
AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation
for Deep Learning

Jihun Yun Aurelie C. Lozano Eunho Yang
KAIST IBM T.J. Watson Research Center KAIST, AITRICS

Abstract

We introduce AdaBlock, a class of adaptive
gradient methods that extends popular ap-
proaches such as Adam by adopting the sim-
ple and natural idea of using block-diagonal
matrix adaption to effectively utilize struc-
tural characteristics of deep learning archi-
tectures. Unlike other quadratic or block-
diagonal approaches, AdaBlock has com-
plete freedom to select block-diagonal groups,
providing a wider trade-off applicable even
to extremely high-dimensional problems. We
provide convergence and generalization error
bounds for AdaBlock, and study both the-
oretically and empirically the impact of the
block size on the bounds and advantages over
usual diagonal approaches. In addition, we
propose a randomized layer-wise variant of
Adablock to further reduce computations
and memory footprint, and devise an efficient
spectrum-clipping scheme for AdaBlock to
benefit from Sgd’s superior generalization per-
formance. Extensive experiments on several
deep learning tasks demonstrate the bene-
fits of block diagonal adaptation compared to
adaptive diagonal methods, vanilla Sgd, as
well as modified versions of full-matrix adap-
tation.

1 Introduction

Stochastic gradient descent (Sgd, Robbins and Monro
(1951)) is a dominant approach for training large-scale
machine learning models such as deep networks. At
each iteration of this iterative method, the model pa-
rameters are updated in the opposite direction of the

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

gradient of the objective function typically evaluated
on a mini-batch, with step size controlled by a learn-
ing rate. While vanilla Sgd uses a common learning
rate across coordinates (possibly varying across time),
several adaptive learning rate algorithms have been de-
veloped that scale the gradient coordinates by square
roots of some form of average of the squared values of
past gradients coordinates. The first key approach in
this class, Adagrad Duchi et al. (2011); McMahan
and Streeter (2010), uses a per-coordinate learning rate
based on squared past gradients, and has been found
to outperform vanilla Sgd on sparse data. However, in
non-convex dense settings where gradients are dense,
performance is degraded, since the learning rate shrinks
too rapidly due to the accumulation of all past squared
gradient in its denominator. To address this issue, vari-
ants of Adagrad have been proposed that use the
exponential moving average (EMA) of past squared
gradients to essentially restrict the window of accumu-
lated gradients to only few recent ones. Examples of
such methods include Adadelta Zeiler (2012), RM-
Sprop Tieleman and Hinton (2012), Adam Kingma
and Ba (2015), and Nadam Dozat (2016).

Despite their popularity and great success in some ap-
plications, the above EMA-based adaptive approaches
have raised several concerns. Wilson et al. (2017) stud-
ied their out-of-sample generalization and observed
that on several popular deep learning models their gen-
eralization is worse than vanilla Sgd. Recently, Reddi
et al. (2018) showed that they may not converge to
the optimum (or critical point) even in simple con-
vex settings with constant minibatch size, and noted
that the effective learning rate of EMA methods can
increase fairly quickly while for convergence it should
decrease or at least have a controlled increase over it-
erations. AMSGrad, proposed in Reddi et al. (2018)
to fix this issue, did not yield conclusive improvements
in terms of generalization ability. To simultaneously
benefit from the generalization ability of vanilla Sgd
and the fast training of adaptive approaches, Luo et al.
(2019) recently proposed AdaBound and AMSBound
as variants of Adam and AMSGrad, which employ
dynamic bounds on learning rates to guard against

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

extreme learning rates. Chen et al. (2019) introduced
AdaFom that only add momentum to the first moment
estimate while using the same second moment estimate
as AdaGrad. Zaheer et al. (2018) showed that in-
creasing minibatch sizes enables convergence of Adam,
and proposed Yogi which employs additive adaptive
updates to prevent informative gradients from being
forgotten too quickly. Yu et al. (2017) considered a
variant of diagonal adaptation where, for each neural
network layer, the gradients are normalized by the `2
norm of the layer’s gradients.

We note that all the aforementioned adaptive algo-
rithms deal with adaptation in a restricted way, namely
they only employ diagonal information about Gradi-
ent of Outer-Product (gtg

T
t where gt is the stochastic

gradient at time t, a.k.a. GOP).

Though initially discussed in Duchi et al. (2011), full
matrix adaptation has been mostly ignored due to
its prohibitive computations in high-dimensions. To
alleviate the overhead, several approximations have
been studied. Specifically, KFAC Martens and Grosse
(2015) and Shampoo Gupta et al. (2018) approximate
the curvature via Kronecker product, while TONGA
Le Roux et al. (2007) and GGT Agarwal et al. (2019)
reduce the dimensions of gradient outer-product, which
is a component of the curvature, via relatively lower-
dimensional gradient inner-product.

However, the aforementioned approaches are subopti-
mal in terms of computations and memory. Indeed in
KFAC and Shampoo, the inversion of each Kronecker
factor is still burdensome for large-scale deep learning
tasks. An additional limitation of these approaches is
that they can only encourage a layer-wise block diag-
onal structure. Similarly, TONGA and GGT require
memory tens of times the parameter dimension, which
is not appropriate for large-scale deep models.

Contributions. In this paper, we study an extended
form of Sgd learning with block-diagonal matrix adap-
tation that can effectively utilize the structural char-
acteristics of deep learning architectures. Specifically,
we consider a simple yet effective strategy for gradient
outer-product via coordinate grouping, which leads to a
Sgd framework we call AdaBlock. Unlike other block-
diagonal approaches, AdaBlock allows for complete
freedom in selecting block-diagonal groups, providing
a wider trade-off applicable even to extremely high-
dimensional problems.The goal of this framework is to
take advantage of richer information on interactions
across different gradient coordinates, while relaxing the
expensive computational cost of full matrix adaptation
in large-scale problems. For this purpose, we introduce
several grouping strategies that are practically useful
in deep learning. We study AdaBlock framework the-

oretically and empirically, and the make the following
contributions:

• We analyse the convergence of AdaBlock in the
non-convex setting, uniform stability and general-
ization error, and provide theoretical insights on the
benefits of using blocks. Our work is the first study
to investigate how the block size affects convergence
and generalization, both in theory and practice.

• We propose spectrum-clipping, a non-trivial exten-
sion of Luo et al. (2019) to further boost general-
ization by allowing the block diagonal matrix to
become a constant multiple of the identity matrix
in the latter part of training, as in vanilla Sgd.

• We propose a Randomized Adablock variant
(RadaBlock) for faster per-iteration time and
smaller memory footprint.

• We evaluate the training and generalization ability
of our approaches on popular deep learning tasks.
Our extensive experiments reveal that in terms of
generalization block diagonal methods outperform
diagonal approaches and several baselines such as
vanilla SGD/KFAC/Shampoo/GGT even for small
grouping sizes while remaining practical in terms of
computations and memory footprint.

Notation. For a vector x, ‖x‖p is the p-norm, and
‖x‖ is ‖x‖2 if not specified. For a matrix A, |||A|||p
is the matrix p-norm, λ(A) returns eigenvalues (spec-
trum) of A, and1 log |A| denotes the log-determinant.
λmin(A)/λmax(A) denote the minimum/maximum
eigenvalue of A respectively. Clip(x, a, b) means clip-
ping x element-wise with the interval I = [a, b].

2 Block-Diagonal Matrix Adaptation
via Coordinate Partitioning

In the context of stochastic optimization, Duchi et al.
(2011) proposed a full-matrix variant of AdaGrad.
This version employs a preconditioner which exploits
first-order information only, via the sum of outer prod-
ucts of past gradients:

gt = ∇f(xt), Gt = Gt−1 + gtg
T
t ,

xt+1 = xt − αt(G1/2
t + δI)−1gt (1)

where gt is a stochastic gradient at time t, αt is a step-
size, and δ is a small constant for numerical stability.
Duchi et al. (2011) presented regret bounds for (1) in
the convex setting. However, this approach is quite ex-

pensive due to G
1/2
t term, so they proposed to only use

the diagonal entries of Gt. Popular adaptive methods
for training deep models such as RMSprop/Adam

Jihun Yun, Aurelie C. Lozano, Eunho Yang

(a) f(x, y) = |x + y| + |x−y|
10

(b) f(x, y) = (x+y)2+ (x−y)2

10
(c) Beale loss function (d) Rosenbrock loss function

Figure 1: Comparison of optimization trajectories for various loss functions.

(a) input-neuron (b) output-neuron (c) partially group (d) filter-wise group

Figure 2: Examples of coordinate grouping. The weights with same color belong to the same group.

are based on such diagonal adaptation. Their general
formulation are given in the Appendix E.

Duchi et al. (2011) also discussed the case where full-
matrix adaptation can converge faster than its popu-
lar diagonal counterpart. Motivated by this, we first
checked through a toy MLP experiment whether precon-
ditioning with exact GOP (Gradient of Outer-Product,
gtg

T
t) in (1) can be more effective even in the deep learn-

ing context. Our experiment, provided in Appendix,
showed that one can achieve faster convergence and
better objective values by considering the interaction
between gradient coordinates (1). The caveat here is
that full GOP adaptation in deep learning optimiza-
tion is computationally intractable due to the square
root operator in (1). Nevertheless, is the best choice to
simply use diagonal approximation given the available
computation budget? What if we can afford to pay a
little bit more for our computations?

We address the above question and provide a family of
adaptive Sgd bridging exact GOP adaptation and its
diagonal approximation, via coordinate partitioning.

Adaptive SGD with Block Diagonal Adapta-
tion. Given a coordinate partition, we simply ignore
the interactions of coordinates between different groups.
For instance, given a gradient g ∈ R6, one example
of constructing block diagonal matrices via coordinate
partitioning is g = (g1, g2︸ ︷︷ ︸

G1

, g3, g4, g5︸ ︷︷ ︸
G2

, g6︸︷︷︸
G3

) → [gG1 g
T
G1
|

0 | 0 ; 0 | gG2 g
T
G2
| 0 ; 0 | 0 | gG3 g

T
G3

] where Gi represents

each group and gGi denotes the collection of entries cor-
responding to group Gi. Both exact GOP and diagonal
approximation are special cases of our family. Explor-
ing the use of block-diagonal matrices was suggested
as future work in Duchi et al. (2011), and our work
therefore provides an in-depth study of this proposal
in a more generalized form. Algorithm 1 formalizes
our approach for a total r groups where each group
Gi has a size of ni for i ∈ [r]. The Algorithm 1 can
handle arbitrary grouping with appropriate reordering
of entries, and groups of unequal sizes.

Note that AdaBlock allows for complete freedom to
select block diagonal groups, providing a wider trade-off
between computations and performance while KFAC or
Shampoo use the block diagonal structure in a limited
way, which incurs prohibitive memory cost for deep
learning. More discussions on other quadratic or block
diagonal approaches are in the Appendix.

Effect of Grouping on Optimization. Inspired by
Zhuang et al. (2020), we compare the optimization
trajectories for various loss functions. Here, we use the
block diagonal version of Adam (called AdaBlock)
and usual Adam for comparison and set the same
hyperparameters. Figure 1 illustrates the trajectories.
For all loss functions considered, AdaBlock shows
faster convergence than Adam, and finds more accurate
solution close to the optimal point. As discussed in
Zhuang et al. (2020), the loss functions in Figure 1
are simple, yet they give important clues for the local
behavior in deep learning optimization. Most neural

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

(a) From the same layer (b) From different layers

(c) Neural Network Loss

Figure 3: (a,b): Loss surfaces for different grouping
methods; (c): trajectories on the loss surface (a).

networks use non-smooth ReLU activations, which the
loss landscape in Figure 1-(a) reflects to some extent.
Also, it is well-known that neural networks are generally
ill-conditioned, and Figure 1-(a)∼(d) are similar cases.

Now, we move onto real deep learning examples. First
of all, we introduce some practical grouping strategies
for block diagonal adaptation. Figure 2 shows such
examples in the context of deep learning models: group-
ing the weights with the same color in a network can
approximate the exact GOP matrix with a block diago-
nal matrix of several small full matrices. To see which
grouping could be more effective in terms of optimiza-
tion, we revisit our MLP toy example. Figure 3-(a,b)
show the loss landscapes for different grouping strate-
gies (weights other than shown are fixed as true model
values). We can see that the loss landscape when group-
ing weights in the same layer has a much more dynamic
curvature than when grouping weights in different lay-
ers. In this context, we expect that a block-diagonal
preconditioner is effective in terms of optimization and
illustrate this empirically by comparing the grouping
version for the loss landscape with dynamic curvature
(Figure 3-(a)), and its diagonal counterpart. As in
Figure 1, we compare both approaches using Adam.
Figure 3-(c) shows the optimization histories. Ad-
aBlock converges to a stationary point in fewer steps
than usual Adam and shows a more stable trajectory.

