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Abstract

Transformer architectures have established themselves as the state-of-the-art in many
areas of natural language processing (NLP), including paraphrase detection (PD). However,
they do not include a confidence estimation for each prediction and, in many cases, the
applied models are poorly calibrated. These features are essential for numerous real-world
applications. For example, in those cases when PD is used for sensitive tasks, like plagiarism
detection, hate speech recognition or in medical NLP, mistakes might be very costly. In
this work we build several variants of transformer-based conformal predictors and study
their behaviour on a standard PD dataset. We show that our models are able to produce
valid predictions while retaining the accuracy of the original transformer-based models.
The proposed technique can be extended to many more NLP problems that are currently
being investigated.

Keywords: Conformal prediction, natural language understanding, paraphrase detection,
transformers.

1. Introduction

The objective of paraphrase detection is to recognise if two different sentences are seman-
tically equivalent. Specifically, given two word sequences a = (a1, . . . , am), b = (b1, . . . , bn),
we say b is a paraphrase of a if b 6= a and b conveys the same meaning of a. Paraphrase
detection (PD) is therefore a quite ill-defined problem, since even the term “meaning” defies
any attempt of formal, general definition. It is, nonetheless, an exciting problem as it is
closely linked to the concept of “understanding” natural language and plays an important
role in many downstream NLP tasks, such as text summarization, plagiarism detection and
duplicate detection. PD can be also used as a supportive task, such as data augmentation
for dialogue systems (Falke et al., 2020). It is an active area of research with new and
challenging datasets being frequently released (see for example Zhang et al., 2019, Yang
et al., 2019, He et al., 2020).

Transformers (Vaswani et al., 2017) have achieved state-of-the-art performance on sev-
eral PD datasets (e.g., GLUE and its leaderboard, Wang et al., 2019) and have become the
de facto standard for text classification tasks. Their versatile architecture, primarily based
on the attention mechanism (Bahdanau et al., 2015), is fairly easy to parallelize and can be
altered to suit different training strategies. BERT (Bidirectional Encoder Representations
from Transformers, Devlin et al., 2019) is arguably the most notable example of applying
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a training strategy to a transformer. The resulting model, released by Google, can be re-
trained on different downstream tasks (such as PD) without the need to change the model’s
architecture.

While BERT and the other transformer-based models can achieve remarkable predic-
tive performance, they fail to provide reliable estimates of confidence for their predictions.
The raw output of a transformer, usually a vector of real numbers called logits, gives no
indication about the probability of the prediction being correct. To circumvent this limita-
tion, researchers often apply a softmax function that normalizes the output into a vector
of numbers that add up to 1. While such an output resembles a probability distribution,
there is no real connection between the softmax value and the actual, empirical probability
of a predicted label ŷ to be the true label. This becomes a significant limitation with some
“sensitive” use cases: for example, a social network may want to automatically remove
potential hate speech contents only when the model’s confidence is higher than a certain
threshold; the same social network may want to battle fake news by finding all the different
posts that tell the same story with high probability; an academic institution may want to
investigate cases of plagiarism that are highly likely to be confirmed and so on.

We propose a range of predictors that are able to produce valid confidence estimates for
each test example and preserve the predictive power of Transformers. Our proposed models
are based on conformal prediction (CP, Vovk et al., 2005), a machine learning framework
that can be built on top of any ML algorithm. The property of validity implies that the error
rate ε of a predictor can be controlled in advance, a property that CP guarantees with the
only assumption of the examples being exchangeable. We show that by using a fine-tuned
BERT model as underlying algorithm we are able to build a valid conformal predictor and
we study which CP variant offer better performances for paraphrase detection.

The main contributions of our work are the following:

• We describe a method of reliable uncertainty estimation for the paraphrase detection
task that requires minimal assumptions

• We experiment with several variants of conformal predictors like Mondrian and cross-
conformal predictors

• We introduce a nonconformity measure based on the transformer’s raw output scores
that does not rely on a softmax or logistic function.

2. Related work

Maltoudoglou et al. (2020) described a BERT-based conformal predictor applied to senti-
ment classification. The authors trained an inductive conformal predictor on the IMDB
movie reviews dataset with a nonconformity measure based on BERT’s output. They
showed how the resulting model was valid and retained BERT’s original predictive perfor-
mance. Paisios et al. (2019) applied conformal prediction to a multi-label text classification
task.

