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A Proof of Theorem 5.1

We use K(T ) − 1 to denote the value of the counter k when Algorithm 1 finishes, and tK(T ) = T + 1 for
convenience. By these notation, the learning process from t = 1 to t = T can be divided into K(T ) episodes.

The following lemma, proved by Jaksch et al. (2010), states that EVI (Algorithm 2) always outputs a near-optimal
policy and an optimistic model.

Lemma A.1 (Theorem 7 and Equation (12) in Jaksch et al. 2010). Stopping the extended value iteration when

max
s∈S

{
u(i+1)(s)− u(i)(s)

}
−min

s∈S

{
u(i+1)(s)− u(i)(s)

}
< ε,

the greedy policy π̃ with respect to u(i) is ε-optimal, namely

ρ̃ := ρ(M̃, π̃) ≥ max
π,M∈M

ρ(M,π)− ε. (A.1)

Here, M̃ means the Markov Decision Process (MDP) determined by the parameterized transition probability,
e.g. Pk(·|s, a) = 〈φ(·|s, a),θk(s, a)〉. For each M ∈ M, M is an MDP with parameter from the confidence set.
M is assumed to contain the true transition model.

Moreover, we have ∀s ∈ S,

|u(i+1)(s)− u(i)(s)− ρ̃| ≤ ε. (A.2)

The next lemma describes that indeed, the confidence sets we constructed contain the true parameter with high
probability.

Lemma A.2. With probability at least 1− δ, for all 0 ≤ k ≤ K(T )− 1, we have θ∗ ∈ Ĉtk .

Proof. See Section D.1.

The number of episodes in our algorithm turns out can be bounded as follows:

Lemma A.3. We have K(T ) ≤ d log[(2λ+ 2TD2)/λ].

Proof. See Section D.2.

The rest lemmas either is standard concentration inequalities or is from the works regarding linear bandit
problems.

Lemma A.4 (Azuma–Hoeffding inequality). Let {Xk}∞k=0 be a discrete-parameter real-valued martingale se-
quence such that for every k ∈ N, the condition |Xk −Xk−1| ≤ µ holds for some non-negative constant µ. Then
with probability at least 1− δ, we have

Xn −X0 ≤ µ
√

2n log 1/δ.

Lemma A.5 (Lemma 11 in Abbasi-Yadkori et al. 2011). For any {xt}Tt=1 ⊂ Rd satisfying that ‖xt‖2 ≤ L, let

A0 = λI and At = A0 +
∑t−1
i=1 xix

>
i , then we have

T∑
t=1

min{1, ‖xt‖A−1
t−1
}2 ≤ 2d log

dλ+ TL2

dλ
.

Lemma A.6 (Lemma 12 in Abbasi-Yadkori et al. 2011). Suppose A,B ∈ Rd×d are two positive definite matrices
satisfying that A � B, then for any x ∈ Rd, ‖x‖A ≤ ‖x‖B ·

√
det(A)/det(B).
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Proof of Theorem 5.1. We first split the regret into each episode. Denote the regret in episode k as ∆k, and we
have

∆k :=

tk+1−1∑
t=tk

[ρ∗ − r(st, at)]

≤ (tk+1 − tk)ε+

tk+1−1∑
t=tk

[ρk − r(st, at)]

≤ 2(tk+1 − tk)ε+

tk+1−1∑
t=tk

[ ∑
s′∈S

Pk(s′|st, at)uk(s′)− uk(st)
]

= 2(tk+1 − tk)ε+

tk+1−1∑
t=tk

[ ∑
s′∈S

Pk(s′|st, at)wk(s′)− wk(st)
]

= 2(tk+1 − tk)ε+

tk+1−1∑
t=tk

[
[Pkwk](st, at)− wk(st)

]
.

The first inequality is due to the ε−optimality of the EVI algorithm (Lemma A.1). The second inequality is due

to (A.2) and substitute the iteration rule u(i+1)(s) ← maxa∈A

{
r(s, a) + maxθ∈C∩B

{〈
θ,φu(i)(s, a)

〉}}
. Here,

notice that we denote Pk(s′|st, at) = 〈θk(st, at),φ(s′|st, at)〉 and θk(st, at) = argmaxθ∈C∩B

{〈
θ,φu(i)(s, a)

〉}
.

By the definition of πk, at achieves the outer maximum in the iteration rule of u(i+1). The second last equality
is due to the fact that adding a bias to uk won’t change the difference, as what has been done in Algorithm 1.
So we subtract (maxs uk(s) + mins uk(s))/2 from uk(s). The last equality is a shorthand. Notice that since the
span of uk(s) is D, we have |wk(s)| ≤ D/2.

Summing over all episodes, we further have

K(T )−1∑
k=0

∆k = 2Tε+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pkwk](st, at)− [Pwk](st, at)

]
︸ ︷︷ ︸

I1

+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pwk](st, at)− wk(st)

]
︸ ︷︷ ︸

I2

.

The first term can be controlled following the idea of bounding the regret of linear bandit. We have that with
probability 1− δ,

I1 =

K(T )−1∑
k=0

tk+1−1∑
t=tk

〈
θk − θ∗,φwk

(st, at)
〉

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

(
‖θk − θ̂k‖Σ̂t

+ ‖θ∗ − θ̂k‖Σ̂t

)∥∥φwk
(st, at)

∥∥
Σ̂−1

t

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

2
(
‖θk − θ̂k‖Σ̂tk

+ ‖θ∗ − θ̂k‖Σ̂tk

)∥∥φwk
(st, at)

∥∥
Σ̂−1

t

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

4β̂T
∥∥φwk

(st, at)
∥∥

Σ̂−1
t
.

The first inequality is due to first applying Cauchy-Schwartz inequality and then the triangle inequality. The
second inequality is due to Lemma A.6 and the fact that for tk ≤ t < tk+1 det(Σt) ≤ det(Σtk+1

) ≤ 2 det(Σtk).

The third inequality is due to Lemma A.2 and the fact that {β̂t}t is increasing.



Yue Wu, Dongruo Zhou, Quanquan Gu

Meanwhile, for each term in I1, we also have that due to the fact |wk(s)| ≤ D/2,

[Pkwk](st, at)− [Pwk](st, at) ≤ D.

Therefore, we have

I1 ≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{
D, 4β̂T

∥∥φwk
(st, at)

∥∥
Σ̂−1

t

}

≤ 4β̂T

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥φwk

(st, at)
∥∥

Σ̂−1
t

}

≤ 4β̂T

√√√√T

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥φwk

(st, at)
∥∥2

Σ̂−1
t

}

≤ 4β̂T

√
T · 2d log

(
dλ+ TD2

dλ

)

≤ 6β̂T

√
dT log

(
dλ+ TD2

dλ

)
.

The second inequality is due to the fact D ≤ 4β̂T . The third is due to Cauchy-Schwartz inequality. The fourth
is due to Lemma A.5.

The second term, can be controlled by the concentration of martingale. With probability 1− δ,

I2 =

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pwk](st, at)− wk(st)

]
=

K(T )−1∑
k=0

[
tk+1−1∑
t=tk

(
[Pwk](st, at)− wk(st+1)

)
− wk(stk) + wk(stk+1

)

]

≤
K(T )−1∑
k=0

[
tk+1−1∑
t=tk

(
[Pwk](st, at)− wk(st+1)

)]
+D ·K(T )

≤ D
√

2T log(1/δ) +D ·K(T ),

where the first inequality holds because |wk(s)| ≤ D/2; the second inequality is due to Lemma A.4.

