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Abstract

Conformal testing is a way of testing the IID assumption based on conformal prediction.
The topic of this paper is experimental evaluation of the performance of conformal testing in
a model situation in which IID binary observations generated from a Bernoulli distribution
are followed by IID binary observations generated from another Bernoulli distribution,
with the parameters of the distributions and changepoint known or unknown. Existing
conformal test martingales can be used for this task and work well in simple cases, but
their efficiency can be improved greatly.
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1. Introduction

The method of conformal prediction can be adapted to testing the IID model (Vovk et al.,
2005, Section 7.1). The usual testing procedures in mathematical statistics (Lehmann and
Romano, 2005) are performed in the batch mode: we are looking for evidence against the
null hypothesis when given a batch of data (a dataset of observations). Conformal testing
is different in that it processes the observations sequentially (online), and the amount of
evidence found against the null hypothesis is updated when new observations arrive. Online
hypothesis testing, for various null hypotheses, has been promoted in, e.g., Shafer and Vovk
(2019), Shafer (2021), Grünwald et al. (2020), and Ramdas et al. (2021). In this setting,
valid testing procedures are equated with test martingales, i.e., nonnegative processes with
initial value 1 that are martingales under the null hypothesis.

At this time conformal testing is the only known general online procedure for testing the
IID model. Namely, conformal test martingales are the only known non-trivial examples of
exchangeability martingales, i.e., online testing procedures valid under the IID assumption.
An important application of such procedures is in deciding when to retrain an algorithm
of machine learning; for details, see Vovk et al. (2021). This paper does not deal directly
with such important applications and, instead, lays foundations for more efficient methods
for making such decisions.

For a long time it had remained unclear how efficient conformal testing is, but Vovk
(2021, Section 6) argues that in the binary case conformal testing is efficient at least in
a crude sense. This paper confirms that claim using simulation studies in a simple model
situation. More generally, it proposes a programme of research into the efficiency of confor-
mal testing in various model situations. The idea is very standard (Neyman and Pearson,
1933): to complement the null hypothesis (namely, the IID model) by a specific alternative
hypothesis and investigate the power of our methods (namely, conformal testing) under
the alternative. Unlike the Neyman–Pearson setting, this will not lead to a well-defined
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optimization problem, but it will give us an informal goal, and we will still be able to design
efficient “custom-made” test martingales.

An important by-product of the proposed programme is developing useful tricks for
conformal testing that might be useful in applications. We will see examples in Section 5.

Our simulation studies will explore the performance of various test martingales, includ-
ing conformal test martingales, and related processes, to be defined in Section 4. Conformal
prediction uses randomization for tie-breaking, and this feature is inherited by conformal
testing. In particular, conformal test martingales are randomized. All plots in this paper
have been produced using the seed 2021 for the NumPy pseudorandom number generator,
and the dependence on the seed does not change any of our conclusions.

Remark 1 In this paper we will avoid the expression “conformal martingale”, as used in
Vovk (2021), in order to avoid terminology clash with the notion of conformal martingale
introduced in Getoor and Sharpe (1972) and discussed in Walsh (1977). (Even though this
would not have led to any confusion; in general, the two notions are so different that they
are unlikely to be used in the same context.)

2. Model situation

This section introduces the main model situation considered in this paper. Our data consist
of binary observations generated independently from Bernoulli distributions. Let B(π) be
the Bernoulli distribution on {0, 1} with parameter π ∈ [0, 1]: B(π)({1}) = π. We assume
that the observations are IID except that at some point the value of the parameter π changes.
Let π0 be the pre-change parameter and π1 be the post-change parameter. The total number
of observations is N , of which the first N0 come from the pre-change distribution B(π0) and
the remaining N1 := N −N0 from the post-change distribution B(π1).

Our main model situation is the one considered by Ramdas et al. (2021, Section 4). In
their setting, π0 = 0.1, π1 = 0.4, N = 104, and N0 = N1 = 5000. Ramdas et al. construct
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Figure 1: The process R of Ramdas et al. (2021) and the Simple Jumper martingale of Vovk
et al. (2021), as described in text (neither designed for the changepoint detection
problem).
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Figure 2: Left panel: Wald’s martingale (red line), the upper benchmark (yellow line), and
the lower benchmark (green line) over the whole dataset. Right panel (close-up
of the left panel): Wald’s martingale and the lower benchmark over the middle
2000 observations.

a process R = Rn which, for any IID probability measure B(π)∞, is dominated by a test

martingale M
(π)
n w.r. to B(π)∞: Rn ≤M (π)

n for all n and π. The trajectory of their process
in the model situation is shown in Figure 1 in red (it coincides with the trajectory in Figure 3
in Ramdas et al. 2021 apart from using a different randomly generated dataset). Figure 1
shows in blue the trajectory of the Simple Jumper conformal test martingale, as defined in
Vovk et al. (2021), based on the identity nonconformity measure; the martingale (including
the parameter J = 0.01) is exactly as described in Vovk et al. (2021, Algorithm 1). Both
processes can serve as measures of the amount of evidence found against the null hypothesis,
and both perform very well finding decisive evidence against the null hypothesis.