The theme of confidence estimation in NLP (Gandrabur et al., 2006) is attracting grow-
ing interest from both academia and industry, with most studies focused on Bayesian ap-
proaches. Recently Shelmanov et al. (2021) described a dropout-based uncertainty esti-
mation technique applied to Transformer-based models. In machine translation, the first
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techniques (Blatz et al., 2004) were extended with word-level approaches (Ueffing and Ney,
2007) and more recently with gaussian processes by Beck et al. (2016). Mejer and Crammer
(2011) proposed an uncertainty estimation model for structured predictions like sequence
labelling and dependency parsing. Kochkina and Liakata (2020) modelled uncertainty in
rumour verification models applying methods introduced by Kendall and Gal (2017) for
computer vision. Xiao and Wang (2019) showed that accounting for uncertainty can lead
to improved performance in sentiment analysis and named entity recognition, while Dong
et al. (2018) focused on neural semantic parsing. Compared to the Bayesian setup, our
approach has the obvious advantage of not requiring any complex assumption about prior
distribution of the data, while at the same time being able to output valid predictions.

Recent studies combined conformal prediction with transformer architectures to create
models having faster inference (Schuster et al., 2021) and better efficiency (Fisch et al.,
2021).

3. Background

This section covers the concepts underpinning our experiments, starting with the theory
of conformal prediction and some of its special cases. We will then briefly describe BERT
as a Transformer-based model and how we combined these concepts together to build our
system.

3.1. Conformal Prediction

Conformal prediction (CP) is a machine learning framework that was first introduced in
Gammerman et al. (1998) and developed in a book by Vovk et al. (2005). Conformal
predictors are guaranteed to be valid : given a significance level ε ∈ [0, 1], they make mistakes
at a rate that is never higher than (1 − ε). The only assumption needed for the validity
property to hold is for the data to be independent and identically distributed (IID) – more
precisely, exchangeable. Conformal predictors are set predictors: they output a subset
of labels Γε if there is not enough information to output just a single label. The higher
the requested confidence, the larger is the prediction set; obviously when we require 100%
confidence it is very likely to end up with a trivial prediction that returns all the possible
labels. A wrong prediction occurs when the true label of an example is not included in the
prediction set.

The key mechanism of CP is to define a measure of “strangeness” (or nonconformity
measure – NCM) for the training data points and use that NCM to assess how “strange” a
new, unseen example (X,Y ) is compared to the training ones. The nonconformity score α(y)

of the test example is calculated for each candidate label y. Then, in order to estimate how
well the new test examples fit to the training set, the nonconformity scores are transformed
into the statistical notion of p-values:

py =
|{i = 1, . . . , t : αi ≥ α(y)

t+1}|+ 1

t+ 1
(1)

where t is the number of training examples and αt+1 is the nonconformity score of the
new test example. Once p-values are computed for each label, only those labels y for which
py ≥ ε are included in the output prediction set Γε.
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In some cases – especially when t is relatively small – the smoothed version of p-value
may be preferred:

psmooth
y =

|{i = 1, . . . , t : αi > α
(y)
t+1}|+ τt|{i = 1, . . . , t : αi = α

(y)
t+1}|+ 1

t+ 1
(2)

where τt is a random amount between 0 and 1/t. This version of p-value is more careful in
the management of the ties between nonconformity scores.

The computation of α(y) can be based on any machine learning algorithm. For example,
a nearest neighbours model can assess the strangeness of a new example depending on its
distance from the nearest example of the same class. A support-vector machine can rate a
new example stranger the higher is its Lagrangian multiplier (that is, the distance from the
margin between classes).

This classical version of CP is known as transductive conformal prediction (TCP). Sev-
eral modifications of CP have been introduced to address its limitations.

Inductive CP A limitation of TCP lays in its computational complexity: for every new
test example, the underlying algorithm needs to be re-trained on the past examples. This
is particularly inconvenient when using deep neural networks, as they can be very slow to
train compared to other ML algorithms. To overcome this issue, Papadopoulos et al. (2002)
introduced an inductive variant of conformal prediction (ICP)1 where a proper training set
is used only once to train the algorithm that will act as nonconformity measure; a smaller
calibration set will instead be used to compute the nonconformity score of each new test
example. ICP retains the validity property of standard CP while keeping the computational
cost almost the same as the underlying algorithm alone.

