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Abstract

We study the frequency estimation problem
under the local differential privacy model. Fre-
quency estimation is a fundamental computa-
tional question, and differential privacy has
become the de-facto standard, with the lo-
cal version (LDP) affording even greater pro-
tection. On large input domains, sketching
methods and hierarchical search methods are
commonly and successfully, in practice, ap-
plied for reducing the size of the domain, and
for identifying frequent elements. It is there-
fore of interest whether the current theoretical
analysis of such algorithms is tight, or whether
we can obtain algorithms in a similar vein that
achieve optimal error guarantee.

We introduce two algorithms for LDP fre-
quency estimation. One solves the fundamen-
tal frequency oracle problem; the other solves
the well-known heavy hitters identification
problem. As a function of failure probabil-
ity, β, the former achieves optimal worst-case
estimation error for every β; the latter is opti-
mal when β is at least inverse polynomial in n,
the number of users. In each algorithm, server
running time and memory usage are Õ(n)
and Õ(

√
n), respectively, while user running

time and memory usage are both Õ(1). Our
frequency-oracle algorithm achieves lower es-
timation error than Bassily et al. (NeurIPS
2017). On the other hand, our heavy hit-
ters identification method improves the worst-
case error of TreeHist (ibid) by a factor of
Ω(
√

log n); it avoids invoking error-correcting
codes, known to be theoretically powerful, but
yet to be implemented efficiently.
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1 Introduction

Frequency estimation is a fundamental computation
task, widely applied in data mining and machine
learning, e.g., learning users’ preferences (Erlingsson
et al., 2014), uncovering commonly used phrases (Apple,
2017), and finding popular URLs (Fanti et al., 2016).
We expect entities that collect such data to respect
their users’ privacy, and there are increasing stringent
regulations (Voigt and Von dem Bussche, 2017). How
can we infer and estimate frequency, and thus improve
users’ experience, without sacrificing personal privacy?

In answering such questions, local differential privacy
(LDP) becomes a popular data collection model for pro-
viding user level privacy protection (Erlingsson et al.,
2014; Fanti et al., 2016; Apple, 2017; Tang et al., 2017;
Ding et al., 2017). In this model, there is a server
and a set U of n users, each holding an element from
some domain D of size d. No user u ∈ U wants to
share their data v(u) ∈ D directly with the server. To
protect sensitive personal information, they run a local
randomizer A(u) to perturb their data. The server col-
lects only the perturbed data. Formally, the algorithm
A(u) is called ε-local differentially private (ε-LDP) if
its output distribution varies little with the input, as
defined thus.

Definition 1.1 (ε-LDP (Dwork and Roth, 2014)).
Let A : D → Y be a randomized algorithm mapping
an element in D to Y . We say A is ε-local differentially
private if for all v, v′ ∈ D and all (measurable) Y ⊆ Y,

Pr[A(v) ∈ Y ] ≤ eε · Pr[A(v′) ∈ Y ] .

Aligned with prior art (Bassily and Smith, 2015; Bassily
et al., 2017; Bun et al., 2019; Cormode et al., 2021), in
this work, we study two closely related, but distinct,
functionalities of frequency estimation under the LDP
model: the frequency oracle and the succinct histogram.
The relevant parameters are the error threshold, λ, and
the failure probability, β:

Definition 1.2 (Frequency Oracle). A frequency ora-
cle, denoted as FO, is an algorithm that provides for
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every v ∈ D, an estimated f̂U [v] of the frequency of v,
denoted as fU [v]

.
= |{u ∈ U : v(u) = v}|, such that

Pr[|f̂U [v]− fU [v]| ≥ λ] ≤ β.

Definition 1.3 (Succinct Histogram). A succinct his-
togram, denoted as S-Hist, is a set of (element, esti-
mate) pairs ⊆ D × R, of size O(n/λ), such that with
probability at least 1 − β: i) ∀v ∈ D, if fU [v] ≥ λ,

(v, f̂U [v]) belongs to the set; ii) and if (v, f̂U [v]) is in

the set, then |fU [v]− f̂U [v]| ≤ λ.

Each element in the Succinct Histogram set is called a
heavy hitter. For a fixed ε ≤ 1, the goal of algorithm
design for both problems in LDP model is to minimize
the error threshold λ, while also limiting server/user
running time, memory usage, and communication cost.

A number of frequency oracle algorithms (Warner, 1965;
Erlingsson et al., 2014; Bassily and Smith, 2015; Bassily
et al., 2017; Wang et al., 2017) have been proposed
(see Cormode et al. (2021) for a recent survey). These
algorithms achieve error O((1/ε) ·

√
n ln(1/β)). They

have running time, or memory usage that scale lin-
early with d, the size of the data domain, and work
well when it is small. The heavy hitters can be dis-
covered by querying the frequencies of all elements
in the domain D. Via union bound, this achieves er-
ror O((1/ε) ·

√
n ln(d/β)). It can be shown that these

error guarantees are optimal (Bun et al., 2019). How-
ever, consider the scale of modern applications, e.g.,
finding popular URLs with length up to 20 charac-
ters1 (Fanti et al., 2016), which results in a domain of
size larger than 1036.

Sketching methods for reducing the size of the data
domain, and hierarchical searching methods for avoid-
ing inspecting the frequency of each element, are well
known. The former applies hash functions to map
elements from the original domain to a smaller one;
the latter views elements as strings defined over some
alphabet, and identifies the heavy hitters by one or a
few characters each time. Due to their simplicity, they
are widely applied in designing frequency estimation al-
gorithms, and heuristics are proposed to improve their
performance (Bassily et al., 2017; Apple, 2017; Fanti
et al., 2016; Bassily et al., 2020; Wang et al., 2018,
2017; Cormode et al., 2021). These implementations
perform well in practice.

The best known error guarantees of frequency esti-
mation algorithms based on the sketching and hier-
archical searching methods are provided by the sem-
inal work (Bassily et al., 2020). The frequency or-
acles, FreqOracle and Hashtogram (Bassily et al.,
2020), guarantee only an error of O((1/ε) ·

√
n ln(n/β)).

1Valid URL characters include digits (0-9), letters(A-Z,
a-z), and a few special characters (”-” , ”.” , ” ” , ”~”).

The succinct histogram algorithm, TreeHist (Bass-
ily et al., 2020), guarantees an error of O((1/ε) ·√
n · (ln d) · ln(n/β)). These algorithms exhibit low

time complexity and memory usage: with server run-
ning time Õ(n) and memory usage Õ(

√
n). But the

error guarantees are sub-optimal.

Research Question: Are the theoretical er-
ror guarantees of the algorithms based on
sketching and hierarchy methods best possi-
ble, or can we obtain algorithms of this type
that achieve optimal error guarantee?

There is another line of research for succinct histogram
that relies on error-correcting codes. Bassily and
Smith (Bassily and Smith, 2015) were the pioneers,
with PROT-S-Hist, which Bitstogram (Bassily
et al., 2020) subsequently improved upon. This culmi-
nates in the work of PrivateExpanderSketch (Bun
et al., 2019) that achieves the optimal error guaran-
tee O((1/ε)·

√
n ln(d/β)). But due to the sophistication

of error-correcting codes, none of these methods has
been implemented or significantly deployed. Indeed,
the original paper (Bassily et al., 2020) that proposed
both TreeHist and Bitstogram only implemented
TreeHist. Therefore, there is a gap between the error
guarantees of the theoretically best algorithm, and the
ones deployed in practice. Determining whether we
can bridge the gap answers our Research Question.

1.1 Our Contributions

Our work provides positive answers to the questions. In
particular, we: (1) design a frequency oracle, HadaO-
racle, based on sketching method with optimal er-
ror guarantee; (2) design a succinct histogram algo-
rithm, HadaHeavy, based on hierarchical search that
achieves optimal error guarantee under mild assump-
tion of the failure probability.

We introduce the martingale method into the anal-
ysis of the sketching method. We prove that, when
the proper sketch is chosen, it can be incorporated
into a family of frequency oracles to reduce running
time and memory, while maintaining the frequency
oracles’ error guarantee. This leads to HadaOra-
cle with optimal error O((1/ε) ·

√
n ln(1/β)). Based

on the HadaOracle, we develop a hierarchical search
algorithm, HadaHeavy, that explores a large num-
ber of elements at each search step, and achieves er-
ror O((1/ε) ·

√
n · (ln d) · (1 + (ln(1/β) / lnn))). Con-

sistent with the theory community’s view of an algo-
rithm that succeeds with high probability, if the failure
probability, β, is inverse polynomial, i.e., β = 1/nO(1),
the error matches the lower bound (Bun et al., 2019).
All these algorithms have running time Õ(n) and mem-
ory usage Õ(

√
n). Table 1 summarizes the comparisons.
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Performance Metric
Server
Time

Server
Mem

Worst-Case Error Lower Bound

HadaOracle Õ(n) Õ(
√
n) O

(
1
ε

√
n · ln 1

β

)
HRR (Nguyên et al., 2016; Cormode et al., 2019) Õ(d) Õ(d) O

(
1
ε

√
n · ln 1

β

)
FreqOracle (Bassily et al., 2017) Õ(n) Õ(

√
n) O

(
1
ε

√
n · ln n

β

)

F
O

Hashtogram (Bassily et al., 2017) Õ(n) Õ(
√
n) O

(
1
ε

√
n · ln n

β

) O
(

1
ε

√
n · ln 1

β

)

HadaHeavy Õ(n) Õ(
√
n) O

(
1
ε

√
n · (ln d) ·

(
1 + ln(1/β)

lnn

))
TreeHist (Bassily et al., 2017) Õ(n) Õ(

√
n) O

(
1
ε

√
n · (ln d) · ln n

β

)
PrivateExpanderSketch (Bun et al., 2019) Õ(n) Õ(

√
n) O

(
1
ε

√
n · ln d

β

)

S
-H

is
t

Bitstogram (Bassily et al., 2017) Õ(n) Õ(
√
n) O

(
1
ε

√
n · (ln d

β ) · ln 1
β

) O
(

1
ε

√
n · ln d

β

)

Table 1: Comparison of our frequency oracle (HadaOracle) and succinct histogram (HadaHeavy) algorithms
with the state-of-the-art, where ‘Mem’ stands for ‘Memory’. For all algorithms, each user has Õ(1) memory,
takes Õ(1) running time, requires Õ(1) public randomness, and reports O(1) bits to the server.

2 Preliminaries

2.1 Hadamard Randomized Response

Our algorithms invoke the frequency oracle, named
HRR (Nguyên et al., 2016; Cormode et al., 2019), as
a subroutine.

Fact 2.1 (Algorithm HRR (Nguyên et al., 2016; Cor-
mode et al., 2019)). Let U be a set users each holding
an element from some finite domain D. There ex-
ists an ε-locally differentially private frequency oracle,
HRR, such that the following holds. Fix some query el-
ement v ∈ D for HRR. With probability at least 1−β′,
HRR returns a frequency estimate f̂U [v] satisfying∣∣∣f̂U [v]− fU [v]

∣∣∣ ∈ O ((1/ε) ·
√
|U| · ln(1/β′)

)
.

Each user in U requires Õ(1) memory, takes Õ(1)
running time and reports only 1 bit to the server.
The server processes the reports in Õ(|U|+ |D|) time
and O(|D|) memory, and answers a query in Õ(1) time.
The Õ notation hides logarithmic factors in |U|, |D|
and 1/β′.

The Appendix includes a proof of this fact.

2.2 Lower Bounds

Bun et al. (2019) provide a lower bound for the succinct
histogram problem.

Fact 2.2 (Bun et al. (2019)). Let ε ∈ O(1). Every ε-
LDP algorithm for estimating the frequencies of all
elements from D, must have, with probability at least 1−
β,

max
v∈D

∣∣∣f̂U [v]− fU [v]
∣∣∣ ∈ Ω

(
(1/ε) ·

√
|U| · ln(|D|/β)

)
.

We can obtain a lower bound for the frequency oracles,
via a union bound argument, with β′ = β/|D|.

Corollary 2.3. Let ε ∈ O(1). Every ε-LDP frequency
oracle algorithm achieving estimation error λ with prob-
ability at least 1− β′ must have

λ ∈ Ω
(

(1/ε) ·
√
|U| · ln(1/β′)

)
.

The Appendix includes a proof of this corollary.

3 Frequency Oracle

In this section, to reduce running time and memory
usage, we show a framework for incorporating sketch-
ing methods into LDP frequency oracles that satisfy
relevant conditions. When combined with HRR, this
gives arise to a frequency oracle with a state-of-the-art
theoretical guarantee.

Suppose Aoracle is an ε-LDP frequency oracle with:

• Server running time: Õ
(
Φtime(|U|, d)

)
;

• Server memory usage: Õ
(
Φmem(|U|, d)

)
;

• Utility guarantee as follows: for every β′ ∈ (0, 1)
and each v ∈ D, with probability at least 1 −
β′, Aoracle returns an estimate f̂U [v] satisfying∣∣∣f̂U [v]− fU [v]

∣∣∣ ∈ O ((1/ε) ·
√
|U| · ln(1/β′)

)
.

For example, when Aoracle is HRR, then Φtime(|U|, d)
= |U| + d and Φmem(|U|, d) = d. Below we state the
key result of this section.

Theorem 3.1 (Sketching Framework). For every β′

∈ (0, 1), Aoracle can be converted into a new
ε-LDP frequency oracle, which has server run-
ning time Õ(Φtime(|U|,

√
|U|)) and memory usage

Õ(Φmem(|U|,
√
|U|)). Fix some element v ∈ D to be

given as a query to the new algorithm. With probability
at least 1− β′, it returns an estimate f̂U [v] satisfying∣∣∣f̂U [v]− fU [v]

∣∣∣ ∈ O ((1/ε) ·
√
|U| · ln(1/β′)

)
.
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In particular, when Aoracle is HRR, we obtain a new
ε-LDP frequency oracle, which we call HadaOracle,
with the following properties.

Corollary 3.2 (Algorithm HadaOracle). Fix an el-
ement v ∈ D to be given as a query to HadaOracle.
With probability at least 1− β′, HadaOracle returns
a frequency estimate f̂U [v] satisfying∣∣∣f̂U [v]− fU [v]

∣∣∣ ∈ O ((1/ε) ·
√
|U| · ln(1/β′)

)
.

Each user in U requires Õ(1) memory, takes Õ(1) run-
ning time and reports only 1 bit to the server. The
server processes the reports in Õ(|U|) time and O(

√
|U|)

memory, and answers a query in Õ(1) time. The Õ
notation hides logarithmic factors in |U|, |D| and 1/β′.

3.1 A General Framework

To reduce the size of the data domain, we now show how
to incorporate sketching into LDP frequency oracles.
Choosing parameters carefully, this leads to significant
decrease of the server running time and memory usage
without degrading estimation error. The sketch we
apply is a variant of the Count-Median sketch (Cor-
mode and Yi, 2020), with the framework outlined in
Algorithm 1.

Algorithm 1 Sketching Framework

Construction

Require: A set of users U ; ε-LDP frequency oracle
Aoracle; element domain D;

1: k ← CK · ln(4/β′), m← 8e2 ·
√
CK · ε ·

√
|U|;

2: Partition U into k subsets: U1, . . . ,Uk.
3: Initialize k pairwise independent hash functions
h1, . . . , hk : D → [m].

4: for i ∈ [k] do
5: The server broadcasts hi to all users in U i.
6: Each user u ∈ U i replaces their element, v(u) ∈

D, with a new one hi(v
(u)) ∈ [m].

7: The server runs an independent copy of Aoracle

on U i, denoted as Aoracle
(i), for new elements

{hi(v(u)) : u ∈ U i}.
Query

Require: Element v ∈ D;
1: for i ∈ [k] do
2: Query Aoracle

(i) for the frequency of hi(v) over
{hi(v(u)) : u ∈ U i}, denote the returned estimate

as f̂Ui,hi [hi(v)].