Therefore, the total regret is bounded by

Regret(T ) =

K(T )−1∑
k=0

∆k ≤ 2Tε+ 6β̂T

√
dT log

(
λ+ TD2

λ

)
+D

√
2T log(1/δ) +D ·K(T ).

If we set

β̂t = D

√
d log

(
λ+ tD2

δλ

)
+
√
λB,

and

ε =
1√
T
,

then by taking union bound we have with probability 1− 2δ,

Regret(T ) ≤ 2
√
T +Dd

√
T · Õ(1) +B

√
λdT · Õ(1) +D

√
2T log(1/δ) +Dd log

(
2λ+ 2dTD2

λ

)
≤ Õ(Dd

√
T ),
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where Õ(1) hides the log factor, the last inequality holds since we set λ = 1/B2.

B Proof of Theorem 5.3

Most part of the proof resembles that of Theorem 5.1. The additional part is essentially about the new concen-
tration results from variance-aware linear bandit problem. As previously defined, we use K(T )− 1 to denote the
value of the counter k when Algorithm 1 finishes, and tK(T ) = T + 1 for convenience. By these notations, the
learning process from t = 1 to t = T can be divided into K(T ) episodes.

The first lemma provides a better confidence set given the information of the noise’s variance.

Lemma B.1 (Bernstein inequality for vector-valued martingales (Zhou et al., 2021a)). Let {Gt}∞t=1 be a fil-
tration, {xt, ηt}t≥1 a stochastic process so that xt ∈ Rd is Gt-measurable and ηt ∈ R is Gt+1-measurable. Fix
R,L, σ, λ > 0, µ∗ ∈ Rd. For t ≥ 1 let yt = 〈µ∗,xt〉+ ηt and suppose that ηt,xt also satisfy

|ηt| ≤ R, E[ηt|Gt] = 0, E[η2t |Gt] ≤ σ2, ‖xt‖2 ≤ L.

Then, for any 0 < δ < 1, with probability at least 1− δ we have

∀t > 0,

∥∥∥∥ t∑
i=1

xiηi

∥∥∥∥
Z−1

t

≤ βt, ‖µt − µ∗‖Zt
≤ βt +

√
λ‖µ∗‖2, (B.1)

where for t ≥ 1, µt = Z−1t bt, Zt = λI +
∑t
i=1 xix

>
i , bt =

∑t
i=1 yixi and

βt = 8σ
√
d log(1 + tL2/(dλ)) log(4t2/δ) + 4R log(4t2/δ) .

The number of episodes is bounded almost in the same way as in Lemma A.3:

Lemma B.2. Let K(T ) be as defined above. Then, K(T ) ≤ 2d log(1 + Td/λ).

Proof. See Section D.3.

The variance term is defined as

[Vwk](st, at) := Es′∼P(·|st,at)[w
2
k(s′)]− Es′∼P(·|st,at)[wk(s′)]2.

The following lemma states that with high probability the estimated variance is close the the true variance.

Lemma B.3. With probability 1− 3δ, we have for all 1 ≤ t ≤ T ,

θ∗ ∈ Ĉt ∩ B,
∣∣[V̄twk](st, at)− [Vwk](st, at)

∣∣ ≤ Et.
We denote the event above by E0, and P(E0) ≥ 1− 3δ.

Proof. See Section D.4.

Now, we define other events:

E1 :=
{K(T )−1∑

k=0

tk+1−1∑
t=tk

[
Es′∼P(·|st,at)[wk(s′)2]− w2

k(st+1)
]
≤ (D2/4)

√
2T log(1/δ)

}

E2 :=
{K(T )−1∑

k=0

tk+1−1∑
t=tk

[
Es′∼P(·|st,at)[wk(s′)]− wk(st+1)

]
≤ (D/2)

√
2T log(1/δ)

}
By the Azuma-Hoeffding inequality(Lemma A.4), we have P(E1) ≥ 1− δ and P(E2) ≥ 1− δ.

The next lemma characterizes the total variance.
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Lemma B.4. Under the events E0 and E1, we have

K(T )−1∑
k=0

tk+1−1∑
t=tk

[Vwk](st, at) ≤ (D2/4)
√

2T log(1/δ) + (K(T ) + 1)(D2/4) + 2DT +D2β̂T
√
T2d log(1 + T/λ).

Proof. See Section D.5.

The following lemma serves as a wrapper of calculating the total estimation error.

Lemma B.5. Under the event E0, we have

T∑
t=1

Et ≤ β̃T
√

2Td log(1 + TD2/4dλ) +D2β̌T
√

2Td log(1 + T/λ).

Proof. See Section D.6.

Now we are ready to show the regret upper bound.

Proof. We first follow the same procedure as Jaksch et al. (2010) did to decompose the regret and tackle each
term respectively.

We have

Regret(T ) :=

K(T )−1∑
k=0

tk+1−1∑
t=tk

[ρ∗ − r(st, at)]

≤ Tε+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[ρk − r(st, at)]

≤ 2Tε+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
Es′∼Pk(·|st,at)[uk(s′)]− uk(st)

]
= 2Tε+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
Es′∼Pk(·|st,at)[wk(s′)]− wk(st)

]
= 2Tε+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pkwk](st, at)− wk(st)

]
.

The first inequality is due to the ε-optimality of the EVI algorithm. The second inequality is due to (12) in
Jaksch et al. (2010). The third inequality is due to the fact that add a bias to ut won’t change the difference, as
done in Algorithm 1. So we subtract (maxs ut(s) + mins ut(s))/2 from ut(s). The last equality is a shorthand.
It can be further decomposed into:

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pkwk](st, at)− wk(st)

]
=

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pkwk](st, at)− [Pwk](st, at)

]
︸ ︷︷ ︸

I1

+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pwk](st, at)− wk(st)

]
︸ ︷︷ ︸

I2

.

We deal with the second term I2 first:
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The second term, can be controlled by the concentration of martingale. In fact, E2 defined above exactly
characterizes the concentration. Under event E2, we have

I2 =

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pwk](st, at)− wk(st)

]
=

K(T )−1∑
k=0

[
tk+1−1∑
t=tk

[
[Pwk](st, at)− wk(st+1)

]
− wk(stk) + wk(stk+1

)

]

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pwk](st, at)− wk(st+1)

]
+K(T ) ·D

≤ D
√

2T log(1/δ) +K(T ) ·D

= Õ(D
√
T ) + Õ(Dd),

where the first inequality holds since |wk(·)| ≤ D/2, the second one holds due to the definition of E2. For term
I1,

I1 =

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
[Pkwk](st, at)− [Pwk](st, at)

]
=

K(T )−1∑
k=0

tk+1−1∑
t=tk

〈
θk − θ∗,φwk

(st, at)
〉

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

(
‖θk − θ̂k‖Σ̂t

+ ‖θ∗ − θ̂k‖Σ̂t

)∥∥φwk
(st, at)

∥∥
Σ̂−1

t

≤ 2

K(T )−1∑
k=0

tk+1−1∑
t=tk

(
‖θk − θ̂k‖Σ̂tk

+ ‖θ∗ − θ̂k‖Σ̂tk

)∥∥φwk
(st, at)

∥∥
Σ̂−1

t

≤ 4

K(T )−1∑
k=0

tk+1−1∑
t=tk

β̂tk
∥∥φwk

(st, at)
∥∥

Σ̂−1
t

≤ 4

K(T )−1∑
k=0

tk+1−1∑
t=tk

β̂tσ̄t
∥∥φwk

(st, at)/σ̄t
∥∥

Σ̂−1
t
.

