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Abstract

We study the effect of reward variance het-
erogeneity in the approximate top-m arm
identification setting. In this setting, the
reward for the i-th arm follows a σ2

i -sub-
Gaussian distribution, and the agent needs to
incorporate this knowledge to minimize the
expected number of arm pulls to identify m
arms with the largest means within error ε
out of the n arms, with probability at least
1 − δ. We show that the worst-case sample
complexity of this problem is
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where Gm, Gl, Gr are certain specific sub-
sets of the overall arm set {1, 2, . . . , n}, and
Ent(·) is an entropy-like function which mea-
sures the heterogeneity of the variance prox-
ies. The upper bound of the complexity is
obtained using a divide-and-conquer style al-
gorithm, while the matching lower bound re-
lies on the study of a dual formulation.

1 Introduction

In the multi-armed bandit (MAB) model, an agent in-
teracts with a slot machine by pulling one of the many
arms and observing the corresponding reward at each
time step (Lattimore and Szepesvári, 2020). The goal
in the canonical MAB setting is to maximize the cu-
mulative reward. In order to accomplish this goal,
algorithms must be designed to balance exploration
and exploitation during this online learning process;
the objective in this setting is usually referred to as
regret minimization. In many applications, the true
goal is in fact not to maximize the cumulative reward,
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but to identify the best arm among all the arms, and
regret minimization does not match the true goal in
such cases. Instead, the best arm identification prob-
lem is the more suitable formulation, and it is a pure
exploration problem (Bubeck et al., 2009) that aims
to identify the best arm as fast and accurately as pos-
sible.

Approximate best arm identification with fixed con-
fidence is a formal PAC-learning formulation for the
best arm identification setting, where the agent is re-
quired to identify an arm whose expected reward is not
less than that of the best arm by ε, with a confidence
at least 1− δ. A more general version of this problem
is to identify the top-m arms, where the expected re-
wards of the m arms identified are not less than that of
the m-th best arm by ε, with a confidence at least 1−δ.
In this setting, the algorithms will have a performance
guarantee in terms of the confidence of success. We
refer to these settings as (ε, δ) best arm identification,
and (ε, δ) top-m arm identification, respectively.

In most previous works on multi-armed bandit, an in-
herent assumption is that the reward distribution of
each arm is sub-Gaussian, and moreover, the variance
proxies are homogeneous among all the arms. Such
an assumption may be natural when the rewards are
bounded in a range, or it is reasonable to view the
arms as of the same randomness nature (except the
mean rewards of the arms). In other applications,
this assumption is less suitable, since the reward dis-
tributions are naturally heterogeneous. In this work,
we consider (ε, δ) best m-arm identification with sub-
Gaussian distributed rewards when the variance prox-
ies are heterogeneous and known. Our goal is to under-
stand the worst-case sample complexity of the problem
as a function of the number of arms n, the number of
best arms to be identified m, the variance proxy vec-
tor (σ2

1 , σ
2
2 , . . . , σ

2
n), i.e., the worst in the class of possi-

ble reward distributions with the given variance proxy
vector; see Section 3 for a more precise definition.

For a more concrete example application of the prob-
lem setting, consider a remote sensing setting, where
multiple underground sensors will need to communi-
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cate with the central controller on a wireless link to
find the best location to drill for natural gas. The
channel noises in the wireless link can be viewed
as additive noises on the sensing values themselves,
and such channel statistics are usually obtained in-
dependent of the sensing but by sending and receiv-
ing pilot signals. Therefore, the variances of the
arms are indeed known, and the goal is to identify
several “best” arms. Although the problem is well
motivated by practical applications, our approach to
study it is largely theoretical, and the obtained re-
sult is theoretical in nature. Particularly, it is well-
known that the worst-case sample complexity in the
homogeneous (ε, δ) top-m arm identification setting

is Θ
(∑

i∈[n]
σ2
i

ε2 (ln 1
δ + lnm)

)
(c.f., (Kalyanakrishnan

et al., 2012)). However, we observe that the struc-
ture of the sample complexity may evolve (specifically,
the factor ln(m) will diminish) as the setting transi-
tions from the homogeneous setting to the heteroge-
neous setting. Therefore, we focus on this transition
behavior and aim to provide a precise characterization
theoretically .

Several well-known algorithms can be straightfor-
wardly adapted to the problem under consideration.
We first consider adapting the naive elimination ap-
proach and the median elimination algorithm (Even-
Dar et al., 2002; Kalyanakrishnan and Stone, 2010),
as well the LUCB (Kalyanakrishnan et al., 2012) and
UGapE (Gabillon et al., 2012) algorithms. We observe
that the adapted algorithms only perform well in some
respective cases. More precisely, the adapted naive
elimination algorithm performs well when the hetero-
geneity is more significant, and the adapted median
elimination algorithm performs well when the hetero-
geneity is less significant. Given this observation, we
seek for a new algorithm that can naturally account for
the heterogeneity, and propose the variance-grouped
median elimination algorithm. There is no need to
artificially ascribe an instance as having either high
or low heterogeneity in this algorithm, and its perfor-
mance adapts naturally.

We further establish a matching lower bound by refor-
mulating it into an optimization problem, and consid-
ering its dual. Combined with this lower bound, we
show the proposed algorithm is in fact optimal. The
worst-case sample complexity, as given in (1), is in gen-
eral proportional to the sum of the reward variances,
and has three components. The first component (with
ln 1

δ ) reflects the effect of the confidence parameter,
the second component reflects the impact of the more
homogeneous subset of the arms, and the last term
(with the Ent(·) function) reflects the impact of the
more heterogeneous subset of the arms. The result
naturally degrades if the reward variances are indeed

homogeneous, which essentially has only the first two
components. The third component captures the im-
pact of the heterogeneity, which is not critically related
to m, but on the variances σ2

1:n through an entropy-
like function. For highly heterogeneous variances, the
second term will in fact disappear, and Ent(σ2

Gr ) can
be of order O(1), thus becoming independent of m
completely.

2 Related Works

Multi-armed bandit problems have been extensively
studied in the machine learning community in the past
decades. A canonical setting is to maximize the cumu-
lative reward, whose asymptotically optimal behavior
was first characterized in the seminal work by Lai and
Robbins (1985). Good tutorials and books (Bubeck
and Cesa-Bianchi, 2012; Slivkins, 2019; Lattimore and
Szepesvári, 2020) are readily available.

An alternative setting is to instead identify the best
arm. There are in general two lines of research: mini-
mizing the mis-identification probability within a fixed
budget of samples (Audibert et al., 2010; Bubeck et al.,
2013; Carpentier and Locatelli, 2016), and fast identi-
fication with a fixed confidence guarantee (Jamieson
and Nowak, 2014). The (ε, δ) best arm identifica-
tion problem belongs to the latter and was introduced
in (Even-Dar et al., 2002, 2006), where several elim-
ination based algorithms, such as naive elimination,
successive elimination and median elimination algo-
rithms, were proposed. The median elimination al-
gorithm was shown to be worst-case optimal for which
a matching lower bound was derived by Mannor and
Tsitsiklis (2004). The asymptotic (large number of
arms) optimal elimination algorithm was recently dis-
covered (Hassidim et al., 2020), which was inspired by
the idea of identifying the “good arms” (Katz-Samuels
and Jamieson, 2020). The case of exact best arm iden-
tification, i.e., ε = 0, motivated algorithms that adapt
to the underlining model and usually performs well
in an instance-dependent manner (Karnin et al., 2013;
Jamieson et al., 2014; Chen and Li, 2015; Garivier and
Kaufmann, 2016; Kaufmann et al., 2016).

There are multiple variants of the problem (Zhou et al.,
2014; Shen, 2019; Jin et al., 2019; Assadi and Wang,
2020; Chaudhuri and Kalyanakrishnan, 2019). One of
the most natural generalization of the best arm iden-
tification problem is to identify multiple best arms.
The (ε, δ) top-m arm identification was studied in
(Kalyanakrishnan and Stone, 2010), in which an al-
gorithm named “halving” was proposed, and it bears
similarity to the median elimination algorithm. It was
later shown that the halving algorithm is indeed worst-
case optimal (Kalyanakrishnan et al., 2012). Though
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more adaptive algorithms were proposed later, such
as LUCB (Kalyanakrishnan and Stone, 2010) and
UGapE (Gabillon et al., 2012; Kalyanakrishnan et al.,
2012), they are not worst-case optimal. For the case
of exact top-m arm identification, efforts toward un-
derstanding the instance-dependent sample complex-
ity were also made (Kaufmann and Kalyanakrishnan,
2013; Chen et al., 2017; Simchowitz et al., 2017).

Gaussian rewards with heterogeneous variances was
considered in the earliest work on best arm identifica-
tion (Bechhofer, 1954) in the fixed confidence setting,
though without a theoretical analysis on the stopping
time. The possible variance heterogeneity among arms
gained attentions recently in the fixed budget setting
(Faella et al., 2020), where the confidence bounds are
designed based on central limit theorem. Identifying
the best arms in multiple bandits with possible hetero-
geneous variances was studied in the fixed budget set-
ting (Gabillon et al., 2011), where an elimination based
algorithm was proposed to take variances into design-
ing confidence bound. In the addition to the fixed bud-
get setting, most recently Lu et al. (2021) studied the
best arm identification with unknown heterogeneous
variances in the fixed confidence setting. They as-
sumed the support of reward distribution is bounded,
and proposed an elimination-based algorithm by first
estimating the variances (with known upper bound on
the variances) then utilizing the estimated variances
in identifying the unique best arm based on Bernstein-
style confidence bounds. The algorithm achieves near-
optimal instance dependent performance. In compari-
son, we aim to study the worst-case sample complexity
with known variance proxies as inputs (the support of
reward distribution may be unbounded), in the top-m
identification problem. We propose an optimal algo-
rithm with an exact matching lower bound, and stud-
ied the impact of variances transition from the homo-
geneous setting to the heterogeneous setting in terms
of the parameter m.