3: f̂U [v]←Median
(
k · f̂Ui,hi [hi(v)] : i ∈ [k]

)
.

4: return f̂U [v]

Domain Reduction. By mapping the elements from
domain D to [m], we want to reduce the domain size

from d to some smaller m ∈ N+; we discuss how to
set m later. The mapping could be performed via a
pairwise independent hash function h : D → [m], such
that: (1) for each v ∈ D, it is mapped to [m] uniformly
at random; (2) for each pair of distinct v, v′ ∈ D,
the probability that they are mapped to the same
value is 1/m. The function h has succinct description
of O(log d) bits (Mitzenmacher and Upfal, 2017). Each
user u ∈ U is then informed of h and replaces their
data v(u) ∈ D with the new element h(v(u)) ∈ [m].

We then invoke LDP frequency-oracle Aoracle for es-
timating frequencies in the new dataset, {h(v(u)) : u ∈
U}. For each v ∈ D, to obtain an estimate of fU [v],
we return the frequency estimate of h(v) in the new

dataset, denoted by f̂U,h[h(v)], provided by Aoracle.

Repetition. For v ∈ D, by the triangle inequality,
estimation error |f̂U,h[h(v)]− fU [v]| is at most:

|f̂U,h[h(v)]− fU,h[h(v)]|+ |fU,h[h(v)]− fU [v]| ,

where fU,h[h(v)]
.
= |{v ∈ U : h(v(u)) = h(v)}| is the

frequency of h(v) in the new dataset. The first term
inherits from the estimation error of Aoracle; the second
term arises from hash collisions of h. The assumption
ofAoracle is that the first term is, with probability 1−β′,
bounded by O((1/ε) ·

√
|U| · ln(1/β′)).

For the second term, we could set m ∈ Õ(
√
|U|/β′).

Via Markov’s inequality, with probability 1− β′, it is
is Õ(

√
|U|) . However, when β′ is small, e.g., 1/|U|c,

for some constant c, this would be unacceptable.

Alternatively, to bound the second term, we could set
m ∈ Õ(

√
|U|), bounding with constant probability the

second term by Õ(
√
|U|). We independently select k

pairwise independent hash functions h1, . . . , hk. To run
the standard Count-Median Sketch, we would apply
each hi, i ∈ [k] to each of the users, and for each i ∈ [k]
invoke Aoracle independently to estimate the elements’
frequencies over {hi(v(u)) : u ∈ U}. For v ∈ D, the

median over i ∈ [k] of f̂U,hi [hi(v)] is returned as its
frequency estimate.

But this scheme requires each user to participate in k
frequency oracles, which would degrade privacy ac-
cording to the Composition Theorem (Dwork and
Roth, 2014, Theorem 3.14). This motivates partition-
ing U into k subsets, denoted as U1, . . . ,Uk. For each
i ∈ [k], the users in subset U i map their elements
with hash function hi, and an independent copy of
Aoracle is applied to U i, to estimate the frequencies of
{hi(v(u)) : u ∈ U i}.

Here we study two partitioning schemes.

• Independent partitioning. Here, each user is put
into one of the subsets {U i : i ∈ [k]} uniformly
and independently at random.
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• Permutation partitioning. Here we randomly per-
mute U : the first |U|/k users in the permutation
become U1, the next |U|/k become U2, etc.

Compared to independent partitioning, permutation
partitioning creates subsets of equal size. Since each
user participates in only one copy of Aoracle, Algo-
rithm 1 is ε-LDP. It remains to prove the utility guar-
antee of Algorithm 1.

3.2 Utility Analysis

Two Kinds of Frequencies. First, consider the fre-
quencies of elements before hashing in each subset.
For each i ∈ [k], and v ∈ D, define fUi [v]

.
= |{u ∈

U i : v(u) = v}| to be the frequency of v in the set
{v(u) : u ∈ U i}. It is a random variable, whose ran-
domness inherits from the partitioning. But for each
partitioning scheme, E

[
fUi [v]

]
= fU [v]/k.

Second, consider the frequencies of the hashed elements
in each subset. For each i ∈ [k] and w ∈ [m], let
fUi,hi [w]

.
= |{u ∈ U i : hi(v

(u)) = w}| be the number
of users in U i whose item are hashed to w. It is also
a random variable, whose randomness arises from the
partitioning, and from the hash function hi. It holds
that E[fUi,hi [w]] = |U i|/m.

Three Kinds of Errors. For each i ∈ [k] and v ∈ D, let

f̂Ui,hi [hi(v)] be the estimate of fUi,hi [hi(v)] by Aoracle.

We are interested in the deviation of k · f̂Ui,hi [hi(v)]
from fU [v], which can be decomposed into three parts:

1. λ1(i, v)
.
= kfU i[v]− fU [v] .

2. λ2(i, v)
.
= kfUi,hi [hi(v)]− kfU i[v] .

3. λ3(i, v)
.
= kf̂Ui,hi [hi(v)]− kfUi,hi [hi(v)] .

Define Err(i, v)
.
= kf̂Ui,hi [hi(v)] − fU [v]. Its absolute

value is bounded by a triangle inequality

|Err(i, v)| ≤ |λ1(i, v)|+ |λ2(i, v)|+ |λ3(i, v)| . (1)

Four Kinds of Good Sets. We are interested in the
following four kinds of good sets, that play important
roles in bounding the estimation error of Algorithm 1.
First, define

Gd Set0
.
= {i ∈ [k] : k|U i| ∈ Θ(|U|)} .

Then, for each v ∈ D, define

Gd Set1(v)
.
=
{
i ∈ [k] : |λ1(i, v)| ∈ O

(√
|U| ln 1

β′

)}
.

Finally, for j = 2, 3, define

Gd Setj(v)
.
=
{
i ∈ [k] : |λj(i, v)| ∈ O

(1

ε

√
k|U i| ln

1

β′

)}
.

The following result is the key to the utility guarantee.

Theorem 3.3. With probability at least 1 − β′/4, it
holds that |Gd Set0| > (1− 1/8)k. And for each v ∈ D
and each j ∈ [3], with probability at least 1 − β′/4, it
holds that |GdSetj(v)| > (1− 1/8)k.

Theorem 3.3 holds for both independent partitioning
and permutation partitioning. The proof is technical,
so we defer to the end of this subsection. For now, we
prove the utility guarantee of Algorithm 1.

Corollary 3.4. For each v ∈ D, with probability at
least 1− β′, the f̂U [v] returned by Algorithm 1 satisfies∣∣∣f̂U [v]− fU [v]

∣∣∣ ∈ O ((1/ε) ·
√
|U| · ln(1/β′)

)
.

Proof of Corollary 3.4. By Theorem 3.3, and a union
bound, with probability at least 1− β′, we have∣∣∣( ∩j∈[3] Gd Setj(v)

)
∩GdSet0

∣∣∣ > k/2 . (2)

For each i ∈
(
∩j∈[3]Gd Setj(v)

)
∩GdSet0, since k|U i| ∈

Θ(|U|), for j = 2 or 3, it holds that

|λj(i, v)| ∈ O
(1

ε

√
k|U i| ln

1

β′

)
⊂ O

(1

ε

√
|U| ln 1

β′

)
.

Therefore, via Inequality (1), it holds that

|Err(i, v)| ∈ O
(
(1/ε) ·

√
|U| ln(1/β′)

)
.

We finish by combining this error bound with f̂U [v] =

Mediani∈[k] k · f̂Ui,hi [h(v)] and inequality (2).

Proof Outline for Theorem 3.3. This is a sketch of a
full proof that appears in the Appendix. As they
are easier, we first bound the sizes of Gd Set2(v)
and GdSet3(v).

Bounding the Size of GdSet2(v). Observe that for each
i ∈ [k], the (scaled) errors |λ2(i, v)|/k = |fUi,hi [h(v)]−
fU i[v]| result from hash collisions. Since hi is pair-
wise independent, the expected size of collision is at
most |U i|/m, i.e., E [|λ2(i, v)| /k] ≤ |U i|/m. Recall that
Algorithm 1 initializes k = CK · ln(4/β′) and m =
8e2 ·
√
CK ·ε·

√
|U| for some constant CK . Via Markov’s

inequality, and that |U| ≥ |Uj |, we have

Pr
[
|λ2(i, v)| ≥ (1/ε)

√
k|U i| ln(4/β′)

]
≤ 1/(8e2) .

Therefore, Pr[i 6= GdSet2(v)] is upper bounded by
1/(8e2). As the h1, . . . , hk are chosen independently,
the indicators of not being in Gd Set2(v) are indepen-
dent over i ∈ [k]. By a Chernoff bound, we can prove
that, if k = CK · ln(4/β′) for some large enough con-
stant CK , then

Pr[|{i ∈ [k] : i 6= GdSet2(v)}| ≥ k/8] ≤ β′/4 .
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Bounding the Size of Gd Set3(v). Via the assumption
of Aoracle, for i ∈ [k], with probability at most 1/(8e2),

|f̂Ui,hi [hi(v)]− fUi,hi [hi(v)]| /∈ O
(

1

ε

√
|U i| · ln(8e2)

)
.

Scaling both sides by a factor of k, we get
|λ3(i, v)| /∈ O((1/ε)

√
k2|U j |). Replacing one fac-

tor k with CK · ln(4/β′), we have |λ3(i, v)| /∈
O((1/ε)

√
k|Uj | · ln(1/β′)). Since the indicators of be-

ing in Gd Set3(v) are independent, there exists some
constant CK , s.t.,

Pr[|{i ∈ [k] : i 6= GdSet3(v)}| ≥ k/8] ≤ β′/4 .

Bounding the Size of GdSet0. For permutation par-
tition, it holds that |U i| = |U|/k, ∀i ∈ [k]. There-
fore, |GdSet0(v)| = k. For independent partition-
ing, analyzing GdSet0 is not trivial, as the |U i| are
not independent. Therefore, we consider the devi-
ations of the subset sizes as a whole: define ∆0

.
=∑

i∈[k]

∣∣|U i| − |U|/k∣∣, which measures the distance be-

tween vector (|U1|, . . . , |Uk|) ∈ Rk and its expectation.
Via the McDiarmid inequality (Mitzenmacher and Up-
fal, 2017), we prove that, there exists some constant
C0, s.t., for every choice of positive integer k, with
probability at least 1− β′/4: ∆0 ≤ C0

√
|U| ln(4/β′).

It follows that
∑
i∈[k]

∣∣k|U i| − |U|∣∣ ≤ kC0

√
|U| ln(4/β′).

By a Markov inequality-like argument, the number of
i ∈ [k], such that

∣∣k|U i| − |U|∣∣ ≥ 8C0

√
|U| ln(4/β′) is

bounded by (1/8)k, which finishes the proof.

Bounding the Size of Gd Set1(v). Similarly, we
consider the deviations as a whole, and define
∆1

.
=
∑
i∈[k] ‖fU i − fU/k‖2, where ‖fU i − fU/k‖2

.
=√∑

v′∈D(fU i[v′]− fU [v′]/k)2. Note that ∀i ∈ [k],
|λ1(i, v)| ≤ k ‖fU i − fU/k‖2.

Via the martingale concentration inequalities (the Mc-
Diarmid inequality and the Azuma–Hoeffding inequal-
ity (Mitzenmacher and Upfal, 2017; Chung and Lu,
2006)), we prove for both independent partitioning and
permutation, that there exists some constant C1, s.t.,
for every choice of positive integer k, with probability
at least 1− β′/4: ∆1 ≤ C1

√
|U| ln(4/β′).

Hence, k
∑
i∈[k] ‖fU i − fU/k‖2 ≤ kC1

√
|U| ln(4/β′).

By a counting argument, the number of i ∈ [k], such
that k ‖fU i − fU/k‖2 ≥ 8C1

√
|U| ln(4/β′) is bounded

by (1/8)k, which finishes the proof.

3.3 Comparison With Previous Approaches

The seminal work of Bassily et al. (2017) was the first to
provide rigorous analysis for ε-LDP frequency oracles
with sketching methods. We differ from their approach

thus: (1) They apply Count-Sketch instead of Count-
Median Sketch. (2) Similar to our bounding |GdSet0|,
they invoke a technique called Poisson Approxima-
tion (Mitzenmacher and Upfal, 2017), which approx-
imates the distribution of |U i|, i ∈ [k] by a set of k
independent Poisson random variables. This results in
a setting of k ∈ Θ(ln(|U|/β′)), and subsequently a sub-
optimal utility guarantee of O

(
(1/ε)·

√
|U| · ln(|U|/β′)

)
.

(3) Finally, though invoking HRR as a sub-routine,
their work does not exploit the fast Hadamard trans-
form. Hence their oracle answers a frequency query in
Õ(
√
|U|) time, instead of Õ(1).

The recent experimental study by Cormode et al. (2021)
provides inspiring insights. They propose to view ex-
isting algorithms as different combinations of sketching
methods (for domain reduction) and frequency oracle al-
gorithms (constructed over the reduced domain). Their
work empirically evaluates performance of the sketches
based on different values of k and m, without corre-
sponding theoretical analysis.

Lastly, we discuss briefly the Count-Median Sketch
applied by our algorithm. Compared to the standard
Count-Median Sketch, which applies each of the k
hash functions to the data of all users, our version
partitions the users into k subsets, and applies each
hash function only to a particular subset. The primary
reason for doing so in our work is to protect the privacy
of the users. But this technique can also be applied to
applications where there is no requirement for privacy
protection. It reduces the time for processing a user’s
report from O(k) to O(1). Based on our technique
for analysing the size of GdSet1, this introduces an
additional error of O(

√
|U| ln(1/β′)) to an element’s

frequency estimate. In cases where the allowed error
is Ω(

√
|U| ln(1/β′)), this is practical.

4 Succinct Histogram

We show how to construct a succinct histogram effi-
ciently, based on the HadaOracle discussed in pre-
vious section. Our new algorithm, HadaHeavy im-
proves the TreeHist algorithm by Bassily et al. (2017).

Theorem 4.1. Let U be a set of n users each holding
an element from some finite domain D of size d, ε ∈
(0, 1) be the privacy parameter and β ∈ (0, 1) be the
specified failure probability. HadaHeavy is an ε-LDP
algorithm, based on hierarchical search method, that
returns an S-Hist set of (element, estimate) pairs of
size Õ(

√
n), where

λ ∈ O((1/ε) ·
√
n · (ln d) · (1 + (ln(1/β) / lnn))) .

Each user in U requires Õ(1) memory, takes Õ(1) run-
ning time and reports only 1 bit to the server. The
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server processes the reports in Õ(n) time and Õ(
√
n)

memory. The Õ notation hides logarithmic factors in n,
d and 1/β.

4.1 HadaHeavy

HadaHeavy represents element in D with an alphabet
of size

√
n.

Base-
√
n representation. Let Λ

.
= {0, 1, . . . ,

√
n−1}

be an alphabet of size
√
n (for simplicity, we assume

that
√
n is an integer), and L

.
= 2 · (log d)/ log n. Each

element in D can be encoded as a unique string in
ΛL = {0, 1, . . . ,

√
n− 1}L.

Prefix. For each v ∈ D, τ ∈ [L], let v[1 : τ ] be the
first τ characters in v’s base-

√
n representation, which

is called a prefix of v. Let Λ0 .
= {⊥} be the set con-

sisting of the empty string. For each τ ∈ [L], Λτ

the set of all possible strings of length τ . Further,
for each string sss ∈ Λτ , define the frequency of sss to
be fU [sss]

.
= |{u ∈ U : v(u)[1 : τ ] = sss}|.

Child Set. For each 0 ≤ τ < L, and each string
sss ∈ Λτ , the child set of sss, denoted as sss× Λ, is defined
as sss × Λ

.
= {sss ◦ ttt : ttt ∈ Λ} ⊂ Λτ+1, where sss ◦ ttt is the

concatenation of the strings sss and ttt.