Mondrian CP Standard CP does not guarantee validity within labels: in other words,
a lower error rate for a label may compensate a higher error rate for another label in such
a way that predictions are still valid overall. This can be an issue in those cases where
the dataset is imbalanced or where wrong predictions are more impactful for one label over
the others (asymmetric classification). Mondrian conformal predictors (Vovk et al., 2005)
calculate nonconformity scores α(y) against examples of the y label exclusively: this way
validity is guaranteed for each label (conditional validity) so that, if needed, we may request
a different significance ε for each label y.

Cross-conformal Prediction ICP is computationally efficient at the price of sacrificing
part of the training set to build a calibration set. This may prove problematic when working
with small datasets. Cross-conformal Prediction (XCP, Vovk, 2015) offers a workaround
inspired by cross-validation: the training set is divided in K partitions and each of them is
used in turn as calibration set, while the union of the remaining K − 1 partitions is used
as proper training set. The K p-values obtained are then averaged together. While XCP
cannot be proved to be valid in theory, empirical results show that its predictions are indeed
valid and usually more efficient (tight) than those of standard CP. XCP predictors also are
available in their Mondrian version.

1. Otherwise known as split conformal prediction.
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3.2. Transformer-based models

Introduced by Vaswani et al. (2017), transformers are neural architectures ideated for se-
quence modelling problems in NLP, such as machine translation. They are built around
the idea of self-attention, a mechanism that allows to express each word in a sentence as a
weighted combination of the other words in the same sentence (see Appendix A).

Transformers follow an encoder-decoder structure: the encoder’s task is to learn a good
representation for each word as a d-dimensional dense vector, while the decoder learns
how to turn those representations into a new sequence of words2 (see Appendix B for a
more detailed introduction). Devlin et al. (2019) chose instead to use the sole encoder of a
transformer and train it for two simple NLP tasks: guessing the missing word (i.e. a cloze
task) and predicting whether or not a certain sentence b is likely to follow a sentence a.
The training examples were automatically generated from a large, unlabelled text corpus
(Wikipedia and BooksCorpus, see Zhu et al., 2015). Once trained, the model could be
used as a starting point to build new models for specific NLP tasks (such as sequence
classification) with minimal changes in the original architecture. The base model was named
BERT (Bidirectional Encoder Representations from Transformers) and the two training
steps would be known as pre-training and fine-tuning respectively.

BERT and its state-of-the-art performance on NLP tasks inspired the design of many
variants that would focus on improving the model’s training strategy (Liu et al., 2019), speed
(Lan et al., 2020), size (Sanh et al., 2019), maximum example length (Beltagy et al., 2020)
or even replacing the entire attention mechanism with simpler transformations (Lee-Thorp
et al., 2021). Some architectures are based on transformers’ decoders, such as OpenAI
GPT-2 (Radford et al., 2019) or Reformer (Kitaev et al., 2020). Others, like BART (Lewis
et al., 2020) are based on a combination of both encoder and decoder. The approach we
propose can be applied to any of these models. In this work, we chose to use the original
BERT model.

Much of BERT’s versatility relies on the use of special tokens at the beginning of the
encoding procedure. After tokenizing each example into a sequence of wordpieces (Schuster
and Nakajima, 2012), each sentence in a pair is terminated by a [SEP] token; the concate-
nation of the two sentences is then padded with [PAD] tokens up to a fixed amount, while
a further [CLS] token is inserted at the very start:

[CLS] my dog is cute [SEP] he likes play ##ing [SEP] [PAD]...[PAD]

Every sentence pair is thus treated as a single sequence. Each token is then transformed
into a dense embedding e ∈ Rh through a matrix which is learned at training time; the
whole sequence is then represented as a matrix of embeddings and transformed layer by
layer into a final representation where every token is of the form w ∈ Rd.

Even the [CLS] token will get its dense representation wCLS ∈ Rd. This special token
is fully connected to a K-neuron output layer where K is the number of labels: during the
fine-tuning phase, wCLS will be updated so that the log loss of the output layer is minimized.
For this reason, wCLS can be seen as a dense representation of the whole sequence.

