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Abstract

The distributions output by a standard (non-normalized) conformal predictive system
all have the same shape but differ in location, while a normalized conformal predictive
system outputs distributions that differ also in shape, through rescaling. An approach to
further increasing the flexibility of the framework is proposed, called Mondrian conformal
predictive distributions, which are (standard or normalized) conformal predictive distri-
butions formed from multiple Mondrian categories. The effectiveness of the approach is
demonstrated with an application to regression forests. By forming categories through bin-
ning of the predictions, it is shown that for this model class, the use of Mondrian conformal
predictive distributions significantly outperforms the use of both standard and normalized
conformal predictive distributions with respect to the continuous-ranked probability score.
It is further shown that the use of Mondrian conformal predictive distributions results in as
tight prediction intervals as produced by normalized conformal regressors, while improving
upon the point predictions of the underlying regression forest.

Keywords: Conformal predictive systems, Conformal predictive distributions, Mondrian
conformal predictive distributions, Continuous ranked probability score

1. Introduction

In contrast to a standard regression model, which outputs point predictions, and a conformal
regressor, which outputs prediction intervals, a conformal predictive system for regression
outputs cumulative probability distributions over the possible target values (Vovk et al.,
2020). Following the terminology used in conjunction with conformal regressors (Johansson
et al., 2014a), one may distinguish between standard and normalized conformal predictive
systems, where the latter employ a quality estimate (σi) that is specific to each object
(xi) for which a prediction is to be made, while the former use the same σi = c for all
objects, where c is some positive constant. As a consequence, distributions output by
a standard conformal predictive system may differ only in their location and not in their
shape. The distributions output by a normalized conformal predictive system may differ also
in shape, as they are rescaled along the target value dimension using the quality estimates;
the distribution for a high-quality prediction will be scaled down along this dimension,
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resulting in a steeper increase of the cumulative probability distribution close to the point
prediction, while the distribution of a low-quality prediction will be upscaled, resulting in
a more uniform increase over the range of possible target values.

Conformal predictive systems can be seen as generalizations of both standard and confor-
mal regressors, as they can easily be constrained to produce point predictions and prediction
intervals, respectively. The latter can be obtained from a conformal predictive distribution
through considering the lower and upper percentiles of interest, e.g., using the 2.5th and
97.5th percentiles for a 95% level of confidence. Conformal predictive systems can also be
used for calibrating point predictions, e.g., by using the 50th percentile (median) or the
mean of the distribution, rather than the prediction of the underlying model. The latter
may be useful if the underlying model systematically under- or overestimates the target
values, since using the median (or mean) of the distribution may correct for this by pushing
the prediction upwards or downwards.

However, when the residuals (differences between actual and predicted values) are het-
eroscedastic, e.g., their distribution is not independent of the actual predictions, neither
standard nor normalized predictive distributions may be very effective tools for calibrating
the predictions. To see this, consider an underlying model that has a tendency to overesti-
mate low actual values and underestimate high actual values. This means that the residuals
for low predicted values will be negative on average, while they will be positive on average
for high predicted values. A standard (non-normalized) conformal predictive distribution
cannot correct for this, as the shape of the predictive distributions will be the same for
all predictions. This means that the distribution can suggest moving the predictions at
most in one direction, since the median (or mean) of the distribution will always be on the
same side relative to the underlying prediction. Using a normalized conformal predictive
distribution will not fix the problem, since the quality estimate used for scaling is always
positive, and hence the direction of the correction suggested by the normalized conformal
predictive distribution will be the same as for the standard distribution.

In order to overcome the above problem, an alternative approach to producing conformal
predictive distributions is proposed, called Mondrian conformal predictive distributions.
The approach borrows the idea of Mondrian conformal prediction (Vovk et al., 2005), which
originally was proposed for allowing to control the error levels of objects falling into a priori
defined categories. For example, by defining categories according to the class labels, one
can guarantee the same error level for all classes. More recently, Boström and Johansson
(2020) proposed Mondrian conformal regressors, where this idea was used to handle two
problems of normalized conformal regressors; the prediction intervals may be several times
larger (or smaller) than the largest (smallest) previously observed error, and the sizes of
the intervals become less uniform with less informative quality (difficulty) estimates. By
forming categories through binning of the quality estimates, it was shown that the size of
the intervals is bounded by the size of the largest observed error and that non-informative
quality estimates result in more uniformly sized intervals.

