTION

As a fundamental problem in statistical inference
(Young et al., 2005), two-sample hypothesis testing
aims to determine whether two sets of samples come
from the same distribution or not. This problem has
broad applications in scientific discovery fields. For
example, it can be applied in anomaly detection (Chan-
dola et al., 2009; Savage et al., 2014; Ahmed et al., 2016)
to identify abnormal observations that follow a distinct
distribution compared with typical observations. Simi-
larly, in change-point detection (Poor and Hadjiliadis,
2008; Xie and Xie, 2021; Xie et al., 2021), two-sample
testing is essential to detect abrupt changes in stream-
ing data. Other notable examples include model criti-
cism (Lloyd and Ghahramani, 2015; Chwialkowski et al.,
2016; Binkowski et al., 2018), causal inference (Lopez-
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Paz and Oquab, 2018), and health care (Schober and
Vetter, 2019).

Parametric or low-dimensional testing scenarios have
been the main focus in classical literature. When extra
knowledge about the data distributions is available, one
can design parametric tests, such as Hotelling’s two-
sample test (Hotelling, 1931), Student’s t-test (Pfanzagl
and Sheynin, 1996), etc. Non-parametric two-sample
tests are more attractive when the exact parametric
form of the data distributions is hard to specify. It is
popular to design non-parametric tests using integral
probability metrics, since the evaluation of the corre-
sponding test statistics can be obtained based on sam-
ples without knowing the densities of data distributions.
Some earlier works design tests using Kolmogorov-
Smirnov distance (Pratt and Gibbons, 1981; Jr., 1951),
total variation distance (Györfi and Van Der Meulen,
1991), and Wasserstein distance (del Barrio et al., 1999;
Ramdas et al., 2017). However, it is not proper to use
these tests for high-dimensional settings since the sam-
ple complexity for estimating those distance functions
based on empirical samples suffers from the curse of
dimensionality.

There is a strong need for developing non-parametric
tests for high-dimensional data, especially for mod-
ern applications. A notable contribution is the
two-sample test based on Maximum Mean Discrep-
ancy (MMD) (Gretton et al., 2009, 2012; Cheng and
Xie, 2021a). Although the power of MMD test with
the median choice of kernel bandwidth decays quickly
when the dimension of distributions increases (Reddi
et al., 2015), this test with properly chosen bandwidth
does not have the curse of dimensionality issue for low-
dimensional manifold data as pointed out in Cheng
and Xie (2021a). Unfortunately, the MMD test with
optimized bandwidth still does not demonstrate good
testing power for the small-sampled case as demon-
strated numerically in this paper. In addition, recent
works (Wang et al., 2021; Xie and Xie, 2021) lever-
age the idea of dimensionality reduction for dealing
with high-dimensional settings, which use the projected
Wasserstein distance as the test statistic, i.e., the test
statistic works by finding the linear projector such that
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the distance between projected distributions is maxi-
mized. However, a linear projector may not serve as
an optimal design for maximizing the power of tests as
demonstrated numerically in Section 5.

In this paper, we present a new non-parametric two-
sample test statistic aiming for the high-dimensional
setting based on a kernel projected Wasserstein (KPW)
distance, with a nonlinear projector based on the re-
producing kernel Hilbert space (RKHS) designed to
optimize the test power via maximizing the probability
distance between the distributions after projection. In
addition, our contributions include the following:

• We develop a computationally efficient algorithm
for evaluating the KPW using a representer the-
orem to reformulate the problem into a finite-
dimensional optimization problem and a block
coordinate descent optimization algorithm which
is guaranteed to find an ε-stationary point with
complexity O

(
ε−3
)
.

• To quantify the false detection rate, which is essen-
tial in setting the detection threshold, we develop
non-asymptotic bounds for empirical KPW dis-
tance based on the covering number argument.

• We present numerical experiments to validate our
theoretical results as well as demonstrate the com-
petitive performance of our proposed test using
both synthetic and real data.

Related Work. It is helpful to understand the struc-
ture of high-dimension distributions by low-dimensional
projections. Notable methodologies include the princi-
pal component analysis (PCA) (Jolliffe, 1986), kernel
PCA (Schölkopf et al., 1998), factor analysis (Cudeck,
2000), etc. Several works leverage this idea to design
tests for high-dimensional data. Mueller and Jaakkola
(2015) and Xie and Xie (2021) first design tests by
finding the worst-case linear projector that maximizes
the distance between projected sample points in one di-
mension. Later Lin et al. (2020) and Wang et al. (2021)
naturally extend this idea by developing a projector
that maps sample points into d dimensional linear sub-
space with d ≥ 1, called projected Wasserstein distance.
Efficient optimization algorithms and statistical prop-
erties of this distance have been investigated in recent
works (Huang et al., 2021; Lin et al., 2021). However, a
linear projector cannot efficiently capture features from
data with nonlinear patterns, limiting the performance
of tests mentioned above for practical applications. It
is therefore promising to use nonlinear dimensionality
reduction for two-sample testing. Although nonlin-
ear projectors can be obtained using neural networks
(Genevay et al., 2018), the sample complexity of the
corresponding test statistic will have slow convergence

rates since the neural network function class usually
has high complexity in terms of the covering number.
Recently kernel method has been demonstrated to be
beneficial for understanding data (Minh and Sindhwani,
2011; Brouard et al., 2011; HQuang et al., 2013; Kadri
et al., 2013) because of sharp sample complexity rate,
low computational cost, and flexible representation of
features. This fact motivates us to use a nonlinear
projector based on kernels to design tests. Compared
with the linear projector, computing the corresponding
statistic and analyzing its performance is more challeng-
ing since the function space cannot be parameterized by
finite-dimensional coefficients. We leverage the kernel
trick to finish these two parts.

The remaining of this paper is organized as follows.
Section 2 introduces some preliminary knowledge on
two-sample testing and related probability distances,
Section 3 outlines a practical algorithm for comput-
ing KPW distance, Section 4 studies the uncertainty
quantification of empirical KPW distance, Section 5
demonstrates some numerical experiments, and Sec-
tion 6 presents some concluding remarks.

2 PROBLEM SETUP

Let xn := {xi}ni=1 and ym := {yi}mi=1 be i.i.d. samples
generated from distributions µ and ν supported on RD,
respectively. Our goal is to design a two-sample test
which, given samples xn and ym, decides to accept the
null hypothesis H0 : µ = ν or reject H0 in favor of
the alternative hypothesis H1 : µ 6= ν. Denote by
T : (xn, ym)→ {t0, t1} the two-sample test, where t0
means we reject H1 and t1 means we accept H1 and
reject H0. Define the type-I risk as the probability of
rejecting hypothesis H0 when it is true, and the type-II
risk as the probability of accepting H0 when µ 6= ν:

ε(I)n,m = Pxn∼µ,ym∼ν

(
T (xn, ym) = t1

)
, under H0,

ε(II)n,m = Pxn∼µ,ym∼ν

(
T (xn, ym) = t0

)
, under H1.

Given parameters α, β ∈ (0, 1
2 ), we aim at build-

ing a two-sample test such that, when applied to n-
observation samples xn and m-observation samples ym,
it has the type-I risk at most α (i.e., at level α) and the
type-II risk at most β (i.e., of power 1− β). Moreover,
we want to ensure these specifications with sample sizes
n,m as small as possible.

We propose a non-parametric test by considering the
probability distance functions between two empiri-
cal distributions constructed from observed samples.
Specifically, we design a test T such that the null hy-
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pothesis H0 is rejected when

D(µ̂n, ν̂m) > χ,

where D(·, ·) is a divergence quantifying the differences
of two distributions, χ is a data-dependent threshold,
and µ̂n and ν̂m are empirical distributions from n sam-
ples in µ and m samples in ν, respectively. Several
existing tests can be unified into this framework by
taking D(·, ·) as some special probability distances, in-
cluding the MMD test, total variation distance test,
etc. In this paper, we will design the divergence D
based on the Wasserstein distance, and we specify the
cost function c(x, y) = ‖x− y‖22.

Definition 1 (Wasserstein Distance). Given two dis-
tributions µ and ν, the Wasserstein distance is defined
as

W (µ, ν) = min
π∈Π(µ,ν)

∫
c(x, y) dπ(x, y),

where c(·, ·) denotes the cost function quantifying the
distance between two points, and Π(µ, ν) denotes the
joint distribution with marginal distributions µ and ν.

Although Wasserstein distance has wide applications in
machine learning, the finite-sample convergence rate of
Wasserstein distance between empirical distributions is
slow in high-dimensional settings (Fournier and Guillin,
2015). Therefore, it is not suitable for high-dimensional
two-sample tests. Instead, existing works use the pro-
jection idea to rescue this issue.

Definition 2 (Projected Wasserstein Distance). Given
two distributions µ and ν, define the projected Wasser-
stein distance as

PW (µ, ν) = max
A: RD→Rd,ATA=Id

W (A#µ,A#ν) ,

where the operator # denotes the push-forward operator,
i.e.,

A(z) ∼ A#µ for z ∼ µ,
and we denote A as a linear operator such that A(z) =
ATz with z ∈ RD and A ∈ RD×d.

This idea is demonstrated to be useful for breaking the
curse of dimensionality for the original Wasserstein dis-
tance (Lin et al., 2021; Wang et al., 2021). However, a
linear projector is not an optimal choice for dimension-
ality reduction. Instead, we will consider a nonlinear
projector to obtain a more powerful two-sample test,
and we use functions in vector-valued reproducing ker-
nel Hilbert space (RKHS) for projection.

Definition 3 (Vector-valued RKHS). A function
K : RD × RD → Rd×d is said to be a positive semi-
definite kernel if

N∑
i=1

N∑
j=1

〈ȳi,K(x̄i, x̄j)ȳj〉 ≥ 0

for any finite set of points {x̄i}Ni=1 in RD and {ȳi}Ni=1

in Rd. Given such a kernel, there exists an unique Rd-
valued Hilbert space HK with the reproducing kernel K.
For fixed x ∈ RD and y ∈ Rd, define the kernel section
Kx with the action y as the mapping Kxy : RD → Rd
such that

(Kxy)(x′) = K(x′, x)y, ∀x′ ∈ RD.

In particular, the Hilbert space HK satisfies the repro-
ducing property:

∀f ∈ HK , 〈f,Kxy〉HK
= 〈f(x), y〉.

Definition 4 (Kernel Projected Wasserstein Distance).
Consider a Rd-valued RKHS H with the corresponding
kernel function K. Given two distributions µ and ν,
define the kernel projected Wasserstein (KPW) distance
as

KPW (µ, ν) = max
f∈F

W (f#µ, f#ν)

where the function class F = {f ∈ H : ‖f‖H ≤ 1}.
Remark 1. For d = 1, when the kernel function
K(x, y) = 〈x, y〉, the KPW distance reduces into the
PW distance. However, these two distances are not
the same for general d. Moreover, existing works
(Minh and Sindhwani, 2011; Micchelli and Pontil, 2005;
Caponnetto et al., 2008; Baldassarre et al., 2010) con-
sider the design of the matrix-valued kernel function
for d > 1 as

K(x, x′) = k(x, x′) · P, (1)

where k(·, ·) denotes a scalar-valued kernel function
and P ∈ Rd×d is a positive semi-definite matrix that
encodes the relation between the output space. Such
a design reduces the computational cost for applying
vector-valued RKHS.

