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Abstract

We provide matching upper and lower
bounds of order σ2/ log(d/n) for the predic-
tion error of the minimum `1-norm inter-
polator, a.k.a. basis pursuit. Our result is
tight up to negligible terms when d � n,
and is the first to imply asymptotic con-
sistency of noisy minimum-norm interpola-
tion for isotropic features and sparse ground
truths. Our work complements the literature
on “benign overfitting” for minimum `2-norm
interpolation, where asymptotic consistency
can be achieved only when the features are
effectively low-dimensional.

1 INTRODUCTION

Recent experimental studies (Belkin et al., 2019;
Zhang et al., 2021) reveal that in the modern high-
dimensional regime, models that perfectly fit noisy
training data can still generalize well. The phe-
nomenon stands in contrast to the classical wisdom
that interpolating the data results in poor statistical
performance due to overfitting. Many theoretical
papers have explored why, when, and to what extent
interpolation can be harmless for generalization,
suggesting a coherent storyline: High dimensionality
itself can have a regularizing effect, in the sense
that it lowers the model’s sensitivity to noise. This
intuition emerges from the fast-growing literature
studying min-`2-norm interpolation in the regression
setting with input dimension d substantially exceeding
sample size n (see Bartlett et al. (2020); Dobriban
and Wager (2018) and references therein). Results
and intuition for this setting also extend to kernel
methods (Ghorbani et al., 2021; Mei and Montanari,
2019).
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However, a closer look at this literature reveals that
while high dimensionality decreases the sensitivity to
noise (error due to variance), the prediction error gen-
erally does not vanish as d, n → ∞. Indeed, the bot-
tleneck for asymptotic consistency is a non-vanishing
bias term which can only be avoided when the features
have low effective dimension deff = Tr Σ/|||Σ||| � n,
where Σ is the covariance matrix (Tsigler and Bartlett,
2020). Therefore, current theory does not yet provide
a convincing explanation for why interpolating models
generalize well for inherently high-dimensional input
data. This work takes a step towards addressing this
gap.

When the input data is effectively high-dimensional
(e.g. isotropic and d � n), we generally cannot ex-
pect any data-driven estimator to generalize well un-
less there is underlying structure that can be exploited.
In this paper, we hence focus on linear regression on
isotropic Gaussian features with the simplest struc-
tural assumption: sparsity of the ground truth in the
standard basis. For this setting, the `1-penalized re-
gressor (LASSO, Tibshirani (1996)) achieves minimax
optimal rates in the presence of noise (Van de Geer,
2008), while basis pursuit (BP, Chen et al. (1998)) –
that is min-`1-norm interpolation – generalizes well in
the noiseless case but is known to be very sensitive to
noise (Candes, 2008; Donoho and Elad, 2006).

Given recent results on high dimensionality decreas-
ing sensitivity of interpolators to noise, and classical
results on the low bias of BP for learning sparse sig-
nals, the following question naturally arises:

Can we consistently learn sparse ground truth
functions with minimum-norm interpolators on

inherently high-dimensional features?

So far, upper bounds on the prediction error of the
BP estimator of the order of the noise level O(σ2)
have been derived for isotropic Gaussian (Koehler
et al., 2021; Ju et al., 2020; Wojtaszczyk, 2010), sub-
exponential (Foucart, 2014), or heavy-tailed (Chinot
et al., 2021; Krahmer et al., 2018) features. In the case
of isotropic Gaussian features, even though Chinot
et al. (2021) show a tight matching lower bound for
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adversarial noise, for i.i.d. noise the best known re-
sults are not tight: there is a gap between the non-
vanishing upper boundO(σ2) (Wojtaszczyk, 2010) and

the lower bound Ω
(

σ2

log(d/n)

)
(Chatterji and Long,

2021; Muthukumar et al., 2020). For i.i.d. noise,
Chinot et al. (2021) conjecture that BP does not
achieve consistency (see also Koehler et al. (2021)).

Contribution. We are the first to answer the above
question in the affirmative. Specifically, we show that
for isotropic Gaussian features, BP does in fact achieve
asymptotic consistency when d grows superlinearly
and subexponentially in n, disproving the recent con-
jecture by Chinot et al. (2021). Our result closes the
aforementioned gap in the literature on BP: We give

matching upper and lower bounds of order σ2

log(d/n) on

the prediction error of the BP estimator, exact up to
terms that are negligible when d � n. Further, our
proof technique is novel and may be of independent
interest.

Structure of the paper. The rest of the article is
structured as follows. In Section 2, we give our main
result and discuss its implications. In Section 3, we
present a proof sketch and provide insights on why
our approach leads to tighter bounds than previous
works. We discuss the scope of our assumptions and
motivate future work in Section 4, and conclude the
paper in Section 5.

2 MAIN RESULT

In this section we state our main result, followed by
a discussion of its implications. We consider a lin-
ear regression model with input vectors x ∈ Rd drawn
from an isotropic Gaussian distribution x ∼ N (0, Id),
and response variable y = 〈w∗, x〉+ ξ, where w∗ is the
ground truth to be estimated and ξ ∼ N (0, σ2) is a
noise term independent of x. Given n i.i.d. random
samples (xi, yi)

n
i=1, the goal is to estimate w∗ and ob-

tain a small prediction error (or risk) for the estimate
ŵ

Ex,y(〈ŵ, x〉 − y)2 − σ2 = ‖ŵ − w∗‖22
where we subtract the irreducible error σ2. Note that
this is also exactly the `2-error of the estimator. We
study the min-`1-norm interpolator (or BP solution)
defined by

ŵ = arg min
w

‖w‖1 such that ∀i, 〈xi, w〉 = yi.

Our main result, Theorem 1, provides non-asymptotic
matching upper and lower bounds for the prediction
error of this estimator:

Theorem 1. Suppose ‖w∗‖0 ≤ κ1
n

log(d/n)5 for some

universal constant κ1 > 0. There exist universal con-
stants κ2, κ3, κ4, c1, c2, c3 > 0 such that, for any n, d
with n ≥ κ2 and κ3n log(n)2 ≤ d ≤ exp(κ4n

1/5), the
prediction error satisfies∣∣∣∣‖ŵ − w∗‖22 − σ2

log(d/n)

∣∣∣∣ ≤ c1 σ2

log(d/n)3/2
(1)

with probability at least 1 − c2 exp
(
− n

log(d/n)5

)
−d exp (−c3n) over the draws of the dataset.

A proof sketch is presented in Section 3 and the full
proof is given in Appendix A. We refer to Section 4 for
a discussion on limitations of the assumptions.

This theorem proves an exact statistical rate with re-

spect to the leading factor of order σ2

log(d/n) for the

prediction error of the BP solution. Previous lower

bounds of order Ω
(

σ2

log(d/n)

)
for the same distribu-

tional setting (isotropic Gaussian features, i.i.d. noise)
only apply under more restrictive assumptions, such
as the zero-signal case w∗ = 0 (Muthukumar et al.,
2020), or assuming d > n4 (Ju et al., 2020). On an-
other note the best known upper bounds are of con-
stant order O(σ2) (Chinot et al., 2021; Wojtaszczyk,
2010). Our result both proves the lower bound in more
generality and significantly improves the upper bound
that matches the lower bound, showing that the lower
bound is in fact tight. An important implication of
the upper bound is that BP achieves high-dimensional
asymptotic consistency when d = ω(n), thus disprov-
ing to a recent conjecture by Chinot et al. (2021).

Dependency on w∗. We note that the bound for
the risk in Theorem 1 is independent of the choice
of w∗ assuming that it is sparse (i.e, has bounded `0-
norm). Essentially, this arises from the well known fact
that in the noiseless case (σ = 0) we can achieve exact
recovery Candes (2008) of sparse ground truths. More
generally, existing upper bounds for the prediction er-
ror of the BP estimator for general ground truths w∗

are of the form1

‖ŵ − w∗‖22 .
‖ξ‖22
n

+ ‖w∗‖21
log(d/n)

n
(2)

(see e.g. (Chinot et al., 2021, Theorem 3.1)). That
is, they contain a first term reflecting the error due
to overfitting of the noise ξ which is independent of
w∗ and a second term which can be understood as
the noiseless error only depending on w∗ but not on
the noise ξ. In fact, the authors of both papers

1The notation a . b means that there exists a universal
constant c1 > 0 such that a ≤ c1b, and we write a � b for
a . b and b . a.
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show that assuming the ground truth is hard-sparse
(bounded `0-norm), the second term on the RHS in
Equation (2) can be avoided, resulting in the bound

‖ŵ − w∗‖22 . ‖ξ‖22
n . Therefore, it is also not surpris-

ing that our tighter bound in Equation (1) does not
explicitly depend on w∗.

2.1 Numerical simulations

We now present numerical simulations illustrating
Theorem 1. Figure 1a shows the prediction error of
BP plotted as a function of log(d/n) with varying d
and n = 400 fixed, for isotropic inputs generated from
the zero-mean and unit-variance Normal, Log Normal
and Rademacher distributions. For all three distribu-
tions, the prediction error closely follows the trend line

σ2

log(d/n) (dashed curve). While Theorem 1 only applies

for Gaussian features, the figure suggests that this sta-
tistical rate of BP holds more generally (see discussion
in Section 4).

Figure 1b shows the prediction error of the min-`1-
norm (BP) and min-`2-norm interpolators as a func-
tion of the noise σ2, for fixed d and n. The prediction
error of the former again aligns with the theoretical

rate σ2

log(d/n) . Furthermore, we observe that the min-

`1-norm interpolator is sensitive to the noise level σ2,
while the min-`2-norm interpolator has a similar (non-
vanishing) prediction error across all values of σ2.

For both plots we use n = 400 and average the predic-
tion error over 20 runs; in Figure 1b we additionally
show the standard deviation (shaded regions). The
ground truth is w∗ = (1, 0, · · · , 0). Finally, we choose
σ2 = 1 in Figure 1a, and d = 20000 in Figure 1b.

2.2 Implications and insights

We now discuss further high-level implications and in-
sights that follow from Theorem 1.

High-dimensional asymptotic consistency. Our
result proves consistency of BP for any asymptotic
regime d � nβ with β > 1. In fact, we argue that
those are the only regimes of interest. For d growing
exponentially with n, known minimax lower bounds

for sparse problems of order σ2s log(d/s)
n (with s ≤ n

the `0-norm of the BP estimator), preclude consis-
tency (Verzelen, 2012). On the other hand, for linear
growth d � n, i.e., β = 1 – studied in detail by Li
and Wei (2021) –, the uniform prediction error lower

bound σ2n
d−n holding for all interpolators (Zhou et al.,

2020; Muthukumar et al., 2020) also forbids vanishing
prediction error. Note that for d � nβ (β > 1), asymp-
totic consistency can also be achieved by a carefully
designed “hybrid” interpolating estimator (Muthuku-

mar et al., 2020, Section 5.2); contrary to BP, this
estimator is not a minimum-norm interpolator, and is
not structured (not n-sparse).

Trade-off between structural bias and sensitiv-
ity to noise. As mentioned in the introduction, our
upper bound on the prediction error shows that, con-
trary to min-`2-norm interpolation, BP is able to learn
sparse signals in high dimensions thanks to its struc-
tural bias towards sparsity. However, our lower bound
can be seen as a tempering negative result: The pre-

diction error decays only at a slow rate of σ2

log(d/n) .

Compared to min-`2-norm interpolation, BP (min-`1-
norm interpolation) suffers from a higher sensitivity
to noise, but possesses a more advantageous struc-
tural bias. To compare the two methods’ sensitivity to
noise, consider the case w∗ = 0, where the prediction
error purely reflects the effect of noise. In this case, al-
though both methods achieve vanishing error, the sta-

tistical rate for BP, σ2

log(d/n) , is much slower than that

of min-`2-norm interpolation, σ2 max( 1√
n
, nd ) (Koehler

et al., 2021, Theorem 3). Contrariwise, to compare
the effect of structural bias, consider the noiseless case
with a non-zero ground truth. It is well known that
BP successfully learns sparse signals (Candes, 2008),
while min-`2-norm interpolation always fails to learn
the ground truth due to the lack of any corresponding
structural bias.

Thus, there appears to be a trade-off between struc-
tural bias and sensitivity to noise: BP benefits from a
strong structural bias, allowing it to have good perfor-
mance for noiseless recovery of sparse signals, but in
return displays a poor rate in the presence of noise –
while min-`2-norm interpolation has no structural bias
(except towards zero), causing it to fail to recover any
non-zero signal even in the absence of noise, but in re-
turn does not suffer from overfitting of the noise. This
behavior is also illustrated in Figure 1b.

3 PROOF SKETCH

In this section we show the main ingredients that

are key to prove our risk upper bound of σ2

log(d/n) +

O
(

σ2

log(d/n)3/2

)
. The proof sketch is interleaved with

remarks providing insights on how our technique al-
lows to improve upon previous works. For the sake of
clarity, we omit the discussion of the matching lower
bound, as its proof follows exactly the same ideas. The
full proof is given in Appendix A.

The proof follows a standard localization/uniform con-
vergence argument, where we first upper-bound the
`1-error ‖ŵ − w?‖1 (localization) and then uniformly
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(a) Prediction error of BP vs. log(d/n) (b) Prediction error vs. σ2

Figure 1: Prediction error as a function of (a) log(d/n) with varying d and n = 400 fixed, and (b)
σ2 = 1 with d = 20000, n = 400. The features are generated by drawing from the isotropic zero-mean
and unit-variance (b) Normal and (a) Normal, Log Normal and Rademacher distributions. For BP on

Gaussian-distributed features (orange squares), the plots correctly reflect the theoretical rate σ2

log(d/n)

(dashed curve). See Section 2.1 for further details.

upper-bound the risk (i.e. `2-error) over all interpola-
tors with bounded `1-error (uniform convergence).

