
AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation
for Deep Learning

Jihun Yun Aurelie C. Lozano Eunho Yang
KAIST IBM T.J. Watson Research Center KAIST, AITRICS

Abstract

We introduce AdaBlock, a class of adaptive
gradient methods that extends popular ap-
proaches such as Adam by adopting the sim-
ple and natural idea of using block-diagonal
matrix adaption to effectively utilize struc-
tural characteristics of deep learning archi-
tectures. Unlike other quadratic or block-
diagonal approaches, AdaBlock has com-
plete freedom to select block-diagonal groups,
providing a wider trade-off applicable even
to extremely high-dimensional problems. We
provide convergence and generalization error
bounds for AdaBlock, and study both the-
oretically and empirically the impact of the
block size on the bounds and advantages over
usual diagonal approaches. In addition, we
propose a randomized layer-wise variant of
Adablock to further reduce computations
and memory footprint, and devise an efficient
spectrum-clipping scheme for AdaBlock to
benefit from Sgd’s superior generalization per-
formance. Extensive experiments on several
deep learning tasks demonstrate the bene-
fits of block diagonal adaptation compared to
adaptive diagonal methods, vanilla Sgd, as
well as modified versions of full-matrix adap-
tation.

1 Introduction

Stochastic gradient descent (Sgd, Robbins and Monro
(1951)) is a dominant approach for training large-scale
machine learning models such as deep networks. At
each iteration of this iterative method, the model pa-
rameters are updated in the opposite direction of the

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

gradient of the objective function typically evaluated
on a mini-batch, with step size controlled by a learn-
ing rate. While vanilla Sgd uses a common learning
rate across coordinates (possibly varying across time),
several adaptive learning rate algorithms have been de-
veloped that scale the gradient coordinates by square
roots of some form of average of the squared values of
past gradients coordinates. The first key approach in
this class, Adagrad Duchi et al. (2011); McMahan
and Streeter (2010), uses a per-coordinate learning rate
based on squared past gradients, and has been found
to outperform vanilla Sgd on sparse data. However, in
non-convex dense settings where gradients are dense,
performance is degraded, since the learning rate shrinks
too rapidly due to the accumulation of all past squared
gradient in its denominator. To address this issue, vari-
ants of Adagrad have been proposed that use the
exponential moving average (EMA) of past squared
gradients to essentially restrict the window of accumu-
lated gradients to only few recent ones. Examples of
such methods include Adadelta Zeiler (2012), RM-
Sprop Tieleman and Hinton (2012), Adam Kingma
and Ba (2015), and Nadam Dozat (2016).

Despite their popularity and great success in some ap-
plications, the above EMA-based adaptive approaches
have raised several concerns. Wilson et al. (2017) stud-
ied their out-of-sample generalization and observed
that on several popular deep learning models their gen-
eralization is worse than vanilla Sgd. Recently, Reddi
et al. (2018) showed that they may not converge to
the optimum (or critical point) even in simple con-
vex settings with constant minibatch size, and noted
that the effective learning rate of EMA methods can
increase fairly quickly while for convergence it should
decrease or at least have a controlled increase over it-
erations. AMSGrad, proposed in Reddi et al. (2018)
to fix this issue, did not yield conclusive improvements
in terms of generalization ability. To simultaneously
benefit from the generalization ability of vanilla Sgd
and the fast training of adaptive approaches, Luo et al.
(2019) recently proposed AdaBound and AMSBound
as variants of Adam and AMSGrad, which employ
dynamic bounds on learning rates to guard against



AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning

extreme learning rates. Chen et al. (2019) introduced
AdaFom that only add momentum to the first moment
estimate while using the same second moment estimate
as AdaGrad. Zaheer et al. (2018) showed that in-
creasing minibatch sizes enables convergence of Adam,
and proposed Yogi which employs additive adaptive
updates to prevent informative gradients from being
forgotten too quickly. Yu et al. (2017) considered a
variant of diagonal adaptation where, for each neural
network layer, the gradients are normalized by the ‘2
norm of the layer’s gradients.

We note that all the aforementioned adaptive algo-
rithms deal with adaptation in a restricted way, namely
they only employ diagonal information about Gradi-
ent of Outer-Product (gtg

T
t where gt is the stochastic

gradient at time t, a.k.a. GOP).

Though initially discussed in Duchi et al. (2011), full
matrix adaptation has been mostly ignored due to
its prohibitive computations in high-dimensions. To
alleviate the overhead, several approximations have
been studied. Specifically, KFAC Martens and Grosse
(2015) and Shampoo Gupta et al. (2018) approximate
the curvature via Kronecker product, while TONGA
Le Roux et al. (2007) and GGT Agarwal et al. (2019)
reduce the dimensions of gradient outer-product, which
is a component of the curvature, via relatively lower-
dimensional gradient inner-product.

However, the aforementioned approaches are subopti-
mal in terms of computations and memory. Indeed in
KFAC and Shampoo, the inversion of each Kronecker
factor is still burdensome for large-scale deep learning
tasks. An additional limitation of these approaches is
that they can only encourage a layer-wise block diag-
onal structure. Similarly, TONGA and GGT require
memory tens of times the parameter dimension, which
is not appropriate for large-scale deep models.

Contributions. In this paper, we study an extended
form of Sgd learning with block-diagonal matrix adap-
tation that can effectively utilize the structural char-
acteristics of deep learning architectures. Specifically,
we consider a simple yet effective strategy for gradient
outer-product via coordinate grouping, which leads to a
Sgd framework we call AdaBlock. Unlike other block-
diagonal approaches, AdaBlock allows for complete
freedom in selecting block-diagonal groups, providing
a wider trade-off applicable even to extremely high-
dimensional problems.The goal of this framework is to
take advantage of richer information on interactions
across different gradient coordinates, while relaxing the
expensive computational cost of full matrix adaptation
in large-scale problems. For this purpose, we introduce
several grouping strategies that are practically useful
in deep learning. We study AdaBlock framework the-

oretically and empirically, and the make the following
contributions:

• We analyse the convergence of AdaBlock in the
non-convex setting, uniform stability and general-
ization error, and provide theoretical insights on the
benefits of using blocks. Our work is the �rst study
to investigate how the block size affects convergence
and generalization, both in theory and practice.