The first inequality is due to first applying Cauchy-Schwartz inequality and then the triangle inequality. The
second is due to det(Σ̂t) ≤ 2 det(Σ̂tk) and Lemma A.6. The third is due to event E0. The last is due to the fact

that {β̂t}t≥0 is increasing.

Meanwhile, for each term in I1, we also have that due to |wk(s)| ≤ D/2,

[Pkwk](st, at)− [Pwk](st, at) ≤ D.

Therefore, we have

I1 ≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{
D, 4β̂tσ̄t

∥∥φwk
(st, at)/σ̄t

∥∥
Σ̂−1

t

}

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

4β̂tσ̄t min
{

1,
∥∥φwk

(st, at)/σ̄t
∥∥

Σ̂−1
t

}

≤ 4β̂T

√√√√√√√
T∑
t=1

(σ̄t)
2

︸ ︷︷ ︸
J1

√√√√√√√
K(T )−1∑
k=0

tk+1−1∑
t=tk

{
1,
∥∥φwk

(st, at)/σ̄t
∥∥

Σ̂−1
t

}
︸ ︷︷ ︸

J2

.
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The second inequality is due to the fact D ≤ 4β̂tσ̄t. The third is due to Cauchy-Schwartz inequality.

Note that by Lemma A.5, it is clear that

J2 ≤ 2d log(1 + T/λ).

For term J1,

J1 =

K(T )−1∑
k=0

tk+1−1∑
t=tk

max{D2/d, [V̄twk](st, at) + Et}

≤ TD2/d+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[V̄twk](st, at) +

T∑
t=1

Et

≤ TD2/d+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[Vwk](st, at) + 2

T∑
t=1

Et

≤ TD2/d+ (D2/4)
√

2T log(1/δ) + (K(T ) + 1)(D2/4) + 2DT +D2β̂T
√
T2d log(1 + T/λ)

+ β̃T
√

2Td log(1 + TD2/4dλ) +D2β̌T
√

2Td log(1 + T/λ).

The second inequality uses Lemma B.1. The third uses Lemma B.4 and Lemma B.5.

Now, based on Lemma B.2 we have K(T ) = Õ(d). By definition, we have

β̂T = Õ(
√
d)

β̌T = Õ(d)

β̃T = Õ(D2
√
d),

if we set λ = B−2.

This means we can express I1 in Big-O notation term by term as:

J1 = Õ(TD2/d) + Õ(D2
√
T ) + Õ(D2d) + Õ(DT ) + Õ(D2d

√
T ) + Õ(D2d

√
T ) + Õ(D2d3/2

√
T )

= Õ(TD2/d) + Õ(DT ) + Õ(D2d3/2
√
T ).

We have

I1 = Õ(
√
d) ·

√
Õ(TD2/d) + Õ(DT ) + Õ(D2d3/2

√
T ) ·

√
Õ(d)

= Õ(D
√
dT ) + Õ(d

√
DT ) + Õ(Dd7/4T 1/4).

Finally, by setting ε = 1/
√
T , the regret is upper bounded as

Regret(T ) = O(
√
T ) + Õ(D

√
dT ) + Õ(d

√
DT ) + Õ(Dd7/4T 1/4) + Õ(D

√
T ) + Õ(Dd)

= Õ(D
√
dT ) + Õ(d

√
DT ) + Õ(Dd7/4T 1/4).

As long as d ≥ D and T ≥ D2d3, we have

Regret(T ) = Õ(d
√
DT ).

C Proof of Theorem 5.5

C.1 Construction of Hard-to-learn MDPs

Here we describe the construction of the hard-to-learn MDPs M(S,A, r,Pθ) for our lower bound proof (illustrated
in Figure 2). The state space S consists of two states x0, x1. The action space A consists of 2d−1 vectors a ∈ Rd−1
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x1x01− δ − 〈ai,θ〉
δ + 〈ai,θ〉

x1x0 1− δ
δ

Figure 2: Illustration of the hard-to-learn linear mixture MDP considered in Theorem 5.5. The left figure
demonstrates the state transition probability starting from x0 with some specific action ai. The right figure
demonstrates the state transition probability starting from x1 with any action.

whose coordinates are 1 or −1. The reward function r satisfies that r(x0,a) = 0 and r(x1,a) = 1 for any a ∈ A.
The probability transition function Pθ is parameterized by a (d− 1)-dimensional vector θ ∈ Θ, which is defined
as

Pθ(x0|x0,a) = 1− δ − 〈a,θ〉, Pθ(x1|x0,a) = δ + 〈a,θ〉,
Pθ(x0|x1,a) = δ, Pθ(x1|x1,a) = 1− δ,
Θ = {−∆/(d− 1),∆/(d− 1)}d−1,

where δ and ∆ are positive parameters that need to be determined in later proof. We set δ = 1/D, and ∆ as
∆ = (1/45

√
2 log 2/5)d/

√
DT . It can be verified that M is indeed a linear kernel MDP with the feature mapping

φ(s′|s, a) defined as follows:

φ(x0|x0,a) =

(
−αa

β(1− δ)

)
,φ(x1|x0,a) =

(
αa
βδ

)
,φ(x0|x1,a) =

(
0
βδ

)
,φ(x1|x1,a) =

(
0

β(1− δ)

)
,

where α =
√

∆/[(d− 1)(1 + ∆)], β =
√

1/(1 + ∆), and the vector θ̃ = (θ>/α, 1/β)> ∈ Rd. We can verify that

φ and θ̃ satisfy the requirements of B-bounded linear mixture MDP. In detail, we have

‖θ̃‖22 =
‖θ‖22
α2

+
1

β2
= (1 + ∆)2 ≤ B2,

as long as ∆ ≤
√
B − 1. In addition, for any function F : S → [0, 1], we have

‖φF (x0,a)‖22 = α2‖a‖22(F (x1)− F (x0))2 + (β(1− δ)F (x0) + βδF (x1))2 ≤ (d− 1)α2 + β2 = 1.

Therefore, our defined MDP is indeed a B-bounded linear mixture MDP.

Remark C.1. Similar to Zhou et al. (2021a), our lower bound can also imply a lower bound for a related MDP
class called linear MDPs (Yang and Wang, 2019a; Jin et al., 2019), which assumes that P(s′|s, a) = 〈ψ(s, a),µ(s′)〉
and r(s, a) = 〈ψ(s, a), ξ〉. We construct ψ, µ and ξ as follows:

ψ(s, a) =

{
(αa>, β, 0)> s = x0

(0, 0, 1) s = x1
,µ(s′) =

{
(−θ>/α, (1− δ)/β), δ)> s′ = x0

(θ>/α, δ/β, 1− δ)> s′ = x1
, ξ = (0>, 1)>.

It can be verified that such a feature mapping φ,µ and parameters ξ satisfy the requirements of a linear MDP
with (d+ 1)-dimension feature mapping. Meanwhile, the MDP 〈ψ(s, a),µ(s′)〉 has exactly the same form as the
linear mixture MDPs proposed in Theorem 5.5. Therefore, the lower bound in Theorem 5.5 can also be applied
to infinite-horizon average-reward linear MDPs, which are studied by Wei et al. (2020a). This also suggests that
there still exists a gap between the best upper bound (Wei et al., 2020a) and lower bound in the linear MDP
setting.