Neither the process R nor the Simple Jumper martingale were designed for the change-
point detection problem. The process R was designed for the alternative being a Markov
chain, and its good performance in the problem of changepoint detection was an interest-
ing byproduct. The Simple Jumper martingale was designed in Vovk (2020c) to achieve
a reasonable performance on the USPS dataset, without a clear alternative in mind. In
this paper we will take the problem of changepoint detection more seriously. Our goal will
be to explore attainable final values of test martingales in model situations such as that
in Ramdas et al. (2021, Section 4) (our alternative hypotheses). Our null hypothesis is
the IID model, under which the observations are IID but the value of the parameter π is
unrestricted.

3. Two benchmarks

In this section we will discuss possible benchmarks that we can use for evaluating the quality
of our conformal test martingales. For each n ∈ {1, 2, . . . }, let k(n) be the number of 1s
among the first n observations in the binary (consisting of 0 and 1) data sequence. In
Sections 3–5 we consider our main model situation: π0 = 0.1, π1 = 0.4, N = 104, and
N0 = N1 = 5000.
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The first process that we discuss is the likelihood ratio of the true distribution to the
pre-change distribution:

Wn :=

1 if n ≤ N0(
π1
π0

)k(n)−k(N0) (1−π1
1−π0

)(n−N0)−(k(n)−k(N0))
otherwise.

This is the optimal test martingale in Wald’s (Wald, 1947; Wald and Wolfowitz, 1948)
sense, and we will call it Wald’s martingale. This process, however, is a test martingale
only with respect to the null hypothesis B(π0)

∞ = B(0.1)∞, whereas our null hypothesis is
the IID model. Therefore, it is not a reasonable benchmark. Its trajectory is shown in red
in Figure 2 (over the full dataset on the left, and over its middle part on the right).

Figure 2 shows in green the infimum of the likelihood ratios

Ln :=


π
k(n)
0 (1−π0)n−k(n)(

k(n)
n

)k(n)(
1− k(n)

n

)n−k(n) if n ≤ N0

π
k(N0)
0 (1−π0)N0−k(N0)π

k(n)−k(N0)
1 (1−π1)(n−N0)−(k(n)−k(N0))(

k(n)
n

)k(n)(
1− k(n)

n

)n−k(n) otherwise
(1)

(where 00 := 1) of the true data distribution to B(π)∞ over π. We will refer to this process
as the lower benchmark ; its final value LBN := LN is indicative of the best result that can
be attained in our testing problem.

Remark 2 The expression (1) is the infimum over the IID measures of the likelihood ratios
that are individually optimal (for each IID measure) in Wald’s sense. However, this does
not mean that the infimum (1) itself is optimal. The extreme case for binary observations
is where the null hypothesis consists of all probability measures on {0, 1}∞. The analogue
of the lower benchmark will quickly tend to 0, and so its performance will be much worse
than that of the identical 1 (which is a test martingale under any null hypothesis). For more
general observation spaces, such as in the case of real numbers changing their distribution
(e.g., with N(0, 1) as pre-change distribution and N(1, 1) as post-change distribution), the
IID model becomes too large, and we are in a situation that is even worse: the analogues
of the ratios in (1) become zero. (Remember that such analogues have the supremum
over all IID measures in the denominator, not the supremum over some parametric model
containing both pre-change and post-change distributions.) The case of (1), however, is
very far from these difficult cases, and even to the left of N0 the trajectory of Ln is visually
indistinguishable from 1.

Figure 2 shows that Wald’s likelihood ratio process grows exponentially fast after the
changepoint, which shows as a linear growth on the log scale. Its trajectory looks like a
tangent to the lower benchmark trajectory. It is clear that the lower benchmark cannot
grow exponentially fast: the post-change distribution B(0.4) is gradually becoming “the
new normal”.

In order to develop an alternative to (1) that would also work outside the binary case, let
us replace the denominator of (1), which is the maximum likelihood chosen a posteriori, by
the likelihood at a parameter value chosen a priori but with the knowledge of the stochastic
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mechanism generating the data. Let us generalize our setting slightly, assuming that the
observations take values in a finite set and take value i with probability π0,i before the
changepoint and π1,i after the changepoint (so that

∑
i π0,i =

∑
i π1,i = 1). Our goal is to

find a probability measure (ui) for one observation such that the (random) likelihood ratio
of the true data-generating distribution to the Nth power of (ui) is as small as possible.
By the Kelly criterion, the corresponding optimization problem for the optimal probability
measure (ui) in the denominator is

N0

∑
i

π0,i ln
π0,i
ui

+N1

∑
i

π1,i ln
π1,i
ui
→ min,

which simplifies to ∑
i

N0π0,i +N1π1,i
N

lnui → max .