In this paper, we design the two-sample test as fol-
lows. We split the data points into training and test-
ing datasets. We first use the training set to train
a nonlinear projector that maps data points into Rd-
subspace, and then perform the permutation test on
testing data points that are projected based on the
trained projector. The detailed algorithm is presented
in Algorithm 1. This test is guaranteed to exactly con-
trol the type-I error (Good, 2013) because we evaluate
the p-value of the test via the permutation approach.
To obtain reliable two-sample tests, we also require
the KPW distance satisfies the discriminative prop-
erty that KPW (µ, ν) = 0 if and only if µ = ν. The
following proposition reveals that this property holds
by considering the vector-valued RKHS satisfying the
universal property, the proof of which is provided in
Appendix C. We also study how to compute the kernel
projected distance and its related statistical properties
in the following sections.
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Algorithm 1 Permutation two-sample test using the
KPW distance
Require: Level α, number of permutation times Np,

collected samples xn and ym.
1: Split data as xn = xTr ∪xTe and ym = yTr ∪ yTe.
2: Formulate empirical distributions (µ̂Tr, ν̂Tr) corre-

sponding to (xTr, yTr).
3: Obtain f as the (approximate) optimal projector

to KPW (µ̂Tr, ν̂Tr).
4: Compute the statistic T = W (f#µ̂Te, f#ν̂Te).
5: for t = 1, . . . , Np do
6: Shuffle xTe ∪ yTe to obtain xTe

(t) and yTe
(t).

7: Formulate empirical distributions (µ̂Te
(t), ν̂

Te
(t)) cor-

responding to (xTe, yTe).
8: Compute the statistic for permuted samples Tt =

W (f#µ̂Te
(t), f#ν̂Te

(t)).
9: end for

Return the p-value 1
Np

∑Np

t=1 1{Tt ≥ T}.

Proposition 1 (Discriminative Property of KPW).
Denote by Cb(X ) the space of bounded and continuous
Rd-valued functions on X . Assume that H is a uni-
versal vector-valued RKHS so that for any ε > 0 and
f ∈ Cb(X ), there exists g ∈ H so that

‖f − g‖∞ , sup
x∈X
‖f(x)− g(x)‖2 < ε.

Then the KPW distance KPW (µ, ν) = 0 if and only if
µ = ν.

3 COMPUTING KPW DISTANCE

By the definition of Wasserstein distance, computing
KPW (µ̂n, ν̂m) is equivalent to the following max-min
problem:

max
f∈H: ‖f‖2H≤1

min
π∈Γ

∑
i,j

πi,j‖f(xi)− f(yj)‖22

 , (2)

where Γ =
{
π ∈ Rn×m+ :

∑
j πi,j = 1

n ,
∑
i πi,j = 1

m

}
.

The computation of KPW distance has numerous chal-
lenges. It is crucial to design a suitable kernel function
to obtain low computational complexity and reliable
testing power, which will be discussed in Section 5.
Moreover, the function f ∈ H is a countable combi-
nation of basis functions, i.e., the problem (2) is an
infinite-dimensional optimization. By developing the
representer theorem in Theorem 1, we are able to con-
vert this problem into a finite-dimensional problem.
Finally, there is no theoretical guarantee for finding the
global optimum since it is a non-convex non-smooth op-
timization problem. Moreover, Sion’s minimax theorem

is not applicable because the problem (2) is not a con-
vex programming: the inner minimization of quadratic
function makes the objective in (2) not concave in f
in general. Based on this observation, we only focus
on optimization algorithms for finding a local optimum
point in polynomial time.

Theorem 1 (Representer Theorem for KPW Distance).
There exists an optimal solution to (2) that admits the
following expression:

f̂ =

n∑
i=1

Kxi
ax,i −

m∑
j=1

Kyjay,j ,

where Kx(·) denotes the kernel section and ax,i, ay,j ∈
Rd for i = 1, . . . , n, j = 1, . . . ,m are coefficients to be
determined.

The proof of Theorem 1 is provided in Appendix
D, in which standard representer theorem in litera-
ture (Schölkopf et al., 2001, Theorem 1) is not applica-
ble since the RKHS norm serves as a hard constraint
instead of the regularization of the objective function.
In order to express the optimal solution as the compact
matrix form, define ax ∈ Rnd as the concatenation of
coefficients ax,i for i = 1, . . . , n and

Kz(x
n) =

(
K(z, x1) · · · K(z, xn)

)
∈ Rd×nd.

We also define the vector ay and matrix Kz(y
m) like-

wise. Then we have

f̂(z) = Kz(x
n)ax −Kz(y

m)ay, ∀z ∈ X .

Define the gram matrix K(xn, xn) as the n× n block
matrix with the (i, j)-th block being K(xi, xj). The
gram matrices K(xn, ym),K(ym, xn) and K(ym, ym)
can be defined likewise. Denote by G the concatenation
of gram matrices:

G =

(
K(xn, xn) −K(xn, ym)
−K(ym, xn) K(ym, ym)

)
,

and we assume that G is positive definite. Otherwise,
we add the gram matrix with a small number times
identity matrix to make it invertible. Substituting
the expression of f̂(z), z ∈ X into (2), we obtain a
finite-dimensional optimization problem:

max
ω

min
π∈Γ

∑
i,j

πi,jci,j : ωTGω ≤ 1

 ,

where ω = [aT
x , a

T
y ]T ∈ Rd(n+m), ci,j = ‖Ai,jω‖22, and

Ai,j = [Kxi(x
n)−Kyj (xn),Kyj (ym)−Kxi(y

m)].

Suppose that the inverse of G admits the Cholesky
decomposition G−1 = UUT, then by the change of
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variable technique s = U−1ω, we obtain the norm-
constrained optimization problem:

max
s∈Rd(n+m)

min
π∈Γ

∑
i,j

πi,jci,j : sTs ≤ 1

 , (3)

and we can replace the constraint sTs ≤ 1 with sTs = 1
based on the fact that the norm function satisfies the
linear property. In other words, the decision variable
s belongs to the Euclidean ball Sd(n+m)−1 = {s ∈
Rd(n+m) : sTs = 1}.

For the ease of optimization, we consider the entropic
regularization of the problem (3):

max
s∈Sd(n+m)−1

min
π∈Γ

∑
i,j

πi,jci,j − ηH(π)

 , (4)

in which we denote the entropy function H(π) =
−
∑
i,j πi,j(log πi,j − 1). By the duality theory of

entropic optimal transport (Genevay, 2019) and the
change-of-variable technique, (4) is equivalent to the
following minimization problem:

min
s∈Sd(n+m)−1,u∈Rn,v∈Rm

F (u, v, s), (5)

where

ci,j = ‖Ai,jUs‖22,

πi,j(u, v, s) = exp

(
−1

η
ci,j + ui + vj

)
,

F (u, v, s) =
∑
i,j

πi,j(u, v, s)−
1

n

n∑
i=1

ui −
1

m

m∑
j=1

vj .

The details for this deviation is deferred in Appendix D.
Based on this formulation, we consider a Riemannian
block coordinate descent (BCD) method (Hildreth,
1957) for optimization, which updates a block of vari-
ables by minimizing the objective function with respect
to that block while fixing values of other blocks:

ut+1 = min
u∈Rn

F (u, vt, st), (6a)

vt+1 = min
v∈Rm

F (ut+1, v, st), (6b)

ζt+1 =
∑
i,j

∇sπi,j(ut+1, vt+1, st), (6c)

ξt+1 = Pst
(
ζt+1

)
, (6d)

st+1 = Retrst
(
− τξt+1

)
, (6e)

where the operator Ps(ζ) denotes the orthogonal pro-
jection of the vector ζ onto the tangent space of the
manifold Sd(n+m)−1 at s:

Ps
(
ζ
)

= ζ − 〈s, ζ〉s, s ∈ Sd(n+m)−1,

Algorithm 2 BCD Algorithm for Solving (5)

Require: Empirical distributions µ̂n and ν̂m.
1: Initialize v0, s0

2: for t = 0, 1, 2, . . . , T − 1 do
3: Update ut+1 according to (6g)
4: Update vt+1 according to (6h)
5: Update the Euclidean and Riemannian gradi-

ent ζt+1 and ξt+1, according to (6i) and (6d),
respectively.

6: Update st+1 according to (6e)
7: end for

Return u∗ = uT , v∗ = vT , s∗ = sT .

and the retraction on this manifold is defined as

Retrs
(
− τξ

)
=

s− τξ
‖s− τξ‖

, s ∈ Sd(n+m)−1. (6f)

Note that the update steps (6a) and (6b) have closed-
form expressions:

ut+1 = ut +

{
log

1/n∑
j πi,j(u

t, vt, st)

}
i∈[n]

, (6g)

vt+1 = vt +

{
log

1/m∑
i πi,j(u

t+1, vt, st)

}
j∈[m]

, (6h)

and the Euclidean gradient ζt+1 in (6c) can be com-
puted using the chain rule:

ζt+1 = −1

η
UT

∑
i,j

πi,j(u
t+1, vt+1, st)AT

i,jAi,j

Ust.
(6i)

The overall algorithm for solving the problem (5) is
summarized in Algorithm 2. We provide details for
efficient implementation of the proposed algorithms in
Appendix F. We also give a brief introduction to Rie-
mannian optimization in Appendix B. The following
theorem gives a convergence analysis of our proposed
algorithm.The proof of this result is provided in Ap-
pendix D, which follows similar procedure in Huang
et al. (2021). The main difference lies in establishing
the descent lemma for updating the variable s on sphere
instead of Stiefel manifold. Specifically, the procedure
for finding the upper bound on the cost function ci,j ,
the Lipschitz constant for πi,j(u, v, s) in s, and the
Lipschitz constants of the retraction operator (6f) will
be different.

Theorem 2 (Convergence Analysis for BCD). We say
that (û, v̂, ŝ) is a (ε1, ε2)-stationary point of (5) if

‖GradsF (û, v̂, ŝ)‖ ≤ ε1,
F (û, v̂, ŝ)−min

u,v
F (u, v, ŝ) ≤ ε2,
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where GradsF (u, v, s) denotes the derivative of F with
respect to s on the sphere Sd(n+m)−1. Let {ut, vt, st} be
the sequence generated by Algorithm 2, then Algorithm 2
returns an (ε1, ε2)-stationary point in

T = O
(

log(mn) ·
[

1

ε32
+

1

ε21ε2

])
,

iterations, where the notation O(·) hides constants
related to the initial guess (v0, s0) and the term
maxi,j ‖Ai,jU‖.
Remark 2 (Complexity of Algorithm 2). Denote
N = n ∨ m1. Note that the iteration (6g) and (6h)
can be implemented in O(N) iterations. Second, the
retraction step in (6e) requires O(dN) arithmetic oper-
ations. Third, the computation of the Euclidean vector
in (6c) can be implemented in O(d3N3) operations, and
the projection step can be done in O(dN) operations.
Therefore, the number of arithmetic operations in each
iteration is of O(d3N3). In summary, Algorithm 2
returns an (ε1, ε2)-stationary point in

O
(
d3N3 log(N) ·

[
1

ε32
+

1

ε21ε2

])
arithmetic operations. Note that this computational
complexity is independent of the dimension D of sam-
ples since we only need to compute the gram matrix as
an input. The storage cost is of O(d2N2), in which the
most expensive step is to store the gram matrix G.

4 PERFORMANCE GUARANTEES

In this section, we build statistical properties of the
empirical KPW distance, though in practice we may
not succeed in finding a global optimum solution to the
non-convex optimization problem (2). We assume the
cost function for the Wasserstein distance has the form
c(x, y) = ‖x− y‖p2 with p ∈ [1,∞). Moreover, results
throughout this section are based on the following
assumption.