C.2 Proof of the Lower Bound in Theorem 5.5

Given the example we constructed above (shown in Figure 2), it is easy to see that the optimal policy is to
choose the action a satisfying 〈a,θ〉 = ∆, namely each coordinate of a has the same sign as θ’s.
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Given the optimal policy, it is clear that the stationary distribution is

µ =

[
δ

2δ + ∆

δ + ∆

2δ + ∆

]
,

and the optimal average reward is ρ∗ = (δ + ∆)/(2δ + ∆).

In the construction, we leave the two parameters δ and ∆ unspecified. Now we set δ = 1/D. From state x1 to
x0, it is clear that any policy has only one action and the expected travel time is 1/δ = D. From state x0 to x1,
there always exists an policy that chooses the action a that has the same sign coordinate-wise, and in that case
the transition probability from x0 to x1 is δ + ∆, which indicates the expected travel time is smaller then D.
From the argument above, we know the MDP has a diameter of D.

The choice of ∆ is ∆ = (1/45
√

2 log 2/5)d/
√
DT ; the motivation will be revealed later in the proof.

In the following, we use Regretθ(T ) to denote the regret Regret(Mθ, A, s, T ), where A is a deterministic algorithm.
As argued in Auer et al. (2002), it is sufficient to only consider deterministic policies. Let Pθ(·) denote the
distribution over ST , where s1 = x0, st+1 ∼ Pθ(·|st, at), at is decided by A. Let Eθ denote the expectation w.r.t.
distribution Pθ. Denote N1, N0, N

a
0 as the random variables of the times state x1 is visited, the times state x0

is visited and the times state x0 is visited and a is chosen. We further define NV0 for some subset V ⊂ A as the
random variable of the times state x0 is visited, and the action a belongs to V.

Lemma C.2. Suppose 2∆ < δ and (1− δ)/δ < T/5, then for EθN1 and EθN0, we have

EθN1 ≤
T

2
+

1

2δ

∑
a

〈a,θ〉EθN
a
0 , EθN0 ≤ 4T/5.

Proof. See Section D.7.

Lemma C.3 (Pinsker’s inequality, in Jaksch et al. (2010)). Denote s = {s1, . . . , sT } ∈ ST as the observed states
from step 1 to T . Then for any two distributions P1 and P2 over ST and any bounded function f : ST → [0, B],
we have

E1f(s)− E2f(s) ≤
√

log 2/2B
√

KL(P2‖P1),

where E1 and E2 are expectations with respect to P1 and P2.

Lemma C.4. Suppose that θ and θ′ only differs from j-th coordinate, 2∆ < δ ≤ 1/3. Then we have the
following bound for the KL divergence between Pθ and Pθ′ :

KL(Pθ′‖Pθ) ≤ 16∆2

(d− 1)2δ
EθN0.

Proof. See Section D.8.

Proof of Theorem 5.5. We have

Eθ[Regretθ(T )] := Tρ∗ − Eθ

[ T∑
t=1

r(st, at)

]
= Tρ∗ − Eθ[N1].

Averaging over all possible choice of θ ∈ Θ, we have

1

|Θ|
∑
θ

Eθ[Regretθ(T )] = Tρ∗ − 1

|Θ|
∑
θ

Eθ[N1].
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Following Lemma C.2, we first have

1

|Θ|
∑
θ

Eθ[N1] ≤ T

2
+

1

2δ|Θ|
∑
θ

∑
a

〈a,θ〉EθN
a
0

=
T

2
+

1

2δ|Θ|
∑
θ

∑
a

∆

d− 1

d−1∑
j=1

1{sign(aj) = sign(θj)}EθN
a
0

=
T

2
+

1

2δ|Θ|
∆

d− 1

d−1∑
j=1

∑
θ

∑
a

Eθ

[
1{sign(aj) = sign(θj)}Na

0

]
. (C.1)

For a fixed coordinate j, consider θ′ that only differs with θ at its j-th coordinate. We have

Eθ

[
1{sign(aj) = sign(θj)}Na

0

]
+ Eθ′

[
1{sign(aj) = sign(θ′j)}Na

0

]
= Eθ′

[
Na

0

]
+ Eθ

[
1{sign(aj) = sign(θj)}Na

0

]
− Eθ′

[
1{sign(aj) = sign(θj)}Na

0

]
,

since 1{sign(aj) = sign(θ′j)} = 1− 1{sign(aj) 6= sign(θj)}.

Summing the equation above over Θ and A, we have

2
∑
θ

∑
a

Eθ

[
1{sign(aj) = sign(θj)}Na

0

]
=
∑
θ

∑
a

Eθ′
[
Na

0

]
+
∑
θ

[
Eθ

[∑
a

1{sign(aj) = sign(θj)}Na
0

]
− Eθ′

[∑
a

1{sign(aj) = sign(θj)}Na
0

]]
=
∑
θ

Eθ′
[
N0

]
+
∑
θ

[
Eθ

[
N
Aj

0

]
− Eθ′

[
N
Aj

0

]]
≤
∑
θ

Eθ′
[
N0

]
+
∑
θ

√
log 2/2T

√
KL(Pθ′‖Pθ)

≤
∑
θ

Eθ′
[
N0

]
+
∑
θ

2
√

2 log 2
T∆

d
√
δ

√
Eθ[N0], (C.2)

where Aj is the set of all a which satisfy 1{sign(aj) = sign(θj)}. The first equality is by matching each θ with
θ′ that differs from θ in its j-th coordinate, and moving

∑
a inside. The second equality applies the shorthand

Aj . The first inequality is due to Lemma C.3. The last is due to Lemma C.4.

Substituting (C.2) into (C.1), we have

1

|Θ|
∑
θ

Eθ[N1] ≤ T

2
+

1

4δ|Θ|
∆

d− 1

d−1∑
j=1

∑
θ

[
Eθ′
[
N0

]
+ 2
√

2 log 2
T∆

d
√
δ

√
Eθ[N0]

]

=
T

2
+

∆

4δ|Θ|
∑
θ

[
Eθ′
[
N0

]
+ 2
√

2 log 2
T∆

d
√
δ

√
Eθ[N0]

]

≤ T

2
+

∆

4δ

[
4T

5
+ 2
√

2 log 2
T∆

d
√
δ

2
√
T√
5

]
=
T

2
+

∆T

5δ
+
√

2 log 2/5
∆2T 3/2

dδ3/2
,

where the second inequality is due to Lemma C.2.
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This further leads to

1

|Θ|
∑
θ

Eθ[Regretθ(T )] = Tρ∗ − 1

|Θ|
∑
θ

Eθ[N1]

≥ T · δ + ∆

2δ + ∆
− T

2
− ∆T

5δ
−
√

2 log 2/5
∆2T 3/2

dδ3/2

=
∆(δ − 2∆)

5δ(4δ + 2∆)
· T −

√
2 log 2/5

∆2T 3/2

dδ3/2

≥ 2

45δ
·∆T −

√
2 log 2/5 · ∆2T 3/2

dδ3/2

=
1

2025
√

2 log 2/5
· d
√
DT

>
1

2025
· d
√
DT,

where the second inequality requires 0 < 4∆ ≤ δ; the last equality is due to the setting δ = D−1 and ∆ =
(1/45

√
2 log 2/5)d/

√
DT . This further requires that T ≥ 16d2D/2025.