By the nonnegativity of Kullback–Leibler divergence, the optimal solution is

ui :=
N0π0,i +N1π1,i

N
,

i.e., the weighted average of π0 and π1.
In the binary case, the upper benchmark is

UBN :=
π
k(N0)
0 (1− π0)N0−k(N0)π

k(N)−k(N0)
1 (1− π1)N1−(k(N)−k(N0))

πk(N)(1− π)N−k(N)
, (2)

where

π :=
N0

N
π0 +

N1

N
π1.

The upper benchmark is the final value UBN = UN of the likelihood ratio martingale

Un :=


π
k(n)
0 (1−π0)n−k(n)

πk(n)(1−π)n−k(n) if n ≤ N0

π
k(N0)
0 (1−π0)N0−k(N0)π

k(n)−k(N0)
1 (1−π1)(n−N0)−(k(n)−k(N0))

πk(n)(1−π)n−k(n) otherwise,

(3)

where n = 0, . . . , N . Unlike (1), (3) easily extends to other statistical models. Some of
the standard statistical models are closed under convex closure, and for them the upper
benchmark has a particularly simple expression.

The trajectory of the likelihood ratio martingale (3) is shown as the yellow line in
Figure 2. It is close to a straight line, which makes it look very different from the lower
benchmark. If, instead, we showed UBn (as defined in (2) with n in place of N) versus
n > N0, the lines for the two benchmarks would be indistinguishable. Figure 2 only shows
that the final values are close (in numbers, they are 7.6× 10268 and 3.1× 10269). However,
the line n 7→ UBn would be difficult to interpret.

The last two boxplots in Figure 3 show the median and the quartiles of the empirical
distributions over 106 simulations for the two benchmarks, and their whiskers show the
5% and 95% quantiles. The boxplots are notched, with the notches indicating confidence
intervals for the median (with this large number of simulations, the confidence intervals are
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Figure 3: The boxplots over 106 simulations for the log10 of the final values of the custom-
made conformal test martingale (“log10 conformal”), the corresponding conformal
e-pseudomartingale (“log10 pseudo”), the lower benchmark (“log10 lower”), and
the upper benchmark (“log10 upper”), as described in text.

very narrow; a less extreme case with visible notches will be shown in Figure 6). These two
boxplots are very similar, and the medians in them are approximately 10274.71 and 10274.88.

The following proposition says that the final values of the upper and lower benchmarks
are fairly close to each other asymptotically.

Proposition 3 As N0 →∞ and N1 →∞,

2Nπ(1− π)

N0π0(1− π0) +N1π1(1− π1)
ln

UBN

LBN

law−→ ξ2, (4)

where ξ ∼ N(0, 1).

Informally, (4) implies

log10
UBN

LBN
≈ N0π0(1− π0) +N1π1(1− π1)

2Nπ(1− π) ln 10
ξ2 ≤ ξ2

2 ln 10
, (5)

where ≈ is used to signify the approximate equality of distributions, and the inequality
follows from Jensen’s inequality applied to the concave function π ∈ [0, 1] 7→ π(1 − π).
Figure 4 shows the distributions of log10(UBN /LBN ), its approximation as given by the
expression following ≈ in (5), and its upper bound as given by the expression following ≤ in
(5). We can see that the number of observations N = 104 (split in half by the changepoint) is
sufficient for the asymptotic approximation to work. The median in the column “simulation”
is approximately 0.085, and so the difference between the two benchmarks will not typically
be noticeable on our plots.
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Figure 4: The decimal logarithm of UBN /LBN in the model situation, its asymptotic ap-
proximation, and an upper bound for it, as described in text, based on 106 sim-
ulations.

4. Custom-made conformal test martingales

In this section we will discuss conformal test martingales specifically adapted to detecting
changepoints. As in the previous section, and until Section 6, we use B(0.1) as the pre-
change distribution and B(0.4) as the post-change distribution. The number of observations
is 104 and the changepoint is in the middle of the dataset, so that the first 5000 observations
are generated from B(0.1) and the remaining 5000 from B(0.4).

For a detailed definition of conformal test martingales, see, e.g., Vovk (2021) and Vovk
et al. (2021). What follows is a brief reminder focusing on the main ideas. As usual, we
start from a nonconformity measure A. In the case of conformal testing, a successful A does
not have to be a good measure of how badly, or how well, a new observation conforms to a
given multiset of observations; e.g., the Simple Jumper martingale (Vovk et al., 2021) used
in Section 2 does not change if we use −A in place of A. An input stream of observations
zn is transformed into a stream of (smoothed) p-values pn as usual:

pn :=
|{i : αi > αn}|+ θn |{i : αi = αn}|

n
, (6)

where i ranges over {1, . . . , n}, α1, . . . , αn are the nonconformity scores for z1, . . . , zn com-
puted using A, and θn are random numbers distributed uniformly on the interval [0, 1] (all
independent).