2. With the term “word” we denote any kind of symbol.
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3.3. BERT as a nonconformity measure

A fine-tuned BERT model produces a logit z(k) ∈ R, k = 1, . . . ,K for each of the K labels
present in the dataset. Intuitively, the higher the logit, the higher is the probability of the
related label to be the true label. However, logits do not add up to 1, so it is hard to
quantify the probability of a given prediction to be correct. For this reason, logits are often
passed to the softmax function:

softmax(z(k)) =
ez

(k)∑K
i=1 e

z(i)
for k = 1, . . . ,K. (3)

While softmax scores of a prediction sum up to 1 and as such they resemble probability
estimates, they are not guaranteed to reflect actual probabilities, where by “actual proba-
bility” we indicate the rate of correct predictions. In fact, Guo et al. (2017) and, specifically
for NLP, Vasudevan et al. (2019) showed how modern deep neural architectures often suffer
from poor calibration. Our approach is to set the desired error rate first and then use BERT
outputs as nonconformity scores, regardless of them being logit scores or softmax scores.

A simple nonconformity score we can extract from BERT is the negative logit : if ẑi is
the logit computed by BERT for the true label of the i-th example,

αi = −ẑi (4)

is a nonconformity score.
This choice differs from Maltoudoglou et al. (2020)’s nonconformity measure, where

raw logits are passed to either a softmax or a sigmoid function; the resulting scores ŷ are
subtracted from the true labels y, then the nonconformity score is given by:

αi = ‖ŷi − yi‖∞ (5)

i.e. the absolute value of the largest difference between true score and predicted score in a
single prediction.3

For simplicity, throughout this paper we will refer to the two nonconformity measures
as logit and softmax respectively.

4. Experiments

We experiment with four conformal predictors, each based on both logit (4) and softmax
(5) nonconformity measures : a standard inductive conformal predictor ICP, its Mondrian
variant MICP, a cross-conformal predictor XCP and its Mondrian variant MXCP. For the
cross-conformal setting we choose K = 10 folds.

4.1. Dataset

We run our experiments on the Microsoft Research Paraphrase Corpus (MRPC, Dolan and
Brockett, 2005), a set of 5801 sentence pairs (a, b) extracted from news websites and labelled
as whether they are semantically equivalent or not.4 Each example [(a, b), y] was actually

3. Here the notion of L∞ norm is used: ‖v‖∞ = max{|v1|, |v2|}.
4. The authors define a paraphrase as a couple of sentences that exhibit “mostly bidirectional entailment”.
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generated by a trained SVM and then re-labelled by two human annotators, with a third
judge to resolve conflicts. In terms of data distribution, we remark that:

• The label distribution in MRPC is imbalanced because the generating SVM was tuned
to over-recognise positive examples

• As noted by Weeds et al. (2005), MRPC examples are very likely to present high
overlap between sentence a and b (the two sentences share on average 70% of the
words)

We do not know for sure if examples in MRPC are exchangeable – a property we need for
CP to work as expected. In any case, studying the empirical validity of our predictors will
provide more information about the data distribution.

We keep the original split of training set Xtrain, validation set Xval and test set Xtest –
respectively made of 3668, 408 and 1725 examples – as it was released by Microsoft. We also
reserve 10% of Xtrain to be used as calibration set for the inductive conformal predictor.

4.2. Evaluation metrics

Since the user can set the required confidence level (or required error rate) in advance, it is
not very useful to evaluate the performance of a conformal predictor in terms of accuracy
or precision. Setting ε = 0.01 is always going to result in a model that is wrong 1% of
the time. However, what makes a difference between conformal predictors is how large
their prediction regions Γε are on average: a predictor that always outputs all the labels is
not that useful, even if it is 0% wrong and valid. Hence we are going to evaluate our CP
models by their efficiency, that is their ability to obtain small prediction regions. We use
the following measures of efficiency described in Vovk et al. (2016).

The S-criterion is given by the average of the p-values of all the test examples:

S =
1

n

n∑
i=1

∑
y

pyi (6)

where n is the number of test examples and py is the p-value for label y. Smaller values are
preferable, since ideally the majority of p-values should not be too large (see also Fedorova
et al., 2013).

