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Abstract: Motion planning in environments with multiple agents is critical to
many important autonomous applications such as autonomous vehicles and as-
sistive robots. This paper considers the problem of motion planning, where the
controlled agent shares the environment with multiple uncontrolled agents. First,
a predictive model of the uncontrolled agents is trained to predict all possible
trajectories within a short horizon based on the scenario. The prediction is then
fed to a motion planning module based on model predictive control. We proved
generalization bound for the predictive model using three different methods, post-
bloating, support vector machine (SVM), and conformal analysis, all capable of
generating stochastic guarantees of the correctness of the predictor. The proposed
approach is demonstrated in simulation in a scenario emulating autonomous high-
way driving.

1 Introduction

Many of the important applications of autonomy contain multiple agents, many of which are not
under the control of the autonomous system, and we refer to them as the uncontrolled agents. In
order to achieve safe operation in a multi-agent environment, the behavior of uncontrolled agents
needs to be modeled and taken advantage of. Take autonomous driving as an example. When plan-
ning the path for the autonomous vehicle, the behavior of other road users such as human-driven
vehicles and pedestrians is critical to the safety of the autonomous vehicle. Modelling of uncon-
trolled agents has been an important research problem and received a lot of attention. The simplest
setting is perhaps assuming a fixed trajectory of the uncontrolled agents [1], which is obviously too
optimistic and may cause collision. The other extreme is to over-approximate the reachable set of
the uncontrolled agents [2], which is typically too conservative. It has been noticed that a predictive
model is needed to plan safe yet not an overly conservative motion for the autonomous vehicle. In
particular, for safety-critical applications such as autonomous driving, one would want guarantees
of the correctness of such models, which lead to the guarantees of successful task fulfillment. Typ-
ically, predictive models are learned from observations of the uncontrolled agents, using various
representation structures such as temporal logic formulae [3, 4, 5], Gaussian process [6, 7], Inverse
Reinforcement Learning (IRL) [8, 9, 10], and Generative Adversarial Network (GAN) [11].

For agents that exhibit complex behavior, accurately modeling their behavior is almost impossible
due to limitations such as the expressiveness of the model, the amount of data required, and above
all, the nondeterministic nature of such agents. For instance, a human is a typical type of nondeter-
ministic agent whose behavior under the same scenario is usually inconsistent. One way to deal with
this inconsistency is to fit a probabilistic model. In particular, Markovian models such as Markov
chains [12], hidden Markov models [13], and partially observed Markov decision processes [14] are
a popular choice since they simplify the reasoning with the Markovian property. Another class of
approaches is to directly model the nondeterministic behavior with set-based methods, including the
GAN-based prediction [11], SVM approach [15, 16], and the Covernet [17], which uses a neural
network. If such a predictive model has a high probability of including all possible behavior of the
uncontrolled agent, safety can be guaranteed as long as the motion planner plans a trajectory that
is not in collision with the predicted trajectories. For this reason, this class of approaches is more
amenable to safety-critical applications.
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One important issue to consider is the compatibility of the predictive model with motion planning
methods. As a counterexample, predictive models for instantaneous actions such as [16, 11] are not
compatible with most of the popular motion planning tools such as rapid random tree (RRT) [18]
and model predictive control (MPC) [19] since these motion planning tools typically consider a finite
horizon, i.e., they conduct sequential decision making. If one were to use such a predictive model
in a sequential decision-making framework, according to the predictive model, the set of possible
actions for future steps depends on the scenario in the future, which is a function of the actions of
both the controlled agent and the uncontrolled agents, thus nondeterministic. Therefore, the whole
horizon planning problem becomes convoluted and nondeterministic. In addition, the representation
of the predictive model typically consists of complicated functions for the sake of expressibility,
which poses additional difficulty to the horizon planning problem. There exist methods that provide
prediction with a finite horizon, such as clustering and classification with a finite set of trajectories
[20, 21] and the Covernet [17]. However, to the best of our knowledge, no existing predictive model
for motion planning provides guarantees on the correctness of the prediction.