3 Preliminary

System model: We largely follow the canonical sub-
Gaussian bandit model, except the additional com-
ponent related to the reward variances. A bandit
instance I is represented by a set of arm indices
[n] := {1, 2, . . . , n} and the tuple of reward distri-
butions (ν1, ν2, . . . , νn). For any i ∈ [n], pulling the
i-th arm returns a reward observation, which is inde-
pendently sampled from distribution νi, where νi is a
sub-Gaussian distribution with mean µi and variance
proxy σ2

i
1. An arm is ε-approximate top-m if the mean

1A random variable X follows some σ2-sub-Gaussian
distribution, if lnE[eλ(X−E[X])] ≤ σ2λ2

2
, ∀λ ∈ R, and σ2 is

reward of that arm is at least maxmi∈[n] µi − ε, where

maxmi∈[n] indicates the m-th largest (mean reward)

value among the arms in [n]. With the knowledge
of variance proxy values σ2

1:n, but without the knowl-
edge of mean values µ1:n, the agent actively learns the
parameters of the sub-Gaussian bandit instance I by
observing independent reward samples. When there is
no ambiguity from the context, we omit “proxy” and
simply refer to σ2

1:n as the reward variances.

(ε, δ) top-m arm identification: In the (ε, δ) top-
m arm identification problem, the agent is required
to identify some subset R ⊂ [n] with |R| = m, such
that, with probability at least 1 − δ, any arm in R is
ε-approximate top-m.

Algorithm class: Taking the parameters
(ε, δ,m, [n], σ2

1:n) as input, an algorithm A deployed by
the agent is represented by a tuple (πt, ρt)t≥1. During
the learning process, the function πt selects an arm
in [n] based on the inputs of the algorithm as well
as the previous observations before time step t (i.e.,
the arms that were pulled). The function ρt decides
whether to stop based on the inputs of the algorithm
as well as the available observations (the current
observation and the previous observations before time
step t). If ρt decides to stop, it returns a set of arms
RA ⊂ [n]; otherwise, the process continues. Let TA be
the time that the process stops, which is the number
of samples observed by algorithm A. We only study
the valid algorithms that solve the (ε, δ) top-m arm
identification when dealing with any bandit instance.

Worst-case sample complexity: The number of
samples observed by the algorithm TA is a stopping
time, whose expectation the agent aims to minimize.
We study the worst-case sample complexity for (ε, δ)
top-m arm identification, which is an intrinsic quan-
tity that measures the difficulty of the problem, and
thus independent of the algorithm and µ1:n. Formally,
the worst-case sample complexity of the (ε, δ) top-
m arm identification problem under algorithm inputs
(ε, δ,m, [n], σ2

1:n) is

SC(ε, δ,m, [n], σ2
1:n) := inf

A
sup

I∈I(σ2
1:n)

EI [TA], (2)

where the infimum is taken over all valid algorithms,
the supremum is taken over the instance class I(σ2

1:n)
containing all the distribution tuples ν1:n with vari-
ances σ2

1:n, and the subscript I in the expectation EI [·]
indicates that it is with respect to the bandit model I.

Measure of heterogeneity: For any positive vec-
tor a1:n, define the entropy function as Ent(a1:n) :=
−
∑n
j=1 âi ln âi with âi =

aj∑n
i=1 ai

. It measures the het-

erogeneity of the vector a1:n, and takes value within

called the variance proxy.
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(0, ln(n)]. Note that the entropy function is usually de-
fined on the probability simplex, and we had slightly
abused the notation by defining it for a positive vec-
tor. In this paper, we study the worst-case sample
complexity, which is gap-independent.

4 Main Result: Worst-case Sample
Complexity

The main result of this work is the characterization of
the worst-case sample complexity SC(ε, δ,m, [n], σ2

1:n).
To present this result, we first introduce some addi-
tional notation. Let σ := mini∈[n] σi, and partition [n]
into k disjoint subsets G1, . . . , Gk, such that for any
j ∈ [k],

Gj := {i ∈ [n] : 2j−1 ≤ σ2
i /σ

2 < 2j}. (3)

Define two disjoint sets

Gm := ∪j:|Gj |>2mGj , Gl := ∪j:|Gj |≤2mGj , (4)

where | · | denotes the cardinality of the set. For each j
with Gj ⊂ Gl, let G′j = Gj ; for each j with Gj ⊂ Gm,
select G′j ⊂ Gj with |G′j | = 2m, and denote Gr :=

∪j≥1G′j as a subset of the arms, such that Ent
(
σ2
Gr

)
is

maximized. (The superscripts of Gm, Gl, Gr indicate
“more”, “less” and “reduced”, respectively).

The worst-case sample complexity SC(ε, δ,m, [n], σ2
1:n)

is summarized in the following theorem.

Theorem 4.1. Suppose n > 2m, ε > 0 and 0 < δ <
0.1, then the worst-case sample complexity is

SC(ε, δ,m, [n], σ2
1:n) =

Θ

∑
i∈[n]

σ2
i

ε2
ln

1

δ
+
∑
i∈Gm

σ2
i

ε2
ln(m) +

∑
j∈Gl

σ2
j

ε2
Ent(σ2

Gr )

 .

(5)

The following lemma upper bounds the entropy
Ent(σ2

Gr ) in the third component.

Lemma 4.2. For any m ≥ 2, Ent(σ2
Gr ) ≤ 8 ln(m).

This lemma indicates that the worst-case sample com-
plexity in the heterogeneous variance setting is upper

bounded by O
(∑

i∈[n]
σ2
i

ε2 ln m
δ

)
in general. In certain

sense, the heterogeneity in fact makes the problem
“easier” to solve. To further illustrate this point, let
us consider two special cases:

• When the variances are more homogeneous, e.g.,
in the extreme case σ2

i = σ2, ∀i ∈ [n], we have
Gm = [n] and Gl = ∅. Theorem 4.1 naturally de-
grades to the worst-case sample complexity in the
homogeneous setting characterized in (Kalyanakr-

ishnan et al., 2012), which is Θ
(
nσ2

ε2 ln m
δ

)
.

• When the variances are highly heterogeneous,
e.g., in the extreme case |Gj | = 1,∀j = 1, 2, . . . , k,
we have Gm = ∅ and Gl = [n]. Theorem 4.1
shows that the worst-case sample complexity is

Θ
(∑

i∈[n]
σ2
i

ε2 ln 1
δ

)
, which is independent of m.

Comparing the two cases and assuming the sum of
the variances remain the same, the latter clearly has
a more desirable sample complexity. The sets Gm and
Gl describe the transition between the homogeneous
and the heterogeneous. In the rest of this article, we
present the optimal algorithm and the matching lower
bound to establish Theorem 4.1.

5 Algorithms

We first revisit several existing algorithms designed
mostly under the assumption of homogeneous vari-
ances. By adapting them to the heterogeneous vari-
ance case, we analyze their advantages and disadvan-
tages. As will become clear shortly, these adapted al-
gorithms still perform well in certain respective cases.
Based on this observation, we will propose an optimal
divide-and-conquer style algorithm.

5.1 Adapting Existing Algorithms

Weighted naive elimination: In this adapted al-
gorithm, the agent simply pulls each arm-i a total of
2σ2
i

(ε/2)2 ln 1
ωi

times, calculates the sample mean µ̂i, and

returns the m arms with the largest sample means.
We call it “weighted” because the numbers of pulls for
the arms are determined by the reward variances σ2

1:n

and the confidence parameters ω1:n. The parameters
ω1:n need to be optimized in order to provide the per-
formance guarantee, and the following lemma provides
one such assignment of the optimized ω1:n.

Lemma 5.1. Let ωi = δ
σ2
i∑n

j=1 σ
2
j

, the weighted naive

elimination algorithm takes

8
∑
i∈[n]

σ2
i

ε2

(
ln

1

δ
+ Ent(σ2

1:n)

)
(6)

samples, and solves the (ε, δ) top-m arm identification
problem for any ε > 0 and 0 < δ < 1.

We will use WNElim(ε, δ,m, [n], σ2
1:n) to denote the

weighted naive elimination algorithm with the choices
of ω1:n in Lemma 5.1. The entropy function Ent(σ2

1:n)
appears naturally as a multiplicative factor in the sec-
ond item of Equation (37), which measures the hetero-
geneity of the variances. If the variance heterogeneity
is high, the entropy term Ent(σ2

1:n) can be significantly
less than log n. As mentioned earlier, when σ2

i = 2i,
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the entropy term is in fact O(1), i.e., no longer a func-
tion of n and m. On the other hand, by the principal of
maximum entropy (Cover, 1999), it has the maximum
value ln(n) when the variances are homogeneous. Thus
the weighted naive elimination algorithm will provide
good performance when the arm variances are highly
heterogeneous, but will lose efficiency when they are
more homogeneous.

Adapted median elimination: Median Elimina-
tion (“Halving” algorithm in (Kalyanakrishnan and
Stone, 2010)) is known to achieve the worst-case op-
timal performance in the homogeneous variance set-
ting. One simple method to adapt it to the het-
erogeneous setting is to ignore the knowledge of the
heterogeneity, and simply assume that all the arms
have the largest variance maxi∈[n] σ

2
i . The original

median elimination algorithm can be applied with-
out any change, and the expected number of sam-

ples taken is thus O
(
nmaxi∈[n] σ

2
i

ε2

(
ln 1

δ + lnm
))

, as

shown in (Kalyanakrishnan and Stone, 2010). In
the appendix, we provide another method to adapt
the median elimination algorithm, which improves the
nmaxi∈[n] σ

2
i term by roughly halving the sum of vari-

ances in each round.

If the variances are more homogeneous, e.g.,
σ2
i /σ

2
j ≤ 2,∀i, j ∈ [n], then

∑
i∈[n] σ

2
i ≤

nmaxi∈[n] σ
2
i ≤ 2

∑
i∈[n] σ

2
i and the expected num-

ber of samples is O

(∑
i∈[n] σ

2
i

ε2

(
ln 1

δ + lnm
))

. For the

same example, the weighted naive elimination uses

O

(∑
i∈[n] σ

2
i

ε2

(
ln 1

δ + lnn
))

samples. Thus this simple

adaptation of the median elimination algorithm is able
to perform well for the highly homogeneous case, but
will induce a loss of performance for the more hetero-
geneous cases.