Comparison with KFAC (Martens and Grosse,
2015). KFAC exploits a full-matrix of curvature ap-
proximated by Kronecker product for each layer param-
eter, which only allows for layer-wise block diagonal
structure. AdaBlock has more freedom in construct-

Algorithm 1 AdaBlock: Adaptive Gradient Meth-
ods with Block Diagonal Matrix Adaptation

Input: Stepsize αt, initial point x1 ∈ Rd, and
{β1,t}Tt=1 ∈ [0, 1). The function Ht designs V̂t � 0

with dynamic size of r blocks, {V̂t,[j]}rj=1.

Initialize: m0 = 0, V̂0 = 0.
Require: Coordinate partition P, V̂t � 0.
for t = 1, 2, . . . , T do

Draw a minibatch sample ξt from P
gt ← ∇f(xt)
mt ← β1,tmt−1 + (1− β1,t)gt
for j = 1, 2, . . . , r do

V̂t,[j] ← Ht(g1,[j], · · · , gt,[j]; P)
end for
xt+1 ← xt − αt(V̂ 1/2

t + δI)−1mt . Update rule
end for

ing the block diagonal structure since the coordinate
partitioning P in Algorithm 1 can be arbitrary. In our
experiments of Section 5, we consider multiple groups
within a single layer for efficiency, which is not possible
for KFAC. Also, KFAC for conv layers is significantly
slower than for fc layers; thus KFAC shows better
efficiency than Sgd only in certain cases. In our large-
scale experiments of Section 5 with many conv layers,
we could not avoid an approximation where KFAC
computes the inverse of curvature matrix once every
20 ∼ 100 iterations while our AdaBlock computes
the inverse of curvature matrix at every iteration.

3 Analysis of AdaBlock

In this section, we provide convergence and generaliza-
tion analysis for AdaBlock, Algorithm 1. In addition,
we study how the block size b affects our analysis.

3.1 Convergence in Non-convex Optimization

We start with the convergence of Algorithm 1. We con-
sider the following optimization problem, min .f(x) :=
Eξ∼P

[
f(x; ξ)

]
where x is an optimization variable and

ξ is a random variable representing randomly selected
data sample from training data S. As in other works
on non-convex optimization such as Ghadimi and Lan
(2013, 2016), we study the convergence to stationar-
ity and hence derive the upper bound of ‖∇f(x)‖2 by
Algorithm 1, under the following mild conditions:

Assumption 1. (a) f is differentiable, L-smooth,
and lower bounded. (b) We assume the true gradi-
ent ∇f(xt) and noisy gradient gt are both bounded,
i.e. ‖∇f(xt)‖, ‖gt‖ ≤ G for all t. (c) gt is unbiased
and the noise is independent, i.e. gt = ∇f(xt) + ζt
where E[ζt] = 0 and ζt ⊥⊥ ζs for t 6= s. (d) The se-

Jihun Yun, Aurelie C. Lozano, Eunho Yang

quence of {β1,t}Tt=1 in Algorithm 1 is non-increasing.

(e) ‖αtV̂ −1/2
t mt‖ ≤ D for some strictly positive D > 0.

The condition (a) is a key assumption in general non-
convex optimization analysis, and (b)-(d) are standard
ones in the line of work on SGD analysis such as Chen
et al. (2019). The last condition (e) states that the

final step vector αtV̂
−1/2
t mt should be finite, which is

very mild. We are ready to state our main theorem.

Theorem 1. Let Qt := |||αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t |||2 =

maxj∈[r]{|||αt−1V̂
−1/2
t−1,[j]−αtV̂

−1/2
t,[j] |||2} measure the max-

imum difference in effective spectrums over all diagonal

blocks V̂t,[j] and γt := λmin(αtV̂
−1/2
t). Then, under

Assumption 1, Algorithm 1 is guaranteed to yield

min
t∈[T]

[
‖∇f(xt)‖2

]

≤
E

[
C1

Term A︷ ︸︸ ︷
T∑
t=1

∥∥∥αtV̂ − 1
2

t gt

∥∥∥2

+C2

Term B︷ ︸︸ ︷
T∑
t=2

Qt+C3

T−1∑
t=2

Q2
t

]
+C4

T∑
t=1

γt

(2)

where {Ci}3i=1 are constants independent of problem
dimension d and the total iterations T , and C4 is a
constant independent of T . We let the upper bound (2)
be s1(T)/s2(T).

• Challenges of our analysis against prior work.
The distinctly different part between the previous study
(Chen et al., 2019) and AdaBlock is how to handle the

term Mt := ‖(αt−1V̂
−1/2
t−1 −αtV̂ −1/2

t)mt−1‖2. Since V̂τ
is diagonal for the case of Chen et al. (2019), this study
decomposes Mt coordinate-wisely, which is impossible
in our case. Instead, we could bypass this issue using
the matrix-vector inequality, ‖Ax‖2 ≤ |||A|||2‖x‖2, to
bound the terms related to Mt. This trick brings great
improvements in Term B : the Term B in Chen et al.
(2019) which is the special case of (2) with b = 1 in
our AdaBlock framework involves ‖αt−1/

√
v̂t−1 −

αt/
√
v̂t‖1 while ours is ‖αt−1/

√
v̂t−1 − αt/

√
v̂t‖∞.

While Theorem 1 is generally applicable to any Adam-
based block-diagonal adaptation, the effect of block
size b is implicitly represented in (2). To figure out the
benefits of using block size b > 1, we study the special
cases of (i) AdaGrad and (ii) EMA-based algorithms.

• Convergence of AdaGrad. We can instantiate
our theorem for block diagonal extensions of Ada-
Grad/AdaFom (Zou and Shen, 2018; Chen et al.,
2019) where the benefit of AdaBlock is explicit:

Corollary 1 (AdaGrad/AdaFom). Consider the
block diagonal extension of AdaGrad/AdaFom with

the stepsize αt = α√
t

under Assumption 1 (in case of

AdaGrad, β1,t = 0). Then, they achieve s1(T) =

O(log |V̂T |+ log T︸ ︷︷ ︸
From Term A

+ 1︸︷︷︸
From Term B/others

) and s2(T) =

Ω(
√
T), hence we have mint∈[T] E

[
‖∇f(xt)‖2

]
=

O(log |V̂T |/
√
T + log T/

√
T + 1/

√
T).

In order to see the effect of block size on convergence,
we need the following lemma.

Lemma 1 (Fischer’s inequality). For a positive def-
inite matrix A ∈ Rn×n, let B ∈ Rk×k and C ∈
Rn−k×n−k be top left corner of A and bottom right cor-
ner of A respectively. Then, det(A) ≤ det(B) det(C)
holds.

In Corollary 1, the effect of using blocks is now evident.
Since Term A is asymptotically slower than Term B,
Term A determines the final convergence rate and is
proportional to the log-determinant of V̂T . By Lemma
1, log |V̂T | decreases as a block size b increases, so the
block diagonal extension of AdaGrad theoretically
achieve faster convergence than usual diagonal Ada-
Grad.

• Convergence of EMA-based Algorithms.
Now, we consider popular EMA-based algorithms such
as Adam, i.e., the design function Ht in Algorithm
1 constructs V̂t as V̂t = β2V̂t−1 + (1 − β2)gtg

T
t with

β2 ∈ [0, 1). For this family, the advantage of large b
for non-convex problems is not as evident as for the
AdaGrad cases. Nevertheless, by Proposition 1 in Ap-
pendix E.2, Term A for EMA-based algorithms depends
on log |V̂T | similarly to the block diagonal extension of
AdaGrad in Corollary 1 while Term B can be bounded
by a constant regardless of block size. In that sense, we
expect that Term A/Term B of EMA-based methods
also have similar dynamics as those of AdaGrad in
Corollary 1. For empirical studies, we design a simple
experiment with MLP 784-100-10 on MNIST dataset.
We optimize the parameters via block diagonal exten-
sion of Adam. The Figure 4-(a) illustrates the Term
A/Term B/Logdet for αt = 10−3. In Figure 4-(a),

both Term A and log |V̂T | decreases as a block size b
increases, which corroborates Proposition 1.

• Advantages of Adaptive Gradient Methods.
Importantly, we show that log |V̂T | would affect the
convergence according to Corollary 1 and empirical
evidence for AdaGrad and EMA-based methods re-
spectively. Under this intuition, the adaptive meth-
ods could achieve the smaller log |V̂T | than vanilla
Sgd in some situation. To make things clear, let
us compare diagonal Adam and Sgd. The adapta-
tion matrix V̂T for diagonal Adam is constructed as

V̂T,ii =
√

(1− β2)
∑T
t=1 β

T−t
2 g2

t,i as is known. To make

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

(a) Term A/Term B/Log-determinant (b) Term D

Figure 4: Empirical studies with block diagonal extension of Adam with αt = 10−3, β1,t = 0.9, and β2 = 0.999.

log |V̂T | =
∑d
i=1 log(V̂T,ii) small, each V̂T,ii should be

small, which means that each gt,i is small. This can
happen when the data feature is sparse, which coincides
with the convex regret theory for adaptive methods
(Duchi et al., 2011; Kingma and Ba, 2015; Reddi et al.,

2018). On the other hand, log |V̂T | is at least zero for

Sgd regardless of the size of gradient since the V̂T is
just the identity matrix while log |V̂T | could be negative
for adaptive methods. Since we already show that using
block size b > 1 can lead to better convergence in our
paper, the benefits of AdaBlock over Sgd become
evident in theory.

3.2 Uniform Stability and Generalization
Error Bounds of Algorithm 1

The generalization error of a randomized algorithm A
(e.g., SGD) on training data S is defined as εgen :=
ES,A

[
RS(A(S))−R(A(S))

]
where RS and R are em-

pirical and population risk respectively. Here, A(S)
means the output parameter trained with algorithm A
on training data S. Hardt et al. (2015) show that an
εstab-uniformly stable algorithm satisfies |εgen|≤ εstab

where εstab-uniform stability is defined by

Definition 1 (Hardt et al. (2015)). Let D be a (un-
known) data distribution. For all datasets S, S′ ∈ Zn
such that |S| = |S′| = n, and S and S′ differ in only one
example. The Algorithm A is said to be εstab-uniformly
stable if supz∈D EA

[
f(A(S); z)− f(A(S′); z)

]
≤ εstab.

In order to bound the generalization error using the
result of Hardt et al. (2015), it would suffice un-
der a Lipschitz continuity as in our Assumption 1-
(b) to show that EA

[
‖θ − θ′‖2

]
is bounded since

supz∈D EA
[
f(A(S); z)−f(A(S′); z)

]
≤ GEA

[
‖θ−θ′‖2

]
.

Here, we consider an EMA-based design function Ht

and defer the result of AdaGrad to Appendix.

Theorem 2 (EMA methods). Let θt (or θ′t, resp.) be
the trained parameter with algorithm A on training data
S (or S′, resp.) and ∆t := ‖θt − θ′t‖2. Further, let t0
denote the time when V̂t and V̂ ′t becomes full-rank. For

αt = α and β1,t = 0, we have the recurrence relation,

E
[
∆T+1

]
≤ α

√
T

n
√

1− β2

[√
g(V̂T) +

√
g(V̂ ′T)

]
+ α

(
1− 1

n

)
JT

with the quantities

g(V̂T) =
t0(1− β2)G2

δ2
+ E

[Term C︷ ︸︸ ︷
log
|V̂T |
|V̂t0 |

]
+ d(T − t0) log

1

β2

JT = G

T∑
t=1

E
[
|||(V̂ 1/2

t + δI)−1|||2︸ ︷︷ ︸
Term D

+ |||(V̂ ′t 1/2 + δI)−1|||2︸ ︷︷ ︸
Term D′

]

+ L

T∑
t=1

E
[
|||(V̂ ′t 1/2 + δI)−1|||2︸ ︷︷ ︸

Term D′

∆t

]

Theorem 2 describes εstab for AdaBlock, hence we
analyse how small the upper bound for E[∆T+1] is

according to block sizes. In the quantities g(V̂T) and
JT , we remark the Term C/Term D/Term D′ since
only they depend on the block sizes. Therefore, we
investigate the dynamics of Term C/Term D/Term D′.