In this paper, we propose a classification approach that learns a predictive model capable of predict-
ing possible trajectories within a short horizon, and we are able to prove a probabilistic guarantee
on the correctness of the prediction. To do so, the output of the predictive model is a set of possi-
ble trajectories with a fixed horizon, which can be directly utilized by the motion planner to plan
safe trajectories. Different from the existing research on data-driven verification of autonomous
systems [22, 23, 24], this paper focuses on generating a nondeterministic predictive model that is
probabilistic correct, and compatible with the common motion planning techniques, and designing a
motion planning module that plans safe motion for the controlled agent by leveraging the trajectory
predictions from the predictive model. To summarize, our main contributions are:

• A learning framework that generates future trajectory predictions with probabilistic guar-
antees of correctness via three post-processing methods

• A model predictive controller that leverages the reactivity of uncontrolled agents to gener-
ate safe trajectories

• Demonstration of the proposed methodology with real highway driving data and simulation
of the reactive MPC controller.

The paper is structured as follows. First, we present the setup for the predictive model learning,
including the generation of the trajectory basis and the affordance approach for scenario description
in Section 2. Section 3 presents the neural network structure and proves the generalization bound of
the predictive model via several post-processing methods. Section 4 presents the model predictive
controller leveraging the trajectory prediction, and finally simulation result is shown in Section 5.

2 Setup of the predictive model learning

2.1 Trajectory prediction with basis

One main difficulty of trajectory prediction is the high dimension of the output. Suppose the state
x ∈ Rnx , then a trajectory x containing T time steps belongs to Rnx × . . .Rnx︸ ︷︷ ︸

T

, whose dimension is

nxT . The output dimension quickly becomes too big as T increases and learning such a predictive
model becomes intractable.

Inspired by [17], a trajectory basis method is used to reduce the output dimension. The idea is to
use a trajectory basis consisting of a finite collection of base trajectories to represent all possible
trajectories with a fixed horizon up to a certain difference threshold. The output of the predictive
model is then a binary vector, indicating whether each of the base trajectories is possible under the
scenario. Different from [17], our goal is not to find the most probable trajectory, but instead to find a
set containing all possible trajectories in a given scenario, and to provide a probabilistic guarantee on
the learned predictive model in terms of covering all possible behavior of the human-driven vehicle,
assuming that the training data is a reasonable sample of such behavior.

We let x denote a state trajectory where x(t) ∈ Rnx . Given a training set Ω consisting of state
trajectories lasting for a fixed horizon T , we would like to cover all trajectories observed with a
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Figure 1: Example base trajectory and uncertainty region, where the solid trajectory is a base tra-
jectory xi ∈ B, and the dashed line is a trajectory in Ω, the blue ellipses are the uncertainty region
determined by the atom set A.

finite set of trajectories B := {xi}Mi=1, where M is the cardinality. B is also called the trajectory
basis, and satisfies

∀x ∈ Ω, ∃xi ∈ B s.t. ‖x− xi‖A ≤ ε,
where || · ||A denotes the atomic norm with atom set A, see [25] for more details. As an example,
Fig. 1 shows one base trajectory with the uncertainty region at each sampling time, and another
trajectory shown in a dashed line that is close enough to the trajectory base such that the position at
each sampling time falls into the uncertainty region. The size of the uncertainty region is determined
by the atom setA. WithA fixed, for any two trajectories x and x′, we can compute their distance in
terms of the atomic norm. For a given training set Ω and a given threshold ε, we can compute a graph
where each trajectory within the set is a node, and an edge exists between two nodes if and only if
their distance is below ε. Next, we want to find a trajectory basis B with a minimum cardinality that
covers all trajectories in Ω, i.e., for each trajectory segment in Ω, there exists a base trajectory in B
that is ε-close. We say such a trajectory basis B is an ε-covering of the training set Ω, and the process
of identifying such a trajectory basis is called sparsification. This is a well-studied set covering
problem. Although solving for the exact solution is NP-hard, a greedy algorithm is shown to perform
well enough due to the submodularity of the problem, c.f. [26]. For the example application of this
paper, the highway driving problem, we extracted more than 140000 trajectory segments that lasted
for 3 seconds on US-101 highway from the NGSIM project [27], and the trajectory basis contains
17 base trajectories after sparsification with a greedy algorithm.
Remark 1. To make the parameterization less sensitive towards longitudinal speed, each of the base
trajectories is represented as the position difference between the actual trajectory and the imaginary
trajectory if the vehicle were to follow the current speed forward. In this way, the base trajectory
represents the deviation from normal driving, and thus, we do not need multiple basis trajectories
for similar driving behavior under different longitudinal speed.