The key motivation for the hierarchical searching
method is that, if an element v ∈ D is frequent, so
is each of its prefixes.

Overview of HadaHeavy. The goal of the algorithm
is to identify a set of elements in D, called heavy hitters,
whose frequencies are no less than some threshold, λ
(to be determined later). Clearly, for each τ ∈ [L],

fU [v[1 : τ ]] ≥ fU [v] ≥ λ .

Assuming that we know the exact values of frequencies
of the strings. We can search for heavy hitters as follows.
First, we initialize a sequence of empty sets P1, . . . ,PL,
which we call search sets. Then, we examine all strings
in Λ. If sss ∈ Λ has frequency fU [sss] ≥ λ, then we
put it into P1. Next, for each string sss ∈ P1, we
check each string sss′ from its child set sss × Λ. If sss′

has frequency fU [sss′] ≥ λ, then we put it into P2. In
general, for τ ≥ 2, we can construct Pτ after Pτ−1

is constructed. Finally PL should contain all heavy
hitters in D.

Frequency Oracles. As the exact values of the fre-
quencies of the strings are not available, we want to
learn their estimates. For each τ ∈ [L], we construct
a frequency oracle (HadaOracle) to estimate the fre-
quencies of the strings in Λτ . We want to avoid each
user participating in every frequency oracle: a user
reporting L times to the server would degenerate the
privacy guarantee of the algorithm. Therefore, we par-
tition the set of users U into L subsets U1,U2, . . . ,UL.

As before, this is performed by either independent par-
titioning or permutation partitioning , introduced in
Section 3.1. As L ∈ O(log d), by Corollary 3.2, the
server uses in total Õ(n) processing time and Õ(

√
n)

processing memory to construct these oracles.

For each τ ∈ [L] and each sss ∈ Λτ , let fUτ [sss]
.
= |{u ∈

Uτ : v(u)[1 : τ ] = sss}| be the frequency of sss in Uτ ,

and f̂Uτ [sss] be its estimate by HadaOracle. As E[L ·
fUτ [sss]] = fU [sss], we use f̂U [sss]

.
= L · f̂Uτ [sss] as an estimate

of fU [sss]: its estimation error is established by the
following theorem, proven in the Appendix.

Theorem 4.2. For each τ ∈ [L], fix some query
string sss ∈ Λτ for the frequency estimate. It holds
that, with probability 1− β′,

|f̂U [sss]−fU [sss]| ∈ O((1/ε)
√
n · (log d) · (ln(1/β′))/ lnn) .

There are two sources of error. First, for each τ ∈ [L],
the frequency distribution in Uτ deviates from its expec-
tation. We bound the `2 distance between the distribu-
tion in Uτ and its expectation by martingale methods.
The second kind of error inherits from HadaOracle.

Modified Search Strategy. Only having access to
estimates of the frequencies of the prefixes, we need to
modify the criterion for adding elements to Pτ .

Let λ′
.
= (Cλ/ε)

√
n · (log d) · (ln(n/β))/ lnn, where Cλ

is some constant we will determine later. Define P0
.
=

{⊥}. The Pτ are iteratively constructed according to
the following criterion:

Pτ ← {sss ∈ Pτ−1 × Λ : f̂U [sss] ≥ 2λ′}, ∀τ ∈ [L] ,

where Pτ−1 × Λ
.
= {sss = sss1 ◦ sss2 : sss1 ∈ Pτ−1, sss2 ∈

Λ}. Finally, after PL is constructed, its elements are
returned as heavy hitters.

4.2 Analysis

Since each user participates in only one frequency ora-
cle, the algorithm is ε-LDP. It remains to analyze the
utility guarantee, running time and memory usage of
the modified search strategy.

Theorem 4.3. Let λ
.
= 3 · λ′. With probability at

least 1− β, it is guaranteed that for each τ ∈ [L], and
each sss ∈ Λτ : (1) if fU [sss] ≥ λ, then sss ∈ Pτ ; (2) and

for each sss ∈ Pτ , the frequency estimate f̂U [sss] satisfies

|f̂U [sss]−fU [sss]| ≤ λ′. Constructing the Pτ for all τ ∈ [L]
has Õ(n) running time and Õ(

√
n) memory usage.

We sketch the proof here, details are in the Appendix.

Proof Outline for Theorem 4.3. We focus on the esti-
mation errors of prefixes from a fixed set.
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Definition 4.4 (Candidate Set). Define Γ0
.
= {⊥} to

be the set of the empty string, and for τ ∈ [L], Γτ
.
=

{sss ∈ Λτ : fU [sss] ≥ λ′}, the set of prefixes of length τ
whose frequency is at least λ′. For τ < L, the child set
of Γτ is defined as Γτ ×Λ

.
= {sss = sss1 ◦sss2 : sss1 ∈ Γτ , sss2 ∈

Λ}, where sss1 ◦sss2 is the concatenation of sss1 and sss2. The
candidate set is defined as Γ

.
= ∪0≤τ<L (Γτ × Λ).

Note that for each τ ∈ [L], we have |Γτ | ≤ n/λ′ ≤
√
n.

Hence, |Γ| =
∑

0≤τ<L |Γτ × Λ| ≤ L
√
n ·
√
n ∈ Õ(n).

By applying Theorem 4.2 with β′ = β/(nL) and the
union bound over all sss ∈ Γ, we have:

Corollary 4.5. There exists some constant Cλ, such
that with probability at least 1 − β, it holds that
maxsss∈Γ |f̂U [sss]− fU [sss]| ≤ λ′ , where

λ′ = (Cλ/ε)
√
n · (log d) · (ln(n/β))/ lnn .

Conditioned all strings in Γ having estimation error λ′,
we can prove by induction that the modified search
strategy only inspects the frequencies of the strings
from Γ, in order to construct the Pτ , τ ∈ [L]. Therefore,
the strings added to Pτ , τ ∈ [L] have estimation errors
bounded by λ′. Moreover, for each τ ∈ [L], and each
sss ∈ Λτ , if fU [sss] ≥ λ = 3λ′, then sss ∈ Γ, and we can
prove that sss will be added to Pτ . The details are
included in the of the complete proof in Appendix.

To analyze the running time and memory usage, ob-
serve that the modified search strategy invokes L fre-
quency oracles. By Theorem 3.2, they have total con-
struction time Õ(n) and memory usage Õ(

√
n). Since

each frequency query takes Õ(1) time, and all strings
queried belong to Γ, the total query time is bounded
by |Γ| ∈ Õ(n), which finishes the proof.

4.3 Comparison With Previous Approaches

Among the previous algorithms that identify heavy
hitters based on hierarchical search, TreeHist (Bass-
ily et al., 2017) provides the best known er-
ror guarantee of O((1/ε) ·

√
n · (ln d) · ln(n/β)).

Our algorithm reduces this error to O((1/ε) ·√
n · (ln d) · (1 + (ln(1/β) / lnn))). There are two ma-

jor differences between our algorithm and TreeHist.
First, the algorithm TreeHist considers base-2 repre-
sentation of elements in D, instead of base-

√
n repre-

sentation. Each element in D is encoded as a binary
string of length log d. This requires the algorithm to
partition the user set U into log d subsets, which results
in smaller subset sizes and larger estimation error than
our algorithm. Second, the frequency oracle used by
TreeHist does not exploit the fast Hadamard trans-
form. Its frequency oracle answers a frequency query
in Õ(

√
n) time. In comparison, HadaOracle answers

a query in Õ(1) time.

Recent works (Wang et al., 2021; Cormode et al., 2021)
observe that, instead of identifying prefixes of the heavy
hitters with increasing lengths, one character at a time,
we can identify such prefixes by several characters at
each step. This reduces the number of steps required
to reach the full length strings. Indeed, using a large
alphabet to represent the elements in D (e.g., an alpha-
bet of size

√
n, as we proposed) achieves the same effect.

This strategy is effective empirically (Wang et al., 2021;
Cormode et al., 2021), but there are no theoretical guar-
antees. We believe our work improves understanding
of these high-quality experimental results.

5 Related Work

Frequency Oracle. We briefly document the develop-
ment of frequency oracles in recent years. Bassily and
Smith (2015) described a frequency oracle that achieves
error O((1/ε) ·

√
n log(1/β)). However, it needs Õ(n2)

random bits to describe a random matrix, and answers
a query in O(n) time. In 2017, a similar version with
simplified analysis, called ExplicitHist, was studied
by Bassily et al. (2017). ExplicitHist achieves the
same estimation error, but requires only Õ(1) random
bits to describe the random matrix. It answers a query
in O(n) time. Other optimizations have been proposed.
First documented in (Nguyên et al., 2016), and widely
used in LDP literature (Bassily et al., 2017; Apple,
2017; Cormode et al., 2019), the HRR algorithm uses
the Hadamard matrix to replace the random matrix
without increasing the estimation error. The matrix
does not need to be generated explicitly and each of
its entries can be computed in Õ(1) time when needed.
The HRR answers a query in O(min{n, d}) time, or
with pre-processing time Õ(d), answers each query in
Õ(1) time. In 2019, Acharya et al. proposed a variant
of HRR which does not rely on public randomness.
The protocol shares similar performance guarantees to
the original, but can be modified to support frequency
estimation in low privacy regime (ε > 1) (Ghazi et al.,
2021). Finally, Bassily et al. (2017) also applied Count-
Sketch (Charikar et al., 2002) to reduce the domain
size of the elements. Their frequency oracles, FreqOr-
acle and Hashtogram, have server running time Õ(n)
and memory usage Õ(

√
n). But these algorithms have

sub-optimal estimation error of O((1/ε) ·
√
n log(n/β)).

Succinct Histogram. For the succinct histogram
problem, Bassily and Smith (2015) proposed the first
polynomial-time algorithm that has worst-case error
O((log1.5(1/β)) · (1/ε) ·

√
n log d). However, it has

server running time Õ(n2.5) and user time Õ(n1.5),
which is not practical. Bassily et al. (2017) pro-
posed two improved algorithms, TreeHist and Bit-
stogram, which involve different techniques. Tree-
Hist searches for the heavy hitters via a prefix tree;
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Bitstogram hashes elements into a smaller domain
and identifies a noisy version of the heavy hitters.
The recovery of the true heavy hitters relies on error-
correcting codes. The former algorithm has error
O((1/ε)·

√
n · (log d) · log(n/β)), while the latter has er-

ror O((1/ε) ·
√
n · (log(d/β)) · log(1/β)); each achieves

almost-optimal error, but TreeHist is inferior to Bit-
stogram by a factor of

√
log n. Importantly, each

algorithm has server time Õ(n) and user time Õ(1).

Due to the sophistication of error-correcting codes, of
the two algorithms presented in (Bassily et al., 2017),
only TreeHist was implemented and experimented.
Bun et al. (2019) further refined Bitstogram based
on the list-recoverable code, which involves identifying
spectral clusters in a derived graph. Their new algo-
rithm, PrivateExpanderSketch (Bun et al., 2019),
achieved an optimal error of O((1/ε) ·

√
n · log(d/β)).

Again, this style of algorithm has yet to be imple-
mented.

We observe finally that Sketching methods and hierar-
chical searching methods are not only applied to the
LDP model, but also to other models of DP for fre-
quency estimation, for example the shuffle model (Luo
et al., 2021; Balle et al., 2019; Ghazi et al., 2021).
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Supplementary Material

The supplementary material is organized as follows:

1. In Section 6, we list the concentration inequalities applied in our proofs.

2. In Section 7, we provide the detailed proofs for Section 2.

3. In Section 8, we provide the detailed proofs for Section 3.

4. In Section 9, we provide the detailed proofs for Section 4.

6 Concentration Inequalities

Fact 6.1 (Chernoff bound (Mitzenmacher and Upfal, 2017)). Let X1, . . . , Xn be independent 0-1 random variables.
Let X =

∑
i∈[n]Xi and µ = E[X]. Then for every δ > 0,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
.

Similarly, for every δ ∈ (0, 1)

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
.

Fact 6.2 (Bernstein’s Inequality (Audibert et al., 2009)). Let X1, . . . , Xn be independent real-valued random
variables such that |Xi| ≤ c with probability one. Let Sn =

∑
i∈[n]Xi and Var[Sn] =

∑
i∈[n] Var[X2

i ]. Then for

all β ∈ (0, 1),

|Sn − E[Sn]| ≤
√

2Var[Sn] ln
2

β
+

2c ln 2
β

3
,

with probability at least 1− β.

Fact 6.3 (Hoeffding’s Inequality (Devroye and Lugosi, 2001)). Let X1, . . . , Xn be independent real-valued random
variables such that that |Xi| ∈ [ai, bi],∀i ∈ [n] with probability one. Let Sn =

∑
i∈[n]Xi, then for every η ≥ 0:

Pr[Sn − E[Sn] ≥ η] ≤ exp

(
− 2η2∑

i∈[n](bi − ai)2

)
, and

Pr[E[Sn]− Sn ≥ η] ≤ exp

(
− 2η2∑

i∈[n](bi − ai)2

)
.

Definition 6.4 (Martingale (Motwani and Raghavan, 1995; Mitzenmacher and Upfal, 2017)). A sequence of
random variables Y0, . . . , Yn is a martingale with respect to the sequence X0, . . . , Xn if, for all i ≥ 0, the following
conditions hold: i) Yi is a function of X0, . . . , Xi; ii) E[|Yi|] <∞; and iii) E[Yi+1 | X0, . . . , Xi] = Yi.
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Fact 6.5 (Azuma’s Inequality (Mitzenmacher and Upfal, 2017)). Let Y0, . . . , Yn be a martingale such that

Ai ≤ Yi − Yi−1 ≤ Ai + ci ,

for some constants {ci} and for some random variables {Ai} that may be functions of Y0, Y1, . . . Yi−1. Then for
all t ≥ 0 and every η > 0,

Pr[|Yt − Y0| ≥ η] ≤ 2 exp

(
− 2η2∑

i∈[t] c
2
i

)
.

Fact 6.6 ((Chung and Lu, 2006)). Let the sequence of random variables Y0, . . . , Yn be a martingale with respect
to the sequence of random variables X0, . . . , Xn such that

1. Var[Yi | X0, . . . , Xi−1] ≤ σ2
i ,∀i ∈ [n] ; and

2. |Yi − Yi−1| ≤ c, ∀i ∈ [n] .

Then, we have

Pr[Yn − Y0 ≥ η] ≤ exp

− η2

2
(∑

i∈[n] σ
2
i + cη/3

)
 .

Definition 6.7 (Lipschitz Condition). A function ∆ : Rn → R satisfies the Lipschitz condition with bound c ∈ R
if, for every i ∈ [n] and for every sequence of values x1, . . . , xn ∈ R and yi ∈ R,

|∆(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn)−∆(x1, x2, . . . , xi−1, yi, xi+1, . . . , xn)| ≤ c.

Fact 6.8 (McDiarmid’s Inequality (Mitzenmacher and Upfal, 2017; Tolstikhin, 2017)). Let ∆ : Rn → R be a
function that satisfies the Lipschitz condition with bound c ∈ R. Let X1, . . . , Xn be independent random variables
such that ∆(X1, . . . , Xn) is in the domain of ∆. Then for all η ≥ 0,

Pr [∆(X1, . . . , Xn)− E [∆(X1, . . . , Xn)] ≥ η] ≤ exp

(
−2η2

nc2

)
.

Definition 6.9 ((Tolstikhin, 2017)). Let Sn be the symmetric group of [n] (i.e., the set of all possible permutations
of [n]). A function ∆ : Sn → R, is called (n1, n2)-symmetric with respect to permutations if, for each permutation
xxx ∈ Sn, ∆(xxx) does not change its value under the change of order of the first n1 and/or last n2 = n − n1

coordinates of xxx. For brevity, we call these functions (n1, n2)-symmetric functions.