• Dynamics of Term C/Term D/Term D′.
Since Term D and Term D′ have exactly same dy-
namics, we only discuss Term D. In Theorem 2, the
Term C is smallest when b = d as in Corollary 1. Term
D is smallest for b = 1 since maxiAii ≤ λmax(A) for
any matrix A ∈ S++. By the way, the Term D can

be bounded as |||(V̂t1/2 + δI)−1|||2 ≤ 1/δ which is in-
dependent of T . For empirical studies, we revisit our
experiment with MLP 784-100-10 on MNIST dataset.
The Figure 4-(b) shows that α|||(V̂t1/2 + δI)−1|||2 con-

verges to α
δ (Here, we set α

δ = 10−3

10−4 = 10) regardless
of block sizes and the difference among block sizes is

Jihun Yun, Aurelie C. Lozano, Eunho Yang

Figure 5: Results on LeNet-5 on MNIST.

negligible compared to log |V̂T | (see Figure 4). As a
result, Term C is dominant in terms of block size, so we
can expect that the upper bound for E[∆T] is smaller
for b > 1 than b = 1.

• Large δ improves generalization. Zaheer et al.
(2018) suggest using large δ to improve generalization
but with only empirical studies. In Theorem 2, it can be
seen clearly that the upper bound for E[∆T] is smaller
for large δ, which in result improves generalization.

The analysis on time complexity and memory footprint
against various baselines is provided in the Appendix.

4 Practical Extensions of AdaBlock

4.1 Spectrum-Clipping for Improving
Generalization

Wilson et al. (2017) showed that adaptive methods
are better than vanilla Sgd in the early stage but get
worse as training matures. To address this, Keskar and
Socher (2017) suggests training networks with Adam
at the beginning and then switching to Sgd. Luo et al.
(2019) proposes AdaBound which clips the effective
learning rate αt/(

√
v̂t + ε) of Adam by decreasing se-

quence of intervals It = [ηl(t), ηu(t)] at every iteration
which converges to some point, thereby resembling Sgd
in the end. However, such an extension is not obvious
for AdaBlock due to the absence of effective stepsize.
Instead, we propose a spectrum-clipping which clips the

spectrum of αt(V̂
1/2
t + δI)−1 by decreasing sequence of

intervals. We use the modified update rule in Algorithm

1 after constructing V̂t: (i) Ût, Σ̂
1/2
t , ← SVD(V̂

1/2
t),

(ii) Σ̃
−1/2
t ← Clip(λ(αt(Σ̂

1/2
t + δI)−1), λl(t), λu(t)

)
,

and (iii) xt+1←xt − ÛT
t Σ̃
−1/2
t Ûtmt. We schedule the

clipping intervals converging to a single point uniformly

over the spectrum so that αt(V̂
1/2
t +δI)−1 can be easily

computed in the form of constant times identity matrix
and effectively behaves like vanilla Sgd.

Table 1: Test accuracy for LeNet-5-Caffe experiment.

Algorithm Accuracy (%)

Adam (Kingma and Ba, 2015) 99.38 ± 0.132
TONGA (Le Roux et al., 2007) 99.27 ± 0.147
KFAC (Martens and Grosse, 2015) 99.44 ± 0.103
Shampoo (Gupta et al., 2018) 99.18 ± 0.173
GGT (Agarwal et al., 2019) 99.35 ± 0.082

AdaBlock-10 99.44 ± 0.096
AdaBlock-25 99.51 ± 0.112
RadaBlock 99.42 ± 0.078

4.2 RAdaBlock: Randomized Layer-wise
Block Diagonal Adaptation

To further reduce computational cost and memory foot-
print for practical purpose, we propose the following
randomized update. At each iteration, one selects `
layers at random to be updated via block diagonal
adaptation as in vanilla AdaBlock, while the remain-
ing layers are updated via the usual diagonal approach.
Our experiments in Section 5 will confirm that such a
scheme can combine the advantages of block-diagonal
and diagonal adaptation: fast per-iteration time, small
memory footprint and better generalization.

5 Experiments

In this section, we design three sets of experiments, each
of which considers different variant of AdaBlock and
corresponding baselines depending on the purpose of
experiments. The first set considers vanilla AdaBlock
to verify the effect only from coordinate grouping. The
second set investigates whether block diagonal ma-
trix adaptation with spectrum-clipping can achieve
state-of-the-art performance. The third set evaluates
RadaBlock, the randomized version of AdaBlock.

In our algorithms, coordinate grouping can be done in
several ways. Given our insight that grouping weights
in the same layer could be more effective, we employ
Figure 2-(c) grouping 10 ∼ 32 parameters connected
to input-neuron for fc layer and filter-wise grouping for
conv layers in Figure 2-(d). In all experiments, we use
the block diagonal versions of Adam as representative
of AdaBlock since Adam is the most frequently used
in deep learning. Note that the block diagonal exten-
sion of AdaGrad (Duchi et al., 2011), RMSprop
(Tieleman and Hinton, 2012), AdaBelief, and many
other optimizers could be naturally considered.

Details on experimental settings and additional con-
siderations on computations/memory are provided in
Appendix.

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

Figure 6: Results on spectrum-clipping for DenseNet on CIFAR-100 dataset.

Table 2: Test accuracy for DenseNet experiment.

Algorithm Accuracy (%)

Sgd + Momentum 77.81 ± 0.137
Adam 73.53 ± 0.121
AdaBound 77.62 ± 0.156
KFAC 78.01 ± 0.077
Shampoo 77.74 ± 0.149
GGT 77.90 ± 0.114
TONGA 77.40 ± 0.093

AdaBlock-Clip 78.25 ± 0.102
RadaBlock-Clip 78.15 ± 0.080

5.1 Investigating Grouping Effect

We investigate the effect of coordinate grouping on (i)
MNIST classification and (ii) Variational autoencoder.
The latter is presented in the Appendix.

MNIST Classification. We consider a simple
LeNet-5 network. We use 128 mini-batch size and
train networks with 100 epochs. For fair comparison,
we compute the inverse of preconditioners every itera-
tion for KFAC, Shampoo, and AdaBlock. As Figure
5 illustrates the results, the learning curve looks similar
in the early stage of training, but AdaBlock converges
without oscillations in the latter part of training, which
corroborates the effect of block sizes in Theorem 1.
Importantly, AdaBlock achieves faster convergence
and lower objective values than any other previous
methods approximating the full-matrix precondition-
ers such as KFAC/Shampoo/GGT, which corroborates
asymptotic wall-clock time comparisons in Appendix B.
The generalization of AdaBlock becomes more stable
than diagonal variant and GGT, and overall superior
across epochs, which can be seen in Table 1.

5.2 Evaluating Spectrum-Clipping

We demonstrate our algorithms using more complex
benchmark architecture/dataset for image classification.
For this task, vanilla Sgd with proper learning rate
scheduling has enjoyed state-of-the-art performance.
Therefore, we compare algorithms using our spectrum-
clipping methods that can exploit higher generaliza-
tion ability of vanilla Sgd. Especially for Shampoo
and KFAC, we compute the inverse of precondition-
ers every 20 iteration for practical purpose, but for
our AdaBlock we calculate the inverse of precondi-
tioner every iteration. We train DenseNet (Huang et al.,
2017) on CIFAR-100 dataset and Figure 6 illustrates
our results. The training speed of AdaBlock is a little
slower but practically acceptable. Notably, AdaBlock
achieves the best generalization performance among all
comparison optimizers including KFAC, Shampoo, and
GGT. Specifically, the improvement in performance is
about 0.5% over vanilla Sgd as can be seen in Table 2.
We report the actual memory usage among modified
full-matrix adaptations in Table 5 in Appendix B.3.

5.3 Evaluating RadaBlock

We now evaluate the randomized version RadaBlock.
Considering various problem domains and diverse large-
sized network architectures, we consider (i) GANs, (ii)
Transformer, (iii) ImageNet classification. Note that
the computational cost of AdaBlock depends heavily
on the network structure rather than the dataset. The
results on GANs are provided in the Appendix.

Neural Machine Translation. Since Transformer-
based models (Vaswani et al., 2017) become standard
for natural language understanding tasks, we consider
the neural machine translation with Transformer on
Multi30k dataset (Elliott et al., 2016). We choose 4 or
5 layers to be updated via block diagonal adaptations
for RadaBlock in order to balance the wall-clock time
and performance. Figure 7 demonstrate the results.

Jihun Yun, Aurelie C. Lozano, Eunho Yang

(a) Training history

(b) Validation history

Figure 7: Results on Transformer on Multi30k dataset.

Table 3: Test BLEU for Transformer on Multi30k
dataset. Adam works much better than vanilla SGD,
so we compare RadaBlock with Adam. Here,
KFAC/Shampoo/GGT are excluded due to pro-
hibitive memory requirement.

Test BLEU score

Adam 36.09 ± 0.135

RadaBlock-4 36.37 ± 0.141
RadaBlock-5 36.12 ± 0.117
Vanilla AdaBlock (N/A) 36.71

Although the training curves show similar dynamics,
RadaBlock outperforms Adam in terms of validation.
Also, we can see in Table 3 that RadaBlock is superior
to Adam in terms of test BLEU. In this experiment,
we focus on evaluating RadaBlock but also include
the results of vanilla AdaBlock in Table 3.

ImageNet Classification. Recently, Loshchilov
and Hutter (2019) proposed to fix the weight decay
regularization for adaptive gradient methods to achieve
competitive generalization with vanilla Sgd. In this
context, we consider a decoupled weight decay vari-
ant of our randomized approach, which we term Rad-
aBlockW. We train ResNet-18 He et al. (2016) on
ImageNet dataset Russakovsky et al. (2015). For Rad-
aBlock, we randomly choose two layers to be up-
dated via block diagonal adaptation at every itera-

Figure 8: Results on ResNet-18 on ImageNet.

Table 4: Top-1 accuracy for training ResNet-18 on
ImageNet dataset.

Top-1 Accuracy (%)

SGDW + Momentum 70.13 ± 0.072
AdamW 70.02 ± 0.095

RadaBlockW 70.30 ± 0.095
Vanilla AdaBlock (N/A) 78.11

tion. We focus on evluating RadaBlock since the
network/dataset are too large to evaluate vanilla Ad-
aBlock. To clearly see the effect of our approach,
we use the same weight decay value for AdamW and
RadaBlockW. Figure 8 illustrates our results. The
learning curves for each method show similar conver-
gence speed, but RadaBlockW is superior to other
methods in terms of generalization. We can see the gen-
eralization comparison in Table 4. Notably, AdamW
and RadaBlockW differ only in update rules, but
RadaBlockW outperforms AdamW. As in Trans-
former, we include the results of vanilla AdaBlock
in Table 4 and the learning curves between vanilla
AdaBlock and RadaBlock are in the Appendix.

6 Conclusion

We presented AdaBlock, a family of adaptive gradient
methods that approximates exact GOP with block diag-
onal matrices to effectively utilize structural characteris-
tics of deep learning architectures. Vanilla AdaBlock
employs block-diagonal adaptation to the whole net-
work, while its randomized variant RadaBlock com-
bines block diagonal and diagonal adaptation to further
reduce computational resources. We analyzed conver-
gence and generalization of vanilla AdaBlock, high-
lighting benefits compared to popular diagonal coun-
terparts. We proposed a spectrum-clipping scheme to
boost generalization. Extensive experiments on various
deep leaning tasks demonstrated the value of the Ad-
aBlock framework. As future work, we plan to explore
strategies for actively selecting layers benefiting most
from block-diagonal adaptation at each iteration of
RadaBlock, and to analyze RadaBlock in theory.

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

Acknowledgement

This work was supported by the National Re-
search Foundation of Korea (NRF) grants
(No.2018R1A5A1059921, No.2019R1C1C1009192), In-
stitute of Information & Communications Technology
Planning & Evaluation (IITP) grants (No.2017-0-
01779, XAI, 2019-0-00075, Artificial Intelligence
Graduate School Program(KAIST) No.2019-0-01371,
Development of brain-inspired AI with human-like
intelligence) funded by the Korea government (MSIT).

References

Agarwal, N., Bullins, B., Chen, X., Hazan, E., Singh,
K., Zhang, C., and Zhang, Y. (2019). Efficient full-
matrix adaptive regularization. In International Con-
ference on Machine Learning, pages 102–110.