Adapting other algorithms: The adaptation of
several instance dependent algorithms, such as
LUCB and UGapE, is straightforward. For the
problem in consideration, both algorithms require

O

(∑
i∈[n] σ

2
i

ε2

(
ln 1

δ + ln
∑
i∈[n] σ

2
i

ε2

))
number of sam-

ples in expectation in the worst case. They are not
worst-case optimal in the homogeneous variance set-
ting, and certainly not in the heterogeneous variance
setting since the latter is a more general setting.

5.2 The Optimal Variance-Grouped
MedElim Algorithm

It was shown in the previous subsection that the
weighted naive elimination algorithm and the median

elimination algorithm have advantages in the respec-
tive cases. In order to retain the advantages in both
algorithms, we take a “divide and conquer” approach.
Recall the minimum variance is σ = mini∈[n] σi, and
the disjoint subsets G1, . . . , Gk form a partition of [n],
and for any j ∈ [k],

Gj =
{
i ∈ [n] : 2j−1 ≤ σ2

i /σ
2 < 2j

}
. (7)

The largest variance ratio within each subset is at most
2, while the variances among subsets are well sepa-
rated. We wish to apply median elimination to each
subset and select “good” arms within that subset, and
then apply weighted naive elimination over all the se-
lected “good” arms. However, the “good” arms within
a subset can in fact be “bad” in terms of the overall
arm set [n]. To see this, consider the following exam-
ple instance: m arms have a mean reward ε, and the
rest of n−m arms have a mean reward −ε. Then any
ε-approximate top-m arms need to have mean ε. Sup-
pose the subset G1 contains m′ < m arms with mean ε
and some other arms with mean −ε. Ideally we would
like to apply median elimination to find those top-m′

arms with mean ε within G1. However, parameter m′

is not known, and we will apply median elimination
on G1 by selecting some l arms. If l < m′, then the
returned l arms will not include all the top-m′ arms in
G1, and therefore fail to identify the final top-m arms.
On the other hand, if l > m′, then maxli∈G1

µi = −ε.
Any arm in G1 is ranked in the top-l within G1, and
the problem is trivial to solve. The returned l arms,
even though are top-l within G1, are not guaranteed
to contain those top-m′ arms with mean reward ε.

To successfully apply the divide-and-conquer ap-
proach, we need a “blind” algorithm that returns a
subset containing the approximate top-m′ arms, ide-
ally with certain graceful transition of the confidence
values.

Definition 5.1. The algorithm A(ε, δ,m, [n], σ2
1:n) is

said to satisfy the (ε, δ′) top-m′ condition, where m′ ≤
m, if with probability at least 1 − δ′, maxm

′

j∈RA µj ≥
maxm

′

j∈[n] µi − ε.

The condition is equivalent to the standard (ε, δ) top-
m arm identification requirement, if m′ = m and
δ′ = δ. We first restate the median elimination algo-
rithm presented in Algorithm 1 (the halving algorithm
(Kalyanakrishnan and Stone, 2010)), with the neces-
sary changes on the constants and the variance values
taken into account (note the input 2m).

The following lemma summarizes the sample complex-
ity of the MedElim algorithm with the aforementioned
transition in the confidence values for m′ = 1, 2, . . . ,m
for the 2m return arms. This algorithm will be used
as a building block for the variance-grouped median
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Algorithm 1 MedElim(ε, δ, 2m, [n], σ2
1:n)

Initialize S1 = [n], ` = 1 and ε` = (ε/3) 3`

4`
, δ` = δ/4

2`

while |S`| > 2m do

Pull arm-i ti,` =
2σ2
i

(ε`/2)2
ln m

δ`
times and calculate

their sample mean µ̂i,` for each i ∈ S`
Update the candidate set as S`+1 =

arg max
1:max(b|S`|/2c,2m)
i∈S` µ̂i,`

Let ` = `+ 1
Return: S`

elimination algorithm given next. The proof of this
lemma can be found in the appendix.

Lemma 5.2. For any σ2
1:n, if

maxi∈[n] σ
2
i /minj∈[n] σ

2
j ≤ 2, the MedElim algo-

rithm has an expected stopping time

O

(∑
i∈[n] σ

2
i

ε2

(
ln

1

δ
+ ln(m)

))
. (8)

Moreover, for any m′ ≤ m, the MedElim algorithm
satisfies the (ε, m

′

m δ) top-m′ condition.

Now we are in a position to provide the proposed algo-
rithm below, which we refer to as the variance-grouped
median elimination algorithm.

Algorithm 2 V-MedElim(ε, δ,m, [n], σ2
1:n)

Partition [n] into groups G1, . . . , Gk by (7)
for j ∈ 1 : k do
Rj = MedElim(ε/2, δ/2, 2m,Gj , σ

2
Gj

);

Let G = ∪kj=1Rj ;

R = WNElim(ε/2, δ/2,m,G, σ2
G);

Return: R

The performance of proposed algorithm is summarized
in the following theorem.

Theorem 5.3. The variance-grouped median elimi-
nation algorithm solves the (ε, δ) top-m arm identifi-
cation problem for any ε > 0 and 0 < δ < 1, and the
expected number of samples is

O

∑
i∈[n]

σ2
i

ε2
ln

1

δ
+
∑
i∈Gm

σ2
i

ε2
ln(m) +

∑
j∈Gl

σ2
j

ε2
Ent(σ2

Gr )

 .

(9)

Proof of Theorem 5.3. Without loss of generality, as-
sume [m] is the set of top-m arms. For any j with
Gj ∩ [m] 6= ∅ and i ∈ Gj ∩ [m], arm-i must be one of
top-|Gj ∩ [m]| arms in Gj . Let m′j = |Gj ∩ [m]| be the
number of top-m arms contained in Gj . By Lemma

5.2, with probability at least 1− m′j
m

δ
2 ,

max
m′j
l∈Rjµl ≥ max

m′j
l∈Gj∩[m]µl − ε/2

≥ maxml∈[n]µl − ε/2. (10)

It implies that with probability at least 1 −∑k
j=1

m′j
m

δ
2 = 1 − δ

2 , there are at least
∑k
j=1m

′
j = m

arms in G = ∪kj=1Rj that are ε/2-approximate top-m.
In other words, event maxml∈G µl ≥ maxml∈[n] µl − ε/2
occurs with probability at least 1− δ

2 .

Conditioned on this event occurring, Lemma 5.1 im-
plies that with probability at least 1 − δ

2 , the re-
turned set R of the weighted naive elimination over
G = ∪kj=1Rj satisfies

min
l∈R

µl ≥ maxml∈Gµl − ε/2 ≥ maxml∈[n]µl − ε. (11)

Thus with probability at least 1− δ, all arms in R are
ε-approximate top-m.

Recall the definition of Gl, Gm, Gr in Section 4. The
total number of samples used in the median elimina-

tion subroutine is O
(∑

i∈Gm
σ2
i

ε2

(
ln 1

δ + ln(m)
))

. The

number of samples used in the weighted naive elimi-

nation subroutine is O
(∑

i∈[n]
σ2
i

ε2

(
ln 1

δ + Ent(σ2
Gr )
))

.

By Lemma 4.2, the expected total number of

samples is O
(∑

i∈[n]
σ2
i

ε2 ln 1
δ +

∑
i∈Gm

σ2
i

ε2 ln(m)

+
∑
j∈Gl

σ2
j

ε2 Ent(σ2
Gr )
)

.

An illustrative example: In the following exam-
ple, we show the number of required samples by
the variance-grouped median elimination algorithm
given in Theorem 5.3 achieves an order-wise im-

provement over
∑
i∈[n] σ

2
i

ε2 (ln(1/δ) + Ent(σ2
1:n)) and∑

i∈[n] σ
2
i

ε2 (ln(1/δ) + ln(m)). Take some integer k ≥ 2
as an auxiliary parameter in this problem setting, and
denote ` = dlog(k)e. Let log(m) = k and log(n) = k2.
We aim to approximately identify the top-m arms out
of n arms. Among these n arms, there are 2i arms
with the same variance 2−i for each i = 0, 1, . . . , `− 1,
and the rest n−

∑`−1
i=0 2i = 2k

2 − 2` + 1 arms have the

same variance 2−k
2

`/k. Then Gm is the set of arms

with variances 2−k
2

`/k, and Gl is the set of arms with
variances 2−i for i = 0, 1, . . . , `− 1. It is seen that∑

j∈Gm
σ2
j = (2k

2

− 2` + 1)2−k
2

`/k = Θ(`/k), (12)

∑
j∈Gl

σ2
j =

`−1∑
i=0

2i2−i = ` = Θ(log(k)), (13)
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which implies
∑
j∈[n] σ

2
j = Θ(log(k)). Furthermore,

we can calculate that

Ent(σ2
Gr ) = Θ(Ent(σ2

Gl)) = Θ(log(k)). (14)

Thus the number of required samples by the variance-
grouped median elimination algorithm is of order

Θ(ln(k) ln(1/δ) + ln(k)2/ε2). (15)

Since Ent(σ2
1:n) = Θ(k) and ln(m) = Θ(k),

it is seen that
∑
i∈[n] σ

2
i

ε2 (ln(1/δ) + Ent(σ2
1:n)) and∑

i∈[n] σ
2
i

ε2 (ln(1/δ) + ln(m)) are of the same order

Θ(ln(k) ln(1/δ) + k ln(k)/ε2). (16)

The detailed calculation of the entropy values used
above is given in the supplementary material. Fix
δ > 0 as constant, comparing the numbers of re-
quired samples in (15) and (16), which are of order
Θ(ln(k)2/ε2) and Θ(k ln(k)/ε2), respectively, it is seen
that the variance-grouped median elimination algo-
rithm provides an order-wise improvement in this ex-
ample setting by reducing a factor k to ln(k).

Remark. Our result establishes the theoretical opti-
mality of the proposed algorithm through a matching
lower bound provided in the following section. How-
ever, the empirical performance of the proposed algo-
rithm suffers from large multiplicative factors intro-
duced by the Median Elimination subroutine. More
aggressive elimination based algorithm, such as the al-
gorithms proposed in (Hassidim et al., 2020), can be
used as a subroutine to improve the multiplicative fac-
tor while maintaining the same order.