Fact 6.10 (McDiarmid’s Inequality with respect to permutations (Tolstikhin, 2017)). Let ∆ : Sn → R be
an (n1, n2)-symmetric function for which there exists a constant c > 0 such that |∆(xxx) −∆(xxxi,j)| ≤ c for all
xxx ∈ Sn, i ∈ {1, . . . , n1}, j ∈ {n1 +1, . . . , n}, where the permutation xxxi,j is obtained from xxx by transposition of its ith

and jth coordinates. Let X be a vector of random permutation chosen uniformly from a symmetric permutation
group of the set [n]. Then for every η > 0,

Pr[∆(X)− E[∆(X)] ≥ η] ≤ exp

(
− 2η2

n1c2

(
n− 1/2

n− n1

)(
1− 1

2 max{n1, n2}

))
.
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7 Proofs For Section 2

This section is organized as follows:

1. In Section 7.1, we provide the detailed proof for Fact 2.1.

2. In Section 7.2, we provide the detailed proof for Corollary 2.3.

7.1 Hadamard Randomized Response (HRR)

Fact 2.1 (Algorithm HRR (Nguyên et al., 2016; Cormode et al., 2019)). Let U be a set users each holding an
element from some finite domain D. There exists an ε-locally differentially private frequency oracle, HRR, such
that the following holds. Fix some query element v ∈ D for HRR. With probability at least 1− β′, HRR returns
a frequency estimate f̂U [v] satisfying∣∣∣f̂U [v]− fU [v]

∣∣∣ ∈ O ((1/ε) ·
√
|U| · ln(1/β′)

)
.

Each user in U requires Õ(1) memory, takes Õ(1) running time and reports only 1 bit to the server. The server
processes the reports in Õ(|U|+ |D|) time and O(|D|) memory, and answers a query in Õ(1) time. The Õ notation
hides logarithmic factors in |U|, |D| and 1/β′.

7.1.1 The Hadamard Matrix

The main vehicle for the HRR algorithm is the Hadamard matrix. In this section, we provide its definition, and
prove some of its important properties.

Definition 7.1 (Hadamard Matrix). The Hadamard matrix is defined recursively for a parameter, m, that is a

power of two: H1 = [1] and Hm =

[
Hm/2 Hm/2

Hm/2 −Hm/2

]
. For example, H2 =

[
1 1
1 −1

]
, and H4 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
Observe that a Hadamard matrix is symmetric. We list here some other important properties of Hadamard
matrix.

Fact 7.2. The columns of the Hadamard matrix are mutually orthogonal.

Proof of Fact 7.2 . We prove this by induction on the size of m. For H1, this is trivially true. Suppose this
holds for Hm/2. For every i ∈ [m/2], let xxxi ∈ Rm/2 be the ith column of Hm/2. By the induction hypothesis, for
all i, j ∈ [m/2], if i 6= j, then 〈xxxi,xxxj〉 = 0.

Consider Hm. For each i ∈ [m], define yyyi ∈ Rm to be the ith column of Hm. Further, define

c(i)
.
=

{
i, if i ≤ m/2 ,
i−m/2 if i > m/2 .

and s(i)
.
=

{
1, if i ≤ (m/2) ,

−1 if i > (m/2) .

Note that for each i ∈ [m], we have c(i) ∈ [m/2]. By the definition of Hm, it holds that for all i, j ∈ [m],

yyyi =

[
xxxc(i)

s(i) · xxxc(i)

]
and yyyj =

[
xxxc(j)

s(j) · xxxc(j)

]
.

Hence,
〈yyyi, yyyj〉 =

〈
xxxc(i),xxxc(j)

〉
+ s(i)s(j)

〈
xxxc(i),xxxc(j)

〉
.

If i 6= j, then there are two possible cases: 1) i 6= j +m/2 and j 6= i+m/2, then by the induction hypothesis,〈
xxxc(i),xxxc(j)

〉
= 0; and 2) i = j +m/2 or j = i+m/2, then s(i)s(j) = −1. In both cases, 〈yyyi, yyyj〉 = 0 holds.

Fact 7.3. For 0 ≤ i, j < m, the (i + 1, j + 1)-th entry Hm[i + 1, j + 1] of the Hadamard matrix can be
computed in O(logm) time (both the rows and columns of Hm are indexed from 1 to m). In particular, let
the vectors (i)logm, (j)logm ∈ {0, 1}logm be the logm-bit binary representation of i and j, respectively. Then
Hm[i+ 1, j + 1] = (−1)〈(i)logm,(j)logm〉, where 〈(i)logm, (j)logm〉 is the dot product between (i)logm and (j)logm.
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Proof of Fact 7.3 . We prove the Theorem by induction. The claim can be verified manually for H1 and H2.

Suppose this holds for Hm/2; to prove it true for Hm, recall that the recursive definition Hm =

[
Hm/2 Hm/2

Hm/2 −Hm/2

]
divides Hm into four sub-matrices. For 0 ≤ i, j < m, let the vectors (i)logm, (j)logm ∈ {0, 1}logm be the logm-bit
binary representations of i and j, respectively. Let bi = (i)logm[1] be the highest bit and sssi = (i)logm[2 : logm] be
the last (logm)−1 bits of (i)logm, respectively. Similarly, we can define bj = (j)logm[1] and sssj = (j)logm[2 : logm].
Now,

(i)logm = [bi, sssi] , (j)logm = [bj , sssj ] .

Consider the (i+ 1, j + 1)-th entry of Hm. Our goal is prove that

Hm[i+ 1, j + 1] = (−1)〈(i)logm,(j)logm〉 = (−1)bibj+〈sssi,sssj〉.

Observe that bibj = 1 if the (i+ 1, j + 1)-th entry belongs to the lower right sub-matrix and bibj = 0 otherwise.
By definition of Hm, the sub-matrix this entry belongs to can be written as (−1)bibjHm/2. If we also view

sssi, sssj ∈ {0, 1}(logm)−1 as integers in [0,m/2), then (sssi + 1, sssj + 1) is the pair of indexes of the entry inside the
sub-matrix. By the induction hypothesis, the value of the (sssi + 1, sssj + 1) entry of the matrix (−1)bibjHm/2 is

given by (−1)bibj+〈sssi,sssj〉, which finishes the proof.

Fact 7.4 (Fast Hadamard Transform). For all xxx ∈ Rm, there is a standard divide-and-conquer algorithm that
computes the multiplication Hm xxx ( equivalently, HT

mxxx, as Hm is symmetric) in O(m logm) time and O(m) memory.

Proof of Fact 7.4 . Let xxx1 ∈ Rm/2 be the first m/2 entries, and xxx2 ∈ Rm/2 be the second m/2 entries of xxx
respectively. Define yyy1 = Hm/2 xxx1 and yyy2 = Hm/2 xxx2. Then

Hm xxx =

[
Hm/2 Hm/2

Hm/2 −Hm/2

] [
xxx1

xxx2

]
=

[
Hm/2 xxx1 + Hm/2 xxx2

Hm/2 xxx1 −Hm/2 xxx2

]
=

[
yyy1 + yyy2

yyy1 − yyy2

]
.

Let T (m) be the time to compute Hm xxx. Computing yyy1 and yyy2 takes time 2·T (m/2). Computing yyy1+yyy2 and yyy1−yyy2

takes time O(m). Therefore, T (m) = 2 · T (m/2) +O(m). Solving the recursion gives T (m) = O(m logm).

7.1.2 The Algorithm

The algorithm relies on a Hadamard matrix Hm with m = 2dlog |D|e (hence |D| ≤ m < 2|D| ), and assigns each
element v ∈ D the vth column of Hm. For a user u ∈ U , it is said to be assigned to the vth column, if its element
v(u) = v. The problem of estimating the frequency of a element v ∈ D reduces to estimating the number of users
in U assigned to the vth column. When the value of m is clear from context, we omit subscript m and write
Hadamard matrix Hm as H.

7.1.3 Client Side

The client-side algorithm is described in Algorithm 2. Each user receives (from the server) a row index r of the
Hadamard matrix, and privacy parameter ε. Its own element v is the column index. It returns the value of H[r, v],
but flipped with probability 1/(eε + 1). Multiplying H[r, v] by a Rademacher random variable b that equals 1
with probability eε/(eε + 1) and −1 with probability 1/(eε + 1) achieves the flip. It returns the one-bit result to
the server.

Algorithm 2 HRR-Client AHRR-client

Require: Row index r ∈ [m]; privacy parameter ε.
1: Let v ∈ D be the user’s element.
2: Sample b ∈ {−1, 1}, which is +1 with probability eε/(eε + 1).
3: return ω ← b ·H[r, v].

Fact 7.5 (Running Time and Memory Usage). Algorithm 2 has running time Õ(1) and memory usage Õ(1).

Proof of Fact 7.5. According to Fact 7.3, the entry H[r, v] can be computed in O(logm) ⊆ O(log |D|) ⊆ Õ(1)
time and O(logm) ⊆ O(log |D|) ⊆ Õ(1) memory.
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Fact 7.6 (Privacy Guarantee). Algorithm 2 is ε-locally differentially private.

Proof of Fact 7.6. We need to prove that the output distribution of AHRR-client deviates little with the
value v ∈ D, the user’s element. To explicitly state the dependence of AHRR-client on v, we write its output
as AHRR-client(r, ε; v). It suffices to prove that ∀v, v′ ∈ D, the output distributions of AHRR-client(r, ε; v) and
AHRR-client(r, ε; v

′) are similar. There are only two possible outputs, namely, {−1, 1}. Let b and b′ be the
Rademacher random variables generated by AHRR-client(r, ε; v) and AHRR-client(r, ε; v

′) respectively. Then

Pr[AHRR-client(r, ε; v) = 1] = Pr[b ·H[r, v] = 1] ≤ eε/(eε + 1) ,

Pr[AHRR-client(r, ε; v
′) = 1] = Pr[b′ ·H[r, v′] = 1] ≥ 1/(eε + 1) .

Hence, Pr[AHRR-client(r, ε; v) = 1] ≤ eε · Pr[AHRR-client(r, ε; v
′) = 1]. By Definition 1.1, the algorithm AHRR-client

is ε-differentially private.

7.1.4 Server Side

The server-side algorithm is described in Algorithm 3. Its input comprises the set of users, U , their elements’
domain, D, and privacy parameter ε. The server maintains a vector ωωω ∈ Rm, which is initialized with all zeros.
For each user u ∈ U , the server samples an integer r(u) ∈ [m] independently and uniformly at random. Then
it invokes AHRR-client(r

(u), ε) by sending r(u) and ε to user u. On receiving user u’s response, ω(u), the server

increases the (r(u))th entry of ωωω by (eε + 1)/(eε − 1) · ω(u). Finally, it returns a vector f̂U = HT ωωω ∈ Rm. Note

that the dimension of f̂U is m, which could be larger than |D|: we use only the first |D| entries of f̂U .

Algorithm 3 HRR-Server AHRR-server

Require: A set of users U ; element domain D; privacy parameter ε.
1: Set m← 2dlog |D|e, ωωω ← {0}m.
2: for u ∈ U do
3: r(u) ← uniform random integer from [m].
4: ω(u) ← AHRR-client(r

(u), ε).
5: ωωω[r(u)]← ωωω[r(u)] + (eε + 1)/(eε − 1) · ω(u).

6: return f̂U ← HT ωωω.

Fact 7.7 (Running Time and Memory Usage). Algorithm 3 has running time Õ(|D| + |U|) and memory
usage O(|D|).

Proof of Fact 7.7. The server needs memory of size O(m) ⊆ O(|D|) to store the vector ωωω. Processing responses
from the users in U takes time O(|U|). By Fact 7.4, HTωωω can be computed in O(m logm) ⊆ Õ(|D|) time, with
memory usage O(m) ⊆ O(|D|). Hence the overall running time is Õ(|D|+ |U|) and memory usage is O(|D|).

Remark 7.1. Via the fast Hadamard transform (Fact 7.4), the server computes f̂U ← HT ωωω (Algorithm 3, line 6)

in Õ(|D|) time. Then for each v ∈ D, if its frequency is queried, the server can return f̂U [v] in O(1) time. There
is another version of HRR that omits line 6. It has server running time Õ(|U|). However, when it answers a

frequency query for some v ∈ D, it needs to compute f̂U [v] = (HT ωωω)[v] on the fly, which requires Õ(min{m, |U|})
time.

7.1.5 Utility Guarantee

We have proven that the client-side algorithm is ε-locally differentially private, and analyzed the running time and
memory usage of both client-side and server-side algorithms. In this section, we discuss their utility guarantees.

Fact 7.8 (Expectation). Let f̂U be the estimate vector returned by Algorithm 3. Then for all v ∈ D, f̂U [v] is an
unbiased estimator of fU [v].

Proof of Fact 7.8. For each i ∈ [m], let eeei be the ith standard basis vector. For each user u ∈ U , let ccc(u) .
= H eeev(u)

be the column assigned to u, i.e., the (v(u))th column of the Hadamard matrix H, and let b(u) be the Rademacher
random variable generated when algorithm AHRR-client is invoked for user u. Let Cε

.
= (eε + 1)/(eε − 1). By
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algorithm AHRR-client, the response from user u can be expressed as ω(u) = b(u) · ccc(u)[r(u)]. When the server
receives the response ω(u), the update of ωωω can be rewritten as

ωωω ← ωωω + Cε · ω(u) · eeer(u) .

Hence ωωω =
∑
u∈U Cε · ω(u) · eeer(u) =

∑
u∈U Cε · b(u) · ccc(u)[r(u)] · eeer(u) , where eeer(u) is the (r(u))th standard basis

vector. Let cccv
.
= H eeev be the vth column of H. Since f̂U = HT ωωω, we have

f̂U [v] = 〈cccv,ωωω〉 =
∑
u∈U

Cε · b(u) · ccc(u)[r(u)] · 〈cccv, eeer(u)〉 =
∑
u∈U

Cε · b(u) · ccc(u)[r(u)] · cccv[r(u)] .

By the independence of b(u) and r(u), and by linearity of expectation, we have

E
[
f̂U [v]

]
=
∑
u∈U

Cε · E[b(u)] · E
[
ccc(u)[r(u)] · cccv[r(u)]

]
=
∑
u∈U

E
[
ccc(u)[r(u)] · cccv[r(u)]

]
.

The second equality follows from E[b(u)] = 1 · eε/(eε + 1) + (−1) · 1/(eε + 1) = 1/Cε .

As r(u) is sampled uniformly from [m], it holds that

∑
u∈U

E
[
ccc(u)[r(u)] · cccv[r(u)]

]
=
∑
u∈U

1

m
·
m∑
j=1

(
ccc(u)[j] · cccv[j]

)
=
∑
u∈U

1

m
·
〈
ccc(u), cccv

〉
=
∑
u∈U

1[v = v(u)] .

The final equality follows from the orthogonality of columns of H, and that 〈cccv, cccv〉 = m. We conclude that

E
[
f̂U [v]

]
=
∑
u∈U

1[v = v(u)] = fU [v].

Fact 7.9 (Confidence Interval). For a fixed v ∈ D and for all β′ ∈ (0, 1), with probability at least 1− β′, it holds
that

|f̂U [v]− fU [v]| ∈ O
(

(1/ε) ·
√
|U| · ln(1/β′)

)
.

Proof of Fact 7.9. For each u ∈ U , define Z(u) .
= Cε · b(u) · ccc(u)[r(u)] · cccv[r(u)]. The {Z(u)} are independent

random variables in the range of [−Cε, Cε]. As f̂U [v] =
∑
u∈U Z

(u) and E
[
f̂U [v]

]
= fU [v], by Hoeffding’s inequality

(Fact 6.3), for all η > 0,

Pr
[∣∣∣f̂U [v]− fU [v]

∣∣∣ ≥ η] ≤ 2 exp

(
− 2η2∑

u∈U (Cε − (−Cε))2

)
.