Chen, X., Liu, S., Sun, R., and Hong, M. (2019). On
the convergence of a class of adam-type algorithms for
non-convex optimization. In International Conference
on Learning Representation (ICLR).

Dozat, T. (2016). Incorporating nesterov momentum
into adam. ICLR Workshop.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive
subgradient methods for online learning and stochas-
tic optimization. In Journal of Machine Learning
Research (JMLR).

Elliott, D., Frank, S., Sima’an, K., and Specia, L.
(2016). Multi30K: Multilingual English-German image
descriptions. In Proceedings of the 5th Workshop on
Vision and Language, pages 70–74.

Ghadimi, S. and Lan, G. (2013). Stochastic first-
and zeroth-order methods for nonconvex stochas-
tic programming. SIAM Journal on Optimization,
23(4):2341–2368.

Ghadimi, S. and Lan, G. (2016). Accelerated gradi-
ent methods for nonconvex nonlinear and stochastic
programming. Mathematical Programming, 156(1-
2):59–99.

Gupta, V., Koren, T., and Singer, Y. (2018). Shampoo:
Preconditioned stochastic tensor optimization. In In-
ternational Conference on Machine learning (ICML).

Hardt, M., Recht, B., and Singer, Y. (2015). Train
faster, generalize better: Stability of stochastic gradi-
ent descent. arXiv preprint arXiv:1509.01240.

Hazan, E., Agarwal, A., and Kale, S. (2007). Logarith-
mic regret algorithms for online convex optimization.
Machine Learning, 69(2-3):169–192.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 770–778.

Huang, G., Liu, Z., Van Der Maaten, L., and Wein-
berger, K. Q. (2017). Densely connected convolutional
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708.

Keskar, N. S. and Socher, R. (2017). Improving gen-
eralization performance by switching from adam to
sgd. arXiv preprint arXiv:1712.07628.

Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In International Conference
on Learning Representation (ICLR).

Le Roux, N., Manzagol, P.-A., and Bengio, Y. (2007).
Topmoumoute online natural gradient algorithm. In
NIPS, pages 849–856. Citeseer.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight
decay regularization. In International Conference on
Learning Representations (ICLR).

Luo, L., Xiong, Y., and Liu, Y. (2019). Adaptive gradi-
ent methods with dynamic bound of learning rate. In
International Conference on Learning Representations
(ICLR).

Martens, J. and Grosse, R. (2015). Optimizing neural
networks with kronecker-factored approximate curva-
ture. In International conference on machine learning,
pages 2408–2417.

McMahan, H. B. and Streeter, M. (2010). Adaptive
bound optimization for online convex optimization.
In Conference on Computational Learning Theory
(COLT).

Nair, V. and Hinton, G. E. (2010). Rectified lin-
ear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814.

Reddi, S. J., Kale, S., and Kumar, S. (2018). On the
convergence of adam and beyond. In International
Conference on Learning Representation (ICLR).

Robbins, H. and Monro, S. (1951). A stochastic ap-
proximation method. The annals of mathematical
statistics, pages 400–407.

Russakovsky, O., Deng, J., Su, H., Krause, J.,
Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,
A., Bernstein, M., et al. (2015). Imagenet large scale
visual recognition challenge. International journal of
computer vision, 115(3):211–252.

Jihun Yun, Aurelie C. Lozano, Eunho Yang

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-
rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks
for machine learning, 4(2):26–31.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. (2017). Attention is all you need. In Advances in
neural information processing systems, pages 5998–
6008.

Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye, Z.,
Li, M., Zhou, J., Huang, Q., Ma, C., Huang, Z., Guo,
Q., Zhang, H., Lin, H., Zhao, J., Li, J., Smola, A. J.,
and Zhang, Z. (2019). Deep graph library: Towards
efficient and scalable deep learning on graphs. ICLR
Workshop on Representation Learning on Graphs and
Manifolds.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and
Recht, B. (2017). The marginal value of adaptive
gradient methods in machine learning. In Advances
in Neural Information Processing Systems (NIPS).

Yu, A. W., Huang, L., Lin, Q., Salakhutdinov, R.,
and Carbonell, J. (2017). Block-normalized gradient
method: An empirical study for training deep neural
network. arXiv preprint arXiv:1707.04822.

Zaheer, M., Reddi, S., Sachan, D., Kale, S., and
Kumar, S. (2018). Adaptive methods for nonconvex
optimization. In Advances in Neural Information
Processing Systems, pages 9793–9803.

Zeiler, M. D. (2012). Adadelta: an adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

Zheng, S. and Kwok, J. T. (2019). Blockwise adaptiv-
ity: Faster training and better generalization in deep
learning. arXiv preprint arXiv:1905.09899.

Zhuang, J., Tang, T., Ding, Y., Tatikonda, S. C.,
Dvornek, N., Papademetris, X., and Duncan, J. (2020).
Adabelief optimizer: Adapting stepsizes by the belief
in observed gradients. Advances in Neural Information
Processing Systems, 33.

Zou, F. and Shen, L. (2018). On the convergence
of adagrad with momentum for training deep neural
networks. arXiv preprint arXiv:1808.03408.

Supplementary Materials

A Toy MLP example: Full GOP Adaptation vs. Diagonal Approximation for
Section 2

We consider a structured MLP (two nodes in two hidden layers followed by single output). For hidden units, we
use ReLU activation (Nair and Hinton, 2010) and the sigmoid unit for the binary output. We generate n = 10
i.i.d. observations: xi ∼ N (0, I2) and yi from this two layered MLP given xi. The results of our toy experiment
are depicted in Figure 9.

Figure 9: Comparison of AdaGrad diagonal version and full matrix version varying the minibatch size M .

B Comparison with Baselines with Computations and Memory Considerations

B.1 The Difference of KFAC/Shampoo and AdaBlock in terms of Block Diagonal Structure

B.2 Computations

Compared with full matrix adaptation, working with a block diagonal matrix is computationally more efficient
as it allows for decoupling computations with respect to each small full sub-matrix. In vanilla AdaBlock
(Algorithm 1), the procedures for constructing the block diagonal matrix and for updating parameters for each
block by computing the “inverse” square root of each sub-matrix can be done in a parallel manner. As the group
size increases, the block diagonal matrix becomes closer to the full matrix, resulting in greater computational cost.
Therefore, it makes sense to consider relatively small group size in practice. We consider the single layer with
the weight parameter of size m×m for easy comparison. The main bottleneck in terms of time complexity is
computing the inverse operations. For such layer, AdaBlock requires batch mode of SVD operation to compute

the inverse of preconditioner, which takes O(b3 × m2

b) = O(b2m2) for block size b. On the other hand, both
Shampoo and KFAC utilize Kronecker product where each Kronecker factor has size of m×m, so they require
O(m3 +m3) = O(2m3) for matrix inverse operations to compute the inverse of preconditioners (since the inverse
of Kronecker product is the product of inverse Kronecker factors). Hence, AdaBlock is very advantageous in
terms of time complexity as long as roughly b ≤

√
2m is satisfied. We consider small block size and large hidden

units, so the condition b ≤
√

2m almost always holds in practice. For such reasons,AdaBlock can compute the
inverse of preconditioner every iteration, but Shampoo/KFAC compute it every 20 ∼ 100 iteration inevitably in
order to reduce heavy computational overhead.

The wall-clock time performance of AdaBlock can be further improved using RAdaBlock. As can be seen in
Figure ??-(a), RAdaBlock achieves higher inception score in wall-clock time.

B.3 Memory

In terms of memory, vanilla AdaBlock is more efficient than GGT Agarwal et al. (2019). For example,

consider models with a total of d parameters. For Algorithm 1, assume that V̂t is a block diagonal matrix with
r sub-matrices, and each block has size b × b (so, br = d). Also, assume that the truncated window size for
GGT is w. GGT needs a memory size of O(wd), and our algorithm requires O(rb2) = O(bd). We consider
small group size b = 10 or 25 for our experiments while the recommended window size of GGT is 200 Agarwal

Jihun Yun, Aurelie C. Lozano, Eunho Yang

Table 5: GPU memory consumptions among modified full-matrix adaptation methods for DenseNet on CIFAR-100
experiments in Section 5.2. We use machine with Intel(R) Xeon(R) CPU E5-2630v4 @2.20GHz and Titan Xp
GPUs.

KFAC
(Martens and Grosse, 2015)

Shampoo
(Gupta et al., 2018)

GGT
(Agarwal et al., 2019)

AdaBlock-Clip
(Ours)

3261MiB 3033MiB 3617MiB 3029MiB

et al. (2019). Therefore, our algorithm is more memory-efficient and the benefit is more pronounced as the
number of model parameters d is large, which is the case in popular deep learning models/architectures. For
other modified full-matrix adaptations, we consider the single layer with the weight parameter of size m ×m
as in comparison of computations. Since AdaBlock should save b × b blocks for all batches, AdaBlock

requires O(m
2

b × b× b) = O(bm2) in memory. On the other hand, both Shampoo and KFAC should save each
Kronecker factor, which requires O(m2 + m2) = O(2m2). However, the matrix inversion requires O(b3) and
O(m3) memory for AdaBlock and KFAC respectively, so the total memory requirement would be finally

O(bm2 + m2

b b
3) = O(b2m2 + bm2) = O(b2m2) and O(2m3 + 2m2) = O(2m3) respectively. Since the number of

neurons m is very large in general for modern network architecture and we choose a small block size such that
b <<

√
2m, AdaBlock requires much less memory than KFAC. We include the exact memory consumptions in

Table for DenseNet experiments on CIFAR-100. As seen in Table 5, the memory usage for AdaBlock is not
much compared to KFAC/Shampoo/GGT, but rather our AdaBlock uses the least memory.

C Hyperparameters and Additional Experimental Results for Section 5

We use the recommended step size or tune it in the range [10−4, 102] for all comparison algorithms. For Adam
based algorithms, we use default decay parameters (β1, β2) = (0.9, 0.999). For a diagonal version of Adam
variant algorithm, we choose numerical stability parameter ε = 10−3 since the larger value of ε can improve the
generalization performance as discussed in Zaheer et al. (2018). For spectrum-clipping in Section 4.1, we use the

same intervals λl(t) = α∗
(

1− 1

γt+ 1

)
and λu(t) = α∗

(
1 +

1

γt

)
as in Luo et al. (2019). For γ and α∗ in clipping

bound functions, we consider γ ∈ {0.0001, 0.0005, 0.001} and choose α∗ ∈ {αSgd, 5αSgd, 10αSgd} where αSGD is
the best-performing initial learning rate for vanilla Sgd (These hyperparameter candidates are based on the
empirical studies in Luo et al. (2019)). As in Luo et al. (2019), our results are also not sensitive to choice of γ
and α∗. With these hyperparameters, we consider maximum 300 epochs training time, and mini-batch size or
learning rate scheduling are introduced in each experiment description. Our Algorithm 2 requires SVD procedures
to compute the square root of a block diagonal matrix. We apply SVD efficiently to all small sub-matrices
simultaneously through batch mode of SVD. Especially for KFAC, we use fixed damping parameter 10−3 and
tune the learning rate.

MNIST Classification. We consider the following LeNet-5 network architecture, 20C5 - MP2 - 50C5 - MP2 -
500FC - softmax. Designing for corroborating our theoretical results, we employ the numerical stability parameter
δ = ε = 10−4.

CIFAR classification. According to experiment settings in (Huang et al., 2017), we use mini-batch size 64
and consider maximum 300 epochs. Also, we use a step-decay learning rate scheduling in which the learning rate
is divided by 10 at 50% and 75% of the total number of training epochs. With this setting, vanilla Sgd with
a momentum factor 0.9 performs best with initial learning rate α∗ = 0.1, so we use this value for our bound
functions of spectrum-clipping, λl(t) and λu(t). As recommended in Zaheer et al. (2018), we employ δ = ε = 10−3

for better generalization.

Neural Machine Translation. Following Vaswani et al. (2017), we employ the same learning rate annealing
using Adam optimizer with decaying parameters (β1, β2) = (0.9, 0.98). Under this setting, the initial learning
rates for both Adam and RadaBlock are the same and we use the batch size 128. For this experiment, we
apply our optimization algorithms upon the open source library DGL (Wang et al., 2019).