Assumption 1. For any x, x′ ∈ X , the matrix-valued
kernel K(x, x′) is symmetric and satisfies

0 � K(x, x′) � BId.

Definition 5 ((Projection) Poincare Inequality). 1.
A distribution µ is said to satisfy a Poincare in-
equality if there exists an M > 0 for X ∼ µ so
that Var[f(X)] ≤ ME[‖∇f(X)‖2] for any f satisfy-
ing E[f(X)2] <∞ and E[‖∇f(X)‖2] <∞.
2. A distribution µ is said to satisfy a projection
Poincare inequality if there exists an M > 0 for
any f ∈ F and X ∼ f#µ so that Var[f(X)] ≤
ME[‖∇f(X)‖2] for any f satisfying E[f(X)2] < ∞
and E[‖∇f(X)‖2] <∞.

1We denote a ∨ b for max{a, b} and a ∧ b for min{a, b}.

Remark 3. The Poincare inequality characterizes the
relation about the variance of a function and its deriva-
tive in the spirit of the Sobolev inequality. It is a
standard technical assumption for investigating the em-
pirical convergence of Wasserstein distance (Lin et al.,
2021; Lei, 2020), and is satisfied for various exponen-
tial measures such as the Gaussian distribution. See
Ledoux (1999) for more examples.

Lemma 1. Assume that the distribution µ satisfies a
projection Poincare inequality. Then

E[(KPW (µ̂n, µ))
1/p

] . n−
1

(2p)∨d (log n)ζp,d/p

+ n−1/(2∨p)
√

log(n) + n−1/p log(n),

where ζp,d = 1{d = 2p}, and . refers to ”less than”
with a constant depending only on (p,B).

Lemma 2. Assume that the distribution µ satisfies
a Poincare inequality, and any f ∈ F is L-Lipschitz.
Then with probability at least 1− α, it holds that∣∣∣(KPW (µ̂n, µ))

1/p − E[(KPW (µ̂n, µ))
1/p

]
∣∣∣

≤ max
{
% log(1/α),

√
% log(1/α)

}
n−1/(2∨p)L1/p,

where % > 0 is a constant that depends on M .

Proof of two lemmas above follows similar covering
number arguments in Lin et al. (2021), the details of
which are deferred in Appendix E. The main differ-
ence is that we incorporate the reproducing property
of vector-valued RKHS to give a valid bound on the
covering number of the RKHS ball F . Based on these
two lemmas and the triangular inequality for Wasser-
stein distance, we give a finite-sample guarantee for
the convergence of the KPW distance in Theorem 3.
Compared with the sample complexity of estimating
Wasserstein distance, KPW distance does not suffer
from the curse of dimensionality as the RKHS ball F
has low complexity.

Theorem 3 (Finite-sample Guarantee). Suppose the
target distributions µ = ν, which satisfies projection
Poincare inequality and Poincare inequality. Moreover,
any f ∈ F is L-Lipschitz. Take N = n ∧m, then with
probability at least 1− 2α, it holds that

(KPW (µ̂n, ν̂m))
1/p . N−

1
(2p)∨d (logN)ζp,d/p

+N−1/(2∨p)
√

log(N) +N−1/p log(N)

+ max
{
% log(1/α),

√
% log(1/α)

}
N−1/(2∨p)L1/p.

4.1 Performance Guarantees for p ∈ [1, 2)

When showing concentration results for p-Wasserstein
distance with p ∈ [1, 2), however, it is not necessary to
rely on the Poincare inequality assumption. The main
result for this case is summarized in Theorem 4 (see
details in Appendix E.3).
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Figure 1: Average values of KPW distances between empirical distributions µ̂n and ν̂n as the sample size n varies.
Results are averaged for 10 independent trials and the shaded areas show the corresponding error bars.

Theorem 4 (Finite-sample Guarantee). Suppose the
target distributions µ = ν. Then with probability at
least 1− 2α, it holds that

(KPW (µ̂n, νm))
1/p . N−

1
(2p)∨d (logN)ζp,d/p

+N1/2−1/p
√

log(N) +N−1/p

+N1/2−1/p

√
log

2

α
.

where N = n ∧m and . refers to ”less than” with a
constant depending only on (p,B).

4.2 Sample Complexity

We also numerically examine the sample complexity
of the empirical KPW distance KPW (µ̂n, ν̂n) with
µ = ν = N (0, ID), where n ∈ {10, 50, 125, 250, 500}
and D ∈ {30, 50, 70, 100}. Figure 1 reports the average
distances and the shaded areas show the corresponding
error bars over 10 independent trials. We defer the
detailed experiment setup and the plots of the com-
putation time in Appendix G.1. From the plot we
can see that the empirical KPW distances decay to
zero quickly when the sample size n increases. More-
over, the distances with smaller values of d have faster
decaying rates. Finally, the convergence behavior of
the empirical KPW distances is nearly independent
of the choice of D, which alleviates the issue of the
curse of dimensionality for the original Wasserstein dis-
tance. These facts confirm the finite-sample guarantee
discussed in Theorem 3.

5 NUMERICAL EXPERIMENTS

Throughout this section, we compare the performance
of tests with the following procedures. (i) PW: the
projected Wasserstein test where the projector is a
linear mapping (Wang et al., 2021); (ii) MMD-O: the
MMD test with a Gaussian kernel whose bandwidth is
optimized (Liu et al., 2020); (iii) MMD-NTK: the test

that combines both neural networks and MMD (Cheng
and Xie, 2021b); and (iv) ME: the mean embedding
test with optimized hyper-parameters (Jitkrittum et al.,
2016). Implementation details on those baseline meth-
ods are omitted in Appendix G.2. When dealing with
synthetic datasets, we generate a single sample set as
the training set to learn parameters for each method.
Then we evaluate the power of tests on 100 new sam-
ple sets generated from the same distribution. When
dealing with real datasets, we randomly take part of
samples as the training set, and evaluate the power
on 100 randomly chosen subsets from the remaining
samples. The number of permutations in Algorithm 1
is set to be Np = 100. We control the type-I error for
all tests at α = 0.05.

When using the KPW distance, we follow (1) to design
kernels to decrease the computational complexity. More
specifically, we choose the scalar-valued kernel k(·, ·) to
be a standard Gaussian kernel with the bandwidth σ2,
and

P = (1− ρ)11T + ρId, with ρ ∈ [0, 1].

We use the cross-validation approach to select the
hyper-parameters ρ and σ2, the details of which are
deferred in Appendix G.3. The dimension d is pre-
specified and fixed into 3 in all experiments. We also
present a study on the impact of hyper-parameters
such as the projected dimension d and regularization
parameter η in Appendix H.

5.1 Tests for Synthetic Datasets

We first investigate the performance when µ and ν are
Gaussian distributions with diagonal covariance matri-
ces. Specifically, we take µ = N (0, ID) and ν = N (0,Σ)
is the covariance shifted Gaussian, where the matrix
Σ = diag(4, 4, 4, 1, . . . , 1). In other words, we only scale
the first three entries of the covariance matrix to make
the high-dimensional testing problem challenging to
handle. Fig. 2 reports the type-I and type-II errors for
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Figure 2: Testing results on Gaussian distributions across different choices of dimension D. Left: power
for Gaussian distributions, where the shifted covariance matrix is still diagonal; Middle: power for Gaussian
distributions, where the shifted covariance matrix is non-diagonal; Right: Type-I error.

Table 1: Average test power and standard error about detecting distribution abundance change in MNIST
dataset across different choices of sample size.

N MMD-NTK MMD-O ME PW KPW

200 0.639±0.029 0.696±0.006 0.298±0.031 0.302±0.033 0.663±0.015
250 0.763±0.010 0.781±0.002 0.472±0.017 0.369±0.030 0.785±0.014
300 0.813±0.016 0.869±0.002 0.630±0.025 0.524±0.023 0.928±0.001
400 0.881±0.013 0.956±0.003 0.779±0.020 0.591±0.044 0.978±0.000
500 0.950±0.002 0.988±0.000 0.927±0.006 0.782±0.040 1.000±0.000

Avg. 0.809 0.858 0.621 0.513 0.870

various tests across different choices of dimension D.
We observe that both PW and KPW tests perform the
best, while the power for other benchmark methods
degrades quickly when the dimension D increases.

Next, we examine the case where ν has a non-diagonal
covariance matrix. We take µ = N (0, ID) and
ν = N (0, V ΣV T), where V is an orthogonal ma-
trix with Vi,j =

√
2/(D + 1) sin(ijπ/(D + 1)) and

Σ = diag(5, 5, 5, 1, . . . , 1). Testing results for various
choices of dimension D is reported in the middle of
Fig. 2. In this case, the PW test performs slightly
better than the KPW test. One possible explanation is
that linear mapping seems to be the optimal choice for
two-sample testing with covariance shifted Gaussian
distributions. It is promising to design other types of
matrix-valued kernel functions to improve performances
of the KPW test.

Finally, we study the case where sample points are
generated from high-dimensional Gaussian mixture dis-
tributions. We take µ = 1

2N (0, ID)+ 1
2N (∆2, ID) with

∆2 = (1, 1, . . . , 1) and ν = 1
2N (0,Σ1) + 1

2N (∆3,Σ2)

with ∆3 = (1 + 0.8/
√
D, . . . , 1 + 0.8/

√
D). Covari-

ance matrix Σ1 is defined with Σ1[1, 1] = Σ1[2, 2] =
4,Σ1[1, 2] = Σ1[2, 1] = −0.9,Σ1[i, i] = 1, 3 ≤ i ≤ D,
and Σ1[i, j] = 0 for indexes elsewhere. Covariance
matrix Σ2 is defined with Σ2[1, 2] = Σ2[2, 1] = 0.9,
Σ2[i, i] = 1, 1 ≤ i ≤ D, and Σ2[i, j] = 0 for indexes else-

where. Testing results (type-I and type-II errors) across
different choices of dimension D for fixed sample size
n = m = 200 is presented in the left two plots in Fig. 3.
We also report results for increasing sample sizes n = m
by fixing the dimension D = 140 in the right two plots
in Fig. 3. From the plot, we can see that all approaches
have expected type-I error rates. Moreover, the tests
based on PW and KPW distances outperform other
benchmark methods, which indicates that the idea of
dimension reduction is helpful for high-dimensional
testing. The KPW test generally has the highest power
in this case, since the nonlinear projector in the unit
ball of RKHS is flexible enough to capture the differ-
ences between distributions. Other experiment details
of this subsection is omitted in Appendix G.4.

5.2 Tests for MNIST handwritten digits

We now perform two-sample tests on the MNIST
dataset (LeCun and Cortes, 2010). Let p be the dis-
tribution uniformly generated from the dataset, and
q = 0.85p+0.15pcohort, where pcohort is the distribution
from a class with digit 1. Both training and testing
sample sizes are set to be N ∈ {200, 250, . . . , 500}. Be-
fore performing two-sample tests, we pre-process this
dataset by taking the sigmoid transformation of each
image such that all scaled pixels are within the interval
[0, 1]. Table 1 presents the testing power of various tests
across different choices of N , from which we can see
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Figure 3: Testing results on Gaussian-mixture distributions. Left two: type-I and type-II errors across different
choices of dimension D with fixed sample size n = m = 200; Right two: type-I and type-II errors across different
choices of sample size n = m with fixed dimension D = 140.

Table 2: Delay time for detecting the transition in
MSRC-12 that corresponds to four users.