1 Forward velocity 12 Right front velocity
2 Distance to lane center 13 Right front X clearance
3 Forward clearance 14 Right rear Y clearance
4 Forward vehicle velocity 15 Right rear X clearance
5 Left front Y clearance 16 Right rear velocity
6 Left front velocity 17 Left front vehicle length
7 Left front X clearance 18 Left rear vehicle length
8 Left rear Y clearance 19 Right front vehicle length
9 Left rear X clearance 20 Right rear vehicle length
10 Left rear velocity 21 Ego-vehicle length
11 Right front Y clearance

Figure 2: Definition of the affordance features with graphic illustrations

2.2 Affordance

The input to the predictive model describes the scenario, including information about the ego-vehicle
(the vehicle whose future motion is to be predicted) and the adjacent vehicles. In [16], the lane-
change scenario was described by a single state vector since only one nearby vehicle was considered.
However, when multiple adjacent vehicles are involved, traditional multiagent state representation
(stacking states of all agents) is not applicable because (i) the number of agents in a scenario is
not fixed (ii) the representation is not permutation invariant, i.e., the total state vector changes as
the ordering of agents changes, which is problematic for both training and post-processing. One
prominent example of a permutation invariant description is graphic representations (and similarly
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occupancy grid), which was used in [17]. Other examples include the occupancy network [28] and
the Pointnet [29], both employing special neural network structures.

Since highway driving is considered in this paper, which happens in a highly structured environment,
we propose the affordance approach inspired by [30], which is easy to implement and analyze. Af-
fordance is simply a collection of features that describes the driving scenario on the highway, as
shown in Fig. 2. It is a comprehensive representation of the driving scenario of the ego-vehicle, in-
cluding the position of surrounding vehicles and the environment, and it is applicable to an arbitrary
number of adjacent vehicles since when a certain vehicle is missing in one position, the correspond-
ing affordance feature simply take the default value, showing that there is no vehicle in that position.
Obviously, the affordance representation is permutation invariant by nature.

2.3 Collision check and output label

Given a scenario described by the affordance vector, we can perform a collision check assuming
all vehicles maintain their current speeds, which is implemented with simple algebraic calculations.
For each data point in the training set consisting of the affordance vector and the trajectory segment,
there are three possible output flags. Firstly, the base trajectory with the minimum distance to the
trajectory segment of the data point is marked as positive, with the output flag equal to 1. Note that
the base trajectory with minimum distance is always ε-close to the data point since the trajectory
basis is an ε-covering of the training set. For the rest of the base trajectories, we perform collision
checks and separate them into two groups, ones that cause collision within the finite horizon and
ones that do not. Although the output flag for both groups is zero, later in training, they are given
different weights, i.e., the false positive corresponding to base trajectories that lead to collisions
are more heavily penalized. To differentiate the two groups, we say the output flag is 0 if the base
trajectory does not lead to a collision, and 0̄ if it does. The output then is a vector with the ith
entry equal to one and all other entries equal to zero, where i is the index of the corresponding base
trajectory.

3 Neural network classification with generalization bound

3.1 Neural network training

With the input and output of the predictive model specified, a classifier f : Rm → RM that outputs a
binary vector is trained, where m is the dimension of the affordance vector and M is the cardinality
of the trajectory basis. We chose a neural network for its strong expressibility, and the neural network
is a simple feedforward network with two hidden layers using ReLU as the activation function
followed by a sigmoid layer so that the output is a vector with entries between 0 and 1. Let x, y be
the input and output of the neural network, respectively, and z be the ground truth of the output. As
discussed in Section 2.3, the entries of z can be 1, 0, or 0̄. The loss function is then defined as

J(y, z) =

N∑
i=1

w11zi=1ReLU(γ1 − yi) + w01zi=0ReLU(yi − γ2) + w0̄1zi=0̄ReLU(yi − γ2),

where γ1, γ2 ∈ [0, 1] are constants chosen to add robustness to the classifier, w1, w0, w0̄ are the
weights for the three classes of outputs and ReLU(x) = max(0, x) is the standard ReLU function.
w0̄ is chosen to be higher than w0 so that false positive predictions corresponding to trajectories
leading to collisions are penalized more heavily.