3.1 Localization

We derive a high-probability upper bound on the `1-
error: ‖ŵ − w?‖1 ≤ B(n, d), implying that the esti-
mator of interest ŵ is an interpolator located in the
`1-ball of radius B(n, d) centered at w?.

To upper-bound ‖ŵ − w?‖1 we first observe that, by
definition of the BP estimator ŵ and via a simple tri-
angle inequality (Chinot et al., 2021), it holds that

‖ŵ − w?‖1 ≤ 2
√
‖w∗‖0 ‖ŵ − w

∗‖2 + min
Xw=ξ

‖w‖1

which is proven in Lemma 1. To control the first
term, we make use of the loose high-probability upper
bound ‖ŵ − w∗‖2 . σ from previous works (Chinot
et al., 2021; Wojtaszczyk, 2010). Thus we have
2
√
‖w∗‖0 ‖ŵ − w∗‖2 . σ

√
‖w∗‖0. The second term,

ΦN := minXw=ξ ‖w‖1, reflects how enforcing the inter-
polation of noise affects the `1-norm of the estimator.
To control it with high probability directly is challeng-
ing, due to the randomness of both data X and noise ξ.
Instead, we bound it using the Convex Gaussian Min-
imax Theorem (CGMT) (Thrampoulidis et al., 2015);
we postpone the sketch of this derivation to Section 3.4
where we show how we derive a high probability bound
ΦN ≤M(n, d) (the precise expression can be found in
Proposition 2). Having controlled the two terms sep-
arately, we get the high-probability bound

‖ŵ − w∗‖1 ≤ cσ
√
‖w∗‖0 +M(n, d) =: B(n, d)

for some universal constant c > 0. Note that by as-
sumption on ‖w∗‖0, the first term is of order at most√

σ2n
log(d/n)5 , so negligible compared to M(n, d) which

is of order
√

σ2n
log(d/n) .

How tightness of M(n, d) affects the upper
bound. Intriguingly, our analysis requires a very
precise expression for the deterministic upper bound
on ΦN = minXw=ξ ‖w‖1. Let M(n, d) be the one used
in our analysis, given in Proposition 2. If we use a dif-
ferent expression M̃(n, d) as the upper bound of ΦN
instead of M(n, d) in the rest of our analysis,

1. for M̃(n, d) = M(n, d)
(

1 + Θ
(

1
log(d/n)2

))
: We

would still get exactly the precise upper bound of
Theorem 1.

2. for M̃(n, d) = M(n, d)
(

1 + Θ
(

1
log(d/n)

))
: We

would obtain an upper bound of the correct or-
der up to a universal constant factor ‖ŵ − w∗‖22 .

σ2

log(d/n) .

3. for M̃(n, d) = M(n, d) (1 + Θ (1)): In this case
our analysis would only yield an upper bound of
constant order ‖ŵ − w∗‖22 . σ2, same as obtained
by Chinot et al. (2021); Wojtaszczyk (2010).

Yet, it is not clear whether the tightness of M(n, d)
is only needed due to our analysis, or whether any
uniform convergence bound with the corresponding
B(n, d) would fail to yield tight bounds. We leave this
question as an interesting direction for future work,
described further in Section 4.
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Comparison to Chinot et al. (2021); Woj-
taszczyk (2010). As we discussed above, the tight
expression for M(n, d) is crucial for our analysis to
yield the tight bounds in Theorem 1. In comparison,
in the paper Chinot et al. (2021) the authors derive an

upper bound for M(n, d) of order ∼
√

2 σ2n
log(d/n) and

hence existing bounds are not sufficiently tight. How-
ever, we further note that the bound on M(n, d) is
not the only contribution of this paper as inserting our
bound in the analysis conveyed in Chinot et al. (2021);
Wojtaszczyk (2010); Koehler et al. (2021) would still
result in a constant upper bound of order σ2 (see the
next subsection for a detailed discussion on Koehler
et al. (2021)). Finally, we note that Chinot et al.
(2021); Wojtaszczyk (2010) both study the case where
the noise can also be adversarial, for which the rate of
order σ2 for the risk is optimal.

3.2 Uniform risk bound and reduction to
auxiliary problem by GMT

Given that ŵ belongs with high probability to the set
of interpolators located in the `1-ball of radius B(n, d)
centered at w?, we proceed to upper-bound the risk of
all such interpolators.

Concretely, we find a high-probability upper bound on

Φ+ := max
w
‖w − w?‖22 s.t ‖w − w∗‖1 ≤ B(n, d)

and X(w − w∗) = ξ

= max
w
‖w‖22 s.t ‖w‖1 ≤ B(n, d) and Xw = ξ.

While directly bounding Φ+ is challenging due to the
randomness of both X and ξ, we can instead make
use of the Gaussian Minimax Theorem (GMT) which
allows us to equivalently upper-bound the value of the
so-called auxiliary problem

φ+ := max
w
‖w‖22 s.t ‖w‖1 ≤ B(n, d) (3)

and 〈w, h〉2 ≥ (1− ρ)n(σ2 + ‖w‖22)

with h an i.i.d. Gaussian random vector and ρ a van-
ishing parameter. Indeed, the GMT ensures that
PX,ξ(Φ+ > t) ≤ 2Ph(φ+ ≥ t)+ερ (see Proposition 1 for
the expression of ερ); in words, a high-probability up-
per bound on φ+ gives a high-probability upper bound
on Φ+.

The crux of the analysis is thus to obtain a good up-
per bound for φ+. Since φ+ is defined as the optimal
value of a maximization problem, a possible approach
is to consider relaxations of it; as detailed in the next
remark, this leads to loose bounds.

Comparison to Koehler et al. (2021). The op-
timization problem defining φ+ in Equation (3) is a
maximization problem of a convex function over non-
convex constraints. We now show how to obtain a
first loose upper bound following Koehler et al. (2021)
and briefly discuss why this methodology fails to give
tight bounds (see also the paragraph “Application:
Isotropic features” in that paper).

Using Hölder’s inequality 〈w, h〉 ≤ ‖w‖1 ‖h‖∞, we ob-
tain a proper relaxation of the problem (3) if we replace
the constraints by

B(n, d)2‖h‖2∞ ≥ (1− ρ)n(σ2 + ‖w‖22).

This immediately implies the upper bound

φ+ ≤
B(n, d)2‖h‖2∞
n(1− ρ)

− σ2.

However this bound is loose, even when we plug
in our tight localization bound for B(n, d)2 ≈

σ2n
2 log(d/n)−log log(d/n) . Indeed, with this estimate and

by Gaussian concentration results, the above bound
reads for d� n

φ+ ≤
B(n, d)2‖h‖2∞
n(1− ρ)

− σ2

≈ σ2 2 log(d)

2 log(d/n)
− σ2 = σ2 log(n)

log(d/n)
.

Note that this bound is constant in any polynomial
growth regime d � nβ , while we prove an upper bound
in Theorem 1 which vanishes in these regimes as d, n→
∞.

This looseness points to the fact that using Hölders
inequality is too imprecise. In the next subsection,
we describe our refined analysis which better takes
into account the relationship between 〈w, h〉 , ‖w‖2 and
‖w‖1.

3.3 Path approach: reparametrizing the
auxiliary problem as a one-dimensional
problem

The key observation that allows us to derive a tight
bound for φ+, is that we can cast the d-dimensional
problem (3) into a one-dimensional problem, which
we can study explicitly. Namely, we identify a path
γ : R → Rd for which we show that the optimum
in (3) is necessarily attained at B(n, d)γ(α)/ ‖γ(α)‖1
for some α ∈ R. Note that our reduction is exact, not
a relaxation.

More precisely, we define the path γ : [1, αmax] → Rd



Tight bounds for minimum `1-norm interpolation of noisy data

by

γ(α) = arg min
w

‖w‖22 s.t


〈w, h〉 = ‖h‖∞
∀i, hiwi ≥ 0

‖w‖1 = α

(in particular ‖γ(α)‖1 = α) and we show that

φ+ = B(n, d)2 max
1≤α≤αmax

(
‖γ(α)‖2

α

)2

(4)

s.t.
‖h‖2∞

(1− ρ)n
≥ α2σ2

B(n, d)2
+ ‖γ(α)‖22

(see Appendix A.2). Because γ(α) is the argmin of a
convex optimization problem, it is relatively easy to
study, and we can even derive an exact expression for
it (Lemma 3). We now discuss the two key steps to
study the optimization problem in Equation (4).

a) Monotonicity of the objective. We observe

that ‖γ(α)‖2
α is monotonically decreasing and that

‖γ(α)‖22 is a convex function (Lemma 5). This has
two important consequences. Firstly, the set of α’s
which satisfy the constraints in (4) is an interval, de-
noted [αI , αI ]. Secondly, denoting α∗ (∈ [αI , αI ]) an
argmax of (4), we have for any α < αI

B(n, d)2

(
‖γ(α)‖2

α

)2

≥ B(n, d)2

(
‖γ(α∗)‖2

α∗

)2

= φ+.

So to obtain an upper bound on φ+, all we need is to
find an α on the left of the feasible interval [αI , αI ]. We
do this by finding both an αn such that αI ≤ αn ≤ αI
(i.e. αn is feasible), and an αs such that αs < αn and
αs 6∈ [αI , αI ] (i.e. αs is not feasible).

b) Discretization of the path. We observe that
there exist “breakpoints” 1 = α2 < ... < αd+1 = αmax

for which γ(αs) has a special structure (in particular it
is (s− 1)-sparse). Further, applying Gaussian concen-
tration results to h leads to high-probability estimates
for αs and ‖γ(αs)‖2 (Proposition 4). Thanks to those
estimates, we show that αn is feasible for (4) and we
find a choice of s < n such that αs is not feasible, with
high probability. Thus, with high probability φ+ is

upper-bounded by B(n, d)2
(
‖γ(αs)‖
αs

)2

– for which we

have high-probability estimates.

Intuition for the definition of γ(α). As discussed
in the previous subsection, the relaxation of (A+)
based on Hölder’s inequality 〈w, h〉 ≤ ‖w‖1 ‖h‖∞, used
by Koehler et al. (2021), is too loose. Informally, it ef-
fectively amounts to forgetting the direction of h and
only optimizing over the `1 and `2-norms of vectors.
The main idea of our refined analysis is to introduce

a path, {γ(α)/α}α, allowing us to better take into ac-
count the relationship between 〈w, h〉 , ‖w‖2 and ‖w‖1.
To intuitively understand how the path achieves this
goal, it may be easier to use its following form:

γ(β) = arg max
w

〈w, h〉 s.t


‖w‖22 ≤ β
∀i, hiwi ≥ 0

‖w‖1 = 1

,

which is equivalent to γ(α) up to linear reparametriza-
tion and rescaling (see Equation (10) in Ap-
pendix B.3). Note that 〈γ(1), h〉 = ‖h‖∞ ‖γ(1)‖1,
which exactly recovers the equality case of Hölder’s
inequality (i.e. γ(1) is a subgradient of the `1-norm at
h). More generally, 〈w, h〉 ≤ 〈γ(β), h〉 ‖w‖1 for any w

such that ‖w‖22 ≤ β ‖w‖
2
1, which can be understood as

a refined Hölder’s inequality for limited `2-norms.

3.4 Obtaining a good estimate for ΦN

Finally, we unveil how we derive the high-probability
upper bound ΦN ≤ M(n, d) in the localization step
(1.): The derivation actually uses the same tools as for
the upper bound of Φ+. Using the Convex Gaussian
Minimax Theorem (CGMT) (Thrampoulidis et al.,
2015), which is a variant of the GMT for convex-
concave functions, we can again introduce an auxiliary
problem

φN := min
w
‖w‖1 s.t 〈w, h〉2 ≥ (1 +ρ)n(σ2 + ‖w‖22)

with h an i.i.d. Gaussian vector and ρ a vanishing pa-
rameter, with the property that high-probability upper
bounds on φN give high-probability upper bounds on
ΦN . Further, we can again reduce this d-dimensional
optimization problem to one over the same path
{γ(α)}α:

φN = min
1≤α≤αmax

f(α) s.t ‖h‖2∞ ≥ (1 + ρ)n ‖γ(α)‖22
(5)

(see Appendix A.1.1 for the expression of f(α)).

Since we want to upper-bound this minimum, it is suf-
ficient to find some α which satisfies the constraints in
Equation (5). In particular, we again focus on the
breakpoints {αs}s∈{2,...,d+1}, and show that with high
probability α = αn is a valid choice which is approxi-
mately tight (see Remark 1).

Sparsity of γ(αn). In summary, the proof is essen-
tially based on the localization around a rescaled ver-
sion of γ(αn), which is a (n − 1)-sparse vector. This
choice can also be motivated by a different argument:
It is well known that the minimizer of the optimiza-
tion problem minXw=ξ ‖w‖1 defining ΦN is n-sparse.
Hence, due to the strong connection between the opti-
mization problems defining φN and ΦN , we also expect
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the minimizer of Equation (5) to be approximately n-
sparse.

4 FUTURE WORK

Our main result gives tight bounds for BP on isotropic
Gaussian features. It would be interesting to extend
the study to other connected settings, which we now
motivate and for which we summarize key challenges.
Furthermore, we pose a research question which aims
to give a better intuition for the proof.