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

ImageNet Classification. We use the official PyTorch model repository and example codes for ResNet-18
and running script respectively. As the batch size is increased to 1024, we set the initial learning rate for each
optimizer larger. Specifically, we use α = 0.2 for vanilla Sgd with momentum parameter 0.9 and α = 0.002 for
both Adam and RadaBlock. To see the only the effect of the block diagonal approximation, the weight decay
factors for both Adam and RadaBlock are set equal to 0.01.

C.1 Vanilla AdaBlock vs. RadaBlock for Transformer

Here, we include the comparisons between vanilla AdaBlock and RadaBlock only for better understanding
our approach. Although vanilla AdaBlock takes too long per-iteration time, Figure 10 indirectly shows that the
more layers are selected, the better the generalization can be.

Figure 10: Validation history for Transformer.

C.2 Vanilla AdaBlock vs. RadaBlock for ImageNet Classification

As in Transformer experiment, we include the comparisons between vanilla AdaBlock and RadaBlock only
for better understanding our approach. Although vanilla AdaBlock takes too long per-iteration time, Figure 11
indirectly shows that the more layers are selected, the better the generalization can be.

Figure 11: Training/Vaildation history for ImageNet classification.

Jihun Yun, Aurelie C. Lozano, Eunho Yang

D Detail Algorithm of AdaBlock and General Frameworks

Algorithm 2 Adaptive Gradient Methods with Block Diagonal Matrix Adaptations via Grouping (More detailed
version)

Input: Stepsize αt, initial point x1 ∈ Rd, β1 ∈ [0, 1), and the function Ht which designs V̂t.

Initialize: m0 = 0, V̂0 = 0, and t = 0.
Assumption: We have r blocks with each size ni × ni and n1 + · · ·+ nr = d, and β1,t ≥ β1,t+1

for t = 1, 2, . . . , T do
Draw a minibatch sample ξt from P
offset ← 0
Gt ← 0
gt ← ∇f(xt)
mt ← β1,tmt−1 + (1− β1,t)gt
for each group index j = 1, 2, . . . , r do

g
(j)
t ← gt[offset : offset + nj]

Gt[offset : offset + nj , offset : offset + nj] ← g
(j)
t

(
g

(j)
t

)T
offset ← offset + nj

end for
V̂t ← Ht(G1, · · · , Gt)
xt+1 ← xt − αt(V̂ 1/2

t + δI)−1mt

end for

Algorithm 3 General Adaptive Gradient Methods ap-
proximating gtg

T
t via Diagonal Matrix

Input: Initial point x1 ∈ Rd, stepsize {αt}Tt=1, decay
parameters β1,t, β2 ∈ [0, 1], and ε > 0.
Initialize: m0 = 0, v̂0 = 0.
for t = 1, 2, . . . , T do

Draw a minibatch sample ξt from P
gt ← ∇f(xt; ξt)
Gt ← diag(gtg

T
t)

mt ← β1,tmt−1 + (1− β1,t)gt

v̂t ← ht(G1, G2, . . . , Gt)

xt+1 ← xt − αtmt/(
√
v̂t + ε)

end for
Output: x̂.

Algorithm 4 General Adaptive Gradient Methods with
the exact gtg

T
t (Full Matrix)

Input: Initial point x1 ∈ Rd, stepsize {αt}Tt=1, decay
parameters β1,t, β2 ∈ [0, 1], and δ > 0.

Initialize: m0 = 0, V̂0 = 0.
for t = 1, 2, . . . , T do

Draw a minibatch sample ξt from P
gt ← ∇f(xt; ξt)
Gt ← gtg

T
t

mt ← β1,tmt−1 + (1− β1,t)gt
V̂t ← Ht(G1, G2, . . . , Gt)

xt+1 ← xt − αt(V̂ 1/2
t + δI)−1mt

end for
Output: x̂.

We provide the general frameworks of adaptive gradient methods with exact full matrix adaptations. The
Algorithm 3 and 4 represent the general framework for each case. We can identify algorithms according to the
functions ht (Table 6) and Ht (Table 7) which determine the dynamics of v̂t and V̂t respectively. Also, the
Algorithm 2 is a detail version of the Algorithm 1.

E Details for Convergence Analysis in Section 3.1

E.1 Proofs for Corollary 1

Before moving onto proofs, we need the following technical lemma

Lemma 2 (Lemma 12 in Hazan et al. (2007)). For positive definite matrices A and B, the following inequality
holds

Tr
(
A−1(A−B)

)
≤ log |A| − log |B|

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

Table 6: Variants of diagonal matrix adaptations

v̂t

β1,t β1,t = 0 β1,t = β1

1 Sgd -

(1/t)
∑T

t=1 g
2
t AdaGrad AdaFom

β2v̂t−1 + (1− β2)g2t RMSProp Adam

vt = β2vt−1 + (1− β2)g2t ,
v̂t = max{v̂t−1, vt} - AMSGrad

Table 7: Variants of full matrix adaptations

V̂t

β1,t
β1,t = 0 β1,t = β1

V̂t = I Sgd -

V̂t = 1
T

∑T
t=1 gtg

T
t AdaGrad AdaFom

V̂t = β2V̂t−1 + (1− β2)gtg
T
t RMSProp Adam

Vt = UtΣtU
T
t ,

V̂t = Ut max{Σ̂t−1,Σt}UT
t - AMSGrad

For AdaGrad, we have αt = α/
√
t and V̂t = 1

t

∑t
i=1 gig

T
i := 1

t Ĝt. First, we bound the Term A/Term B to find
the s1(T).

The Term A is

T∑
t=1

‖αtV̂ −1/2
t gt‖2 =

t0∑
t=1

‖αtV̂ −1/2
t gt‖2 +

T∑
t=t0+1

‖αtV̂ −1/2
t gt‖2︸ ︷︷ ︸

T1

Since the first term in RHS is independent of T , so we only need to bound T1. The quantity T1 can be bound as

T1 =

T∑
t=t0+1

‖αtV̂ −1/2
t gt‖2

= α2
T∑

t=t0+1

1

t
‖V −1/2

t gt‖2

= α2
T∑

t=t0+1

Tr
(
V̂ −1
t

1

t
gtg

T
t

)
≤ α2

T∑
t=t0+1

[
log
∣∣V̂t∣∣− log

∣∣ t− 1

t
V̂t−1

∣∣]

= α2
T∑

t=t0+1

[
log
∣∣V̂t∣∣− log

∣∣V̂t−1

∣∣+ d log
t

t− 1

]
= α2

(
log |V̂T | − log |V̂t0 |+ d log

T

t0

)
= O(log |V̂T |+ log T)

Next, we bound the Term B. Similarly to the Term A, the Term B can be splitted as follows

T∑
t=2

Qt =

T∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

=

t0∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

+

T∑
t=t0+1

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2︸ ︷︷ ︸

T2

Jihun Yun, Aurelie C. Lozano, Eunho Yang

Also, in this case, the first term in RHS is independent of T , so we only bound T2. The T2 can be bound as

T∑
t=t0+1

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

= α

T∑
t=t0+1

∣∣∣∣∣∣ 1√
t− 1

V̂
−1/2
t−1 − 1√

t
V̂
−1/2
t

∣∣∣∣∣∣
2

= α

T∑
t=t0+1

∣∣∣∣∣∣Ĝ−1/2
t−1 − Ĝ

−1/2
t

∣∣∣∣∣∣
2

≤ α
T∑

t=t0+1

Tr
(
Ĝ
−1/2
t−1 − Ĝ

−1/2
t

)
= α

(
Tr(Ĝ

−1/2
t0)− Tr(Ĝ

−1/2
T)

)
≤ αTr(Ĝ

−1/2
t0) = O(1)

The remaining term is

T−1∑
t=2

Q2
t which can be derived from Term B with slight modifications.

T−1∑
t=2

Q2
t =

T−1∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣2
2

=

t0∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣2
2

+

T−1∑
t=t0+1

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣2
2︸ ︷︷ ︸

T3

Similarly to the Term B, we can bound T3 with a little modification as

T−1∑
t=t0+1

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣2
2

= α2
T−1∑
t=t0+1

∣∣∣∣∣∣Ĝ−1/2
t−1 − Ĝ

−1/2
t

∣∣∣∣∣∣2
2

≤ α2
T−1∑
t=t0+1

Tr
((
Ĝ
−1/2
t−1 − Ĝ

−1/2
t

)2)

≤ α2
T−1∑
t=t0+1

Tr
((
Ĝ
−1/2
t−1 − Ĝ

−1/2
t

)(
Ĝ
−1/2
t−1 + Ĝ

−1/2
t

))

= α2
T−1∑
t=t0+1

Tr
(
Ĝ−1
t−1 − Ĝ

−1
t

)
= α2Tr

(
Ĝ−1
t0 − Ĝ

−1
T−1

)
≤ α2Tr

(
Ĝ−1
t0

)
= O(1)

Therefore, we have s1(T) = O
(

log
∣∣V̂T ∣∣+ log T + 1

)
. Lastly, we should bound the LHS of (2).

E

[
T∑
t=1

αt

〈
∇f(xt), V̂

−1/2
t ∇f(xt)

〉]
≥ E

[
T∑
t=1

γt

∥∥∥∇f(xt)
∥∥∥2
]

≥ E

[
min
t∈[T]
{‖∇f(xt)‖2}

T∑
t=1

γt

]

Now, we bound the sum of γt.

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

γt = λmin(αtV̂
−1/2
t) = αλmin(G

−1/2
t)

=
α

λmax(G
1/2
t)

=
α

λmax(Gt)1/2

≥ α(t∑
τ=1
‖gτ‖2

)1/2
≥ α√

TG

From above observations, we have

T∑
t=1

γt ≥
T∑
t=1

α√
TG

=
α
√
T

G

Therefore, we have Ω
(
s2(T)

)
= Ω(

√
T). Finally, we conclude that

min
t∈[T]

E
[
‖∇f(xt)‖2

]
= O

(
log
∣∣V̂T ∣∣+ log T + 1
√
T

)

E.2 Proposition for RMSprop/Adam

Now, we can obtain intuition on the dynamics of Term A/Term B for EMA-based algorithms with the following
proposition.

Proposition 1. For block diagonal extensions of RMSprop/Adam, we set exponentially decaying stepsize

αt = α(
√
β2)t−1. Then, the Term A ∝ log |V̂T | − log |V̂t0 | and the Term B is upper bounded with constant for any

block sizes. Here, t0 is the time when V̂t becomes full-rank. Hence, the term A/term B for EMA-based methods
have the similar dynamics to those of AdaGrad.

Proof. First, we will bound the Term A.

T∑
t=1

‖αtV̂ −1/2
t gt‖2 =

t0∑
t=1

‖αtV̂ −1/2
t gt‖2 +

T∑
t=t0+1

‖αtV̂ −1/2
t gt‖2︸ ︷︷ ︸

T1

The first term in RHS is independent of T , so we only have to bound the term T1. The Term T1 can be bound as
follows

T1 =

T∑
t=t0+1

‖αtV̂ −1/2
t gt‖2 =

T∑
t=t0+1

‖α(
√
β2)t−1V̂

−1/2
t gt‖2

≤
T∑

t=t0+1

‖αV̂ −1/2
t gt‖2 = α2

T∑
t=t0+1

‖V̂ −1/2
t gt‖2 = α2

T∑
t=t0+1

Tr(V̂ −1
t gtg

T
t)

≤ α2

1− β2

T∑
t=t0+1

[
log |V̂t| − log |β2V̂t−1|

]

=
α2

1− β2

T∑
t=t0+1

[
log |V̂t| − log |V̂t−1|+ d log

1

β2

]
=

α2

1− β2

(
log |V̂T | − log |V̂t0 |︸ ︷︷ ︸

Dependent on T

+d(T − t0) log
1

β2

)

Jihun Yun, Aurelie C. Lozano, Eunho Yang

Summing up all the terms, we have

T∑
t=1

‖αtV̂ −1/2
t gt‖2 ≤

t0∑
t=1

‖αtV̂ −1/2
t gt‖2 +

α2

1− β2

(
log |V̂T | − log |V̂t0 |︸ ︷︷ ︸

Dependent on T

+d(T − t0) log
1

β2

)
Now, we derive the bound for the Term B.