3.2 Generalization bound

Since the application is safety-critical, we would like to obtain generalization bound for the predic-
tive model. Generalization bounds based on VC-dimensions [31] cannot be applied directly here
since computing VC-dimension for Neural Networks is a challenging problem and the bounds for
such VC-dimensions are usually very coarse [32, 33]. Moreover, we care more about the upper
bound on the false-negative rate than the false-positive since the former leads to guarantee on safety
while the latter simply means conservatism. Here we provide three alternative methods to obtain
the generalization bound for a neural network, post-bloating, support vector machine retraining, and
conformal regression. We start by reviewing the theory of random convex program.
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Let P [K] denote a (minimization) optimization problem with a known objective function and con-
straint set K, and let Obj[K] denote the optimal objective value of P [K]. A constraint k is a
supporting constraint if Obj[K\{k}] < Obj[K]. The setup for an RCP is the following:

min J(α)

s.t. α ∈ Q(δi),∀δ1, ..., δN i.i.d samples of δ,
(1)

where α ∈ Rn, Q(δi) ⊆ Rn is a convex set determined by δi, and J(α) is convex. δ ∈ ∆ is
a random variable in the space ∆ and {δi} are independently identically distributed samples of δ.
Each δi would pose a convex constraint on α. If we randomly draw N samples of δ, and denote it
as ω .

= δ1:N ∈ ∆N , then let Q(ω)
.
=
⋂N
i=1Q(δi), define

V ∗(ω) = P {δ ∈ ∆ : Obj([Q(ω), Q(δ)]) > Obj[Q(ω)]} , (2)

which is the probability that an additional sample added on top of ω would change the objective
value of the original optimization with constraints determined by ω. [34] gives upper bound on
P(V ∗(ω) ≥ ε) given 1 ≥ ε > 0 for a randomly drawn sequence of samples ω. First, we recall the
following relevant lemma from [34]:
Lemma 1. Consider the random convex program in (1) where α ∈ Rn. When N ≥ ζ,
P
{
ω ∈ ∆N : V ∗(ω) > ε

}
≤ Φ(ε, ζ − 1, N) ≤ Φ(ε, n,N), where ζ is the Helly’s dimension denot-

ing the maximum number of supporting constraints, which is bounded by n + 1, and Φ(ε, k,N) =∑k
j=0

(
N
j

)
εj(1 − ε)N−j is the cumulative distribution of a binomial random variable, that is, the

probability of getting no more than k successes in N Bernoulli experiments with success rate ε.

This is Theorem 3.3 in [34], which shows that the result of the RCP is likely to be true for unseen δ
drawn from the same distribution under large N and small n.

Applying the RCP theory on our problem, the post-bloating procedure can be described as the fol-
lowing procedure:

• Split the training set into two sets Ω1, Ω2 with N1 and N2 data points
• Use Ω1 to train a neural network as described in Section 3.1
• Post-bloat f using Ω2 with the following optimization

c? = min
c∈RM

∑
ci

s.t. ∀(x, z) ∈ Ω2, (zi = 1)⇒ [f(x)]i >= ci,
(3)

which is obtained by simply taking the minimum over the output of f with input being Ω2.
• Use c? as the threshold of f , i.e., [f(x)]i ≥ c?i implies the ith basis trajectory is possible,

otherwise impossible.

Then we have the following theorem:
Theorem 1. Suppose Ω2 is a data set consisting of i.i.d. sampled data points, let f, c? be the
classifier obtained with the post-bloating procedure, then for an unseen data point (x, z) from the
same distribution,

P {P {∃zi = 1 ∧ [f(x)]i < c?i } > ε} ≤ Φ(ε,M + 1, N2)

Proof. The post bloating process is a random convex program with N2 constraints drawn i.i.d. from
a distribution, the Helly’s dimension is upper bounded byM+1 since the decision variable c ∈ RM
by Lemma 2.3 of [34]. Therefore, the conclusion follows from Lemma 1.

The SVM approach works similarly, and we put a detailed description in the supplementary material.
Conformal regression employs a different theory, yet the procedure is very similar to post-bloating
as it also splits the training set, uses one to train the neural network, and uses the other to adjust the
threshold. We put the theory and procedure of conformal regression in the supplementary material.
In practice, we found the post-bloating giving similar performance to the SVM and conformal re-
gression approach, and yet the former method is much easier to implement and has a smaller Helly’s
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Table 1: False negative rate after post-bloating with data sets with various sizes
Size of post-bloating data set ε99% by RCP Empirical false negative rate

15946 0.19% 0.093%
23919 0.103% 0.05%
31893 0.077% 0.05%
39866 0.062% 0.035%
47839 0.052% 0.032%
55813 0.044% 0.014%
63786 0.039% 0.016%

dimension, which leads to a stronger probabilistic guarantee on the correctness of the predictive
model. Thus we only include the result using the post-bloating method in this paper.