Necessity of tightness at the localization step.
As discussed in Section 3.1, in order to obtain the right
rate in Theorem 1, the localization step of our analysis
needed to be very tight. The expression we derive for a
high-probability upper bound M(n, d) (from Proposi-
tion 2) on minXw=ξ ‖w‖1 needs to be precise up to rel-

ative error of no more than Θ
(

1
log(d/n)2

)
. This strikes

us as an unusual feature of our derivation. Yet, it is
unclear whether this is an artifact of our analysis via
the application of the GMT, or whether this is due
to the nature of the statistical problem itself. More
specifically, we motivate future research to answer the
question whether it is true that

1. for any M̃(n, d) = cM(n, d) with c > 1, we have
that with high probability,

max
‖w‖1≤M̃(n,d)

Xw=ξ

‖w‖22 � σ
2.

2. for any M̃(n, d) = M(n, d)(1 + ω( 1
log(d/n) )), we

have that with high probability,

max
‖w‖1≤M̃(n,d)

Xw=ξ

‖w‖22 = ω

(
σ2

log(d/n)

)
.

Resolving this question is challenging due to the non-
concavity of the maximization objective. While we can
still use the GMT to upper-bound this quantity (see
Proposition 1), we cannot use the CGMT to lower-
bound it, and thus the methodologies used in this pa-
per fall short. As a possible direction, we note that
this hypothesis is related to the question of finding
tight lower bounds for the diameter of the intersection
of the kernel of X and the `1-ball (see Theorem 3.5 in
Vershynin (2011)).

Non-isotropic features. Theorem 1 assumes
isotropic features as we are interested in showing
consistency of BP for inherently high-dimensional
input data. By contrast, recently there has been an
increased interest in studying spiked covariance data

models (see e.g. Bartlett et al. (2020); Muthukumar
et al. (2021); Chatterji and Long (2021)). In such
settings even min-`2-norm interpolators can achieve
consistency. The main obstacle to extending our
methodology to non i.i.d. features lies in adapting
the definition of the path {γ(α)}α. Assuming a
diagonal covariance matrix, such an extension should
be relatively straightforward. We leave this task and
the challenging non-diagonal case for future work.

Non-Gaussian features. The proof of Theorem 1
crucially relies on the (Convex) Gaussian Minimax
Theorem (Thrampoulidis et al., 2015; Gordon, 1988),
and hence on the assumption that the input features
are drawn from a Gaussian distribution. In Figure 1a,
we include plots of the prediction error ‖ŵ − w∗‖22
not only for Gaussian but also for Log Normal and
Rademacher distributed features. We observe that in
all three cases, the prediction error closely follows the

trend line σ2

log(d/n) (dashed curve). This leads us to

conjecture that Theorem 1 can be extended to a more
general class of distributions.

Generalizing our results in this direction appears to be
a challenging task since the tools used in this paper are
not directly applicable anymore. Instead, for heavy-
tailed distributions, a popular theoretical framework is
the small-ball method (Mendelson, 2014; Koltchinskii
and Mendelson, 2015), which covers the Log Normal
and Rademacher distributions. Chinot et al. (2021)
apply this approach to min-`1-norm interpolation, and
obtain the constant upper bound O(σ2), under more
general assumptions than our setting (in particular
their analysis handles adversarial noise with magni-
tude controlled by σ2). Yet, it is unclear whether the
looseness of their upper bound is an artifact of their
proof, or whether the small-ball method itself is too
general to capture the rates observed in Figure 1a.

Finally, we also leave it as future work to adapt our
proof technique for minimum-norm interpolators with
general norms, and for classification tasks.

5 CONCLUSION

By introducing a novel proof technique, we derive

matching upper and lower bounds of order σ2

log(d/n)

on the prediction error of basis pursuit (BP, or min-
`1-norm interpolation) in noisy sparse linear regres-
sion. Our result closes a gap in the minimum-norm
interpolation literature, disproves a conjecture from
Chinot et al. (2021), and is the first to imply asymp-
totic consistency of a minimum-norm interpolator for
isotropic features. Furthermore, the prediction error
decays with the amount of overparametrization d/n,
confirming that BP also benefits from the regulariza-
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tion effect of high dimensionality, as suggested by the
modern storyline on interpolating models.
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Supplementary Material:
Tight bounds for minimum `1-norm interpolation of noisy data

A PROOF OF MAIN RESULT

In this section, we present the proof of our main result, Theorem 1. In Appendix A.1, we describe the main
steps of the proof rigorously, in the form of three propositions which we then prove in Appendix A.2. Full proofs
for the intermediary Lemmas and Propositions are given in Appendix B.

Notation. On the finite-dimensional space Rd, we write ‖·‖2 for the Euclidean norm and 〈·, ·〉 for the Euclidean
inner product. The `1 and `∞-norms are denoted by ‖·‖1 and ‖·‖∞, respectively. The vectors of the standard
basis are denoted by e1, ..., ed, and 1 ∈ Rd is the vector with all components equal to 1. For s ≤ d and H ∈ Rd,
H[s] is the vector such that (H[s])i = Hi if i ≤ s and 0 otherwise. N (µ,Σ) is the normal distribution with mean
µ and covariance Σ, Φ(x) is the cumulative distribution function of the scalar standard normal distribution,
Φ{(x) = 1−Φ(x), and log denotes the natural logarithm. For all s ≤ d, we denote by ts ∈ R the quantile of the
standard normal distribution defined by 2Φ{(ts) = s/d. The n samples xi ∈ Rd form the rows of the data matrix

X = [x1 ... xn]
>

, with Xij ∼ N (0, 1) for each i, j. The scalars yi, ξi are also aggregated into vectors y, ξ ∈ Rn
with ξ ∼ N (0, σ2In) and y = Xw∗ + ξ. With this notation, ŵ interpolates the data Xŵ = y which is equivalent
to X(ŵ − w∗) = ξ. To easily keep track of the dependency on dimension and sample size, we reserve the O(·)
notation to contain only universal constants, without any hidden dependency on d, n, σ2 or ‖w∗‖0. We will also
use c1, c2, ... and κ1, κ2, ... to denote positive universal constants reintroduced each time in the proposition and
lemma statements, except for c and c0 which should be considered as fixed throughout the whole proof.

A.1 Proof of Theorem 1

We proceed by a localized uniform convergence approach, similar to Chinot et al. (2021); Koehler et al. (2021);
Ju et al. (2020); Muthukumar et al. (2020), and common in the literature, e.g., on structural risk minimization.
That is, the proof consists of two steps:

1. Localization. We prove that, with high probability, the min-`1-norm interpolator ŵ satisfies ‖ŵ − w∗‖1 ≤
cσ
√
‖w∗‖0 + minXw=ξ ‖w‖1 for some universal constant c > 0. We then derive a (finer than previously

known) high-probability upper bound on the second term,

min
Xw=ξ

‖w‖1 =: ΦN ≤M(n, d). (PN )

Consequently, with high probability ŵ satisfies

‖ŵ − w∗‖1 ≤ cσ
√
‖w∗‖0 +M(n, d) =: B(n, d).

2. Uniform convergence. We derive high-probability uniform upper and lower bounds on the prediction error for
all interpolators located no farther than B(n, d) from w∗ in `1 norm. In symbols, we find a high-probability
upper bound for

max
‖w−w∗‖1≤B(n,d)
X(w−w∗)=ξ

‖w − w∗‖22 = max
‖w‖1≤B(n,d)

Xw=ξ

‖w‖22 =: Φ+ (P+)

and a high-probability lower bound for

min
‖w−w∗‖1≤B(n,d)
X(w−w∗)=ξ

‖w − w∗‖22 = min
‖w‖1≤B(n,d)

Xw=ξ

‖w‖22 =: Φ−. (P−)
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By definition of B(n, d) in (PN ), with high probability the min-`1-norm interpolator ŵ belongs to the set of
feasible solutions in (P+) and (P−), and hence the second step yields high-probability upper and lower bounds

on its prediction error ‖ŵ − w∗‖22.

The key is thus to derive tight high-probability bounds for the quantities ΦN ,Φ+,Φ−. Our derivation proceeds
in two parts, described below. The first part uses the CGMT to convert the original optimization problem to an
auxiliary problem, similar to Koehler et al. (2021). The second part, which contains the crucial elements for our
proof of the vanishing upper bound and is the key technical contribution of this paper, consists in reducing the
d-dimensional auxiliary problem to a scalar one using a path reparametrization.

Preliminary: Localization around w∗. The following fact shows how, as announced, ΦN can be used to
derive a localization bound for ŵ.

Lemma 1. Suppose ‖w∗‖0 ≤ κ1
n

log(d/n)5 for some universal constant κ1 > 0. There exist universal constants

κ2, κ3, κ4, c, c3 > 0 such that, if n ≥ κ2 and κ3n log(n)2 ≤ d ≤ exp(κ4n
1/5), then the min-`1-norm interpolator

ŵ satisfies

‖ŵ − w∗‖1 ≤ cσ
√
‖w∗‖0 + min

Xw=ξ
‖w‖1

with probability at least 1− d exp (−c3n).

The proof of Lemma 1 is given in Appendix B.1. Interestingly, it makes use of the loose upper bound ‖ŵ − w∗‖22 .
σ2, shown previously by Wojtaszczyk (2010) and Chinot et al. (2021), as an intermediate result.

A.1.1 (Convex) Gaussian Minimax Theorem

Since each of the quantities ΦN ,Φ+,Φ− is defined as the optimal value of a stochastic program with Gaussian
parameters, we may apply the (Convex) Gaussian Minimax Theorem ((C)GMT) (Gordon, 1988; Thrampoulidis
et al., 2015). On a high level, given a “primary” optimization program with Gaussian parameters, the (C)GMT
relates it to an “auxiliary” optimization program, so that high-probability bounds on the latter imply high-
probability bounds on the former. The following proposition applies the CGMT on ΦN and the GMT on Φ+,
Φ−.

Proposition 1. For h ∼ N (0, Id), define the stochastic auxiliary optimization problems:

φN (ρ) = min
w
‖w‖1 s.t 〈w, h〉2 ≥ (1 + ρ)n(σ2 + ‖w‖22) (AN )

φ+(ρ) = max
w
‖w‖22 s.t

{
‖w‖1 ≤ B(n, d)

〈w, h〉2 ≥ (1− ρ)n(σ2 + ‖w‖22)
(A+)

φ−(ρ) = min
w
‖w‖22 s.t

{
‖w‖1 ≤ B(n, d)

〈w, h〉2 ≥ (1− ρ)n(σ2 + ‖w‖22)
(A−)

where 0 < ρ < 1/2 can be any small enough quantity. For any t ∈ R, it holds that

P(ΦN > t) ≤ 2P(φN (ρ) ≥ t) + 6 exp

(
−nρ

2

100

)
and P(Φ+ > t) ≤ 2P(φ+(ρ) ≥ t) + 6 exp

(
−nρ

2

100

)
and P(Φ− < t) ≤ 2P(φ−(ρ) ≤ t) + 6 exp

(
−nρ

2

100

)
,

where on the left-hand side P denotes the probability distribution over X and ξ, and on the right-hand side the
distribution over h.

For the remainder of this proof, we choose2

ρ =
10

log(d/n)5/2
.

2This choice of ρ is justified by the proof of Proposition 2. Indeed, for an arbitrary choice of ρ < 1/2, one could
still show the same bound with just an extra factor: (φN )2 ≤ (1 + ρ)M(n, d), holding with still the same probability.
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As such, from now on, we simply write φN , φ+, φ−. The proof of Proposition 1, given in Appendix B.2, closely
follows Lemmas 3-7 in the paper Koehler et al. (2021). For clarity, note that the three pairs of stochastic
programs (PN/AN ), (P+/A+), (P−/A−) are not coupled: Proposition 1 should be understood as consisting of
three separate statements, each using a different independent copy of h.

As a result of the proposition, the goal of finding high-probability bounds on ΦN ,Φ+,Φ− now reduces to finding
high-probability bounds on φN , φ+, φ−, respectively.

A.1.2 Bounds on φN , φ+, φ−

To obtain tight bounds on the auxiliary quantities φN , φ+, φ−, we adopt a significantly different approach from
previous works. The main idea is to reduce the optimization problems (AN ), (A+) and (A−) to optimization
problems over a parametric path {γ(α)}α ⊂ Rd. Here we only state the results and refer to Appendix A.2 for
their proofs and further intuition. For the remainder of this proof, we denote by tn ∈ R the quantile of the
standard normal distribution defined by 2Φ{(tn) = n/d.

Proposition 2. There exist universal constants κ2, κ3, κ4, c0 > 0 such that, if n ≥ κ2 and κ3n ≤ d ≤
exp(κ4n

1/5), then

φ2
N ≤

σ2n

t2n

(
1− 2

t2n
+
c0
t4n

)
with probability at least 1− 6 exp

(
−2 n

log(d/n)5

)
over the draws of h.

Consequently, (PN ) holds with

M(n, d) :=

√
σ2n

t2n

(
1− 2

t2n
+
c0
t4n

)
with probability at least 1− 18 exp

(
− n

log(d/n)5

)
over the draws of X and ξ.