User MMD-NTK MMD-O ME PW KPW

1 36 73 82 47 33
2 8 7 97 9 1
3 15 13 27 2 20
4 22 83 69 16 12

Mean 20.25 44.0 68.8 18.50 16.5
Std 12.0 39.5 30.1 19.8 13.5

that the KPW test is competitive compared with other
methods. We observe that performances of MMD-O
in MNIST dataset are significantly better than that
in synthetic datasets provided in Section 5.1. One
possible explanation is that isotropic kernel functions
will limit the power of MMD tests in some numerical
examples (Liu et al., 2020, Section 3). Average type-I
error for various tests is presented in Table 3 in Ap-
pendix G.5, from which we can see all tests have the
type-I error close to α = 0.05.

5.3 Human activity detection

Finally, we apply the KPW test to perform online
change-point detection for human activity transition.
We use a real-world dataset called the Microsoft
Research Cambridge-12 (MSRC-12) Kinect gesture
dataset (Fothergill et al., 2012). After pre-processing,
this dataset consists of actions from four people, each
with 855 samples in R60, and with a change of action
from bending to throwing at the time index 500. More
experimental details are omitted in Appendix G.6. Fix
the window size W = 100. We pre-train a nonlinear
projector using the data (sample size as the window)
before time index 300 and compute the null statistics
for many times to obtain the true threshold such that
the false alarm rate is controlled within α = 0.05. Then
we perform online change-point detection based on a

sliding window that moves forward with time. We
compute the detection statistic by comparing the dis-
tribution between the block of data before time 300
and the data from the sliding window. We reject the
null hypothesis and claim a change is happened if the
statistic is above the threshold. Table 2 reports the
delay time for detecting the behavior transition, from
which we observe that the KPW test detects the change
in the shortest time.

6 CONCLUSION

We proposed the KPW distance for the task of two-
sample testing, which operates by finding the nonlinear
mapping in the data space to maximize the distance
between projected distributions. Practical algorithms
together with uncertainty quantification of empirical
estimates are discussed to help with this task.

The extension of this work is as follows. First, it is
promising to consider milder technical assumptions
than the projected Poincare inequality when estab-
lishing performance guarantees. Second, a meaningful
research question is to determine the optimal hyper-
parameters for the KPW test, including the projected
subspace dimension d and the matrix-valued kernel
function K. Third, it is desirable to study how to
systematically pick the regularization parameter η to
balance the trade-off between computational efficiency
and accuracy of the obtained solution.
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Supplementary Material:
Two-Sample Test with Kernel Projected Wasserstein Distance

A PRELIMINARY TECHNICAL RESULTS

Theorem 5 (Pinsker’s Inequality (Cover and Thomas, 2006)). Consider two discrete probability distributions
p = {pi}ni=1 and q = {qi}ni=1, then it holds that

n∑
i=1

pi log
pi
qi
≥ 1

2
‖p− q‖21.

Proposition 2 (Lipschitz Properties of Retraction Operator (Boumal et al., 2018)). There exists constants
L1, L2 such that the following inequalities hold:

‖Retrs(ζ)− s‖ ≤ L1‖ζ‖
‖Retrs(ζ)− (s+ ζ)‖ ≤ L2‖ζ‖2.

Inspired from Appendix A.3 in Jiang et al. (2017), we are able to compute the constants in Proposition 2 explicitly:
L1 = 1 and L2 = 1

2 . The proof is provided below.

Proof. By definition, we have that

‖Retrs(ζ)− s‖22 =

∥∥∥∥ s+ ζ

‖s+ ζ‖
− s
∥∥∥∥2

2

= 2

(
1− 1

‖s+ ζ‖2

)
= 2

(
1− (1 +

∑
i

ζ2
i )−1/2

)
≤
∑
i

ζ2
i = ‖ζ‖22.

where the second and the third equality is by using the relation sTζ = 0, and the inequality is based on the
relation 2(1− (1 + z)−1/2) ≤ z with z =

∑
i ζ

2
i . Then it holds that ‖Retrs(ζ)− (s+ ζ)‖2 ≤ ‖ζ‖.

Secondly, we can see that

‖Retrs(ζ)− (s+ ζ)‖22 =

∥∥∥∥ s+ ζ

‖s+ ζ‖
− (s+ ζ)

∥∥∥∥2

2

= (1− ‖s+ ζ‖2)
2

=

1−
√

1 +
∑
i

ζ2
i

2

≤ 1

4
‖ζ‖42,

where the inequality is based on the relation that (1− (1 + z)1/2)2 ≤ z2/4 with z =
∑
i ζ

2
i . Consequently it holds

that ‖Retrs(ζ)− (s+ ζ)‖2 ≤ 1
2‖ζ‖

2.
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Theorem 6 (McDiarmid’s Inequality (McDiarmid, 1989)). Let X1, . . . , Xn be independent random variables,
where Xi has the support Xi. Let f : X1 × X2 × · · · × Xn → R be any function with the (c1, . . . , cn) bounded
difference property, i.e., for i ∈ {1, . . . , n} and for any (x1, . . . , xn), (x′1, . . . , x

′
n) that differs only in the i-th

corodinate, we have
|f(x1, . . . , xn)− f(x′1, . . . , x

′
n)| ≤ ci.

Then for any t > 0, we have

Pr

{
|f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| ≥ t

}
≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.

Lemma 3 (Equivalent Definition for Sub-Gaussian variables (Lemma 2.3.2 in (Gin and Nickl, 2015))). Assume
that E[ζ] = 0 and

P{|ζ| ≥ t} ≤ 2C exp

(
− t2

2σ2

)
, t > 0,

for some C ≥ 1 and σ > 0. Then the random variable ζ is sub-Gaussian with constant σ̃2 = 12(2C + 1)σ2.

Theorem 7 (Poincare’s Inequality). Denote by µn the product of µ on ⊗ni=1Rd and µ ∈ P(Rd) satisfies the
Poincare’s inequality, i.e., there exists M > 0 for X ∼ µ so that Var[f(X)] ≤ ME[‖∇f(X)‖2] for any f
satisfying E[f(X)2] < ∞ and E[‖∇f(X)‖22] < ∞. Consider a function f on ⊗ni=1Rd satisfying E|f(X)| < ∞
and

∑n
i=1 ‖∇if(X)‖2 ≤ α2, and max1≤i≤n ‖∇if(X)‖ ≤ β almost surely. Then the following inequality holds for

X ∼ µn:

Pr

{
f(X)− E[f(X)] > t

}
≤ exp

(
− 1

K
min(t/β, t2/α2)

)
.
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B INTRODUCTION TO MANIFOLD OPTIMIZATION

A brief introduction to manifold optimization can be found in Hu et al. (2019). In this section we list some
related operators for solving manifold optimization problems. Traditional manifold optimization concerns with
solving the following problem:

min
x∈M

f(x), (7)

where M is a Riemannian manifold and f is a real-valued function on M. A tangent vector ζx to M at a point
x is defined as a mapping so that there exists a curve γ on M satisfying

γ(0) = x, ζx[u] =
d(u(γ(t)))

dt
|t=0, ∀u ∈ E(M),

where E(M) stands for the collection of real-valued functions defined in a neighborhood of x. Denote by TxM as
the collection of all tangent vectors to M at a point x, which is called the tangent space to M at x. Define Px(z)
as the projection of z into the tangent space at x. Based on definitions listed above, we can define necessary
operators for manifold optimization. The Riemannian gradient of f at x is denoted as Gradf(x), which can be
obtained by projecting the gradient of f at x in the Euclidean space into the tangent space to M at x:

Gradf(x) = Px(∇f(x)).

Typical Riemannian manifolds include the Sphere and Stiefel manifold defined as follows:

Sphere(n− 1) := {x ∈ Rn : ‖x‖2 = 1},
St(n, p) := {X ∈ Rn×p : XTX = Ip}.

We can express the tangent space together with the projection operator for these two types of manifolds in
analytical form:

TxSphere(n− 1) = {z : zTx = 0}, Px(z) = (I − xxT)z

TxSt(n, p) = {Z : ZTX +XTZ = 0}, PX(Z) = Z −XXTZ + ZTX

2
.

When using first-order methods to solve a manifold optimization problem, one also needs to define the retraction
operator associated withM, which is denoted as Retr. It is a smooth mapping from the tangent budle ∪x∈MTxM
to M satisfying that for any x ∈M,

• Retrx(0x) = x, where 0x denotes the zero element in TxM;

• limζ∈TxM,ζ→0
‖Retrx(ζ)−(x+ζ)‖

‖ζ‖ = 0.

When M is a sphere, we choose the following retraction operator which can be implemented efficiently:

Retrx
(
ζ
)

=
x+ ζ

‖x+ ζ‖
, x ∈ Sphere(n− 1).

See Edelman et al. (1998) and Wen and Yin (2012) for discussions of retraction operators on the Stiefel manifold.
The general iteration update of first-order methods for manifold optimization problem can be expressed as

xt+1 = Retrxt(−τ tζt),

where τ t is a well-defined step size and ζt is the Riemannian gradient at xt. The computation of the projected
Wasserstein distance relates to the optimization on a Stiefel manifold, while the computation of the KPW distance
relates to the optimization on a sphere. A recent paper (Boumal et al., 2018) investigated the Riemannian
gradient methods that are guaranteed to converge into stationary points globally, the key proof technique of
which relies on Proposition 2. We follow the similar proof idea to establish the convergence analysis for computing
the KPW distance.
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C TECHNICAL PROOFS IN SECTION 2

Proof of Remark 1. When taking the kernel function K(x, y) = 〈x, y〉, the space

F = {a : aTa ≤ 1}.

Note that the cost function c(x, y) = ‖x − y‖22 satisfies c(mx,my) = m2c(x, y) for any m ∈ R. Hence we can
argue that the maximizer of the KPW distance is obtained when aTa = 1, i.e.,

KPW (µ, ν) = max
f : RD→R,

f(z)=aTz,aTa=1

W (f#µ, f#ν) .

This indicates that the KPW distance reduces into the PW distance.

Proof of Proposition 1. It is easy to see that µ = ν implies KPW (µ, ν) = 0. Now we show the converse. For
fixed x ∈ X , y ∈ Rd and a distribution µ, define the operator Kµ with the action y as a mapping Kµy : X → Rd
so that

Kµy(x′) =

∫
(Kxy)(x′) dµ(x) =

∫
K(x′, x)y dµ(x).

When KPW (µ, ν) = 0, we can see that
f#µ = f#ν, ∀f ∈ F ,

which implies

0 = sup
f : ‖f‖2H≤1

∥∥Ef#µ[x]− Ef#ν [y]
∥∥

2

= sup
f : ‖f‖2H≤1

sup
a: ‖a‖2≤1

(
Eµ[〈f(x), a〉]− Eν [〈f(y), a〉]

)
= sup
f : ‖f‖2H≤1

sup
a: ‖a‖2≤1

(
Eµ[〈f,Kxa〉H]− Eν [〈f,Kya〉H]

)
= sup
f : ‖f‖2H≤1

sup
a: ‖a‖2≤1

〈f, (Kµ −Kν)a〉

= sup
a: ‖a‖2≤1

‖(Kµ −Kν)a‖H.

Equivalently, ‖(Kµ − Kν)a‖H = 0 for any a so that ‖a‖2 ≤ 1. Since H is a Hilbert space, we imply that
(Kµ −Kν)a is a zero function for any a satisfying ‖a‖2 ≤ 1. For any function f ∈ C(X), we make the expansion

‖Eµ[f(x)]− Eν [f(y)]‖2
≤‖Eµ[f(x)]− Eµ[g(x)]‖2 + ‖Eµ[g(x)]− Eν [g(y)]‖2 + ‖Eν [g(y)]− Eν [f(y)]‖2 .