6 The Lower Bound

In the homogeneous variance setting, the previous
lower bound (Kalyanakrishnan et al., 2012) on worst-
case (ε, δ)-PAC top-m identification leveraged the
change-of-measure technique and was proved by con-
tradiction. The approach leads to a large multiplica-
tive factor and is also difficult to utilize in the het-
erogeneous variance case. The lower bound was later
tightened and generalized to the instance-dependent
case in (Chen et al., 2017) and (Simchowitz et al.,
2017). Their approach assumed that the algorithms
have a uniform preference over the arms at the begin-
ning, which is reasonable in the homogeneous setting
but not in the heterogeneous setting.

We derive a flexible simple inequality to better take
into account the heterogeneous variances, given in
Lemma 6.2. Applying this lemma, we formulate the
lower bound as an optimization problem, whose dual

formulation (Lemma 6.3) is then studied. The even-
tual lower bound is given in the following theorem,
obtained by considering several feasible solutions to
the dual problem.

Theorem 6.1. There exists some universal constant
c > 0, that for any 0 < ε, 0 < δ < 0.1, m < n/2, σ2

1:n

and any valid algorithm, there exists an instance with
the given variances such that the expected number of
samples of the algorithm is at least

c

∑
i∈[n]

σ2
i

ε2
ln

1

δ
+
∑
i∈Gm

σ2
i

ε2
ln(m) +

∑
j∈Gl

σ2
j

ε2
Ent(σ2

Gr )

 .

(17)

6.1 Dual Formulation of the Lower Bound

We first introduce an inequality in the lemma below,
which helps us connect the sample complexity with a
multi-hypothesis testing problem.

Lemma 6.2. For any two probability measure P,Q
on the same measurable space (Ω,F), if E ∈ F with
P (E) ≥ 1− δ > Q(E), we have

Q(E) ≥ B(δ)e−
D(P ||Q)

1−δ , (18)

where D(·||·) is the Kullback-Leibler divergence and

B(δ) = e−
Ent(δ,1−δ)

1−δ is a strictly decreasing function
with B(0.1) > 0.69.

Fix any algorithm A with inputs (ε, δ,m, [n], σ2
1:n) that

solves the (ε, δ) top-m arm identification problem.
Consider the Gaussian instances where the i-th arm
has a Gaussian distribution with variance σ2

i . Denote
PI as the probability measure induced by the learning
process of applying algorithm A on Gaussian bandit
instance I ∈ I(σ2

1:n).

Let ε′ > ε be some parameter that can be arbitrarily
close to ε. For any subset M ⊂ [n] with |M | = m and
any index l ∈ [n] \M , we first construct an instance
Il,M ∈ I(σ2

1:n) by specifying the reward means of each
arm as follows: the l-th arm has mean 0, the arms in
M have mean ε′, and the rest have mean −ε′. The only
ε-approximate top-m arms of instance Il,M are clearly
M . Similarly, for each subset F ⊂ [n] with |F | = m−1
and any index l ∈ [n]\F , we then construct an instance
Il,F ∈ I(σ2

1:n). In instance Il,F , the l-th arm has mean
0, the arms in F have mean ε′, and the rest arms have
mean −ε′. The only ε-approximate top-m arm set of
instance Il,F is clearly F ∪ {l}. These are the possible
hypotheses we will consider.

Given an instance Il,M , if F = M \{i} for some i ∈M ,
it is clear that instances Il,M and Il,F differ only at the
i-th arm. Denote tl,F,i as the expected number of pulls
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of the i-th arm by algorithm A on instance Il,F . The
KL-divergence can be calculated as D(PIl,F ||PIl,M ) =
2ε′2

σ2
i
tl,F,i; see Lemma 5.1 in (Lattimore and Szepesvári,

2020) for more details. Since A solves the (ε, δ) top-m
arm identification problem, we have PIl,F (RA = F ∪
{l}) ≥ 1 − δ > δ ≥ PIl,M (RA = F ∪ {l}). Applying

Lemma 6.2 on PII,F , PIl,M and event {RA = F ∪ {l}}
gives

PIl,M (RA = F ∪ {l}) ≥ B(δ)e−
D(PIl,F

||PIl,M
)

1−δ

= B(δ)e
− 2ε′2

σ2
i

tl,F,i
1−δ . (19)

This inequality holds for any F = M \{i} with i ∈M .
In addition, events {RA = M ∪ {l} \ {i}}’s are dis-
joint for any i ∈ M ∪ {l}, and they are also dis-
joint with the event {RA = M}. It follows that∑
i∈M PIl,M

(
RA = M ∪ {l} \ {i}

)
≤ 1 − PIl,M (RA =

M) ≤ δ. Summing inequality (19) for all i ∈M gives

δ ≥
∑
i∈M

PIl,M (RA = M ∪ {l} \ {i})

≥
∑
i∈M

B(δ) exp

(
−2ε′2

σ2
i

tl,M\{i},i

1− δ

)
. (20)

In the worst-case, algorithm A takes at least
maxF,l/∈F

∑
j /∈F∪{l} tl,F,j samples in expectation. Any

valid algorithm has to satisfy (20), and thus the sample
complexity SC(ε, δ,m, [n], σ2

1:n) is lower bounded by
the optimal value of the following optimization prob-
lem:

minimize: max
F⊂[n]:|F |=m−1, l 6∈F

∑
j /∈F∪{l}

tl,F,j (21)

subject to:
∑
i∈M

exp
(
−tl,M\{i},i/θi

)
≤ δ′,

∀M ⊂ [n], |M | = m, ∀l /∈M, (22)

where θi =
(1−δ)σ2

i

2ε2 ,∀i ∈ [n] and δ′ = δ
B(δ) . Though

this problem is convex, it is difficult to solve explicitly.
Therefore, we consider its (restricted) dual formulation
in the following lemma.

Lemma 6.3. For ε > 0, δ < 0.25, m < n/2, (σ2
i )i∈[n],

SC(ε, δ,m, [n], σ2
1:n) ≥ 1−δ

2ε2 v
∗, where v∗ is the optimal

value of the following optimization problem:

maximize:
∑

M⊂[n]:|M |=m

(∑
l∈M

ηM\{l}σ
2
l

)
×

(
ln
B(δ)

δ
+ Ent({ηM\{l}σ2

l }l∈M )

)
(23)

subject to:
∑

F⊂[n]:|F |=m−1

ηF = 1,

ηF ≥ 0, ∀F ⊂ [n], |F | = m− 1. (24)

Though the dual formulation is still difficult to solve,
by the weak duality, we can derive lower bounds for
the primal problem by assigning specific feasible values
to the dual variables ηF ’s. In addition, each ηF is a
probability mass function and has a clear operational
meaning, which is the worst-case prior distribution of
the underlining instance being one of {Il,F }l/∈F .

6.2 Dichotomy of the lower bound

As shown in Theorem 6.1, the lower bound of the sam-
ple complexity consists of three terms∑

i∈[n]

σ2
i

ε2
ln

1

δ︸ ︷︷ ︸
I

+
∑
i∈Gm

σ2
i

ε2
ln(m)︸ ︷︷ ︸

II

+
∑
j∈Gl

σ2
j

ε2
Ent(σ2

Gr )︸ ︷︷ ︸
III

.

(25)

We will discuss each term from the viewpoint of the
dual formulation in Lemma 6.3. The optimal value
v∗ of the optimization in Lemma 6.3 can be lower
bounded by the average of the objective function val-
ues v1, v2, v3 when assigning the variables certain fea-
sible values in the dual optimization problem, i.e.,
v∗ = Ω(v1 + v2 + v3). We construct three sets of fea-
sible dual variables ηF ’s, the resultant values v1:3 will
induce Term I-III, respectively.

It is straightforward to see that Term I can be obtained
by assigning ηF ’s uniformly, and thus we can focus on
Term II and Term III. More precisely, we aim to lower
bound the optimal value of the following optimization
problem:

maximize:
∑

M⊂[n]:|M |=m

(∑
l∈M

ηM\{l}σ
2
l

)
×

Ent({ηM\{l}σ2
l }l∈M ) (26)

subject to:
∑

F⊂[n]:|F |=m−1

ηF = 1,

ηF ≥ 0, ∀F ⊂ [n], |F | = m− 1. (27)

Firstly, to study the sample complexity induced by
σ2
Gm , we specify a feasible assignment of dual vari-

ables ηF ’s as follows. For any F ⊂ Gm with |F | =

m − 1, let ηF =
∏
i∈F σ

2
i∑

F ′⊂Gm:|F ′|=m−1

∏
j∈F σ

2
i
; and for any

F 6⊂ Gm with |F | = m − 1, set ηF = 0. Then
Ent({ηM\{l}σ2

l }l∈M ) = ln(m) for any M ⊂ Gm with
|M | = m. Formally, Term II is the introduced by the
following lemma.

Lemma 6.4. The optimal value of the optimization
(26) is lower-bounded by 1

3

∑
j∈Gm σ

2
j ln(m).

Secondly, to study the complexity induced by σ2
Gl , we

consider the reduced arm set Gr ⊃ Gl. Define L ⊂ Gr
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with |L| = 2m as the arms with 2m largest variances in
Gr. We can verify that

∑
i∈L σ

2
i dominates

∑
j∈Gr σ

2
j .

Moreover, Ent(σ2
Gr ) and Ent(σ2

L) behave similarly, and
thus we can focus on the arms in L. Rigorously, the
following lemma justifies this choice.

Lemma 6.5. Let ηF =
(

2m
m−1

)−1
for any F ⊂ L with

|F | = m − 1 and ηF = 0 otherwise. The objective
function of the optimization problem (26) is at least
c′
∑
i∈Gl σ

2
iEnt(σ2

Gr ) − ln(2)
∑
i∈L σ

2
i , for some con-

stant c′ > 0.

The first item in Lemma 6.5 is exactly Term III, and
the second item − ln(2)

∑
i∈Gl σ

2
i can be absorbed into

Term I.

7 Conclusion

We study the worst-case sample complexity of (ε, δ)
top-m arm identification problem with heterogeneous
reward variances. The heterogeneity of reward vari-
ances is measured by certain entropy-like function. We
propose the variance-grouped median elimination al-
gorithm, which combines the advantages of the me-
dian elimination algorithm and the weighted naive
elimination algorithm in a divide-and-conquer man-
ner. Matching lower bound of the worst-case sample
complexity was devised using a dual formulation and
finding suitable feasible solutions.
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Supplementary Material:
Approximate Top-m Arm Identification with Heterogeneous Reward

Variances

A Proofs for Section 4

We will need the following well known inequality frequently.