Hence by Lemma 1, the min-`1-norm interpolator is located close to the true vector w∗, namely the `1 distance
is bounded by the deterministic quantity

‖ŵ − w∗‖1 ≤ cσ
√
‖w∗‖0 +M(n, d) =: B(n, d)

with probability at least 1− 18 exp
(
− n

log(d/n)5

)
− d exp (−c3n) and with c, c3 > 0 some universal constants. We

now establish high-probability upper resp. lower bounds for φ+ resp. φ−.

Proposition 3. Suppose ‖w∗‖0 ≤ κ1
n

log(d/n)5 for some universal constant κ1 > 0. There exist universal constants

κ2, κ3, κ4, c1, c3 > 0 such that, if n ≥ κ2 and κ3n ≤ d ≤ exp(κ4n
1/5), then each of the two events

φ+ ≤
σ2

log(d/n)

(
1 +

c1√
log(d/n)

)
and φ− ≥

σ2

log(d/n)

(
1− c1√

log(d/n)

)

happens with probability at least 1− 18 exp
(
− n

log(d/n)5

)
over the draws of h.

Theorem 1 follows straightforwardly from Lemma 1 and Propositions 1, 2 and 3.

A.2 Proof of Propositions 2 and 3

In this section we detail our analysis of the auxiliary optimization problems (AN ), (A+) and (A−). We start
by a remark that considerably simplifies notation: The definitions of φN , φ+, φ− are unchanged if, in (AN ),

This would translate to a bound on ΦN holding with probability 1− 12 exp
(
−2 n

log(d/n)5

)
− 6 exp

(
−nρ

2

100

)
. So the choice

ρ = 10

log(d/n)5/2
“comes at no cost” in terms of the probability with which the bound holds, while being sufficiently small

to allow for a satisfactory bound (it only affects the constant c0 appearing in M(n, d)).
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(A+), (A−), h is replaced by the reordered vector of its absolute order statistics, i.e., by H such that Hi is
the i-th largest absolute value of h. Throughout this proof, we condition on the event where H has distinct
and positive components: H1 > ... > Hd > 0, which holds with probability one. Henceforth, unless specified
otherwise, references to the optimization problems (AN ), (A+) and (A−) refer to the equivalent problems where
h is replaced by H. Also recall that we choose ρ = 10

log(d/n)5/2
. The key steps in the proof of Propositions 2 and

3 are as follows.

• For each of the three optimization problems (AN ), (A+) and (A−), we show that the argmax (or argmin) is

of the form bγ(α) for some b > 0 and a parametric path Γ = {γ(α)
α }α (which depends on H). Hence we can

restate (AN ), (A+) and (A−) as optimization problems over a scalar variable α and a scale variable b > 0.
(Appendix A.2.1)

• Still conditioning on H, we explicitly characterize the parametric path Γ. In particular, we show that it is
piecewise linear with breakpoints γ(αs) having closed-form expressions. (Appendix A.2.2)

• Thanks to the concentration properties of H (Appendix A.2.3), evaluating at one of the breakpoints yields
the desired high-probability upper bound on φN (Appendix A.2.4).

• A fine-grained study of the intersection of R+Γ := {bγ(α)
α }b∈R+,α with the constraint set of (A+) and (A−),

as well as the concentration properties of H, yield the desired high-probability bounds on φ+ and φ−.
(Appendix A.2.5)

A.2.1 Parametrizing the argmax/argmin

Note that in the optimization problems (AN ), (A+) and (A−), the variable w only appears through ‖w‖2, ‖w‖1
and 〈w,H〉. Thus, we can add the constraint that ∀i, wi ≥ 0 without affecting the optimal solution. We will

show that the path Γ =
{
γ(α)
α

}
α

can be used to parametrize the solutions of the optimization problems, where

γ : [1, αmax]→ Rd is defined by

γ(α) = arg min
w

‖w‖22 s.t


〈w,H〉 ≥ ‖H‖∞
∀i, wi ≥ 0

1>w = ‖w‖1 = α

and αmax = d
‖H‖∞
‖H‖1

. Specifically, the following key lemma states that (at least one element of) the argmax/argmin

of (AN ), (A+) and (A−) is of the form bγ(α)
α for some b > 0 and α ∈ [1, αmax]. This allows to reduce the

optimization problems to a single scalar variable and a scale variable.

Lemma 2. Denoting for concision B = B(n, d), we have that:

1. The variable w in (AN ) can equivalently be constrained to belong to the set R+Γ, i.e.,

φN = min
b>0,1≤α≤αmax

b s.t b2 ‖H‖2∞ ≥ (1 + ρ)n(σ2 ‖γ(α)‖21 + b2 ‖γ(α)‖22). (A′N )

2. The variable w in (A+) can equivalently be constrained to belong to the set BΓ, i.e.,

φ+ = max
1≤α≤αmax

B2 ‖γ(α)‖22
‖γ(α)‖21

s.t B2 ‖H‖2∞ ≥ (1− ρ)n(σ2 ‖γ(α)‖21 +B2 ‖γ(α)‖22). (A′+)

3. The variable w in (A−) can equivalently be constrained to belong to the set (0, B]Γ, i.e.,

φ− = min
0<b≤B

1≤α≤αmax

b2
‖γ(α)‖22
‖γ(α)‖21

s.t b2 ‖H‖2∞ ≥ (1− ρ)n(σ2 ‖γ(α)‖21 + b2 ‖γ(α)‖22). (A′−)

The proof of the lemma is given in Appendix B.3. To give an intuitive explanation for the equivalence between

(AN ) and (A′N ), consider a penalized version of (AN ): minw ‖w‖1 − λ
(
〈w, h〉2 − (1 + ρ)n(σ2 + ‖w‖22)

)
with

λ > 0. For fixed values of ‖w‖1 and 〈w, h〉, minimizing this penalized objective is equivalent to minimizing ‖w‖22.

Hence, we can expect the argmin to be attained at bγ(α)
α for some b > 0, α.
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A.2.2 Characterizing the parametric path

As γ(α) is defined as the optimal solution of a convex optimization problem, we are able to obtain a closed-form
expression, by a straightforward application of Lagrangian duality. The only other non-trivial ingredient is to
notice that, at optimality, the inequality constraint 〈w,H〉 ≥ ‖H‖∞ necessarily holds with equality. Denote H[s]

the vector equal to H on the first s components and 0 on the last (d− s), and similarly for 1[s]. Define, for any
integer 2 ≤ s ≤ d,

αs =

(∥∥H[s]

∥∥
1
− sHs

)
‖H‖∞∥∥H[s]

∥∥2

2
−
∥∥H[s]

∥∥
1
Hs

.

Note that α2 = 1. Let αd+1 = αmax.

Lemma 3. For all 1 < α ≤ αmax, denote s the unique integer in {2, ..., d} such that αs < α ≤ αs+1. Then
γ(α) = λH[s] − µ1[s] (in particular it is s-sparse) where the dual variables λ and µ are given by

λ =
1

s
∥∥H[s]

∥∥2

2
−
∥∥H[s]

∥∥2

1

(
s ‖H‖∞ − α

∥∥H[s]

∥∥
1

)
and µ =

1

s
∥∥H[s]

∥∥2

2
−
∥∥H[s]

∥∥2

1

(∥∥H[s]

∥∥
1
‖H‖∞ − α

∥∥H[s]

∥∥2

2

)
.

The proof of the lemma is given in Appendix B.4.

A.2.3 Concentration of norms of γ(αs)

Given the explicit characterization of the parametric path, we now study its breakpoints γ(αs) (s ∈ {2, ..., d}),
and more precisely we estimate ‖γ(αs)‖1 = αs and ‖γ(αs)‖2 as a function of s (we have by definition 〈γ(αs), H〉 =
‖H‖∞). Namely, we prove the following concentration result, where, analogously to tn, we let ts ∈ R denote the

quantity such that 2Φ{(ts) = s/d.

Proposition 4. There exist universal constants κ2, κ3, κ4, c1 > 0 such that for any s, d with s ≥ κ2 and
κ3s ≤ d ≤ exp(κ4s

1/5),∣∣∣∣‖γ(αs)‖1
‖H‖∞

−
(

1

ts
− 2

t3s

)∣∣∣∣ ≤ c1
t5s

and

∣∣∣∣∣‖γ(αs)‖22
‖H‖2∞

− 2

st2s

∣∣∣∣∣ ≤ c1
st4s

, (6)

with probability at least 1− 6 exp
(
−2 s

log(d/s)5

)
over the draws of h.

This proposition relies on and extends the literature studying concentration of order statistics Boucheron and
Thomas (2012); Li et al. (2020). An important ingredient for the proof of the proposition is the following lemma,
which gives a tight approximation for ts.

Lemma 4. There exist universal constants κ3, c1 > 0 such that, for all s ≤ d/κ3, ts satisfies

t
2
s − c1 ≤ t2s ≤ t

2
s

where

ts =

√
2 log(d/s)− log log(d/s)− log(

π

2
).

Furthermore, κ3 and c1 can be chosen (e.g. κ3 = 11 and c1 = 1) such that log(d/s) ≤ t2s ≤ 2 log(d/s).

The proofs of Proposition 4 and of Lemma 4 are given in Appendix B.5.

A.2.4 Localization: Proof of Proposition 2 (upper bound for φN)

We now use the concentration bounds of Proposition 4 to obtain a high-probability upper bound for φN . Recall
from Lemma 2 that it is given by (A′N ):

(φN )2 = min
b>0,1≤α≤αmax

b2 s.t b2 ‖H‖2∞ ≥ (1 + ρ)n(σ2 ‖γ(α)‖21 + b2 ‖γ(α)‖22).
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We may rewrite the constraint as

b2 ‖H‖2∞

(
1− (1 + ρ)n

‖γ(α)‖22)

‖H‖2∞

)
≥ (1 + ρ)nσ2 ‖γ(α)‖21

⇐⇒ b2 ≥
‖γ(α)‖21
‖H‖2∞

σ2n(1 + ρ)

1− (1 + ρ)n
‖γ(α)‖22
‖H‖2∞︸ ︷︷ ︸

=:f(α)2

and (1 + ρ)n
‖γ(α)‖22
‖H‖2∞

< 1.

Thus minimizing over b shows that (φN )2 = min1≤α≤αmax
f(α)2 s.t (1 + ρ)n

‖γ(α)‖22
‖H‖2∞

< 1. Since we want

to upper-bound this minimum, it is sufficient to further restrict the optimization problem by the constraint
α ∈ {αs|s ∈ {2, ..., d}}, yielding

(φN )2 ≤ min
2≤s≤d+1

f(αs)
2 s.t (1 + ρ)n

‖γ(αs)‖22
‖H‖2∞

< 1.

We now show that for the choice s = n, the constraint is satisfied with high probability, and we give a high-
probability estimate for the resulting upper bound f(αn)2. See Remark 1 below for a justification of this choice.
For the remainder of the proof of Proposition 2, we condition on the event where the inequalities in Equation (6)

hold for s = n. By the concentration bound for ‖γ(αn)‖22, a sufficient condition for the choice s = n to be feasible
is

(1 + ρ)
2

t2n

(
1 +

c1
t2n

)
< 1

with c1 > 0 some universal constant. Now t2n ≥ log(d/n) by Lemma 4, and recall that ρ = 10
log(d/n)5/2

. For κ3

sufficiently large, the above inequality holds for any n, d with κ3n ≤ d. Moreover, by the concentration bounds
for ‖γ(αn)‖22 and ‖γ(αn)‖1, f(αn)2 is upper-bounded by

f(αn)2 ≤
(1− 4

t2n
+O( 1

t4n
))σ2n(1 + ρ)

t2n − 2(1 + ρ)(1 +O( 1
t2n

))
≤ σ2n

t2n
(1 + ρ)

(
1− 2

t2n
+O(

1

t4n
)

)
.

Furthermore, ρ = O
(

1
t5n

)
by Lemma 4, so f(αn)2 ≤ σ2n

t2n

(
1− 2

t2n
+ c0

t4n

)
=: M(n, d)2 for a universal constant

c0 > 0. This concludes the proof of Proposition 2.

Remark 1. Let us informally justify why we can expect the choice s = n to approximately minimize f(αs).
A first justification is that the min-`1-norm interpolator ŵ, which is the solution of the optimization problem
(PN ), is well-known to be n-sparse. Since the optimization problems (PN ) and (AN ) are intimately connected
via the CGMT (Proposition 1), we can expect the optimal solution of (AN ) to have similar properties to ŵ – in
particular, to have the same sparsity s = n. A second, more technical, justification is as follows. Note that if we
replace ‖γ(αs)‖22 and ‖γ(αs)‖1 by their estimates from Proposition 4 and ignore the higher-order terms, we have

f(αs)
2 ≈ 1

t2s

σ2n(1 + ρ)

1− (1 + ρ)n 2
st2s

=
σ2(1 + ρ)

t2s
n − (1 + ρ) 2

s

.

Thus a good choice for s is given by maximizing the denominator. By using the estimate t2s ≈ 2 log(d/s) from
Lemma 4, we can approximate it by

t2s
n
− (1 + ρ)

2

s
≈ 2 log(d/s)

n
− (1 + ρ)

2

s
=: g(s).

Interpreting s as a continuous variable and setting d
dsg(s) = 0 yields the choice s = (1 + ρ)n ≈ n.

A.2.5 Uniform convergence: Proof of Proposition 3 (bounds for φ+ and φ−)

To obtain an upper bound for the maximization problem defining φ+ (resp. lower bound for the minimization
for φ−), a typical approach would be to find a tractable relaxation of the problem. However, the more obvious
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relaxations already explored in the paper Koehler et al. (2021) turn out to be unsatisfactorily loose, as discussed
in Section 3. Here, thanks to the one-dimensional structure of our reformulations (A′+) and (A′−), we take a
different approach and study the monotonicity of the objectives.

