
Learning Hierarchical Task Networks with
Preferences from Unannotated Demonstrations

Kevin Chen∗ Nithin Shrivatsav∗ David Kent∗

Harish Ravichandar Sonia Chernova

Georgia Institute of Technology
{kchen367, nithinshri, dekent, harish.ravichandar, chernova}@gatech.edu

Abstract: We address the problem of learning Hierarchical Task Networks
(HTNs) from unannotated task demonstrations, while retaining action execution
preferences present in the demonstration data. We show that the problem of
learning a complex HTN structure can be made analogous to the problem of se-
ries/parallel reduction of resistor networks, a foundational concept in Electrical
Engineering. Based on this finding, we present the CircuitHTN algorithm, which
constructs an action graph representing the demonstrations, and then reduces the
graph following rules for reducing combination electrical circuits. Evaluation
on real-world household kitchen tasks shows that CircuitHTN outperforms prior
work in task structure and preference learning, successfully handling large data
sets and exhibiting similar action selection preferences as the demonstrations.

Keywords: Hierarchical Task Modeling, Learning from Demonstration, Prefer-
ence Learning

1 Introduction
Hierarchical planning leverages the hierarchical structure inherent in complex tasks to facilitate
greater scalability and task decomposition compared to traditional planning techniques. One of the
most widely used hierarchical planning representations are hierarchical task networks (HTNs) [1],
which have been applied in robotics in the context of navigation [2], manipulation [3, 4], partially
observable planning [5], and human-robot collaborative tasks [6, 7, 8].

Until recently, HTN models have been largely hand-crafted [9, 10]. However, hand coding an HTN
for complex tasks is difficult, as it requires significant domain knowledge and engineering effort.
Recent work has sought to address this problem through automated learning methods, though such
approaches often require significant hand-labeling task hierarchy in the form of task segmentation
or non-primitive task annotation [11, 12, 13]. Approaches that learn hierarchical structure from
unannotated data are less common, and either do not learn alternative decompositions [14] or pref-
erences [3], or learn highly rigid task structures that impede model interpretability [15].

In this work, we introduce CircuitHTN, a novel approach for learning hierarchical task structure from
unannotated task demonstrations (i.e. sequences of state-action pairs obtained from observations of a
task, with no segmentation or hierarchical action annotation). Our approach surpasses prior work by
producing sound task models capable of reproducing all demonstrated approaches for completing
a task. Additionally, our approach learns to imitate action selection preferences reflected within
the demonstrations, a capability that is key for applications that require modeling an agent’s likely
behavior, such as action prediction and cooperative tasks.

A key insight of our work, which enables the above benefits, is that we can learn HTN structures
through an iterative directed acyclic graph reduction approach by analogy to the Electrical Engineer-
ing problem of reduction of resistor networks. Specifically, we show that sequential plan actions can
be modeled as series circuits, and decision points within plans can be modeled as parallel circuits.
This unique reformulation of the problem enables our approach to learn more accurate and scalable

∗Denotes equal contribution

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.

task models by identifying and abstracting groups of actions as one can abstract groups of resis-
tors into a simpler equivalent structure. Certain tasks with extensive optional execution strategies,
however, produce densely connected action graphs that are too complex to model as combination
circuits. For such cases, we provide an extension to CircuitHTN that converts densely connected
action graphs into equivalent graphs suitable for series/parallel reduction.

We evaluate our approach in two domains: i) a simulated robot performing a table setting task
that contains both hard and soft action ordering constraints, and ii) a complex partial-order dataset
consisting of 50 demonstrations obtained from motion capture data of users preparing a salad (CMU
50Salads dataset [16]). Our results show that CircuitHTN surpasses prior state of the art [15, 3] with
respect to scalability, preference alignment, and soundness of the learned models.