D Proof of Supporting Lemmas

D.1 Proof of Lemma A.2

Proof of Lemma A.2. Recall the definition of θk in Algorithm 1, we have

θk =

(
λI +

k−1∑
j=0

tj+1−1∑
i=tj

φwj (si, ai)φwj (si, ai)
>
)−1( k−1∑

j=0

tj+1−1∑
i=tj

φwj (si, ai)w(si+1)

)
.

It is worth noting that for any 0 ≤ j ≤ k − 1 and tj ≤ i ≤ tj+1 − 1,

[Pwj ](si, ai) =

∫
s′
P(s′|si, ai)wj(si, ai)ds′

=

∫
s′
〈φ(s′|si, ai),θ∗〉wj(s′)ds′

=
〈∫

s′
φ(s′|si, ai)wj(s′),θ∗

〉
= 〈φwj

(si, ai),θ
∗〉, (D.1)

thus {wj(si+1)−〈φwj
(si, ai),θ

∗〉} forms a martingale difference sequence. Besides, since |w(s)| ≤ D/2 for any s,
then wj(si+1)− 〈φwj (si, ai),θ

∗〉 is a sequence of D-subgaussian random variables with zero means. Meanwhile,
we have ‖φwj (si, ai)‖2 ≤ D and ‖θ∗‖2 ≤ B by Definition 3.2. By Theorem 2 in Abbasi-Yadkori et al. (2011),
we have that with probability at least 1− δ, θ∗ belongs to the following set for all 1 ≤ k ≤ K:

{
θ :
∥∥∥Σ1/2

tk
(θ − θ̂k)

∥∥∥
2
≤ D

√
log

(
λ+ tkD2

δλ

)
+
√
λB

}
. (D.2)

Finally, by the definition of β̂t and the fact that 〈θ∗,φ(s′|s, a)〉 = P(s′|s, a) for all (s, a), we draw the conclusion

that θ∗ ∈ Ĉtk for 1 ≤ k ≤ K.
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D.2 Proof of Lemma A.3

Proof of Lemma A.3. For simplicity, we denote K = K(T ). Note that det(Σ0) = λd. We further have

‖ΣT ‖2 =

∥∥∥∥λI +

K−1∑
k=0

tk+1−1∑
t=tk

φwk
(st, at)φwk

(st, at)
>
∥∥∥∥
2

≤ λ+

K−1∑
k=0

tk+1−1∑
t=tk

∥∥φwk
(st, at)

∥∥2
2

≤ λ+ TD2, (D.3)

where the first inequality holds due to the triangle inequality, the second inequality holds due to the fact
wk(s) ≤ D/2 and Definition 3.2. (D.3) suggests that det(ΣT ) ≤ (λ+ TdD2)d. Therefore, we have

(λ+ TD2)d ≥ det(ΣT ) ≥ det(ΣtK−1−1) ≥ 2K−1 det(Σt0−1) = 2K−1λd, (D.4)

where the second inequality holds since ΣT � ΣtK−1−1, the third inequality holds due to the fact that
det(Σtk−1) ≥ 2 det(Σtk−1−1) by the update rule in Algorithm 1. (D.4) suggests

K ≤ d log
2λ+ 2TD2

λ
.

D.3 Proof of Lemma B.2

Proof of Lemma B.2. For simplicity, we denote K = K(T ). Note that det(Σ̂1) = λd. We further have

‖Σ̂tK‖2 =

∥∥∥∥λI +

T∑
t=1

φwk
(st, at)φwk

(st, at)
>/σ̄2

t

∥∥∥∥
2

≤ λ+

T∑
t=1

∥∥φwk
(st, at)/σ̄t

∥∥2
2
≤ λ+ Td,

where the first inequality holds due to the triangle inequality, the second inequality holds because wk(s) ≤ D

and σ̄t ≥ D/
√
d. This suggests that det(Σ̂tK ) ≤ (λ+ Td)d. Therefore, we have

(λ+ Td)d ≥ det(ΣtK ) ≥ det(ΣtK−1
) ≥ 2K−1 det(Σt0) = 2K−1λd,

where the second inequality holds since ΣT � ΣtK−1−1, the third inequality holds due to the fact that
det(Σtk−1) ≥ 2 det(Σtk−1−1) by the update rule in Algorithm 1 with OPTION 2. This suggests

K ≤ 2d log(1 + dT/λ).

D.4 Proof of Lemma B.3

Proof of Lemma B.3. In fact we are able to prove a stronger result:

θ∗ ∈ Ĉt ∩ Čt ∩ C̃t ∩ B,

where the two additional sets are defined as

Čt :=

{
θ :
∥∥∥Σ̌1/2

t (θ − θ̌t)
∥∥∥ ≤ β̌t}

C̃t :=

{
θ :
∥∥∥Σ̃1/2

t (θ − θ̃t)
∥∥∥ ≤ β̃t}.
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For any 1 ≤ t ≤ T , we always have k such that tk ≤ t < tk+1. We start with the following inequality:∣∣[V̄twk](st, at)− [Vwk](st, at)
∣∣ =

∣∣∣∣min
{
D2/4,

〈
φw2

k
(st, at), θ̃t

〉}
−
〈
φw2

k
(st, at),θ

∗〉
+
〈
φwk

(st, at),θ
∗〉2 − [min

{
D/2,

〈
φwk

(st, at),θt
〉}]2∣∣∣∣

≤
∣∣∣∣min

{
D2/4,

〈
φw2

k
(st, at), θ̃t

〉}
−
〈
φw2

k
(st, at),θ

∗〉∣∣∣∣︸ ︷︷ ︸
I1

+

∣∣∣∣〈φwk
(st, at),θ

∗〉2 − [min
{
D/2,

〈
φwk

(st, at),θt
〉}]2∣∣∣∣︸ ︷︷ ︸

I2

,

where the inequality is by the triangle inequality.

For I1, we have

I1 ≤
∣∣∣〈φw2

k
(st, at), θ̃t

〉
−
〈
φw2

k
(st, at),θ

∗〉∣∣∣
=
∣∣∣〈φw2

k
(st, at), θ̃t − θ∗

〉∣∣∣
≤
∥∥∥Σ̃−1/2t φw2

k
(st, at)

∥∥∥ · ∥∥∥Σ̃1/2
t (θ̃t − θ∗)

∥∥∥,
where the first inequality is due to

〈
φw2

k
(st, at),θ

∗〉 = Es′∼P(·|st,at)[w2
k(s′)] ∈ [0, D2/4], and the last inequality is

due to Cauchy-Schwartz inequality. Also, it is clear I1 ≤ D2/4.

Similarly, for I2, we have

I2 =

∣∣∣∣〈φwk
(st, at),θ

∗〉+ min
{
D/2,

〈
φwk

(st, at),θt
〉}∣∣∣∣

·
∣∣∣∣〈φwk

(st, at),θ
∗〉− [min

{
D/2,

〈
φwk

(st, at),θt
〉}]∣∣∣∣

≤ D ·
∣∣∣〈φwk

(st, at),θ
∗〉− 〈φwk

(st, at),θt
〉∣∣∣

= D ·
∣∣∣〈φwk

(st, at),θ
∗ − θt

〉∣∣∣
≤ D ·

∥∥∥Σ̂−1/2t φwk
(st, at)

∥∥∥ · ∥∥∥Σ̂1/2
t (θ∗ − θt)

∥∥∥,
where the first equality is by a2 − b2 = (a + b)(a − b), and the following reasoning is the same as I1. The
only additional fact used in the first inequality is

〈
φwk

(st, at),θ
∗〉 ∈ [0, D/2] and min

{
D/2,

〈
φwk

(st, at),θt
〉}
∈

[0, D/2]. Also, it is clear I2 ≤ D2/4.