The OF-criterion, where OF stands for “observed fuzziness”, also known as average
false p-value, is defined as

OF =
1

n

n∑
i=1

∑
y 6=y?

pyi (7)

where n is the number of test examples, py is the p-value for label y and y? is the true
label of an example. Because the true label is included in Γε with high probability, we
would like the p-values of the false labels to be as small as possible. The smaller these false
p-values, the tighter are the prediction regions on average, meaning that the predictor is
more efficient.
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Finally, the N-criterion measures the average sizes of the prediction region over all test
examples:

N =
1

n

n∑
i=1

|Γεi | (8)

where n is the number of test examples and Γεi is the prediction region for test example i
at the significance level ε.

Although CP is designed to return prediction sets, sometimes it is useful to output a
single label for each example. A way to do so in the CP framework is to choose the label
with the highest p-value. The accuracy of these forced predictions can be evaluated with the
standard methods for classification like precision, recall or F1 score. Given the imbalance
in our dataset labels we choose the Macro F1 score to average the performance over both
labels. Macro F1 is defined as the arithmetic mean of the F1 scores computed for each label.
The F1 score for a label k is defined as

F
(k)
1 =

2P (k)R(k)

P (k) +R(k)
(9)

where P and R are precision and recall scores.5 More precisely, F1 is the balanced version
of the weighted harmonic mean of precision and recall (or balanced F measure):

F =
1

α 1
P + (1− α) 1

R

(10)

where α = 1/2.
Macro F1 assigns the same importance to each label regardless of how frequently it

appears in the dataset – it is therefore recommended in the case of imbalanced datasets
(see Manning et al., 2008, section 13.6, or Opitz and Burst, 2019). Conversely, other versions
of F1, such as Micro F1 or “weighted” F1 tend to be skewed towards the more represented
label.

4.3. Training setup

We use the base, uncased pre-trained version of BERT. This version of BERT was trained
on lower-cased English text and it is composed of 12 self-attention layers, for a total of 110
million parameters to estimate.

We fine-tune BERT on the MRPC training set in order to obtain our nonconformity mea-
sure. We minimize the log loss (or cross-entropy) using the AdamW optimizer (Loshchilov
and Hutter, 2019) with a learning rate that follows a linear schedule with warm-up. We
train for 2 epochs, so that even XCP – the slowest model – can be trained in a relatively
short time. For each epoch we check the Macro F1 score obtained on Xval and finally we
select the model with the highest score.

Devlin et al. (2019) noted from the very start that fine-tuning BERT showed a highly
variable performance on certain datasets. This applies to MRPC, where such behaviour
persists even with fixed hyper-parameters, the random seed being the only variable (Dodge

5. Given a set of predictions, if TP is the number of true positives, FP of false positives and FN of false
negatives, precision is defined as P = TP

TP+FP
while recall is R = TP

TP+FN
.
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et al., 2020). According to Mosbach et al. (2021), fine-tuning instability may be due to
optimization issues. In any case, in order to produce more meaningful results we repeat the
fine-tuning step 5 times – each starting with a different random seed – and report average
values of Macro F1, S and OF scores. However, this will not apply to our cross-conformal
predictors, since their p-values are already averaged over 10 folds.

5. Results

We evaluate our models in terms of validity, predictive accuracy and efficiency. From a
qualitative perspective, we will also include a few examples of predictions from the test set
and study how well they conform to the training set.

5.1. Validity

We start by empirically evaluating the validity of our predictions for all CP configurations.
Figure 1 shows how the standard setting provides overall valid predictions but does not
guarantee conditional validity, that is validity within labels. For example, when ε = 0.50
the prediction error rate is indeed 0.50; however, this corresponds to an error rate of 0.94
for the negative label and 0.27 for the positive label. The higher error rate of the negative
label is balanced by the lower error rate associated to the positive label, which is also the
most frequent in our dataset. When ε ≥ 0.55 the negative label is never included in any
prediction set, resulting in a 100% error rate for the negative label.

The Mondrian setting, designed to achieve conditional validity, overcomes this limita-
tion. Figure 2(b) shows how the error rates of each label grow linearly with the significance.

Unlike the two models just discussed, cross-conformal predictors are not theoretically
guaranteed to be valid, so it is essential to check if at least their empirical validity holds for
our dataset. Without validity, any consideration on the efficiency of a conformal predictor
would be meaningless. In Appendix C we show that cross-conformal predictors produce
figures similar to their non-cross counterparts, hence their validity is empirically verified.