2 Related Work
Hierarchical task modeling encodes complex robotic behaviors in transparent, human-readable rep-
resentations, such as HTNs [17, 4], behavior trees [18], and AND/OR graphs [19]. We focus specifi-
cally on the HTN learning problem. Mohseni-Kabir et al. [4] address the annotation problem using
an interactive teaching process, in which a human teacher works with a robot to specify a hierarchi-
cal task. Their approach combines top-down and bottom-up reasoning to learn single-task networks,
including multiple decompositions and optional steps. Our work instead aims to learn hierarchical
task structure from unannotated task demonstrations, while also representing execution preferences
inherent to the provided demonstrations. Hayes and Scassellati [3] present algorithms for learn-
ing particular execution structures in collaborative robot assembly tasks, called cliques and chains,
from unannotated state-action sequences. French et al. [18] demonstrate unsupervised behavior tree
learning from demonstration, evaluated on household robotics tasks. Both unsupervised approaches
focus on learning sound task models, but do not represent demonstrator preferences within the task.

The field of AI and hierarchical planning provides more extensive coverage of HTN learning ap-
proaches, including top-down and bottom-up approaches for learning hierarchical structure, task
preconditions, and action models from annotated task data. Garland and Lesh [20] generalize
non-primitive actions to new problems in a planning domain. Yang et al. [11] use clustering to
segment annotated demonstrations into non-primitive actions, though the machine-learned segmen-
tations may be inaccurate. Neural task programming [21] identifies and composes hierarchical pro-
grams from execution traces, enabling end-to-end hierarchical task generalization. Algorithms such
as CaMeL [22] focus on efficient precondition learning. Other approaches [12, 23, 24, 13] gener-
alize examples from multiple problems to fully learn HTN planning domains. In all of the above
work, annotations take the form of either labeled and segmented execution traces, lists of desired
non-primitive tasks, or pre-determined non-primitive preconditions and effects.

We focus specifically on learning hierarchical task structure only, as there is already extensive prior
work on learning action models from task demonstrations (e.g., [25]). While less common, there
are HTN domain learning approaches designed to learn non-primitive action decompositions from
unannotated data [26, 14], but they do not capture tasks with multiple valid recipes. An alternative
approach is to model task hierarchy through probabilistic grammars [27, 15, 28]. Most similar to
our work is that of Li et al. [15], which uses context free grammars (CFGs) to learn hierarchical task
structure with probabilistic preferences for valid alternative task decompositions. However, the CFG
formulation imposes strict constraints on the network structure of the resulting HTN, sacrificing the
model transparency that would make HTNs beneficial for robotics applications.

3 Learning HTNs from Demonstration
We define the HTN learning problem as follows: Given a set of unannotated demonstrations, D =
{{sik, aik}

ni

k=0}mi=0, where (sk, ak) represents a state-action pair from m total task demonstration
sequences of length ni, our objective is to learn a probabilistic hierarchical task model that captures
both valid task plans and the user’s preferences concerning action selection. Specifically, we learn
an HTN representation extended with concepts from AND/OR graphs [19] and behavior trees [18].
HTNs consist of primitive tasks, which correspond to directly executable robot actions, and non-
primitive tasks, which can be decomposed into additional primitive and non-primitive tasks [1].
We include preference information by introducing two types of non-primitive nodes into the HTN:
decision nodes and sequence nodes. Sequence nodes decompose into a fully-ordered set of primitive

2

Figure 1: An action graph for making a grilled cheese sandwich, incrementally reduced into an HTN
using the Naiı̈ve CircuitHTN algorithm. Analogous circuits are shown below each step.

and non-primitive actions, analogous to AND nodes in AND/OR graphs and sequence nodes in behavior
trees. Decision nodes decompose into a set of task alternatives, analogous to OR nodes in AND/OR
graphs and selector nodes in behavior trees. Further, we add a probability to each alternative of a
decision node, denoting a preference for how often the alternative is executed.

We learn an HTN from a set of available demonstrations such that it contains a root non-primitive
task and its full decomposition to primitive tasks. We assume a fully observable state space and de-
terministic actions, and that all demonstrations correctly perform the task. Actions can be repeated;
for instance, the action add salt may appear several times in a single cooking demonstration. We
assume monotinicity of tasks, i.e. actions cannot undo the effects of other actions, and thus states
are not repeated within a single demonstration. As in the works of Hayes and Scassellati [3] and Li
et al. [15] we assume our demonstrations consist of grounded states and actions.