The two terms combined together gives∣∣[V̄twk](st, at)− [Vwk](st, at)
∣∣ ≤ min

{
D2/4,

∥∥∥Σ̃−1/2t φw2
k
(st, at)

∥∥∥ · ∥∥∥Σ̃1/2
t (θ̃t − θ∗)

∥∥∥}
+ min

{
D2/4, D ·

∥∥∥Σ̂−1/2t φwk
(st, at)

∥∥∥ · ∥∥∥Σ̂1/2
t (θ∗ − θt)

∥∥∥}. (D.5)

Now, we first show that with probability 1 − δ, for all t, θ∗ ∈ Čt. To show this, we apply Lemma B.1. By
setting xt = σ̄−1t φwk

(st, at) and ηt = σ̄−1t wk(st+1)− σ̄−1t 〈φwk
(st, at),θ

∗〉, Gt = Ft, µ∗ = θ∗, yt = 〈µ∗,xt〉+ ηt,

Zt = λI +
∑t
i=1 xix

>
i , bt =

∑t
i=1 xiyi and µt = Z−1t bt, we have yt = σ̄−1t wk(st+1) and µt = θ̂t. Moreover, we

have

‖xt‖2 ≤
√
d/2, |ηt| ≤

√
d,E[ηt|Gt] = 0,E[η2t |Gt] = d.

Therefore, by Lemma B.1, we have with probability 1− δ, for all t ∈ [T ],

‖Σ̂1/2
t (θ̂t − θ∗)‖2 ≤ 8d

√
log(1 + t/4λ) log(4t2/δ) + 4

√
d log(4t2/δ) +

√
λB = β̌t.
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This means that with probability 1− δ, for all t, θ∗ ∈ Čt.

The same argument can be applied again, except that now we focus on the squared function w2
k. This gives

‖Σ̃1/2
t (θ̃t − θ∗)‖2 ≤ 8(D2/4)

√
d log(1 + tD2/4λdλ) log(4t2/δ) + 4(D2/4) log(4t2/δ) +

√
λB = β̃t.

This means that with probability 1− δ, for all t, θ∗ ∈ C̃t.

Now we show that θ∗ ∈ Ĉt with high probability. Let xt = σ̄−1t φwk
(st, at), and

ηt = σ̄−1t 1{θ∗ ∈ Čt ∩ C̃t}
[
wk(st+1)− 〈φwk

(st, at),θ
∗〉
]
.

In this case, it is clear that still we have E[ηt|Gt] = 0, |ηt| ≤
√
d, ‖xt‖2 ≤

√
d. Also,

E[η2t |Gt] = σ̄−2t 1{θ∗ ∈ Čt ∩ C̃t}[Vwt](st, at)

≤ σ̄−2t 1{θ∗ ∈ Čt ∩ C̃t}
[
[V̄twt](st, at)

+ min
{
D2/4,

∥∥∥Σ̃−1/2t φw2
k
(st, at)

∥∥∥ · ∥∥∥Σ̃1/2
t (θ̃t − θ∗)

∥∥∥}
+ min

{
D2/4, D ·

∥∥∥Σ̂−1/2t φwk
(st, at)

∥∥∥ · ∥∥∥Σ̂1/2
t (θ∗ − θt)

∥∥∥}]
≤ σ̄−2t

[
[V̄twt](st, at) + min

{
D2/4,

∥∥∥Σ̃−1/2t φw2
k
(st, at)

∥∥∥β̃t}
+ min

{
D2/4, Dβ̌t ·

∥∥∥Σ̂−1/2t φwk
(st, at)

∥∥∥}]
= 1,

where the first inequality is due to (D.5) and the second inequality is due to first, the event that θ∗ ∈ Čt ∩ C̃t.
The last equality is by the definition of σ̄t.

Again by Lemma B.1, we have that for all t ∈ [T ],

‖µt − µ∗‖Zt ≤ 8
√
d log(1 + t/4λ) log(4t2/δ) + 4

√
d log(4t2/δ) +

√
λB = β̂t.

Now, denote the event when
{
∀t ∈ [T ],θ∗ ∈ Čt ∩ C̃t

}
and the inequality above holds as E0. By union bound, we

have P(E0) ≥ 1− 3δ.

It is clear that under E0, we have θ∗ ∈ Ĉt for all t because under event E0,

yt = 〈σ̄−1t φwk
(st, at),θ

∗〉+ σ̄−1t 1{θ∗ ∈ Čt ∩ C̃t}
[
wk(st+1)− 〈φwk

(st, at),θ
∗〉
]

= σ̄−1t wk(st+1),

so indeed we have ‖θ̂t − θ∗‖Σ̂t
≤ β̂t.

Also, by the definition of Et, it is clear that under event E0,∣∣[V̄twk](st, at)− [Vwk](st, at)
∣∣ ≤ Et.

D.5 Proof of Lemma B.4

Proof of Lemma B.4. Part of the proof is inspired by Fruit et al. (2020). We will use VP (w) to denote
Es′∼P (·)[w(s′)2] − (Es′∼P (·)[w(s′)])2, namely the variance of the random variable w(s′) where s′ ∼ P (·). Some
examples are

VP(·|st,at)(wk) = Es′∼P(·|st,at)[wk(s′)2]− (Es′∼P(·|st,at)[wk(s′)])2,

VPk(·|st,at)(wk) = Es′∼Pk(·|st,at)[wk(s′)2]− (Es′∼Pk(·|st,at)[wk(s′)])2.



Yue Wu, Dongruo Zhou, Quanquan Gu

When the context is clear, we may also use short-hands like Ep[w(s′)] to indicate expectation under p(·).

The following decomposition is useful:

K(T )−1∑
k=0

tk+1−1∑
t=tk

VP(·|st,at)(wk)

=

K(T )−1∑
k=0

tk+1−1∑
t=tk

Es′∼P(·|st,at)[wk(s′)2]− (Es′∼P(·|st,at)[wk(s′)])2

=

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
Es′∼P(·|st,at)[wk(s′)2]− w2

k(st+1)
]

+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
w2
k(st+1)− (Es′∼P(·|st,at)[wk(s′)])2

]
=

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
Es′∼P(·|st,at)[wk(s′)2]− w2

k(st+1)
]

+

K(T )−1∑
k=0

[
tk+1−1∑
t=tk

[
w2
k(st)− (Es′∼P(·|st,at)[wk(s′)])2

]
+ w2

k(stk+1
)− w2

k(stk)

]

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

[
Es′∼P(·|st,at)[wk(s′)2]− w2

k(st+1)
]

︸ ︷︷ ︸
I1

+

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
w2
k(st)− (Es′∼P(·|st,at)[wk(s′)])2

]
︸ ︷︷ ︸

I2

+K(T ) ·D2/4.

For term I1, since the event E1 holds, we have

I1 ≤ (D2/4)
√

2T log(1/δ).

For term I2, we have

I2 =

T∑
t=1

[
w2
k(st)− (Es′∼P(·|st,at)[wk(s′)])2

]
≤

T∑
t=1

∣∣wk(st)− Es′∼P(·|st,at)[wk(s′)]
∣∣ · ∣∣wk(st) + Es′∼P(·|st,at)[wk(s′)]

∣∣
≤ D

T∑
t=1

∣∣wk(st)− (Es′∼P(·|st,at)[wk(s′)])
∣∣.