The standard property of validity for conformal prediction (Vovk et al., 2005, Proposi-
tion 2.8) is that the p-values (6) are independent and distributed uniformly on [0, 1]. This
way we turn our composite null hypothesis (the IID assumption) into a simple null hypoth-
esis (uniformity) about the p-values. The next step is to gamble against the uniformity of
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Figure 5: The custom-made conformal test martingale and the lower benchmark, as de-
scribed in text.

the p-values using betting functions, i.e., functions f : [0, 1]→ [0,∞] that integrate to 1. In
conformal testing, at step n a betting function fn is chosen (in a measurable manner) with
the knowledge of the first n− 1 p-values p1, . . . , pn−1. The product Sn := f1(p1) . . . fn(pn),
n = 0, 1, . . . (with S0 := 1), is the corresponding conformal test martingale. It is inter-
preted as the capital of a gambler playing against the null hypothesis, and Sn represents
the amount of evidence found against the null hypothesis by time n. Our game is fair (under
the null hypothesis) in that the expected value of Sn given the history p1, . . . , pn−1 up to
time n− 1 equals the capital Sn−1 at that time.

Conformal test martingales are exchangeability martingales, i.e., satisfy

E(Sn | S1, . . . , Sn−1) = Sn−1 (7)

under any exchangeable distribution on the observations. By de Finetti’s theorem, in this
context the assumption of exchangeability is equivalent to the IID assumption under the
weak condition that the observation space is Borel (which is satisfied in applications).

Next let us find a conformal test martingale that is expected to work well under the
true data distribution. Our argument will be somewhat informal. During the first N0 trials
we do not gamble, so let us consider a trial n > N0. Taking the identity function as the
nonconformity measure (the difference between conformity and nonconformity is essential
in this context), by (6) we obtain a p-value pn ∈ [0, k(n)/n] with probability π1, and we
obtain pn ∈ [k(n)/n, 1] with probability 1 − π1. Since the expected value of k(n)/n is
(N0π0 + (n−N0)π1)/n, the likelihood ratio betting function

fn(p) :=


nπ1

N0π0+(n−N0)π1
if p ≤ N0π0+(n−N0)π1

n
n(1−π1)

N0(1−π0)+(n−N0)(1−π1) otherwise
(8)

is in some sense optimal, as shown in Fedorova et al. (2012, Theorem 2). The black line in
Figure 5 shows the trajectory of the corresponding conformal test martingale.

8



Conformal testing in a binary model situation

log10conformal log10avg log10pseudo log10lower log10upper

256

258

260

262

264

266

268

270

Figure 6: The analogue of Figure 3 for a fixed dataset (corresponding to the seed 2021
of the NumPy pseudorandom number generator) with an extra boxplot log10 avg
(average over 106 runs) explained in text. The number of simulations is decreased
to 103.

The betting functions (8) involve the expected value of k(n)/n. We can often improve
the performance of the conformal test martingale shown in Figure 5 if we replace (8) by

fn(p) :=


nπ1
k(n) if p ≤ k(n)

n
n(1−π1)
n−k(n) otherwise.

(9)

However, the resulting process is not a genuine martingale but a conformal e-pseudomar-
tingale, in the terminology of Vovk (2020a).

In plots such as Figure 5 the trajectories of the two benchmarks, conformal e-pseudomar-
tingale, and the custom-made conformal martingale look very close, but in fact the difference
between the final values of those processes can often be as large as 1010-fold. The boxplot
“log10 conformal” in Figure 3 corresponds to the black line in Figure 5 (which represents
the first simulation out of the 106 represented in the boxplot), the boxplot “log10 lower”
corresponds to the green lines in Figures 2 and 5, and the boxplot “log10 upper” corresponds
to the yellow lone in Figure 2. The boxplot “log10 pseudo” gives statistics for the final values
of the conformal e-pseudomartingale based on (9), whose plot is not shown but would have
been indistinguishable from the green line in Figure 5. In numbers, the medians for the
final values of the four processes in the order in which they are shown in Figure 3 (which
is the ascending order) are, approximately, 10269.14, 10274.50, 10274.71, and 10274.88 (the last
two numbers were already given above).

The boxplot for the conformal test martingale in Figure 3 is slightly longer than the
other three boxplots. The explanation is that conformal test martingales are randomized
(because of the dependence of (6) on θn), unlike, e.g., the lower benchmark process. The
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corresponding boxplots for a fixed dataset (the same one that was used in Figures 1, 2, and
5) are shown in Figure 6, along with an extra boxplot labelled log10 avg, to be explained
momentarily.