The CircuitHTN learning approach consists of two steps: i) converting the unstructured demon-
strations to an action graph, and ii) converting the action graph to an HTN. The action graph is a
non-hierarchical representation of all valid combinations of demonstration subsequences that com-
plete the task. Converting an action graph to a tree-structured HTN is challenging due to its often
large and interconnected structure; for example, an action graph constructed from ten demonstra-
tions from the 50Salads dataset (see Section 4.3) consists of 138 nodes connected by 155 edges. The
key insight of our work is that the problem of converting an action graph to an HTN can be made
analogous to the problem of series/parallel reduction of resistor networks. In the following sections,
we first describe action graph construction, and then present a naı̈ve variant of CircuitHTN that only
utilizes traditional circuit rules. We then describe a case in which naı̈ve CircuitHTN can fail, and
present an automated approach for identifying it and restructuring the action graph to again make
the problem solvable through the electrical circuit analogy.

3.1 Action Graph Construction

We construct the action graph from demonstrations as shown in the create action graph function
of Algorithm 1. For a set of demonstrations D, an action graph is a Weighted Directed Acyclic
Graph (DAG) whose vertices are the set of state-action pairs observed in D (line 5), with directed
edges connecting sequential state-action pairs (lines 6, 9). The edge weights represent frequentist
probabilities according to how often action sequences occur in D (lines 7, 10). We provide a full
example of an action graph for making a grilled cheese sandwich in the top-left graph in Fig. 1,
constructed from the following demonstration set (states omitted for brevity):

• [slice bread, add sliced cheese, grill sandwich]

• [slice bread, add tomato, add sliced cheese, grill sandwich]

• [slice bread, add tomato, add shredded cheese, grill sandwich]

3

Algorithm 1 CircuitHTN Algorithms
1: function CREATE ACTION GRAPH(demos)
2: G← empty DAG
3: for demo in demos do
4: for si, ai, si+1, ai+1 in demo do
5: G.V ∪{(si, ai), (si+1, ai+1)}
6: if G.E 3 ((si, ai), (si+1, ai+1)) then
7: G[si, ai][si+1, ai+1].weight ++
8: else
9: G.E ∪{((si, ai), (si+1, ai+1))}

10: G[si, ai][si+1, ai+1].weight = 1

11: return G
12:
13: function NAÏVE CIRCUIT HTN(demos)
14: htn graph← create action graph(demos)
15: while |htn graph.V| > 1 do
16: combine nodes parallel(htn graph)
17: combine nodes series(htn graph)
18: return htn graph.V[0]

19:
20: function EXTENDED CIRCUIT HTN(demos)
21: htn graph← create action graph(demos)
22: while |htn graph.V| > 1 do
23: while is reducible(htn graph) do
24: combine nodes parallel(htn graph)
25: combine nodes series(htn graph)

26: if |htn graph.V| > 1 then
27: restructure graph(htn graph)
28: return htn graph.V[0]

29:
30: function RESTRUCTURE GRAPH(G)
31: candidates← FCS(G)
32: for src, sink, successors in candidates do
33: if !check valid(G, src, sink, succs) then
34: candidates.remove candidate()

35: parallelize(lowest order(candidates))
36:
37: function CHECK VALID(G, src, sink, succs)
38: H← graph(DFS(G, src, sink, succs))
39: H.E \ {e |from(e) = src, to(e) ∈ succs}
40: H.E \ sink.in edges
41: H.V \ src, sink
42: return is isolated(H, G \ H)

43:
44: function PARALLELIZE(G, src, sink, successors)
45: H← empty DAG
46: for s in successors do
47: H.add disjoint subgraph(G, s, sink)
48: G.remove nodes(H.V)
49: G.add(H)
50: G.add edges(src, successors)

3.2 HTN Generation
We generate an HTN from an action graph based on the process of reducing a combination circuit
by finding the equivalent resistance of a set of resistors. Combination circuits are iteratively solved
by combining two resistors in series or in parallel, using the sum of the resistances or the harmonic
mean of the resistances, respectively. This process is repeated until a single equivalent resistor
remains. Two resistors are in parallel if the following three conditions hold true:

1. The indegree and outdegree of both resistors is 1.
2. Both resistors share the same predecessor.
3. Both resistors share the same successor.