Lemma A.1 (Hoeffding’s inequality). Let X1:n be n independent random variables follow some σ2-sub-Gaussian
distribution with mean µ. Let µ̂ be their sample mean. Then the following inequalities hold

P (µ̂− µ ≥ ε) ≤ e−
ε2n
2σ2 , P (µ̂− µ ≤ −ε) ≤ e−

ε2n
2σ2 . (28)

Lemma A.2 (Restate Lemma 4.2). For any m ≥ 2, Ent(σ2
Gr ) ≤ 8 ln(m).

Proof of Lemma 4.2. For any choice of σ2
1:n. Let sj =

∑
i∈G′j

σ2
i for each i = 1, . . . , k. By the grouping property

of entropy, we have

Ent(σ2
Gr ) = Ent(s1:k) +

k∑
j=1

sj∑k
i=1 si

Ent(σ2
G′j

) (29)

≤ Ent(s1:k) + ln(2m), (30)

where the inequality is due to the principal of maximum entropy.

For j = 1, . . . , k, if |G′j | > 0, we have 2j−1 ≤ sj/σ2 < 2m2j , otherwise sj = 0. Without loss of generality, assume

σ2 = 1 and sk > 0. Let s1:k be the assignment with the largest entropy Ent(s1:k). If there are only 2m non-zero
s1:k, we have Ent(s1:k) ≤ ln(2m) and the lemma is already proved. When there are more than 2m non-zero s1:k,
we have

k−2m+1∑
j=1

sj ≤ 2m

k−2m+1∑
j=1

2j = 4m(2k−2m+1 − 1) < 4m2k−2m+1, (31)

and sk ≥ 2k−1. It follows that

k−2m+1∑
j=1

sj =

∑k−2m+1
j=1 sj∑k

i=k−2m+2 si +
∑k−2m+1
j=1 sj

k∑
j=1

sj (32)

≤
∑k−2m+1
j=1 sj

sk +
∑k−2m+1
j=1 sj

k∑
j=1

sj <
4m2k−2m+1

2k−1 + 4m2k−2m+1

k∑
j=1

sj (33)

=
4m2−2m+2

1 + 4m2−2m+2

k∑
j=1

sj . (34)

We can then write

Ent(s1:k) = Ent(

k−2m+1∑
j=1

sj , sk−2m+2:k) +

∑k−2m+1
j=1 sj∑k
j=1 sj

Ent(s1:k−2m+1) (35)

≤ ln(2m) +
4m2−2m+2

1 + 4m2−2m+2
Ent(s1:k), (36)



Approximate Top-m Arm Identification with Heterogeneous Reward Variances

where the equality is by the grouping property of entropy function, and the inequality is by Ent(s1:k−2m+1) ≤
Ent(s1:k) since s1:k is the optimal assignment in terms of the largest entropy with k subsets, thus assignment
s1:k−2m+1 has smaller entropy. It implies Ent(s1:k) ≤ (1 + 4m2−2m+2) ln(2m) ≤ 3 ln(2m). We thus have
Ent(σ2

Gr ) ≤ 4 ln(2m) ≤ 8 ln(m).

B Proofs for Section 5

Lemma B.1 ( Restate Lemma 5.1). Let ωi = δ
σ2
i∑n

j=1 σ
2
j

, the weighted naive elimination algorithm takes

8
∑
i∈[n]

σ2
i

ε2

(
ln

1

δ
+ Ent(σ2

1:n)

)
(37)

samples, and solves the (ε, δ) top-m arm identification problem for any ε > 0 and 0 < δ < 1.

Proof of Lemma 5.1. The stopping time is clearly

n∑
i=1

2σ2
i

(ε/2)2
ln

1

ωi
= 8

∑n
i=1 σ

2
i

ε2

(
ln

1

δ
+ Ent(σ2

1:n)

)
. (38)

After the arms have been pulled and the reward observations collected, by Hoeffding’s inequality (Lemma A.1),
we have P(µ̂i ≤ µi−ε/2) ≤ ωi for any i ∈ [m] and P(µ̂j ≥ µj+ε/2) ≤ ωj for any j ∈ [n]\[m]. Since

∑
i∈[n] ωj = δ,

the union bound implies that the event E = {µ̂i > µi − ε/2,∀i ∈ [m]} ∩ {µ̂j < µj + ε/2,∀j ∈ [n] \ [m]} occurs
with probability at least 1− δ.

Suppose event E occurs. Consider a threshold µm − ε/2. Firstly, for any i ∈ [m], µ̂i > µi − ε/2 ≥ µm − ε/2.
In addition, any j ∈ [n]/[m] with µ̂j > µm − ε/2 must satisfy µj + ε/2 > µ̂j > µm − ε/2, which implies
µj > µm − ε, i.e., the j-th arm is ε-approximate top-m. In other words, any arm with a sample mean greater
than the threshold µm − ε/2 must be ε-approximate top-m. Since there are at least m arms with sample means
greater than µm − ε/2, the m selected arms must be ε-approximate top-m.

Lemma B.2 (Restate Lemma 5.2). For any σ2
1:n, if maxi∈[n] σ

2
i /minj∈[n] σ

2
j ≤ 2, the MedElim algorithm has

an expected stopping time

O

(∑
i∈[n] σ

2
i

ε2

(
ln

1

δ
+ ln(m)

))
. (39)

Moreover, for any m′ ≤ m, the MedElim algorithm satisfies the (ε, m
′

m δ) top-m′ condition.

Proof of Lemma 5.2. We study the stopping time and accuracy separately.

Stopping time analysis: Recall that r =
maxi∈[n] σ

2
i

minj∈[n] σ
2
j

. It is clear that the size of the candidate set S` decreases

as |S`| ≤ n
2`−1 . The sum of variances in the candidate set S` decreases as follows∑

i∈S` σ
2
i∑

j∈[n] σ
2
j

≤
∑
i∈S` rσ

2∑
j∈[n] σ

2
≤ r |S`|

n
≤ r

2`−1
. (40)

This implies that ∑
i∈S` σ

2
i

(ε`/2)2
= 36

16`

9`

∑
i∈S` σ

2
i

ε2
≤ 72r

8`

9`

∑n
i=1 σ

2
i

ε2
. (41)

The (random) total number of samples is thus upper bounded by

∞∑
`=1

∑
i∈S`

ti,` =

∞∑
`=1

2
∑
i∈S` σ

2
i

(ε`/2)2
ln

(
m

δ`

)
(42)
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≤ r
144

∑n
i=1 σ

2
i

ε2

∞∑
`=1

8`

9`

(
` ln(2) + ln

4m

δ

)
(43)

= O

(
r

∑n
i=1 σ

2
i

ε2

(
ln

1

δ
+ ln(m)

))
, (44)

with probability one. Thus the expected stopping time is of order O

(
r̃
∑
i∈[n] σ

2
i

ε2

(
ln 1

δ + ln(m)
))

.

Accuracy analysis. Take an arbitrary ` ≥ 1 with |S`| > 2m. Fix some m′ ≤ m. Let 1`, 2`, . . . ,m
′
` be the

indices of the top-m′ arms in S` obtained in iteration-(`−1). For any i ∈ [m′], by Hoeffding’s inequality (Lemma
A.1), we have P(µ̂i`,` > µi` − ε`/2) ≥ 1− 1

mδ`. Define the event E` = {∀i ∈ [m′], µ̂i`,` > µi` − ε`/2}. By applying

the union bound over i ∈ [m′], it is straightforward to verify that P(E`) ≥ 1− m′

m δ`.

Conditioned on event E` occurring, consider a threshold µm′` − ε`/2. It is clear that for any i ∈ [m′], µ̂i`,` >
µi`−ε/2 ≥ µm′`−ε/2. Thus any arm in {1`, . . . ,m′`} has an empirical mean greater than the threshold µm′`−ε`/2.
In iteration-`, |S`+1| arms with the largest empirical means are selected from set S`.

• If the selected arm with the smallest sample mean min{µ̂i,` : i ∈ S`+1} is less than or equal to the threshold,
then all the arms in {1`, . . . ,m′`} must be selected and they are still the top-m′ arms within S`+1. It implies
that µm′`+1

= µm′` > µm′` − ε`.

• On the other hand, if the selected arm with the smallest sample mean is greater than the threshold, some
arms in {1`, . . . ,m′`} may not be selected. Define the set of bad arms B` := {i ∈ S` : µi < µm′` − ε`}. A
bad arm will be selected only if its empirical mean is greater than the threshold. Denote the set of bad arms
with such overestimated sample means as Nm′,` = {j ∈ B` : µ̂j,` > µm′` − ε`/2}. Then there are at most
|Nm′,`| bad arms in S`+1. If |Nm′,`| ≤ |S`+1| −m′, at least m′ good arms remain in S`+1, which guarantees
µm′`+1

≥ µm′` − ε`.

These two situations indicate that conditioned on E`, |Nm′,`| ≤ |S`+1| −m′ implies µm′`+1
≥ µm′` − ε`. It follows

that

P
(
µm′`+1

< µm′` − ε`|E`
)
≤ P (|Nm′,`| ≥ |S`+1| −m′ + 1|E`)

≤ E[|Nm′,`||E`]
|S`+1| − i+ 1

.

where the second inequality is due to Markov inequality. The expectation can be bounded by

E[|Nm′,`||E`] =
∑
j∈B`

P
(
µ̂j,` > µm′` − ε`/2|E`

)
=
∑
j∈B`

P
(
µ̂j,` > µm′` − ε`/2

)
≤
∑
j∈B`

P (µ̂j,` > µj + ε`/2)

≤ (|S`| −m′)
δ`
m
,

where the equality is because E` is defined by the samples of arms in [1`, . . . ,m
′
`] which are independent from

the samples of arms in B`, the first inequality is by µm′` > µj for j ∈ B`, and the last inequality is by applying
Hoeffding’s inequality to each µ̂j,l, j ∈ B` and |B`| ≤ |S`| −m′. We thus have

P
(
µm′`+1

< µm′` − ε`|E`
)
≤ δ`
m

|S`| −m′

|S`+1| −m′ + 1

≤ δ`
m

|S`| −m
|S`+1| −m+ 1

by m′ ≤ m

≤ δ`
m

2|S`+1|+ 1−m
|S`+1| −m+ 1

by |S`| ≤ 2|S`+1|+ 1
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=
δ`
m

(
2 +

m− 1

|S`+1| −m+ 1

)
≤ δ`
m

(
2 +

m− 1

2m−m+ 1

)
by |S`+1| ≥ 2m

<
3δ`
m
.