For the highway autonomous driving example, we use a separate data set to calculate the empirical
probability of false negative predictions after post-bloating with data sets with different sizes. ε99%

denotes the upper bound on the false negative rate with confidence 99%, i.e., with probability 99%,
the false negative rate is below ε99%. As shown in Table 1, the false negative rate decreases as all the
empirical false negative rate decreases as the number of data points used for post-bloating increases,
and the empirical rate is always upper bounded by the RCP bound ε99%, since 99% is a pretty high
confidence level.

Of course, we are limited by the amount of data available and the rate of false negative is not small
enough for realistic self-driving applications yet (human drivers typically experience 1 death in 100
million miles of driving). However, there is an important distinction between prediction error and
fatal crash since An unpredicted maneuver by an uncontrolled vehicle does not necessarily lead to
an accident, let alone a fatal one. The relationship between the error of the predictive model and an
actual crash caused by the prediction error needs further research.

4 Model predictive control with a predictive model

In this section we present a motion planning algorithm based on Model Predictive Control (MPC)
that works with the predictive model. We assume that the perception module and the predictive
model give us the current and predicted positions of the Nobst uncontrolled vehicles (Xi

k, Y
i
k ) for

i ∈ {1, . . . , Nobst} and k ∈ {0, . . . , N}. Then for each vehicle, we compute an ellipse with semi-
axes (ai, bi), which contains the predicted future position of the ith vehicle with the error bound,
and we design an MPC strategy to compute the control action. The Euler discretized Dubin’s car
model is used as the dynamic model:

xk = [Xk Yk vk ψk]
ᵀ
, xk+1 = f(xk, uk) = xk + [vk cosψ vk sinψ ak rk]

ᵀ
dt, (4)

where Xk, Yk, vk, ψk are the longitudinal, lateral position, vehicle velocity, and heading angle at
time k. The input uk are the acceleration ak and yaw rate rk.

At each time t, we solve the following finite-time optimal control problem:

min
u0,...,uN−1
γ0,...,γN−1

N−1∑
k=0

(
h(xk, uk) + ckγ

2
k

)
+Q(xN )

s.t. xk+1 = f(xk, uk)(
Xk −Xi,j

k

ai + a

)2

+

(
Yk − Y i,jk
bi + b

)2

+ γk ≥ 1, uk ∈ U

x0 = x(t)

∀k ∈ {0, . . . , N},∀j ∈ {1, . . . , N i
pred},∀i ∈ {1, . . . , Nobst}

(5)

where N i
pred denotes the number of predicted trajectories for the ith uncontrolled vehicle and for j ∈

{1, . . . , N i
pred} we have that [(Xi,j

0 , Y i,j0 ), . . . , (Xi,j
N , Y i,jN )] represents the possible jth trajectory

associated with the ith uncontrolled vehicle. (a, b) are the semi-axes of the ellipse associated with
the controlled vehicle and (ai, bi) are the semi-axes of the ith uncontrolled vehicle.
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Figure 3: Snapshots of the simulation with multiple uncontrolled vehicles. The blue rectangles
represent the autonomous vehicle and the predicted trajectory in light red. The uncontrolled vehicles
is depicted in red and the predicted trajectory in light red.

The above finite-time optimal control problem computes a trajectory for the nominal model xk+1 =
f(xk, uk), which minimized the running cost h(·, ·) while avoiding the other vehicles represented
by obstacles and satisfying the input constraints, for further details on the obstacle representation
we refer to [35]. Notice that in the above problem, we used the slack variable γk that allows us to
relax the obstacle constraint, and the weight ck is a tuning parameter that penalizes the constraint
violation. Let [u∗0, . . . , u

∗
N−1] be the optimal solution to the finite-time optimal control problem (5)

at time t, then we apply to the system πMPC
(
x(t)

)
= u∗t|t. The above procedure is repeated at the

next time step t+ 1 based on the new measurement x(t+ 1).
Remark 2. Although by convention it is the rear vehicle’s responsibility to prevent a rear-end col-
lision, for the sake of safety, the MPC still considers an uncontrolled vehicle directly behind the
controlled vehicle. This leads to some frontal or side collision when the controlled vehicle is trapped
between uncontrolled vehicles, as shown in Section 5. When we chose to let the MPC ignore the
uncontrolled vehicle directly behind, we observe no frontal or side collisions in simulation.