Two resistors are in series if the following three conditions hold true:

1. The outdegree of one resistor is 1. Label this resistor R1
2. The indegree of the other resistor is 1. Label this resistor R2.
3. R1’s successor is R2.

An action graph can be viewed as a resistor circuit, wherein a resistor represents a graph node and a
wire between two resistors represents a graph edge. A voltage source connects to the initial action
resistor, and the terminal action resistor connects to a ground2. Any valid path along which current
can flow from the power source to the ground represents a valid action sequence for solving the task.

Our implementation of the above process for HTN learning, which we call CircuitHTN, is given in
the naı̈ve circuit htn function of Algorithm 1. We reduce the action graph by combining nodes
in parallel and in series when the above rules hold until a single node3, representing the final HTN,
remains. We combine two nodes in parallel with a decision node, using the action graph’s edge
weights to calculate a probability representing a preference for each decision node child. When
combine two nodes in series with a sequence node. Fig. 1 shows a full example of iteratively
constructing an HTN using CircuitHTN, with the equivalent combination circuit.

2Dummy initial/terminal actions can be used if the task has multiple possible start/end actions.
3Throughout this work, we use node interchangeably with the term task from traditional HTN literature.

4

Figure 2: (Left) Example of a task graph, and its circuit representation, where no actions can be com-
bined in series or parallel. (Right) The equivalent graph and circuit representation after restructuring
with the graph parallelize algorithm, which can be further reduced using the series-parallel rules.

3.3 Extended Graph Reduction
A limitation of the Naı̈ve CircuitHTN algorithm is that some demonstration sets can produce ac-
tion graphs containing actions neither in series nor in parallel. This situation occurs when mul-
tiple sets of divergent action paths intersect, as shown in Fig. 2 (left) for napkin placement
during a table setting task. In the resulting circuit representation, no two resistors can be com-
bined. Further, the circuit analogy breaks down: a circuit cannot accurately represent that cur-
rent must flow only from fold napkin to place napkin on plate, and not from roll napkin to
place napkin beside plate. Under such conditions, we can restructure the graph to a reducible
series-parallel structure, as shown in Fig. 2 (right).

We extend the Naı̈ve Circuit-HTN algorithm to detect and resolve non-series-parallel graph struc-
tures, and present it in the extended circuit htn function of Algorithm 1. Whenever an action
graph cannot be further reduced by the series-parallel rules, we restructure it (lines 26-27). We first
detect all sets of re-converging paths in the graph using the FCS (first common successors) algorithm
(line 31). A set of paths between two nodes a1 and a2 are re-converging paths if a2 is the first com-
mon successor for the direct successors of a1, where the first common successor of a set of k nodes
{bi}ki=1 is the shortest-distance node reachable from all bi. The subgraph constructed of all simple
paths from the source node, a1, to the sink node, a2, forms a potential candidate for restructuring.

We check the validity of each candidate (lines 32-33) as follows. A subgraph containing all simple
paths between the source and sink node that pass through each direct successor (line 38, constructed
using depth first traversal) is a valid candidate for restructuring if it is isolated from the remain-
ing vertices of the action graph after removing the source and sink nodes (lines 39-41). Note that
changing the structure of an isolated subgraph will not affect the rest of the action graph’s structure.

With valid candidate subgraphs identified, we restructure the subgraph with the fewest vertices,
using the graph parallelize algorithm (line 35). For each direct successor, the algorithm creates
an edge-disjoint subgraph containing all paths from the successor to the sink node. This involves
duplicating some nodes, but the result is a now parallel structure for each successor, and the accuracy
of the task model is unchanged. We then repeat the process of series/parallel node combination, until
the graph either needs additional restructuring or contains only the final HTN node.

4 Evaluation
We evaluate our CircuitHTN approach against two prior HTN learning algorithms designed to learn
from unannotated data. Our experiments compare the following four techniques:

• Clique/Chain HTN (CC-HTN) - structure from action space topology [3]
• Probabilistic HTN (pHTN) - structure and preferences learned as CFG [15]
• Naı̈ve CircuitHTN - action graph reduction using series and parallel combination rules
• Extended CircuitHTN - restructuring complex action graphs to fit the series-parallel rules

We first provide a representative example comparing the structure of the task models produced by
each approach. We then report on two experiments with increasingly complex tasks: a table setting
task learned from human demonstration using a simulated robot manipulator, and a salad making
task learned from human observations. We evaluate each approach over four primary metrics:

• Structure - number of primitive tasks in the learned models

5

Figure 3: Example of learned task models for each unsupervised HTN learning method.