If we upper bound the failure probability with β′, we obtain that η ≤ Cε ·
√

2|U| ln(2/β′). Noting that Cε ∈ O(1/ε)
for ε ∈ O(1) finishes the proof.

7.2 Proof of Corollary 2.3

Corollary 2.3. Let ε ∈ O(1). Every ε-LDP frequency oracle algorithm achieving estimation error λ with
probability at least 1− β′ must have

λ ∈ Ω
(

(1/ε) ·
√
|U| · ln(1/β′)

)
.

Proof of Corollary 2.3. Let β′ = β/d be the failure probability of the frequency oracle algorithm, and suppose
by contradiction that λ ∈ o((1/ε) ·

√
|U| ln(1/β′)) for this algorithm. If so, we could query it for the frequency

of all elements in the domain D. By a union bound, we could thus construct a succinct histogram with failure
probability at most β and with error for every element in o((1/ε) ·

√
|U| ln(1/β′)). Since the latter bound is in,

o((1/ε) ·
√
|U| ln(|D|/β)), this contradicts Fact 2.2.
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8 Proofs For Section 3

This section is organized as follows:

1. In Section 8.1, we provide the detailed proof for Theorem 3.1.

2. In Section 8.2, we provide the detailed proof for Theorem 3.3.

3. In Section 8.3, we provide the proof for Lemma 8.1, which we rely on to prove Theorem 3.3.

4. In Section 8.4, we provide the proof for Lemma 8.2, which we rely on to prove Theorem 3.3.

8.1 Theorem 3.1

The properties of Theorem 3.1 have been established implicitly in Section 3. Here we show how to put the pieces
together explicitly.

Theorem 3.1 (Sketching Framework). For every β′ ∈ (0, 1), Aoracle can be converted into an ε-LDP frequency
oracle, with server running time Õ(Φtime(|U|,

√
|U|)) and memory usage Õ(Φmem(|U|,

√
|U|)). Fix an element v ∈

D to be given as a query to the new algorithm. With probability at least 1 − β′, it returns an estimate f̂U [v]
satisfying ∣∣∣f̂U [v]− fU [v]

∣∣∣ ∈ O ((1/ε) ·
√
|U| · ln(1/β′)

)
.

Proof of Theorem 3.1. Since Algorithm 1 (Sketching Framework) invokes hash functions to reduce the domain
size from |D| to m ∈ O(

√
|U|), it follows that it has server running time Õ(Φtime(|U|,

√
|U|)) and memory

usage Õ(Φmem(|U|,
√
|U|)). The privacy guarantee follows from that Algorithm 1 partitions the set of users U

into subsets, and invokes Aoracle for each subset. Therefore, each user participates in only one copy of Aoracle.
As Aoracle is ε differentially private, so is Algorithm 1. Finally, the utility guarantee follows from Corollary 3.4.

This finishes the proof of Theorem 3.1. In the next section, we discuss Theorem 3.3.

8.2 Theorem 3.3

Theorem 3.3 With probability at least 1− β′/4, it holds that |Gd Set0| > (1− 1/8)k. And for each v ∈ D and
each j ∈ [3], with probability at least 1− β′/4, it holds that |GdSetj(v)| > (1− 1/8)k.

Proof of Theorem 3.3. We need to prove the Theorem for GdSet0,GdSet1(v),Gd Set2(v),Gd Set3(v), sepa-
rately. As they are easier, we first bound the sizes of GdSet2(v) and GdSet3(v).

Bounding the Size of Gd Set2(v).

Fix some v ∈ D. Recall that λ2(j, v)
.
= |kfUi,hi [h(v)] − kfU i[v]|. Via the definition of GdSet2(v), it can be

rewritten as

GdSet2(v) =

{
i ∈ [k] : |kfUi,hi [h(v)]− kfU i[v]| ∈ O

(
1

ε
·
√
k · |U i| ln

1

β′

)}
.

Observe that for each i ∈ [k], the (scaled) errors |λ2(i, v)|/k = |fUi,hi [h(v)]− fU i[v]| result from hash collisions.
Consider an fixed i ∈ [k]. For each user u ∈ U i, define the indicator random variable Xu = 1[hi(v

(u)) = hi(v)] for
the event hi(v

(u)) = hi(v). If v(u) = v, it always holds that Xu = 1. Otherwise, as hi is a pairwise-independent
hash function, Pr[Xu = 1] = 1/m.

By definition, fUi,hi [hi(v)] =
∑
u∈Ui Xu. Therefore,

E [|fUi,hi [hi(v)]− fU i[v]|] = E

[∣∣∣∣∣∑
u∈Ui

Xu − fU i[v]

∣∣∣∣∣
]

= E

 ∑
u∈Ui,v(u) 6=v

Xu

 .
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By linearity of expectation, we have

E [|fUi,hi [hi(v)]− fU i[v]|] =
|u ∈ U i, v(u) 6= v|

m
≤ |U i|

m
.

By Markov’s inequality,

Pr

[
|fUi,hi [hi(v)]− fU i[v]| ≥ 1

ε

√
1

k
· |U i| ln

4

β′

]
≤ |U i|/m

(1/ε)
√

(1/k) · |U i| ln(4/β′)
=

ε
√
k|U i|

m
√

ln(4/β′)
.

Recall that Algorithm 1 initializes k = CK · ln(4/β′) and m = 8e2 ·
√
CK · ε ·

√
|U| for some constant CK . The

upper bound on the probability simplifies to
√
|U i| / (8e2

√
|U|). Using that |U| ≥ |U i|, this upper bound further

simplifies to 1/(8e2).

For each i ∈ [k], define the indicator random variable

Yi
.
= 1

[
|kfUi,hi [h(v)]− kfU i[v]| ≥ 1

ε

√
k · |U i| ln

4

β′

]
for the event |kfUi,hi [h(v)] − kfU i[v]| ≥ (1/ε)

√
k · |U i| ln(4/β′). Let Y

.
=
∑
i∈[k] Yi. We have E[Yi] ≤ 1/(8e2),

and µ
.
= E[Y ] ≤ k/(8e2). As the h1, .., hk are chosen independently, the {Yi} are independent. Via Chernoff

bound (Fact 6.1),

Pr

[
Y ≥ k

8

]
= Pr

[
Y ≥

(
1 +

(
k

8µ
− 1

))
µ

]
≤

(
exp (k/(8µ)− 1)

(k/(8µ))
k/(8µ)

)µ
= exp

(
k

8
− µ− k

8
ln

k

8µ

)
.

For µ ≤ k/(8e2), the function −µ− (k/8) ln(k/(8µ)) = −µ− (k/8) ln(k/8) + (k/8) lnµ is maximized when µ =
k/(8e2). Therefore,

Pr

[
Y ≥ k

8

]
≤ exp

(
k

8
− k

8e2
− k

8
ln e2

)
= exp

(
−k

8

(
1 +

1

e2

))
.

Recall that k = CK · ln(4/β′). If we set CK = 8, then we get Pr[Y ≥ k/8] ≤ β′/4.

�

Bounding the Size of Gd Set3(v).

Via the assumption of Aoracle, for i ∈ [k], with probability at most 1/(8e2),

|f̂Ui,hi [hi(v)]− fUi,hi [hi(v)]| /∈ O
(

1

ε

√
|U i| · ln(8e2)

)
.

Scaling both sides by a factor of k, we get

|λ3(i, v)| = |k · f̂Ui,hi [hi(v)]− k · fUi,hi [hi(v)]| /∈ O
(

1

ε

√
k2|U i| · ln(8e2)

)
.

Replacing one factor k with CK · ln(4/β′), we have |λ3(i, v)| /∈ O((1/ε)
√
k|U j | · ln(1/β′)). Since for each i ∈ [k],

the event happens independently, the probability that there are more than k/8 choices of i ∈ [k] for which this
event happens is at most (

k

k/8

)(
1

8e2

)k/8
≤
(
ek

k/8

)k/8(
1

8e2

)k/8
=

(
1

e

)k/8
,

where the first inequality follows from that
(
k
k/8

)
≤ kk/8

(k/8)! and that (k/8)k/8

(k/8)! ≤ e
k/8. Recall that k = CK · ln(4/β′).

If we set CK = 8, then we get (1/e)
k/8 ≤ β′/4.

�

To bound the sizes of Gd Set0 and GdSet1(v), we need the following lemmas.
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Lemma 8.1. Let ∆0
.
=
∑
i∈[k]

∣∣|U i| − |U|/k∣∣. ∃ C0 > 0, s.t., with probability 1− β′/4: ∆0 ≤ C0

√
|U| ln(4/β′).

Lemma 8.2. Let ∆1
.
=
∑
i∈[k] ‖fU i−fU/k‖2, where ‖fU i − fU/k‖2

.
=
√∑

v′∈D(fU i[v′]− fU [v′]/k)2. There exists

some constant C1 > 0, s.t., with probability 1− β′/4: ∆1 ≤ C1

√
|U| ln(4/β′).

We need to prove the lemmas for both independent partitioning and permutation partitioning. The proofs are
technical, so we defer them to the end of the proof. For now, we show how to put them together to bound the
sizes of Gd Set0 and GdSet1(v).

Bounding the Size of Gd Set0.

By Lemma 8.1, with probability at least 1 − β′/4, it holds that ∆0 ≤ C0

√
|U| ln(4/β′) for some constant C0.

Therefore,

k ·∆0 =
∑
i∈[k]

∣∣k · |U i| − |U|∣∣ ≤ kC0

√
|U| ln 4

β′
.

By a counting argument, the number of i ∈ [k], such that
∣∣k · |U i|− |U|∣∣ ≥ 8C0

√
|U| ln(4/β′) is bounded by (1/8)k.

This implies that for at least (1− 1/8)k of the i ∈ [k], we have

∣∣k · |U i| − |U|∣∣ ≤ 8C0

√
|U| ln 4

β′
.

By the assumption that |U| ≥ ln(4/β′), we get
∣∣k · |U i| − |U|∣∣ ∈ Θ(|U|).

�

Bounding the Size of Gd Set1(v).

By Lemma 8.2, with probability at least 1 − β′/4, it holds that ∆1 ≤ C1

√
|U| ln(4/β′) for some constant C1.

Hence,

k ·∆1 = k
∑
i∈[k]

‖fU i − fU/k‖2 ≤ kC1

√
|U| ln 4

β′
.

By a counting argument, the number of i ∈ [k], such that k ‖fU i − fU/k‖2 ≥ 8C1

√
|U| ln(4/β′) is bounded

by (1/8)k. This implies that for at least (1− 1/8)k of the i ∈ [k], we have∣∣λ1(i, v)
∣∣ =

∣∣kfU i[v]− fU [v]
∣∣ ≤ k ‖fU i − fU/k‖2 ≤ 8C1

√
|U| ln(4/β′) .

which finishes the proof.

�

In the following two sections, we prove Lemma 8.1 and Lemma 8.2 respectively.

8.3 Bounding ∆0

Lemma 8.1. Let ∆0
.
=
∑
i∈[k]

∣∣|U i| − |U|/k∣∣. ∃ C0 > 0, s.t., with probability 1− β′/4: ∆0 ≤ C0

√
|U| ln(4/β′).

The lemma holds trivially for permutation partitioning, as in such case it holds that |U i| = |U|/k and ∆0 = 0.
We need to prove the lemma for independent partitioning.

8.3.1 Proof of Lemma 8.1 for Independent Partitioning

Without loss of generality, assume that U = {1, 2, .., |U|}. For each u ∈ U , let Xu ∈ [k] be the index of the subset
that user u belongs to. Let X

.
= (X1, . . . , X|U|): by definition, for each i ∈ [k], Pr[Xu = i] = 1/k. The set U i can

be represented as
U i

.
= {u ∈ U : Xu = i} .



Asymptotically Optimal Locally Private Heavy Hitters via Parameterized Sketches

Now, ∆0 can be rewritten as

∆0 =
∑
i∈[k]

√√√√(∑
u∈U

1 [Xu = i]− |U|/k

)2

,

where 1 [Xu = i] is the indicator random variable for the event Xu = i. Hence, ∆0 is a random variables that
depends on X. We write ∆0 explicitly as ∆0(X1, . . . , X|U|) or ∆0(X) when necessary. For a sequence of values

xxx = {x1, . . . , x|U|} ∈ [k]|U|, we use ∆0(x1, . . . , x|U|) or ∆0(xxx) to denote the value of ∆0, when X = xxx. Observe
that

∆0 = ∆0 − E[∆0] + E[∆0].

In order to upper bound ∆0, we can upper bound both ∆0−E[∆0] and E[∆0] superlatively. In particular, we will
prove that 1) with probability at least 1− β′/4, it holds that ∆0 − E[∆0] ≤

√
2|U| ln(4/β′); 2) E[∆0] ≤

√
k|U|.

Substituting k = CK · ln(4/β′), we get that, with probability at least 1− β′/4,

∆0 ≤
√

2|U| ln(4/β′) +
√
k|U| =

√
2|U| ln(4/β′) +

√
CK |U| ln(4/β′).

As we set CK = 8 in the proof of Theorem 3.3 in Section 8.2, the RHS simplifies to ∆0 ≤ 3
√

2|U| ln(4/β′).

Step 1: Bounding ∆0 − E[∆0].

We upper bound it by McDiarmid’s Inequality (Fact 6.8). We will prove that ∆0 satisfies Lipschitz condition
(Definition 6.7) with bound 2, i.e., for all u ∈ U , and every sequence of values xxx = {x1, . . . , xu, . . . , x|U|} ∈ [k]|U|

and x′u ∈ [k],
|∆0(x1, . . . , xu, . . . , x|U|)−∆0(x1, . . . , x

′
u, . . . , x|U|)| ≤ 2 . (3)

Then by McDiarmid’s Inequality (Fact 6.8),

Pr

[
∆0 − E[∆0] ≥

√
2|U| ln 4

β′

]
≤ exp

−2
(√

2|U| ln(4/β′)
)2

|U| · 4

 ≤ β′/4 .
Proof of Inequality (3). Define a random vector in Rk that depends on X as

ωωω(X)
.
=

(∑
u∈U

1 [Xu = 1]− |U|
k
, . . . ,

∑
u∈U

1 [Xu = k]− |U|
k

)
.

For a sequence of values xxx = {x1, . . . , xu, . . . , x|U|} ∈ [k]|U| , let ωωω(xxx) be the vector of ωωω(X) when X = xxx. By its
definition, ∆0(xxx) equals ‖ωωω(xxx)‖1, the `1 norm of ωωω(xxx).

Consider a fixed u ∈ U . Let xxx′ = {x1, . . . , x
′
u, . . . , x|U|} be the sequence obtained by replacing xu with x′u. The

inequality (3) clearly holds when xu = x′u. Now, suppose that xu 6= xu. Then ωωω(xxx) and ωωω(xxx′) differ in only two
coordinates, each by 1. Specifically, ωωω(xxx)−ωωω(xxx′) = eeexu − eeex′u , where eeexu and eeex′u are the (xu)(th) and the (x′u)(th)

standard basis vectors in Rk, respectively. By the triangle inequality,∣∣∣ ‖ωωω(xxx)‖1 − ‖ωωω(xxx′)‖1
∣∣∣ ≤ ‖eeexu − eeex′u‖1 = 2.

Step 2: Bounding E[∆0].

By Jensen’s inequality, it holds that

E [∆0] =
∑
i∈[k]

E


√√√√(∑

u∈U
1 [Xu = i]− |U|/k

)2
 ≤∑

i∈[k]

√√√√√E

(∑
u∈U

1 [Xu = i]− |U|/k

)2
 .