5 Simulation with MPC

The proposed approach is tested in a simulation environment where the uncontrolled vehicles operate
autonomously in a reactive fashion. Each uncontrolled vehicle updates its trajectory by randomly se-
lecting a trajectory from the trajectory basis that is consistent with the trajectory predictor and passes
the collision check. It should be emphasized that the collision check only checks potential collisions
with other uncontrolled vehicles based on their selected trajectory; and checks collision with the au-
tonomous vehicle assuming constant velocity for the autonomous vehicle if the autonomous vehicle
is directly in front of the uncontrolled vehicle, as discussed in Section 4. This check with the au-
tonomous vehicle is to prevent the uncontrolled vehicles from hitting the autonomous vehicle from
behind since typically; it is the rear vehicle’s responsibility to prevent a rear collision. In any other
case, the collision avoidance task for the autonomous vehicle falls on the MPC controller with the
predictive model. The autonomous vehicle then calculates the affordance for each adjacent uncon-
trolled vehicle, pass the affordance to the predictive model to obtain the possible trajectories, and
plan its own motion with the MPC controller introduced in Section 4 by leveraging the predicted
trajectories. Furthermore, the MPC optimization problem is implemented using CasADi [36] for
automatic differentiation and IPOPT [37] to solve the nonlinear program.

The result shows that the MPC controller, together with the trajectory predictor is able to safely
plan the motion for the autonomous vehicle by leveraging the reactive behavior of the uncontrolled
vehicle. The animation of the simulation can be found in the supplementary material of this paper.
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Figure 4: (a) Distribution of collisions (b) a typical collision case

Fig. 3 shows the predicted MPC
trajectories by the controlled ve-
hicle in four different scenarios.
The red shaded patches repre-
sent the predicted positions of
the uncontrolled agents. These
predicted trajectories are used
to enforce the time-varying con-
straints in the MPC problem (5).
As the constraints are time-
varying, the controller can pre-
dict to cross a location previ-
ously occupied by the uncon-
trolled agent. However, the
MPC plans a trajectory such that
the controlled and the uncon-
trolled vehicle do not occupy the same location at the same time. As a result, the controller slows
down when is surrounded by uncontrolled vehicles (Fig. 3 (a) and (b)) and it accelerates to perform
an overtaking maneuver when it is safe to do so (Fig. 3 (c) and (d)).

As a statistical study, we performed 1000 trials with random initial scenarios containing 3 to 7
uncontrolled vehicles (200 trials each), each lasting for 20 seconds. The MPC controller is designed
to perform lane changes and overtaking maneuvers, which are challenging tasks for autonomous
vehicles. The result of the 1000 trials showed seven frontal or side collisions, and 20 rear-end
collisions where the distribution of collisions w.r.t. the number of uncontrolled vehicles is shown in
Fig. 4(a). However, after inspection, almost all the collision cases were caused by the controlled
vehicle surrounded by the uncontrolled vehicles, leaving no safe solutions to the MPC controller.
An example snapshot is shown in Fig. 4(b). A video describing the sim result can be found in
https://youtu.be/E49TH0kPBuo.
Remark 3. The simulation environment can be viewed as an over-approximation of the realistic
highway environment since the trajectories for the uncontrolled vehicles are randomly picked from
the trajectories deemed possible by the predictive model, which over-approximates the set of possi-
ble trajectories. This leads to some unrealistic scenarios where multiple uncontrolled vehicles trap
the controlled vehicle and collision is inevitable. In future works, we plan to perform extensive test-
ing of the proposed strategy on a more realistic simulation environment emulating the true nature of
human-driven vehicles and perform a more thorough statistical study.