(a) Completeness with respect to
increasing demonstration set size
and number of unique action paths.

(b) Number of non-primitive tasks
in learned HTN models (±1 SD).

(c) Jensen-Shannon distance (±1
SD) between sampled pairwise ac-
tion ordering distributions.

Figure 4: Evaluation of completeness, structure, and preference alignment for table setting.

• Completeness - success rate of learning models over increasing demonstration set sizes
• Soundness - rate of reaching valid goal states using plans produced from learned models
• Preference Alignment - Jensen-Shannon distance between action preference distributions

sampled from the demonstration sets and the produced plans

4.1 Structural Comparison
The structure of a learned HTN reveals how it balances expressivity with compactness to accurately
represent the demonstrations while supporting efficient reasoning and human-readability. To com-
pare the CC-HTN, pHTN, and CircuitHTN algorithms, consider a robot with three demonstrations
of a drink pouring task. We select this example as it highlights differences between the algorithms,
while being compact enough to present in its entirety. The robot’s observations consist of the fol-
lowing demonstrations, in which ice must be placed into a glass before pouring a drink:

1. pour ice1, pour drink1, pour ice2, pour drink2, serve
2. pour ice1, pour ice2, pour drink1, pour drink2, serve
3. pour ice1, pour ice2, pour drink2, pour drink1, serve

Fig. 3 presents a visualization of the models produced by each method. The CC-HTN model (Fig.
3 left) creates a compact representation of the task, but it does not capture every demonstrated ap-
proach (e.g. demonstration 1, where each cup is filled individually), or preferences between them.
Both the CircuitHTN model4 and the pHTN model (Fig. 3 middle and right, respectively) cor-
rectly capture the full structure of the task, including probabilistic decompositions. The limitations
imposed by the pHTN’s grammar induction result in generating a large number of non-primitive
actions, creating a large HTN model. By comparison, CircuitHTN is highly expressive, fully repre-
senting the demonstration approaches and preferences among them, while remaining compact.

4.2 Table Setting Task
In this experiment, we consider a table setting task with human demonstrations provided on a sim-
ulated robot platform. We evaluate the effectiveness of each approach at successfully learning task
models that capture and reproduce human demonstrations and preferences. The task goal is to use a
robot to set a table with dishware, food, and a drink. Actions available to the robot include picking

4In this case both Naı̈ve CircuitHTN and Extended CircuitHTN produce the same results.

6

Figure 5: Salad task completeness.

Demo set size 2 4 6 8 10
Naı̈ve CircuitHTN 1.0 1.0 n/a n/a n/a
Ext. CircuitHTN 1.0 1.0 1.0 1.0 1.0
CC-HTN 1.0 1.0 1.0 1.0 1.0
pHTN 0.92 0.89 0.88 0.89 0.88

Table 1: Soundness of plans produced by learned salad mak-
ing HTNs.

(a) Jensen-Shannon distance be-
tween sampled pairwise action or-
dering distributions.

(b) Jensen-Shannon distance be-
tween goal state distributions.

(c) Difference between HTN-
generated plan lengths and
demonstration sequence lengths.

Figure 6: Evaluation of preference learning for the 50Salads task. All plots show mean ±1 SD.

and placing silverware, plates, fruit, cups, ice, and a bottle of water, as well as pouring water from
the bottle. The task has a single goal state, with both hard execution ordering constraints (e.g. plates
must be placed before food), as well as soft execution ordering constraints that act as preferences
(e.g. silverware may be placed at any time). We collected 10 demonstrations of demonstrators (uni-
versity students, 7 male/3 female, 4 roboticists/6 non-roboticists) controlling a robot to set a table,
using a tabletop Franka Panda arm simulated in RLBench [29]. We created 80 datasets for our eval-
uation, each containing a unique combination of either 2, 4, 6, or 8 of the collected demonstrations.
The combinatorial nature of multiple demonstrations quickly creates large networks; for example, a
set of 8 demonstrations produces an action graph with an average of 96 vertices and 104 edges.