To the best of our knowledge, the Mondrian approach has however not been applied to
conformal predictive systems. In this paper, we propose one such approach, which uses the
categories to form multiple (standard or normalized) conformal predictive distributions. For
the example above, we may consider using, say two, categories based on the predictions of
the underlying model. For the first of these, which corresponds to low-valued predictions, the
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conformal predictive distribution can correct for the systematic overestimations, while for
the second category, which corresponds to high-valued predictions, the conformal predictive
distribution can correct for the systematic underestimations. It should be noted that the
prediction intervals output by conformal regressors do not directly allow for such corrections,
as they are centered around the point predictions and provide no information on whether
the true target can be expected to be higher or lower than the point prediction. In contrast
to the previously proposed Mondrian conformal regressors, the categories for Mondrian
conformal predictive distributions are here proposed to be formed using the predictions
and not the quality estimates. The latter estimates may however still be used within the
categories to form normalized conformal predictive distributions.

We will present results from a large-scale empirical evaluation of Mondrian conformal
predictive systems, using regression forests as the underlying model. We will consider
Mondrian distributions formed from categories corresponding to bins of the predicted values,
where both standard and normalized conformal predictive distributions will be generated
for the categories. The resulting Mondrian conformal predictive systems will be compared
to standard and normalized conformal predictive systems, respectively, with respect to
continuous ranked probability score. They will also be compared to standard and normalized
conformal regressors on the tasks of generating efficient prediction intervals and accurate
point predictions.

In the next section, we briefly describe conformal predictive distributions. In Section 3,
we introduce the alternative Mondrian-based approach; Mondrian conformal predictive dis-
tributions. In Section 4, we first illustrate the approach and then present results from
comparing the novel approach to standard and normalized conformal predictive systems, as
well as to normalized (and standard) conformal regressors on a set of real-world datasets.
Finally, in Section 5, we discuss the main findings and outline directions for future work.

2. Preliminaries

Conformal prediction was originally developed for the transductive case (Gammerman et al.,
1998), requiring re-training of the underlying model for each new object to be predicted,
something which often is computationally infeasible. Inductive conformal prediction (ICP)
was proposed as a computationally less costly approach (Papadopoulos et al., 2002), requir-
ing only one underlying model to be generated, at the cost of having to set aside part of
the training examples for calibration, which leaves less examples to use for model building.
A conformal predictive system utilizing the same idea is called a split conformal predictive
system (Vovk et al., 2020).

A split conformal predictive system relies on an isotonic split conformity measure A
to calculate a cumulative probability with respect to a label yi, given some object xi and
underlying model h.
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Given a training set Ztr, and a test object x, a conformal predictive distribution is con-
structed by a (split) conformal predictive system as follows:

1. Divide the training sequence Ztr into two disjoint subsets; the proper training set Zt
and the calibration set Zc = {(x1, y1), . . . , (xq, yq)}

2. Train the underlying model h using Zt

3. Let ŷi = h(xi), for i ∈ 1, ..., q

4. Obtain quality estimates for all the calibration examples σ̂i, for i ∈ 1, ..., q

5. Make a point prediction for the test object ŷ = h(x) and estimate its quality σ̂

6. Produce a list of calibration scores using

Ci = ŷ +
σ̂

σ̂i
(yi − ŷi)

for i ∈ 1, ..., q

7. Sort C1, ..., Cq in increasing order, resulting in C(1), ..., C(q)

8. Set C(0) = −∞ and C(q+1) =∞

9. Let τ ∈ U(0, 1)

10. Return the predictive distribution:

Q(y) =

{n+τ
q+1 if y ∈

(
C(n), C(n+1)

)
for n ∈ {0, ..., q}

n′−1+(n′′−n′+2)τ
q+1 if y = C(n) for n ∈ {1, ..., q}

where n′ = min{m|C(m) = C(n)} and n′′ = max{m|C(m) = C(n)}

Note that for a sequence of test examples, only step 5− 10 above need to be repeated. We
adopt a similar terminology as for conformal regressors, and refer to conformal predictive
systems as standard conformal predictive systems, in case σ̂i = σ̂ = c, for some constant
c > 0, i.e., the quality estimate is independent of the predicted object. We refer to confor-
mal predictive systems that are not standard as normalized conformal predictive systems.
Approaches to estimating the quality include training a separate model to predict the size of
the error, e.g., using kNN or ANN as in (Johansson et al., 2014a); others exploit properties
of the underlying model, e.g., using disagreement (variance) of the trees in a random forest
(Boström et al., 2017).