Fix an i ∈ [k]. For each u ∈ U , define the indicator random variable Z(u) .
= 1[Xu = i] for the event u ∈ U i. Then

Pr[Z(u) = 1] = 1/k and Pr[Z(u) = 0] = 1− 1/k. Further |U i| =
∑
u∈U Z

(u), is a sum of |U| independent random
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variables and has expectation |U|/k. Hence,

E

(∑
u∈U

Z(u) − |U|/k

)2
 = Var [|U i|] =

∑
u∈U

Var
[
Z(u)

]
≤ |U|

k
.

Therefore,

E [∆0] ≤
∑
i∈[k]

√√√√√E

(∑
u∈U

1 [Xu = i]− |U|/k

)2
 ≤∑

i∈[k]

√
|U|
k

=
√
k|U| .

�

This finishes the proof of Lemma 8.1. Next, we prove Lemma 8.2.

8.4 Bounding ∆1

Lemma 8.2. Let ∆1
.
=
∑
i∈[k] ‖fU i−fU/k‖2, where ‖fU i − fU/k‖2

.
=
√∑

v′∈D(fU i[v′]− fU [v′]/k)2. There exists

some constant C1 > 0, s.t., with probability 1− β′/4: ∆1 ≤ C1

√
|U| ln(4/β′).

We need to prove the lemma for both independent partitioning and permutation partitioning.

8.4.1 Proof of Lemma 8.2 for Independent Partitioning

Without loss of generality, assume that U = {1, 2, .., |U|}. For each u ∈ U , let Xu ∈ [k] be the index of the subset
that user u belongs to. Let X

.
= (X1, . . . , X|U|): by definition, for each i ∈ [k], Pr[Xu = i] = 1/k. The set U i can

be represented as
U i

.
= {u ∈ U : Xu = i} .

For each v ∈ D, we have

fU i[v] =
∑
u∈Ui

1
[
v(u) = v

]
,

where 1
[
v(u) = v

]
is the indicator random variable for the event v(u) = v. Therefore,

∥∥∥∥fU i − fU
k

∥∥∥∥
2

=

√√√√∑
v∈D

(
fU i[v]− fU [v]

k

)2

is a random variables that depends on X. We write ‖fU i − fU/k‖2 explicitly as ‖fU i − fU/k‖2 (X1, . . . , X|U|)

or ‖fU i − fU/k‖2 (X) when necessary. For a sequence of values xxx = {x1, . . . , x|U|} ∈ [k]|U|, we use
‖fU i − fU/k‖2 (x1, . . . , x|U|) or ‖fU i − fU/k‖2 (xxx) to denote the value of ‖fU i − fU/k‖2 (X), when X = xxx.

Moreover, as ∆1 =
∑
i∈[k] ‖fU i − fU/k‖2 , it is also a random variables that depends on X. We write ∆1 explicitly

as ∆1(X1, . . . , X|U|) or ∆1(X) when necessary. For a sequence of values xxx = {x1, . . . , x|U|} ∈ [k]|U|, we use
∆1(x1, . . . , x|U|) or ∆1(xxx) to denote the value of ∆1, when X = xxx.

Observe that
∆1 = ∆1 − E[∆1] + E[∆1].

In order to upper bound ∆1, we can upper bound both ∆1−E[∆1] and E[∆1] superlatively. In particular, we will
prove that 1) with probability at least 1− β′/4, it holds that ∆1 − E[∆1] ≤

√
2|U| ln(4/β′); 2) E[∆1] ≤

√
k|U|.

Substituting k = CK · ln(4/β′), we get that, with probability at least 1− β′/4,

∆1 ≤
√

2|U| ln(4/β′) +
√
k|U| =

√
2|U| ln(4/β′) +

√
CK |U| ln(4/β′).

As we set CK = 8 in the proof of Theorem 3.3 in Section 8.2, the RHS simplifies to ∆1 ≤ 3
√

2|U| ln(4/β′).

Step 1: Bounding ∆1 − E[∆1].
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We upper bound it by McDiarmid’s Inequality (Fact 6.8). We will prove that ∆1 satisfies Lipschitz condition
(Definition 6.7) with bound 2, i.e., for all u ∈ U , and every sequence of values xxx = {x1, . . . , xu, . . . , x|U|} ∈ [k]|U|

and x′u ∈ [k],
|∆1(x1, . . . , xu, . . . , x|U|)−∆1(x1, . . . , x

′
u, . . . , x|U|)| ≤ 2 . (4)

Then by McDiarmid’s Inequality (Fact 6.8),

Pr

[
∆1 − E[∆1] ≥

√
2|U| ln 4

β′

]
≤ exp

−2
(√

2|U| ln(4/β′)
)2

|U| · 4

 ≤ β′/4 .
Proof of Inequality (4).

Consider a fixed u ∈ U . Let xxx′ = {x1, . . . , x
′
u, . . . , x|U|} be the sequence obtained by replacing xu with x′u. The

inequality (4) clearly holds when xu = x′u. It is left to consider the case when xu 6= x′u. To simplify the notation,

denote j = xu and ` = x′u. Via the definition that ∆1 =
∑
i∈[k]

∥∥∥fU i − fU
k

∥∥∥
2
, the ∆1(xxx) and ∆1(xxx′) differ only in

two terms. Specifically,

∆1(xxx)−∆1(xxx′) =

∥∥∥∥fU j − fU
k

∥∥∥∥
2

(xxx)−
∥∥∥∥fU j − fU

k

∥∥∥∥
2

(xxx′) +

∥∥∥∥fU ` − fU
k

∥∥∥∥
2

(xxx)−
∥∥∥∥fU ` − fU

k

∥∥∥∥
2

(xxx′)

For each v ∈ D, define fUj ,xxx[v]
.
= |{u ∈ Uj : v(u) = v}| to be the frequency of v in the set {v(u) : u ∈ Uj},

when X = xxx. Let fUj ,xxx
.
=
(
fUj ,xxx[v] : v ∈ D

)
be the frequency vector when X = xxx. Similarly, define fUj ,xxx′ to be

the frequency vector when X = xxx′. Further, let fU`,xxx and fU`,xxx′ be the frequency vectors defined on U`, when
X = xxx and X = xxx′ respectively. Recall that fU =

(
fU [v] : v ∈ D

)
denotes the frequency vector defined on the

entire user set U .

Let v(u) be the data of user u. When the value of X changes from xxx to xxx′, the subset that user u belongs to
switches from U j to U`. The frequency of v(u) in U j decreases by 1, and such frequency in U` increases by 1.
Therefore,

fUj ,xxx − fUj ,xxx′ = eeev(u) , fU`,xxx − fU`,xxx′ = −eeev(u) .

where eeev(u) is the v(u)-th standard basis vector in R|D|. As the norm ‖ · ‖2 satisfies the triangle inequality, we
obtain∥∥∥∥fUj ,xxx − fU

k

∥∥∥∥
2

−
∥∥∥∥fUj ,xxx′ − fU

k

∥∥∥∥
2

≤ ‖eeev(u)‖2 = 1 ,

∥∥∥∥fU`,xxx − fU
k

∥∥∥∥
2

−
∥∥∥∥fU`,xxx′ − fU

k

∥∥∥∥
2

≤ ‖ − eeev(u)‖2 = 1 .

Therefore, |∆1(xxx)−∆1(xxx′)| ≤ 2.

Step 2: Bounding E[∆1]. By linearity of expectation,

E[∆1] =
∑
i∈[k]

E
[∥∥∥∥fU i − fU

k

∥∥∥∥
2

]
.

For a fixed i ∈ [k], by Jensen’s inequality, it holds that

E
[∥∥∥∥fU i − fU

k

∥∥∥∥
2

]
= E

√√√√∑
v∈D

(
fU i[v]− fU [v]

k

)2
 ≤

√√√√∑
v∈D

E

[(
fU i[v]− fU [v]

k

)2
]
.

For a fixed v ∈ D, define U [v]
.
= {u ∈ U : v(u) = v} as the subset of users in U holding element v. It holds that

|U [v]| = fU [v]. For each u ∈ U [v], define the indicator random variable Z(u) .
= 1[Xu = i] for the event u ∈ U i.

Then Pr[Z(u) = 1] = 1/k and Pr[Z(u) = 0] = 1− 1/k. Then fU i[v] =
∑
u∈U [v] Z

(u), is a sum of fU [v] independent

random variables with expectation fU [v]/k. Hence,

E

[(
fU i[v]− fU [v]

k

)2
]

= Var [fU i[v]] =
∑
u∈U [v]

Var
[
Z(u)

]
≤ fU [v]

k
.
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Therefore,

E
[∥∥∥∥fU i − fU

k

∥∥∥∥
2

]
≤

√√√√∑
v∈D

E

[(
fU i[v]− fU [v]

k

)2
]
≤
√∑
v∈D

fU [v]

k
=

√
|U|
k
.

Finally, summing over all i ∈ [k], we obtain

E[∆1] =
∑
i∈[k]

E
[∥∥∥∥fU i − fU

k

∥∥∥∥
2

]
≤
√
|U|k .

�

8.4.2 Proof of Lemma 8.2 for Permutation Partitioning

We need to bound ∆1 =
(
∆1 − E[∆1]

)
+ E[∆1]; we bound ∆1 − E[∆1] by 2

√
|U| ln 2

β′ and E[∆1] by
√
k|U|.

Without loss of generality, assume that U = {1, 2, .., |U|}. Let X = (X1, X2, . . . , X|U|) be a random permutation
of U , i.e., one chosen uniformly at random from the set of all possible permutation of U . Note that X1, . . . , X|U|
are dependent random variables.

For each j ∈ [k], by the way we generate U j , it has size |U|/k and U j = {Xi : (j − 1) · |U|/k + 1 ≤ i ≤ j · |U|/k}.
For every v ∈ D, we can write

fU j [v] =
∑
Xi∈Uj

1
[
v(Xi) = v

]
,

where 1
[
v(Xi) = v

]
is the indicator random variable for the event v(Xi) = v. Therefore,

∥∥∥∥fU j − fU
k

∥∥∥∥
2

=

√√√√∑
v∈D

(
fU j [v]− fU [v]

k

)2

=

√√√√√∑
v∈D

 ∑
Xi∈Uj

1
[
v(Xi) = v

]
− fU [v]

k

2

.

Now, ∆1 =
∑
j∈[k]

∥∥∥fU j − fU
k

∥∥∥
2

is a function that depends on X; we write ∆1 explicitly as ∆1(X)

or ∆1(X1, . . . , X|U|) when necessary. For a sequence of values xxx = {x1, . . . , x|U|}, we use ∆1(x1, . . . , x|U|)
or ∆1(xxx) to denote the value of ∆1, when X = xxx.

Martingale Construction.

We will apply a martingale concentration inequality (Fact 6.5) for the proof. First, to construct a martingale that
satisfies Definition 6.4, we introduce a dummy variable X0 ≡ 0. For each 0 ≤ i ≤ |U|, let Si be shorthand for
(X0, . . . , Xi), and define

Yi
.
= E[∆1 | Si] .

Clearly Yi is a function of X0, . . . , Xi and E[|Yi|] ≤ ∞. Moreover,

E[Yi+1 | Si] = E [E [∆1 |Si, Xi+1] |Si] = E [∆1 |Si] = Yi.

The sequence Y0, . . . , Yn satisfies all conditions specified in Definition 6.4 and is a martingale. By definition,
Y|U| = E[∆1 | S|U|] = ∆1, as once the values of X1, . . . , X|U| are determined, so is ∆1. And we have Y0 =
E [∆1 |X0] = E [∆1], as X0 ≡ 0.

Observe that

∆1 = ∆1 − E[∆1] + E[∆1] = Y|U| − Y0 + Y0 ,

In order to upper bound ∆1, we can upper bound both Y|U| − Y0 and Y0.

Step 1: Bounding ∆1 − E[∆1].
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We upper bound it via Azuma’s Inequality (Fact 6.5). We prove that,

Ai ≤ Yi − Yi−1 ≤ Ai + 2
√

2 , (5)

for some random variables {Ai} that are functions of X0, . . . , Xi−1. By Azuma’s inequality,

Pr

[
|Y|U| − Y0| ≥

(
2

√
|U| ln 2

β′

)]
≤ 2 exp

−2
(

2
√
|U| ln(2/β′)

)2

∑
i∈U (2

√
2)2

 ≤ β′ .
Proof of Inequality (5). We prove that the gap between the upper and lower bounds on Yi − Yi−1 is at most
2
√

2. By the definitions of Yi and Yi−1,

Yi − Yi−1 = E[∆1 | Si]− E[∆1 | Si−1] .

Let U \ Si−1 be the set of integers in U that are distinct from X1, . . . , Xi−1. Define

Ai = inf
x∈U\Si−1

E[∆1 | Si−1, Xi = x]− E[∆1 | Si−1] , and Bi = sup
x′∈U\Si−1

E[∆1 | Si−1, Xi = x′]− E[∆1 | Si−1] .

Clearly Ai ≤ Yi− Yi−1 ≤ Bi. We prove that Bi−Ai ≤ 2
√

2. Let x0 ≡ 0, and for each j ≥ 0, xxxj = (x0, x1, . . . , xj)
be the sequence that consists of a starting 0, and the first j entries of a possible permutation of U . For each i ≥ 1,
let U \ xxxi−1 be the set of integers in U that are distinct from x1, . . . , xi−1. Conditioned on Si−1 = xxxi−1,

Bi −Ai = sup
x′∈U\xxxi−1

E[∆1 | Si−1 = xxxi−1, Xi = x′]− inf
x∈U\xxxi−1

E[∆1 | Si−1 = xxxi−1, Xi = x]

= sup
x′,x∈U\xxxi−1

(E[∆1 | Si−1 = xxxi−1, Xi = x′]− E[∆1 | Si−1 = xxxi−1, Xi = x]) .

It suffices to bound this for every possible sequence of xxxi−1.

Consider a fixed i ∈ U and xxxi−1. Define

γx′,x
.
= E[∆1 | Si−1 = xxxi−1, Xi = x′]− E[∆1 | Si−1 = xxxi−1, Xi = x] .

Our goal is to prove for all x′, x ∈ U \ xxxi−1, γx′,x′ ≤ 2
√

2. It follows that supx′,x∈U\xxxi−1
γx′,x′ ≤ 2

√
2. If x′ = x,

then γx′,x′ = 0. Suppose x′ 6= x. As X is a random permutation of U , conditioned on Si−1 = xxxi−1 and Xi = x′,
with equal probability, one of the elements Xi+1, . . . , X|U| equals x. Hence,

E[∆1 | Si−1 = xxxi−1, Xi = x′] =
1

|U| − i

|U|∑
`=i+1

E[∆1 | Si−1 = xxxi−1, Xi = x′, X` = x] .

Similarly, it holds that

E[∆1 | Si−1 = xxxi−1, Xi = x] =
1

|U| − i

|U|∑
`=i+1

E[∆1 | Si−1 = xxxi−1, Xi = x,X` = x′] .

By triangle inequality,

γx′,x =
1

|U| − i

|U|∑
`=i+1

[E[∆1 | Si−1 = xxxi−1, Xi = x′, X` = x]− E[∆1 | Si−1 = xxxi−1, Xi = x,X` = x′]]

For all permutation sequences xxx = (x1, . . . , x|U|) and for all i 6= ` ∈ U , define xxxi,` to be the sequence with the
values of xi and x` being swapped. We claim it holds that

|∆1(xxx)−∆1(xxxi,`)| ≤ 2
√

2, (6)
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This proves that

E[∆1 | Si−1 = xxxi−1, Xi = x′, X` = x]− E[∆1 | Si−1 = xxxi−1, Xi = x,X` = x′] ≤ 2
√

2, and γx′,x ≤ 2
√

2.

To prove Inequality (6), recall that ∆1 =
∑
j∈[k]

∥∥∥fU j − fU
k

∥∥∥
2
.