Note that, wk, as the output of the Extended Value Iteration, satisfies the following condition(Lemma A.1):

|r(st, at) + Es′∼Pk(·|st,at)[wk(s′)]− wk(st)− ρk| ≤ ε.



Nearly Minimax Optimal Regret for Learning Average-reward MDPs with Linear Approximation

Therefore, we can further bound each term in I2 as follows:

∣∣wk(st)− EP[wk(s′)]
∣∣ =

∣∣wk(st)− EPk
[wk(s′)] + EPk

[wk(s′)]− EP[wk(s′)]
∣∣

≤ |r(st, at) + EPk
[wk(s′)]− wk(st)− ρk|+ |r(st, at)− ρk|

+
∣∣EPk

[wk(s′)]− EP[wk(s′)]
∣∣

≤ rmax + rmax +
∣∣EPk

[wk(s′)]− EP[wk(s′)]
∣∣

= 2rmax +
∣∣〈φwk

(st, at),θk − θ∗〉
∣∣

≤ 2rmax +
∥∥φwk

(st, at)
∥∥

Σ̂−1
t
·
∥∥θk − θ∗∥∥Σ̂t

≤ 2rmax + 2β̂t
∥∥φwk

(st, at)
∥∥

Σ̂−1
t
.

Here, the first inequality is due to triangle inequality. The second inequality is due to 1) the reward function( so
should the average reward) should lie in [0, rmax] as assumed, and in this paper’s setting actually rmax = 1. The
third inequality is due to Cauchy-Schwartz inequality. The last inequality is due to the assumption E0 holds.
For the second equality, note that EP[w(s′)] = 〈φw(s′|st, at),θ∗〉.

Also, it is clear that
∣∣EPk

[wk(s′)]− EP[wk(s′)]
∣∣ ≤ D. Therefore, term I2 can be bounded as

I2 ≤ D
K(T )−1∑
k=0

tk+1−1∑
t=tk

[
2rmax + min

{
D, β̂t

∥∥φwk
(st, at)

∥∥
Σ̂−1

t

}]

= 2DT +D

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{
D, β̂t

∥∥φwk
(st, at)

∥∥
Σ̂−1

t

}

≤ 2DT +D

K(T )−1∑
k=0

tk+1−1∑
t=tk

β̂tσ̄t min
{

1,
∥∥φwk

(st, at)/σ̄t
∥∥

Σ̂−1
t

}

≤ 2DT +D2β̂T

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥φwk

(st, at)/σ̄t
∥∥

Σ̂−1
t

}

≤ 2DT +D2β̂T
√
T

√√√√K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥φwk

(st, at)/σ̄t
∥∥2

Σ̂−1
t

}
≤ 2DT +D2β̂T

√
T2d log(1 + T/λ).

The second inequality holds because β̂t ≥
√
d and σ̄t ≥ D/

√
d.The third inequality holds because β̂t ≤ β̂T and

σ̄t ≤ D. The fourth inequality is due to Cauchy-Schwartz inequality. The last inequality is from Lemma A.6.

Collecting I1 and I2 gives

K(T )−1∑
k=0

tk+1−1∑
t=tk

[Vwk](st, at) ≤ (D2/4)
√

2T log(1/δ) + (K(T ) + 1)(D2/4) + 2DT +D2β̂T
√
T2d log(1 + T/λ),

given that E0 and E1 hold. Using big-O notation we have

K(T )−1∑
k=0

tk+1−1∑
t=tk

[Vwk](st, at) = Õ(DT ) + Õ(D2d
√
T ).
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D.6 Proof of Lemma B.5

Proof of Lemma B.5. Directly unroll the definition of Et:

T∑
t=1

Et =

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{
D2/4, β̃t

∥∥∥Σ̃−1/2t φw2
k
(st, at)

∥∥∥}︸ ︷︷ ︸
I1

+

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{
D2/4, Dβ̌t

∥∥∥Σ̂−1/2t φwk
(st, at)

∥∥∥}︸ ︷︷ ︸
I2

.

For term I1,

I1 ≤ β̃T
K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥∥Σ̃−1/2t φw2

k
(st, at)

∥∥∥}

≤ β̃T
√
T

√√√√K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥∥Σ̃−1/2t φw2

k
(st, at)

∥∥∥2}
≤ β̃T

√
2Td log(1 + TD2/4dλ),

where the first inequality is due to β̃t ≤ β̃T and β̃t ≥ D2/4. The second inequality is due to Cauchy-Schwartz
inequality. The third is due to Lemma A.5.

Similarly, for I2, we have

I2 =

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{
D2/4, Dβ̌tσ̄t

∥∥∥Σ̂−1/2t φwk
(st, at)/σ̄t

∥∥∥}

≤ D2β̌T

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥∥Σ̂−1/2t φwk

(st, at)/σ̄t

∥∥∥}

≤ D2β̌T

√√√√T

K(T )−1∑
k=0

tk+1−1∑
t=tk

min
{

1,
∥∥∥Σ̂−1/2t φwk

(st, at)/σ̄t

∥∥∥2}
≤ D2β̌T

√
2Td log(1 + T/λ),

where the first inequality is due to β̌tσ̄t ≥ D, β̌t ≤ β̌T and σ̄t ≤ D(all can be verified by the definitions).

To summarize,

T∑
t=1

Et ≤ β̃T
√

2Td log(1 + TD2/4dλ) +D2β̌T
√

2Td log(1 + T/λ).

We can also conclude that

T∑
t=1

Et = Õ(D2d3/2
√
T ).
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D.7 Proof of Lemma C.2

Proof of Lemma C.2. We have

EθN1 =

T∑
t=2

Pθ(st = x1)

=

T∑
t=2

Pθ(st = x1|st−1 = x1)Pθ(st−1 = x1)︸ ︷︷ ︸
I1

+

T∑
t=2

Pθ(st = x1, st−1 = x0)︸ ︷︷ ︸
I2

. (D.6)

For I1, since Pθ(st = x1|st−1 = x1) = 1− δ no matter which action is taken, thus we have

I1 = (1− δ)
T∑
t=2

Pθ(st−1 = x1) = (1− δ)EθN1 − (1− δ)Pθ(sT = x1). (D.7)

Next we bound I2. We can further decompose I2 as follows.

I2 =

T∑
t=2

∑
a

Pθ(st = x1|st−1 = x0, at−1 = a)Pθ(st−1 = x0, at−1 = a)

=

T∑
t=2

∑
a

(δ + 〈a,θ〉)Pθ(st−1 = x0, at−1 = a)

=
∑
a

(δ + 〈a,θ〉)
[
EθN

a
0 − Pθ(sT = x0, aT = a)

]
. (D.8)

Substituting (D.7) and (D.8) into (D.6) and rearranging it, we have

EθN1

=
∑
a

(1 + 〈a,θ〉/δ)EθN
a
0 −

[
1− δ
δ
Pθ(sT = x1) +

∑
a

(1 + 〈a,θ〉/δ)Pθ(sT = x0, aT = a)

]
︸ ︷︷ ︸

ψθ

= EθN0 + δ−1
∑
a

〈a,θ〉EθN
a
0 − ψθ, (D.9)

which suggests that

EθN1 ≤ T/2 + δ−1
∑
a

〈a,θ〉EθN
a
0 /2. (D.10)

We now bound EθN0. By (D.9), we have

EθN1 ≥ EθN0 + δ−1
∑
a

〈a,θ〉EθN
a
0 − ψθ

≥ EθN0 −
∆

δ
EθN0 −

1− δ
δ
Pθ(sT = x1)− Pθ(sT = x0)− ∆

δ
Pθ(sT = x0)

= (1−∆/δ)EθN0 − (1− δ)/δ +
1−∆

δ
Pθ(sT = x0)

≥ (1−∆/δ)EθN0 − (1− δ)/δ, (D.11)

where the first inequality holds due to (D.9), the second inequality holds due to the fact that 〈a,θ〉 ≤ ∆, the
last inequality holds since Pθ(sT = x0) > 0. (D.11) suggests that

EθN0 ≤
T + (1− δ)/δ

2−∆/δ
≤ 4

5
T,

where the last inequality holds due to the fact that 2∆ ≤ δ and (1− δ)/δ < T/5.
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D.8 Proof of Lemma C.4

We need the following lemma:

Lemma D.1 (Lemma 20 in Jaksch et al. (2010)). Suppose 0 ≤ δ′ ≤ 1/2 and ε′ ≤ 1− 2δ′, then

δ′ log
δ′

δ′ + ε′
+ (1− δ′) log

(1− δ′)
1− δ′ − ε′

≤ 2(ε′)2

δ′
.