The first term satisfies that

‖Eµ[f(x)]− Eµ[g(x)]‖2 ≤ Eµ[‖f(x)− g(x)‖2] < ε,

and the third term can be upper bounded likewise. For the second term, we have that

‖Eµ[g(x)]− Eν [g(y)]‖2
= sup
a: ‖a‖2≤1

(
Eµ[〈g(x), a〉]− Eν [〈g(y), a〉]

)
= sup
a: ‖a‖2≤1

(
Eµ[〈g,Kxa〉]− Eν [〈g,Kya〉]

)
= sup
a: ‖a‖2≤1

〈g, (Kµ −Kν)a〉 = 0,

where the last equality is because that (Kµ − Kν)a is a zero function for any a satisfying ‖a‖2 ≤ 1. Hence,
‖Eµ[f(x)]− Eν [f(y)]‖2 < 2ε for any ε > 0 and f ∈ Cb(X ). Then we conclude that the distribution µ = ν.
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D TECHNICAL PROOFS IN SECTION 3

D.1 Deviation of Duality Reformulation (5)

We first present the proof of the dual reformulation of the inner minimization problem in (4). By definition, the
primal formulation can be expressed as:

min
π≥0

∑
i,j

πi,jci,j − η
∑
i,j

πi,j(log πi,j − 1) :
∑
j

πi,j =
1

n
,
∑
i

πi,j =
1

m

 . (8)

The Lagrangian function becomes

L(π, u, v) =
∑
i,j

πi,jci,j − η
∑
i,j

πi,j(log πi,j − 1) +
∑
i

ui

∑
j

πi,j −
1

n

+
∑
j

vj

(∑
i

πi,j −
1

m

)

Then the dual problem becomes

max
u,v

{
min
π≥0

L(π, u, v)

}
= max

u,v
− 1

n

∑
i

ui −
1

m

∑
j

vj + min
π≥0

∑
i,j

πi,j
[
ci,j + ui + vj

]
− ηπi,j(log πi,j − 1)

= max
u,v

− 1

n

∑
i

ui −
1

m

∑
j

vj −
∑
i,j

max
πi,j≥0

{
−πi,j

[
ci,j + ui + vj

]
+ ηπi,j(log πi,j − 1)

}
= max

u,v
− 1

n

∑
i

ui −
1

m

∑
j

vj −
∑
i,j

(ηφ)∗(ui + vj + ci,j)

= max
u,v

− 1

n

∑
i

ui −
1

m

∑
j

vj − η
∑
i,j

exp

(
−ui + vj + ci,j

η

)

where φ(w) = w logw−w and φ∗ denotes its conjugate (Rockafellar, 1970). Moreover, the dual optimal value equals
the primal optimal value because the Slater’s condition (Boyd and Vandenberghe, 2004) for finite-dimensional
optimization is satisfied. Take u′i = −ui/η and v′j = −vj/η, the dual problem becomes

max
u′,v′

η

n

∑
i

u′i +
η

m

∑
j

v′j − η
∑
i,j

exp

(
−ci,j

η
+ u′i + v′j

)
.

Therefore, the whole problem (4) becomes

max
u,v,s

η

n

∑
i

ui +
η

m

∑
j

vj − η
∑
i,j

exp

(
−ci,j

η
+ ui + vj

)
.

Or equivalently, we write it as the minimization problem:

−η ×

min
u,v,s

− 1

n

∑
i

ui −
1

m

∑
j

vj + η
∑
i,j

exp

(
−ci,j

η
+ ui + vj

) .

Remark 4. By adding the entropic regularization term ηH(π), we are able to derive an unconstrained optimization
formulation on the sphere, thus reducing the computational cost for computing KPW distance. Besides, the
induced optimal transport mapping between projected samples is usually stochastic instead of deterministic, which
is robust to potential data outliers.
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D.2 Proof of Theorem 1

Assume that f̂ is an optimal solution to the problem (2). Let S be the subspace

S =


n∑
i=1

m∑
j=1

(Kxi
−Kyj )ai,j : ai,j ∈ Rd

 .

Denote by S⊥ the orthogonal complement of S. Given a set X , denote by fX a function that lies in the set X .
Then by the projection theorem, there exists f̂S and f̂S⊥ such that f̂ = f̂S + f̂S⊥ and ‖f̂‖2H = ‖f̂S‖2H + ‖f̂S⊥‖2H.

It remains to show that f̂S shares the same objective value with f̂ . For fixed i, j, we have that

‖f̂(xi)− f̂(yj)‖2 = max
ai,j : ‖ai,j‖2≤1

〈f̂(xi)− f̂(yj), ai,j〉

= max
ai,j : ‖ai,j‖2≤1

〈f̂(xi), ai,j〉 − 〈f̂(yj), ai,j〉

= max
ai,j : ‖ai,j‖2≤1

〈f̂ ,Kxi
ai,j〉 − 〈f̂ ,Kyjai,j〉

= max
ai,j : ‖ai,j‖2≤1

〈f̂ , (Kxi −Kyj )ai,j〉

= max
ai,j : ‖ai,j‖2≤1

〈f̂S , (Kxi
−Kyj )ai,j〉 = ‖f̂S(xi)− f̂S(yj)‖2,

where the second last equality is because f̂S⊥ is orthogonal to the subspace S. It follows that ‖f̂(xi)− f̂(yj)‖22 =

‖f̂S(xi)− f̂S(yj)‖22. Therefore, there always exists an optimal solution that lies in the subspace S, which means
that there exists an optimal solution to (2) that admits the following expression:

f̂ =

n∑
i=1

m∑
j=1

(Kxi
−Kyj )ai,j .

Defining ax,i =
∑m
j=1 ai,j and ay,j =

∑n
i=1 ai,j completes the proof.

Remark 5. From the proof we can also see that the representer theorem holds if replacing the square of the `2
norm in (2) with any p-th power of the `2 norm for p ≥ 2. However, we find the development of optimization
algorithms for the square of the `2 norm case is the simplest.

D.3 Proof of Theorem 2

In the following we give a iteration complexity analysis about Algorithm 2, the proof of which largely follows the
idea in Huang et al. (2021). In particular, we first establish the descent lemma for the update of each block of
variables and then argue that the objective function is lower bounded. Based on these two facts, we finally build
the iteration complexity result for Algorithm 2.

Lemma 4 (Lipschitzness of ∇sF (u, v, s)). Let {ut, vt, st}t be the sequence generated from Algorithm 2. The
following inequality holds for any s ∈ Sd(n+m)−1 and λ ∈ [0, 1]:

‖∇sF (ut+1, vt+1, λs+ (1− λ)st)−∇sF (ut+1, vt+1, st)‖ ≤ %λ‖st − s‖,

where % =
2‖AU‖2∞

η +
4‖AU‖4∞

η2 and ‖AU‖∞ = maxi,j ‖Ai,jU‖2.

Proof of Lemma 4. An intermediate result is that∑
i

πi,j(u
t+1, vt+1, st) =

∑
i

exp

(
−1

η
ci,j [s

t] + ut+1
i

)
exp

(
vt+1
j

)
=
∑
i

exp

(
−1

η
ci,j [s

t] + ut+1
i

)
exp

(
vtj
) 1/m∑

i πi,j(u
t+1, vt, st)

=
1

m

∑
i πi,j(u

t+1, vt, st)∑
i πi,j(u

t+1, vt, st)
= 1/m.
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Then we can assert that
∑
i,j πi,j(u

t+1, vt, st) = 1. For fixed st, define sλ = λs+ (1− λ)st. Then we have that

‖∇sF (ut+1, vt+1, st)−∇sF (ut+1, vt+1, sλ)‖

=
2

η

∥∥∥∥∥∥
∑
i,j

πi,j(u
t+1, vt+1, st)UTAT

i,jAi,jUs
t −
∑
i,j

πi,j(u
t+1, vt+1, sλ)UTAT

i,jAi,jUs
λ

∥∥∥∥∥∥
≤2

η

∥∥∥∥∥∥
∑
i,j

πi,j(u
t+1, vt+1, st)UTAT

i,jAi,jU(st − sλ)

∥∥∥∥∥∥
+

2

η

∥∥∥∥∥∥
∑
i,j

UT
[
πi,j(u

t+1, vt+1, st)− πi,j(ut+1, vt+1, sλ)
]
AT
i,jAi,jU

∥∥∥∥∥∥
≤2

η

∥∥∥∥∥∥
∑
i,j

πi,j(u
t+1, vt+1, st)UTAT

i,jAi,jU

∥∥∥∥∥∥ ‖sλ − st‖
+

2

η

∥∥∥∥∥∥
∑
i,j

[
πi,j(u

t+1, vt+1, st)− πi,j(ut+1, vt+1, sλ)
]
UTAT

i,jAi,jU

∥∥∥∥∥∥
where the first inequality is based on the constraint that ‖sλ‖ ≤ λ‖s‖+ (1− λ)‖st‖ = 1. To upper bound the
first term, we find ∥∥∥∥∥∥

∑
i,j

πi,j(u
t+1, vt+1, st)UTAT

i,jAi,jU

∥∥∥∥∥∥
≤
∑
i,j

πi,j(u
t+1, vt+1, st)‖UTAT

i,jAi,jU‖2 ≤ max
i,j
‖Ai,jU‖22.

To bound the second term, we find that∥∥∥∥∥∥
∑
i,j

[
πi,j(u

t+1, vt+1, st)− πi,j(ut+1, vt+1, sλ)
]
UTAT

i,jAi,jU

∥∥∥∥∥∥
≤max

i,j
‖Ai,jU‖22‖π(ut+1, vt+1, sλ)− π(ut+1, vt+1, st)‖1,

where
‖π(ut+1, vt+1, sλ)− π(ut+1, vt+1, st)‖1 :=

∑
i,j

∣∣πi,j(ut+1, vt+1, sλ)− πi,j(ut+1, vt+1, st)
∣∣.

Denote by H(π, s; η) the objective function for (3). Based on the strong convexity property, we have that

〈∇πH(π(ut+1, vt+1, sλ), sλ; η)−∇πH(π(ut+1, vt+1, st), sλ; η), π(ut+1, vt+1, sλ)− π(ut+1, vt+1, st)〉
≥η‖π(ut+1, vt+1, sλ)− π(ut+1, vt+1, st)‖21

Moreover, by simple calculation we find

∇πH(π(u, v, s), s) = [ci,j + η log(πi,j(u, v, s))]i,j

= [η(ui + vj)]i,j ,

where the second equality is by substituting the formulation of πi,j(u, v, s). Hence, we find that the gradient
∇πH(π(u, v, s), s) only depends on u and v, which implies

〈∇πH(π(ut+1, vt+1, st), st; η)−∇πH(π(ut+1, vt+1, st), sλ; η), π(ut+1, vt+1, sλ)− π(ut+1, vt+1, st)〉
≥η‖π(ut+1, vt+1, sλ)− π(ut+1, vt+1, st)‖21.
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It follows that

η‖π(ut+1, vt+1, sλ)− π(ut+1, vt+1, st)‖1
≤‖∇πH(π(ut+1, vt+1, st), st; η)−∇πH(π(ut+1, vt+1, st), sλ; η)‖∞
= max

i,j

∣∣‖Ai,jUsλ‖22 − ‖Ai,jUst‖22∣∣
≤2 max

i,j
‖Ai,jU‖22‖sλ − st‖.

where the inequality is by applying the following relation:

‖Ax1‖22 − ‖Ax2‖22 = (x1 − x2)T(ATAx1) + xT
2 A

TA(x1 − x2)

≤ ‖x1 − x2‖‖ATAx1‖+ ‖xT
2 A

TA‖‖x1 − x2‖
≤ 2‖A‖2‖x1 − x2‖.