5.2. Predictive accuracy

We fine-tuned BERT for only two epochs and without hyperparameter tuning, yet we
obtained a fairly accurate model. The reported scores for BERT (12 layers) on GLUE6

are 0.89/0.85 for F1 score of the positive label and accuracy; our fine-tuned model scored a
reasonable 0.87/0.82. Unfortunately GLUE does not report Macro F1 scores which would
be preferable (and likely lower) for an imbalanced dataset such as MRPC. In any case, we
can say our fine-tuned BERT model is good enough for our task. In general, a better tuned
BERT would probably result in better CP performances.

Macro F1 scores for the forced predictions of the different models are shown in the first
column of Table 1. We are not surprised to find the cross-conformal predictors as the high
scorers (however not by a big margin), since XCP does not need to hold out a part of the
training set for calibration purposes – each training example is seen by 9 of the 10 models.
A downside of this approach is of course the computing time: our 10-fold XCP takes ten

6. https://gluebenchmark.com/leaderboard
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Figure 1: Standard inductive conformal predictor: empirical validity check in the (a) un-
conditional and (b) label-conditional case on the MRPC test set. Labels 0 and 1
correspond to negative and positive labels respectively.
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Figure 2: Mondrian inductive conformal predictor: empirical validity check in the (a) un-
conditional and (b) label-conditional case on the MRPC test set.
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Macro F1 S OF

BERT 0.773 - -

logit

ICP 0.776 0.305 0.115
MICP 0.771 0.317 0.135
XCP 0.787 0.305 0.113
MXCP 0.792 0.313 0.127

softmax

ICP 0.776 0.304 0.114
MICP 0.772 0.317 0.135
XCP 0.788 0.304 0.111
MXCP 0.794 0.311 0.125

Table 1: Performance of different CP configurations on the MRPC test set. Macro F1

measures the accuracy of forced predictions (a forced prediction is the label with
the highest p-value). S and OF criteria measure the efficiency of a conformal
predictor (lower scores are better). Values are averaged over 5 runs with different
seeds. See Sections 4.2–4.3 for more details.

times more to train than its competitors. For very large datasets, this solution may not be
viable.

It is interesting to note how all conformal predictors perform on par or even better than
the original BERT model. This is also true for ICP and MCP, despite they were trained on
90% of the data, and applies to both logit and softmax nonconformity measures. Applying
any kind of CP to the original Transformer model leaves predictive performance unharmed,
while at the same time provides a valid measure of confidence.

5.3. Efficiency

The second and third columns of Table 1 show S-criterion and OF-criterion scores for the
five different predictors. In accordance with the existing literature, Mondrian conformal
predictors appear less efficient than their standard counterpart (smaller S- and OF-score).
Cross-conformal predictors are the most efficient, even if not by a huge margin.

In terms of nonconformity scores, softmax achieves the best results overall. However,
logit’s performance is extremely close – the same, if we factor in statistical fluctuations –
showing that raw BERT logits can act as a convenient nonconformity measure.

The N-criterion is dependent on the significance level ε, therefore it is appropriate to
plot its value against different choices of ε. To mitigate BERT’s instability (see Section 4.3)
we compute the prediction region size as the average size over 5 runs. Figure 3 shows
N-scores of the two inductive conformal predictors for each of the nonconformity measures
(we restrict the plot to ε ≤ 0.20 for better visibility). Again, we observe that Mondrian
predictors are typically the least efficient, while both logit and softmax show similar trends.
The same plot for the cross-conformal setting is provided in Appendix C.
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Figure 3: Average prediction set size (N-criterion) for the inductive conformal predictor
(ICP), Mondrian ICP, cross-conformal Predictor (XCP) and Mondrian XCP.

5.4. Credibility

Credibility is defined as the largest p-value in a prediction set: an example is more conform-
ing to the training set the higher is its credibility. A low-credibility example is an anomalous
example for both labels – it may indicate the presence of a new, unobserved label or signal
that the example is not IID. By analysing low-credibility predictions we may gain insight
about the model’s weaknesses or some property of the dataset. For each test example, its
credibility will be the average credibility over 5 runs with different seeds.