T∑
t=2

Qt =

T∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

=

t0∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

+

T∑
t=t0+1

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

As in the Term A, the first term in RHS is independent of T , and we can bound the second term as

T∑
t=t0+1

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

= α

T∑
t=2

∣∣∣∣∣∣(√β2)t−2V̂
−1/2
t−1 − (

√
β2)t−1V̂

−1/2
t

∣∣∣∣∣∣
2

= α

T∑
t=t0+1

(
√
β2)t−1

∣∣∣∣∣∣ 1√
β2
V̂
−1/2
t−1 − V̂ −1/2

t

∣∣∣∣∣∣
2

= α

T∑
t=t0+1

(
√
β2)t−1

∣∣∣∣∣∣(β2V̂t−1

)−1/2 − V̂ −1/2
t

∣∣∣∣∣∣
2

≤ α
T∑

t=t0+1

(
√
β2)t−1Tr

((
β2V̂t−1

)−1/2 − V̂ −1/2
t

)

= α

T∑
t=t0+1

Tr
(

(
√
β2)t−2V̂

−1/2
t−1 − (

√
β2)t−1V̂

−1/2
t

)
= α

(
Tr
(
(
√
β2)t0−1V̂

−1/2
t0

)
− Tr

(
(
√
β2)T−1V̂

−1/2
T

)
≤ α(

√
β2)t0−1Tr

(
V̂
−1/2
t0

)
Therefore, the bound for the Term B is independent of T .

T∑
t=2

Qt ≤
t0∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

+ α(
√
β2)t0−1Tr

(
V̂
−1/2
t0

)
= O(1)

As a result, we can expect that the Term A is related to the log-determinant of V̂T and the Term B is upper
bounded as constant as in AdaGrad.

F Proofs of Main Theorems

We study the following minimization problem,

min f(x) := Eξ[f(x; ξ)]

under the assumption 1. The parameter x is an optimization variable, and ξ is a random variable representing
randomly selected data sample from D. We study the convergence analysis of the Algorithm 1. For analysis in
stochastic convex optimization, one can refer to Duchi et al. (2011). For analysis in non-convex optimization
with block diagonal (possibly full) matrix adaptations, we follow the arguments in the paper Chen et al. (2019).
As we will show, the convergence of the adaptive block diagonal matrix adaptations depends on the changes of
effective spectrum while the diagonal counterpart depends on the changes of effective stepsize. We assume that

V̂
−1/2
t means pseudo-inverse of V̂

1/2
t if it is not full-rank. Note that, our proof can be applied to exact full matrix

adaptations, Algorithm 1.

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

F.1 Technical Lemmas for Theorem 1

Lemma 3 (Generalized version of Lemma 6.1 in Chen et al. (2019)). Consider the sequence

zt = xt +
β1,t

1− β1,t
(xt − xt−1)

Then, the following holds true

zt+1 − zt = −

(
β1,t+1

1− β1,t+1
− β1,t

1− β1,t

)
αtV̂

−1/2
t mt −

β1,t

1− β1,t

(
αtV̂

−1/2
t − αt−1V̂

−1/2
t−1

)
mt−1 − αtV̂ −1/2

t gt

Proof. By our update rule, we can derive

xt+1 − xt = − αtV̂ −1/2
t mt

(i)
= − αtV̂ −1/2

t (β1,tmt−1 + (1− β1,t)gt)

= − αtβ1,tV̂
−1/2
t mt−1 − αt(1− β1,t)V̂

−1/2
t gt

(ii)
= − αtβ1,tV̂

−1/2
t

(
− 1

αt−1
V̂

1/2
t−1 (xt − xt−1)

)
− αt(1− β1,t)V̂

−1/2
t gt

=
αt
αt−1

β1,t(V̂
−1
t V̂t−1)1/2(xt − xt−1)− αt(1− β1,t)V̂

−1/2
t gt

= β1,t(xt − xt−1) + β1,t

(
αt
αt−1

(V̂ −1
t V̂t−1)1/2 − Id

)
(xt − xt−1)− αt(1− β1,t)V̂

−1/2
t gt

(iii)
= β1,t(xt − xt−1)− β1,t

(
αtV̂

−1/2
t − αt−1V̂

−1/2
t−1

)
mt−1 − αt(1− β1,t)V̂

−1/2
t gt

The reasoning follows

(i) By definition of mt.

(ii) Since xt = xt−1 − αt−1V̂
−1/2
t−1 mt−1, we can solve as mt−1 = − 1

αt−1
V̂

1/2
t−1 (xt − xt−1).

(iii) Similarly to (ii), we can have V̂
1/2
t−1 (xt − xt−1)/αt−1 = −mt−1.

Since xt+1 − xt = (1− β1,t)xt+1 + β1,t(xt+1 − xt)− (1− β1,t)xt, we can further derive by combining the above,

(1− β1,t)xt+1 + β1,t(xt+1 − xt)

= (1− β1,t)xt + β1,t(xt − xt−1)− β1,t

(
αtV̂

−1/2
t − αt−1V̂

−1/2
t−1

)
mt−1 − αt(1− β1,t)V̂

−1/2
t gt

By dividing both sides by 1− β1,t,

xt+1 +
β1,t

1− β1,t
(xt+1 − xt)

= xt +
β1,t

1− β1,t
(xt − xt−1)− β1,t

1− β1,t

(
αtV̂

−1/2
t − αt−1V̂

−1/2
t−1

)
mt−1 − αtV̂ −1/2

t gt

Define the sequence

zt = xt +
β1,t

1− β1,t
(xt − xt−1)

Jihun Yun, Aurelie C. Lozano, Eunho Yang

Then, we obtain

zt+1 = zt +

(
β1,t+1

1− β1,t+1
− β1,t

1− β1,t

)
(xt+1 − xt)

− β1,t

1− β1,t

(
αtV̂

−1/2
t − αt−1V̂

−1/2
t−1

)
mt−1 − αtV̂ −1/2

t gt

= zt −

(
β1,t+1

1− β1,t+1
− β1,t

1− β1,t

)
αtV̂

−1/2
t mt

− β1,t

1− β1,t

(
αtV̂

−1/2
t − αt−1V̂

−1/2
t−1

)
mt−1 − αtV̂ −1/2

t gt

By putting zt to the left hand side, we can get desired relations.

Lemma 4 (Generalized version of Lemma 6.2 in Chen et al. (2019)). Suppose that the assumptions in Theorem
1 hold, then

E[f(zt+1)− f(z1)] ≤
6∑
i=1

Ti

where

T1 = −E

[
t∑
i=1

〈
∇f(zi),

β1,i

1− β1,i

(
αiV̂

−1/2
i − αi−1V̂

−1/2
i−1

)
mi−1

〉]

T2 = −E

[
t∑
i=1

αi

〈
∇f(zi), V̂

−1/2
i gi

〉]

T3 = −E

[
t∑
i=1

〈
∇f(zi),

(
β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)
αiV̂

−1/2
i mi

〉]

T4 = E

[
t∑
i=1

3

2
L

∥∥∥∥∥
(

β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)
αtV̂

−1/2
i mi

∥∥∥∥∥
2]

T5 = E

[
t∑
i=1

3

2
L

∥∥∥∥∥ β1,i

1− β1,i

(
αiV̂

−1/2
i − αi−1V̂

−1/2
i−1

)
mi−1

∥∥∥∥∥
2]

T6 = E

[
t∑
i=1

3

2
L

∥∥∥∥∥αiV̂ −1/2
i gi

∥∥∥∥∥
2]

Proof. By L-Lipschitz continuous gradients, we get the following quadratic upper bound,

f(zt+1) ≤ f(zt) + 〈∇f(zt), zt+1 − zt〉+
L

2
‖zt+1 − zt‖2

Let dt = zt+1 − zt. The lemma 2 yields

dt = −

(
β1,t+1

1− β1,t+1
− β1,t

1− β1,t

)
αtV

−1/2
t mt −

β1,t

1− β1,t

(
αtV

−1/2
t − αt−1V

−1/2
t−1

)
mt−1 − αtV −1/2

t gt

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

Combining with Lipschitz continuous gradients, we have

E[f(zt+1)− f(z1)] = E

[
t∑
i=1

f(zi+1)− f(zi)

]

≤ E

[
t∑
i=1

〈∇f(zi), di〉+
L

2
‖di‖2

]

= −E

[
t∑
i=1

〈
∇f(zi),

β1,i

1− β1,i

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
mi−1

〉]

− E

[
t∑
i=1

αi

〈
∇f(zi), V

−1/2
i gi

〉]

− E

[
t∑
i=1

〈
∇f(zi),

(
β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)
αiV

−1/2
i mi

〉]

+ E

[
t∑
i=1

L

2
‖di‖2

]
= T1 + T2 + T3 + E

[
t∑
i=1

L

2
‖di‖2

]

With ‖a+ b+ c‖2 ≤ 3(‖a‖2 + ‖b‖2 + ‖c‖2), we can finally bound by

E[f(zt+1)− f(z1)] ≤
6∑
i=1

Ti

Lemma 5 (Generalized version of Lemma 6.3 in Chen et al. (2019)). Suppose that the assumptions in Theorem
1 hold, T1 can be bound as

T1 ≤ G2 β1

1− β1
E

[
t∑
i=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

Proof. From the definition of quantity T1,

T1 = − E

[
t∑
i=1

〈
∇f(zi),

β1,i

1− β1,i

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
mi−1

〉]
(i)

≤ E

[
t∑
i=1

‖∇f(zi)‖2

∥∥∥∥∥ β1,i

1− β1,i

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
mi−1

∥∥∥∥∥
2

]
(ii)

≤ β1

1− β1
E

[
t∑
i=1

‖∇f(zi)‖2
∣∣∣∣∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣∣∣∣∣
2
‖mt−1‖2

]
(iii)

≤ G2 β1

1− β1
E

[
t∑
i=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

The reasoning follows

(i) By Cauchy-Schwarz inequality.

(ii) For a matrix norm, we have ‖Ax‖2 ≤ |||A|||2‖x‖2. Also,
β1,i

1−β1,i
= 1

1−β1,i
− 1 ≤ 1

1−β1
− 1 = β1

1−β1
.

(iii) By definition of mt, we have mt = β1,tmt−1 + (1 − β1,t)gt. Therefore, we use a triangle inequality by
‖mt‖2 ≤ β1,t‖mt−1‖2 + (1 − β1)‖gt‖2 ≤ (β1,t + 1 − β1,t) max{‖mt−1‖2, ‖gt‖2}. Since we have m0 = 0 and
‖gt‖ ≤ G, we also have ‖mt‖ ≤ G by the mathematical induction.

Jihun Yun, Aurelie C. Lozano, Eunho Yang

Lemma 6 (Generalized version of Lemma 6.4 in Chen et al. (2019)). Suppose that the assumptions in Theorem
1 hold, then T3 can be bound as

T3 ≤

(
β1

1− β1
− β1,t+1

1− β1,t+1

)
(G2 +D2)

Proof. By the definition of T3,

T3 = − E

[
t∑
i=1

〈
∇f(zi),

(
β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)
αiV

−1/2
i mi

〉]
(i)

≤ E

[
t∑
i=1

∣∣∣∣∣ β1,i+1

1− β1,i+1
− β1,i

1− β1,i

∣∣∣∣∣12(‖∇f(zi)‖2 + ‖αiV −1/2
i mi‖2

)]
(ii)

≤ E

[
t∑
i=1

∣∣∣∣∣ β1,i+1

1− β1,i+1
− β1,i

1− β1,i

∣∣∣∣∣12(G2 +D2
)]

=

t∑
i=1

(
β1,i

1− β1,i
− β1,i+1

1− β1,i+1

)
1

2

(
G2 +D2

)
(iii)

≤

(
β1

1− β1
− β1,t+1

1− β1,t+1

)
(G2 +D2)

The reasoning follows

(i) Use Cauchy-Schwarz inequality and ab ≤ 1
2 (a2 + b2) for a, b ≥ 0.

(ii) By our assumptions on bounded gradients and bounded final step vectors.

(iii) The sum over i = 1 to T can be done by telescoping.

Lemma 7 (Generalized version of Lemma 6.5 in Chen et al. (2019)). Suppose that the assumptions in Theorem
1 hold, T4 can be bound as

T4 ≤
(β1

1− β1
− β1,t+1

1− β1,t+1

)2

D2

Proof. By the definition of T4,

2

3L
T4 = E

[
t∑
i=1

∥∥∥∥∥
(

β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)
αiV

−1/2
i mi

∥∥∥∥∥
2]

(i)

≤ E

[
t∑
i=1

(β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)2

D2

]
(ii)

≤
(β1

1− β1
− β1,t+1

1− β1,t+1

) t∑
i=1

(β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)
D2

(iii)

≤
(β1

1− β1
− β1,t+1

1− β1,t+1

)2

D2

The reasoning follows

(i) From our assumptions on final step vector ‖αiV̂ −1/2
i mi‖2 ≤ D.