In summary, the second term can be upper bounded as∥∥∥∥∥∥
∑
i,j

[
πi,j(u

t+1, vt+1, st)− πi,j(ut+1, vt+1, sλ)
]
UTAT

i,jAi,jU

∥∥∥∥∥∥
≤

2
(
maxi,j ‖Ai,jU‖22

)2
η

‖sλ − st‖.

Then applying the condition that ‖sλ − st‖ = λ‖s− st‖ completes the proof.

Lemma 5 (Decrease of F in s). Let {ut, vt, st}t be the sequence generated from Algorithm 2. The following
inequality holds for any k ≥ 1:

F (ut+1, vt+1, st+1)− F (ut+1, vt+1, st) ≤ − 1

8‖AU‖2∞L2/η + 2%L2
1

‖ξt+1‖2.

Proof of Lemma 5. Note that∣∣F (ut+1, vt+1, st+1)− F (ut+1, vt+1, st)− 〈∇tF (ut+1, vt+1, st), st+1 − st〉
∣∣

=

∣∣∣∣∫ 1

0

〈∇sF (ut+1, vt+1, λst+1 + (1− λ)st)−∇sF (ut+1, vt+1, st), st+1 − st〉dλ
∣∣∣∣

≤
∫ 1

0

‖∇sF (ut+1, vt+1, λst+1 + (1− λ)st)−∇sF (ut+1, vt+1, st)‖‖st+1 − st‖dλ

≤
∫ 1

0

%λ‖st+1 − st‖2 dλ

=
%

2
‖st+1 − st‖2 =

%

2

∥∥Retrst
(
− τξt+1

)
− st

∥∥2

≤%τ
2L2

1

2
‖ξt+1‖2.

where the second inequality is by applying Lemma 4, and the last inequality is by applying Proposition 2.
Moreover, we have that

〈∇sF (ut+1, vt+1, st), st+1 − st〉
=〈∇sF (ut+1, vt+1, st),−τξt+1〉+ 〈∇sF (ut+1, vt+1, st),Retrst

(
− τξt+1

)
− (st − τξt+1)〉

≤ − τ‖ξt+1‖2 + ‖∇sF (ut+1, vt+1, st)‖2‖Retrst
(
− τξt+1

)
− (st − τξt+1)‖

≤ − τ‖ξt+1‖2 + ‖ζt+1‖2 · L2τ
2‖ξt+1‖2

≤− τ‖ξt+1‖2 +
2‖AU‖2∞L2τ

2

η
‖ξt+1‖2.
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Combining those inequalities above implies that

F (uk+1, vk+1, tk+1)− F (uk+1, vk+1, tk) ≤ −τ
(

1−
[

2‖AU‖2∞L2

η
+
%

2
L2

1

]
τ

)
‖ξt+1‖2.

Taking τ = 1
4‖AU‖2∞L2/η+%L2

1
gives the desired result.

Lemma 6 (Decrease of F in v). Let {ut, vt, st}t be the sequence generated from Algorithm 2. The following
inequality holds for any k ≥ 1:

F (ut+1, vt+1, st)− F (ut+1, vt, st) ≤ −1

2
‖1/m− π(ut+1, vt, st)T1‖21.

where

‖1/m− π(ut+1, vt, st)‖1 =
∑
j

∣∣∣∣∣ 1

m
−
∑
i

πi,j(u
t+1, vt, st)

∣∣∣∣∣ .
Proof of Lemma 6. According to the expression of F , we have that

F (ut+1, vt+1, st)− F (ut+1, vt, st)

=
∑
i,j

πi,j(u
t+1, vt+1, st)−

∑
i,j

πi,j(u
t+1, vt, st) +

1

m

m∑
j=1

(vtj − vt+1
j )

=
1

m

m∑
j=1

(vtj − vt+1
j ) = − 1

m

m∑
j=1

log
1/m∑

i πi,j(u
t+1, vt, st)

,

where the second equality is because that∑
i

πi,j(u
t+1, vt+1, st) =

1

m
,

∑
j

πi,j(u
t+1, vt, st) =

1

n
.

Therefore, applying the Pinsker’s inequality in Theorem 5 implies that

F (ut+1, vt+1, st)− F (ut+1, vt, st) ≤ −1

2

∑
j

∣∣∣∣∣ 1

m
−
∑
i

πi,j(u
t+1, vt, st)

∣∣∣∣∣
2

.

Lemma 7 (Decrease of F in u). Let {ut, vt, st}t be the sequence generated from Algorithm 2. The following
inequality holds for any t ≥ 1:

F (ut+1, vt, st)− F (ut, vt, st) ≤ −1

2
‖1/n− π(ut, vt, st)1‖22.

where

‖1/n− π(ut, vt, st)1‖22 =
∑
i

∣∣∣∣∣∣ 1n −
∑
j

πi,j(u
k, vk, tk)

∣∣∣∣∣∣
2

.

Proof of Lemma 7. For fixed i ∈ [n], define

hi =
∑
j

πi,j(u
t+1, vt, st)−

∑
j

πi,j(u
t, vt, st)− 1

n
log

1/n∑
j πi,j(u

t, vt, st)
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According to the expression of F ,

F (ut+1, vt, st)− F (ut, vt, st) =
∑
i

hi,

and it suffices to provide an upper bound for hi, i ∈ [n]. By substituting the expression of ut+1 into hi, we have
that

hi =
∑
j

πi,j(u
t, vt, st)

[
1/n∑

j πi,j(u
t, vt, st)

− 1

]
− 1

n
log

1/n∑
j πi,j(u

t, vt, st)

=
1

n
−
(
π(ut, vt, st)1

)
i
− 1

n
log

1/n(
π(ut, vt, st)1

)
i

Define the function

`(x) =
1

n
− x− 1

n
log

1/n

x
+ (x− 1/n)2.

We can see that this function attains its maximum at x = 1/n, with `(1/n) = 0. It follows that

hi ≤ −
((
π(ut, vt, st)1

)
i
− 1

n

)2

.

The proof is completed.

Lemma 8. Let {ut, vt, st}t be the sequence generated from Algorithm 2, which is terminated when the following
conditions hold:

‖ξt+1‖ ≤ ε1, ‖1/n− π(ut, vt, st)1‖2 ≤
ε2

4‖AU‖2∞
, ‖1/m− π(ut+1, vt, st)T1‖1 ≤

ε2
4‖AU‖2∞

.

Then {uT , vT , sT } is an (ε1, ε2) stationary point of (5).

Proof of Lemma 8. The condition ‖ξt+1‖ ≤ ε1 directly implies that

‖GradsF (uT , vT , sT )‖ ≤ ε1.

Suppose that
π(uT , vT , sT )1 = r, π(uT , vT , sT )T1 = c,

where ‖1/n− r‖2 ≤ ε2/(4‖AU‖2∞) and ‖1/m− c‖1 ≤ ε2/(4‖AU‖2∞). Then we find that

F (uT , vT , sT ) = min
π

∑
i,j

πi,jMi,j − ηH(π) :
∑
j

πi,j = ri,
∑
i

πi,j = cj

 ,

and

min
u,v

F (u, v, sT ) = min
π

∑
i,j

πi,jMi,j − ηH(π) :
∑
j

πi,j =
1

n
,
∑
i

πi,j =
1

m

 ,

where Mi,j = ‖Ai,jUsT ‖22. It follows that

F (uT , vT , sT )−min
u,v

F (u, v, sT )

≤η log(mn) + 2‖1/m− c1‖1 × ‖AU‖2∞ ≤ ε2,

where the last inequality is by taking η = ε2/(2 log(mn)).

Lemma 9 (Lower Boundedness of F ). Denote by (u∗, v∗, s∗) the global optimum of (5). Then we have that

F (u∗, v∗, s∗) ≥ 1− 1

η
‖AU‖2∞.
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Proof of Lemma 9. It is easy to show that ∑
i,j

πi,j(u
∗, v∗, s∗) = 1.

Moreover, for any (i, j), we have that ci,j ≤ ‖AU‖2∞. It follows that

exp

(
−1

η
‖AU‖2∞ + u∗i + v∗j

)
≤ πi,j ≤ 1,

and therefore u∗i + v∗j ≤ 1
η‖AU‖

2
∞ for any (i, j). Hence we conclude that

∑
i,j

πi,j(u
∗, v∗, s∗)− 1

n

n∑
i=1

ui −
1

m

m∑
j=1

vj ≥ 1− 1

η
‖AU‖2∞.

In the following we give a re-statement of Theorem 2 and the formal proof.

Theorem (Re-statement of Theorem 2). Choose parameters

τ =
1

4‖AU‖2∞L2/η + %L2
1

, η =
ε2

2 log(mn)
, % =

2‖AU‖2∞
η

+
4‖AU‖4∞

η2
,

and Algorithm 2 terminates when

‖ξt+1‖ ≤ ε1, ‖1/n− π(ut, vt, st)1‖2 ≤
ε2

4‖AU‖2∞
, ‖1/m− π(ut+1, vt, st)T1‖1 ≤

ε2
4‖AU‖2∞

.

We say that (û, v̂, ŝ) is a (ε1, ε2)-stationary point of (5) if

‖GradsF (û, v̂, ŝ)‖ ≤ ε1,
F (û, v̂, ŝ)−min

u,v
F (u, v, ŝ) ≤ ε2,

where GradsF (u, v, s) denotes the partial derivative of F with respect to the variable s on the sphere Sd(n+m)−1.
Then Algorithm 2 returns an (ε1, ε2)-stationary point in iterations

T = O
(

log(mn) ·
[

1

ε32
+

1

ε21ε2

])
.