6 Conclusion

We propose a predictive modeling framework that predicts possible trajectories within a short hori-
zon for uncontrolled agents based on the scenario in an environment. By applying tools in statistics,
we are able to prove a probabilistic guarantee on the correctness of the predictive model after post-
processing. The predictive model is compatible with most of the existing motion planning methods,
which are typically horizon-based, to plan safe motion for the controlled agent by leveraging the
trajectory prediction. We apply the framework to the highway autonomous driving problem where
the predictive model takes the affordance, a permutation-invariant scenario representation as the in-
put, and outputs a vector indicating possible trajectories of an uncontrolled vehicle within a finite
horizon. We then design an MPC controller that leverages the trajectory prediction to plan safe
motion. A simulation study shows promising results that the proposed framework is able to safely
navigate the autonomous vehicle in an environment packed with uncontrolled vehicles and perform
challenging tasks such as lane change and overtaking.
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7 Appendix

7.1 SVM for post processing

SVM was used in [16] for the training of the classifier to get generalization bound with the RCP
theory, yet we found that it performed poorly with the affordance as input. The main reason is
the absence of good nonlinear features. On the other hand, the neural network, as an unsuper-
vised method for classification, is able to automatically find good features for the classification task.
However, due to the complicated structure and a large number of parameters, obtaining nice gener-
alization bound has been difficult for neural networks. We combine the two classification methods
to get the advantages of both methods. To be specific, the following procedure is proposed, which
uses a neural network to find the features for SVM:

• Split the training set into two sets Ω1, Ω2 with N1 and N2 data points

• Use Ω1 to train a neural network as described in Section 3.1 and save the network structure
up to the last hidden layer, which has n̄ neurons, denote the nonlinear function from input
to the last hidden layer as g.

• Let g be the nonlinear feature for the SVM and use Ω2 to train an SVM following the
procedure detailed in Section 3.1 of [16].

The generalization bound then follows in a similar fashion as Theorem 1 with the number of samples
being N2 and Helly’s dimension being n̄+ 1.

7.2 Conformal regression for probabilistic guarantees

In this section, we discuss a third approach to provide probabilistic guarantees for our trained classi-
fier f . Conformal regression [38, 39] provides a framework to quantify the accuracy of the predictive
inference in regression using conformal inference [40]. We choose to use conformal regression since
it can provide valid coverage in finite samples, without making assumptions on the distribution.

Consider i.i.d. regression data Z1, · · · , ZN drawn from an arbitrary joint DXY , where each Zi =
(Xi, Yi) is a random variable in Rn × R, comprised of a n-dimensional feature vectors Xi and a
response variable Yi. Conformal regression problem is to predict a new response YN+1 from a new
feature value XN+1, with no assumptions on DXY . Formally, given a positive value ε ∈ (0, 1),
conformal regression techniques can construct a prediction band C ⊆ Rn×R based on Z1, · · · , Zn
with the property that

P(YN+1 ∈ C(XN+1)) ≥ 1− ε, (6)

where the probability is taken over the N + 1 i.i.d. draws Z1, · · · , ZN , ZN+1 ∼ DXY , and for a
point x ∈ Rn we denote C(x) = {y ∈ R : (x, y) ∈ C}. Such ε is called the miscoverage level, and
1− ε is the probability threshold.

Let
µ(x) = E(Y | X = x), x ∈ Rn

denote the regression function. The regression problem is to estimate such conditional mean of the
test response YN+1 given the test feature XN+1 = x. Common regression methods use a regression
model g(x, η) and minimize the sum of squared residuals of such model on theN training regression
data Z1, · · · , ZN , where η are the parameters of the regression model. The estimator for µ is given
by

µ̂(x) = g(x, η̂),

where η̂ = argminη
1
N

∑N
i=1(Yi − g(Xi, η))2 +R(η) andR(η) is a potential regularizer. Common

regression model g(x, η) includes linear, polynomial, and neural networks [41, 42].

Let us assume that our classifier f only has a 1-dimensional output (i.e. M = 1) for the rest of
the section. When M > 1, the analysis can be done per dimension of the output. We use a split
conformal methods from [38] to construct prediction intervals that satisfy the finite-sample coverage
guarantees as in Equation (6). We begin by splitting the training data into two equal-sized disjoint
subsets with indices I1, I2. Then our classifier f can be seen as the estimator µ̂ is fit to the training
set {(Xi, Yi)} : i ∈ I1}. Then the algorithm compute the absolute residuals Ri = |Yi − f(Xi)|
on the calibration set {(Xi, Yi)} : i ∈ I2). For a given miscoverage level ε, the algorithm rank
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Table 2: Theoretical and empirical false negative rate using conformal regression analysis
Average d Theoretical ε Empirical ε