It follows that

P
(
µm′`+1

< µm′` − ε`
)

= P(E)P
(
µm′`+1

< µm′` − ε`|E
)

+ P(Ec)P
(
µm′`+1

< µm′` − ε`|E
c
)

≤ P
(
µm′`+1

< µm′` − ε`|E
)

+ P(Ec)

≤ 3δ`
m

+
m′δ`
m
≤ 4m′

m
δ`.

The argument above holds for any ` ≥ 1 with |S`| > 2m. The parameters satisfy

∞∑
`=1

ε` =
ε

3

∞∑
`=1

(3/4)` = ε,

∞∑
`=1

4δ` = δ

∞∑
`=1

(1/2)` = δ.

The returned arm set is R = S`∗ for certain `∗, and thus with probability at least 1 − m′

m δ, the final returned
arm set R satisfies

maxm
′

i∈Rµi = maxm
′

i∈S`∗µi

≥ maxm
′

i∈S`∗−1
µi − ε`∗−1

≥ · · ·

≥ maxm
′

i∈S1µi −
`∗−1∑
`=1

ε`

> maxm
′

i∈[n]µi − ε.

The proof is thus complete.

Calculation in the illustrative example Recall the illustrative example, where log(m) = k and log(n) = k2

for some integer k ≥ 2 and ` = dlog(k)e. Among these n arms, there are 2i arms with the same variance 2−i for

each i = 0, 1, . . . , `− 1, and the rest n−
∑`−1
i=0 2i = 2k

2 − 2` + 1 arms have the same variance 2−k
2

`/k. Then Gm

is the set of arms with variances 2−k
2

`/k, and Gl is the set of arms with variances 2−i for i = 0, 1, . . . , `− 1. It
is seen that ∑

j∈Gm
σ2
j = (2k

2

− 2` + 1)2−k
2

`/k = Θ(`/k), (45)

∑
j∈Gl

σ2
j =

`−1∑
i=0

2i2−i = ` = Θ(log(k)), (46)

which implies
∑
j∈[n] σ

2
j = Θ(log(k)). Furthermore, we can calculate that

Ent(σ2
Gl) =

`−1∑
i=0

2i2−i

`
ln(2i) =

ln(2)

2
(`− 1) = Θ(`) = Θ(log(k)). (47)

Furthermore, we can calculate that∑
j∈Gr

σ2
j = 2m2−k

2

`/k +
∑
j∈Gl

σ2
j = 2−k

2+1`+ ` = Θ(`) = Θ(log(k)). (48)
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Then the entropy values can be calculated as

Ent(σ2
Gr ) =

∑
j∈Gr/Gl σ

2
j∑

j∈Gr σ
2
j

Ent(σ2
Gr/Gl) +

∑
j∈Gl σ

2
j∑

j∈Gr σ
2
j

Ent(σ2
Gl) (49)

=
2−k

2+1`∑
j∈Gr σ

2
j

ln(2m) +
`∑

j∈Gr σ
2
j

Ent(σ2
Gl) (50)

= Θ
(

2−k
2

k + Ent(σ2
Gl)
)

(51)

= Θ(Ent(σ2
Gl)) = Θ(log(k)), (52)

and Ent(σ2
Gm) = Θ(k2) implies

Ent(σ2
1:n) =

∑
j∈Gm σ

2
j∑

j∈[n] σ
2
j

Ent(σ2
Gm) +

∑
j∈Gl σ

2
j∑

j∈[n] σ
2
j

Ent(σ2
Gl) (53)

= Θ

(
`/k

log(k)
k2 + log(k)

)
= Θ(k). (54)

C A More Adaptive Median Elimination Algorithm

Let us sort σ2
1:n in decreasing order, and denote the sorted variances as σ̃2

1:n. For each ` ≥ 1, define h` := max{j ≥
m :

∑
i∈[j] σ̃

2
i ≤ 1

2`−1

∑
i∈[n] σ

2
i } if the set is not empty, otherwise h` = m. Let `∗ := min{` ≥ 1 : h` = m}.

Define a ratio

r := min
j∈[`∗−1]

hj+1

hj
(55)

Algorithm 3 Adapted-MedElim(σ2
1:n,m, [n], ε, δ)

sInitialize S1 = [n], ` = 1 and ε` = (ε/3) 3`

4`
, δ` = rδ

2`

for ` = 1, 2, . . . , `∗ − 1 do

Pull arm-i ti,` =
2σ2
i

(ε`/2)2
ln m

δ`
times and calculate their sample mean µ̂i,` for each i ∈ S`

Update candidate set S`+1 = arg max
1:h`+1

i∈S` µ̂i,`
Return: S`∗

In the homogeneous setting, the MedElim algorithm halves the complexity of the problem if the candidate set
is halved. However, it should be noted that in the heterogeneous setting, simply halving the candidate set may
not be efficient since the complexity would depend on the sum of the variances, instead of the number of the
candidate arms. We can instead aim to half the sum of the variances of the candidate set. This discrepancy
is less pronounced when the heterogeneity is low, and thus the MedElim algorithm performs reasonably well in
such cases.

Lemma C.1. The algorithm is valid and has an expected stopping time

O

∑
i∈[n]

σ2
i

ε2

(
ln

1

δ
+ ln(m) + ln

1

r

) . (56)

Proof of Lemma C.1. We study the stopping time and accuracy separately.

Stopping time analysis: First, notice the sum of variances in the candidate set decreases as follows:

∑
i∈S`

σ2
i =

∑
i∈S` σ

2
i∑

i∈[n] σ
2
i

∑
i∈[n]

σ2
i ≤

∑
i∈[h`] σ̃

2
i∑

i∈[n] σ
2
i

∑
i∈[n]

σ2
i ≤

1

2`−1

n∑
i∈[n]

σ2
i . (57)
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This implies that ∑
i∈S` σ

2
i

(ε`/2)2
= 36

16`

9`

∑
i∈S` σ

2
i

ε2
≤ 72r

8`

9`

∑n
i=1 σ

2
i

ε2
. (58)

The stopping time is thus upper bounded by

∞∑
`=1

∑
i∈S`

ti,` =

∞∑
`=1

2
∑
i∈S` σ

2
i

(ε`/2)2
ln

(
m

δ`

)
(59)

≤
144

∑n
i=1 σ

2
i

ε2

∞∑
`=1

8`

9`

(
` ln(2) + ln

m

δ
+ ln

1

r

)
(60)

= O

(∑n
i=1 σ

2
i

ε2

(
ln

1

δ
+ ln(m) + ln

1

r

))
. (61)

The expected stopping time is of order O
(∑n

i=1 σ
2
i

ε2

(
ln 1

δ + ln(m) + ln 1
r

))
.

Accuracy analysis. Take an arbitrary ` ∈ [`∗ − 1], and it is clear that |S`| = h` > m. Fix some m′ ≤ m. Let
1`, 2`, . . . ,m

′
` be the indices of the top-m′ arms in S`, respectively. For any i ∈ [m′], by Hoeffding’s inequality

(Lemma A.1), we have P(µ̂i`,` > µi` − ε`/2) ≥ 1 − 1
mδ`. Define the event E` = {∀i ∈ [m′], µ̂i`,` > µi` − ε`/2}.

By applying the union bound over i ∈ [m′], it is straightforward to verify that P(E`) ≥ 1− m′

m δ`.

Conditioned on the event E` occurring, consider a threshold µm′` − ε`/2. It is clear that for any i ∈ [m′],
µ̂i`,` > µi` − ε/2 ≥ µm′` − ε/2. Thus any arm in {1`, . . . ,m′`} has empirical mean greater than the threshold
µm′` − ε`/2. |S`+1| = h`+1 arms with the largest sample means are selected from set S`.

• If the smallest selected sample mean min{µ̂i,` : i ∈ S`+1} is less or equal to the threshold, all arms in
{1`, . . . ,m′`} must be selected and they are still top-m′ arms within S`+1. It implies that µm′`+1

= µm′` >
µm′` − ε`.

• On the other hand, if the smallest selected sample mean is greater than the threshold, some arms in
{1`, . . . ,m′`} may not be selected. Define the set of bad arms B` := {i ∈ S` : µi < µm′` − ε`}. A bad arm
can be selected only if its empirical mean is greater than the threshold. Define the set of such overestimated
bad arms as Nm′,` = {j ∈ B` : µ̂j,` > µm′` − ε`/2}. Then there are at most |Nm′,`| bad arms in S`+1. If
|Nm′,`| ≤ |S`+1| −m′, at least m′ good arms remain in S`+1, which guarantees µm′`+1

≥ µm′` − ε`.

These two situations indicate that |Nm′,`| ≤ |S`+1| −m′ implies µm′`+1
≥ µm′` − ε` conditioned on E`. It follows

that

P
(
µm′`+1

< µm′` − ε`|E`
)
≤ P (|Nm′,`| ≥ |S`+1| −m′ + 1|E`)

≤ E[|Nm′,`||E`]
|S`+1| − i+ 1

.

where the second inequality is by Markov inequality. The expectation can be bounded by

E[|Nm′,`||E`] =
∑
j∈B`

P
(
µ̂j,` > µm′` − ε`/2|E`

)
≤ (|S`| −m′)

δ`
m
,

where the inequality is by Hoeffding’s inequality and |B`| ≤ |S`| −m′. We thus have

P
(
µm′`+1

< µm′` − ε`|E`
)
≤ δ`
m

|S`| −m′

|S`+1| −m′ + 1

=
δ`
m

h` −m′

h`+1 −m′ + 1

≤ δ`
m

h`+1/r −m′

h`+1 −m′ + 1
by h` ≤

1

r
h`+1
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=
δ`
m

(
1

r
+

(1/r − 1)m′ − 1/r

h`+1 −m′ + 1

)
≤ δ`
m

(1/r + (1/r − 1)m′ − 1/r) by h`+1 ≥ m ≥ m′

=
m′δ`
m

(1/r − 1).