We can decompose our proof in three steps. Firstly, we describe our overall monotonicity-based approach.
Secondly, we find values α, α that allow us to unroll our approach. Finally, we evaluate the bound that the first
two steps give us, thus proving the proposition.

Step 1: Studying the feasible set of (A′+) and (A′−). Recall that φ+, φ− are respectively given by
Equations (A′+), (A′−). We can also write them in the following form, using the fact that ‖γ(α)‖1 = α:

φ+ = max
1≤α≤αmax

B2 ‖γ(α)‖22
α2

s.t B2 ‖H‖2∞ ≥ (1− ρ)n(σ2α2 +B2 ‖γ(α)‖22)

φ− = min
0<b≤B

1≤α≤αmax

b2
‖γ(α)‖22
α2

s.t b2 ‖H‖2∞ ≥ (1− ρ)n(σ2α2 + b2 ‖γ(α)‖22).

We first study the sets of feasible solutions of (A′+) and (A′−). Denote by I the former set, i.e.,

I :=
{
α ∈ [1, αmax]

∣∣∣ B2 ‖H‖2∞ ≥ (1− ρ)n
(
σ2α2 +B2 ‖γ(α)‖22

)}
.

Also let αd+1/2 =
‖H‖1‖H‖∞
‖H‖22

; this choice of notation is purely symbolic, and is justified by the fact that αd <
αd+1/2 < αd+1.

Lemma 5. The following statements hold:

1. The mapping α 7→ ‖γ(α)‖22 is decreasing over [1, αd+1/2] and increasing over [αd+1/2, αmax].

2. The mapping α 7→ ‖γ(α)‖22 is convex over [1, αmax], and I is an interval.

3. The mapping α 7→ ‖γ(α)‖22
α2 is monotonically decreasing.

These monotonicity properties lead us to a proof strategy that can be summarized as follows.

Lemma 6. Denote I = [αI , αI ] the endpoints of I. For any α ≤ αI ,

φ+ ≤ B2 ‖γ(α)‖22
α2

.

If αI < αd+1/2, then for any αI ≤ α ≤ αd+1/2,

φ− ≥
σ2n(1− ρ)

‖H‖2∞ − (1− ρ)n ‖γ(α)‖22
‖γ(α)‖22 .

The proofs of Lemma 5 and Lemma 6 are given in Appendix B.6.

Step 2: A tight admissible choice for α and α. To apply Lemma 6 and obtain bounds on φ+, φ−, we
need to find α and α lying on the left, respectively on the right of the interval I, and such that α ≤ αd+1/2. By
having a closer look at the way we derived the expression of M(n, d), we have by construction that with high
probability, αn ∈ I. In fact, we show that there exist integers s and s very close to n such that αs already falls
to the left of I, and αs to the right of I, with high probability.

Lemma 7. Suppose ‖w∗‖1 ≤ κ1

√
σ2n

log(d/n)5 for some universal constant κ1 > 0. There exist universal constants

κ2, κ3, κ4, λ > 0 such that, for any d, n with n ≥ κ2 and κ3n ≤ d ≤ exp(κ4n
1/5), we can find integers s, s ∈ N+

satisfying

s = n exp

(
− λ

2tn

)(
1 +O

(
1

t2n

))
and s = n exp

(
λ

2tn

)(
1 +O

(
1

t2n

))
(7)
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and
αs < αI ≤ αn ≤ αI ≤ αs ≤ αd+1/2,

with probability at least 1− 18 exp
(
− n

log(d/n)5

)
over the draws of h. Moreover, t2s = t2n+O(1) and t2s = t2n+O(1).

The proof of the lemma is given in Appendix B.7. It relies in particular on the assumption that ‖w∗‖0 ≤
κ1

n
log(d/n)5 for some universal constant κ1, which implies that M(n, d) from Proposition 2 is the dominating

term in B, and hence B2 = (M(n, d) + cσ
√
‖w∗‖0)2 = σ2n

t2n

(
1− 2

t2n
+O

(
1
t4n

))
. Furthermore, the equations in

the lemma hold true conditionally on the event where the inequalities in Equation (6) hold simultaneously for
s = n, s = s, and s = s – which indeed occurs with the announced probability. These two elements of the proof
will be reused in the following step.

Step 3: Applying Lemma 6. Lemma 7 provides us with a choice of α = αs and α = αs that satisfy the
conditions of Lemma 6 with high probability. To conclude the proof of Proposition 3, all that remains to be
done is to compute the bounds given by Lemma 6, i.e.,

φ+ ≤ B2

∥∥γ(αs)
∥∥2

2∥∥γ(αs)
∥∥2

1

and φ− ≥
σ2n(1− ρ)

‖H‖2∞ − (1− ρ)n ‖γ(αs)‖22

∥∥γ(αs)
2
∥∥2

2
.

For the remainder of the proof of Proposition 3, we condition on the event where the inequalities in Equa-
tion (6) hold simultaneously for s = n, s = s, and s = s. In particular, the conclusions of Lemma 7 hold,
as discussed just above. We also recall that, because of the assumption on the growth of ‖w∗‖0, we have

B2 = σ2n
t2n

(
1− 2

t2n
+O

(
1
t4n

))
. By applying the concentration inequalities from Equation (6), and using the

above estimate for B2, we obtain

φ+ ≤
σ2n

t2n

(
1 +O

(
1

t2n

))
2

st2s
t2s

(
1 +O

(
1

t2s

))
and φ− ≥

2σ2n

st2s

(
1 +O

(
1

t2n

))
.

By plugging in the approximate expressions of s and s from Equation (7), as well as the estimates t2s = t2n+O(1)

and t2s = t2n +O(1) from Lemma 7, we further obtain

φ+ ≤
2σ2

t2n
exp

(
λ

2tn

)(
1 +O

(
1

t2n

))
and φ− ≥

2σ2

t2n
exp

(
− λ

2tn

)(
1 +O

(
1

t2n

))
.

Finally, by the expansion t2n = 2 log(d/n)+O (log log(d/n)) from Lemma 4 and by the Taylor series approximation
exp(x) = 1 + x+O(x2) (for bounded x), we obtain the desired bounds

φ+ ≤
σ2

log(d/n)

(
1 +O

(
1√

log(d/n)

))
and φ− ≥

σ2

log(d/n)

(
1 +O

(
1√

log(d/n)

))
.

This concludes the proof of Proposition 3.

B PROOF DETAILS

In this appendix, we provide details of the proof of our main result, Theorem 1, omitted in Section A. We refer
to that section for notation.

B.1 Proof of Lemma 1: Preliminary

Let S := {j : w∗j 6= 0} (in particular, ‖w∗‖0 = |S|). Denote by ŵS ∈ Rd the vector with entries (ŵS)j = ŵj if
j ∈ S and 0 otherwise, and let ŵ−S = ŵ − ŵS . Now recall the definition of ŵ, and define v̂ by

ŵ = arg min
w
‖w‖1 s.t X(w − w∗) = ξ

v̂ = arg min
v
‖v‖1 s.t Xv = ξ.
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Clearly by definition of v̂ and ŵ, we have that ‖ŵ‖1 ≤ ‖v̂‖1 + ‖w∗‖1. Therefore

0 ≤ ‖w∗‖1 − ‖ŵ‖1 + ‖v̂‖1
= ‖w∗‖1 − ‖ŵS‖1 − ‖ŵ−S‖+ ‖v̂‖1
≤ ‖w∗ − ŵS‖1 − ‖ŵ−S‖1 + ‖v̂‖1
= 2 ‖w∗ − ŵS‖1 − ‖ŵ − w

∗‖1 + ‖v̂‖1

≤ 2
√
‖w∗‖0 ‖w

∗ − ŵS‖2 − ‖ŵ − w
∗‖1 + ‖v̂‖1 .

Hence,

‖ŵ − w∗‖1 ≤ 2
√
‖w∗‖0 ‖w

∗ − ŵS‖2 + ‖v̂‖1

≤ 2
√
‖w∗‖0 ‖w

∗ − ŵ‖2 + ‖v̂‖1 .

Finally, we bound ‖w∗ − ŵ‖2 by applying Theorem 3.1 of Chinot et al. (2021), noting that its assumptions are
subsumed by the assumptions of our Theorem 1.

B.2 Proof of Proposition 1: Application of the (C)GMT

Proposition 1 reduces the estimation of the quantities ΦN ,Φ+,Φ− in Equations (PN ), (P+), (P−) to the estima-
tion of auxiliary quantities φN , φ+, φ−, using the (C)GMT.

As a first step, we apply the CGMT to ΦN and the GMT to Φ+ analogously to (Koehler et al., 2021, Lem-
mas 4&7). We only restate the results here and refer the reader to that paper for details and proofs. Note that
the (C)GMT is applied on X conditionally on ξ, so that the Gaussianity of the noise is not crucial.

Lemma 8 ((Koehler et al., 2021, Lemma 7), Application of CGMT). Define

φ̃N = min
w
‖w‖1 s.t ‖ξ − g ‖w‖2‖2 ≤ 〈w, h〉 ,

where g ∼ N (0, In) and h ∼ N (0, Id) are independent random variables. Then, for all t ∈ R,

P(ΦN > t) ≤ 2P(φ̃N > t),

where the probabilities on the left and on the right are over the draws of X, ξ and of g, h, ξ, respectively.

Lemma 9 ((Koehler et al., 2021, Lemma 4), Application of GMT). Define

φ̃+ = max
w
‖w‖22 s.t

{
‖w‖1 ≤ B(n, d)

‖ξ − g ‖w‖2‖2 ≤ 〈w, h〉
,

where g ∼ N (0, In) and h ∼ N (0, Id) are independent random variables. Then, for all t ∈ R,

P(Φ+ > t) ≤ 2P(φ̃+ > t),

where the probabilities on the left and on the right are over the draws of X, ξ and of g, h, ξ, respectively.

Following the same argument as in (Koehler et al., 2021, Lemma 4), we can show a corresponding lemma for Φ−
which we state without proof:

Lemma 10 (Application of GMT). Define

φ̃− = min
w
‖w‖22 s.t

{
‖w‖1 ≤ B(n, d)

‖ξ − g ‖w‖2‖2 ≤ 〈w, h〉
,

where g ∼ N (0, In) and h ∼ N (0, Id) are independent random variables. Then, for all t ∈ R,

P(Φ− < t) ≤ 2P(φ̃− < t),

where the probabilities on the left and on the right are over the draws of X, ξ and of g, h, ξ, respectively.

Next, by using Gaussian concentration results, we can formulate simpler versions of the above optimization
problems defining the quantities φ̃’s.
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Simplify φ̃N . Following the same argument as in the first part of the proof of (Koehler et al., 2021, Lemma 8)
(Equations (68)-(70)), we can show that for any 0 < ρ < 1/2, with probability at least 1 − 6 exp(−nρ2/100),
uniformly over w,

‖ξ − g ‖w‖2‖
2
2
≤ (1 + ρ)n(σ2 + ‖w‖22). (8)

So on the event where Equation (8) holds, we have that

φ̃N ≤ min
w
‖w‖1 s.t 〈w, h〉2 ≥ (1 + ρ)n(σ2 + ‖w‖22) = φN

which proves the first inequality in Proposition 1.

Simplify φ̃+, φ̃−. By the same argument as for φ̃N , we can show that for any 0 < ρ < 1/2, with probability
at least 1− 6 exp(−nρ2/100), uniformly over w,

‖ξ − g ‖w‖2‖
2
2
≥ (1− ρ)n(σ2 + ‖w‖22). (9)

So on the event where Equation (9) holds, we have that

φ̃+ ≤ max
w
‖w‖22 s.t

{
‖w‖1 ≤M + 2‖w∗‖1
〈w, h〉2 ≥ (1− ρ)n(σ2 + ‖w‖22)

= φ+,

and similarly φ̃− ≥ φ−. This proves the second and third inequalities in Proposition 1 and thus completes the
proof.

B.3 Proof of Lemma 2: Parametrizing the argmax/argmin

We now prove our first key lemma: we show that, up to scaling, the argmax/argmin in (AN ), (A+), and (A−)

belong to a certain parametric path Γ = {γ(α)
α }α. Throughout this section and the next, we consider H as a

fixed vector such that H1 > ... > Hd > 0. In other words, all of our statements should be understood as holding
conditionally on h, and with h in general position.

For all β ∈ [ 1
d , 1], define

γ(β) = arg max
w

〈w,H〉 s.t


‖w‖22 ≤ β
∀i, wi ≥ 0

1>w = ‖w‖1 = 1

. (10)

Importantly, note that the constraint ‖w‖22 ≤ β in the definition of γ(β) necessarily holds with equality at

optimality. Indeed, suppose by contradiction ‖γ(β)‖22 < β ≤ 1 = ‖γ(β)‖21. This implies that γ(β) has at least
two nonzero components; denote i 6= 1 such that γ(β)i > 0. Then there exists some ε > 0 such that γ(β)+εe1−εei
satisfies the constraints and achieves a higher objective value than γ(β), contradicting its optimality.

The first step of the proof is to show that (at least one element) of the argmax/argmin belongs to the set R+Γ,
where Γ =

{
γ(β); 1

d ≤ β ≤ 1
}

.

Claim 1. For each of the optimization problems (AN ), (A+), and (A−), there exist b > 0 and β ∈ [ 1
d , 1] such

that bγ(β) is an optimal solution.