Proof of Theorem 2. We can build the one-iteration descent result based on Lemma 5, Lemma 6, and Lemma 7:

F (ut+1, vt+1, st+1)− F (ut, vt, st)

≤−
(

1

2
‖1/n− π(ut, vt, st)1‖22 +

1

2
‖1/m− π(ut+1, vt, st)T1‖21 +

1

8‖AU‖2∞L2/η + 2%L2
1

‖ξt+1‖22
)

=− 1

2

(
‖1/n− π(ut, vt, st)1‖22 + ‖1/m− π(ut+1, vt, st)T1‖21 +

η2‖ζt+1‖2

2‖AU‖2∞η(2L2 + L2
1) + 4‖AU‖4∞L2

1

)
Then we have that

F (uT , vT , sT )− F (u0, v0, s0)

≤− 1

2

T−1∑
t=0

(
‖1/n− π(ut, vt, st)1‖22 + ‖1/m− π(ut+1, vt, st)T1‖21 +

η2‖ζt+1‖2

2‖AU‖2∞η(2L2 + L2
1) + 4‖AU‖4∞L2

1

)
≤− 1

2
·min

{
1,

1

2‖AU‖2∞η(2L2 + L2
1) + 4‖AU‖4∞L2

1

}
×
T−1∑
t=0

(
‖1/n− π(ut, vt, st)1‖22 + ‖1/m− π(ut+1, vt, st)T1‖21 + η2‖ξt+1‖22

)
≤− 1

2
T ·min

{
1,

1

2‖AU‖2∞η(2L2 + L2
1) + 4‖AU‖4∞L2

1

}
·min

{
ε21,

ε22
16‖AU‖4∞

,
ε22

16‖AU‖4∞

}
.
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Therefore,

T ≤[F (u0, v0, t0)− F (uT , vT , sT )] max
{

2, 4‖AU‖2∞η(2L2 + L2
1) + 8‖AU‖4∞L2

1

}
max

{
1

ε21
,

16‖AU‖4∞
ε22

,
16‖AU‖4∞

ε22

}
≤
(
F (u0, v0, t0)− 1 +

‖AU‖2∞
η

)
max

{
2, 4‖AU‖2∞η(2L2 + L2

1) + 8‖AU‖4∞L2
1

}
max

{
1

ε21
,

16‖AU‖4∞
ε22

,
16‖AU‖4∞

ε22

}
=O

(
log(mn) ·

[
1

ε32
+

1

ε21ε2

])
.
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E TECHNICAL PROOFS IN SECTION 4

E.1 Proof of Theorem 3

Proof of Lemma 1. Denote F = {f ∈ H : ‖f‖H ≤ 1}. By the bias-variation decomposition, we have that

E[(KPW (µ̂n, µ))
1/p

] ≤ sup
f∈F

E[(W (f#µ̂n, f#µ))
1/p

]

+ E

[
sup
f∈F

(
(W (f#µ̂n, f#µ))

1/p − E[(W (f#µ̂n, f#µ))
1/p

]
)]

.

For fixed f ∈ F , we can see that

E[(W (f#µ̂n, f#µ))
1/p

] ≤ cpn−
1

(2p)∨d (log n)ζp,d/p

where cp is a constant depending only on p and

ζp,d =

{
1, if d = 2p,

0, otherwise.

Now we start to upper bound the variation term. Define the empirical process

Xf = (W (f#µ̂n, f#µ))
1/p − E[(W (f#µ̂n, f#µ))

1/p
].

It is easy to see that E[Xf ] = 0. Moreover, we can show that for fixed f , the random variable Xf is sub-exponential.

Denote by Z = {zi}ni=1 and Z ′ = {z′i}ni=1 i.i.d. samples from f#µ. Take g(Z) = (W (f#µ̂n, f#µ))
1/p

. Then we
have that

|g(Z)− g(Z ′(i))| ≤ (W (f#µ̂n, f#µ̂′n))
1/p ≤ n−1/(2∨p)‖Z − Z ′‖2.

It follows that
n∑
i=1

‖∇ig(Z)‖2 ≤ n−2/(2∨p), max
1≤i≤n

‖∇ig(Z)‖ ≤ n−1/p.

Then the Poincare’s inequality in Theorem 7 implies that

Pr{Xf ≥ t} ≤ exp
(
−K−1 min{tn1/p, t2n2/(2∨p)}

)
.

Hence we conclude that Xf is sub-exponential with parameters (
√
K/2n−1/(2∨p), (K/2)n−1/p).

For the function space F , define the corresponding metric

d(f, f ′) = ‖f − f ′‖H.

Let X ∼ µ. Then for any f, f ′ ∈ F , we have that

|Xf −Xf ′ |

≤E
[

(W (f#µ̂n, f
′#µ̂n))

1/p
+ (W (f#µ, f ′#µ))

1/p ]
+ E

[
(W (f#µ̂n, f

′#µ̂n))
1/p

+ (W (f#µ, f ′#µ))
1/p ]

≤2 (E‖f(X)− f ′(X)‖p2)
1/p

+

(
1

n

n∑
i=1

‖f(Xi)− f ′(Xi)‖p2

)1/p

+ E

( 1

n

n∑
i=1

‖f(Xi)− f ′(Xi)‖p2

)1/p
 .
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Note that the following upper bound holds for any f, f ′ ∈ F and x ∈ RD:

‖f(x)− f ′(x)‖2 = max
a: ‖a‖2≤1

〈f(x)− f ′(x), a〉

= max
a: ‖a‖2≤1

〈f(x), a〉 − 〈f ′(x), a〉

= max
a: ‖a‖2≤1

〈f,Kxa〉HK
− 〈f ′,Kxa〉HK

= max
a: ‖a‖2≤1

〈f − f ′,Kxa〉HK

≤ ‖f − f ′‖HK
× max
a: ‖a‖2≤1

‖Kxa‖HK

= ‖f − f ′‖HK
× max
a: ‖a‖2≤1

√
aTK(x, x)a

=
√
B‖f − f ′‖HK

.

As a consequence, substituting this upper bound into the relation above implies that

|Xf −Xf ′ | ≤ 4
√
Bd(f, f ′).

Applying the ε-net argument similar to the Dudley’s entropy integral bound (Wainwright, 2019, Theorem 5.22)
gives

E
[

sup
f∈F

Xf

]
≤ inf
ε>0

{
4
√
Bε+

√
2Kn−1/(2∨p)

√
logN (F , d, ε) + (K/2)n−1/p logN (F , d, ε)

}
Taking N (F , d, ε) =

⌈
1
ε

⌉
and ε = n−1/p implies that

E
[

sup
f∈F

Xf

]
. n−1/(2∨p)

√
log(n) + n−1/p log(n).

Proof of Lemma 2. We start to upper bound the variance term

(KPW (µ̂n, µ))
1/p − E[(KPW (µ̂n, µ))

1/p
].

Denote by X = {xi}ni=1 and X ′ = {x′i}ni=1 i.i.d. samples from µ, and let g(X) = (KPW (µ̂n, µ))
1/p

. Based on the
triangular inequality, we find that

|g(X)− g(X ′)| ≤ n−1/p

(
n∑
i=1

max
f∈F

‖f(xi)− f(x′i)‖2

)1/p

≤ n−1/p

(
n∑
i=1

L‖xi − x′i‖

)1/p

≤ n−1/(2∨p)L1/p‖X −X ′‖.

It follows that
n∑
i=1

‖∇ig(Z)‖2 ≤ n−2/(2∨p)L2/p, max
1≤i≤n

‖∇ig(Z)‖ ≤ n−1/pL1/p.

Then the Poincare’s inequality in Theorem 7 implies that

Pr{
∣∣∣(KPW (µ̂n, µ))

1/p − E[(KPW (µ̂n, µ))
1/p

]
∣∣∣ ≥ t} ≤ exp

(
−K−1 min{tn1/pL−1/p, t2n2/(2∨p)L−2/p}

)
.

Substituting the right-hand-side with α completes the proof.
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Proof of Theorem 3. Based on the triangular inequality, we can see that∣∣ (KPW (µ̂n, ν̂m))
1/p − (KPW (µ, ν))

1/p ∣∣ ≤ (KPW (µ̂n, µ))
1/p

+ (KPW (ν̂m, ν))
1/p

.

It suffices to upper bound (KPW (µ̂n, µ))
1/p

and (KPW (ν̂m, ν))
1/p

separately. By the bias-variance decomposition,

(KPW (µ̂n, µ))
1/p ≤ E[(KPW (µ̂n, µ))

1/p
] +

(
(KPW (µ̂n, µ))

1/p − E[(KPW (µ̂n, µ))
1/p

]

)
,

where the first term quantifies the bias for empirical estimation, and the second term quantifies the variance of
estimation. The bias term can be upper bounded by applying Lemma 1, and the variance term can be upper
bounded by applying Lemma 2. In summary, with probability at least 1− α, it holds that

(KPW (µ̂n, µ))
1/p . max

{
n−1/pK log(1/α), n−1/(2∨p)

√
K log(1/α)

}
L1/p

+ n−
1

(2p)∨d (log n)ζp,d/p + n−1/(2∨p)
√

log(n) + n−1/p log(n).

The upper bound for (KPW (ν̂m, ν))
1/p

can be proceeded similarly.

E.2 Testing Performance

Based on the finite-sample guarantee in Theorem 3, we are able to characterize the performance of the KPW
test. To make the type-I error below than α, we reject the null hypothesis as long as the empirical statistic
KPW (µ̂n, ν̂m) ≥ γm,n, where

γ1/p
m,n ∼ max

{
N−1/pK log(1/α), N−1/(2∨p)

√
K log(1/α)

}
L1/p

+N−
1

(2p)∨d (logN)ζp,d/p +N−1/(2∨p)
√

log(n) +N−1/p log(n).

For the alternative hypothesis, assume that target distributions µ and ν satisfy KPW (µ, ν) > γm,n. Then the
type-II error can be upper bounded as

PrH1

(
KPW (µ̂n, ν̂m) < γm,n

)
= PrH1

(
KPW (µ̂n, ν̂m)−KPW (µ, ν) < γm,n −KPW (µ, ν)

)
= PrH1

(
KPW (µ, ν)−KPW (µ̂n, ν̂m) > KPW (µ, ν)− γm,n

)
≤PrH1

(
|KPW (µ, ν)−KPW (µ̂n, ν̂m)| > KPW (µ, ν)− γm,n

)
≤E (KPW (µ, ν)−KPW (µ̂n, ν̂m))

2(
KPW (µ, ν)− γm,n

)2 .

E.3 Finite-sample Guarantee for p ∈ [1, 2)

In this subsection, we discuss the finite-sample guarantee for KPW distance with p-Wasserstein distance for
p ∈ [1, 2). Note that it is not necessary to rely on the Poincare inequality or projection poincare inequality to
obtain the result. We first present several technical lemmas before showing the final result.

Lemma 10. Based on Assumption 1, for f ∈ {f ∈ H : ‖f‖H ≤ 1}, we have

‖f(x)‖2 ≤
√
B, ∀x ∈ RD.

Proof of Lemma 10. For fixed x ∈ X , the norm of f(x) can be upper bounded as the following:

‖f(x)‖22 = 〈f(x), f(x)〉 = 〈f,Kxf(x)〉H ≤ ‖f‖H‖Kxf(x)‖H ≤ ‖Kxf(x)‖H.
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In particular,

‖Kxf(x)‖2H = 〈Kxf(x),Kxf(x)〉H
= 〈
(
Kxf(x)

)
f(x), f(x)〉

= 〈K(x, f(x))f(x), f(x)〉
= f(x)TK(x, f(x))f(x)

≤ B‖f(x)‖22

Combining those two relations above implies the desired result.

Lemma 11. For p ∈ [1, 2), the bias term of empirical KPW distance can be upper bounded as

E[(KPW (µ̂n, µ))
1/p

] . n−
1

(2p)∨d (log n)ζp,d/p + n1/2−1/p
√

log(n) + n−1/p.

where ζp,d = 1 if d = 2p and ζp,d = 0 otherwise.

Proof of Lemma 11. Following the similar argument as in Lemma 1, we can see that

E[(KPW (µ̂n, µ))
1/p

] ≤ sup
f∈F

E[(W (f#µ̂n, f#µ))
1/p

]

+ E

[
sup
f∈F

(
(W (f#µ̂n, f#µ))

1/p − E[(W (f#µ̂n, f#µ))
1/p

]
)]

,

and the first term can also be bounded similarly. To upper bound the second term, define the empirical process
{Xf} as in Lemma 1. For fixed f , the random variable Xf can be shown to be sub-Gaussian. Denote by

Z = {zi}ni=1 and Z ′(i) the sample set so that the i-th element is different. Take g(Z) = (W (f#µ̂n, f#µ))
1/p

.
Then we have that

|g(Z)− g(Z ′(i))| ≤ (W (f#µ̂n, f#µ̂′n))
1/p ≤

(
1

n
‖f(zi)− f(z′i)‖

p
2

)1/p

≤ n−1/p2
√
B.