If v(xi) = v(x`) or there exists some j ∈ [k], s.t. both xi, x` ∈ U j , then the swap does not change ∆1, and
|∆1(xxx)−∆1(xxxi,`)| = 0.

Otherwise, v(xi) 6= v(x`) and xi ∈ U j , x` ∈ U j′ for different j, j′ ∈ [k]. The swap affects only
∥∥∥fU j − fU

k

∥∥∥
2

and∥∥∥fU j′ − fU
k

∥∥∥
2
. Let fUj ,xxx and fUj ,xxxi,` be the frequency vectors when X = xxx and X = xxxi,`, respectively. They differ

in both the (v(xi))th and (v(x`))th coordinates, each by 1.

If we view fUj ,xxx −
fU
k and fUj ,xxxi,` −

fU
k as |D|-dimensional vectors, it holds that(

fUj ,xxx −
fU
k

)
−
(
fUj ,xxxi,` −

fU
k

)
= −eeev(xi) + eeev(x`) ,

where eeev(xi) and eeev(x`) are the v(xi)-th and the v(x`)-th standard basis vectors in R|D| respectively. By the triangle
inequality, ∥∥∥∥fUj ,xxx − fU

k

∥∥∥∥
2

−
∥∥∥∥fUj ,xxxi,` − fU

k

∥∥∥∥
2

≤ ‖ − eeev(xi) + eeev(x`)‖2 =
√

2.

Similarly, we can prove that the change of
∥∥∥fU j′ − fU

k

∥∥∥
2

is bounded by
√

2. Therefore, |∆1(xxx)−∆1(xxxi,`)| ≤ 2
√

2.

Step 2: Bounding E[∆1].

By linearity of expectation,

Y0 = E[∆1] =
∑
j∈[k]

E
[∥∥∥∥fU j − fU

k

∥∥∥∥
2

]
.

For a fixed j ∈ [k], by Jensen’s inequality, it holds that

E
[∥∥∥∥fU j − fU

k

∥∥∥∥
2

]
= E

√√√√∑
v∈D

(
fU j [v]− fU [v]

k

)2
 ≤

√√√√∑
v∈D

E

[(
fU j [v]− fU [v]

k

)2
]
.

Consider a fixed v ∈ D, define U [v]
.
= {u ∈ U : v(u) = v} as the set of users holding element v. It holds

that |U [v]| = fU [v]. For each u ∈ U [v], define the indicator random variable Z(u) for the event u ∈ Uj . Then
Pr[Z(u) = 1] = 1/k and Pr[Z(u) = 0] = 1− 1/k. Then

fUj [v] =
∑
u∈U [v]

Z(u),

is a sum of fU [v] dependent random variables with expectation fU [v]/k. For a pair of users u, u′ ∈ U [v], u 6= u′,
due the permutation, if u belongs to U j , it is less likely that u′ belongs to U j . In particular,

Cov
[
Z(u), Z(u′)

]
= E

[
Z(u) · Z(u′)

]
− E

[
Z(u)

]
E
[
Z(u′)

]
=

(
|U| − 2

|U|/k − 2

)
/

(
|U|
|U|/k

)
−
(

1

k

)2

=
|U|/k · (|U|/k − 1)

|U|(|U| − 1)
−
(

1

k

)2

≤ 0 .
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Hence,

E

[(
fU j [v]− fU [v]

k

)2
]

= Var [fU j [v]] =
∑
u∈U [v]

Var
[
Z(u)

]
+

∑
u6=u′∈U [v]

Cov
[
Z(u), Z(u′)

]
≤
∑
u∈U [v]

Var
[
Z(u)

]
= fU [v] · 1

k
·
(

1− 1

k

)
≤ fU [v]

k
.

Therefore,

E
[∥∥∥∥fU j − fU

k

∥∥∥∥
2

]
≤

√√√√∑
v∈D

E

[(
fU j [v]− fU [v]

k

)2
]
≤
√∑
v∈D

fU [v]

k
=

√
|U|
k
,

and

Y0 = E[∆1] =
∑
j∈[k]

E
[∥∥∥∥fU j − fU

k

∥∥∥∥
2

]
≤
√
|U|k .
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9 Proofs For Section 4

This section is organized as follows:

1. In Section 9.1, we provide the detailed proof for Theorem 4.2.

2. In Section 9.2, we provide the detailed proof for Theorem 4.3.

9.1 Theorem 4.2

Theorem 4.2. For each τ ∈ [L], fix some query string sss ∈ Λτ for the frequency estimate. It holds that, with
probability 1− β′,

|f̂U [sss]− fU [sss]| ∈ O((1/ε)
√
n · (log d) · (ln(1/β′))/ lnn) .

Proof of Theorem 4.2. Recall that for each τ ∈ [L] and each sss ∈ Λτ , fUτ [sss]
.
= |{u ∈ Uτ : v(u)[1 : τ ] = sss}| is

the frequency of sss in Uτ , and f̂Uτ [sss] is its estimate by HadaOracle.

For each τ ∈ [L], define frequency vector fUτ
.
=
(
fUτ [sss] : sss ∈ Λτ

)
. Denote the `2 distance between the frequency

vector fUτ and its expectation fU/L as∥∥∥∥fUτ − fU
L

∥∥∥∥
2

.
=

√√√√∑
sss∈Λτ

(
fUτ [sss]− fU [sss]

L

)2

.

To prove Theorem 4.2, we need the following lemmas.

Lemma 9.1. For each τ ∈ [L], with probability 1− β′, it holds that |Uτ | ∈ O (n/L).

Lemma 9.2. For each τ ∈ [L], with probability 1− β′, it holds that∥∥∥∥fUτ − fU
L

∥∥∥∥
2

∈ O
(√

n

L
ln

1

β′

)
.

We need to prove the lemmas for both independent partitioning and permutation partitioning. The proofs are
technical, so we defer them to the end of the proof. For now, we show how to put them together to complete the
proof of Theorem 4.2.

For each τ ∈ [L], each sss ∈ Λτ , we regard f̂U [sss] = L · f̂Uτ [sss] as an estimate of fU [sss]. By triangle inequality,∣∣∣L · f̂Uτ [sss]− fU [sss]
∣∣∣ ≤ ∣∣∣L · f̂Uτ [sss]− L · fUτ [sss]

∣∣∣+ |L · fUτ [sss]− fU [sss]| ,

where f̂Uτ [sss] is the estimate of fUτ [sss] returned by HadaOracle. By Corollary 3.2 and Lemma 9.1, it holds with
probability at least 1− β′/2,∣∣∣f̂Uτ [sss]− fUτ [sss]

∣∣∣ ∈ O(1

ε

√
|Uτ | ln

1

β′

)
⊆ O

(
1

ε

√
n

L
ln

1

β′

)
.

By Lemma 9.2, with probability at least 1− β′/2,

|fUτ [sss]− fU [sss]/L| ≤ ‖fUτ − fU/L‖2 ∈ O

(√
n

L
· ln L

β′

)
.

By a union bound, with probability at least 1− β′, it holds that∣∣∣L · f̂Uτ [sss]− fU [sss]
∣∣∣ ∈ O(1

ε

√
n · L · ln 1

β′

)
.

We finish the proof by substituting L = 2 · (log d)/ log n.
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In what follows, we need to prove Lemma 9.1 and Lemma 9.2.

First, we prove Lemma 9.1. The lemma holds trivially for permutation partitioning, as in such case it holds
that |Uτ | = |U|/L for all τ ∈ [L]. We need to prove the lemma for independent partitioning.

9.1.1 Proof of Lemma 9.1 for Independent Partitioning

Let us fix a τ ∈ [L], for each u ∈ [n], define the indicator random variable Xu that equals 1 if u ∈ Uτ and 0
otherwise. Then |Uτ | =

∑
u∈[n]Xu, E[|Uτ |] = n/L. By Chernoff bound (Fact 6.1), it holds that

Pr[|Uτ | > en/L] ≤
(
ee−1

ee

)n/L
=

1

en/L
.

Recall that L = 2 · (log d)/ log n. Further, in order that the bound O
(

1
ε

√
n · log d

logn · ln
1
β′

)
in Theorem 4.2 to be

meaningful, we need the assumption that n ≥ 1
ε2 · L · ln

1
β′ . Therefore,

1

en/L
≤ e− ln(1/β′) = β′ .

It concludes that |Uτ | ∈ O(n/L) with probability at least 1− β′.

�

This finishes the proof of Lemma 9.1. Next, we prove Lemma 9.2. We need to prove the lemma for both
permutation partitioning and independent partitioning.

9.1.2 Proof of Lemma 9.2 for permutation partitioning

Consider a fixed τ ∈ [L]. We have∥∥∥∥fUτ − fU
L

∥∥∥∥
2

− E
[∥∥∥∥fUτ − fU

L

∥∥∥∥
2

]
+ E

[∥∥∥∥fUτ − fU
L

∥∥∥∥
2

]
.

We will bound each term separately.

Step 1: Bounding E [‖fUτ − fU/L‖2].

By Jensen’s inequality,

E
[∥∥∥∥fUτ − fU

L

∥∥∥∥
2

]
≤

√√√√∑
sss∈Λτ

E

[(
fUτ [sss]− 1

L
fU [sss]

)2

2

]
=

√∑
sss∈Λτ

Var [fUτ [sss]] .

For each user u ∈ U , define sss(u) .
= v(u)[1 : τ ], the prefix of v(u) with length τ . Consider a fixed sss ∈ Λτ ,

define U[sss]
.
= {u ∈ U : sss(u) = sss} as the set of users holding element sss. It holds that |U[sss]| = fU [sss]. For all

u ∈ U[sss], define the indicator random variable Z(u) to represent the event u ∈ Uτ . Then Pr[Z(u) = 1] = 1/L and
Pr[Z(u) = 0] = 1− 1/L. Then

fUτ [sss] =
∑
u∈U[sss]

Z(u) ,

is a sum of fU [sss] dependent random variables with expectation fU [sss]/L. For a pair of users u, u′ ∈ U[sss], u 6= u′,
due to the permutation, if u belongs to Uτ , it is less likely that u′ belongs to Uτ . In particular,

Cov
[
Z(u), Z(u′)

]
= E

[
Z(u) · Z(u′)

]
− E

[
Z(u)

]
E
[
Z(u′)

]
=

(
n− 2

n/L− 2

)
/

(
n

n/L

)
−
(

1

L

)2

=
n/L · (n/L− 1)

n(n− 1)
−
(

1

L

)2

≤ 0 .



Hao Wu, Anthony Wirth

Hence,

Var [fUτ [sss]] =
∑
u∈U[sss]

Var
[
Z(u)

]
+

∑
u 6=u′∈U[sss]

Cov
[
Z(u), Z(u′)

]
≤
∑
u∈U[sss]

Var
[
Z(u)

]
= fU [sss] · 1

L
·
(

1− 1

L

)
≤ fU [sss]

L
.

Therefore,

E
[∥∥∥∥fUτ − fU

L

∥∥∥∥
2

]
=

√∑
sss∈Λτ

Var [fUτ [sss]] ≤
√∑
sss∈Λτ

fU [sss]

L
=

√
n

L
.

Step 2: Bounding ‖fUτ − fU/L‖2 − E [‖fUτ − fU/L‖2].

By symmetry, we prove just the case when τ = 1.

Without loss of generality, assume that the n users in U are indexed by [n] = {1, 2, . . . , n}. Let X = {X1, . . . , Xn}
be a random permutation of [n]. As ‖fU1

− fU/L‖2 is a function that depends on X, we write it explicitly as
‖fU1

− fU/L‖2 (X1, . . . , Xn) or ‖fU1
− fU/L‖2 (X) when necessary. For a possible permutation xxx = {x1, . . . , xn}

of [n], we use ‖fU1
− fU/L‖2 (x1, . . . , xn) or ‖fU1

− fU/L‖2 (xxx) to denote the value of ‖fU1
− fU/L‖2 when X = xxx.

Let ngrp = n/L. For each possible permutation xxx, ‖fU1 − fU/L‖2 (xxx) does not change its value under the change
of order of the first ngrp and/or last n− ngrp coordinates xxx. Hence, ‖fU1 − fU/L‖2 is (ngrp, n− ngrp)-symmetric
(Definition 6.9).

We prove that for each possible permutation xxx, for all i ∈ {1, . . . , ngrp}, j ∈ {ngrp + 1, . . . , n}, it holds that∣∣∣∣∥∥∥∥fU1 −
fU
L

∥∥∥∥
2

(xxx)−
∥∥∥∥fU1 −

fU
L

∥∥∥∥
2

(xxxi,j)

∣∣∣∣ ≤ √2 , (7)

where the permutation xxxi,j is obtained from xxx by transposition of its ith and jth coordinates. Then by the
McDiarmid Inequality with respect to permutation (Fact 6.10), we have that for all η > 0,

Pr

[∥∥∥∥fUτ − fU
L

∥∥∥∥
2

− E
[∥∥∥∥fUτ − fU

L

∥∥∥∥
2

]
≥ η

]
≤ exp

(
− 2η2

(n/L) · 2

(
n− 1/2

n− (n/L)

)(
1− 1

2 max{(n/L), n− (n/L)}

))
.

As L = 2(log d)/ log n ≥ 2, it holds that n/L ≤ n− n/L. It follows that(
n− 1/2

n− (n/L)

)(
1− 1

2 max{(n/L), n− (n/L)}

)
≥
(

1− 1/2

(n− (n/L))

)
≥ 1

2
.

Substituting η with
√

2 · (n/L) · ln(1/β′), we get

Pr

[∥∥∥∥fUτ − fU
L

∥∥∥∥
2

− E
[∥∥∥∥fUτ − fU

L

∥∥∥∥
2

]
≥ η

]
≤ exp

(
− 2η2

(n/L) · 2
· 1

2

)
= β′ .

Proof of Inequality (7).

For each sss ∈ Λ, define fU1,xxx[sss]
.
= |{u ∈ U1 : v(u)[1 : 1] = sss}| to be the frequency of sss in the set {v(u)[1 : 1] : u ∈ U1},

when the random permutation X = xxx. Let fU1,xxx
.
=
(
fU1,xxx[sss] : sss ∈ Λ

)
be the corresponding frequency vector

when X = xxx. Similarly, define fU1,xxxi,j to be the frequency vector when X = xxxi,j .

Let sss(xi) = v(xi)[1 : 1] be the prefix of user xi, and sss(xj) = v(xj)[1 : 1] be the prefix of user xj . When the
permutation of X changes from xxx to xxxi,j , user xi is removed from U1 and user xj is added into U1. The frequency
of sss(xi) in U1 decreases by 1, and the frequency of sss(xj) increases by 1.

It holds that

fU1,xxxi,j [sss] =


fU1,xxx[sss], ∀sss ∈ Λ \ {sss(xi), sss(xj)} ,
fU1,xxx[sss]− 1, sss = sss(xi) ,

fU1,xxx[sss] + 1, sss = sss(xj) .
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If we view fU1,xxx − fU/L and fU1,xxxi,j − fU/L as |Λ|-dimensional vectors, it holds that(
fU1,xxx −

fU
L

)
−
(
fU1,xxxi,j −

fU
L

)
= −eeesss(xi) + eee

sss(xj)
,

where eeesss(xi) and eee
sss(xj)

are the sss(xi)-th and the sss(xj)-th standard basis vectors in R|Λ| respectively. By the triangle
inequality, ∥∥∥∥fU1,xxx −

fU
L

∥∥∥∥
2

−
∥∥∥∥fU1,xxxi,j −

fU
L

∥∥∥∥
2

≤ ‖ − eeesss(xi) + eee
sss(xj)
‖2 =

√
2 .

�

This finishes the proof of Lemma 9.2 for permutation partitioning. Next, we prove Lemma 9.2 for independent
partitioning.