Proof. Let v be an optimal solution of (AN ). It is straightforward to check that we may assume w.l.o.g. that

∀i, vi ≥ 0. Choose b = ‖v‖1 and β =
‖v‖22
‖v‖21

; note that β ∈ [ 1
d , 1]. By definition, ‖bγ(β)‖2 = ‖v‖2 and ‖bγ(β)‖1 =

‖v‖1, and v/b is feasible for (10) so 〈bγ(β), H〉 ≥ 〈v,H〉. Therefore, bγ(β) satisfies the constraint of (AN ) and
achieves the optimal objective value, so is also an optimal solution of (AN ).

The statements for (A+) and (A−) follow by the exact same argument.

Next, we show that {γ(β)}β and {γ(α)
α }α are two parametrizations of the same path.
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Claim 2. We have the equality

Γ :=

{
γ(β);β ∈

[
1

d
, 1

]}
=

{
γ(α)

α
;α ∈ [1, αmax]

}
=: Γ

where αmax = d
‖H‖∞
‖H‖1

.

Proof. First note that we can characterize γ(α)
α as the optimal solution of

γ(α)

α
= arg min

w
‖w‖22 s.t


〈w,H〉 ≥ ‖H‖∞α
∀i, wi ≥ 0

1>w = ‖w‖1 = 1

. (11)

The optimization problems (10) and (11) are both convex and both satisfy the Linear Independence Constraint
Qualification conditions. So, denoting ∆d =

{
w ∈ [0, 1]d; 1>w = 1

}
the standard simplex, by the Lagrangian

duality theorem (a.k.a. Karush-Kuhn-Tucker theorem) we have that for all w ∈ Rd,

∃β > 0;w = γ(β) ⇐⇒ ∃λ > 0;w = arg max
w∈∆d

〈w,H〉 − λ ‖w‖22

⇐⇒ ∃µ > 0;w = arg min
w∈∆d

‖w‖22 − µ 〈w,H〉 ⇐⇒ ∃α > 0;w =
γ(α)

α
.

Thus, {γ(β);β > 0} =
{
γ(α)
α ;α > 0

}
. However it is straightforward to check that {γ(β);β > 0} = Γ and that{

γ(α)
α ;α > 0

}
= Γ, which concludes the proof.

Just as the first constraint in (10) holds with equality at optimality, so does the first constraint in (11); that is,
〈γ(α), H〉 = ‖H‖∞ for all α ∈ [1, αmax]. This would follow from a careful study of the equivalence between the
two problems, but here we give a more direct proof.

Claim 3. The inequality constraint 〈w,H〉 ≥ ‖H‖∞ in the problem defining γ(α) holds with equality, at opti-
mality.

Proof. Denote w = γ(α). Suppose by contradiction 〈w,H〉 > ‖H‖∞. Let i resp. j the index of the largest
resp. smallest component of w. First note that if wi = wj , then w ∝ 1, i.e., w = α

d1 and so 〈w,H〉 =
α
d ‖H‖1 > ‖H‖∞, which would contradict α ≤ αmax; so we have the strict inequality wi > wj . Now for
some ε > 0 to be chosen, let w′ = w − εei + εej . Clearly ε > 0 can be chosen small enough so that w′

satisfies all three constraints in the optimization problem defining γ(α). Furthermore, for small enough ε,

‖w‖22 − ‖w′‖
2
2 = w2

i − (wi − ε)2 + w2
j − (wj + ε)2 = 2ε (wi − wj − ε) is positive, i.e ‖w′‖22 < ‖w‖22, which

contradicts optimality of w = γ(α).

We now have all the necessary ingredients to prove Lemma 2. The equivalence between (AN ) and (A′N ) follows
immediately from constraining the variable w (in the former) to belong to the set R+Γ. The equivalence between

(A−) and (A′−) also follows immediately, noting that
∥∥∥bγ(α)

α

∥∥∥
1

= b by definition. Finally, the equivalence between

(A+) and (A′+) follows by noticing that the inequality constraint ‖w‖1 ≤ B (in the former) is necessarily saturated
at optimality.

B.4 Proof of Lemma 3: Characterizing the parametric path

We now give a precise characterization of the parametric path Γ, by studying the optimization problem defin-
ing γ(α). Throughout this section (just as in the previous one), we consider H as a fixed vector such that
H1 > ... > Hd > 0. In other words, all of our statements should be understood as holding conditionally on h,
and with h in general position.
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Throughout the proof, consider a fixed 1 < α ≤ αmax. The goal is to derive a closed-form expression of γ(α).
We proceed by a Lagrangian duality approach, and first identify the dual variables λ, ν, µ (a.k.a. Lagrangian
multipliers, a.k.a. KKT vectors) of the optimization problem defining γ(α). This first analysis yields an expression
for γ(α) involving an unknown “sparsity” integer s, which depends on λ, ν, µ and hence indirectly on α. We
finish by showing how to determine s explicitly from α.

Karush-Kuhn-Tucker (KKT) conditions. Recall that γ(α) is defined by the following optimization problem
(note that the additional factor 1

2 in the objective does not change the arg min):

γ(α) = arg min
w

1

2
‖w‖22 s.t


〈w,H〉 ≥ ‖H‖∞
∀i, wi ≥ 0

1>w = ‖w‖1 = α

.

This is a convex optimization problem with Lagrangian

L(w;λ, µ, ν) =
1

2
‖w‖22 − λ(〈w,H〉 − ‖H‖∞) + µ(1>w − α)− ν>w.

The objective is convex and all the constraints are affine. So by Lagrangian duality, w = γ(α) if and only if there
exist λ, µ ∈ R and ν ∈ Rd satisfying the KKT conditions:

• (Stationarity) w − λH + µ1− ν = 0 i.e. w = λH − µ1 + ν

• (Primal feasibility)


〈w,H〉 ≥ ‖H‖∞
∀i, wi ≥ 0

1>w = α

• (Dual feasibility) λ ≥ 0 and ∀i, νi ≥ 0

• (Complementary slackness) λ(〈w,H〉 − ‖H‖∞) = 0, and ∀i, νiwi = 0.

In the rest of this proof, denote w = γ(α), and let λ, µ, ν as above.

Sparsity structure of w. Let s denote the largest s′ ∈ {1, ..., d} such that λHs′ > µ. Since λ ≥ 0 and H is
ordered, we have

λH1 ≥ ... ≥ λHs > µ ≥ λHs+1 ≥ ...

Consider the complementary slackness condition ∀i, νiwi = 0.

• If wi > 0, then νi = 0 so wi = λHi − µ > 0, and so i ≤ s.

• If νi > 0, then wi = λHi − µ+ νi = 0 so λHi − µ < 0, and so i > s.
So by contraposition, for all i ≤ s, νi = 0 and wi = λHi − µ.

Thus, supp(w) ⊂ {1, ..., s} and w = λH[s] − µ1[s], where H[s] is the vector equal to H on the first s components
and 0 on the last (d− s), and similarly for 1[s].

Furthermore, note that the case s = 1 occurs only if w ∝ e1, and one can check that it implies α = 1, which we
excluded.

Closed-form expression of the dual variables λ, µ. We can compute λ and µ by substituting w = λH[s]−
µ1[s] into the primal feasibility conditions.

• Since we know from Claim 3 (in Section B.3) that the first constraint in the problem defining γ(α) holds
with equality at optimality, this means that the first primal feasibility condition holds with equality, i.e.,

〈w,H〉 = λ
∥∥H[s]

∥∥2

2
− µ

∥∥H[s]

∥∥ = ‖H‖∞ .
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• By the last primal feasibility condition, 1>w = λ
∥∥H[s]

∥∥
1
− µs = α.

So λ and µ are given by{
λ
∥∥H[s]

∥∥2

2
− µ

∥∥H[s]

∥∥ = ‖H‖∞
λ
∥∥H[s]

∥∥
1
− µs = α

⇐⇒


λ = 1

s‖H[s]‖22−‖H[s]‖21

(
s ‖H‖∞ − α

∥∥H[s]

∥∥
1

)
µ = 1

s‖H[s]‖22−‖H[s]‖21

(∥∥H[s]

∥∥
1
‖H‖∞ − α

∥∥H[s]

∥∥2

2

) .
Note that the denominator is positive, since H[s] has distinct components.

Closed-form characterization of s. We now show that there exists an increasing sequence α2 = 1 < · · · <
αd < αd+1 = αmax such that for all α, the sparsity s of w is exactly the index which satisfies α ∈ (αs, αs+1]. By
plugging the expressions of λ and µ into the condition defining s: λHs > µ ≥ λHs+1, we obtain(

s ‖H‖∞ − α
∥∥H[s]

∥∥
1

)
Hs >

∥∥H[s]

∥∥
1
‖H‖∞ − α

∥∥H[s]

∥∥2

2
≥
(
s ‖H‖∞ − α

∥∥H[s]

∥∥
1

)
Hs+1.

Rearranging, this is equivalent to

α
(∥∥H[s]

∥∥2

2
−
∥∥H[s]

∥∥
1
Hs

)
>
(∥∥H[s]

∥∥
1
− sHs

)
‖H‖∞

and α
(∥∥H[s]

∥∥2

2
−
∥∥H[s]

∥∥
1
Hs+1

)
≤
(∥∥H[s]

∥∥
1
− sHs+1

)
‖H‖∞ .

One can check that
∥∥H[s]

∥∥2

2
−
∥∥H[s]

∥∥
1
Hs+1 >

∥∥H[s]

∥∥2

2
−
∥∥H[s]

∥∥
1
Hs > 0. So the above is equivalent to

αs :=

(∥∥H[s]

∥∥
1
− sHs

)
‖H‖∞∥∥H[s]

∥∥2

2
−
∥∥H[s]

∥∥
1
Hs

< α ≤
(∥∥H[s]

∥∥
1
− sHs+1

)
‖H‖∞∥∥H[s]

∥∥2

2
−
∥∥H[s]

∥∥
1
Hs+1

=: α(s).

A straightforward calculation shows that α(s) = αs+1. Thus, using the convention αd+1 = αmax, s is uniquely
characterized by αs < α ≤ αs+1. This concludes the proof of Lemma 3.

B.5 Proof of Proposition 4: Concentration of norms of γ(αs)

In this section we prove Proposition 4 and Lemma 4 which establish concentration inequalities for γ(α) at the
breakpoints αs for 2 ≤ s ≤ d. More precisely, we give high-probability estimates (with respect to the draws of
h) of their `1 and `2 norms, since those are the quantities that appear in the stochastic optimization problems
(A′N ), (A′+) and (A′−).

Plugging in α = αs into the closed-form expressions of λ and µ in Lemma 3, we obtain γ(αs) =
‖H‖∞
〈vs,H〉vs where

vs := H[s] −Hs1[s]. Thus, to estimate the norms of γ(αs) it suffices to estimate the quantities

‖vs‖22 =
∥∥H[s]

∥∥2

2
− 2

∥∥H[s]

∥∥
1
Hs + sH2

s

‖vs‖1 =
∥∥H[s]

∥∥
1
− sHs

〈vs, H〉 =
∥∥H[s]

∥∥2

2
−
∥∥H[s]

∥∥
1
Hs.

Throughout the proofs in this section, we will use c > 0 to denote a universal constant (in particular, independent
of d and s) which may change from display to display. Furthermore, in this section we let Z denote a standard
normal distributed random variable, and recall that Φ{(x) = P(Z > x) = 1

2P(|Z| > x) for x > 0 denotes its
complementary cumulative distribution function.

B.5.1 Preliminary facts

We start by stating some auxiliary facts about Φ{.

Fact 1. Denote h(x) the function such that ∀x > 0, Φ{(x) = exp(−x2/2)

x
√

2π
h(x). We have the first-order and

higher-order upper and lower bounds

1− 1

1 + x2
≤ h(x) ≤ 1 and

∣∣∣∣h(x)−
(

1− 1

x2
+

3

x4
− 15

x6

)∣∣∣∣ ≤ c

x8

for all x > 0.
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Proof. The first-order estimate follows from straightforward analysis. The higher-order estimate follows from
the exact asymptotic expansion of the complementary error function erfc,since 2Φ{(x) = erfc(x/

√
2).

Fact 2. By straightforward calculations, we have

∀x > 0, E[Z|Z ≥ x] =
1

Φ{(x)

exp(−x2/2)√
2π

=
x

h(x)

and E[Z2|Z ≥ x] =
1

Φ{(x)

(
x√
2π

exp(−x2/2) + Φ{(x)

)
= 1 +

x2

h(x)
.

We will also make repeated use of Lemma 4 (Section A.2.3), whose proof is deferred to Section B.5.4.

B.5.2 Proof of Proposition 4

We will show the following lemmas successively, in which t ∈ R denotes the quantity such that 2Φ{(t) = s/d (we
drop the explicit dependency on s for concision in this section).

Lemma 11 (Concentration of Hs). Assume that s < d/2. With probability at least 1− 2δ, we have

|Hs − t| ≤ c

(
1√
s

+

√
log(1/δ)

s
+

log(1/δ)

s

)
.

Lemma 12 (Concentration of
∥∥H[s]

∥∥2

2
). Assume s < d/5. With probability at least 1− 2δ, we have

∣∣∣∥∥H[s]

∥∥2

2
− sE[Z2|Z ≥ t]

∣∣∣ ≤ c√s(1 +
√

log(1/δ))

(
1√
s

(1 +
√

log(1/δ)) + t

)
.