It follows that

P
(
µm′`+1

< µm′` − ε`
)

= P(E)P
(
µm′`+1

< µm′` − ε`|E
)

+ P(Ec)P
(
µm′`+1

< µm′` − ε`|E
c
)

≤ P
(
µm′`+1

< µm′` − ε`|E
)

+ P(Ec)

≤ m′δ`
m

(1/r − 1) +
m′δ`
m

=
1

r

m′

m
δ`.

The argument above holds for any ` ≥ 1 with |S`| > 2m. The parameters satisfy

∞∑
`=1

ε` =
ε

3

∞∑
`=1

(3/4)` = ε,

∞∑
`=1

1

r
δ` = δ

∞∑
`=1

(1/2)` = δ.

The returned arm set R = S`∗ for some `∗. With probability at least 1 − m′

m δ, the final returned arm set R
satisfies

maxm
′

i∈Rµi = maxm
′

i∈S`∗µi

≥ maxm
′

i∈S`∗−1
µi − ε`∗−1

≥ · · ·

≥ maxm
′

i∈S1µi −
`∗−1∑
`=1

ε`

> maxm
′

i∈[n]µi − ε.

D Proofs for Section 6

Define I(σ2
1:n) := {(µ1:n, σ

2
1:n) : µ1:n ∈ Rn}. When σ2

1:n is obvious in the context, we simply write I(σ2
1:n) as I.

The sample complexity of the approximate top-m identification problem under algorithm inputs (ε, δ,m, [n], σ2
1:n)

is

SC(ε, δ,m, [n], σ2
1:n) := inf

A
sup

I∈I(σ2
1:n)

EI [TA], (62)

where the infimum is taken over all valid algorithms, the supreme is taken over the instance class I(σ2
1:n) :=

{(µ1:n, σ
2
1:n) : µ1:n ∈ Rn}, and the subscript I in the expectation EI [·] indicates that it is with respect to bandit

model I.

Lemma D.1 (Restate Lemma 6.2). For any two probability measure P,Q on the same measurable space (Ω,F),
if E ∈ F with P (E) ≥ 1− δ > Q(E), we have

Q(E) ≥ B(δ)e−
D(P ||Q)

1−δ , (63)

where D(·||·) is the Kullback-Leibler divergence and B(δ) = e−
Ent(δ,1−δ)

1−δ is a strictly decreasing function with
B(0.1) > 0.69.
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Proof of Lemma 6.2. Let Db(p, q) = p ln p
q + (1− p) ln 1−p

1−q be the binary KL-divergence. Since P (E) ≥ 1− δ, by
the data processing inequality for the KL-divergence, we have

D(P ||Q) ≥ Db(P (E), Q(E)) ≥ Db(1− δ,Q(E)) (64)

> (1− δ) ln
1− δ
Q(E)

+ δ ln δ ≥ (1− δ) ln
B(δ)

Q(E)
, (65)

where the second inequality is due to P (E) ≥ 1−δ > Q(E), and the fact that Db(p, q) is monotonically increasing
in p in the range [q, 1] for any fixed q. We thus concludes that

Q(E) ≥ B(δ)e−
D(P ||Q)

1−δ . (66)

Lemma D.2 (Restate Lemma 6.3). For ε > 0, δ < 0.25, m < n/2, (σ2
i )i∈[n], SC(ε, δ,m, [n], σ2

1:n) ≥ 1−δ
2ε2 v

∗,
where v∗ is the optimal value of the following optimization problem:

maximize:
∑

M⊂[n]:|M |=m

(∑
l∈M

ηM\{l}σ
2
l

)(
ln
B(δ)

δ
+ Ent({ηM\{l}σ2

l }l∈M )

)
(67)

subject to:
∑

F⊂[n]:|F |=m−1

ηF = 1, ηF ≥ 0, ∀F ⊂ [n], |F | = m− 1. (68)

Proof of Lemma 6.3. We have shown in Section 6 that SC(ε, δ,m, [n], σ2
1:n) is lower bounded by the optimal value

of the following optimization problem:

minimize: max
F⊂[n]:|F |=m−1, l 6∈F

∑
j /∈F∪{l}

tl,F,j (69)

subject to:
∑
i∈M

exp
(
−tl,M\{i},i/θi

)
≤ δ′, ∀M ⊂ [n], |M | = m, ∀l /∈M, (70)

where θi =
(1−δ)σ2

i

2ε2 ,∀i ∈ [n] and δ′ = δ
B(δ) . This problem is equivalent to the following convex optimization.

min
t,τ

τ (71)

s.t.
∑

j /∈F∪{l}

tl,F,j ≤ τ, ∀F ⊂ [n] \ {l} : |F | = m− 1,∀l ∈ [n] (72)

∑
i∈M

exp
(
−tl,M\{i},i/θi

)
≤ δ′, ∀M ⊂ [n] \ {l} : |M | = m,∀l ∈ [n]. (73)

For simplicity, we use notation
∑
l,F and

∑
l,M to indicate

∑
l∈[n]

∑
F⊂[n]\{i}:|F |=m−1 and∑

l∈[n]
∑
M⊂[n]\{i}:|M |=m, respectively. The Lagrangian of the optimization problem above is

L(t, τ, η, λ) = τ +
∑
l,F

ηl,F

 ∑
j /∈F∪{l}

tl,F,j − τ

+
∑
l,M

λl,M

(∑
i∈M

exp
(
−tl,M\{i},i/θi

)
− δ′

)
(74)

It is straightforward to check the optimization problem satisfies Slater’s condition by assigning large enough
tl,F,j and τ values. Since the optimization problem is convex, the optimal value equals to supη,λ inft,τ L(t, τ, η, λ)
according to the strong duality. For the saddle point, we must have

∑
l,F ηl,F = 1, or else inft,τ L(t, τ, η, λ) = −∞.

Decision variable τ can thus be omitted. Let L(t, η, λ) = L(t, τ, η, λ) by restricting
∑
l,F ηl,F = 1. The derivative

can be calculated that

dL(t, η, λ)

dtl,F,i
= ηl,F −

λl,F∪{i}

θi
exp(−tl,F,i/θi). (75)
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It implies that when ηl,F > 0 and λl,F∪{i} > 0, tl,F,i = θi ln
λl,F∪{i}
ηl,F θi

. Define ln(0) = −∞ and let 0 · ∞ = 0. The

extended real valued function g(η, λ) for
∑
l,F ηl,F = 1, ηl,F ≥ 0 and λl,M ≥ 0, is

g(η, λ) := inf
t
L(t, η, λ) =

∑
l,F

ηl,F
∑

i/∈F∪{l}

θi lnλl,F∪{i} −
∑
l,F

ηl,F
∑

i/∈F∪{l}

θi ln(ηl,F θi)

+
∑
l,M

(∑
i∈M

ηl,M\{i}θi − δ′λl,M

)
. (76)

This dual function has two set of variables, however one of them can be eliminated explicitly as follows. For
fixed η’s with

∑
l,F ηl,F = 1 and ηl,F ≥ 0, the function is separable with respect to λ’s, and thus we can

maximize g(η, λ) by optimizing each individual λl,M separately. It is straightforward to verify that λl,M =(∑
F,i:F∪{i}=M ηl,F θi

)
/δ′.

Since η’s, θ’s and δ′ are positive, the assignments of λ’s are also positive, which satisfy the constraints in the
dual program. Plug it into g(η, λ), we have the induced objective as

g(η) =
∑
l,F

ηl,F
∑

i/∈F∪{l}

θi ln

∑
F ′,i′:F ′∪{i′}=F∪{i} ηl,F θi

ηl,F θiδ′
(77)

=
∑
F

∑
i/∈F

∑
l/∈F∪{i}

ηl,F θi ln

∑
F ′,i′:F ′∪{i′}=F∪{i} ηl,F θi

ηl,F θiδ′
. (78)

and the dual variables η’s lie in a probability simplex.

Further constraining the problem by requiring ηF := (n − m)ηl,F for all l /∈ F reduces the number of dual
variables, but does not change the fact that any valid assignment of ηF ’s will provide a lower bound to the
original primal problem. The following restricted objective will be considered:

g(η) =
∑
F

∑
i/∈F

∑
l/∈F∪{i}

ηF
n−m

θi ln

∑
F ′,i′:F ′∪{i′}=F∪{i} ηF θi

ηF θiδ′
(79)

=
∑
F

∑
i/∈F

ηF θi ln

∑
F ′,i′:F ′∪{i′}=F∪{i} ηF θi

ηF θiδ′
. (80)

The optimal value of the optimization above is lower bounded by

maximize
∑

M⊂[n],|M |=m

∑
j∈M

ηM\{j}θj

(Ent({ηM\{j}σ2
j }j∈M ) + ln

B(δ)

δ

) (81)

subject to
∑

F⊂[n]:|F |=m−1

ηF = 1, ηF ≥ 0, ∀F ⊂ [n], |F | = m− 1. (82)

The lemma is proved.