Fig. 4 shows comparisons across the four approaches for the table setting task. As the demonstra-
tion set size increases, the action graph becomes increasingly complex. Fig. 4a shows the necessity
of the graph restructuring component of the Extended CircuitHTN algorithm, as Naı̈ve CircuitHTN
quickly becomes unable to reduce the denser action graphs. Additionally, the CC-HTN algorithm
fails more often with larger demonstration set sizes, as it becomes more difficult to identify clique
and chain structures, while the Extended CircuitHTN and pHTN algorithms are able to learn mod-
els effectively across larger numbers of demonstrations. Fig. 4b shows that Naı̈ve and Extended
CircuitHTN learn preference-aligned models with compact structure, producing HTNs with signifi-
cantly fewer non-primitive tasks than the pHTN models for all demonstration set sizes.

To evaluate preference alignment, we sample a set of 100 ground truth plans by traversing the ac-
tion graph, and sample an additional 100 plans from each learned HTN. We then create preference
distributions for the ground truth and learned plans by constructing a discrete frequency distribution
over all pairwise orderings between actions (e.g. how many times does place plate appear before
place fork, etc.), and measure their difference with Jensen-Shannon distance (where lower values
are better). As shown in Fig. 4c, Naı̈ve CircuitHTN (when it succeeds), Extended CircuitHTN, and
pHTNs closely reproduce the demonstrated preferences, while CC-HTNs do not.

4.3 Salad Making Task
Our second task learning experiment focuses on a more complex task. We evaluate each approach’s
ability to learn preferences in salad making, using observations of people making salads from the
50Salads dataset [16]. Similar to table setting, this dataset represents a real-world task with a mix of
both ordering constraints and un-ordered (i.e.preference-based) action sequences. The task is more

7

challenging than table setting for two reasons: (1) the task has multiple goal states, as the human-
provided demonstrations show different types of salads according to the demonstrator’s preference,
and (2) demonstrations are of varying length, as actions can be partially completed and returned to
according to the demonstrator’s preference. Further, we note that this data was collected indepen-
dently and without biases towards our learning approach.

Similar to the table setting experiment, we learn HTN models with each approach over datasets
of various size. We created 100 datasets, each containing a unique combination of either 2, 4, 6,
8, or 10 of demonstrations from the 50Salad task demonstrations. Depending on the size of the
demonstration set, each approach learned task models with differing success rates, as shown in Fig.
5. Performance for all of the approaches degraded as demonstration set size increased, although
as with the table setting task, Extended CircuitHTN and pHTN could still construct HTNs for a
majority (85%) of large demonstration sets. However, Table 1 shows a considerable difference
in soundness between Extended CircuitHTNs and pHTNs. We define a sound plan as one that
reaches a valid goal state. Based on the 50Salads dataset, we define a valid goal state as a salad
that includes chopped lettuce, tomato, cheese, and a dressing consisting of oil, vinegar, salt, and
pepper (adding cucumbers and mixing dressing into the salad are optional steps). The graph-based
algorithms (CircuitHTN and CC-HTN) always produce valid salads, but the stochastic generative
rules defined by the pHTN’s learned grammar can generate plans that produce invalid results.

We evaluate preference alignment in the same manner as in our table setting experiment. For the
more complex salad making task we also evaluate preference alignment over goal states (as Jensen-
Shannon distance between goal state distributions) and action sequence lengths (as the difference
between demonstration and generated plan lengths). All of these results are shown in Fig. 6.

Both Extended CircuitHTN and pHTNs again learned action order preferences that are close to the
action orderings present in the demonstration sets. Extended CircuitHTN was more effective than
all other methods, however, at learning preferences over multiple goal states. Fig. 6c shows that CC-
HTNs consistently produce shorter paths than the demonstrations, showing that they learn efficient
task policies. This is advantageous for applications that require optimal task planning, but can be
detrimental for applications involving behavior modeling, where preference learning is necessary.