Lemma 13 (Concentration of
∥∥H[s]

∥∥
1
). With probability at least 1− 2δ, we have

∣∣∥∥H[s]

∥∥
1
− sE [Z|Z ≥ t]

∣∣ ≤ c(√s+
√

log(1/δ)s
)
.

Lemma 14 (Concentration of vs). Assume s < d/5. For δ ≥ exp(−s), with probability at least 1− 6δ, we have∣∣∣∣‖vs‖22 − s( 2

t2
− 10

t4

)∣∣∣∣ ≤ s( ct6 + Cs,δ

)
and∣∣∣∣‖vs‖1 − s(1

t
− 2

t3

)∣∣∣∣ ≤ s( c

t5
+
Cs,δ
t

)
and

|〈vs, H〉 − s| ≤ sCs,δ

with Cs,δ = c
t+t
√

log(1/δ)√
s

.

The proposition follows as a consequence of this last lemma:

Proof of Proposition 4. Let c1, c2, t as in Lemma 4, and assume s ≤ d/c1. In particular, log(d/s) ≤ t2 ≤
2 log(d/s).

We apply Lemma 14 with δ = exp
(
−2 s

log(d/s)5

)
. Since t2 ≤ 2 log(d/s), this choice ensures that

t
√

log(1/δ)√
s

≤ 8/t4.

Moreover, the assumption that d ≤ exp
(
κ4s

1/5
)

ensures that t√
s
≤ c/t4. So we have Cs,δ ≤ c/t4.

The proposition follows by substituting the estimates of ‖vs‖22, ‖vs‖1, 〈vs, H〉 into γ(αs) =
‖H‖∞
〈vs,H〉vs, and making

the appropriate simplifications.
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B.5.3 Proofs of the concentration lemmas

Proof of Lemma 11: Concentration of Hs. By observing that the random variable max{s;Hs > t} is
binomially distributed with parameters d and p = P(|Z| > t), Li et al. (2020) show the following upper and lower
tail bounds for Hs.

Claim 4. Assume that s < d/2 and let t be such that 2Φ{(t) = s/d. Then for all ε > 0, we have the lower resp.
upper tail bounds

P(Hs ≤ t− ε) ≤ exp
(
−csε2 log(d/s)

)
and P(Hs ≥ t+ ε) ≤ exp

(
−csε2 log(d/s) exp

(
−2ε

√
2 log(d/s)− log log(d/s)− log(

π

2
)− ε2

))
.

Proof. This follows straightforwardly from Lemma 2 of Li et al. (2020) and from the estimate of t in Lemma
4.

The lower tail bound is already sufficiently tight to show our high-probability lower bound on Hs − t. However
we remark that the upper tail bound is too loose; indeed it is only reasonable when ε is sufficiently small. So to
prove our high-probability upper bound, we instead start from the following one-sided concentration inequality
from Boucheron and Thomas (2012).

Claim 5. Assume d ≥ 3 and s < d/2, then for all z > 0,

P
(
Hs − EHs ≥ c(

√
z/s+ z/s)

)
≤ exp(−z).

Proof. The proof follows from the same argument as in Proposition 4.6 of Boucheron and Thomas (2012).

It only remains to bound the distance between t and EHs.

Claim 6. Assume that s < d/2 and let t be such that 2Φ{(t) = s/d. Then

|EHs − t| ≤ c
1√
s
.

Proof. According to Proposition 4.2 of Boucheron and Thomas (2012),

Var(Hs) ≤
1

s log 2

8

log 2d
s − log(1 + 4

s log log 2d
s )

so by Chebyshev’s inequality,

P (|Hs − EHs| > ε′) ≤ c′

s

1

(ε′)2
.

On the other hand, recall from Claim 4 that

P (|Hs − t| > ε) ≤ 2 exp

(
−csε2 log(d/s) exp

(
−2ε

√
2 log(d/s)− log log(d/s)− log(

π

2
)− ε2

))
One can check that there exist universal constants c1, c2 such that, by picking ε = c1/

√
s log(d/s) and ε′ = c2/

√
s,

the sum of the right-hand sides is less than 1.

Thus, with positive probability we have

|EHs − t| ≤ |Hs − EHs|+ |Hs − t| ≤
c1/
√

log(2) + c2√
s

.
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Proof of Lemma 12: Concentration of
∥∥H[s]

∥∥2

2
. Let us first restate Proposition 2 of Li et al. (2020) in our

notation. We remark that their statement contained an additional log(d/s) factor due to a mistake in the proof.
Correcting this mistake, we have that with probability at least 1− 2δ,∣∣∣∣ 1√

s

∥∥H[s]

∥∥
2
−
√

E[Z2|Z ≥ t]
∣∣∣∣ ≤ c 1√

s
(1 +

√
log(1/δ)).

Since for all a, b, ε > 0, |a− b| ≤ ε =⇒
∣∣a2 − b2

∣∣ ≤ ε(ε+ 2b), this implies∣∣∣∣1s ∥∥H[s]

∥∥2

2
− E[Z2|Z ≥ t]

∣∣∣∣ ≤ c 1√
s

(1 +
√

log(1/δ))

(
1√
s

(1 +
√

log(1/δ)) +
√

E[Z2|Z ≥ t]
)
.

Now E[Z2|Z ≥ t] = 1 + t2

h(t) ≤ ct2 whenever t ≥ 1, which is ensured by our assumption that s/d = Φ{(t) ≤ 0.2.

So ∣∣∣∣1s ∥∥H[s]

∥∥2

2
− E[Z2|Z ≥ t]

∣∣∣∣ ≤ c 1√
s

(1 +
√

log(1/δ))

(
1√
s

(1 +
√

log(1/δ)) + t

)
.

Proof of Lemma 13: Concentration of
∥∥H[s]

∥∥
1
. We use exactly the same argument as in the proof of

Proposition 2 of Li et al. (2020). Namely, start by decomposing∣∣∣∣1s ∥∥H[s]

∥∥
1
− E[Z|Z ≥ t]

∣∣∣∣ ≤ ∣∣∣∣1s ∥∥H[s]

∥∥
1
− 1

s
E
∥∥H[s]

∥∥
1

∣∣∣∣+

∣∣∣∣1sE∥∥H[s]

∥∥
1
− E[Z|Z ≥ t]

∣∣∣∣ .
For the first term, note that by rearrangement inequality, Z 7→ 1

s

∑s
i=1

∣∣Z(i)

∣∣ is 1√
s
-Lipschitz for the ‖·‖2 norm,

where (Z(1), ..., Z(d)) is the nondecreasing reordering of the absolute values of Z.3 So by concentration of
Lipschitz-continuous functions of Gaussians,

P

(∣∣∣∣∣1s
s∑
i=1

Hi − E
1

s

s∑
i=1

Hi

∣∣∣∣∣ ≥ ε
)
≤ 2 exp(−sε2/2).

For the second term, we can apply exactly the same arguments as in the proof of Proposition 2 of Li et al. (2020),
adapting equations (42) to (46), to obtain the bound∣∣∣∣∣E1

s

s∑
i=1

Hi − E[Z|Z ≥ t]

∣∣∣∣∣ ≤ cE |Hs+1 − t| ≤ c
1√
s
.

In particular, we use the fact that x 7→ E[Z|Z ≥ x] is a smooth function, which follows from its explicit expression
given in Fact 2.

Proof of Lemma 14: Concentration of vs. For brevity of notation, let Cs,δ = c
t+t
√

log(1/δ)√
s

. Assume

δ ≥ e−s; in particular, Cs,δ ≤ ct. Collecting and simplifying the above results, so far we showed that

t |Hs − t| ≤ Cs,δ and∣∣∣∣1s ∥∥H[s]

∥∥2

2
− (1 +

t2

h(t)
)

∣∣∣∣ ≤ Cs,δ and

t

∣∣∣∣1s ∥∥H[s]

∥∥
1
− t

h(t)

∣∣∣∣ ≤ Cs,δ.
3Proof: Denote Z̃ the reordering of Z such that

∣∣∣Z̃1

∣∣∣ ≥ ... ≥ ∣∣∣Z̃d∣∣∣ (but still with Z̃ signed). Then

∣∣∣∣∣
s∑
i=1

∣∣Z(i)

∣∣− ∣∣Y(i)

∣∣∣∣∣∣∣ =
∣∣∣∥∥∥Z̃[s]

∥∥∥
1
−
∥∥∥Ỹ[s]

∥∥∥
1

∣∣∣ ≤ ∥∥∥Z̃[s] − Ỹ[s]

∥∥∥
1
≤
√
s
∥∥∥Z̃[s] − Ỹ[s]

∥∥∥
2
≤
√
s ‖Z − Y ‖2

where the last inequality follows from the rearrangement inequality after taking squares and expanding.
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• Substituting the deterministic estimates in the expression of ‖vs‖22 and carrying over the above concentration
bounds, we obtain ∣∣∣∣‖vs‖22 − (s(1 +

t2

h(t)
)− 2

st

h(t)
t+ st2

)∣∣∣∣ ≤ sCs,δ(1 + Cs,δ)

and the deterministic estimate can be simplified to

s
(1 + t2)h(t)− t2

h(t)
= s

2
t2 −

12
t4 +O

(
1
t6

)
1− 1

t2 +O
(

1
t4

) = s

(
2

t2
− 10

t4
+O

(
1

t6

))
(where the O(·) hides a universal constant).

• Likewise for ‖vs‖1 we get ∣∣∣∣‖vs‖1 − ( st

h(t)
− st

)∣∣∣∣ ≤ s

t
Cs,δ

and the deterministic estimate can be simplified to

st

(
1

h(t)
− 1

)
= s

(
1

t2
− 2

t3
+O

(
1

t5

))
.

• Likewise for 〈vs, H〉 we get ∣∣∣∣〈vs, H〉 − (s(1 +
t2

h(t)

)
− st

h(t)
t

)∣∣∣∣ ≤ 3sCs,δ

and the deterministic estimate simplifies to s.

B.5.4 Proof of Lemma 4

Using the upper bound Φ{(x) ≤ exp(−x2/2)

x
√

2π
from the first part of Fact 1, it is straightforward to check that

2Φ{(t) ≤ s/d = 2Φ{(t), and so t ≥ t.

Let t2 = t
2 − c1 for some constant c1 > 0 to be chosen. Using the lower bound Φ{(x) ≥ exp(−x2/2)

x
√

2π
x2

1+x2 , one can

check that c1 can be chosen such that 2Φ{(t) ≥ s/d = 2Φ{(t), and so t ≤ t.

Going through the calculations reveals that κ3 ≥ e2/π ≈ 2 ensures t
2 ≤ 2 log(d/s), that 2Φ{(t) ≤ s/d is always

true, that c1 = 1 − log(π2 ) ≈ 0.5 ensures t2 ≥ log(d/s) for all s, d, and that κ3 ≥ e2.3415... ≈ 10.4 ensures

2Φ{(t) ≥ s/d. This concludes the proof of the lemma.

Remark 2. Tighter bounds for t can be derived while still only using the first-order estimate of h(x) (the first
part of Fact 1). Namely, by similar straightforward calculations as above, one can check that there exist universal
constants κ, α1, α2 > 0 such that, for all s ≤ d/κ, t is bounded as t ≤ t ≤ t where

t2 = 2 log(d/s)− log log(d/s)− log(π) +
log log(d/s)

2 log(d/s)
− α1

log(d/s)

and t
2

= 2 log(d/s)− log log(d/s)− log(π) +
log log(d/s)

2 log(d/s)
+

α2

log(d/s)
.

B.6 Proofs of Lemmas 5 and 6: Studying the feasible set of (A′+) and (A′−)

B.6.1 Proof of Lemma 5

We give separate proofs for the statements 1-3 in the Lemma:

First statement: The mapping α 7→ ‖γ(α)‖22 is decreasing over [1, αd+1/2] and increasing over [αd+1/2, αmax].

Using the notation of Section B.4, the optimization problem defining γ(α) has Lagrangian

L(w;λ, µ, ν) =
1

2
‖w‖22 − λ(〈w,H〉 − ‖H‖∞) + µ(1>w − α)− ν>w,
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(up to the constant factor 1
2 in the first term). By the envelope theorem, the marginal effect on the optimal value

of increasing α, is equal to the associated Lagrangian multiplier at optimum:
d‖γ(α)‖22

dα = −µ. A straightforward
computation using the expression of µ from Lemma 3 reveals that µ > 0 for 1 < α < αd+1/2 and µ < 0 for

αd+1/2 < α ≤ αmax; hence the monotonicity of α 7→ ‖γ(α)‖22.

Second statement: The mapping α 7→ ‖γ(α)‖22 is convex over [1, αmax], and I is an interval.

Recall that ‖γ(α)‖22 is given by

‖γ(α)‖22 = min
w
‖w‖22 s.t


〈w,H〉 ≥ ‖H‖∞
∀i, wi ≥ 0

1>w = ‖w‖1 = α

.

Since α appears on the right-hand side of a linear constraint, it is straightforward to check directly that α 7→
‖γ(α)‖22 is convex. In detail: Let any α0 and α1, let wi = γ(αi) for i ∈ {1, 2}, and αt = (1 − t)α0 + tα1

and wt = (1 − t)w0 + tw1 for t ∈ [0, 1]; then wt is feasible for the optimization problem defining γ(αt), so

‖γ(αt)‖22 ≤ ‖wt‖
2
2 ≤ t ‖w0‖22 + (1− t) ‖w1‖22 by convexity.