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

(ii) We use the relation β1 ≥ β1,t ≤ β1,t+1.

(iii) By telescoping sum, we can get the final result.

Lemma 8 (Generalized version of Lemma 6.6 in Chen et al. (2019)). Suppose that the assumptions in Theorem
1 hold, T5 can be bound as

2

3L
T5 ≤

(β1

1− β1

)2

G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

Proof. By the definition of T5,

2

3L
T5 = E

[
t∑
i=2

∥∥∥∥∥ β1,i

1− β1,i

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
mi−1

∥∥∥∥∥
2]

(i)

≤ E

[
t∑
i=2

β1,i

1− β1,i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

‖mi−1‖22

]
(ii)

≤
(β1

1− β1

)2

G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]

The reasoning follows

(i) By the matrix norm inequality, we use ‖Ax‖2 ≤ |||A|||2‖x‖2.

(ii) We can obtain the result using β1 ≥ β1,t ≥ β1,t+1.

Lemma 9 (Generalized version of Lemma 6.7 in Chen et al. (2019)). Suppose that the assumptions in Theorem
1 hold, The quantity T2 can be bound as

T2 ≤ L2
(β1

1− β1

)2

T8 + L2
(β1

1− β1

)2

T9 +
1

2
E

[
t∑
i=1

‖αiV̂ −1/2
i gi‖2

]

+ 2G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
+ 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

− E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i ∇f(xi)

〉]

Proof. First, note that,

zi − xi =
β1,i

1− β1,i
(xi − xi−1) = − β1,i

1− β1,i
αi−1V̂

−1/2
i−1 mi−1

By the definition of T2 and z1 = x1, we have

T2 = −E

[
t∑
i=1

αi

〈
∇f(zi), V̂

−1/2
i gi

〉]

= −E

[
t∑
i=1

αi

〈
∇f(xi), V̂

−1/2
i gi

〉]
− E

[
t∑
i=1

αi

〈
∇f(zi)−∇f(xi), V̂

−1/2
i gi

〉]

Jihun Yun, Aurelie C. Lozano, Eunho Yang

The second term can be bounded as

− E

[
t∑
i=1

αi

〈
∇f(zi)−∇f(xi), V̂

−1/2
i gi

〉]
(i)

≤ E

[
t∑
i=1

1

2
‖∇f(zi)−∇f(xi)‖2 +

1

2
‖αiV̂ −1/2

i gi‖2
]

(ii)

≤ L2

2
T7 +

1

2
E

[
t∑
i=1

‖αiV̂ −1/2
i gi‖2

]

(i) is due to Cauchy-Schwarz inequality and ab ≤ 1
2a

2 + 1
2b

2 for a, b ≥ 0. (ii) is as follows:

By L-Lipschitz continuous gradients, we have

‖∇f(zi)−∇f(xi)‖ ≤ L‖zi − xi‖ = L
∥∥∥ β1,t

1− β1,t
αi−1V

−1/2
i−1 mi−1

∥∥∥
Let T7 be

T7 = E

[
t∑
i=1

∥∥∥ β1,i

1− β1,i
αi−1V

−1/2
i−1 mi−1

∥∥∥2
]

We should bound the quantity T7, by the definition of mt, we have

mi =

i∑
k=1

[(i∏
l=k+1

β1,l

)
(1− β1,k)gk

]

Plugging mi−1 into T7 yields

T7 = E

[
t∑
i=1

∥∥∥ β1,i

1− β1,i
αi−1V

−1/2
i−1 mi−1

∥∥∥2
]

(i)

≤
(β1

1− β1

)2

E

[
t∑
i=2

∥∥∥∥∥αi−1V
−1/2
i−1

i−1∑
k=1

[(i−1∏
l=k+1

β1,l

)
(1− β1,k)gk

]∥∥∥∥∥
2]

=
(β1

1− β1

)2

E

[
t∑
i=2

∥∥∥∥∥
i−1∑
k=1

αi−1V
−1/2
i−1

[(i−1∏
l=k+1

β1,l

)
(1− β1,k)gk

]∥∥∥∥∥
2]

(ii)

≤ 2
(β1

1− β1

)2

E

[
t∑
i=2

∥∥∥∥∥
i−1∑
k=1

αkV
−1/2
k

[(i−1∏
l=k+1

β1,l

)
(1− β1,k)gk

]∥∥∥∥∥
2]

︸ ︷︷ ︸
T8

+ 2
(β1

1− β1

)2

E

[
t∑
i=2

∥∥∥∥∥
i−1∑
k=1

(
αiV

−1/2
i − αkV −1/2

k

)[(i−1∏
l=k+1

β1,l

)
(1− β1,k)gk

]∥∥∥∥∥
2]

︸ ︷︷ ︸
T9

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

(i) is by β1 ≥ β1,t and (ii) is by We use the fact (a+ b) ≤ 2(‖a‖2 + ‖b‖2) in (i). We first bound T8 as below

T8 = E

[
t∑
i=2

∥∥∥∥∥
i−1∑
k=1

αkV
−1/2
k

[(i−1∏
l=k+1

β1,l

)
(1− β1,k)gk

]∥∥∥∥∥
2]

= E

[
t∑
i=2

d∑
j=1

(
i−1∑
k=1

αkV
−1/2
k

[(i−1∏
l=k+1

β1,l

)
(1− β1,k)gk

])2

j

]

= E

[
t∑
i=2

d∑
j=1

(
i−1∑
k=1

i−1∑
p=1

(
αkV

−1/2
k gk

)
j

(i−1∏
l=k+1

β1,l

)
(1− β1,k)

(
αpV

−1/2
p gp

)
j

(i−1∏
q=p+1

β1,q

)
(1− β1,p)

)]

≤ E

[
t∑
i=2

d∑
j=1

(
i−1∑
k=1

i−1∑
p=1

(βi−1−k
1)(βi−1−p

1)
1

2

{(
αkV

−1/2
k gk

)2

j
+
(
αpV

−1/2
p gp

)2

j

})]

= E

[
t∑
i=2

d∑
j=1

(
i−1∑
k=1

(βi−1−k
1)

(
αkV

−1/2
k gk

)2

j

i−1∑
p=1

(βi−1−p
1)

)]

≤ 1

1− β1
E

[
t∑
i=2

d∑
j=1

i−1∑
k=1

(βi−1−k
1)

(
αkV

−1/2
k gk

)2

j

]

=
1

1− β1
E

[
t−1∑
k=1

d∑
j=1

t∑
i=k+1

(βi−1−k
1)

(
αkV

−1/2
k gk

)2

j

]

=
(1

1− β1

)2

E

[
t−1∑
k=1

d∑
j=1

(
αkV

−1/2
k gk

)2

j

]
=
(1

1− β1

)2

E

[
t−1∑
i=1

∥∥∥αiV −1/2
i gi

∥∥∥2
]

For the T9 bound, we have

T9 = E

[
t∑
i=2

∥∥∥∥∥
i−1∑
k=1

[(i−1∏
l=k+1

β1,l

)
(1− β1,k)

](
αiV

−1/2
i − αkV −1/2

k

)
gk

∥∥∥∥∥
2]

≤ E

[
t∑
i=2

(
i−1∑
k=1

[(i−1∏
l=k+1

β1,l

)
(1− β1,k)

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αkV −1/2
k

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

‖gk‖2

)2]

≤ E

[
t−1∑
i=1

(
i∑

k=1

[(i∏
l=k+1

β1,l

)]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αkV −1/2
k

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

‖gk‖2

)2]

≤ G2E

[
t−1∑
i=1

(
i∑

k=1

βi−k1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αkV −1/2
k

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

)2]

≤ G2E

[
t−1∑
i=1

(
i∑

k=1

βi−k1

i∑
l=k+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αlV −1/2

l − αl−1V
−1/2
l−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

)2]

≤ G2
(1

1− β1

)2(β1

1− β1

)2

E

[
t−1∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]

Then, the remaining term is

E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i gi

〉]

Jihun Yun, Aurelie C. Lozano, Eunho Yang

To find the upper bound for this term, we reparameterize gt = ∇f(xt) + δt with E[δt] = 0, and we have

E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i gi

〉]

= E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i (∇f(xi) + δi)

〉]

= E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i ∇f(xi)

〉]
+

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i δi

〉]

For the second term of last equation,

E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i δi

〉]

= E

[
t∑
i=2

〈
∇f(xi),

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
δi

〉]
+ E

[
t∑
i=2

αi−1

〈
∇f(xi), V

−1/2
i−1 δi

〉]
+ E

[
α1

〈
∇f(x1), V

−1/2
1 δ1

〉]

= E

[
t∑
i=2

〈
∇f(xi),

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
δi

〉]
+ E

[
α1∇f(x1)TV

−1/2
1 δ1

]
(i)

≥ E

[
t∑
i=2

〈
∇f(xi),

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
δi

〉]
− 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

The reasoning is as follows:

(i) The conditional expectation E
[
V
−1/2
i−1 δi

∣∣∣xi, V̂i−1

]
= 0 since the V̂i−1 only depends on the noise variables

ξ1, · · · , ξi−1 and δi depends on ξi with E[ξk] = 0 for all k ∈ {1, 2, ..., i}. Therefore, they are independent.

Further, we have

E

[
t∑
i=2

〈
∇f(xi),

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
δi

〉]
≥− E

[
t∑
i=2

∣∣∣∣∣
〈
∇f(xi),

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
δi

〉∣∣∣∣∣
]

(ii)

≥ − E

[
t∑
i=2

∥∥∥∇f(xi)
∥∥∥

2

∥∥∥(αiV −1/2
i − α−1/2

i−1

)
δi

∥∥∥
2

]
(iii)

≥ − 2G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

Therefore, we can bound the first term

− E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i gi

〉]

≤ 2G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
+ 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
− E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i ∇f(xi)

〉]

Lemma 10 (Lemma 6.8 in Chen et al. (2019)). For ai ≤ 0, β ∈ [0, 1), and bi =
∑i
k=1 β

i−k∑i
l=k+1 al, we have

t∑
i=1

b2i ≤
(1

1− β

)2(β

1− β

)2 t∑
i=2

a2
i

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

F.2 Proof of Theorem 1

Proof. We combine the above lemmas to bound

E[f(zt+1)− f(z1)] ≤
6∑
i=1

Ti

≤ G2 β1

1− β1
E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
︸ ︷︷ ︸

T1

+

(
β1

1− β1
− β1,t+1

1− β1,t+1

)
(G2 +D2)︸ ︷︷ ︸

T3

+
(β1

1− β1
− β1,t+1

1− β1,t+1

)2

D2︸ ︷︷ ︸
T4

+
(β1

1− β1

)2

G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]
︸ ︷︷ ︸

T5

+ E

[
t∑
i=1

3

2
L

∥∥∥∥∥αiV −1/2
i gi

∥∥∥∥∥
2]

︸ ︷︷ ︸
T6

+ 2G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
+ 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
︸ ︷︷ ︸

T2

−E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i ∇f(xi)

〉]
︸ ︷︷ ︸

T2

+ L2
(β1

1− β1

)2
((1

1− β1

)2

E

[
t−1∑
i=1

∥∥∥αiV −1/2
i gi

∥∥∥2
]

︸ ︷︷ ︸
T2

+G2
(1

1− β1

)2(β1

1− β1

)2

E

[
t−1∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

])
︸ ︷︷ ︸

T2

+E

[
1

2

t∑
i=1

‖αiV −1/2
i gi‖2

]
︸ ︷︷ ︸

T2

Jihun Yun, Aurelie C. Lozano, Eunho Yang

By merging similar terms, we can have

E[f(zt+1)− f(z1)] ≤

(
G2 β1

1− β1
+ 2G2

)
E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

+

(
3

2
L+

1

2
+ L2

(β1

1− β1

)2(1

1− β1

)2)E[t∑
i=1

∥∥∥αiV̂ −1/2
i gi

∥∥∥2
]

+

(
1 + L2

(1

1− β1

)2(β1

1− β1

)2)(β1

1− β1

)2
G2E

[
t−1∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]

+

(
β1

1− β1
− β1,t+1

1− β1,t+1

)
(G2 +D2) +

(β1

1− β1
− β1,t+1

1− β1,t+1

)2

D2 + 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

− E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i ∇f(xi)