4.4 Summary
Extended CircuitHTN is the only approach capable of learning HTNs for large demonstration sets
while also producing consistently sound plans. pHTN, as a state-agnostic method that generates
action sequences from probabilistic decompositions, was the only approach to generate invalid plans.
All graph-based methods produced valid task plans, as their learned hierarchical structures account
for state-based pre-conditions. CC-HTN, while capable of learning correct task structure for certain
cases, frequently failed to learn modles as the size of the demonstration set increased. While clique
structures are a useful and compact means of representing un-ordered actions, they require many
demonstrations for tasks with large sets of optional orderings. In contrast, our graph parallelization
and reduction rules enable Extended CircuitHTN to account for a wider range of structures, resulting
in consistent performance without requiring an exhaustive set of demonstrations.

Our results demonstrate that Extended CircuitHTN effectively and consistently learns action execu-
tion preferences that are representative of the task demonstrations. CC-HTN results in low prefer-
ence alignment, indicating that demonstration information can be lost when not explicitly consider-
ing action selection preferences. In comparison to pHTN, Extended CircuitHTN learns preferences
with comparable effectiveness while producing significantly smaller models, making them more
relevant to human-robot collaborative tasks, which require transparent task models [19, 17].

5 Conclusions and Future Work
We introduced CircuitHTN, a circuit-inspired graph reduction approach to learning hierarchical task
structure with action selection preferences from unannotated data. CircuitHTN outperforms prior
HTN learning approaches both by accurately representing action execution preferences, and by suc-
cessfully reducing complex task graphs produced from large and complex demonstration sets to
compact models. As preference learning for hierarchical task structures has rarely been studied, we
present CircuitHTN as an initial approach toward learning complete HTNs that capture realistic task
execution behavior. Future work can extend our approach to recognize additional compact structures
such as cliques, learn preconditions and effects, and support parameterized and stochastic actions.

8

Acknowledgments
This work is supported in part by Hitachi America and an Early Career Faculty grant from NASA’s
Space Technology Research Grants Program.

References
[1] K. Erol, J. A. Hendler, and D. S. Nau. Umcp: A sound and complete procedure for hierarchical

task-network planning. In AIPS, volume 94, pages 249–254, 1994.

[2] T. Belker, M. Hammel, and J. Hertzberg. Learning to optimize mobile robot navigation
based on htn plans. In IEEE International Conference on Robotics and Automation (Cat.
No. 03CH37422), volume 3, pages 4136–4141. IEEE, 2003.

[3] B. Hayes and B. Scassellati. Autonomously constructing hierarchical task networks for plan-
ning and human-robot collaboration. In IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 5469–5476. IEEE, 2016.

[4] A. Mohseni-Kabir, S. Chernova, and C. Rich. Collaborative learning of hierarchical task net-
works from demonstration and instruction. In AAAI Fall Symposium Series, 2014.

[5] M. Weser, D. Off, and J. Zhang. Htn robot planning in partially observable dynamic envi-
ronments. In IEEE International Conference on Robotics and Automation, pages 1505–1510.
IEEE, 2010.

[6] L. De Silva, R. Lallement, and R. Alami. The hatp hierarchical planner: Formalisation and an
initial study of its usability and practicality. In IEEE/RSJ international conference on intelli-
gent robots and systems (IROS), pages 6465–6472. IEEE, 2015.

[7] Z. Kasap and N. Magnenat-Thalmann. Towards episodic memory-based long-term affective
interaction with a human-like robot. In 19th International Symposium in Robot and Human
Interactive Communication, pages 452–457. IEEE, 2010.

[8] W. Wang, R. Li, Z. M. Diekel, and Y. Jia. Robot action planning by online optimization in
human–robot collaborative tasks. International Journal of Intelligent Robotics and Applica-
tions, 2(2):161–179, 2018.

[9] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, D. Wu, F. Yaman, H. Munoz-Avila, and J. W. Murdock.
Applications of shop and shop2. IEEE Intelligent Systems, 20(2):34–41, 2005.

[10] I. Georgievski and M. Aiello. Htn planning: Overview, comparison, and beyond. Artificial
Intelligence, 222:124–156, 2015.

[11] Q. Yang, R. Pan, and S. J. Pan. Learning recursive htn-method structures for planning. In
ICAPS Workshop on AI Planning and Learning, 2007.