It appears from Figure 6 that, for a fixed dataset, the final values of the conformal
e-pseudomartingales are constant a.s. This is indeed the case: e.g., with probability one
under any IID measure, the condition p ≤ k(n)/n in (9) holds for p = pn if and only if the
nth observation is 1.

On the other hand, the final value of the conformal test martingale in Figure 6 is very
volatile, with the upper quartile around 103 times larger than the lower quartile. An easy
way to decrease the volatility of a randomized test martingale is to average its trajectory over
a number of independent runs (as explained in Vovk 2020b in the context of e-variables);
normally, the result will still be a valid test martingale. The results of averaging the
conformal test martingale over 106 runs are shown in the new boxplot labelled log10 avg.
The operation of averaging not only reduces volatility but also greatly improves the typical
performance, the reason being that on the log scale the average of vastly different numbers
is close to their maximum. The first two boxplots in Figure 6 are based on 103 simulations of
the conformal test martingale (for the first boxplot) or averaged conformal test martingale
(for the second one).

Unfortunately, in the case of averaging conformal test martingales there is no guarantee
that the average will still be an exchangeability martingale, since different conformal test
martingales involve different filtrations (Vovk, 2021, Remark 3.3). And indeed, in Section 7
we will see an example where the average is not an exchangeability martingale.

5. More natural conformal test martingales

The martingales whose trajectories are shown in Figures 2–5 depend very much on the
knowledge of the true data-generating mechanism. Can we obtain comparable results with-
out blatant optimization (requiring such knowledge)? This is the topic of this section.

Let us generalize the betting function (8) to

f(a,b)(p) :=

{
b
a if p ≤ a
1−b
1−a otherwise,

(10)

where a, b ∈ (0, 1). It is easy to see that
∫
f(a,b) = 1. Apart from the betting functions

(10) we will use the trivial function f�, f�(p) := 1 for all p. Let Sn be the conformal test
martingale

Sn :=

∫
fs1(p1) . . . fsn(pn)µ(d(s1, s2, . . . )), (11)

where p1, p2, . . . is the underlying sequence of conformal p-values and µ is the distribution
of the following Markov chain with states s1, s2, . . . .

The Markov chain is defined in the spirit of tracking the best expert in prediction with
expert advice (Herbster and Warmuth, 1998; Vovk, 1999). The state space is {�} ∪ (0, 1)2,
and R ∈ (0, 1) is the parameter (typically a small number). The initial state is s1 := � (the
sleeping state). The transition function is:

10
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Algorithm 1: Sleeper/Stayer

Data: p-values p1, p2, . . .
Result: conformal test martingale S0, S1, S2, . . .
S0 := S� := 1;
for (a, b) ∈ G2 do

Sa,b := 0
end
for n = 1, 2, . . . do

for (a, b) ∈ G2 do
Sa,b := Sa,bf(a,b)(pn)

end
Sn := S� +

∑
(a,b)∈G2 Sa,b;

for (a, b) ∈ G2 do
Sa,b := Sa,b +RS�/(G− 1)2

end
S� := (1−R)S�

end

� if the current state is �, with probability 1−R the state remains �, and with prob-
ability R a new state (a, b) is chosen from the uniform distribution in (0, 1)2;

� the states (a, b) ∈ (0, 1)2 are absorbing: if the current state is (a, b) ∈ (0, 1)2, it will
stay (a, b).

In our implementation of the procedure (11), we replace the square (0, 1)2 by the grid
G2, where

G :=

{
1

G
,

2

G
, . . . ,

G− 1

G

}
(12)

and G (positive integer) is another parameter. The resulting procedure is shown as Algo-
rithm 1.

The intuition behind Algorithm 1 is that, in order to gamble against the uniformity of
(p1, p2, . . . ), we distribute our initial capital of 1 among accounts Sa,b indexed by (a, b) ∈ G2,
and there is also a sleeping account S�. We start from all money invested in the sleeping
account, but at the end of each step a fraction R of that money is moved to the active
accounts Sa,b and divided between them equally. On account Sa,b we gamble against the
uniformity of the input p-values using the betting function f(a,b).

Figure 7 (the line in cyan) suggests that we can improve on the result of Figure 1 using
a fairly natural, and in fact very basic, conformal test martingale. In Figure 7 we use the
identity nonconformity measure and the Sleeper/Stayer betting martingale of Algorithm 1,
and the parameters are R := 0.001 and G := 10; therefore, a and b are chosen from the grid
{0.1, 0.2, . . . , 0.9}. The final value of the resulting conformal test martingale is closer (on
the log scale) to those in Figure 5 than in Figure 1.