Prediction intervals for a chosen significance level ε can be defined by

[CQ′′
.ε/2
, CQ′

.100−ε/2
] (1)

where Q′′.p = max{m|Q(m) < p/100} and Q′.p = min{m|Q(m) > p/100}. A point prediction
can similarly be defined by CQ′.50 .
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The above way of forming prediction intervals contrasts to (standard or normalized)
conformal regressors by not enforcing that the underlying prediction is placed in the middle
of the interval. In fact, when using conformal predictive systems to generate prediction
intervals, it may very well be the case that the underlying prediction falls outside the
prediction interval.

3. Mondrian Conformal Predictive Distributions

In Mondrian conformal predictors (Vovk et al., 2005), the available calibration examples
are somehow divided into different categories, and then a valid conformal predictor is built
for each category. The most common Mondrian conformal predictor is probably the class-
conditional conformal predictor (Shi et al., 2013), where the categories represent the pos-
sible class labels, thus providing guarantees for each label, i.e., the errors will be evenly
distributed over the classes. The problem space can also be divided w.r.t. to the feature
space, e.g., for tree models, a very natural division is to regard each leaf (path) as a sep-
arate category, resulting in that each such leaf is independently valid, see e.g., (Johansson
et al., 2014b). Recently, Mondrian conformal regressors were proposed in (Boström and
Johansson, 2020). Until now, however, Mondrian conformal prediction has, to the best of
our knowledge, not been applied to conformal predictive distributions.

A (split) Mondrian conformal predictive system produces a Mondrian conformal predictive
distribution in the following way, given a training sequence Ztr, and a test object x:

1. Divide the training sequence Ztr into two disjoint subsets; the proper training set Zt
and the calibration set Zc = (x1, y1), . . . , (xq, yq)

2. Train the underlying model h using Zt

3. Divide Zc into k disjoint subsets Zc1, . . . , Zck, according to a Mondrian taxonomy κ
with categories κ1, . . . , κk

4. For each category κj , let ŷji = h(xji) and let σ̂ji be the corresponding quality estimate,
for each xji ∈ Zcj

5. Make a point prediction for the test object ŷ = h(x) and estimate its quality σ̂

6. Identify which category κj the test object belongs to and produce a list of calibration
scores using

Cji = ŷ +
σ̂

σ̂ji
(yji − ŷji)

for i ∈ 1, ..., q, where q = |Zcj |

7. Sort Cj1, ..., Cjq in increasing order, resulting in Cj(1), ..., Cj(q)

8. Set Cj(0) = −∞ and Cj(q+1) =∞.

9. Let τ ∈ U(0, 1)
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10. Return the predictive distribution:

Q(y) =

{n+τ
q+1 if y ∈

(
Cj(n), Cj(n+1)

)
for n ∈ {0, ..., q}

n′−1+(n′′−n′+2)τ
q+1 if y = Cj(n) for n ∈ {1, ..., q}

where n′ = min{m|Cj(m) = Cj(n)} and n′′ = max{m|Cj(m) = Cj(n)}

For Mondrian conformal classification, the possible class labels are often used to define
the categories, while for Mondrian conformal regression (Boström and Johansson, 2020), the
categories are defined using the quality (difficulty) estimate σ. We here propose to form the
categories of the Mondrian taxonomy through binning of the predictions, using equal-sized
bins, similar to what has been proposed for classification problems in the context of Venn
prediction (Zhou et al., 2014). To handle the special case when the number of identical
predictions is larger than the bin size, we assume that a very small random number ξ is
added to each prediction, which allows for that approximately the same number of examples
will fall into each bin (category). The number of bins (categories) is hence a parameter of
the approach, and it should be chosen in a way such that the size of each partition of the
calibration set is sufficiently large, e.g., to allow for prediction intervals with specified level
of confidence to be extracted.

4. Experiments

First, we illustrate the proposed approach using the bank8fm dataset. After that, we present
results from using different strategies to forming predictive systems on real-world datasets.