9.1.3 Proof of Lemma 9.2 for independent partitioning

Without loss of generality, we prove this lemma for a fixed τ ∈ [L]. To simplify the notation, for each user u ∈ U ,
we write sss(u) .

= v(u)[1 : τ ] as the prefix of v(u) with length τ . For each u ∈ U , define the indicator random
variable Xu for the event u ∈ Uτ . Let X be shorthand for {X1, . . . , Xn}. As ‖fUτ − fU/L‖2 is a function that
depends on X, we write it explicitly as ‖fUτ − fU/L‖2 (X1, . . . , Xn) or ‖fUτ − fU/L‖2 (X) when necessary. For a
sequence of values xxx = {x1, . . . , xn} ∈ {0, 1}n, we use ‖fUτ − fU/L‖2 (x1, . . . , xn) or ‖fUτ − fU/L‖2 (xxx) to denote
the value of ‖fUτ − fU/L‖2 (X), when X = xxx. Since∥∥∥∥fUτ − fU

L

∥∥∥∥
2

=

∥∥∥∥fUτ − fU
L

∥∥∥∥
2

− E
[∥∥∥∥fUτ − fU

L

∥∥∥∥
2

]
+ E

[∥∥∥∥fUτ − fU
L

∥∥∥∥
2

]
,

we can bound ‖fUτ − fU/L‖2 − E [‖fUτ − fU/L‖2] and E [‖fUτ − fU/L‖2] separately.

Step 1: Bounding E [‖fUτ − fU/L‖2].

First, similar to the proof for Lemma 8.2, we have that

E

[∥∥∥∥fUτ − fU
L

∥∥∥∥2

2

]
=
∑
sss∈Λτ

E

[(
fUτ [sss]− 1

L
fU [sss]

)2
]

=
∑
sss∈Λτ

Var [fUτ [sss]] ≤
∑
sss∈Λτ

1

L
fU [sss] =

n

L
.

Hence, by Jensen’s inequality, E [‖fUτ − fU/L‖2] ≤
√

E
[
‖fUτ − fU/L‖

2
2

]
∈ O

(√
n/L

)
.

Step 2: Bounding ‖fUτ − fU/L‖2 − E [‖fUτ − fU/L‖2].

Bounding this is more nuanced than the equivalent term in the proof of Lemma 8.2. We could show that
‖fUτ − fU/L‖2 satisfies the Lipschitz condition (Definition 6.7) with bound 1 and then apply McDiarmid’s

Inequality (Fact 6.8). But this will give us an inferior bound of O
(√

n ln(1/β′)
)

. The Lipschitz condition states

that for each u ∈ U , if the value of Xu changes, it affects ‖fUτ − fU/L‖2 by at most 1. This completely ignores
the variance of ‖fUτ − fU/L‖2.

We apply a martingale concentration inequality that incorporates variances (Fact 6.6). First, we introduce a
dummy variable X0 ≡ 0. For each 0 ≤ i ≤ n, let Si be shorthand for (X0, . . . , Xi). Define

Yi
.
= E

[∥∥∥∥fUτ − fU
L

∥∥∥∥
2

∣∣∣∣Si] .
Clearly Yi is a function of X0, . . . , Xi and E[|Yi|] ≤ ∞. Moreover,

E[Yi+1 | Si] = E
[
E
[∥∥∥∥fUτ − fU

L

∥∥∥∥
2

∣∣∣∣Si, Xi+1

] ∣∣∣∣Si] = E
[∥∥∥∥fUτ − fU

L

∥∥∥∥
2

∣∣∣∣Si] = Yi.
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The sequence Y0, . . . , Yn satisfies all conditions specified in Definition 6.4 and is a martingale. By definition, Yn =
E [‖fUτ − fU/L‖2 |Sn] = ‖fUτ − fU/L‖2 as, once the values of X1, . . . , Xn are determined, so is ‖fUτ − fU/L‖2.
And we have Y0 = E [‖fUτ − fU/L‖2 |X0] = E [‖fUτ − fU/L‖2], as X0 ≡ 0.

Next, we show that for all i ∈ [n],

1. |Yi − Yi−1| ≤ 1; and

2. Var[Yi | X0, . . . , Xi−1] ≤ 1/L.

Then by the concentration inequality (Fact 6.6), it holds that for all η > 0,

Pr[Yn − Y0 ≥ η] ≤ exp

(
− η2

2 (n/L+ η/3)

)
.

We want to find an η, s.t., exp
(
− η2

2(n/L+η/3)

)
= β′. This leads to an equation

η2 − 2 · ln(1/β′)

3
η − 2 · n · ln(1/β′)

L
= 0 ,

whose solution gives

η =
ln(1/β′)

3
+

1

2

√
22 · ln2(1/β′)

32
+

8 · n · ln(1/β′)

L
≤
√

2 · n · ln(1/β′)

L
+

2 · ln(1/β′)

3
.

We conclude that, with probability at least 1− β′, it holds that∥∥∥∥fUτ − fU
L

∥∥∥∥
2

− E
[∥∥∥∥fUτ − fU

L

∥∥∥∥
2

]
≤
√

2 · n
L
· ln 1

β′
+

2 · ln(1/β′)

3
≤
(√

2 +
2

3

)
·
√
n

L
· ln 1

β′
.

Proving that for all i ∈ [n], |Yi − Yi−1| ≤ 1.

For all sequences xxxi−1 = (0, x1, . . . , xi−1) ∈ {0, 1}i and for all xi ∈ {0, 1}, we prove that∣∣∣∣E [∥∥∥∥fUτ − fU
L

∥∥∥∥
2

∣∣∣∣Si−1 = xxxi−1, Xi = xi

]
− E

[∥∥∥∥fUτ − fU
L

∥∥∥∥
2

∣∣∣∣Si−1 = xxxi−1

]∣∣∣∣ ≤ 1 .

Note that

E
[∥∥∥∥fUτ − fU

L

∥∥∥∥
2

∣∣∣∣Si−1 = xxxi−1

]
= E
x∈{0,1}

[
E
[∥∥∥∥fUτ − fU

L

∥∥∥∥
2

∣∣∣∣Si−1 = xxxi−1, Xi = x

]]
.

Define

γ
.
=

∣∣∣∣E [∥∥∥∥fUτ − fU
L

∥∥∥∥
2

∣∣∣∣Si−1 = xxxi−1, Xi = 0

]
− E

[∥∥∥∥fUτ − fU
L

∥∥∥∥
2

∣∣∣∣Si−1 = xxxi−1, Xi = 1

]∣∣∣∣ .
It suffices to prove that γ ≤ 1. Let xxx+

i = (xi+1, . . . , xn) denote a possible sequence in {0, 1}n−i. For xi ∈ {0, 1},
we write ∥∥∥∥fUτ − fU

L

∥∥∥∥
2

(xxxi−1, xi,xxx
+
i ) for

∥∥∥∥fUτ − fU
L

∥∥∥∥
2

(x0, . . . , xi−1, xi, xi+1, . . . , xn).

Let S+
i be shorthand for {Xi+1, . . . , Xn}. Since S+

i is independent of Si, we have

γ =

∣∣∣∣∣∣
∑

xxx+
i ∈{0,1}n−i

Pr[S+
i = xxx+

i ] ·
(∥∥∥∥fUτ − fU

L

∥∥∥∥
2

(xxxi−1, 0,xxx
+
i )−

∥∥∥∥fUτ − fU
L

∥∥∥∥
2

(xxxi−1, 1,xxx
+
i )

)∣∣∣∣∣∣ .
Consider a fixed xxx+

i ∈ {0, 1}n−i. Let xxx = (xxxi−1, 0,xxx
+
i ) and xxx′ = (xxxi−1, 1,xxx

+
i ). Let fUτ ,xxx and fUτ ,xxx′ be the

frequency vectors defined on Uτ , when X = xxx and X = xxx′, respectively. Let sss(i) = v(i)[1 : τ ] be the prefix with
length τ of user i. For sss ∈ Λτ \ {sss(i)}, it holds that fUτ ,xxx[sss] = fUτ ,xxx′ [sss]. Further, fUτ ,xxx[sss(i)] + 1 = fUτ ,xxx′ [sss

(i)].
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If we view fUτ ,xxx − fU/L and fUτ ,xxx′ − fU/L as |Λτ |-dimensional vectors, it holds that(
fUτ ,xxx −

fU
L

)
−
(
fUτ ,xxx′ −

fU
L

)
= −eeesss(i) ,

where eeesss(i) is the sss(i)-th standard basis vector. By the triangle inequality,∥∥∥∥fUτ ,xxx − fU
L

∥∥∥∥
2

−
∥∥∥∥fUτ ,xxx′ − fU

L

∥∥∥∥
2

≤ ‖eeesss(i)‖2 = 1 .

Proving that for all i ∈ [n],Var[Yi | X0, . . . , Xi−1] ≤ 1/L.

For each sequence xxxi−1,

E
[∥∥∥∥fUτ − fU

L

∥∥∥∥
2

∣∣∣∣Xi−1 = xxxi−1

]
=

E
[∥∥∥fUτ − fU

L

∥∥∥
2

∣∣∣Xi−1 = xxxi−1, Xi = 1
]
, w.p. 1/L ,

E
[∥∥∥fUτ − fU

L

∥∥∥
2

∣∣∣Xi−1 = xxxi−1, Xi = 0
]
, w.p. 1− 1/L .

We have also proven that∣∣∣∣E [∥∥∥∥fUτ − fU
L

∥∥∥∥
2

∣∣∣∣Xi−1 = xxxi−1, Xi = 0

]
− E

[∥∥∥∥fUτ − fU
L

∥∥∥∥
2

∣∣∣∣Xi−1 = xxxi−1, Xi = 1

]∣∣∣∣ ≤ 1.

It follows that Var [Yi | Xi−1 = xxxi−1] ≤ 1/L · (1− 1/L) ≤ 1/L.

�

This finishes the proof of Theorem 4.2. Next, we prove Theorem 4.3.

9.2 Theorem 4.3

Theorem 4.3. Let λ
.
= 3 · λ′. With probability at least 1 − β, it is guaranteed that for each τ ∈ [L], and

each sss ∈ Λτ : (1) if fU [sss] ≥ λ, then sss ∈ Pτ ; (2) and for each sss ∈ Pτ , the frequency estimate f̂U [sss] satisfies

|f̂U [sss]− fU [sss]| ≤ λ′. Constructing the Pτ for all τ ∈ [L] has Õ(n) running time and Õ(
√
n) memory usage.

Proof. We focus on the estimation errors of prefixes from a fixed set.

Definition 4.4 Define Γ0
.
= {⊥} to be the set of the empty string, and for τ ∈ [L], Γτ

.
= {sss ∈ Λτ : fU [sss] ≥ λ′},

the set of prefixes of length τ whose frequency is at least λ′. For τ < L, the child set of Γτ is defined as
Γτ × Λ

.
= {sss = sss1 ◦ sss2 : sss1 ∈ Γτ , sss2 ∈ Λ}, where sss1 ◦ sss2 is the concatenation of sss1 and sss2. The candidate set is

defined as Γ
.
= ∪0≤τ<L (Γτ × Λ).

Note that for each τ ∈ [L], we have |Γτ | ≤ n/λ′ ≤
√
n. Hence, |Γ| =

∑
0≤τ<L |Γτ × Λ| ≤ L

√
n ·
√
n ∈ Õ(n). By

applying Theorem 4.2 with β′ = β/(nL) and the union bound over all sss ∈ Γ, we have:

Corollary 4.5 There exists some constant Cλ, such that with probability at least 1−β, it holds that maxsss∈Γ |f̂U [sss]−
fU [sss]| ≤ λ′ , where

λ′ = (Cλ/ε)
√
n · (log d) · (ln(n/β))/ lnn .

Lemma 9.3. Suppose that all strings in Γ having estimation error λ′, i.e., for each sss ∈ Γ, it holds that
|f̂U [sss]− fU [sss]| ≤ λ′. It is follows that for each τ ∈ [L], and for each sss ∈ Λτ : i) if fU [sss] ≥ 3 · λ′, then sss ∈ Pτ ; ii)
if fU [sss] < λ′, then sss /∈ Pτ .

The proof of the lemma is by induction, and is rather technical. We defer it to the end of the proof. By now, we
finish the proof of the theorem based on this lemma.



Hao Wu, Anthony Wirth

Conditioned all strings in Γ having estimation error λ′, via the lemma, we see that for each τ ∈ [L], and each
sss ∈ Λτ , if fU [sss] ≥ λ = 3λ′, then sss is guaranteed to be added to Pτ .

Moreover, the second condition of the lemma implies that for each τ ∈ [L], and each sss ∈ Pτ , it holds that fU [sss] ≥ λ′.
By the definition of Γτ , we have sss ∈ Γτ . Hence Pτ ⊂ Γτ . By the assumption that all string in Γ have estimation
error bounded by λ′, we the see that strings in Pτ have estimation errors bounded by λ′. Lastly, note that for
0 ≤ τ < L, the modified search strategy constructs Pτ+1 based on Pτ , by checking strings in Pτ × Λ. It follows
that all such strings belong to Γτ × Λ ⊂ Γ. Therefore, the modified search strategy only inspects the frequencies
of the strings from Γ, in order to construct the Pτ , τ ∈ [L].

To analyze the running time and memory usage, observe that the modified search strategy invokes L frequency
oracles. By Theorem 3.2, they have total construction time Õ(n) and memory usage Õ(

√
n). Since each frequency

query takes Õ(1) time, and all strings queried belong to Γ, the total query time is bounded by |Γ| ∈ Õ(n), which
finishes the proof.

Proof for Lemma 9.3. Suppose that all strings in Γ having estimation error λ′, i.e., for each sss ∈ Γ, it holds that
|f̂U [sss]− fU [sss]| ≤ λ′. We prove the claims by induction.

When τ = 1, Pτ−1 = Γτ−1 = {⊥}. Then P0 × Λ = Γ0 × Λ = Λ. For all sss ∈ Λ, if fU [sss] ≥ 3 · λ′, then it holds that

f̂U [sss] ≥ fU [sss]− λ′ ≥ 2λ′ .

According to the definition of P1, the element sss belongs to P1. On the other hand, if fU [sss] < λ′, then

f̂U [sss] ≤ fU [sss] + λ′ < 2λ′ .

It is guaranteed that sss /∈ P1. Consequently, for all sss ∈ P1, we have fU [sss] ≥ λ′, which implies that P1 ⊆ Γ1.

Let τ > 1 and assume that the claims holds for τ − 1. For all sss ∈ Λτ , let sss[1 : τ − 1] ∈ Λτ−1 be the prefix of sss of
length τ − 1. If fU [sss] ≥ 3 · λ′, then it holds that

fU [sss[1 : τ − 1]] ≥ fU [sss] ≥ 3λ′ .

By the induction hypothesis, sss[1 : τ − 1] ∈ Pτ−1 ⊆ Γτ−1. Hence, sss ∈ Pτ−1 × Λ ⊆ Γτ−1 × Λ, and

f̂U [sss] ≥ fU [sss]− λ′ ≥ 2λ′ .

According to the definition of Pτ , the element sss belongs to Pτ .

On the other hand, if fU [sss] < λ′, there are two possible cases. First, if sss[1 : τ − 1] /∈ Pτ−1, then by the definition
of Pτ , it is guaranteed that sss /∈ Pτ . Second, if sss[1 : τ − 1] ∈ Pτ−1, by the inductive hypothesis that Pτ−1 ⊂ Γτ−1,
we have sss ⊂ Pτ−1 × Λ ⊂ Γτ−1 × Λ. Then

f̂U [sss] ≤ fU [sss] + λ′ < 2λ′ .

It is guaranteed that sss /∈ Pτ . Consequently, for all sss ∈ Pτ , we have fU [sss] ≥ λ′, which implies that Pτ ⊆ Γτ .
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