Proof of Lemma C.4. Let st denote {s1, . . . , st}. By the Markovnian property of MDP, we can first decompose
the KL divergence as follows:

KL(Pθ′‖Pθ) =

T−1∑
t=1

KL
[
Pθ′(st+1|st)

∥∥∥Pθ(st+1|st)
]
,

where the KL divergence between Pθ′(st+1|st),Pθ(st+1|st) is defined as follows:

KL
[
Pθ′(st+1|st)

∥∥∥Pθ(st+1|st)
]

=
∑

st+1∈St+1

Pθ′(st+1) log
Pθ′(st+1|st)
Pθ(st+1|st)

.

Now we further bound the above terms as follows:∑
st+1∈St+1

Pθ′(st+1) log
Pθ′(st+1|st)
Pθ(st+1|st)

=
∑

st∈St

Pθ′(st)
∑
x∈S
Pθ′(st+1 = x|st) log

Pθ′(st+1 = x|st)
Pθ(st+1 = x|st)

=
∑

st−1∈St−1

Pθ′(st−1)
∑

x′∈S,a∈A
Pθ′(st = x′, at = a|st−1)

·
∑
x∈S
Pθ′(st+1 = x|st−1, st = x′, at = a) log

Pθ′(st+1 = x|st−1, st = x′, at = a)

Pθ(st+1 = x|st−1, st = x′, at = a)︸ ︷︷ ︸
I1

,

When x′ = x1, Pθ′(st+1 = x|st−1, st = x′, at = a) = Pθ(st+1 = x|st−1, st = x′, at = a) for all θ′,θ since the
transition probability at x1 is irrelevant to θ due to the MDP we choose. That implies when x′ = x1, I1 = 0.
Therefore, ∑

st+1∈St+1

Pθ′(st+1) log
Pθ′(st+1|st)
Pθ(st+1|st)

=
∑

st−1∈St−1

Pθ′(s
t−1)

∑
a

Pθ′(st = x0, at = a|st−1)

·
∑
x∈S
Pθ′(st+1 = x|st−1, st = x0, at = a) log

Pθ′(st+1 = s|st−1, st = x0, at = a)

Pθ(st+1 = s|st−1, st = x0, at = a)

=
∑
a

Pθ′(st = x0, at = a)

·
∑
x∈S
Pθ′(st+1 = s|st = x0, at = a) log

Pθ′(st+1 = x|st = x0, at = a)

Pθ(st+1 = x|st = x0, at = a)︸ ︷︷ ︸
I2

. (D.12)

To bound I2, due to the structure of the MDP, we know that st+1 follows the Bernoulli distribution over x0 and
x1 with probability 1− δ − 〈a,θ′〉 and δ + 〈a,θ′〉, then we have

I2 = (1− 〈θ′,a〉 − δ) log
1− 〈θ′,a〉 − δ
1− 〈θ,a〉 − δ

+ (〈θ′,a〉+ δ) log
〈θ′,a〉+ δ

〈θ,a〉+ δ
≤ 2〈θ′ − θ,a〉2

〈θ′,a〉+ δ
, (D.13)
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where the inequality holds due to Lemma D.1 with δ′ = 〈θ′,a〉+ δ and ε′ = 〈θ − θ′,a〉. It can be verified that

δ′ = 〈θ′,a〉+ δ ≤ ∆ + δ ≤ 1/2, (D.14)

where the first inequality holds due to the definition of θ′, the second inequality holds since ∆ < δ/2 ≤ 1/6. It
can also be verified that

ε′ = 〈θ − θ′,a〉 ≤ 2∆ ≤ 1− 2(∆ + δ) ≤ 1− 2δ′, (D.15)

where the first inequality holds due to the definition of θ′,θ, the second inequality holds since ∆ < δ/4 ≤ 1/12,
the last inequality holds since δ′ = 〈θ′,a〉+ δ ≤ ∆ + δ due to the definition of θ′. (D.14) and (D.15) suggest that
we can apply Lemma D.1 onto (D.13). I2 can be further bounded as follows:

I2 ≤
4〈θ′ − θ,a〉2

δ
=

16∆2

(d− 1)2δ
, (D.16)

where the inequality holds due to (D.13) and the fact that δ + 〈θ′,a〉 ≥ δ − ∆ ≥ δ/2. Substituting (D.16)
into (D.12), taking summation from t = 1 to T − 1, we have

KL(Pθ′‖Pθ) =

T−1∑
t=1

∑
st+1∈St+1

Pθ′(st+1) log
Pθ′(st+1|st)
Pθ(st+1|st)

≤ 16∆2

(d− 1)2δ

T−1∑
t=1

∑
a

Pθ′(st = x0, at = a)

=
16∆2

(d− 1)2δ

T−1∑
t=1

Pθ′(st = x0)

≤ 16∆2

(d− 1)2δ
Eθ′N0,

where the last inequality holds due to the definition of N0.

E Experiments

In this section, we conduct experiments to empirically study the performance of the proposed algorithm.

Figure 3: Regret comparison of different algorithms. UCRL2-VTR performs better than the tabular Q-learning
by utilizing the given linear structure.

The MDP is constructed as described in Section C.1. We choose d = 8, and thus |S| = 2 and |A| = 2d−1 = 128.

We compare the following algorithms:
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1. Randomly choose an action (Random action).

2. Q-learning with an ε-greedy, uniformly random exploration (ε-greedy QL).

3. Q-learning with a confidence bonus (Optimistic QL by Wei et al. (2020b)).

4. An Exploration Enhanced Q-learning algorithm (EE-QL by Jafarnia-Jahromi et al. (2020)).

5. A Thompson sampling-based algorithm (TSDE by Ouyang et al. (2017)).

6. A tabular model-based algorithm (UCRL by Jaksch et al. (2010)).

7. A tabular model-based algorithm that relies on the span of the MDP rather than the diameter (SCAL by
Fruit et al. (2018b)).

8. Our algorithm with the Hoeffding bonus (Ours).

In our experiments, the parameters of each algorithm are tuned properly. For each algorithm, the experiment is
replicated for 10 times and the averaged regret is plotted in Figure 3 for comparison. We can see that model-
based algorithms (UCRL, SCAL, Ours) are generally better than the model-free ones (Q-learning algorithms and
TSDE). Our proposed algorithm outperforms other model-based algorithms due to utilizing the linear structure
of the underlying MDP.
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