To improve further the performance of a natural conformal test martingale, let us make
another step towards the custom-made martingale (8). The new martingale will be defined
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Figure 7: Various conformal test martingales and the R process (Ramdas et al., 2021), as de-
scribed in text; the final values are approximately 2.3×1021 (R process), 4.7×1094

(Simple Jumper), 2.8× 10197 (Sleeper/Stayer), and 4.6× 10257 (Sleeper/Drifter).

as an average of the following “expert martingales”. An expert martingale is characterized
by a vector parameter (N0, π0, π1) ∈ {1, 2, . . . }× (0, 1)2 and is the custom-made martingale
(8) for these postulated (N0, π0, π1), rather than the unknown real ones. (In this and the
next paragraphs, we will use N0, π0, π1 as local variables; in the end they will be integrated
out, and we will again be able to use them in the global sense introduced in Section 2.)
The expert sleeps (does not gamble) until time N0, and at each time n > N0 it uses the
betting function (8). This betting function is of the form (10) with b := π1 and a = an
being the weighted average of π0 and π1 with the weights N0/n and 1−N0/n, respectively.
Therefore, an gradually drifts from π0 towards π1.

The Sleeper/Drifter martingale depends on three parameters: G, determining the grid
(12), M (M := 1 is a good value, but larger values of M improve computational efficiency),
and R (the rate at which the experts, who are originally sleeping, wake up). It is the average
of the experts w.r. to the following probability measure:

� all three parameters are independent;

� N0 = iM , where i ∈ {1, 2, . . . } is generated according to the geometric distribution
with parameter RM ;

� π0 and π1 are generated from the uniform distribution in the grid (12).

The overall procedure is given as Algorithm 2. The key array in this algorithm is (Si,a,b),
where Si,a,b is the total capital of the experts drifting from a towards b who woke up at
time iM . Now we can say that S� is the total capital of the experts who are still asleep; as
an expert wakes up, its capital moves from S� to one of the Si,a,b.

The performance of Algorithm 2 is shown as the magenta line in Figure 7. The param-
eters used there are G = 10, M = 100, and R = 0.001. (There is not much sensitivity to
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Algorithm 2: Sleeper/Drifter

Data: p-values p1, p2, . . .
Result: conformal test martingale S0, S1, S2, . . .
S0 := S� := 1;
for i = 1, 2, . . . and (a, b) ∈ G2 do

Si,a,b := 0
end
for n = 1, 2, . . . do

for i < n/M and (a, b) ∈ G2 do

a′ := iM
n a+

(
1− iM

n

)
b;

Si,a,b := Si,a,bf(a′,b)(pn)

end
Sn := S� +

∑
(i,a,b)∈{1,2,... }×G2 Si,a,b;

if n is divisible by M then
for (a, b) ∈ G2 do

Sn/M,a,b := RMS�/(G− 1)2

end
S� := (1−RM)S�

end

end
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Figure 8: The analogue of Figure 2 (left panel) for the medium scenario.

the values of the parameters; e.g., if we decrease R to 10−4 or 10−5, we will get final values
of about the same order of magnitude: 4.9× 10258 or 7.6× 10257, respectively.)
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Figure 9: The analogue of Figures 5 (shown as the left panel) and 7 (shown as the right
panel) in the medium scenario.
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Figure 10: The analogue of Figure 3 for the medium scenario, with the number of simula-
tions still 106.

6. Smaller datasets

In this section we will consider two less extreme scenarios, which we will label as medium
and small (and will refer to the scenario of the previous sections as large). In the medium
scenario, 1000 observations from B(0.3) are followed by 1000 observations from B(0.5).
Figures 8–10 are analogues for the medium scenario of some figures in the previous sections
and exhibit similarities with the large scenario.

In the small scenario, 100 observations from B(0.2) are followed by 1000 observations
from B(0.5). The dependence on the choice of parameters for conformal test martingales

14
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Figure 11: The analogue of Figure 2 for the small scenario.
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Figure 12: The analogue of Figures 5 (shown as the left panel) and 7 (shown as the right
panel) in the small scenario.

becomes much more pronounced, but we keep all old values for the parameters of the
Sleeper/Stayer and Sleeper/Drifter (even though other values may improve their perfor-
mance significantly). One difference from the results for the large and medium scenarios
is the improved performance of the Simple Jumper as compared with the Sleeper/Stayer
and Sleeper/Drifter. Another difference is that, since most of the observations in the small
scenario are post-change, we can clearly see that all martingales, and especially the Simple
Jumper, at some point start losing evidence. Possible ways of preventing heavy loss of
evidence are discussed in Shafer and Vovk (2019, Chapter 11).
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Figure 13: The analogue of Figure 3 for the small scenario, with the number of simulations
still 106.