I is the (B2 ‖H‖2∞)-sublevel set of the function α 7→ (1− ρ)n
(
σ2α2 +B2 ‖γ(α)‖22

)
, which is convex, so I is an

interval.

Third statement: The mapping α 7→ ‖γ(α)‖22
α2 is monotonically decreasing.

Note that for each α ∈ [1, αmax], γ(α)
α is the optimal solution of the optimization problem

γ(α)

α
= arg min

w
‖w‖22 s.t


〈w,H〉 ≥ ‖H‖∞α
∀i, wi ≥ 0

1>w = ‖w‖1 = 1

.

In particular, the constraint set is only increasing with α, implying that α 7→
∥∥∥γ(α)

α

∥∥∥2

2
is monotonically decreasing

with α.

B.6.2 Proof of Lemma 6

The upper bound for φ+ immediately follows from Equation (A′+) and from the monotonicity of α 7→
∥∥∥γ(α)

α

∥∥∥2

2
,

which is the last statement of Lemma 5.

For φ−, there is an extra scale variable 0 < b ≤ B which we first minimize out, similarly to the proof of
Proposition 2 in Section A.2.4. Starting from Equation (A′−), first rewrite the constraint as

b2 ‖H‖2∞ ≥ (1− ρ)n
(
σ2α2 + b2 ‖γ(α)‖22

)
⇐⇒ b2 ≥ (1− ρ)nσ2α2

‖H‖2∞ − (1− ρ)n ‖γ(α)‖22︸ ︷︷ ︸
=:f̃(α)2

and (1− ρ)n ‖γ(α)‖22 < ‖H‖
2
∞ .
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Then,

φ− = min
1≤α≤αmax

min
b

b2
‖γ(α)‖22
α2

s.t f̃(α) ≤ b ≤ B and (1− ρ)n ‖γ(α)‖22 < ‖H‖
2
∞

= min
1≤α≤αmax

f̃(α)2 ‖γ(α)‖22
α2

s.t f̃(α) ≤ B and (1− ρ)n ‖γ(α)‖22 < ‖H‖
2
∞

= min
1≤α≤αmax

f̃(α)2 ‖γ(α)‖22
α2

s.t α ∈ I

= min
α

(1− ρ)nσ2 ‖γ(α)‖22
‖H‖2∞ − (1− ρ)n ‖γ(α)‖22

s.t αI ≤ α ≤ αI .

This objective is increasing in ‖γ(α)‖22. Now as shown in Lemma 5, α 7→ ‖γ(α)‖22 is decreasing over [1, αd+1/2].
Therefore, this objective is decreasing in α over [αI , αd+1/2], and φ− is lower-bounded by its value at any α such
that αI ≤ α ≤ αd+1/2.

B.7 Proof of Lemma 7: A tight admissible choice for α and α

Recall that we defined B(n, d) = cσ
√
‖w∗‖0 +M(n, d) where M(n, d) is given by Proposition 2 and c > 0 some

universal constant. For brevity of notation, abbreviate B(n, d) = B. We seek integers s, s such that αs and αs
lie on the left, respectively on the right of the interval I, and such that αs ≤ αd+1/2, with high probability over
the draws of h.

B.7.1 Preliminaries

We recall the notations B = M(n, d) + 2 ‖w∗‖1 and

I =
{
α ∈ [1, αmax]

∣∣∣B2 ‖H‖2∞ ≥ (1− ρ)n
(
σ2α2 +B2 ‖γ(α)‖22

)}
and ∀α ∈ [1, αmax], f̃(α)2 =

(1− ρ)nσ2α2

‖H‖2∞ − (1− ρ)n ‖γ(α)‖22
.

Note that we have the equivalence

α ∈ I ⇐⇒ (1− ρ)n ‖γ(α)‖22 < ‖H‖
2
∞ and f̃(α) ≤ B. (12)

Reference point: αn ∈ I. We have by construction that, conditionally on the event where the inequalities in

Equation 6 hold for s = n, αn ∈ I – in particular this holds with probability at least 1 − 6 exp
(
−2 n

log(d/n)5

)
.

Indeed, let us take a closer look at the way we chose M(n, d), from the proof of Proposition 2 (Section A.2.4).
We showed that, conditionally on that event, αn satisfies

(1 + ρ)n ‖γ(αn)‖22 < ‖H‖
2
∞ and f(αn) ≤M(n, d)

where f(α)2 = (1+ρ)nσ2α2

‖H‖2∞−(1+ρ)n‖γ(α)‖22
. Since f̃(αn) ≤ f(αn) and M(n, d) ≤ B, clearly αn satisfies the condi-

tion (12), i.e., αn ∈ I.

Summary of (in)equalities to be used in the proof. For ease of presentation, let us recall some assump-
tions or definitions that we will use throughout this proof. For each integer s, ts ∈ R denotes the quantity such

that 2Φ{(ts) = s/d, and t2s � log(d/s) by Lemma 4. By assumption, ‖w∗‖0 ≤ κ1
σ2n

log(d/n)5 for some universal

constant κ1 > 0. By definition, M(n, d)2 = σ2n
t2n

(
1− 2

t2n
+ c0

t4n

)
for some universal constant c0 > 0. In particular,

this implies that

B2 =

(
M(n, d) + cσ

√
‖w∗‖0

)2

=
σ2n

t2n

(
1− 2

t2n
+O

(
1

t4n

))
. (13)
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B.7.2 Finding s such that αs ≤ αI

We want to find an s such that αs is on the left of the interval I, i.e., αs ≤ αI . Conditioning on the event where
αn ∈ I, it suffices to have αs < αn i.e. s < n, and αs 6∈ I i.e.

1

B2‖H‖2∞
(1− ρ)n

(
σ2
∥∥γ(αs)

∥∥2

1
+B2

∥∥γ(αs)
∥∥2

2
)
)

= (1− ρ)n
σ2

B2

∥∥γ(αs)
∥∥2

1

‖H‖2∞
+ (1− ρ)n

∥∥γ(αs)
∥∥2

2

‖H‖2∞
> 1.

Instead of working directly with s, it is more convenient to define s implicitly through a condition on ts. Namely,
we choose s such that t2s ≈ t2n + λ

tn
for some constant λ > 0. We now make this choice formal and show that s

is very close to n; the following step will be to show that this choice guarantees αs 6∈ I.

Claim 7. Assume κ3n ≤ d. Let any fixed constant 0 < λ ≤
√

log(κ3), and let s be the largest integer s such
that t2s ≥ t2n + λ

tn
. Then,

s = n exp

(
− λ

2tn

)(
1 +O

(
1

t2n

))
and

∣∣∣∣t2s − (t2n +
λ

tn

)∣∣∣∣ ≤ O( 1

n

)
.

The first equation quantifies the fact that this choice of s is very close to n; the second equation controls the
error due to rounding (due to the fact that there is no integer s such that t2s = t2n + λ

tn
exactly).

Proof. For concision, in this proof we write s instead of s. Denote t
2
n = t2n + λ

tn
. By definition, t2s ≥ t

2
n > t2s+1.

For the first part of the claim, we apply Fact 1 several times. Firstly,

2Φ{(ts) =
s

d
≤ 2√

2π

1

ts
e−t

2
s/2 ≤ 2√

2π

1

tn
e−t

2
n/2 =

2√
2π

1

tn
e−t

2
n/2 exp

(
− λ

2tn

)
.

Secondly,

t2n
1 + t2n

· 2√
2π

1

tn
e−t

2
n/2 ≤ 2Φ{(tn)

and hence
2√
2π

1

tn
e−t

2
n/2 ≤ n

d

(
1 +

1

t2n

)
.

This proves the upper bound on s. The lower bound can be proved in a similar fashion, by applying Fact 1 to
lower-bound s+1

d = 2Φ{(ts+1), and again to upper-bound 1
t2n
e−t

2
n/2. In this way we obtain

s+ 1

d
≥ n

d
exp

(
− λ

2tn

)(
1− 1

1 + t2s+1

)
,

and the bound t2s − t2s+1 ≤ 2
s ≤ 2 shown below implies that 1

1+t2s+1
= O

(
1
t2n

)
.

We now turn to the second part of the claim. By mean value theorem applied on Φ{, there exists ξ ∈ [ts+1, ts]
such that

Φ{(ts+1)− Φ{(ts)

ts+1 − ts
=

1

2d

1

ts+1 − ts
= (Φ{)′(ξ) = − 1√

2π
e−ξ

2/2

and 0 < ts − ts+1 =

√
2π

2d
eξ

2/2 ≤
√

2π

2d
et

2
s/2.

Now, by Fact 1, this can be further upper-bounded as
√

2π

2d
et

2
s/2 ≤ 1

2d

1

Φ{(ts)

1

ts
=

1

sts
.
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So we have the bound:

t2s − t
2
n ≤ t2s − t2s+1 ≤

ts + ts+1

sts
≤ 2

s
.

(This completes the proof of the first part of the claim, for the lower bound.) We can conclude by substituting
s by its estimate from the first part of the claim, noting that λ

tn
is uniformly bounded by assumption since

λ ≤
√

log(κ3) ≤
√

log(d/n) ≤ tn by Lemma 4 (for an appropriate choice of κ3).

We now show that we can choose the constant λ > 0 such that αs 6∈ I with high probability.

Claim 8. The constants κ2, κ3, κ4, λ > 0 can be chosen such that for any n, d with n ≥ κ2 and κ3n ≤ d ≤
exp(κ4n),

(1− ρ)n
σ2

B2

∥∥γ(αs)
∥∥2

1

‖H‖2∞
+ (1− ρ)n

∥∥γ(αs)
∥∥2

2

‖H‖2∞
> 1

with probability at least 1− 12 exp
(
− n

log(d/n)5

)
over the draws of h, where s is defined as in Claim 7.

Proof. We will repeatedly use the following inequalities, which follow from Lemma 4 and Claim 7:

t2n = log(d/n) +O(log log(d/n))

t2s = log(d/n) +O(log log(d/n))

t2n
t2s

=
1

1 + λ
t3n

+O
(

1
t2nn

) = 1− λ

t3n
+O

(
1

t2nn

)
+O

(
λ2

t6n

)
.

Note that for appropriate choices of κ2, κ3, κ4, Equation (6) in Proposition 4 holds simultaneously for s = n
and for s = s with probability at least 1− 6 exp(−2 n

log(d/n)5 )− 6 exp(−2 s
log(d/s)5 ) ≥ 1− 12 exp(− n

log(d/n)5 ). We

condition on this event throughout the remainder of the proof.

We begin with the first term, where we use the upper estimate of B2 from Equation (13):

(1− ρ)n
σ2

B2

∥∥γ(αs)
∥∥2

1

‖H‖2∞
≥ t2n

1− 2
t2n

+O
(

1
t4n

) 1

t2s

(
1− 4

t2s
+O

(
1

t4s

))

≥
(

1− 2

t2n
+O

(
1

t4n

))(
1− λ

t3n
+O

(
1

t2nn

)
+O

(
λ2

t6n

))
= 1− 2

t2n
− λ

t3n
+O

(
1

t4n

)
+O

(
λ2

t6n

)
+O

(
λ

t2nn

)
. (14)

Next the second term:

(1− ρ)n

∥∥γ(αs)
∥∥2

2

‖H‖2∞
≥ n 2

st2s

(
1 +O

(
1

t2s

))

≥ 2

t2s
exp

(
λ

2tn

)(
1 +O

(
1

t2n

))
≥ 2

t2n

(
1 +

λ

2tn
+

λ2

4t2n
+O

(
λ3

t3n

))(
1 +O

(
1

t2n

))
. (15)

Summing up (14) and (15), we get:

(1− ρ)n
σ2

B2

∥∥γ(αs)
∥∥2

1

‖H‖2∞
+ (1− ρ)n

∥∥γ(αs)
∥∥2

2

‖H‖2∞
≥ 1 +

λ2

2t4n
+O

(
1

t4n

)
+O

(
λ2

t6n

)
+O

(
λ

t2nn

)
.

Clearly, we can choose the constants λ, κ2, κ3, κ4 > 0 such that the right-hand side of the above equation is
strictly greater than 1 for any n, d with κ3n ≤ d, since t2n � log(d/n).
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B.7.3 Finding s such that αI ≤ αs ≤ αd+1/2

We take the exact same approach to find s ≥ n such that αs is on the right of the interval I, i.e., αI ≤ αs. The
derivations can be straightforwardly adapted, and we get the analogous results:

Claim 9. Assume κ3n ≤ d. Let any fixed constant 0 < λ ≤
√

log(κ3), and let s be the smallest integer s such
that t2s ≤ t2n − λ

tn
. Then,

s = n exp

(
λ

2tn

)(
1 +O

(
1

t2n

))
and

∣∣∣∣t2s − (t2n − λ

tn

)∣∣∣∣ ≤ O( 1

n

)
.

Claim 10. The constants κ2, κ3, κ4, λ > 0 can be chosen such that for any n, d with n ≥ κ2 and κ3n ≤ d ≤
exp(κ4n),

(1− ρ)n
σ2

B2

‖γ(αs)‖21
‖H‖2∞

+ (1− ρ)n
‖γ(αs)‖22
‖H‖2∞

> 1

with probability at least 1− 12 exp
(
− n

log(d/n)5

)
over the draws of h, where s is defined as in Claim 9.

It remains to check that this choice of s satisfies αs < αd+1/2. But this is clearly the case, because s < d (by the
first part of Claim 9, for appropriate choices of κ3) and αd < αd+1/2 by definition. This concludes the proof of
Lemma 7.
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