[12] C. Hogg, H. Munoz-Avila, and U. Kuter. Htn-maker: Learning htns with minimal additional
knowledge engineering required. In AAAI, pages 950–956, 2008.

[13] H. H. Zhuo, H. Muñoz-Avila, and Q. Yang. Learning hierarchical task network domains from
partially observed plan traces. Artificial intelligence, 212:134–157, 2014.

[14] C. Nguyen, N. Reifsnyder, S. Gopalakrishnan, and H. Munoz-Avila. Automated learning of
hierarchical task networks for controlling minecraft agents. In IEEE Conference on Computa-
tional Intelligence and Games (CIG), pages 226–231. IEEE, 2017.

[15] N. Li, W. Cushing, S. Kambhampati, and S. Yoon. Learning probabilistic hierarchical task net-
works as probabilistic context-free grammars to capture user preferences. ACM Transactions
on Intelligent Systems and Technology (TIST), 5(2):29, 2014.

[16] S. Stein and S. J. McKenna. Combining embedded accelerometers with computer vision for
recognizing food preparation activities. In ACM international joint conference on Pervasive
and ubiquitous computing, pages 729–738. ACM, 2013.

9

[17] A. Roncone, O. Mangin, and B. Scassellati. Transparent role assignment and task allocation
in human robot collaboration. In IEEE International Conference on Robotics and Automation
(ICRA), pages 1014–1021. IEEE, 2017.

[18] K. French, S. Wu, T. Pan, Z. Zhou, and O. C. Jenkins. Learning behavior trees from demon-
stration. In International Conference on Robotics and Automation (ICRA), pages 7791–7797.
IEEE, 2019.

[19] R. A. Knepper, D. Ahuja, G. Lalonde, and D. Rus. Distributed assembly with and/or graphs.
In Workshop on AI Robotics at the Int. Conf. on Intelligent Robots and Systems (IROS), 2014.

[20] A. Garland and N. Lesh. Learning hierarchical task models by demonstration. Mitsubishi
Electric Research Laboratory (MERL), USA, 2003.

[21] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese. Neural task programming:
Learning to generalize across hierarchical tasks. In IEEE International Conference on Robotics
and Automation (ICRA), pages 1–8, 2018.

[22] O. Ilghami, H. Munoz-Avila, D. S. Nau, and D. W. Aha. Learning approximate preconditions
for methods in hierarchical plans. In Proceedings of the 22nd international conference on
Machine learning, pages 337–344. ACM, 2005.

[23] C. Hogg, U. Kuter, and H. Muñoz-Avila. Learning hierarchical task networks for nonde-
terministic planning domains. In Twenty-First International Joint Conference on Artificial
Intelligence, 2009.

[24] H. H. Zhuo, D. H. Hu, C. Hogg, Q. Yang, and H. Munoz-Avila. Learning htn method pre-
conditions and action models from partial observations. In Twenty-First International Joint
Conference on Artificial Intelligence, 2009.

[25] Q. Yang, K. Wu, and Y. Jiang. Learning action models from plan examples using weighted
max-sat. Artificial Intelligence, 171(2-3):107–143, 2007.

[26] N. Nejati, P. Langley, and T. Konik. Learning hierarchical task networks by observation. In
Proceedings of the 23rd international conference on Machine learning, pages 665–672. ACM,
2006.

[27] K. Tu, M. Pavlovskaia, and S.-C. Zhu. Unsupervised structure learning of stochastic and-or
grammars. In Advances in neural information processing systems, pages 1322–1330, 2013.

[28] X. Xie, H. Liu, M. Edmonds, F. Gaol, S. Qi, Y. Zhu, B. Rothrock, and S.-C. Zhu. Unsupervised
learning of hierarchical models for hand-object interactions. In IEEE International Conference
on Robotics and Automation (ICRA), pages 1–9. IEEE, 2018.

[29] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment, 2019.

10

	Introduction
	Related Work
	Learning HTNs from Demonstration
	Action Graph Construction
	HTN Generation
	Extended Graph Reduction

	Evaluation
	Structural Comparison
	Table Setting Task
	Salad Making Task
	Summary

	Conclusions and Future Work