• We propose spectrum-clipping, a non-trivial exten-
sion of Luo et al. (2019) to further boost general-
ization by allowing the block diagonal matrix to
become a constant multiple of the identity matrix
in the latter part of training, as in vanilla Sgd.

• We propose a Randomized Adablock variant
(RadaBlock) for faster per-iteration time and
smaller memory footprint.

• We evaluate the training and generalization ability
of our approaches on popular deep learning tasks.
Our extensive experiments reveal that in terms of
generalization block diagonal methods outperform
diagonal approaches and several baselines such as
vanilla SGD/KFAC/Shampoo/GGT even for small
grouping sizes while remaining practical in terms of
computations and memory footprint.

Notation. For a vector x, kxkp is the p-norm, and
kxk is kxk2 if not specified. For a matrix A, jjjAjjjp
is the matrix p-norm, �(A) returns eigenvalues (spec-
trum) of A, and1 log jAj denotes the log-determinant.
�min(A)/�max(A) denote the minimum/maximum
eigenvalue of A respectively. Clip(x; a; b) means clip-
ping x element-wise with the interval I = [a; b].

2 Block-Diagonal Matrix Adaptation
via Coordinate Partitioning

In the context of stochastic optimization, Duchi et al.
(2011) proposed a full-matrix variant of AdaGrad.
This version employs a preconditioner which exploits
first-order information only, via the sum of outer prod-
ucts of past gradients:

gt = rf(xt); Gt = Gt�1 + gtg
T
t ;

xt+1 = xt � �t(G1=2
t + �I)�1gt (1)

where gt is a stochastic gradient at time t, �t is a step-
size, and � is a small constant for numerical stability.
Duchi et al. (2011) presented regret bounds for (1) in
the convex setting. However, this approach is quite ex-

pensive due to G
1=2
t term, so they proposed to only use

the diagonal entries of Gt: Popular adaptive methods
for training deep models such as RMSprop/Adam



Jihun Yun, Aurelie C. Lozano, Eunho Yang

(a) f(x, y) = jx + yj + jx�yj
10

(b) f(x, y) = (x+y)2+ (x�y)2

10
(c) Beale loss function (d) Rosenbrock loss function

Figure 1: Comparison of optimization trajectories for various loss functions.

(a) input-neuron (b) output-neuron (c) partially group (d) filter-wise group

Figure 2: Examples of coordinate grouping. The weights with same color belong to the same group.

are based on such diagonal adaptation. Their general
formulation are given in the Appendix E.

Duchi et al. (2011) also discussed the case where full-
matrix adaptation can converge faster than its popu-
lar diagonal counterpart. Motivated by this, we first
checked through a toy MLP experiment whether precon-
ditioning with exact GOP (Gradient of Outer-Product,
gtg

T
t ) in (1) can be more effective even in the deep learn-

ing context. Our experiment, provided in Appendix,
showed that one can achieve faster convergence and
better objective values by considering the interaction
between gradient coordinates (1). The caveat here is
that full GOP adaptation in deep learning optimiza-
tion is computationally intractable due to the square
root operator in (1). Nevertheless, is the best choice to
simply use diagonal approximation given the available
computation budget? What if we can a�ord to pay a
little bit more for our computations?

We address the above question and provide a family of
adaptive Sgd bridging exact GOP adaptation and its
diagonal approximation, via coordinate partitioning.

Adaptive SGD with Block Diagonal Adapta-
tion. Given a coordinate partition, we simply ignore
the interactions of coordinates between different groups.
For instance, given a gradient g 2 R6, one example
of constructing block diagonal matrices via coordinate
partitioning is g = (g1; g2| {z }

G1

; g3; g4; g5| {z }
G2

; g6|{z}
G3

) ! [gG1
gT
G1
j

0 j 0 ; 0 j gG2
gT
G2
j 0 ; 0 j 0 j gG3

gT
G3

] where Gi represents

each group and gGi
denotes the collection of entries cor-

responding to group Gi. Both exact GOP and diagonal
approximation are special cases of our family. Explor-
ing the use of block-diagonal matrices was suggested
as future work in Duchi et al. (2011), and our work
therefore provides an in-depth study of this proposal
in a more generalized form. Algorithm 1 formalizes
our approach for a total r groups where each group
Gi has a size of ni for i 2 [r]. The Algorithm 1 can
handle arbitrary grouping with appropriate reordering
of entries, and groups of unequal sizes.

Note that AdaBlock allows for complete freedom to
select block diagonal groups, providing a wider trade-off
between computations and performance while KFAC or
Shampoo use the block diagonal structure in a limited
way, which incurs prohibitive memory cost for deep
learning. More discussions on other quadratic or block
diagonal approaches are in the Appendix.

Effect of Grouping on Optimization. Inspired by
Zhuang et al. (2020), we compare the optimization
trajectories for various loss functions. Here, we use the
block diagonal version of Adam (called AdaBlock)
and usual Adam for comparison and set the same
hyperparameters. Figure 1 illustrates the trajectories.
For all loss functions considered, AdaBlock shows
faster convergence than Adam, and finds more accurate
solution close to the optimal point. As discussed in
Zhuang et al. (2020), the loss functions in Figure 1
are simple, yet they give important clues for the local
behavior in deep learning optimization. Most neural