0.0972 10.0000% 10.1639%
0.1491 1.0000% 1.0691%
0.1681 0.5000% 0.5352%
0.1838 0.3000% 0.3266%
0.1950 0.2000% 0.2287 %
0.2172 0.1000% 0.1269%
0.2442 0.0400% 0.0603 %

{Ri : i ∈ I2} and take the d(N/2 + 1)(1 − ε)eth one as the confidence range d. Finally, it can be
proved that the prediction interval at a new point XN+1 is given by such f and d as in Lemma 2.
Lemma 2 (Theorem 2.2 in [38]). If (Xi, Yi), i = 1, · · · , N are i.i.d., f is classifier trained on the
training set I1 and d is the d(N/2+1)(1−ε)eth smallest value of the residuals {Ri = |Yi−µ̂(Xi)| :
i ∈ I2}, then for an new i.i.d. draw (XN+1, YN+1),

P(YN+1 ∈ [f(XN+1)− d, f(XN+1) + d]) ≥ 1− ε.

Moreover, if we assume additionally that the residuals {Ri : i ∈ I2} have a continuous joint
distribution, then

P(YN+1 ∈ [f(XN+1)− d, f(XN+1) + d]) ≤ 1− ε+
2

N + 2
.

Generally speaking, as we improve our classifier f of the underlying regression function µ using
more training samples, the resulting conformal prediction interval decreases in length. Intuitively,
this happens because a more accurate f leads to smaller residuals, and conformal intervals are es-
sentially defined by the quantiles of the (augmented) residual distribution. Theoretically, we have
the following lemma to quantify the residuals as a function of the training set size.
Lemma 3 (Theorem 2.3 in [38]). Under the conditions of Lemma 2, there is an absolute constant
c > 0 such that for any ε > 0,

P

(∣∣∣∣∣ 2

N

∑
i∈I2

1{Yi ∈ [f(Xi)− d, f(Xi) + d]} − (1− ε)

∣∣∣∣∣ > ε

)
≤ 2e(−cn

2(ε− 4
N )2).

When using the conformal regression method, instead of using the output of the classifier f directly,
we use the confidence interval [f(x) − d, f(x) + d] for each base trajectory with the affordance
x. If 1 ∈ [f(x) − d, f(x) + d] we mark the trajectory as positive. Note that Lemma 2 assert
marginal coverage guarantees, which should be distinguished with the conditional coverage guaran-
tee P(YN+1 ∈ C(x) | XN+1 = x) ≥ 1 − ε for all x ∈ Rn. The latter one is a a much stronger
property and hard to be achieved without assumptions on DXY .

Following the idea of conformal regression, we use 23919 trajectories from the NGSIM dataset to
calibrate the classifier f with different miscoverage rate ε and another independent set for valida-
tion. The results are reported in Table 2. The weighted average confidence range d is computed
as
∑17
i=1 pidi, where pi is the percentage of the trajectories in the calibration set corresponding to

the ith base trajectory and di is the confidence range of the ith base trajectory. The empirical ε is
computed the portion of trajectories in the testing set whose label is not contained in the prediction
interval [f(x)− d, f(x) + d].

From Table 2, we can see that the weighted average confidence range d across the base trajectories
increases as the miscoverage rate ε decreases. The empirical ε is in general slightly larger then the
theoretical ε which was used to compute d but the difference is very small. We observed that the
results did not vary too much when the size of the testing set changed.

The procedure of using conformal regression to provide probabilistic guarantee is very different
from the post-bloating method discussed in Section 3.2. However, comparing with Table 1, we
can see that conformal regression can provide a similar level of high assurance on the prediction
result while using a fixed set of training/calibration trajectories. We also observed that although
the weighted average d across all base trajectories was relatively small, the actual d for each base
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trajectories varied a lot. For example, with ε = 1%, the confidence ds for the 17 base trajectories
vary from 0.147 to 0.995. The large ds are mainly due to the lack of data (i.e. only very small
portion of the training and calibration data are associated with the corresponding base trajectory).

Comparing to post-bloating, conformal regression can provide more flexibility in terms of choosing
the coverage level. However, the performance of the conformal regression-based method heavily
depends on the composition of the dataset, and achieves the best result when there are sufficient
number of data points for each category. While the post-bloating method is not sensitive about the
composition of the dataset as it solves a single optimization that naturally factors in the distribu-
tion over categories. We plan to explore in the future how to deal with datasets with an uneven
composition over categories.
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