7. Testing the validity of putative test martingales

The performance of some of the conformal test martingales constructed in this paper might
appear too good, and some of our processes are not guaranteed to be exchangeability mar-
tingales (such as the average process of Figure 6). Therefore, it may be useful to be able to
test whether such processes are martingales in simulation studies (of course, we have theo-
retical guarantees of validity for conformal test martingales, but even for them mistakes in
implementation are always possible). The testing method of this section will use the fol-
lowing large deviations inequality based on Doléans’s supermartingale of Shafer and Vovk
(2019, Section 3.2), which we first give in terms of e-values (Vovk and Wang, 2021) and
p-values. The defining property of an e-value is that it is nonnegative and its expected value
is at most one; a large e-value is interpreted as evidence against our postulated stochastic
mechanism (the null hypothesis).

Proposition 4 Let F1, . . . , FK , K ≥ 4, be independent nonnegative random variables with
expected value 1, and let M be a positive integer. Then

e :=
1

M

M∑
m=1

exp

(
K1−m/2M (F̄ − 1)−K−m/M

K∑
k=1

(Fk − 1)2

)
, (13)

where F̄ := 1
K

∑K
k=1 Fk is the average of the Fk, is a valid e-value, and 1

e ∧ 1 is a valid
p-value.

Proof The statement about (13) being an e-value follows from the right-hand side of (13)
being the final value of a test supermartingale (i.e., a nonnegative supermartingale with
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(π0, π1) (N0, N1) K mean bound median quartiles

(0.1, 0.4) (10, 10) 109 0.99993 1.00054 0.33016 [0.13964, 0.84562]

(0.4, 0.5) (10, 10) 109 1.00000 1.00008 0.89615 [0.66667, 1.21212]

(0.4, 0.5) (100, 100) 109 0.99985 1.00040 0.36630 [0.14232, 0.94952]

Table 1: The mean 1
K

∑
k Fk, its upper bound in (15), and the median and interquartile

range of F1, . . . , FK .

initial value 1), namely an average of Doléans supermartingales (Shafer and Vovk, 2019,
Proposition 3.4). The statement about 1

e ∧ 1 being a p-value follows from e 7→ 1
e ∧ 1 being

an e-to-p calibrator (Vovk and Wang, 2021, Proposition 2.2).

In the main part of this section we will use Proposition 4 in the form of the following
inequality.

Corollary 5 Let F1, . . . , FK , K ≥ 4, be independent nonnegative random variables with
expected value 1, let M be a positive integer, and let ε > 0. Define X > 0 as the only
solution to

M∑
m=1

exp

(
K1−m/2MX −K−m/M

K∑
k=1

(Fk − 1)2

)
=
M

ε
(14)

(the left-hand side is strictly increasing in X). Then

P

(
1

K

K∑
k=1

Fk < 1 +X

)
≥ 1− ε. (15)

Proof If the inner inequality in (15) is violated, we will have

1

M

M∑
m=1

exp

(
K−m/2M

K∑
k=1

(Fk − 1)−K−m/M
K∑
k=1

(Fk − 1)2

)
≥ 1

ε

instead of (14). The probability of this event is at most ε since the reciprocal to (13) is a
p-value.

Let us use M := 5. For a few sets of values for (N0, N1) and (π0, π1), Table 1 gives some
statistics for the final values Fk of the custom-made conformal test martingale with the
betting functions (8) designed for the pre-/post-change parameters (π0, π1) but run on the
IID data with parameter π0; the numbers of pre- and post-change observations is N0 and
N1 respectively. The closeness of the means and bounds to 1 suggests that the processes
are really test martingales. Of course, the bound is never exceeded by the actual mean.

Table 2 is analogous to Table 1 but gives statistics for the average over 103 runs of
conformal test martingales. The means are still close to 1 and do not exceed the bounds.
Unfortunately, this kind of statistics does not allow us to check deviations of the average
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(π0, π1) (N0, N1) K mean bound median quartiles

(0.1, 0.4) (10, 10) 106 0.99894 1.00570 0.67879 [0.38007, 1.37617]

(0.4, 0.5) (10, 10) 106 1.00007 1.00207 0.94866 [0.74567, 1.15930]

(0.4, 0.5) (100, 100) 106 0.99972 1.00994 0.43602 [0.17872, 1.06452]

Table 2: The analogue of Table 1 for the average of the conformal test martingale over 103

runs.

K∗ K A mean bound median quartiles

106 482,311 103 1.00426 1.00101 0.99580 [0.89924, 1.00682]

109 400,000,071 1 1.00001 1.00007 0.83333 [0.83333, 1.42857]

109 447,299,138 10 1.00266 1.00005 0.96172 [0.88585, 1.06718]

109 470,992,540 102 1.00353 1.00005 0.98566 [0.91111, 1.02118]

109 482,226,950 103 1.00452 1.00004 0.99589 [0.89931, 1.00684]

Table 3: Statistics for the conditional validity of the average conformal test martingale with
(π0, π1) = (0.1, 0.4), as described in text.

conformal test martingale from being a martingale, since the expectation of the final value
of the average is still 1.