Table 2 provides a few examples of low-credibility predictions taken from the MRPC
test set. We speculate that non-paraphrases with many words in common are assigned
low credibility. This sounds reasonable since – as we noted in Section 4.1 – high-overlap,
positive-labelled sentence pairs make the majority of the dataset. To gain further insight,
we analyse the relation between overlap and credibility.7 Figure 7 in Appendix D shows that
there is indeed a positive correlation between sentence overlap and credibility for positive
examples. We cannot come to any conclusion about negative examples though: there is not
such a correlation and credibility values are in general quite low. This is consistent with the
low frequency of negative examples in the training set. The plots in Figure 8 show the same
relationships in the Mondrian setting: in this case we see that there is indeed a negative
correlation between overlap of negative examples and credibility.

7. For two sentences a, b, if A,B are their word sets and a ⊕ b is their concatenation, their overlap is
computed as 2× |A ∩B|/|a⊕ b|.
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Sentence A Sentence B true pred cred

Spokesmen for the FBI, CIA,
Canadian Security Intelligence
Service and Royal Canadian
Mounted Police declined to com-
ment on El Shukrijumah’s stay in
Canada.

The FBI, CIA, Canadian Se-
curity Intelligence Service and
Royal Canadian Mounted Police
declined to comment on the Wash-
ington Times report.

− + 0.205

While waiting for a bomb squad to
arrive, the bomb exploded, killing
Wells.

The bomb exploded while author-
ities waited for a bomb squad to
arrive.

− + 0.207

Mrs. Clinton said she was in-
credulous that he would endanger
their marriage and family.

She hadn’t believed he would
jeopardize their marriage and
family.

+ − 0.213

The technology is available for
download on the Microsoft Devel-
oper Network (MSDN) site.

WSE version 2 is available from
Microsoft’s developer Web site.

+ − 0.214

Table 2: Low-credibility examples (Sentence A, Sentence B) extracted from MRPC test set
as scored by a BERT-based ICP. Credibility is defined as the largest p-value in a
prediction region.

6. Discussion

We addressed the problem of obtaining reliable confidence estimates for the paraphrase
detection task (PD). We showed that applying any of the variants of conformal prediction
to a pre-trained transformer model is a successful approach: the original model’s predictive
accuracy is retained while the number of wrong predictions can be controlled (that is, we
are able to build a valid predictor). Performances are evaluated on the Microsoft Research
Paraphrase Corpus, a well known PD dataset with imbalanced labels – a context where
Mondrian CP is recommended.

Our nonconformity estimator, a fine-tuned BERT model, performed well enough after 2
training epochs. The reference scores for BERT, as reported on the GLUE leaderboard, are
not far away – still, these numbers are only indicative given how much they are influenced by
the random parameter initialisation. We wish GLUE included Macro F1 scores in addition
to accuracy and F1 score for the positive label. This would seem appropriate given the
imbalanced nature of the dataset.

It is important to remember that CP predictors are valid under the assumption of
data examples being IID (more exactly, exchangeable). While this condition cannot be
guaranteed for our dataset (see Section 4.1), it is nonetheless reasonable to assume so and
the empirical results confirm this theory.

An additional advantage of reliable confidence estimates is that they make a transformer
model more explainable: by looking at the low credibility test examples, it may be possible
to infer which features make a prediction hard or easy; it provides also a good way of
spotting debatable labels assigned by the annotators – an issue frequently found in NLP
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datasets. We presented a few examples of low-credibility predictions and included scatter
plots that shed light on the relationship between data features and credibility.

Our encouraging results suggest that our method can be suitable for other NLP tasks.
Future directions include experimenting with larger PD datasets and with other classifica-
tion / regression tasks such as natural language inference, semantic similarity scoring and
sentiment scoring. In addition, it would be interesting to run further experiments using
more recent and effective transformer-based models.
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Appendix A. The attention mechanism

The term “attention” referred to a technique that helps modelling sequences made its first
appearance in Bahdanau et al. (2015). The authors altered a sequence-to-sequence architec-
ture (Sutskever et al., 2014) so that every step in the output sequence Y could be influenced
by different parts of the input sequence X.

The original sequence to sequence model is made of two RNNs. The first one is called
encoder and processes a sentence X = (x1, . . . , xm) one word at a time. At time step j the
encoder reads a word xj ∈ X and a hidden state hj−1 coming from the previous step. It
then outputs a new hidden state

hj = f(xj , hj−1)

where f is a nonlinear function. After m steps the final hidden state hm should contain
information about the whole sentence: we will denote it as the “context vector” c.