4.1. Illustration using the bank8fm dataset

In this demonstration, half of the data is used as a proper training set and the other half
for calibration. The underlying model is a regression forest with 500 trees. Fig. 1a plots the
predictions vs. the residuals. Interestingly enough, there is a clear trend showing that the
residuals are larger for the higher predictions. With this in mind, we divide the predictions
into five bins, with an equal number of examples in each bin, and then form a standard
(i.e., non-normalized) conformal predictive distribution (CPD), given the mean prediction
of each bin. Fig. 1b – Fig. 1f, show the CPD for each bin, specifically comparing the
mean prediction of each bin (indicated by an orange solid line) to the median of the CPD
(indicated by a green dashed line).

If we would consider using the medians of the CPDs as point predictions, instead of the
original mean predictions, we can see that they would be substantially modified. For the
first three bins, the predictions would be lowered, but for the last two, they would instead
be increased. In particular, in the first bin, the prediction from the underlying model is
actually outside of the 95%-confidence interval (indicated by the yellow dashed lines), see
Fig. 1b, showing the potential of a CPD to improve predictions by calibration.
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(a) Predictions vs. residuals (b) CPD for bin 1 (c) CPD for bin 2

(d) CPD for bin 3 (e) CPD for bin 4 (f) CPD for bin 5

Figure 1: Illustration using the bank8fm dataset

4.2. Real-world datasets

4.2.1. Experimental setup

In the experimentation, we utilize random forests with 500 binary regression trees as the
underlying models. Here, 1/3 of the available features were randomly selected for consid-
eration in each split optimisation during the generation. Following the findings in (Werner
et al., 2020), we have opted for using out-of-bag-calibration, thus making all training exam-
ples available for both training the underlying model and obtaining calibration scores. As a
quality estimate, the variance of the predictions from the individual trees in the forest was
used in all normalised setups, as originally proposed for conformal regressors in (Boström
et al., 2017) and also investigated for conformal predictive systems in (Werner et al., 2020).

For the evaluation, we compare the suggested Mondrian approaches to both conformal
regression setups and standard predictive conformal distributions. All-in-all, six different
setups are evaluated:

• CR: Standard conformal regressor as described in, for instance, (Boström et al., 2017),
i.e., using the absolute error as the non-conformity measure, and utilizing out-of-bag
estimates for calibration.

• CRn: Normalized conformal regressor using the variance of the predictions from the
individual trees as the difficulty function, as described in (Boström et al., 2017).

• CPS: Standard conformal predictive system as described in Section 2.

• CPSn: Normalized conformal predictive system as described in Section 2.

• MCPS: Mondrian conformal predictive system using five bins as described in Section 3.
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Table 1: Real-world datasets

Dataset #Examples #Features Dataset #Examples #Features

abalone 4177 8 kin8nh 8192 8
anacalt 4052 7 kin8nm 8192 8
bank8fh 8192 8 laser 993 4
bank8fm 8192 8 mg 1385 6
bank8nh 8192 8 mortage 1048 15
bank8nm 8192 8 plastic 1649 2
boston 506 13 puma8fh 8192 8
comp 8192 12 puma8fm 8192 8
concrete 1030 8 puma8nh 8192 8
cooling 768 8 puma8nm 8192 8
deltaA 7129 5 quakes 2178 3
deltaE 9517 6 stock 950 9
friedm 1200 5 treasury 1048 15
heating 768 8 wineRed 1599 11
istanbul 536 7 wineWhite 4898 11
kin8fh 8192 8 wizmir 1461 9
kin8fm 8192 8

• MCPSn: Normalized Mondrian conformal predictive system using five bins as de-
scribed in Section 3.

All-in-all 33 publicly available data sets, previously used in e.g., (Johansson et al., 2014a;
Boström et al., 2017; Boström and Johansson, 2020; Werner et al., 2020), were employed;
for characteristics of these data sets, see Table 1. For the actual evaluation, standard 10-fold
cross-validation was used.

4.2.2. Results

We first look at the the quality of the predictions from the four variants of conformal
predictive systems using the loss function continuous ranked probability score (CRPS) (Vovk
et al., 2020) in Table 2. Here, the two Mondrian approaches clearly outperform both
standard and normalized conformal predictive systems. This is confirmed by a Friedman
test (Friedman, 1937), followed by a Nemenyi post-hoc test (Nemenyi, 1963), showing the
differences to be significant at α=0.05, see Fig. 2. This is of course a very strong result for
the suggested Mondrian conformal predictive system and consequently a key finding of this
study.