The method that we have used so far can be easily adapted for the purpose of checking
the martingale property, and it will show that the average conformal test martingale is
not a martingale itself (under the null hypothesis). Let Sn be an average conformal test
martingale; it will be assumed positive. The defining property of a martingale is (7).
The method that we have used tests the crude implication E(Sn) = 1 of the defining
property, which we know to hold for an average of martingales; the modification will test
E(Sn | Sn−1) = Sn−1, i.e., E(Sn/Sn−1 | Sn−1) = 1.

Table 3 summarizes a case where E(Sn/Sn−1 | Sn−1 ≥ 1) > 1 (so that S possesses a
momentum: a rise in the value of S creates a tendency to a further rise). The conformal test
martingale is the one with the betting functions (8), where N0 := 2 and (π0, π1) = (0.1, 0.4);
it is averaged over A simulations. The value of K is the number of runs of the average
conformal test martingale with Sn−1 ≥ 1, where n := 5. These runs are selected from K∗

runs by discarding the runs leading to Sn−1 < 1. The mean, median, and quartiles are
those of Sn/Sn−1 over the K selected runs, and the bound is as given by Corollary 5 with
ε := 0.01. We can see that the bound is exceeded by the actual mean except for the case
where A = 1 (and so there is no averaging). The mean mostly depends on A, and the bound
on K.

To get an idea of how serious the violation of the bounds in Table 3 is, we can apply
Proposition 4 directly. The p-values computed using Proposition 4 from Table 3 are tiny,
except, of course, for the second row, where the e-value is 0.25 and the p-value is 1. Even
for the top row, the p-value is below 10−44.
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8. Further discussion

In this paper we have discussed only the case of binary observations, in which the simple
betting functions (10) are appropriate. This can be regarded as a first step of an interesting
research programme. We can simulate different model situations that can be analyzed
theoretically and develop suitable conformal test martingales, as we did in this paper for a
binary model situation. Perhaps the next in line are the Gaussian model with a constant
variance and a change in the mean, the Gaussian model with a constant mean and a change
in the variance, and the exponential model (as in, e.g., Wald 1947, Part II, and Tartakovsky
et al. 2015). Custom-made conformal test martingales (such as those in Section 4) provide
clear goals for more natural conformal test martingales, and even give ideas of how these
goals can be attained. These ideas, in turn, add to the toolbox that we can use for dealing
with practical problems, where we often have only a vague notion of the true data-generating
distribution. See Nouretdinov et al. (2021) for some results in this direction.

Even in the case of binary observations, better conformal martingales can be designed.
The function (8) is discontinuous, and it leads to a drop in its performance: when p is close

to the borderline value N0π0+(n−N0)π1
n , it is better not to gamble at all than to use (8).
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pothesis Testing and Changepoint Detection. CRC Press, Boca Raton, FL, 2015.

Vladimir Vovk. Derandomizing stochastic prediction strategies. Machine Learning, 35:
247–282, 1999.

Vladimir Vovk. Conformal e-prediction for change detection. Technical Report
arXiv:2006.02329 [math.ST], arXiv.org e-Print archive, June 2020a.

Vladimir Vovk. A note on data splitting with e-values: online appendix to my comment
on Glenn Shafer’s “Testing by betting”. Technical Report arXiv:2008.11474 [stat.ME],
arXiv.org e-Print archive, August 2020b. This is part of a comment on Shafer (2021).

Vladimir Vovk. Testing for concept shift online. Technical Report arXiv:2012.14246 [cs.LG],
arXiv.org e-Print archive, December 2020c.

Vladimir Vovk. Testing randomness online. Statistical Science, 2021. To appear, published
online.

Vladimir Vovk and Ruodu Wang. E-values: Calibration, combination, and applications.
Annals of Statistics, 49:1736–1754, 2021.

Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic Learning in a Random
World. Springer, New York, 2005.

Vladimir Vovk, Ivan Petej, Ilia Nouretdinov, Ernst Ahlberg, Lars Carlsson, and Alex Gam-
merman. Retrain or not retrain: Conformal test martingales for change-point detection.
Proceedings of Machine Learning Research, 152, 2021. COPA 2021, to appear.

Abraham Wald. Sequential Analysis. Wiley, New York, 1947.

Abraham Wald and Jacob Wolfowitz. Optimum character of the sequential probability ratio
test. Annals of Mathematical Statistics, 19:326–339, 1948.

John B. Walsh. A property of conformal martingales. Séminaire de probabilités (Strasbourg),
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