The second RNN is the decoder and will try to predict the target sequence Y =
(y1, . . . , yn), where n may be different from m. At each time step i, the decoder outputs a
word yi whose probability is

p(yi | {y1, . . . , yi−1}, c) = g(yi−1, si, c)

where si is the hidden state of the decoder and g is a nonlinear function. A limitation of
this approach is that the all the information coming from X has to be squashed into a single
vector, c.

Bahdanau et al. (2015) addressed this issue by letting the decoder decide which of the
hidden states hj to consider when producing the next word. Formally, we have that for
each output word yi:

p(yi | {y1, . . . , yi−1}, X) = g(yi−1, si, ci)

8. https://jalammar.github.io/illustrated-transformer/

9. https://medium.com/dissecting-bert/dissecting-bert-part-1-d3c3d495cdb3
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where ci is now a weighted sum of the encoder hidden states:

ci =
m∑
j=1

αijhj

The attention weights αij are calculated by a feed-forward neural network that is trained
jointly with the two RNNs to predict some form of affinity between the output state si−1
and the input hidden state hj .

Appendix B. The Transformer

Since Sutskever et al. (2014) introduced their “sequence to sequence” learning model,
encoder-decoder architectures have dominated the field of sequence modelling in NLP. The
objective of sequence modelling is to produce a sequence of symbols Y given an input se-
quence X. In machine translation, for example, X may be a phrase written in English
while Y could be its translation in German. In the sequence to sequence model an RNN,
called encoder, is tasked with compressing information about X, while a second RNN, the
decoder, learns to generate Y from the output of the encoder. Bahdanau et al. (2015)
extended this architecture with an attention mechanism that helps the decoder focus on
different parts of X for each symbol of Y (see Appendix A).

In order to remove the need for RNNs and their computational burden, Vaswani et al.
(2017) designed an encoder-decoder architecture that relies exclusively on attention. The
core of their architecture, which they named Transformer, is the computation of three m-
rows matrices Q, K and V that are learned at training time so that the probability of
producing the correct sequence is maximized. The attention mechanism proposed by the
author is to calculate

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
· V

where
√
dk is a scaling factor that helps with the gradient calculation. QKT is a m ×m

matrix where each row can be seen as the similarity between one word and all the other
words in the sentence. These similarity scores are passed to a row-wise softmax function
and the resulting matrix will weight each of the m words present in V (V is a m×d matrix).
Attention is thus a way to express any word in a sentence as a weighted sum of the other
words in the same sentence.

This kind of attention, where both input and output are the same sentence, is known
as self-attention. The encoder is composed of several of these attention layers feeding one
into the other.

The decoder is almost identical to the encoder. The main difference is that Q is now an
n×d matrix, where each row corresponds to a word in the output sentence Y = (y1, . . . , yn).
In this way it is possible to express each yi as a weighted sum of all the input words xi.

Transformers were shown to outperform state-of-the-art models on machine translation
while being significantly faster to train, due to the approach based on matrix multiplication
being easy to parallelize on GPU.
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Appendix C. Validity end efficiency in the cross-conformal setting

We include plots for the empirical validity check of XCP (Figure 4) and MXCP (Figure 5).
Figure 6 shows the N-criterion scores for the cross-conformal predictors.
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Figure 4: Cross-conformal predictor: empirical validity check in the (a) unconditional and
(b) label-conditional case on the MRPC test set.
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Figure 5: Mondrian cross-conformal predictor: empirical validity check in the (a) uncondi-
tional and (b) label-conditional case on the MRPC test set.
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Figure 6: Average prediction set size (N-criterion) for the cross-conformal predictor (XCP)
and its Mondrian version (MXCP) using two different nonconformity measures.

Appendix D. Credibility and overlap

The following scatter plots highlight the relation between overlap % and credibility of test
examples (see Section 5.4). Figure 7 shows the standard setting while Figure 8 shows the
Mondrian setting.
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Figure 7: Effect of word overlap on credibility. Positive examples are expected to show high
overlap. Negative examples, on the other hand, seem to have no relationship with
word overlap.
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