Turning to the efficiency results in Table. 3, we see from the mean interval sizes that the
normalized versions produce the most informative predictions. Specifically, the Mondrian
normalized version obtained the tightest intervals, on average. Looking at the results of
the statistical testing in Fig. 3, the only significant difference is, however, that the standard
conformal regressor and standard conformal predictive system are significantly worse than
the other four alternatives.

Considering median interval sizes instead, the above results are confirmed; see Table. 4
and Fig. 4.
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Table 2: CRPS

CPS CPSn MCPS MCPSn CPS CPSn MCPS MCPSn
abalone .040 .039 .039 .039 kin8nh .072 .071 .068 .068
anacalt .007 .007 .007 .006 kin8nm .060 .059 .051 .050
bank8fh .053 .053 .048 .048 laser .012 .011 .011 .010
bank8fm .030 .030 .021 .020 mg .039 .035 .038 .034
bank8nh .056 .056 .053 .053 mortage .004 .004 .003 .003
bank8nm .025 .025 .020 .019 plastic .094 .096 .093 .096
boston .036 .034 .033 .033 puma8fh .082 .081 .078 .078
comp .015 .015 .014 .014 puma8fm .042 .042 .034 .034
concrete .036 .035 .033 .032 puma8nh .081 .080 .075 .074
cooling .021 .020 .019 .018 puma8nm .052 .052 .039 .038
deltaA .020 .019 .019 .019 quakes .095 .096 .091 .094
deltaE .029 .029 .029 .028 stock .013 .013 .013 .013
friedm .042 .042 .031 .031 treasury .004 .004 .004 .004
heating .009 .009 .009 .009 wineRed .060 .058 .054 .053
istanbul .044 .044 .044 .044 wineWhite .052 .050 .048 .046
kin8fh .042 .042 .040 .039 wizmir .011 .011 .011 .011
kin8fm .025 .025 .018 .018 Mean .039 .039 .036 .036

Ranks 3.70 3.09 2.00 1.21

Table 3: Efficiency (mean)

CR CRn CPS CPSn MCPS MCPSn CR CRn CPS CPSn MCPS MCPSn
abalone .320 .283 .325 .284 .291 .288 kin8nh .492 .482 .491 .481 .477 .470
anacalt .074 .050 .076 .052 .087 .066 kin8nm .417 .395 .414 .394 .372 .347
bank8fh .392 .341 .368 .353 .349 .352 laser .090 .066 .092 .066 .117 .063
bank8fm .228 .176 .210 .176 .144 .140 mg .358 .210 .358 .211 .349 .221
bank8nh .461 .413 .432 .414 .403 .412 mortage .037 .033 .036 .033 .030 .029
bank8nm .238 .150 .234 .151 .146 .134 plastic .657 .803 .679 .788 .678 .833
boston .294 .267 .282 .265 .285 .294 puma8fh .562 .522 .560 .521 .543 .534
comp .114 .107 .116 .108 .108 .106 puma8fm .281 .273 .280 .275 .245 .241
concrete .274 .246 .274 .246 .281 .246 puma8nh .554 .525 .552 .523 .540 .534
cooling .187 .142 .190 .142 .140 .126 puma8nm .330 .319 .331 .318 .293 .296
deltaA .155 .145 .155 .146 .155 .145 quakes .709 .848 .693 .820 .633 .757
deltaE .215 .214 .215 .214 .217 .214 stock .095 .089 .095 .090 .098 .090
friedm .299 .315 .301 .316 .239 .247 treasury .043 .038 .043 .038 .040 .036
heating .074 .068 .070 .066 .073 .064 wineRed .500 .450 .498 .456 .495 .464
istanbul .321 .333 .314 .334 .369 .379 wineWhite .417 .371 .418 .374 .400 .369
kin8fh .297 .290 .303 .291 .280 .278 wizmir .080 .078 .079 .077 .079 .079
kin8fm .183 .177 .184 .177 .131 .126 Mean .295 .279 .293 .279 .275 .272

Ranks 4.97 2.58 4.82 3.00 3.33 2.30
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Figure 2: CRPS ranks

Figure 3: Efficiency ranks

Turning to the predictive performance, Table. 5 shows the mean absolute errors. Here,
the two Mondrian approaches clearly outperform the other setups. In fact, statistical testing
shows that the differences are significant at α = 0.05, see Fig. 5. So, based on these results
considering a large number of real-world data sets, the Mondrian approach leads to better
predictors than the alternatives.