〉]
We define constants C1, C2, and C3 as

C1 =
3

2
L+

1

2
+ L2

(β1

1− β1

)2(1

1− β1

)2
C2 = G2 β1

1− β1
+ 2G2

C3 =

(
1 + L2

(1

1− β1

)2(β1

1− β1

)2)(β1

1− β1

)2
G2

By rearranging terms, we obtain

E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i ∇f(xi)

〉]
≤ E

[
t∑
i=1

C1

∥∥∥αiV̂ −1/2
i gi

∥∥∥2

+ C2

t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

+ C3

t−1∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]

+

(
β1

1− β1
− β1,t+1

1− β1,t+1

)
(G2 +D2) +

(β1

1− β1
− β1,t+1

1− β1,t+1

)2

D2

+ 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

≤ E

[
t∑
i=1

C1

∥∥∥αiV̂ −1/2
i gi

∥∥∥2

+ C2

t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

+ C3

t−1∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]

+

(
β1

1− β1

)
(G2 +D2) +

(β1

1− β1

)2

D2 + 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
Finally, we can get

E

[
T∑
t=1

αi

〈
∇f(xt), V̂

−1/2
t ∇f(xt)

〉]

≤ E

[
C1

T∑
t=1

∥∥∥∥∥αtV̂ −1/2
t gi

∥∥∥∥∥
2

︸ ︷︷ ︸
Term A

+ C2

T∑
t=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αtV̂ −1/2

t − αt−1V̂
−1/2
t−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2︸ ︷︷ ︸

Term B

+ C3

T−1∑
t=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αtV̂ −1/2

t − αt−1V̂
−1/2
t−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]
+ C4

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

with constants

C4 =

(
β1

1− β1

)
(G2 +D2) +

(β1

1− β1

)2

D2 + 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

with almost same constant for the diagonal version. Lastly, we have γt = λmin(αtV̂
−1/2
t), so

E

[
T∑
t=1

αt

〈
∇f(xt), V̂

−1/2
t ∇f(xt)

〉]
≥ E

[
T∑
t=1

γt

∥∥∥∇f(xt)
∥∥∥2
]

≥ min
t∈[T]

E
[
‖∇f(xt)‖2

] T∑
t=1

γt

Therefore, we finally have

min
t∈[T]

[
‖∇f(xt)‖2

]
≤

E

[
C1

Term A︷ ︸︸ ︷
T∑
t=1

∥∥∥αtV̂ −1/2
t gt

∥∥∥2

+ C2

Term B︷ ︸︸ ︷
T∑
t=2

Qt + C3

T−1∑
t=2

Q2
t

]
+ C4

T∑
t=1

γt

,
s1(T)

s2(T)

F.3 Proof of Theorem 2

For generalization error bounds, we refer the following references (Hardt et al., 2015; Zheng and Kwok, 2019).
Since we have bounded gradient ‖gt‖2, ‖∇f(x)‖2 ≤ G and the differentiability of f , we also have G-Lipschitz
continuity. Therefore, we obtain the following relation

sup
z

EA
[
f(A(S); z)− f(A(S′); z)

]
≤ GEA

[
‖A(S)−A(S′)‖2

]
= GEA

[
‖θ − θ′‖2

]
Therefore, we only have to bound the term ∆t := ‖θ− θ′‖2. From now, we denote θ := A(S) and θ′ := A(S′). We
assume αt = α and β1,t = 0 for all t ∈ [T].

θT+1 = θT − αT (V̂
1/2
T + δI)−1mT

= · · ·

= θ1 −
T∑
t=1

αt(V̂
1/2
t + δI)−1gt

= θ1 −
T∑
t=1

αt(V̂
1/2
t + δI)−1∇f(θt; zit)

where zik is the selected example at iteration k. Then, we can bound

E[∆T+1] = E
[
‖θT+1 − θ′T+1‖2

]
= E

[∥∥∥∥∥θ1 −
T∑
t=1

αt(V̂
1/2
t + δI)−1∇f(θt; zit)− θ′1 +

T∑
t=1

αt(V̂
′
t

1/2 + δI)−1∇f(θ′t; z
′
it)

∥∥∥∥∥
2

]

≤ E
[
‖θ1 − θ′1‖2

]
+

T∑
t=1

αtE

[∥∥∥∥∥(V̂
1/2
t + δI)−1∇f(θt; zit)− (V̂ ′t

1/2 + δI)−1∇f(θ′t; z
′
it)

∥∥∥∥∥
2

]

=

T∑
t=1

αtE

[∥∥∥∥∥(V̂
1/2
t + δI)−1∇f(θt; zit)− (V̂ ′t

1/2 + δI)−1∇f(θ′t; z
′
it)

∥∥∥∥∥
2

]

Jihun Yun, Aurelie C. Lozano, Eunho Yang

The probability of zik = z′ik is 1− 1/n. Then,

E

[∥∥∥∥∥(V̂
1/2
t + δI)−1∇f(θt; zit)− (V̂ ′t

1/2 + δI)−1∇f(θ′t; z
′
it)

∥∥∥∥∥
2

]

≤ 1

n
E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖2
]

+
1

n
E
[
‖(V̂ ′t 1/2 + δI)−1∇f(θ′t; z

′
it)‖2

]
+
(

1− 1

n

)
E
[
‖(V̂ 1/2

t + δ)−1∇f(θt; zit)− (V̂ ′t
1/2 + δI)−1∇f(θ′t; zit)‖2

]
≤ 1

n
E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖2
]︸ ︷︷ ︸

T1

+
1

n
E
[
‖(V̂ ′t 1/2 + δI)−1∇f(θ′t; z

′
it)‖2

]︸ ︷︷ ︸
T2

+
(

1− 1

n

)
E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)− (V̂ ′t
1/2 + δI)−1∇f(θt; zit)‖2

]︸ ︷︷ ︸
T3

+
(

1− 1

n

)
E
[
‖(V̂ ′t 1/2 + δI)−1∇f(θt; zit)− (V̂ ′t

1/2 + δI)−1∇f(θ′t; zit)‖2
]︸ ︷︷ ︸

T4

Let t0 denote the time when V̂t and V̂ ′t becomes full-rank. Then, we can bound T1 as

T∑
t=1

αtE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖2
]

≤
√
T

√√√√ T∑
t=1

α2
tE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

=
√
T

√√√√ t0∑
t=1

α2
tE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+

T∑
t=t0+1

α2
tE
[
Tr
(
(V̂

1/2
t + δI)−2∇f(θt; zit)∇f(θt; zit)

T
)]

≤
√
T

√√√√ t0∑
t=1

α2
tE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+

T∑
t=t0+1

α2
tE
[
Tr
(
V̂ −1
t ∇f(θt; zit)∇f(θt; zit)

)]

≤
√
T

√√√√ t0∑
t=1

α2E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+
α2

1− β2
E
[

log det(V̂T)− log det(V̂t0) + d(T − t0) log
1

β2

]

=
α
√
T√

1− β2

√√√√(1− β2)

t0∑
t=1

E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+ E
[

log det(V̂T)− log det(V̂t0)
]

+ d(T − t0) log
1

β2

≤ α
√
T√

1− β2

√√√√(1− β2)

t0∑
t=1

E
[
‖(δI)−1∇f(θt; zit)‖22

]
+ E

[
log det(V̂T)− log det(V̂t0)

]
+ d(T − t0) log

1

β2

≤ α
√
T√

1− β2

√
t0(1− β2)G2

δ2
+ E

[
log
|V̂T |
|V̂t0 |

]
+ d(T − t0) log

1

β2

In the same way, we can bound T2 as

T∑
t=1

αtE
[
‖(V̂ ′t 1/2 + δI)−1∇f(θ′t; z

′
it)‖2

]
≤ α

√
T√

1− β2

√√√√ t0(1− β2)G2

δ2
+ E

[
log
|V̂ ′T |
|V̂ ′t0 |

]
+ d(T − t0) log

1

β2

For notational convenience, we set the function g as

g(V̂T) =
α
√
T√

1− β2

√
t0(1− β2)G2

δ2
+ E

[
log
|V̂T |
|V̂t0 |

]
+ d(T − t0) log

1

β2

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

Now, we can easily bound T3 and T4 as

E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)− (V̂ ′t
1/2 + δI)−1∇f(θt; zit)‖2

]
≤ GE

[∣∣∣∣∣∣(V̂ 1/2
t + δI)−1 − (V̂ ′t

1/2 + δI)−1
∣∣∣∣∣∣

2

]
≤ GE

[∣∣∣∣∣∣(V̂ 1/2
t + δI)−1

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣(V̂ ′t 1/2 + δI)−1

∣∣∣∣∣∣
2

]
and

E
[
‖(V̂ ′t 1/2 + δI)−1∇f(θt; zit)− (V̂ ′t

1/2 + δI)−1∇f(θ′t; zit)‖2
]
≤ LE

[∣∣∣∣∣∣(V̂ ′t 1/2 + δI)−1
∣∣∣∣∣∣

2
∆t

]
from ‖Ax‖2 ≤ |||A|||2‖x‖2 and Lipschitz continuous gradients. Combining all the terms, we finally have

E
[
∆T+1

]
≤ α

√
T

n
√

1− β2

[√
g(V̂T) +

√
g(V̂ ′T)

]
+ α

(
1− 1

n

)
JT

where

g(V̂T) =
t0(1− β2)G2

δ2
+ E

[
log |V̂T | − log |V̂t0 |︸ ︷︷ ︸

Term C

] + d(T − t0) log
1

β2

and

JT = G

T∑
t=1

E
[∣∣∣∣∣∣(V̂ 1/2

t + δI)−1
∣∣∣∣∣∣

2︸ ︷︷ ︸
Term D

+
∣∣∣∣∣∣(V̂ ′t 1/2 + δI)−1

∣∣∣∣∣∣
2︸ ︷︷ ︸

Term D

]
+ L

T∑
t=1

E
[
|||(V̂ ′t 1/2 + δI)−1|||2︸ ︷︷ ︸

Term D

∆t

]

F.4 Generalization Bounds for AdaGrad

The main difference with EMA-based algorithms is the way of bounding T1. For AdaGrad, we set αt = α/
√
t

and V̂t = 1
t

∑t
i=1 gig

T
i =: 1

tGt as in Corollary 1.

Let t0 denote the time when V̂t and V̂ ′t becomes full-rank. Then, we can bound T1 for AdaGrad as

T∑
t=1

αtE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖2
]

≤
√
T

√√√√ T∑
t=1

α2
tE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

=
√
T

√√√√ t0∑
t=1

α2
tE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+

T∑
t=t0+1

α2
tE
[
Tr
(
(V̂

1/2
t + δI)−2∇f(θt; zit)∇f(θt; zit)

T
)]

≤
√
T

√√√√ t0∑
t=1

α2
tE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+

T∑
t=t0+1

α2
tE
[
Tr
(
V̂ −1
t ∇f(θt; zit)∇f(θt; zit)

)]

≤
√
T

√√√√ t0∑
t=1

α2E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+ α2E
[

log |V̂T | − log |V̂t0 |+ d log
T

t0

]

≤ α
√
T

√√√√ t0∑
t=1

E
[
‖(δI)−1∇f(θt; zit)‖22

]
+ E

[
log |V̂T | − log |V̂t0 |+ d log

T

t0

]
≤ α
√
T

√
t0G2

δ2
+ E

[
log |V̂T | − log |V̂t0 |+ d log

T

t0

]

Jihun Yun, Aurelie C. Lozano, Eunho Yang

We can similarly bound the term T2 only replacing V̂t with V̂ ′t . Also, the remaining terms T3 and T4 can be
bound in the same way as in section F.3. Therefore, we have

E
[
∆T+1

]
≤ α
√
T

n

[√
g(V̂T) +

√
g(V̂ ′T)

]
+ α

(
1− 1

n

)
JT

where

g(V̂T) =
t0G

2

δ2
+ E

[
log |V̂T | − log |V̂t0 |︸ ︷︷ ︸

Term C

] + d log
T

t0

and

JT = G

T∑
t=1

E
[∣∣∣∣∣∣(V̂ 1/2

t + δI)−1
∣∣∣∣∣∣

2︸ ︷︷ ︸
Term D

+
∣∣∣∣∣∣(V̂ ′t 1/2 + δI)−1

∣∣∣∣∣∣
2︸ ︷︷ ︸

Term D

]
+ L

T∑
t=1

E
[
|||(V̂ ′t 1/2 + δI)−1|||2︸ ︷︷ ︸

Term D

∆t

]