Therefore, applying the McDiarmid’s inequality in Theorem 6 implies

Pr{|Xf | ≥ u} ≤ 2 exp

(
− u2

2Bn1−2/p

)
.

Applying Lemma 3 implies that for fixed `, the random variable Xf is sub-Gaussian with the parameter
σ2 = 36Bn1−2/p. Then applying the ε-net argument similar to the Dudley’s entropy integral bound (Wainwright,
2019, Theorem 5.22) gives

E
[

sup
f∈F

Xf

]
≤ inf
ε>0

{
4
√
Bε+

√
36Bn1−2/p

√
2 logN (F , d, ε)

}
.

Taking N (F , d, ε) =
⌈

1
ε

⌉
and ε = n−1/p implies that

E
[

sup
f∈F

Xf

]
. n1/2−1/p

√
log(n) + n−1/p.

Lemma 12. For p ∈ [1, 2), with with probability at least 1− α, it holds that

∣∣∣(KPW (µ̂n, µ))
1/p − E[(KPW (µ̂n, µ))

1/p
]
∣∣∣ ≤ n1/2−1/p

√
2B log

2

α
.
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Proof of Lemma 12. Denote by Z = {zi}ni=1 and Z ′(i) the sample set so that the i-th element is different. Take

g(Z) = (KPW (µ̂n, µ))
1/p

. Then we can see that

|g(Z)− g(Z ′(i))| ≤ (KPW (µ̂n, µ̂
′
n))

1/p ≤ n−1/p2
√
B.

Then applying the McDiarmid’s inequality in Theorem 6 implies

Pr
{∣∣∣(KPW (µ̂n, µ))

1/p − E[(KPW (µ̂n, µ))
1/p

]
∣∣∣ ≥ u} ≤ 2 exp

(
− u2

2Bn1−2/p

)
.

Based on Lemma 11 and Lemma 12, we obtain the uncertainty quantification result in Theorem 4.
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F IMPLEMENTATION DETAILS FOR COMPUTING KPW DISTANCE

The variable s is initialized to be a uniform random vector over sphere. The dual variable v is initialized to be a
Gaussian random vector with unit covariance. When updating the block of variables ut+1 and vt+1, we make
the change of variables (u′)t+1 = exp(ut+1) and (v′)t+1 = exp(vt+1). We update (u′)t+1 and (v′)t+1 instead to
accelerate the computation:

(u′)t+1 =

 1/n∑
j exp

(
− 1
η ci,j + (v′j)

t
)

i

(v′)t+1 =

 1/m∑
i exp

(
− 1
η ci,j + (u′i)

t+1
)

j

,

and we further store the matrix A with Ai,j = exp
(
− 1
η ci,j

)
in advance to reduce the computational cost. The

transport mapping πt+1 , (πi,j(u
t+1, vt+1, st))i,j can be formulated without going through a for loop but only

with multiplication operators:
πt+1 = (u′)t+1 .* A .* [(v′)t+1]T,

where the operator .* means we multiply two objects componentiwisely in terms of array broadcasting. When
updating ζt+1, we first formulate the matrix V t+1 with

V t+1
i,j =

∑
i,j

πt+1
i,j A

T
i,jAi,j

and then continue the matrix multiplication procedure in (6i). Denote by Gi the i-th row block of the gram
matrix G, then

V t+1 =

∑
i,j

πt+1
i,j (Gi +Gn+j)

T(Gi +Gn+j)


i,j

=

∑
i,j

πt+1
i,j (GT

i Gi +GT
n+jGn+j +GT

n+jGi +GT
i Gn+j)


i,j

.

Consequently, we can compute each of the four components in the formula above without executing double for
loops and then sum them up to obtain the matrix V t+1. During the numerical implementation, we also find that
the computation is sensitive to the choice of η. This phenomenon has also been observed when using Sinkhorn’s
algorithm to compute Wasserstein distance or projected Wasserstein distance. When η is too small, the iteration
update may have numerical instability issues. When η is too large, the obtained solution is far away from the
optimal solution to the original KPW distance. We have tried the best to tune this parameter to make the
algorithm maintain the best performance. How to tune this hyper-parameter systematically is left for future
works.
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Figure 4: Mean computation time for computing KPW (µ̂n, ν̂n) for varying n. Results are averaged over 10
independent trials.

G DETAILS ABOUT EXPERIMENT

G.1 Sample Complexity

In this experiment, we fix hyper-parameters σ2 = 1, ρ = 0.5 for computing KPW distances. The values of
empirical KPW distances across different choices of sample size are reported in Figure 1, and the corresponding
computation time is reported in Figure 4. From the plot we can see that it is efficient to compute KPW distances
with reasonably small sample size n and projected dimension d.

G.2 Configurations

All methods are implemented using python 3.7 (Pytorch 1.1) on a MacBook Pro labtop with 32GB of memory.
When running the code, there is no swapping of memory and the average CPU frequency is 3.2 GHZ. We
compute the projected Wasserstein distance based on the official code in https://github.com/fanchenyou/PRW.
We run the MMD-O test based on the code in https://github.com/fengliu90/DK-for-TST. We run the
MMD-NTK test based on the code in https://github.com/xycheng/NTK-MMD. From extensive experiments
we realize that MMD-NTK is the most computationally efficient test, but its power does not scale the best.
On the other hand, this method can be useful when performing a test for the large-sampled case, while our
method may be intractable to compute in short time. We run the ME test based on the code in https:

//github.com/wittawatj/interpretable-test.

G.3 Implementation of Cross-Validation

The candidate choices of hyper-parameters ρ and σ2 are within the set

{(ρ, σ2) : σ2 = a · σ̂2 : a ∈ {0.5, 1, 2}, ρ ∈ {0.25, 0.5, 0.75}},

where σ̂2 denotes the empirical median of pairwise distances between observations. To choose ρ and σ2, we further
split the training set into the training and validation dataset, which contain 70% and 30% data, respectively.
For each choice of hyper-parameters we use the training dataset to obtain a nonlinear projector and examine its
hold-out performance on the validation dataset, which is quantified as the negative of the p-value for two-sample
tests between two collection of samples in the validation dataset. We choose hyper-parameters ρ and σ2 with the
best hold-out performance.

G.4 Tests for Synthetic Datasets

When studying tests on Gaussian distributions, we take both the training and testing sample sizes N to be
50. When reproducing the experiments corresponding to the left two figures in Fig. 3, we take the dimension
D ∈ {20, 40, 60, 80, 100, 120, 140, 160}. When reproducing the experiments corresponding to the right two figures,
we take the sample size n = m ∈ {80, 100, 140, 180, 250}.

https://github.com/fanchenyou/PRW
https://github.com/fengliu90/DK-for-TST
https://github.com/xycheng/NTK-MMD
https://github.com/wittawatj/interpretable-test
https://github.com/wittawatj/interpretable-test
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Table 3: Average type-I error and standard error for two-sample tests in MNIST dataset across different choices
of sample size.

N MMD-NTK MMD-O ME PW KPW

200 0.057±0.0010 0.056±0.0006 0.044±0.0003 0.056±0.0004 0.061±0.0005
250 0.051±0.0003 0.060±0.0001 0.065±0.0002 0.046±0.0003 0.048±0.0002
300 0.068±0.0006 0.055±0.0003 0.059±0.0007 0.056±0.0002 0.053±0.0001
400 0.049±0.0007 0.058±0.0002 0.041±0.0002 0.061±0.0006 0.056±0.0006
500 0.061±0.0006 0.054±0.0004 0.060±0.0002 0.049±0.0003 0.047±0.0004

Avg. 0.057 0.056 0.053 0.054 0.053

G.5 Tests for MNIST handwritten digits

Table 3 present the type-I error for various tests in MNIST dataset, from which we can see that all tests have the
type-I error close to α = 0.05.

G.6 Human activity detection

The pre-processing of data is as follows. We first remove frames in which the person is standing still or with
little movements. Then we delete the first few frames to make the action of bending consist of 500 frames. Next
we delete the last few frames to make the action of throwing consist of 355 frames. We take the window size
W = 100. To perform online change point detection, we pre-train a nonlinear projector using the data before
time index 300 and compute the null statistics for many times to obtain the true threshold. Then we compute
the detection statistic by comparing the distribution between the block of data before time 300 and the data
from the sliding window. We reject the null hypothesis and claim a change is happened if the statistic is above
the threshold. The plot of the detection statistic over time after the time index 400 is presented in Fig. 5, and
the delay detection time corresponding to all users are reported in Table 2.

H IMPACT OF HYPER-PARAMETERS

H.1 Impact of Projected Dimension d

We prefer to choose the projected dimension d with relatively small values since the testing statistic will have
poor sample complexity rate and is expansive to compute for large d. In this section, we examine the testing
performance for different choices of d. In particular, we perform the KPW test on Gaussian distributions (with
diagonal covariance matrices, D = 128 and n = m = 50) and Gaussian mixture distributions (with D = 100 and
n = m = 100) following the setup in Section 5.1, the results of which are reported in Fig. 6. From the plot we can
see that the testing power is generally better for d > 1, which suggests that using vector-valued RKHS is better
than using classical scalar-valued RKHS. Moreover, we observe the performance is insensitive to the choice of d
as long as we take d > 1.

H.2 Impact of Entropic Regularization Parameter η

As pointed out in Genevay et al. (2019), the entropic regularization in (4) could alerady improve the sample
complexity result of Wasserstein distance. We perform experiments in this subsection to validate the impact of
the entropic regularization parameter η for the performance of KPW test. The generated data follows Gaussian
distributions (with n = m = 100) or Gaussian mixture distributions (with n = m = 200) with different choices
of dimension D and fixed sample size. Benchmark methods include 1) KPW test with η = 0 (here Wasserstein
distance is computed exactly and we apply alternating optimization procedure as a heuristic); 2) Sinkhorn test
with the same η as in the KPW test (in which we take the Sinkhorn divergence as the statistic and all training
and testing samples are used); 3) Sinkhorn+ (using all data and post-selecting η with the best performance).
Experiment results are reported in Fig. 7, from which we can see that even Sinkhorn+ test has the curse of
dimension issue. Moreover, the KPW test with η = 0 has similar performance as the KPW test. Hence, we can
assert that the KPW test is capable of alleviating the curse of dimension mainly due to the kernel projection
operator instead of the entropic regularization.
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Figure 5: Comparison of detection statistics from bending to throwing for various testing procedures. Black
dash line indicates the true change-point. Each row corresponds to detection results for each user.

Figure 6: Average power for KPW test across different choices of projected dimension d. Left: Gaussian
distribution; Right: Gaussian mixture distribution. Results are averaged over 10 independent trials.
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Figure 7: Average power for KPW tests and Sinkhorn tests across different choices of data dimension D. Left:
Gaussian distribution; Right: Gaussian mixture distribution. Results are averaged over 10 independent trials.

I SOCIETAL IMPACT

Two-sample testing is not only a fundamental problem in statistics but also growing increasing attention in
machine learning. On the one hand, it plays a key role in modern applications such as anomaly detection and
health care. On the other hand, it can help to design better algorithms for artificial intelligence such as GANs.
Our work shows a competitive performance for dealing with high-dimensional data by nonlinear dimensionality
reduction using kernel trick. It identifies the difference between two collections of samples by extracting the most
representative nonlinear features. We hope this work can be applied to design more powerful algorithms in those
areas.
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