Recall that the optimization in (26) is

maximize:
∑

M⊂[n]:|M |=m

(∑
l∈M

ηM\{l}σ
2
l

)
Ent({ηM\{l}σ2

l }l∈M ) (83)

subject to:
∑

F⊂[n]:|F |=m−1

ηF = 1, ηF ≥ 0, ∀F ⊂ [n], |F | = m− 1. (84)

Lemma D.3 (Restate Lemma 6.4). The optimal value of the optimization (83) is lower-bounded by
1
3

∑
j∈Gm σ

2
j ln(m).
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Proof of Lemma 6.4. The objective function of equation (83) can be written as

∑
F⊂[n]:|F |=m−1

∑
i/∈F

ηFσ
2
i ln

(∑
F ′∪{j}=F∪{i} ηF ′σ

2
j

ηFσi

)

=
∑
i∈[n]

∑
F :i6∈F

ηFσ
2
i ln

(∑
F ′∪{j}=F∪{i} ηF ′σ

2
j

ηFσi

)
(85)

For any F ⊂ Gm with |F | = m − 1, let ηF =
∏
i∈F σ

2
i∑

F ′⊂Gm:|F ′|=m−1

∏
j∈F σ

2
i
; and for any F 6⊂ Gm with |F | = m − 1,

set ηF = 0. In the following analysis F indicates subset of Gm with |F | = m− 1 and E indicates subset of Gm

with |E| = m− 2. Items in (85) can be lower bounded as follows.

ln(m)
∑
i∈Gm

σ2
i

∑
F :i 6∈F

ηF (86)

= ln(m)
∑
i∈Gm

σ2
i

∑
F :i/∈F

∏
l∈F σ

2
l∑

F :i∈F
∏
l∈F σ

2
l +

∑
F :i 6∈F

∏
l∈F σ

2
l

(87)

= ln(m)
∑
i

σ2
i

(∑
F :i∈F

∏
l∈F σ

2
l∑

F :i/∈F
∏
l∈F σ

2
l

+ 1

)−1
(88)

= ln(m)
∑
i∈Gm

σ2
i

(
(m− 1)

∑
F :i∈F

∏
l∈F σ

2
l

(m− 1)
∑
F :i/∈F

∏
l∈F σ

2
l

+ 1

)−1
(89)

= ln(m)
∑
i∈Gm

σ2
i

(m− 1)σ2
i

∑
E:i/∈E

∏
l∈E σ

2
l∑

E:i/∈E
∏
l∈E σ

2
l

(∑
j∈Gm\E\{i} σ

2
j

) + 1

−1 (90)

≥ ln(m)
∑
i∈Gm

σ2
i

(m− 1)σ2
i

∑
E

∏
l∈E σ

2
l∑

E

∏
l∈E σ

2
l

(
minF :i∈F

∑
j∈Gm\F σ

2
j

) + 1

−1 (91)

= ln(m)
∑
i∈Gm

σ2
i

(
(m− 1)σ2

i∑
j∈Gm σ

2
j −maxF :i∈F

∑
l∈F σ

2
l

+ 1

)−1
, (92)

where the last inequality is by
∑
j∈Gm\E\{i} σ

2
j ≥ minF :i∈F

∑
j∈Gm\F σ

2
j for any E . Recall the definition of Gm:

there are G1:k groups partitioning [n] and Gm = ∪j:|Gj |>2mGj . Consider the group Gk′ ⊂ Gm with the largest
index k′ ≤ k. Since the heterogeneity within group Gk′ is at most 2, we have maxi∈Gm σ

2
i ≤ 2σ2

j for any j ∈ Gk′ .
Then for any F ⊂ Gm and any i ∈ Gm,

(m− 1)σ2
i∑

j∈Gm σ
2
j −

∑
l∈F σ

2
l

=
(m− 1)σ2

i∑
j∈Gm\F σ

2
j

≤ (m− 1)σ2
i∑

j∈Gk′\F
σ2
j

≤ 2(m− 1)

|Gk′ \ F |
≤ 2(m− 1)

m+ 1
< 2, (93)

where the first inequality is by Gk′ ⊂ Gm, the second inequality is by σ2
i ≤ 2σ2

j for any j ∈ Gk′ , and the third
inequality is by |Gk′ | > 2m. It follows that

ln(m)
∑
i

σ2
i

(
(m− 1)σ2

i∑
j∈Gm σ

2
j −maxF :i∈F

∑
l∈F σ

2
l

+ 1

)−1
(94)

≥ ln(m)
∑
i

σ2
i (2 + 1)

−1
=

1

3
ln(m)

∑
j

σ2
j . (95)

Lemma D.4. There exists some constant 0 < c′ < 1, that for any choices of σ2
1:n, Ent(σ2

L) ≥ c′Ent(σ2
Gr ) −

c′ ln(2).
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Proof of Lemma D.4. By the grouping property of entropy, we have

Ent(σ2
Gr ) = Ent(

∑
j∈L

σ2
j ,

∑
i∈Gr\L

σ2
i ) (96)

+

∑
i∈L σ

2
i∑

j∈Gr σ
2
j

Ent(σ2
L) +

(
1−

∑
i∈L σ

2
i∑

j∈Gr σ
2
j

)
Ent(σ2

Gr\L) (97)

< ln(2) + Ent(σ2
L) +

(
1−

∑
i∈L σ

2
i∑

j∈Gr σ
2
j

)
8 ln(m) (98)

≤ ln(2) + 33Ent(σ2
L), (99)

where the first inequality is due to the principal of maximum entropy and Lemma 4.2, and the last inequality is
by Lemma E.2.

Lemma D.5 (Retate Lemma 6.5). Let ηF =
(

2m
m−1

)−1
for any F ⊂ L with |F | = m− 1 and ηF = 0 otherwise.

There exists some constant c′ > 0.005. The objective of optimization (26) is at least c′
∑
i∈Gl σ

2
iEnt(σ2

Gr ) −
ln(2)

∑
i∈L σ

2
i .

Proof. Recall L ⊂ Gr with |L| = 2m is the subset of arms with largest variances within Gr. For any M ⊂ L
with |M | = m, by the grouping property of entropy function we have

Ent(σ2
L) = Ent(

∑
i∈M

σ2
i ,
∑

j∈L\M

σ2
j ) +

∑
i∈M σ2

i∑
j∈L σ

2
j

Ent(σ2
M ) +

∑
i∈L\M σ2

i∑
j∈L σ

2
j

Ent(σ2
L\M ) (100)

≤ ln(2) +

∑
i∈M σ2

i∑
j∈L σ

2
j

Ent(σ2
M ) +

∑
i∈L\M σ2

i∑
j∈L σ

2
j

Ent(σ2
L\M ), (101)

where the inequality is by the principal of maximum entropy. Multiply
∑
j∈L σ

2
j on both side, and we have∑

i∈M
σ2
jEnt(σ2

M ) +
∑

i∈L\M

σ2
iEnt(σ2

L\M ) ≥
∑
j∈L

σ2
j (Ent(σ2

l )− ln(2)). (102)

Since |M | = |L \M | = m, summing the inequality above for each M ⊂ L with |M | = m and multiplying by
1

2( 2m
m−1)

gives us

∑
M⊂L:|M |=m

1(
2m
m−1

) ∑
i∈M

σ2
iEnt(σ2

M ) ≥
(
2m
m

)
2
(

2m
m−1

) (Ent(σ2
L)− ln(2))

∑
i∈L

σ2
i (103)

≥ 1

2
(Ent(σ2

L)− ln(2))
∑
i∈L

σ2
i =

1

2
Ent(σ2

L)
∑
i∈L

σ2
i −

ln(2)

2

∑
i∈L

σ2
i (104)

≥ 1

2

∑
i∈L

σ2
i

Ent(σ2
Gr )− ln(2)

33
− ln(2)

2

∑
i∈L

σ2
i (105)

≥ 1

6

∑
i∈Gr

σ2
i

Ent(σ2
Gr )

33
− 1

2

∑
i∈L

σ2
i

ln(2)

33
− ln(2)

2

∑
i∈L

σ2
i (106)

≥ 1

174

∑
i∈Gr

σ2
iEnt(σ2

Gr )− ln(2)
∑
i∈L

σ2
i , (107)

where the second inequality is by
(2m
m )

( 2m
m−1)

≥ 1, the third and forth inequalities are by Lemma D.4.

E Supporting Lemmas

Lemma E.1 (Lemma 5.1 in (Lattimore and Szepesvári, 2020)). Given two bandit instances I = (µ1:n, σ
2
1:n) and

I ′ = (µ′1:n, σ
′2
1:n), and let PI and PI′ be the probability measure associated with the bandit instances, respectively.
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Then for any algorithm A with the number of pulling for each arm-i as TA
i , which is a random variable, let

τA be the bandit process and let PI,π and PI′,π be the probability measures induced by τA on instance I and I ′,
respectively. We have

D(PI,A||PI′,A) =

n∑
i=1

EI [TA
i ]D

(
N (µi, σ

2
i )||N (µ′i, σ

′2
i )
)
. (108)

Lemma E.2. For any σ2
1:n, we have

∑
i∈L σ

2
i∑

j∈Gr σ
2
j
≥ 1

3 . In addition,(
1−

∑
i∈L σ

2
i∑

j∈Gr σ
2
j

)
ln(m) ≤ 4Ent(σ2

L), (109)

for some constant c > 0.

Proof of Lemma E.2. Suppose the minimum variance in σ2
L is σ̃2. Let α = 2mσ̃2∑

i∈L σ
2
i
∈ (0, 1], which implies∑

i∈L σ
2
i = 2mσ̃2/α. In addition,

∑
j∈Gr\L σ

2
j ≤ 2mσ̃2

∑∞
i=0 2−i = 4mσ̃2. It is straightforward to verify that∑

i∈L σ
2
i∑

j∈Gr σ
2
j

=
2mσ̃2/α∑

j∈Gr\L σ
2
j + 2mσ̃2/α

≥ 2mσ̃2/α

4mσ̃2 + 2mσ̃2/α
=

1/α

2 + 1/α
≥ 1

3
, (110)

which proves the first statement. It follows that

1−
∑
i∈L σ

2
i∑

j∈Gr σ
2
j

≤ 1− 1/α

2 + 1/α
=

2

2 + 1/α
<

2

1 + 1/α
. (111)

By concavity of entropy function, Ent(σ2
L) ≥ Ent

(
1− 2m−1

2m α, α
2m ,

α
2m , · · · ,

α
2m

)
. It implies that

(1 + 1/α)Ent(σ2
L) (112)

≥ (1 + 1/α)

(
−(1− 2m− 1

m
α) ln

(
1− 2m− 1

2m
α

)
+

2m− 1

2m
α ln

2m

α

)
(113)

≥ 2m− 1

2m
ln(2m) +

2m− 1

2m
ln

1

α
−
(

1

α
− 2m− 1

2m

)
ln

(
1− 2m− 1

2m
α

)
(114)

≥ 1

2
ln(2m)− 1

2
ln(α)− (1/α− 1) ln(1− α) (115)

≥ 1

2
ln(2m) >

1

2
ln(m). (116)

We thus have

4Ent(σ2
L) >

2

1 + 1/α
ln(m) >

(
1−

∑
i∈L σ

2
i∑

j∈Gr σ
2
j

)
ln(m). (117)
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