When considering mean squared error instead of mean absolute error, the differences
between the setups are actually very small in absolute numbers. Still, when looking at
the mean ranks over all data sets, the normalized Mondrian conformal predictive systems
are the most accurate, see Table. 6. Here, however, as seen in Fig. 6, the statistical tests
identify fewer significant differences.

Summarising the main experiment, we see that the novel Mondrian conformal predictive
systems outperformed standard and normalized conformal predictive systems with regard
to the continuous ranked probability score loss metric. In addition, the informativeness, as
measured using the prediction interval sizes, was generally better for the normalized versions
compared to standard conformal regressors and conformal predictive systems. Finally, also
when evaluating the predictive performance in terms of mean absolute or mean-squared
error, the Mondrian variants were the most accurate, thus demonstrating their inherent
capability of improving the predictions of the underlying models.
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Table 4: Efficiency (median)

CR CRn CPS CPSn MCPS MCPSn CR CRn CPS CPSn MCPS MCPSn
abalone .320 .258 .325 .259 .273 .261 kin8nh .492 .478 .491 .477 .489 .465
anacalt .074 .044 .076 .046 .000 .000 kin8nm .417 .385 .414 .384 .369 .336
bank8fh .392 .322 .368 .334 .344 .345 laser .090 .055 .092 .054 .117 .050
bank8fm .228 .165 .210 .166 .155 .146 mg .358 .162 .358 .162 .381 .168
bank8nh .461 .381 .432 .384 .387 .389 mortage .037 .032 .036 .032 .023 .023
bank8nm .238 .120 .234 .121 .095 .087 plastic .657 .694 .679 .689 .651 .725
boston .294 .206 .282 .208 .257 .242 puma8fh .562 .515 .560 .515 .549 .527
comp .114 .103 .116 .103 .105 .102 puma8fm .281 .274 .280 .277 .271 .249
concrete .274 .219 .274 .222 .244 .213 puma8nh .554 .492 .552 .491 .569 .495
cooling .187 .124 .190 .124 .134 .110 puma8nm .330 .301 .331 .301 .318 .278
deltaA .155 .138 .155 .140 .128 .125 quakes .709 .758 .693 .733 .635 .705
deltaE .215 .208 .215 .209 .216 .205 stock .095 .084 .095 .085 .092 .086
friedm .299 .309 .301 .311 .234 .240 treasury .043 .037 .043 .037 .033 .030
heating .074 .064 .070 .062 .076 .063 wineRed .500 .432 .498 .437 .479 .443
istanbul .321 .319 .314 .322 .371 .358 wineWhite .417 .364 .418 .369 .382 .364
kin8fh .297 .281 .303 .283 .272 .267 wizmir .080 .075 .079 .075 .078 .078
kin8fm .183 .172 .184 .173 .118 .117 Mean .295 .260 .293 .260 .268 .251

Ranks 5.06 2.58 4.97 2.91 3.39 2.09

Table 5: Mean absolute errors

CR CRn CPS CPSn MCPS MCPSn CR CRn CPS CPSn MCPS MCPSn
abalone .055 .054 .053 .053 .053 .053 kin8nh .102 .102 .102 .102 .097 .097
anacalt .008 .008 .008 .008 .008 .008 kin8nm .085 .085 .085 .085 .072 .071
bank8fh .076 .076 .074 .076 .067 .067 laser .014 .014 .014 .014 .014 .013
bank8fm .043 .043 .042 .045 .029 .029 mg .051 .051 .051 .051 .049 .048
bank8nh .082 .082 .075 .078 .073 .072 mortage .005 .005 .005 .005 .005 .005
bank8nm .034 .034 .031 .034 .028 .027 plastic .132 .131 .129 .129 .128 .128
boston .048 .048 .048 .048 .046 .045 puma8fh .117 .117 .117 .117 .111 .111
comp .020 .020 .020 .020 .020 .019 puma8fm .060 .060 .060 .060 .048 .048
concrete .049 .049 .049 .049 .045 .044 puma8nh .117 .117 .117 .117 .105 .105
cooling .026 .026 .027 .026 .026 .026 puma8nm .077 .077 .078 .077 .054 .052
deltaA .026 .026 .026 .026 .026 .026 quakes .137 .138 .134 .132 .129 .131
deltaE .040 .040 .040 .040 .040 .040 stock .019 .019 .019 .019 .018 .018
friedm .058 .059 .059 .059 .043 .043 treasury .005 .005 .005 .005 .005 .005
heating .013 .013 .013 .013 .012 .012 wineRed .081 .081 .081 .081 .072 .071
istanbul .060 .060 .061 .060 .061 .061 wineWhite .069 .069 .069 .069 .064 .063
kin8fh .059 .059 .059 .059 .056 .056 wizmir .015 .015 .015 .015 .015 .015
kin8fm .035 .035 .035 .035 .025 .025 Mean .055 .055 .055 .055 .050 .049

Ranks 4.64 4.70 3.88 4.15 2.15 1.48
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Figure 4: Median efficiency ranks

Figure 5: Mean absolute error ranks

5. Concluding remarks

We have introduced a new approach to forming conformal predictive distributions, called
Mondrian conformal predictive systems, which generate one predictive distribution for each
available Mondrian category. We have shown that by using the predictions of an underlying
regression forest to form the categories through binning, the use of the resulting Mondrian
predictive distributions will not only improve upon using standard and normalized con-
formal predictive distributions, but also result in as tight prediction intervals as produced
by normalized conformal regressors, and even improve upon the point predictions of the
underlying forest with respect to the mean absolute error.

Directions for future work include investigating more sophisticated approaches to form-
ing the categories, e.g., using clustering as an alternative to binning as proposed in (Zhou
et al., 2014). Such approaches may not only use the predictions of the underlying model but
also the quality estimates. Currently, these estimates have only been considered for nor-
malizing (rescaling) the predictive distribution of each category. The proposed framework
also needs to be applied and evaluated in conjunction with other types of underlying model.
Alternative ways of forming the categories may be required to allow for similar performance
improvements as for the considered regression forests. Another important direction for fu-
ture research includes investigating the use of the distributions for decision making, possibly
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Table 6: Mean squared errors

CR CRn CPS CPSn MCPS MCPSn CR CRn CPS CPSn MCPS MCPSn
abalone .006 .006 .006 .006 .006 .006 kin8nh .016 .016 .016 .016 .015 .015
anacalt .001 .001 .001 .001 .001 .001 kin8nm .011 .011 .011 .011 .009 .009
bank8fh .009 .009 .010 .010 .009 .009 laser .001 .001 .001 .001 .001 .001
bank8fm .003 .003 .003 .004 .002 .002 mg .006 .006 .006 .006 .006 .006
bank8nh .013 .013 .014 .015 .013 .013 mortage .000 .000 .000 .000 .000 .000
bank8nm .003 .003 .003 .004 .002 .002 plastic .029 .029 .031 .029 .031 .030
boston .005 .005 .005 .006 .005 .005 puma8fh .021 .021 .021 .021 .020 .021
comp .001 .001 .001 .001 .001 .001 puma8fm .005 .005 .005 .005 .004 .004
concrete .005 .005 .005 .005 .004 .004 puma8nh .021 .021 .021 .021 .019 .019
cooling .002 .002 .002 .002 .002 .002 puma8nm .008 .008 .008 .008 .005 .005
deltaA .001 .001 .001 .001 .002 .002 quakes .031 .031 .032 .032 .032 .032
deltaE .003 .003 .003 .003 .003 .003 stock .001 .001 .001 .001 .001 .001
friedm .005 .006 .006 .006 .003 .003 treasury .000 .000 .000 .000 .000 .000
heating .000 .000 .000 .000 .000 .000 wineRed .013 .013 .013 .013 .013 .013
istanbul .006 .006 .006 .006 .007 .006 wineWhite .010 .010 .010 .010 .010 .010
kin8fh .006 .006 .006 .006 .005 .005 wizmir .000 .000 .000 .000 .000 .000
kin8fm .002 .002 .002 .002 .001 .001 Mean .007 .007 .008 .008 .007 .007

Ranks 3.27 3.21 4.58 4.45 3.00 2.48

Figure 6: Mean squared error ranks

including performance metrics that are more directly connected to the utility, compared to
the metrics employed in this study, e.g., CRPS.
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